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Abstract. To carry out some calculations in physics and Earth sciences,
for example, to determine spherical harmonics in geodesy or angular
momentum in quantum mechanics, it is necessary to compute normal-
ized Legendre polynomials. We consider the solution to this problem on
modern graphics processing units, whose massively parallel architectures
allow to perform calculations for many arguments, orders and degrees of
polynomials simultaneously. For higher degrees of a polynomial, compu-
tations are characterized by a considerable spread in numerical values
and lead to overflow and/or underflow problems. In order to avoid such
problems, support for extended-range arithmetic has been implemented.
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1 Introduction

Associated Legendre polynomials are solutions of the differential equation
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where degree n and order m are integers satisfying 0 < n, 0 < m < n, and x is
a real variable in the interval [—1, 1] which is usually expressed as cosf, where
0 represents the colatitude [1, Chap. 15].

These polynomials are important when defining geopotential of the Earth’s
surface [2,3], spherical functions in molecular dynamics [4], angular momentum
in quantum mechanics [5], as well as in a number of other physical applica-
tions. The accuracy and scale of numerical simulations directly depend on the
maximum degree of a polynomial which can be correctly computed. Modern
applications typically operate upon first-kind (m = 0) polynomials at a degree
of 10% or higher. The functions P (x) grow combinatorially with n and can
overflow for n larger than about 150. Therefore, for large n, instead of P[*(x),
normalized associated Legendre polynomials are computed. There are a number
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of different normalization methods [6, Chap. 7]. We consider the computation of
fully normalized polynomials

Pr(o) = [P T 4 = ) P o) 2

which satisfy the following equation:

[ AP @)= 1. (3)

Mathematical properties and numerical tables of PJ"(x) are given in [7]. A
number of recursive algorithms are suggested to evaluate P)*(z) [8-10]. One of
the most common ones is based on the following relation [8]:

pm—1 _ 2max pm [/ (n—m)(n+m+1) pm+1
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The starting points for recursion (4) are the values P?*!(z) = 0 and

P = 3 S ®

Equations (4) and (5) are asymptotically stable at any admissible parameters
z, m and n, so if we consider them in terms of pure mathematics, they are
appropriate for computing polynomials of an arbitrarily high degree. In practical
computation, however, there are difficulties in computing (4) and (5) when n
becomes large [3]. This is due to the following reasons:

— computations take an unacceptable long time;
— overflow or underflow exceptions may occur.

The first of these problems stems from the fact that during the numerical
simulation it is required to compute many polynomials of different degrees at
a fixed angle, or many fixed degree polynomials for a variety of angles. An
effective solution to this problem has been made possible thanks to the intensive
development of new generation massively parallel computing architectures, such
as graphics processing units (GPUs).

The second problem is related to the limited dynamic range of real num-
bers which are represented in computers [11]. As a result, if x is about £1, the
computation of the starting value P?(z) leads to underflow, even though the
desired value P™(x) is within an acceptable dynamic range. For example, if z =
0.984808, which corresponds to angle 6 ~ 10°, then P3$%(x) ~ 1.42 x 1073801
while P9, (z) ~ 3.32 x 1071, The smallest normal value in IEEE-754 double-
precision format is approximately equal to 1073%. Thus, to evaluate PSSy (z),
it is necessary to extend the dynamic range by more than an order of magni-
tude. The value of P55 () is not of independent practical interest, however,
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it is impossible to start recursion for calculating Py, (z) without it being cor-

rectly computed, because if, due to underflow, PE%¢(z) = 0, then all following

values Py (), Passs (x), ete. will also become zero. On the other hand, calcu-
lating the fraction in (5) in a conventional way (first the numerator, and then
the denominator) may lead to overflow exception. Some information about the
range of angles and limitations to polynomial degrees at which calculations in
IEEE-754 arithmetic do not result in exceptions is given in [2].

To avoid overflow or underflow problems, methods using global scaling coef-
ficients are suggested [9]. However, as noted in [3], this solves the problem only
for limited ranges of arguments and degrees. The general solution to the overflow
and/or underflow problem when computing the normalized Legendre polynomi-
als is suggested in [8] and involves the use of extended-range arithmetic.

