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Preface

The Second Russian Supercomputing Days Conference (RuSCDays 2016) was held
during September 26–27, 2016, in Moscow, Russia. It was organized by the Super-
computing Consortium of Russian Universities and the Federal Agency for Scientific
Organizations. The conference was supported by the Russian Foundation for Basic
Research and our respected platinum sponsors (T-Platforms, RSC, Intel, NVIDIA),
gold sponsors (IBM, Mellanox, Dell EMC, Hewlett Packard Enterprise), and silver
sponsor (NICEVT). The conference was organized in a partnership with the ISC
High-Performance conference series and NESUS project.

The conference was born in 2015 as a union of several supercomputing events in
Russia and quickly became one of the most notable Russian supercomputing meetings.
The conference caters to the interests of a wide range of representatives from science,
industry, business, education, government, and students – anyone connected to the
development or the use of supercomputing technologies. The conference topics cover
all aspects of supercomputing technologies: software and hardware design, solving
large tasks, application of supercomputing technologies in industry, exaflops com-
puting issues, supercomputing co-design technologies, supercomputing education, and
others.

All papers submitted to the conference were reviewed by three referees and eval-
uated for the relevance to the conference topics, scientific contribution, presentation,
approbation and related works description. For this proceedings volume, a second
review round was performed. The 28 best works were carefully selected to be included
in this volume.

The proceedings editors would like to thank all the conference committee members,
especially the Organizing and Program Committee members as well as other reviewers
for their contributions. We also thank Springer for producing these high-quality
proceedings of RuSCDays 2016.

January 2017 Vladimir Voevodin
Sergey Sobolev
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Accelerating Assembly Operation
in Element-by-Element FEM

on Multicore Platforms

Sergey Kopysov(B), Alexander Novikov, Nikita Nedozhogin,
and Vladimir Rychkov

Institute of Mechanics, Ural Branch of the Russian Academy of Sciences,
34 ul. T. Baramzinoy, Izhevsk 426067, Russia

s.kopysov@gmail.com,sc work@mail.ru,Nedozhogin@inbox.ru,bob.r@mail.ru

Abstract. The speedup of element-by-element FEM algorithms
depends not only on the peak processor performance but also on the
access time to shared mesh data. Eliminating memory boundness would
significantly speedup unstructured mesh computations on hybrid multi-
core architectures, where the gap between processor and memory per-
formance continues to grow. The speedup can be achieved by ordering
unknowns so that only those elements are processed in parallel which
do not have common nodes. If vectors are composed with respect to
the ordering, memory conflicts will be minimized. Mesh was partitioned
into layers by using neighborhood relationship. We evaluated several
partitioning schemes (block, odd-even parity, and their modifications)
on multicore platforms, using Gunther’s Universal Law of Computa-
tional Scalability. We performed numerical experiments with element-
by-element matrix-vector multiplication on unstructured meshes on mul-
ticore processors accelerated by MIC and GPU. We achieved 5-times
speedup on CPU, 40-times — on MIC, and 200-times — on GPU.

Keywords: Finite element · Element-by-element matrix-vector multi-
plication · Mesh partitioning · Multicore processors · Universal law of
computational scalability

1 Introduction

Performance and scalability modeling of computational algorithms on modern
multicore/manycore platforms is a crucial problem. On multicore platforms, it is
important to take into account different types of delays, which can be caused by:
exchange of shared rewritable data between the processor caches and between
the processors and main memory (i), synchronization locks (serialization) shared
data available for recording (ii), waiting for memory access to complete opera-
tions (iii), etc. Evolution of parallel speedup models derived from Amdahl’s law is
described in [1,8]. In particular, they refer to Hill-Marty model [5], which includes
additional parameters defining a number of computing hardware resources. How-
ever, estimation of these parameters for real platforms is not trivial.
c© Springer International Publishing AG 2016
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2016, CCIS 687, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-55669-7 1



4 S. Kopysov et al.

For over a decade, the Universal Scalability Law [3] has been successfully
applied to model diverse software applications on modern hardware platforms
[4] but it has been largely ignored by the parallel simulation community. This
model takes into account contention for shared resources, retrograde scaling
(latency due to exchange of data between caches), saturation resulting from
resource limitations. In this work, we apply this model to FEM simulations. To
the best of our knowledge, this is the first application of this model to parallel
numerical algorithms.

Predictive models based on the results of real computational experiments
allow for detecting and eliminating the sources of delays. Many FEM algorithms
demonstrate irregular memory accesses, which significantly reduces the efficiency
of parallel processing. This irregularity is caused by unstructured meshes. As a
result, the global assembly phase becomes the main performance bottleneck in
many FEM algorithms [2,7]. This operation is characterized by low data locality
and therefore low potential for parallelization. Global assembly inherently results
in memory conflicts, which can be avoided, for example, with help of OpenMP
critical sections. Unfortunately, the latter significantly slow down computations.

In this paper, we design new parallel algorithms on unstructured meshes, with
improved data locality and reduced delays in memory access. We propose a new
ordering of FEM unknowns, which does not allow for simultaneous summations
over the cells that contain common vertices, and therefore does not require res-
olution of memory conflicts. Using different neighborhood relationship schemes,
we partition mesh into nonadjacent layers, which are then grouped into sub-
domains and assigned to different processes. We use and extend the Universal
Scalability Law to evaluate the efficiency of these algorithms in terms of data
locality.

This paper is structured as follows. In Sect. 2, we show how element-by-
element FEM can be parallelized on shared memory architecture. In Sect. 3,
we present new partitioning schemes, which significantly improve data locality
and performance of element-by-element FEM algorithms. In Sect. 4, we describe
experimental platforms and their memory features. In Sect. 5, we present an
extension of the Universal Scalability Law for multi-processor/multi-socket node.
In Sect. 6, we present experimental results and scalability analysis. Section 7
concludes the paper.

2 Element-by-Element FEM on Shared Memory
Platforms

In this section, we show how element-by-element FEM can be parallelized for
shared memory architecture.

The global assembly is a performance-critical stage of parallel FEM algo-
rithms. It is based on some data partitioning, which targets a certain level of
data locality and load balancing. The assembly stage is a part of a step of the
algorithm while the partitioning stage precedes this step. In FEM, assembling
usually means adding local element stiffness matrices into global stiffness matrix.
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In element-by-element schemes [2], assembling is a part of solving the finite
element system of equations. Assembly operator is applied not to the matrices
but to the vectors resulting from the matrix-vector multiplication:

q = Kp =
m∑

e=1

CT
e K̃eCep =

m∑

e=1

CT
e q̃e =

m∑

e=1

qe, (1)

where q, p, qe are the vectors of size N ; K is the global matrix N × N ; K̃e is
the local stiffness matrix Ne × Ne of a finite element e; Ce is the incidence
matrix Ne × N that maps the local space of numbers of unknowns (degrees of
freedom) [1, 2, . . . , Ne] into the global space [1, 2, . . . , N ]; m is the number of
finite elements. This mapping can be done either by indirect indexing of mesh
nodes to unknowns (i) or by multiplying by the incidence matrix, which can be
efficiently implemented on GPUs (ii).

Let us consider a parallel version of (1) for shared memory. Here vectors
p and q are in the shared memory of parallel processes/threads, and matrices
K̃e, Ce, CT

e and sparse vector qe are in the local memory of processes. Then
summation of the vectors qe that belong to different processes but have nonzero
components with the same indices may result in conflicts and cause errors.

The product q = Kp can be replaced by two operations: element-by-element
multiplication q̃e = K̃eCep, e = 1, 2, . . . ,m and assembling qe =

∑m
e=1 CT

e q̃e.
These operations have different computation and communication costs because
of different data locality, especially in case of unstructured meshes. They have
different memory access patterns, determined by local and global node indexing,
and therefore have different potential for parallelization.

Assume that each process computes over mi ≈ m/n finite elements, where i
is the process number, and n is the number of processes. Then the product can
be expressed in the matrix form as follows:

q = Kp =
n∑

i=1

CT (i)
K̃(i)C(i)p =

n∑

i=1

CT (i)
q̃(i) = A(q̃), (2)

where C(i) is the incidence matrix assembled from mi matrices Ce; K̃(i) is the
block-diagonal matrix assembled from mi matrices K̃(i) as blocks; q̃(i) is the
vector assembled from mi vectors q̃e; and A is the assembly operator for the
vector q. In the case of indirect indexing, the assembly operator will be denoted
as Aind; in the case of the product of the incidence matrix – Ainc.

To make this algorithm efficient on shared memory platforms, it is necessary
to minimize concurrent memory accesses. This can be achieved by splitting finite
elements into sets that do not share nodes with each other. Then, these sets
are assigned to different processes/threads, and the assembly operation (2) is
performed on nonadjacent elements.

Operator Ainc uses matrix CT , which is formed by aggregating matrices CT
e .

This sparse matrix is stored in a modified CSR format so that the non-zero
elements of matrix CT are not stored.
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This operator can be efficiently executed on GPU, in parallel by the rows of
the matrix CT . The matrix CT will be formed again after the mesh is adaptive
refined.

3 FEM Algorithms with Layer-by-Layer Partitioning

In this section, we present new partitioning schemes, which significantly improve
data locality and performance of element-by-element FEM algorithms on shared
memory platforms.

We assume that two subsets of mesh cells are nonadjacent at some moment
of time if the cells simultaneously taken from these subsets do not contain com-
mon vertices. The moment of time is taken when the subsets are accessed for
computations. This means that the cells in a subset and the subsets themselves
can be connected topologically.

We partition the mesh Ω into nonoverlapping layers of cells sj , j = 1, 2, . . . , ns

(Fig. 1a), then combine the layers to get the subsets of cells (subdomains) Ωi,
i = 1, 2, . . . , nΩ . We use different schemes to construct subdomains Ωi from
layers. Our target is to reorder cells so that the cells with common vertices are
not accessed simultaneously from parallel processes (threads).

In the block scheme , the layers are combined consecutively, then these com-
bined layers are divided into subdomains with approximately the same number
of finite elements (Fig. 2a). In the layer index parity scheme , the layers are
enumerated (Fig. 2c). The dashed line in Fig. 2b represents the end of one parallel
OpenMP section and the beginning of another.

a)
b)

Fig. 1. Layer-by-layer mesh partitioning: (a) scheme; (b) result: unstructured mesh
with 137 layers, 485843 tetrahedrons.

We compared these schemes by measuring the performance and load imbal-
ance of the element-by-element matrix-vector product without assembling the
vectors. Therefore, we compared fully parallel operations. We performed experi-
ments with the unstructured mesh shown in Fig. 1 on eight-core processor Xeon
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a) b) c)

Fig. 2. Combining layers into blocks for four processes (nΩ = 4): (a) block scheme (bl);
(b) layer index parity scheme (ev); (c) balanced layer index parity scheme (ev + bal).

E5-2690. Figure 3 shows the speedup obtained with four types of the mesh parti-
tioning: block (bl), odd-parity (ev), balanced odd-parity (ev+bal), and multilevel
graph partitioning by METIS). The load imbalance (in percent to uniform data
distribution) is shown above the bars. The load imbalance of (bl) and (ev+bal)
was negligible in all experiments.

These results show that the load imbalance can affect the speedup and indeed
is a limiting factor for achieving the linear speedup in the fully parallel compu-
tational operation. The load imbalance caused by the block and balanced odd-
parity mesh partitioning schemes proved to be less than the one caused by the
multilevel partitioning of the mesh dual graph [6].

S

n

Fig. 3. The speedup of the matrix-vector product on Xeon E5-2690 for different mesh
partitioning schemes and numbers of processes (n = 2, 4, 6, 8)

Table 1 shows the execution time of assembly operators Aind and Ainc on
mesh partitions (bl) and (ev+bal) measured on different multi-core processors.
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Table 1. Execution time, t in seconds, of the assembly schemes with different numbers
of threads, np.

Processors Assembly schemes

Aind(q̃) bl Aind(q̃) ev+bal Ainc(q̃)

Unstructured mesh

Xeon E5-2690 8 0.002 8 0.002 8 0.007

Xeon Phi 7110X 48 0.004 60 0.007 240 0.007

GTX980 32 0.037 60 0.052 45356 0.002

Quasi-structured mesh

Xeon E5-2690 8 0.003 8 0.003 8 0.004

Xeon Phi 7110X 60 0.005 60 0.007 240 0.005

GTX980 — — 65536 0.002

np t np t np t

The results are presented for the unstructured mesh shown in Fig. 1(b) and
for a quasi-structured mesh, which contains m = 507904 hexahedrons. The best
results are highlighted in bold.

With layer-by-layer partitioning, assembly operator Aind performed best on
universal processor Xeon E5-2690 and accelerator Xeon Phi 7110X. The scalabil-
ity of this operator is limited by indirect indexing and the number of layers in the
mesh partitioning. The 44-times speedup was achieved for the block partitioning
on the Xeon Phi 7110X with 60 OpenMP threads.

Assembly operator Ainc on GPU performed 18–26 times better than Aind.
For this operator, the speedup of 94 times was achieved on the quasi-structured
mesh and 65536 CUDA threads.

The rest of the paper will be focused on how layer-by-layer partitioning can
be used to detect the sources of delays in parallel FEM algorithms on multi-
core/manycore platforms.

4 Experimental Platforms and Their Memory Features

In this section, we describe experimental platforms and their memory features.
Parallel execution of FEM algorithms on hybrid multi-core platforms sig-

nificantly increases the frequency of memory access so that memory band-
width becomes a performance bottleneck. Multiple processes/threads compete
for memory, which results in memory contention. This situation is further com-
plicated by multi-level caches, which allow for reusing frequently accessed data
but require maintaining data consistency (cache coherence).

Memory can be utilized more efficiently if multiple writes to the same memory
location issued by different processes are executed sequentially (i), and there is
a gap in time between write and read operations issued from different processes
to the same memory location (ii).
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We performed experiments with parallel element-by-element FEM algorithms
on several platforms, which represent most popular multi-core architectures:

– Xeon E5-2690: 2 × eight-core CPUs Intel Xeon E5-2690, 64 GB RAM
NUMA, L1 cache 512 KB (8 × 32 KB instructions, 8 × 32 KB data), L2
cache 8 × 256 KB, L3 cache 20 MB. The processors are connected by two
QuickPath Interconnect (QPI) links, which utilize 8.0 GT/s.

– Xeon E5-2609: 2 × quad-core CPUs Intel Xeon E5-2609, 64 GB RAM
NUMA, L1 cache 256 KB (4 × 32 KB instructions, 4 × 32 KB data), L2
cache 1 MB (4 × 256 KB), L3 cache 10 MB. Memory bandwidth 51,2 GB/s.

– Opteron 8435: 4 × six-core CPUs AMD Opteron 8435, HyperTransport
with data rates up to 4,8 GT/s on a link, 64 GB RAM, L1cache 384 KB (6 ×
64 KB), L2 cache 3 MB (6 × 512 KB), L3 cache 6 MB.

– Xeon Phi 7110X: single Intel Xeon Phi 7110X coprocessor, 61 cores, up to
4 simultaneous threads per core at 1.1 GHz, memory controllers, PCEe inter-
face, bi-directional bus, L1 cache 32 KB + 32 KB, L2 cache 512 KB with 16
thread hardware prefetching, inclusive L1, L2 caches (data duplicated in L1
and L2), quick access to caches of neighbor cores (distributed catalog), RAM
8 GB. Memory bandwidth 320 GB/s.

– NVIDIA GTX 980: single NVIDIA GTX 980/GM204 GPU, 4 graphics
processing clusters (GPC), with 4 streaming multiprocessors (SMM) each,
with 32 ALU each, 2048 stream processors (SP). Global graphics mem-
ory 4096 MB (L2 cache 2 MB, universal L1 24 K); shared memory 96 KB;
texture memory L1 24 KB. Memory bandwidth 224.3 GB/s. Core frequency
1126 MHz. Each SMM has four warp-schedulers.

All these platforms have different memory structure. Not all CPUs have an
integrated memory controller, whereas accelerators typically have several con-
trollers. Accelerators’ memory is faster. Memory access patterns on GPUs are
more regular, so that the access time is more predictable.

CPUs use cache to reduce memory latency, while GPUs use cache to increase
memory bandwidth. In case of CPU, memory latency is reduced by increasing
the cache size and predicting the code forking. In case of GPU, memory latency
is hidden by overlapping data transfers and computations across thousands of
simultaneously executed threads.

Unlike GPUs, MIC coprocessors have coherent cache, and, along with x86, use
specific instruction set. Execution becomes more predictable, so that instruction
scheduling can be performed by compiler. Each core supports 4-way simultaneous
multithreading, with 4 copies of each processor’s register. MICs provide explicit
cache control instructions and prefetching in L1, L2 caches.

For accurate scalability analysis, it is important to take into account hard-
ware and software (compiler optimizations) aspects of memory access. In the
following section, we apply the Universal Scalability Law to model their com-
bined effect.
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5 Scalability Model for Multi-processor Nodes

In this section, we briefly describe the Universal Scalability Law, estimate its
parameters for the chosen architectures, and propose an extended model for
homogeneous multi-processor/multi-socket nodes.

The Universal Scalability Law [4] is a generalization of Amdahl’s law
that takes into account overheads related to synchronizations between
cores/processors and maintaining data coherence. The model is considered to
be universal in the sense that it does not require a prior information about algo-
rithm (such as the parallel part in Amdahl’s law), middleware software, hardware
architecture. The model assumes that speedup is a function that has the global
maximum value and depends on the number of cores/processors, the degree of
contention, and the lack of coherency. The parameters of the USL model are esti-
mated by regression over the results of speedup measurements: S(n) = t1/tn,
where t1, tn is the execution time of one or n threads/processes.

The Universal Scalability Law represents the speedup by the following func-
tion:

SU (n) =
n

1 + σ(n − 1) + λn(n − 1)
, (3)

where 0 � σ, λ < 1; σ defines the degree of contention; λ defines the lack of
coherency. The denominator is summed up from three terms. The second term
depends linearly on the number of processes, while the third one – quadratically.
They can be interpreted as follows:

– Linear scalability, ideal parallelism: σ = 0, λ = 0.
– Scalability is limited by contention for shared rewritable data, which results

in serialization and queuing: σ > 0, λ = 0.
– Scalability is limited by maintaining data coherency at different levels of

memory hierarchy: σ > 0, λ > 0.

When λ = 0, the ratio (3) is reduced to Amdahl’s law:

SA(n) =
1

(1 − f) + f
n

, (4)

where f is the parallel part of the execution, (1 − f) is the serial part. If λ = 0,
contention represents the serial part: σ = (1 − f).