In this paper we consider parallel computation of normalized polynomials
P™(x) of high degrees in extended-range arithmetic using CUDA-compatible
GPUs. Due to a high level of task parallelism, the transfer of computations to the
GPU has allowed to achieve significant performance improvement, as compared
with the CPU implementation.

2 Extended-Range Arithmetic

2.1 Basic Algorithms

Currently, IEEE-754 standard is the main standard for binary floating-point
arithmetic [12]. Tt defines two most widely used formats: a single-precision for-
mat (binary32) and a double-precision format (binary64). These formats are
supported, to some extent, at both the hardware level and the level of program-
ming language. In 2008, a revision to IEEE-754 standard was published, which
further describes the quadruple-precision binary format—binary128, and two
decimal formats—decimal64 and decimall28 [13]. However, support for these
new formats is currently implemented in quite rare cases. The properties of
single- and double-precision binary formats are presented in Tablel. In this
table, the number of digits of the significand, p, defines precision of the format;
integers epin and enay are the extremal exponents; nyax is the largest positive
finite number, 1y, is the smallest positive normal number, and Sy, is the small-
est positive subnormal number; the segment [Nin, Pmax| Specifies the range of
positive normal numbers, and the segment [Smin, 7max| Specifies the total range
of positive finite numbers.

Table 1. The properties of IEEE-754 single-precision and double-precision formats

P €min €max Mmin NMmax Smin
binary32 |24 | —126 | +127 |[27126 | (2 —2723) x 2127 |79
binary64 | 53 | —1022 | +1023 | 271022 | (2 — 2752) x 21023 | 9—1074
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The situation when the intermediate result of an arithmetic operation or
function exceeds in magnitude the largest finite floating-point number nyx =
(2 — 217P) x 28max in IEEE-754 standard is defined as overflow. When there
is overflow, the result, depending on the used rounding mode, is replaced with
infinity (£00) or the largest finite floating-point number. The situation when the
intermediate result of an arithmetic operation is too close to zero, i.e. in mag-
nitude it is strictly less than the smallest positive normal number ny;, = 2°min
is defined as underflow [13,14]. When there is underflow, the result is replaced
with zero, subnormal number, or the smallest positive normal number. In all
cases, the sign of the rounded result coincides with the sign of the intermediate
result. The exceptions examined are presented in Fig. 1.

Overflow Underflow Overflow

l l l

= P T =

—Nmax —Nmin min Nmax

Fig. 1. Overflow and underflow in floating-point arithmetic

One of the ways to eliminate overflow or underflow is scaling. This method
requires estimating the source operands and multiplying them by factor K chosen
so that all intermediate results are within the normal range. After the computa-
tion of the final result, scaling is carried out by dividing it by K [14]. In terms of
computing speed, this technique is evidently the best one. However, it requires a
detailed analysis of the whole computing process and is not applicable in many
cases. A more common approach is emulation of extended-range arithmetic. To
do this, the integer e is paired with a conventional floating-point number f, and
this pair is considered as a number

fx B, (6)

where B is a predetermined constant that is a power of the floating-point base [8,

11]. Significand f can take values in the interval (1/B, B). Given this, B must be

such as for any arithmetic operation performed with f, no underflow or overflow

occurs. It is advisable that B is a natural power of two (for a binary computer).
For instance, if

— [ is a double-precision number (binary64),
— e is a 32-bit signed integer (—2147483648 < e < 2147483647) and
~ B = 2%6

then the range of the represented numbers will exceed 10%165492990270
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The algorithms for basic extended-range operations are considered in [8,11],
and therefore, we will focus only on some of them. In the following, we will assume
that the base of exponent B is uniquely determined and the extended-range
number is represented by a pair (f,e). Algorithm 1 performs the “adjustment”
of the number. It is one of the basic extended-range arithmetic algorithms. It
provides control of the value range of significand f, as well as its correction in
case the input is incorrect encoding of zero.