Parallel algorithms for multi-core architectures can be characterized by the
values of σ and λ. These parameters allow us to assess and predict the costs of
maintaining data coherence and synchronizing data access from parallel threads.
The USL model provides a method of estimation of these parameters.

In Table 2, we present the parameters of the USL model estimated for
the assembly operation (2) on the experimental platforms described in Sect. 4.
Numerical experiments were carried out for unstructured meshes (one of them
shown in Fig. 1). The balanced layer index parity partitioning scheme was used
as the most efficient in terms of data movement and memory access.
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Table 2. USL parameters of the assembly operation on different platforms.

Xeon Opteron Xeon Xeon Phi GeForce

E5-2609 8435 E5-2690 7110X GTX 980

n 4 6 8 61 2048

σ 0.1 0.021 0.08 0.006 0.0018

λ 0.0001 0.02 0.0001 0.00006 0.00000044

R2 0.99 0.982 0.9965 0.994 0.999

SUmax/nUmax 8.41/94 3.56/7 10.09/96 46.76/129 318.96/1511

Smax/nmax 3.1/4 3.48/5 5.19/8 39.43/60 219/384

Non-linear regression analysis was used to estimate the model parameters.
The quality of estimation was evaluated with the R2 measure. We found the
number of processor cores at which the maximum scalability is achieved:

nUmax =
√

(1 − σ)/λ. (5)

These numbers along with the maximum speedup for our experimental platforms
are also presented in Table 2.

The Universal Scalability Law can be extended to model other homogeneous
platforms, such as multi-processor (multi-socket) computing nodes, which con-
sists of identical processors. Let us define the parameters of a multi-processor
computing node as follows: p is the number of multi-core processors in a single
compute node; npn/p is the number of cores per one processor; σp defines the
degree of contention between processors; Λp defines the lack of coherency in the
node. We generalize (3) for a multiprocessor as follows:

SU (n, p) =
pS(n)

1 + σp(p − 1)S(n) + λp(p − 1)pS2(n)
, (6)

where the speedup function of the multiprocessor SU (n, p) has an extra argu-
ment, the number of processors, and depends on the speedup of individual
processors S(n). If p = 1 and σp = 0 (a single processor), this formula is reduced
to (3). Similarly to (6), USL can be generalized for homogeneous clusters.

6 Experimental Results

In this section, we present the results of experiments with the parallel element-
by-element FEM algorithms on the selected platforms. In performance and scal-
ability analysis, we use both the original and extended USL models.

Using the Universal Scalability Law, we can find the numbers of processors
for which scalability deteriorates. For example, we detected scalability problems
in the parallel vector assembly on shared memory. The mesh was partitioned by
a graph partitioning scheme. The parallel algorithm used critical sections, which
become the main source of delays (Figs. 4 and 5).
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S

n

Fig. 4. Scalability of assembly opera-
tion on Xeon E5-2690

S

n

Fig. 5. Scalability of assembly opera-
tion on Xeon Phi 7110X

With the layer-by-layer partitioning algorithms proposed in this paper
(Figs. 4 and 5), we can avoid using critical sections in the parallel assembly algo-
rithm and as a result achieve better scalability on both CPUs and accelerators.
Figures 6, 7, 8 and 9 show the USL models and the experimentally measured
speedup of the parallel vector assembly for different platforms.

S

n

Fig. 6. Scalability of assembly opera-
tion on multi-core CPUs

S

n

Fig. 7. Scalability of assembly opera-
tion on multi-socket node

Significant, three to five-fold, acceleration of parallel assembly was achieved
on Xeon E5, which is about a half of the maximum possible acceleration (see
Fig. 6). This is a very good result for the computational algorithm based on
unstructured meshes. Due to delays incurred by the three-level cache on 6-core
Opteron, the maximum speedup was achieved when only five cores were involved
in computations.

Figure 8 demonstrates that element-by-element vector assembly can be very
efficiently performed on MIC coprocessors. In addition, for MIC we performed
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experiments with quasi-structured meshes. The assembly operation had almost
the same level of scalability (approx. 40 times speedup on 61 cores).

S

n

Fig. 8. Scalability of assembly opera-
tion on MIC

S

n

Fig. 9. Scalability of assembly opera-
tion on GPU

In the assembly algorithm for GTX 980, memory access is hidden, which
is illustrated by the minimum values of σ and λ among all architectures. The
maximum speedup was achieved with 1511 cores (see Fig. 9). Experimentally
achieved acceleration is limited only by the ability to construct the optimal
layers on a given mesh and by the availability of enough RAM.

Figure 7 shows the scalability on the 4-socket Opteron 8345 node with NUMA
memory. SU (6) is the USL model of a single 6-core processor. This model
becomes inadequate when the number of cores grows. SU (24) is the USL model
of 24 cores that does not take into account sockets and nonuniform memory
access. According to this model, the maximum speedup is 7, which is not realis-
tic. SU (6, 4), the extended USL model, more accurately estimates the maximum
speedup (approx. 6).

7 Conclusion

In this work, we used scalability model for performance analysis of element-by-
element FEM operations on modern multi-core platforms. Universal Scalability
Law allowed us to estimate and predict the scalability of parallel finite element
assembly operators with layer-by-layer partitioning. We estimated the USL para-
meters for multiple architectures. These parameters were in good agreement with
widely accepted mechanisms of reducing delays related to shared memory access
and maintaining data consistency. We extended this model for multi-socket archi-
tecture, GPU, MIC and demonstrated that it adequately approximates the scal-
ability. We performed numerical experiments with element-by-element matrix-
vector multiplication on unstructured meshes on multicore processors acceler-
ated by MIC and GPU. With layer-by-layer partitioning, we achieved 5-times
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speedup on CPU, 40-times speedup on MIC, and 200-times speedup on GPU. In
future, we plan to apply layer-by-layer partitioning to other parallel operations
of the finite element, finite volume and domain decomposition methods.
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Abstract. We propose a new implementation of the block Lanczos–
Montgomery method with reduced data exchanges for the solution of
large linear systems over finite fields. The theoretical estimates obtained
for parallel complexity indicate that the data exchanges in the proposed
implementation for record-high matrix sizes and block sizes 50 require
less time than those in ideally parallelizable computations with dense
blocks. According to numerical results, the acceleration depends almost
linearly on the number of cores (up to 2,000 cores). Then, the dependence
becomes close to the square root of the number of cores.

Keywords: Large linear systems over finite field · Block Lanczos-
Montgomery · Block Wiedemann-Coppersmith · Parallel computation

1 Introduction

The need to solve large linear systems over finite fields arises in a variety of appli-
cations, such as large composite number factorization and discrete logarithming
in a large prime field. The most efficient methods for such problems are based
on algorithms of two types:

1. Lanczos-Montgomery-like algorithms (see [3,5,6,9,10,13,14]);
2. Wiedemann-Coppersmith-like algorithms (see [1,4,7,8]).

The algorithms of both types have much in common. Usually, the most time-
consuming calculation is the repeated serial multiplication of a sparse matrix
(and/or its transposed matrix) by a vector. The number of such multiplications
is of the order of the doubled matrix size. Therefore, in terms of algorithmic
complexity, both approaches are considered to be equivalent. However, when
solving record-high-complexity problems, the efficient implementations on pow-
erful computing systems with distributed memory plays a key role.

By now, the common opinion seems to be that the parallel versions
of Lanczos-Montgomery-like techniques are generally inferior to Wiedemann-
Coppersmith-like methods by their performance. All record-high RSA numbers
were factorized using some modifications of the block Wiedemann-Coppersmith
method for linear systems over F2 obtained from the GNFS method [7,8].
c© Springer International Publishing AG 2016
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The following simple idea of parallelization makes the Wiedemann-
Coppersmith-like methods attractive. The idea is to multiply by a block con-
sisting of K vectors, rather than use a multiplication of the matrix by a single
vector. Since each column of the block can be multiplied independently, the
algorithm acquires a considerable parallel resource.

Obviously, the similar block modification can be applied to the Lanczos–
Montgomery-like algorithms (see, e.g., [14]). However, in this case, global data
exchange occurs on each iteration. In the Montgomery method implemented in
[14], the time required from this exchange was not scaled with the block-size
growth, which led to a significant slowdown in the calculations. We believe that
it is the problem of unscaled data exchanges that largely makes the Lanczos–
Montgomery-like methods less popular for solving large sparse systems over finite
fields.

In this paper, we propose an implementation of the block Lanczos–
Montgomery method where the time required for global exchanges is scaled with
the growth of the block size K. This implementation is an improvement of the
one proposed in [14]. The theoretical estimates obtained for parallel complexity
indicate that the data exchanges in the proposed implementation for record-high
matrix sizes and block sizes of K > 50 require less time than those in ideally
parallelizable computations with dense blocks.

It should be noted that the current practice of complexity analysis for meth-
ods of solving large sparse systems of linear equations over finite fields usually
ignores the computing with dense blocks. It is assumed that the most complex
part of the algorithm (the construction of the Krylov subspace basis) is asso-
ciated with the multiplication of vectors by a large sparse matrix. However, as
is shown below, this assumption is valid only for small blocks (with a size not
exceeding 10).