Algorithm 1. Adjustment of the extended-range representation

1: procedure ADJUST(f,e)

2: if f =0 then
return (0,0)

else if |f| > B then
f— f/2los2B > Subtracting log, B from exponent of f
e—e+1

else if |f| < 1/B then
f— fx2leB > Adding log, B to exponent of f
e—e—1

10: end if

11: return (f,e)

12: end procedure

©

It is important to note that it is not always enough to carry out the ADJUST
procedure only one time. This can take place at least in the following two cases:
(a) when the number is converted from the machine format or a format with
different from the current exponent base; (b) when subtraction of almost equal
numbers (or addition with different signs) is performed. In any of these cases,
it is possible that, after the ADJUST procedure has been performed, significand
f is less than 1/B. If it is ignored and the computation process is continued,
gradual “zeroing” of the result is likely to take place. To avoid this, it is possible
to use a cyclic adjustment procedure which is implemented by Algorithm 2.

Algorithm 2. Cyclic adjustment of the extended-range representation. Proce-
dure should be used in conversion, signed addition and subtraction algorithms.
1: procedure CYCLICADJUST(f,e)
(fi,e1) < ADJUST(f,€)
while e # e; or f # f1 do
(f.e) = (f1,e1)
(f1,e1) < ADJusT(f,€)
end while
return (f,e)
end procedure

v




Parallel Computation of Normalized Legendre Polynomials 177

Algorithm 3 performs addition of extended-range representations. Algorithms
for subtraction and comparison are quite similar to the addition algorithm, so
their description seems to be unnecessary.

Algorithm 3. Adding extended-range numbers, (f.,e.) <« (fz,ez) + (fy,€y)

1: procedure ADD(fs,eq, fy,ey)
2: if f. =0 and e, = 0 then return (f,,ey)

3: else if f, =0 and ey, = 0 then return (fz,es)
4: end if

5: Ae = |es — ey

6: if ez > ey then

7 fz — fx + fy x 2—Ae><log23
8: €y < €y

9: else if e, > e, then

10: fz — fy + far x 2—Ae><log23
11: €. — ey

12: else if e, = e, then

13: Je—Jfat fy

14: €y < €

15: end if

16: return CYCLICADJUST(f.,e.)

17: end procedure

2.2 Implementation of Extended-Range Arithmetic

We have implemented all basic algorithms of extended-range arithmetic, and a
number of mathematical functions for CPUs and NVIDIA CUDA-compatible
GPUs. Do to it, data types shown in Fig. 2 were declared.

typedef struct ({

er_frac_t frac; //significand
er_exp_t exp; //exponent
} __extended_range_struct;

//single number:

typedef _ extended_range_struct xer_t;
//arrays:

typedef _ extended_range_struct xer_arr_t;
//for device side code:

typedef _ extended_range_struct er_static_t;

Fig. 2. Extended-range data types: er_frac_t—standard floating-point number
(double by default), er_exp-t—machine integer (int64_t by default)
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The list of implemented CPU- and CUDA-functions includes the following:

— memory management and constants initialization;

— addition, subtraction, multiplication and division, supporting four IEEE-754
rounding modes, as well as comparison functions;

— integer floor and ceiling functions, computation of the fractional part;

— functions of converting numbers from the double-precision IEEE-754 data
type to extended-range data type, and vice versa;

— factorial, power, square root, and a number of other mathematical functions.

The exponent base B is defined in parameters. By default B = 2. It is quite
enough for the computation carried out. The declaration of CPU- and GPU-
functions is identical (cuda namespace is used for GPU-functions). Pointers are
used for effective passing of parameters. All functions are thread-safe.

Efficiency of extended-range arithmetic is largely determined by the speed of
converting numbers from the machine floating-point representation to extended-
range representation, and vice versa. To implement these procedures, we used bit-
wise operations. In particular, Fig. 3 shows the subroutine er_set_d that converts
a conventional IEEE-754 double-precision number into the extended-range rep-
resentation. This subroutine uses the DoubleIntUnion structure, which allows
storing double and integer data types in the same memory location.

union DoubleIntUnion {
double dvalue;
uint64_t ivalue;