The faster solution of the problem requires an increase in the block size of
at least up to K = 100. In this case, the calculations with dense blocks cannot
be disregarded. Now, the computation time even turns out to exceed the time
required for exchanges. Thus, the more complex Wiedemann-Coppersmith-like
algorithms actually have no significant advantages over the Lanczos-Montgomery
methods; this is true at least for systems with a few dozens of thousands of dis-
tributed nodes (here, the number of computing cores can reach up to a million).

This study is organized as follows. Section 2 describes the algorithm and
the method of data storage in the improved implementation of the Lanczos–
Montgomery algorithm. Section 3 provides theoretical estimates for parallel com-
plexity under the assumption that the computer system nodes are connected
according to the “point-to-point” topology. This type of communication is cur-
rently widespread and can be implemented using the “fat-tree” topology. The
numerical examples are presented in Sect. 4.
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2 Description of the Improved Lanczos–Montgomery
Algorithm

2.1 The Lanczos Algorithm for Linear Systems over Finite Fields

Like standard numerical methods for R and C fields, the Lanczos algorithm for
the system AX = B of linear equations over finite fields consists of the following
steps:

1. transition to a symmetrized system of the form

ATAX = ATB, (1)

2. calculation of the ATA-orthogonal basis V0, V1, · · · , VN of the Krylov space
constructed for the vectors B,ATAB,

(
ATA

)2
B, · · · , (ATA)ÑB, where Ñ is

an integer normally close to the number of rows N of A).
At the (k + 1)-th iteration, the new vector Vk+1 is obtained from the short
recurrence relations

Vk+1 = ATAVk +
k−m∑

i=k

VkCk+1,i, (2)

with a recursive depth m, where m = 1 for large finite fields and m ≥ 2 for
F2).

3. iterative refinement of the solution

Xk+1 = Xk + Vk+1Gk+1, (3)

with some K × K matrix Gk+1.

However, implementation of the Lanczos algorithm over finite fields has some
specific features. The first and most important feature is that the concept of
“approximate solution” is meaningless in the case of finite fields. As a conse-
quence, the number of vectors in the resulting ATA-orthogonal basis of the
Krylov space is almost close (or equal) to the size of ATA (with a probability
of 1). In addition, if the number of elements in F is small, such as for F2, block
methods are used to avoid “breaks” [3,5,6,14].

One of the most efficient implementations for F2 is the Montgomery imple-
mentation [5], where the block size is equal to the number of bits in the computer
word. Finally, for small fields, to satisfy the condition of ATA-orthogonality, one
has to increase the recursion depth up to m ≥ 2.

In any case, the general structure of calculations in block Lanczos–
Montgomery-like methods remains unchanged and can be described as follows:
The structure of Lanczos–Montgomery-like methods

1. Start of iteration: before the start of iteration i, the N × K blocks
Vi, Vi−1, · · · , Vim over the finite field F are known;

2. Matrix by block: the product (ATA)Vi is calculated;
3. Bilinear forms of blocks: the bilinear forms XTY ∈ F

K×K for the blocks
X,Y ∈ F

N×K are calculated;
4. Linear combinations of blocks: the linear combinations XU +Y V for the

blocks X ∈ F
N×K and square K × K matrices U, V are calculated.
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2.2 Parallel Computing in the Improved Lanczos–Montgomery
Method

The structure of the Lanczos method described in the previous section specifies
the set of basic operations of the algorithm (see [13,14]):

1. multiplication of a sparse matrix by block;
2. calculation of XTY for N × K blocks X and Y ;
3. calculation of XU for N × K block X and K × K matrix U .

Our aim is to implement an efficient parallelization of these operations in the
improved Lanczos–Montgomery method.

The improved Lanczos–Montgomery method proposed by us is based on
unconventional ideas of the data storage on distributed nodes of the computer
system and algorithms for computing with these data. This new way of data
representation is very close to the one considered in [14] but there are some
differences. These changes make it possible to obtain an implementation of the
algorithm with a reduced number of data exchanges. In addition, as will be
shown by further analysis and computational experiments, when the block size
increases, the time required for exchanges becomes insignificant compared to
the time of block operations. This occurs despite the fact that the arithmetic
calculations are perfectly parallelized.

Now, we describe the method. Let K and S be two positive integers (here-
after, K denotes the block size). We consider a system of K × S nodes with
distributed memory. For convenience, we assume that the nodes Ni,j form a
rectangular lattice with K and S nodes along the rectangular grid sides. Despite
the regular arrangement, we assume that the nodes are connected according to
the “point-to-point” topology.

To fully describe the technique of data representation in memory, we consider:

1. the storage of a sparse matrix A;
2. the storage of N × K blocks;
3. the storage of K × K dense matrices.

We begin with the large sparse matrix A. Despite the fact that a symmetrized
system is considered in the algorithm, its matrix ATA is not calculated explicitly.
To calculate (ATA)V , we multiply the block V sequentially by the matrices A
and AT .

A special scheme is used to handle the matrix A ∈ F
M×N . We represent the

matrix as a union of blocks of rows Ai and blocks of columns Aj :

A =
[
A1 A2 · · · AS

]
=

⎡

⎢⎢⎣

A1

A2

· · ·
AS

⎤

⎥⎥⎦ , (4)

where each block of rows (columns) is assumed to have the same number of rows
(columns) and approximately the same number of nonzero elements of A (this
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can be achieved by using a special preprocessing technique). In the improved
scheme, the node Ni,j contains both the block of rows Aj and the block of
columns Aj .

Also, it is necessary to distribute the N × K blocks in the computer system
memory. These blocks are stored in the following way: the block V is considered
as the union of KS smaller blocks:

V =

⎡

⎢⎢⎣

V1

V2

· · ·
VKS

⎤

⎥⎥⎦ , (5)

and each subblock Vl of size N
KS × K is stored on the node Ni,j such that

l = K ∗ j + i.
Hereafter, the K ×K matrices are supposed to be stored on each of the KS

nodes Ni,j .
This structure of data storage largely determines the parallel implementa-

tions for different operations in Lanczos–Montgomery-like method.

Remark 1. The data storage technique considered above describes only the most
general principles; some details of the efficient implementation were omitted. For
example, some rows and/or columns of the sparse matrix A should be taken to
be dense and stored without using special sparse formats. In the case of large
fields, the dense rows (columns) can be of two types: (a) “small-module” ele-
ments; (b) “typical” elements for the large field. The sparse matrix is stored in a
special cache-independent format, etc. However, to analyze the parallel complex-
ity of the improved Lanczos–Montgomery method, it will suffice to use the rough
description of data storage presented above.

Now, we describe the algorithms. The multiplication of the symmetrized
matrix of the system by a vector has the following form:

The algorithm of multiplication of the block X by the symmetrized
matrix ATA.

1. collect the vector Xi (the i-th column in the block X ) on each node Ni,j for
j = 1, · · · , S;

2. compute Yi,j = AjXi on the node Ni,j ;
3. collect the vector Yi (the i-th column of Y = AX ) on each node Ni,j for j =

1, · · · , S;
4. compute Wi,j = AjYi on the node Ni,j (the blocks of Wi,j are the desired

result);
5. collect N

KS × K blocks Wt, for t = 1, · · · ,KS.

The data exchanges in The algorithm of multiplication of the sym-
metrized matrix ATA by the block X occur at steps 1, 3, and 5.
The vectors are collected by calling the collective communication procedure
MPI Allgather. The amount of exchanged data does not exceed 2max(N,M).
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The number of operations in this algorithm will be estimated in the next
section for the case of systems over F2.

For the block calculation, we propose

The algorithm for calculating bilinear forms XTY .

1. compute XT
l Y

T
l on the node Ni,j ,where l = Kj + i (for all KS nodes);

2. collect the resulting matrix on all the nodes Ni,j .

The data exchanges occur at step 2. The data are collected by calling the
collective communication procedure MPI Allreduce.

Finally, we consider the multiplication of the N × K block by the K × K
matrix:

The algorithm of multiplication XU.

1. compute Wl = XlU on the node Ni,j, where l = Kj + i (for all KS nodes); the
subblocks Wl are the computing result.

This algorithm has no data exchanges.

Remark 2. The collective communication procedures such as MPI Allgather
and MPI Allreduce are supposed to be effective if the nodes of the distributed
system are connected according to the “point-to-point” topology.

3 Parallel Complexity Analysis for the Improved
Lanczos–Montgomery Method

3.1 Complexity Estimate for the Lanczos Method over Large Fields

Now, we estimate the parallel complexity of the Lanczos method for linear sys-
tems over large prime fields. The number of computer words for an element of
the field is denoted by W , and the mean value of nonzeros in one column of
A is p. For example, if the field element requires 512 bits, then W = 8. The
parameter p may vary in a wide range (usually, its value is around 100). Our
estimates are for the three main operations described in Subsect. 2.2.
Parallel complexity of the Lanczos method.

1. The complexity of multiplication of a sparse matrix by a block:

{computational complexity} = 2W
pN2

KS
, (6)

{complexity of data exchanges} = 2W
N2

K
. (7)

Note that the computational complexity (including the complexity of multi-
plications of numbers of a large field) depends only on the first degree of W
(but not W 2, as it could be expected). Estimate (6) holds for applications
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where the initial matrix A is obtained by the GNFS method (for example,
see [10]). In this case, almost all elements of A are “small-module” numbers
(moreover, 90% of them are 1, and −1 in F). As a result, the multiplication
complexity is proportional to W .
Another important observation is that the time required for global exchanges
is inversely proportional to the block size K. It is very important since K is
the main parallelism resource in the algorithm. It should be noted that the
term 2WpN2 in (6) is divisible by KS. It is this part of the algorithm that
usually was most time-consuming. However, as it will be shown below, the
situation changes significantly with the growth of K.

2. Computational complexity of bilinear forms:

{computational complexity} = 3
W 2N2

S
, (8)

{complexity of data exchanges} = WKN (log2 (KS) + 1) . (9)

The computational complexity of bilinear forms was estimated by us under
the following assumptions: (a) the Montgomery algorithm was used for the
multiplication of numbers in a large prime field and (b) the Winograd method
was used for dense matrix multiplications. The Winograd algorithm allows us
to reduce the number of multiplications of the elements of the large field in
two times. It is the multiplications of elements that determine the complexity
of algorithms of basic linear algebra in the case of large finite fields. (8)
does not depend on K; therefore, starting with some K (with a fixed S),
the calculation time for block multiplications will surpass the time for the
operations with the sparse matrix.
According to (9), the number of data exchanges grows with K; however, the
number of these exchanges in practice is rather small. Indeed, estimate (9) is
linear over N. If the system size N is around several millions and K is almost
100, we have KN � N2

K and, therefore, the number of exchanges in (7) is
much greater than that in (9).

3. Complexity of calculations of linear combinations of blocks:

{computational complexity} =
9W 2N2

2S
, (10)

{complexity of data exchanges} = 0. (11)

Like in (8), the complexity of computations in (10) corresponds to the Wino-
grad method. The complexity value in (10) is independent of K. There are
no data exchanges in this operation.

Remark 3.
It follows from the above estimates that the block operations are not scalable.

Thus, the fast realizations of basic linear algebra procedures in finite fields are
very important for the efficient implementation of the parallel Lanczos method.
The more efficient are these calculations, the larger the block size can be taken.
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3.2 Complexity Estimate for the Montgomery Method over F2

Let us estimate the complexity of parallel computations for the Montgomery
method in the case of linear systems over F2. The estimates are the same as in
Subsect. 3.1 accurate to scalar coefficients.

Parallel complexity of the Montgomery method

1. Multiplication of sparse matrix by block:

{computational complexity} =
1
32

· pN
2

KS
, (12)

{complexity of data exchanges} =
N2

32K
. (13)

The coefficient 1
32 arises because the block size in the Montgomery method is

divisible by the computer word size (which is supposed to be 64). The actual
block size is taken to be K · 64. Obviously, both terms are scaled with K.

2. Complexity of the calculation of bilinear forms:

{computational complexity} = 3
N2

8S
, (14)

{complexity of data exchanges} = KN (log2 (KS) + 1) . (15)

Estimate (14) was obtained for the case of the Coppersmith algorithm, which
allows one to reduce the number of operations with computer words in 8 times
compared to the “naive algorithm”.

3. Complexity of the linear combination of blocks:

{computational complexity} =
5N2

8S
, (16)

{complexity of data exchanges} = 0. (17)

Here, the “four Russians” method is used for the dense matrix multiplications
in F2. This algorithm makes it possible to reduce the number operations with
computer words in 8 times compared to the “naive” algorithm.

3.3 Parallel Complexity Analysis for the Lanczos–Montgomery-like
Methods

We use the estimates obtained in Sects. 3.1 and 3.2 to demonstrate that the main
obstacle to the use of more powerful computer systems for Lanczos–Montgomery-
like methods is the operations with dense matrices and blocks, rather than data
exchanges.

First, we determine the values of parameters K and S for which the com-
plexity of multiplications of sparse matrix by blocks and the complexity of cal-
culations of bilinear forms coincide. This can be easily done by equaling the
expressions (6) and (8). In this case, we have

p

K
= 3W. (18)
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For p = 200, and W = 8, we have K ≤ 9. In other words, even for K of around
10 the parallel complexity (8) is no less than (6). This means that the parallel
resource of K is bounded.

Remark 4.
In fact, the situation is slightly better: sparse matrices usually have a random

structure; therefore, the speed of operations with them is limited due to inefficient
memory access. Therefore, it will be more correct to use an estimate for values
of K close to 100. In addition, one can significantly speed up the linear algebra
operations (BLAS) by using special accelerators. For example, in case of basic
algebra operations over large fields, GPU can be used. The resulting acceleration
can increase the block size K. Also, the use of fast algorithms leads to a further
acceleration with the increase of K. In this case, estimate (8) should be refined.

Now, we compare the times required for exchanges and computations with
dense blocks. We assume the following distributed computing system:

1. the communication network of the computer system efficiently links the
nodes via the “point-to-point” topology (for example, using the “fat-tree”
technology);

2. the baud rate is about 20 Gb/s (approximately 300 · 108W
c );

3. we assume that the computer system is equipped with 8-core nodes running
at 3 ·108 GHz. Thus, each node is capable of performing 2.4 ·1010W

c computer
words operations per second.

The most important consequence of the above description is that the calcu-
lations performed by a single multicore node are 100 times faster than the its
data transmissions.

By equating (7) and (8), we find the values of K and S such that the times
for data exchanges and for computations with dense blocks are comparable:

K

S
= 100

2
3W

. (19)

Taking into account that S ≥ 10 (usually), we obtain K ≥ 100. Thus, the data
exchanges in the improved algorithm imposes less strict limitations on K than
the computations with dense blocks.

Similarly, we can show that the same conclusions hold for the field F2. Note
that these conclusions are independent of the matrix sizes. However, they depend
on the average number of nonzeros in row p. The larger is p, the larger values of
K can be used and the higher is the parallel efficiency of the improved method.

4 Numerical Experiments

The following tables give the absolute times obtained in numerical experiments
for the improved Lanczos–Montgomery method applied to linear systems over
finite fields. The numbers of system cores are indicated in the tables. All the
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Table 1. Acceleration and the time for single basis vector calculation in the case of a
large finite field. Block Lanczos method (matrix 2 · 106, with 84 nonzero elements in a
column)

Number of cores 1 2 4 8 16 32 64 128

Acceleration 1 1.99 3.95 7.86 15.48 30.49 56.04 103.04

Time, s 38.1 19.2 9.6 4.85 2.46 1.25 0.67 0.37

S ×K 1 × 1 1 × 1 1 × 1 1 × 1 2 × 1 2 × 2 4 × 2 8 × 4

experiments were performed on the Lomonosov and Lomonosov-2 supercomput-
ers. In the experiments, the matrices were equivalent to the matrices obtained
by the GNFS method. In the case of large fields, the numbers were encoded
using 512 bits. It should be noted that the block size in some experiments was
sufficiently large: K = 32. According to the Tables 1, 2, 3 and 4, the resulting
acceleration depends almost linearly on the number of cores (up to 2, 000 cores).
Then, the dependence becomes close to the square root of the number of cores.

Table 2. Acceleration and the time for single basis vector calculation in the case of a
large finite field. Block Lanczos method (matrix 2 · 106, with 84 nonzero elements in a
column)

Number of cores 256 512 1024 2048 4096 8192

Acceleration 159.48 231.01 391.34 608.96 847.13 1211.4

Time, s 0.239 0.165 0.0974 0.0625 0.0451 0.0316

S ×K 16 × 4 16 × 8 32 × 8 32 × 16 64 × 16 64 × 32

Table 5 contains the absolute times of computations and data exchanges for
different values of S and K in case of the field F2. The computations include:

– Sparse matrix by vector product (‘MatVec’);
– All operations with the dense blocks (‘Dense’).

The data exchanges occure in the following operations:

– Matrix by vector multiplication (‘MatVec’);
– Collecting vectors and subblocks before and after matrix by vector multipli-

cation (‘Block-Vector’);
– Bilinear forms for dense blocks (‘Dense’).

Synchronizations constitute a substantial part of the time, especially for the
exchanges in ‘Block-Vector’ and ‘Dense’ parts. That is why the numerical results
confirm the theoretical estimates imperfectly for the data exchanges times. How-
ever, the results are close to the theory.
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Table 3. Acceleration and the time for single basis vector calculation in the case of a
field F2. Block Lanczos method (matrix 2 · 106, with 300 nonzero elements in a row)

Number of cores 1 2 4 8 16 32 64 128 256 512 1024

Acceleration 1 1.88 3.6 6.8 12.4 23.8 43.9 82.4 153.54 268.2 342.0

Time, ms 57.1 30.4 15.9 8.39 4.59 2.40 1.30 0.693 0.372 0.213 0.167

S ×K 1× 1 1× 1 1× 1 1× 1 2× 1 4× 1 4× 2 8× 2 8× 4 16× 4 16× 8

Table 4. Acceleration and the time for single basis vector calculation in case of a field
F2. Block Lanczos method (matrix 2 · 107, with 800 nonzero elements in a row)

Number of cores 1024 2048 4096 8192

Acceleration 342.0 605.1 813.7 1140.2

Time, ms 1.38 0.780 0.579 0.414

S ×K 16 × 8 32 × 8 64 × 16 64 × 32

Table 5. Computation and communication time of different operations (F2 field, matrix
2127498 × 2127690, 170 nonzero entries per row)

Parameters Computation time, s Communication time, s

Number of cores S K MatVec Dense MatVec Block-Vector Dense

14 1 1 2396 382 0 0 0

28 2 1 1220 186 193 0 6

28 1 2 1223 382 0 130 1.5

56 4 1 553 105 206 0 18

56 2 2 692 194 102 70 18

56 1 4 690 380 0 114 8

112 8 1 280 49 200 0 15

112 4 2 277 102 142 39 19

112 2 4 351 195 62 56 19

224 16 1 149 28 244 0 6

224 8 2 142 55 148 21 12

224 4 4 137 105 88 41 14
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ChronosServer: Fast In Situ Processing
of Large Multidimensional Arrays

with Command Line Tools
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Abstract. Explosive growth of raster data volumes in numerical simulations,
remote sensing and other fields stimulate the development of new efficient data
processing techniques. For example, in-situ approach queries data in diverse file
formats avoiding time-consuming import phase. However, after data are read
from file, their further processing always takes place with code developed
almost from scratch. Standalone command line tools are one of the most popular
ways for in-situ processing of raster files. Decades of development and feedback
resulted in numerous feature-rich, elaborate, free and quality-assured tools
optimized mostly for a single machine. The paper reports current development
state and first results on performance evaluation of ChronosServer – distributed
system partially delegating in-situ raster data processing to external tools. The
new delegation approach is anticipated to readily provide rich collection of
raster operations at scale. ChronosServer already outperforms state-of-the-art
array DBMS on single machine up to 193�.