}

void er_set_d(er_t res, const double x) {
DoubleIntUnion uj;

if (x == 0) {
res—->exp = res—->frac = 0;
return;
}
u.dvalue = x;
uint8_t sign = (uint8_t) (u.ivalue >> SIGN_OFFSET) ;
res—->exp = ((u.ivalue & 7 ((uint64_t) 1 << SIGN_OFFSET))
>> EXP_OFFSET) - EXP_BIAS;
u.ivalue = u.ivalue & (((uint64_t) 1 << EXP_OFFSET) - 1)
| ((uint64_t) EXP_BIAS << EXP_OFFSET) ;
res—->frac = u.dvalue;
if (sign)
res->frac = -res->frac;

cyclic_adjust (res);

Fig. 3. Conversion of a double-precision floating-point number into the extended-range
representation. For the double data type, SIGN_.OFFSET = 63, EXP_OFFSET = 52 and
EXP_BIAS = 1023.



Parallel Computation of Normalized Legendre Polynomials 179

3 Computation of Normalized Legendre Polynomials
on CPU and GPU

3.1 Computation of Starting Point of Recursion

Our implementation of normalized Legendre polynomials computation is based
on the recursion (4), which, in turn, requires computation of relation (5). In case
of high degree n of polynomial, direct computation of (5) is time-consuming
since it requires computing two double factorials in the extended-range arith-
metic, (2n+ 1)1 =3-5---(2n+1) and (2n)!! = 2-4 - - 2n. When one polynomial
is computed, it is not critical. However, the problem becomes urgent when many
polynomials of various degrees are computed sequentially. In addition, in case
of direct computation of factorials in the machine-precision floating-point arith-
metic, significant rounding errors can accumulate. To partially solve the prob-
lem, the ROM lookup table (LUT) can be used which stores values % for
(2n4+1)!
@n)tt >
where n is the polynomial degree, one has to take the |n/h|-th value from LUT,
and compute [T}/ %, where ¢ = h|n/h], and multiply these two values.
The size of LUT is determined by step h and the maximum degree of polynomial
n we want to compute. For instance, if n = 50000 and h = 100, LUT will contain
N =500 values. LUT content is computed in advance with high precision, after

which it is converted into the extended-range format.

1=1,2,...,N, where h and N are some integers. Then, for computing

3.2 Developed Software for Computing Legendre Polynomials

Based on the implemented extended-range arithmetic functions (Subsect. 2.2),
CPU- and CUDA-subroutines were developed, which allow computing P™(x)
for large n > 0 and at any m, 0 < m < n. They are shown in Table 2.

For implementation on the GPU, the direct paralleling scheme was chosen,
according to which i-th GPU thread computes a polynomial of degree n[i] and
order m|i] for argument z[i]. The result is written with a corresponding offset to
res array. The number of the required thread blocks is defined by the following:

vector_size
- | | (7)

max_threads_per_block
where vector_size is the size of the input vectors, max_threads_per_block is the
maximum number of threads in a block. If N does not exceed the maximum
number of blocks for the device, fully parallel computation of all polynomials is
possible. Otherwise, some threads compute more than one polynomial. Listing
of CUDA kernel legendre_lst is given in Fig. 4.

4 Experimental Results

The evaluation of correctness and efficiency of the developed subroutines was
carried out within HP SL390-+NVIDIA Tesla M2090 stand of UniHUB.ru plat-
form at the Institute for System Programming of the Russian Academy of Sci-
ences [15]. Three software implementations of the recursive algorithm (4) have
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Table 2. Subroutines to compute normalized Legendre polynomials

Subroutine Parameters Description

legendre_eqls |er_t res Computation of PZ(x) in accordance with
er-t x (5) with optimization from Subsect. 3.1.
uint32_t const n | The result is a pointer res.

legendre_recur |er_t res One iteration of recursion (4). For the given
ert x P;"(z) (parameter p1) and Py (x)
ert pi (parameter p2) P~ !(x) is computed. The

result is a pointer res.
er_t p2

uint32_t const n

uint32_t const m

legendre er_t res Computation of normalized Legendre
double const x polynomial P;*(z) of degree n and order m.
uint32.t n The result is a pointer res.
uint32_t m

legendre_1st | er_arr_t res Computation of the vector of normalized

double const *x | Legendre polynomials for given vector of
uint32_t const *n |arguments x, vector of degrees n, and vector
of orders m. The result is a pointer res to an
array.

uint32_t const *m

uint32_t size

been examined: CPU- and GPU-implementations based on extended-range arith-
metic, and calculations using the GNU MPFR Library.