Keywords: Big raster data � Distributed processing � Command line tools �
Delegation approach

1 Introduction

Raster is the primary data type in a broad range of subject domains including Earth
science, astronomy, geology, remote sensing and other fields experiencing tremendous
growth of data volumes. For example, DigitalGlobe – the largest commercial satellite
imagery provider, collects 70 terabytes of imagery on an average day with their con-
stellation of six large satellites [1].

Traditionally raster data are stored in files, not in databases. The European Centre
for Medium-Range Weather Forecasts (ECMWF) has alone accumulated 137.5 million
files sized 52.7 petabytes in total [2]. This file-centric model resulted in a broad set of
raster file formats highly optimized for a particular purpose and subject domain. For
example, GeoTIFF represents an effort by over 160 different remote sensing, GIS
(Geographic Information System), cartographic, and surveying related companies and
organizations to establish interchange format for georeferenced raster imagery [3].

The corresponding software has long being developed to process raster data in
those file formats. Many tools are free, popular and have large user communities that
are very accustomed to them. For example, ImageMagic is under development since
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1987 [4], NetCDF common operators (NCO), a set of tools for multidimensional
arrays, since about 1995 [5]; Orfeo ToolBox – remote sensing imagery processor now
represents over 464,000 lines of code made by 43 contributors [6]. Many tools take
advantage of multicore CPUs (e.g., OpenMP), but mostly work on a single machine.

In-situ distributed raster data processing has recently gained increased attention due
to explosive growth of raster data volumes in diverse file formats. However, already
existing stable and multifunctional tools are largely ignored in this research trend.
Thus, raster operations are re-implemented almost from scratch delaying emergence of
a mature in-situ distributed raster DBMS.

This paper describes the prototype extension of ChronosServer [7, 8] leveraging
existing command line tools for in-situ raster data processing on a computer cluster
of commodity hardware. Unlike current systems, it is easier and faster to equip
ChronosServer with wide variety of raster operations due to new delegation approach.
Thus, it is anticipated that it is possible to quickly develop new distributed file-based
raster DBMS with rich functionality and exceptional performance.

2 In-Situ Raster Data Processing

In-database data storage (in-db, import-then-query) requires data to be converted
(imported) to internal database format before any queries on the data are possible.
Out-of-database (out-db, in-situ, file-based, native) approach operates on data in their
original (native) file formats residing in a standard filesystem without any prior format
conversions.

2.1 State-of-the-Art

PostgreSQL extensions PostGIS [9] and RasDaMan [10] work on single machine and
allow registering out-database raster data in file system in their native formats.
Enterprise RasDaMan version claims to be in-situ enabled and distributed, but is not
freely available [11]. PostGIS has poor performance on multidimensional arrays (e.g.
NetCDF, HDF or Grib formats [12]). No performance evaluation has been ever pub-
lished for enterprise RasDaMan. SAGA [13] executes only distributed aggregation
queries over data in HDF format. SWAMP [14] accepts shell scripts with NCO and
parallelizes their execution. Hadoop extensions SciHadoop [15] and SciMATE [16]
were never released publicly. They implement drivers reading Hadoop DFS chunks as
if they are in HDF or NetCDF formats. Galileo [17] indexes geospatial data with
distributed geo-hash. SWAMP launches command line tools but focuses on NCO and
requires scripts looping over files with explicitly specified file names. The proposed
approach is universally applicable to any tool and abstracts from “file” notion at all.

Commercial ArcGIS ImageServer [18] claims in-situ raster processing with custom
implementation of raster operations. However, in a clustered deployment scenario all
cluster nodes are recommended to hold copies of the same data or fetch data from a
centralized storage upon request what negatively impacts scalability. Commercial
Oracle Spatial [19] does not provide in-situ raster processing [20]. Open source SciDB
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is specially designed for distributed processing of multidimensional arrays [21].
However, it does not operate in-situ and imports raster data only converted to CSV
format – very time-consuming and complex undertaking. Moreover, SciDB lacks even
core raster operations like interpolation which makes it an immature and not widely
used product [22]. Intel released open source TileDB on 04 Apr. 2016. It is yet neither
distributed nor in-situ enabled [23].

Hadoop [24] and experimental SciDB streaming [25] allow launching a command
line tool, feed text or binary data into its standard input and ingesting its standard
output. Note two time-consuming data conversion phases in this case: data import into
internal database format and their conversion to other representation to be able to feed
to external software. The proposed approach directly submits files to external exe-
cutables without additional data conversion steps.

SciQL was an effort to extend MonetDB with functionality for processing multi-
dimensional arrays [26]. However, it has not yet finished nor its active development is
seen so far. Also, SciQL does not provide in-situ raster processing.

2.2 In-Situ Approach Benefits

This section collects in one place advantages and challenges of in-situ approach that are
quite scattered in the published literature.

• Avoid inefficient neighborhood. Traditionally, BLOB (Binary Large OBject) data
type served for in-db raster storage (PostGIS, RasDaMan). Physical layouts where
raster data are close to other data types are quite inefficient since the former are
generally much larger than the latter.

• Leverage powerful storage capabilities. Some raster file formats support chunking,
compression, multidimensional arrays, bands, diverse data types, hierarchical
namespaces and metadata. These techniques are fundamental for raster storage;
their implementation for an emerging in-db storage engine results in yet another
raster file format.

• Avoid conversion bottleneck. In mission-critical applications it is important to be
able to analyze the data before their new portion arrives or a certain event happens.
In some cases the conversion time may take longer than the analysis itself. The data
arrival rate and their large volumes may introduce prohibitively high conversion
overheads and, thus, operational failure.

• Avoid additional space usage. Most data owners never delete source files after any
kind of format conversions including database import. There are numerous reasons
for this including unanticipated tasks that may arise in future that are more con-
venient, faster, easier or possible to perform on the original files rather than their
converted counterparts. Storing both source data and their in-db copies requires
additional space that may be saved by in-situ approach.

• Reduce DBMS dependence. It is easier to migrate to other DBMS keeping data in a
widely adopted storage format independent from a DBMS vendor.

• Leverage other software tools (this paper). Out-db raster data in their native formats
remain accessible by any other software which was inherently designed to process
file-based data.
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Key difficulties lie in the ability to perform the same set of operations on data in
different file formats. Three data models are most widely used that allow abstracting
from file format: Unidata CDM, GDAL Data Model, ISO 19123 (not cited due to space
constraints). Most existing command line tools use those models and, thus, are capable
to handle data in diverse raster file formats.

3 ChronosServer Architecture

3.1 Raster Data Model: Abstracting from Files, Their Locations
and Formats

This paper focuses on climate reanalysis and Earth remote sensing global gridded raster
data represented as multidimensional arrays and usually stored in NetCDF, Grib and
HDF file formats. For example, AMIP/DOE Reanalysis 2 (R2) spans several decades,
from 01.01.1979 to current date with 6 h time interval and contains over 80 variables
[27]. The grid resolution is usually 2.5° � 2.5°. Global grids for each variable are
stored in a sequence of separate files partitioned by time. File names contain variable
codename, e.g. files with surface pressure are named pres.sfc.1979.nc, pres.sfc.1980.
nc, …, pres.sfc.2015.nc. Where “pres.sfc” denotes surface pressure, 1979 is year, “.nc”
is NetCDF file extension. Usually file naming is much more complex (e.g., compare to
AIRS/AMSU daily file name for CO2 satellite data: AIRS.2004.08.01.L3.CO2Std001.
v5.4.12.70.X09264193058.hdf). Note, that the data are usually already split by files by
data providers.

ChronosServer distributes files among cluster nodes without changing their names
and formats. Any file is always located as a whole on a machine in contrast to parallel or
distributed file systems. It introduces a data model to work with grids, not files to abstract
from “file” notion, file naming, their locations, formats and other details that are unique to
every dataset and not relevant for data analysis. ChronosServer dataset namespace
is hierarchical. For example, “r2.pressure.surface” refers to surface pressure of R2
reanalysis. ChronosServer provides SQL-like syntax for subsetting grids. For example,
“SELECT DATA FROM r2.pressure.surface WHERE TIME_INTERVAL =
01.01.2004 00:00–01.01.2006 00:00 AND REGION = (45, 60, 50, 70)” returns time
series of R2 surface pressure in the specified time interval and region between 45°S–50°N
and 60°W–70°E. The query execution may involve several cluster nodes. Any grid or
time series from any dataset may be extracted with the same syntax regardless of original
file format, file split policy and other details.

3.2 Cluster Orchestration

ChronosServer cluster consists of workers launched at each node and a single gate at a
dedicated machine. Gate receives client queries and coordinates workers responsible
for data storage and processing. All workers have the same hierarchy of data directories
on their local filesystems. A worker stores only a subset of all dataset files and only a
portion of the whole namespace relevant to the data it possesses. A file may be
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replicated on several workers for fault tolerance and load balancing. It is not required to
keep all workers up and running for the whole system to be operational.

The gate is unaware of file locations until a worker reports them to it. This is done
for better scalability and fault tolerance. Upon startup workers connect to gate and
receive the list of all available datasets and their file naming rules. Workers scan their
local filesystems to discover datasets and their time intervals by parsing dataset file
names. Workers transmit to gate the list of time intervals for each dataset they store.
Gate keeps this information in worker pool – in-memory data structure used during
query planning that maps time intervals to their respective owners (workers).

4 New Delegation Approach

4.1 ChronosServer Raster Data Processing Commands and Their
Distributed Execution

ChronosServer syntax of a raster data processing command is the same as launching a
tool from a command line. Command names coincide with names of existing command
line tools. ChronosServer command options have the same meaning and names as for
the tool but without options related to file names or paths. Commands and tools also
support options with long names having the same meaning.

For example, NCO consists of several standalone command line tools: ncap2
(Arithmetic Processor v.2), ncks (Kitchen Sink), ncatted (Attribute Editor – metadata
manager, Fig. 1), etc. [28, 29]. Metadata are crucial component of any raster data.

ncatted [-a ...] [--bfr sz] [-D nco_dbg_lvl] [--glb ...] [-h]
[--hdr_pad nbr] [-l path] [-O] [-o out.nc] [-p path] [-R]
[-r] [-t] in.nc [[out.nc]]

-a, variable_name,mode,attribute_type,attribute_value 

mode = a,c,d,m,o (append, create, delete, modify, overwrite)

att_typ = f,d,l/i,s,c,b (float, double, long, short, char, byte)

--bfr_sz, --buffer_size sz Buffer size to open files with

-D, --dbg_lvl, --debug-level lvl Debug-level is lvl

--glb nm=val Global attribute to add

-h, --hst, Do not append to "history" global attribute

--hdr_pad    Pad output header with nbr bytes

-l, --lcl Local storage path for remotely-retrieved files

-o, out.nc       Output file name (or use last argument)

-O, --ovr Overwrite existing output file, if any

-p, --path path Path prefix for all input filenames

-R, --rtn Retain remotely-retrieved files after use

-r, --revision Compile-time configuration and program version

-t, --typ_mch, Type-match attribute edits

in.nc [[out.nc]] Input file name [[Output file name]]

Fig. 1. Parameters of the NCO ncatted tool (all listed) and Chronos ncatted command (in bold)
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NetCDF and many other formats store metadata as attributes (key-value pairs). For
example, attribute named “_FillValue” holds a constant used to mark raster cells with
missing values (e.g., –9999).

By default, command is applied to the whole available dataset time interval and
spatial coverage. They may be restricted by “select” query with alias dataset name
specification. New virtual dataset will contain subset of the original dataset. Its name
(alias) may be used in the subsequent commands. It is helpful to test a series of
commands on a dataset sample to check hypotheses about the anticipated results before
submitting large-scale query involving large data volumes to save time.

For example, ChronosServer command for “_FillValue” attribute deletion from
dataset “r2.pressure.surface” is “ncatted -a _FillValue,r2.pressure.surface,d,,”. Instead
of “variable_name” – the term specific for NetCDF format, ChronosServer ncatted
accepts a dataset name to be independent of a concrete format. Usually the same
attributes are duplicated in all files of a dataset.

The gate receives and parses command line options, verifies their correctness and
absence of malicious instructions since they are passed to operating system shell. The
dataset or its subset is locked for reading/writing depending on the command. Several
commands may work concurrently if they do not block each other. Gate selects workers
on which dataset files with the required time/space intervals are located and sends them
the modified command (see below). Workers complement command line with full
paths to dataset files according to time and space limitations and launch the tool on
each file.

In the simple case above, ChronosServer invokes several instances of the NCO
ncatted tool on the cluster nodes where at least one dataset file is located (pres.sfc.1979.
nc, …, pres.sfc.2015.nc). The execution command line for file pres.sfc.1979.nc is
“<path to ncatted.exe>-a missing_value,pres,d,, <data path>\pres.sfc.1979.nc”. The file
path and “pres” were automatically put by worker and gate correspondingly. The latter
is the NetCDF variable name that stores R2 surface pressure (NetCDF3 format does not
have hierarchical namespace and stores data in structures called “variables”).

Workers also collect standard output of the tool which is sent to gate after its
completion. Running tool on a different cluster node in case of a hardware failure is
under development. Gate reports to the user once it receives success messages from all
workers involved in the command execution. Report contains the merged standard
outputs from each run of the tool and total elapsed time.

4.2 Distributed Apply-Combine-Finally Execution Scheme (Under
Development)

Raster operations can be broadly classified as global (involve all data), local
(pixel-wise), focal (cell values from a rectangular window are required to compute new
cell value), zonal (same as focal but spatial region is defined by a function) [30]. Thus,
some operations cannot be completed autonomously using data on a single cluster
node. For example, R2 data interpolation for 1980 year from 6 to 3 h time step requires
grids for December 1979 and January 1981. Also, computation of maximum mean
winter pressure involves all files potentially located on different cluster nodes.
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In this case, user specifies commands: APPLY command1 INTERVALS intervals
COMBINE command2 FINALLY command3. ChronosServer ensures that files on
each involved node contain data in given temporal and spatial intervals (e.g., in case of
winter means, there should be nodes with data for all winter months for at least two
consecutive years: 1980–1981, 1981–1982, 1982–1983, etc. to be able to compute the
mean). This may require data movement between cluster nodes. After the intervals
requirement is met, command1 is executed autonomously on the data intervals on
corresponding cluster nodes. Since some nodes may have several disjoint intervals,
their intermediate results may be combined on the same node to reduce network traffic
with command2 if it is possible (e.g. compute maximum of the means of intervals
1980–1981 and 1982–1983 that happened to reside on the same node). All results are
gathered on a single node and command3 is applied to obtain final result (e.g., find
maximum of means or maximums of maximums if combine phase was applied).

Unlike existing schemes [31, 32], the proposed distributed execution scheme
takes into account peculiarities inherent to raster operations, geospatial data and
ChronosServer file-based storage model. For example, respective intervals must be
specified to guarantee the raster operation (command1) is possible to accomplish within
a single node. It is widely recognized that numerous data processing tasks are much
easier to parallelize once actions are expressed in functional style, not “for” loops.

4.3 Benefits of the Proposed Delegation Approach

While in-situ approach leverages benefits of already existing sophisticated file formats,
delegation approach leverages benefits of already existing standalone command line
tools.

• Avoid learning new language. ChronosServer provides command line syntax that is
well-known to every console user instead of a new SQL dialect.

• Steep learning curve. Users work with ChronosServer as if with console tools they
have accustomed to with only minor changes to already familiar tools’ options.

• Documentation reuse. Most of the tool’s documentation is applicable to the corre-
sponding ChronosServer command due to exactly the same meaning and behavior.

• Output conformance. Output files are formatted as if a tool was launched manually.
• Language independence. ChronosServer may use tools written in any programming

language.
• Community support. Bugs in tools are fixed by their developers as well as new

functionality added, usage suggestions via mail lists are obtained regardless of
ChronosServer context.

• Zero-knowledge development (0-know dev.). Developers of existing and emerging
tools do not have to know anything about ChronosServer in order the tool could be
used in ChronosServer.

The main difficulty of the proposed approach lies in the correct specification of the
“intervals”, “combine” and “finally” clauses. Meta-commands are a possible simplifi-
cation of the problem. They consist of a single command line which translates to pre-
defined apply-combine-finally clauses.
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5 Performance Evaluation

To date, the only freely available distributed raster DBMS is SciDB, not operating
in-situ. It lacks many core raster operations. Thus, only the performance of some basic
ChronosServer and SciDB raster operations are compared. It is of special interest to
evaluate ChronosServer against SciDB since the latter is currently being most actively
popularized among similar DBMS at top journals and conferences [33–35].

Test of source data volume comprised only 100.55 MB in NetCDF3 format since it
is impossible to import large data volumes into SciDB in a reasonable time frame
(Sect. 5.2). In addition, experiments were carried out on a single machine for two
reasons. First, raster operations being evaluated have linear scalability. Increasing
machine number by a factor of N should roughly increase the performance also by
N. Second, unlike ChronosServer, SciDB cluster deployment is very labor-intensive.
Comparison of both systems running on computer cluster is left for future work.

However, small test data volume and single machine turned out to be sufficient for
representative results (Table 1). Table 1 summarizes experimental results while details
are given in following subsections.