In the first experiment, we examined dependence of computation time for the
first-kind polynomial on n. The value cos(179°) ~ —0.999848 was taken as an
argument. The degree n varied in the range of 100 to 53200, and it was doubled
at each stage of the testing procedure. The results are presented in Fig. 5(a).

In the second experiment, vectors of polynomials were calculated at fixed
m = 0 and n = 20000, whose size ranged from 32 to 8192. The arguments were
defined by the formula x; = cos (2 X %), which allowed calculations for
each vector in the angular range [0°,180°], having a uniform step determined
by the size of the vector (vector_size). The experiment results are shown in
Fig.5(b). Longer GPU computation time, observed at the vector size greater
than 2048, is explained by the limited resources of the used device.

It is worth noting that the subroutines for computation of normalized and
non-normalized associated Legendre polynomials are implemented in a number
of well-known software packages, such as The GNU Scientific Library, Boost,
ALGLIB. However, they allow calculations only for rather small degrees (up to
several thousand). Therefore, these implementations were not analysed in the
experiments.
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__global__ void legendre_lst (er_arr_t res,

const uint32_t id = threadIdx.x + blockIdx.x * blockDim.x;
if

uint32_t thread_n = n[id];
uint32_t thread_m = m[id];
er_static_t thread_x;
cuda: :er_set_d(&thread_x, x[id]);
legendre_eqgls (&res[id], &thread_x, thread_n);
if (thread_n > thread_m) {

double const =*x,
uint32_t const =*n,
uint32_t const #m,
ulnt32_t size) {

(id < size) {

er_static_t p0, pl, p2;
cuda::er_set (&pl, &res[id]);
cuda::er_set_d(&p2, 0.0);
uint32_t current_m = thread_n;
legendre_recur (&p0, &thread_x, &pl, &p2, thread_n, current_m) ;
uint32_t iter_n = thread_n - thread_m - 1;
for (uint32_t i = 0; 1 < iter_n; i++) {
current_m = current_m - 1;
cuda::er_set (&p2, &pl);
cuda::er_set (&pl, &p0);
legendre_recur (&p0, &thread_x, &pl, &p2,thread_n, current_m);
}

cuda::er_set (&res[id], &p0);

Fig. 4. CUDA kernel for computing normalized Legendre polynomials

The computed polynomials P (cos ) for n = 1000, 5000, 15000, 20000, m =
0 with intervals of 8 equal to 1° are shown in Fig. 6, and the logarithms of the

starting values (5) for recursion (4) are shown in Fig. 7.
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Fig. 5. Experimental results: computation time of P7*(x) at fixed m = 0 and =

cos(179°) versus degree n (a); computation time of the vector of P.*(x) at fixed m = 0

and n = 20000 versus the vector size (b)
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Fig. 6. Normalized associated Legendre polynomials
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Fig. 7. Logarithms of the starting values for recursive computation of normalized asso-
ciated Legendre polynomials
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5 Conclusion

The paper considers the problem of GPU-based calculation of normalized asso-
ciated Legendre polynomials. At high degrees n and orders m, this polynomials
are characterized by a large spread of numerical values, which greatly limits the
possibility of their correct computation in IEEE-754 arithmetic. In particular,
when n = 20000, obtaining correct results in the double-precision format is only
possible for angles ranging from 75° to 105°. Calculations for angles beyond this
range result in underflow. To overcome this limitation, extended-range arith-
metic is implemented on GPU. The experimental evaluation shows that, thanks
to the natural task parallelism and a simple computation scheme, the use of
GPU is effective even with small length vectors. With increasing problem size
the speedup becomes more significant.

When parallel computation of polynomials of the same degree for a set of
different arguments is made, the computation scheme is balanced, since time
complexity of the extended-range arithmetic operations does not depend signifi-
cantly on the magnitude of the arguments. If vectors of polynomials of different
(high) degrees are computed, then, to improve the GPU-implementation perfor-
mance, a more complicated computation scheme involving load balancing can
be applied.
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Research, project No. 16-37-60003 mol_a_dk.
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