5.1 Test Raster Data and Experimental Setup

Eastward (U-wind) and northward (V-wind) wind speed (Fig. 2) at 10 meters above
surface from NCEP/DOE AMIP-II Reanalysis (R2) were used for experiments [27].
These are 6-hourly forecast data (4-times daily values at 00.00, 06.00, 12.00 and

Table 1. ChronosServer and SciDB performance comparison

Operation
Execution time, seconds Ratio, SciDB/

ChronosServerSciDB ChronosServer
Cold Hot Cold Hot

Data import 720.13 19.82 7.96 36.33 90.47
Max 13.46 4.43 3.10 3.04 4.34
Min 12.87 4.71 3.33 2.73 3.86
Average 21.42 4.71 3.23 4.55 6.63
Wind speed calc. 25.75 3.50 2.10 7.36 12.26
Chunk 100 � 20 � 16 56.19 1.68 0.374 33.45 150.24
Chunk 10 � 10 � 8 222.11 1.98 1.15 112.18 193.14

Fig. 2. Wind speed vector (ws) and its eastward (u) and northward (v) speed vectors.
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18.00). Data are 3-dimensional on 94 latitudes � 192 longitudes Gaussian grid in
NetCDF3 format. Dataset does not contain missing values. Single file is approximately
50.2 GB; total data volume is 3.63 GB for the whole available time interval 1979–
2015. Due to SciDB limitations (Sect. 5.2), only data for 1979 year were used (about
100.55 MB as mentioned earlier).

Both ChronosServer and SciDB were run on Ubuntu 14.04 inside VirtualBox on
Windows 10. Note that ChronosServer is also capable to run natively on Windows,
unlike SciDB. The machine is equipped with SSD (OCZ Vertex 4). VirtualBox was
assigned 4 GB RAM and 2 CPU cores (Intel Core i5-3210 M, 2.50 GHz per core).
SSD speed inside VirtualBox: 4573.28 MB/sec and 222.04 MB/sec (cached and buf-
fered disk reads respectively as reported by hdparm utility); 350 MB/sec disk write as
reported by dd utility.

ChronosServer has 100% Java code, ran one gate and one worker, Java 1.7.0_75,
OpenJDK IcedTea 2.6.4 64 bit, max heap size 978 MB (-Xmx), NCO v4.6.0 (May
2016). SciDB is mostly written on C++, v15.12 was used (latest, Apr. 2015) with
recommended parameters: 0 redundancy, 4 instances per machine, 4 execution and
prefetch threads, 1 prefetch queue size, 1 operator threads, 128 MB array cache, etc.).

Two types of query runs were evaluated: cold (query executed first time on given
data) and hot (repeated query execution on the same data). Time reported in Table 1 is
the average of three runtimes of the same query. Respective OS commands were issued
to free pagecache, dentries and inodes each time before executing cold query to prevent
data caching at various OS levels. Table 1 does not report cold and hot runs for SciDB
since it did not reveal any significant difference in runtime between them. In contrast,
ChronosServer does not cache data but benefits from native OS caching and demon-
strates significant speedup for hot runs. This is particularly useful for continues
experiments with the same data. The need for this type of experiments occurs quite
often (e.g., tuning certain parameters, refer to Sect. 5.5 for an example).

5.2 SciDB Data Import and ChronosServer Data Discovery

Importing data into SciDB involves considerable efforts on software development for
each dataset being considered. SciDB does not yet provide out-of-the-box import tool
from formats other than CSV. The overall import procedure is very time-consuming
and error-prone (both due to complicated raster formats and related possible coding
bugs as well as inherent floating point calculations). Lack of documentation and
complex query syntax (Appendix B) may elongate data import for several weeks.

For SciDB “data import” row, Table 1 reports only time taken to automatically
import U-wind speed data for 1979 year (50.2 MB) from NetCDF3 format into SciDB.
It does not report the time spent for Java program development to actually perform the
import. Importing V-wind speed for 1979 also takes approximately the same amount
of time. Estimate time is 14.76 h to automatically import U- and V-wind speed for
1979–2015. Thus, only U- and V-wind speed vectors for 1979 are considered for
performance evaluation in the next subsections. This small data sample turned out to be
representative for convincing results.
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SciDB data import from NetCDF3 included reading original data file, preparing
string representation of 94 � 192 grid for each time step in a format ingestible by
SciDB, saving string to CSV file, and invoking SciDB tool to import grid from CSV.

On the contrary, to add new data under ChronosServer management, it is sufficient
to copy data files on a cluster node and add a short entry in ChronosServer XML file
specifying rules for file naming and a handful of some other information. ChronosServer
will discover files as described in Sect. 3.1. Worker discovers files at startup. Table 1
“Data import” row for ChronosServer reports time of its “cold” and “hot” startup. The
former startup mode rediscovers completely from scratch all existing as well as any
newly added data. The latter mode assumes no new data were added since previous
startup. Both measured times include complete startup time of one gate and one worker,
metadata transfer from gate to worker (registered datasets), data discovery by worker,
logging and any other startup overhead.

ChronosServer is able to discover 803 datasets with total volume of 6.78 GB in file
formats NetCDF-3, -4, HDF-4, -5, Grib-2 (a collection of diverse satellite and climate
reanalysis products) in 20 and 8 seconds for cold and hot startups respectively. This is
36� and 90� faster than SciDB imports just 50.2 MB of data.

5.3 Simple Statistics

Table 1 rows for max, min and average report time taken by the systems to calculate
maximum, minimum and average U-wind speed for 1979 year for each 94 � 192 grid
cell. Computation involves traversing 1460 time steps. ChronosServer is about 3 to 6
times faster than SciDB.

5.4 User-Defined Arithmetic Expressions

Both ChronosServer and SciDB support user-defined arithmetic expressions that could
be applied to raster data. As an example, wind speed (ws) at each grid cell and time
point is calculated from its eastward (u) and northward (v) components as ws ¼
sqrt u2 þ v2ð Þ (Fig. 2).

In this case, ChronosServer is 7 to 12 times faster than SciDB (Table 1).
It is worth noting, that SciDB query for wind speed calculation is very complex

(Appendix B), unlike that for ChronosServer (Appendix A).

5.5 Multidimensional Chunking

Chunking is the process of partitioning original array (raster) onto a set of smaller
subarrays called chunks (Fig. 3). Chunks are autonomous, possibly compressed arrays
with contiguous storage layout. A chunk is usually read/written completely from/to
disk in one request to storage subsystem. Chunking is one of the classical approaches to
significantly accelerate disk I/O when only a portion of raster is read. Consider reading
a 6 � 2 slice from a 2D array (Fig. 3). For a row-major storage layout, two vertically
adjacent cells are located far apart each other. A possible solution is to read 6 portions
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sized 1 � 2 which requires 6 I/O requests and disk seeks (Fig. 3a). For a compressed
array, much larger part of it might be required to be read and uncompressed before
getting the requested portion. In contrast, only chunks containing required data are read
from disk from a chunked raster. However, inappropriate chunk shape may result in
large I/O overhead (Fig. 3b). Good chunk shape allows to reduce communication with
storage layer, disk seeks and I/O volume (Fig. 3c).

Since many raster operations are mostly I/O bound [28], chunk shape is one of the
crucial performance parameters for a dataset [34]. Chunk shape depends on data
characteristics and workload. Optimal chunk shape usually does not exist for all access
patterns. It is also difficult to guess good chunk shape a priori: chunk shape is often
tuned experimentally. Thus, raster DBMS must be capable to quickly alter chunk shape
in order to support experimentation as well as to adapt to dynamic workloads.

To estimate chunking speed of both systems, U-wind speed data for 1979 were
chunked with two different chunk shapes ts � lats � lons: 100 � 20 � 16 and
10 � 10 � 8, ts, lats and lons are chunk sizes along time, latitude and longitude axes
respectively.

ChronosServer is up to 193 times faster than SciDB (Table 1). Presented timings
are the average for 3 consecutive runs as mentioned earlier (each cold run precedes OS
cache clear). In practice, ChronosServer could be even faster: 973 ms execution time
(less than a second) could be obtained for a hot run leading to 228.3� speedup.

6 Conclusion

The paper presented new approach of delegating in-situ raster data processing to
existing command line tools. The approach has numerous benefits and is under
development as an extension to ChronosServer – inherently distributed, file-based
system for high performance raster data dissemination [7, 8]. This paper also presented
first results on performance evaluation of ChronosServer against SciDB – one of the
most popular, distributed state-of-the-art raster DBMS [33–35]. Raster operations were

Fig. 3. Chunking: row-major storage layout, read 6 � 2 slice
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executed on 100.55 MB wind speed data from NCEP/DOE AMIP-II Reanalysis. This
was governed by SciDB which is unable to import large data volumes in a reasonable
time frame. However, this small data sample turned out to be sufficient for represen-
tative comparison. ChronosServer always outperforms SciDB. Also, query syntax of
ChronosServer is much easier and cleaner compared to SciDB. Max, min and average
operations are 3� to 6� faster, user-defined arithmetic expression was shown to be 7�
to 12� faster while altering 3D chunk shape is about 33� to 228.3� faster.

Acknowledgements. This work was partially supported by Russian Foundation for Basic
Research (grant #16-37-00416).

A Appendix. ChronosServer Queries

Max U-wind speed (Sect. 5.3):

Calculate wind speed (Sect. 5.4):

Alter chunk shape to 10�10�8 (Sect. 5.5):

B Appendix. SciDB Queries

Initial SciDB array for U-wind speed:

Max U-wind speed (Sect. 5.3):
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Calculate wind speed (Sect. 5.4):

Alter chunk shape to 10�10�8 (Sect. 5.5):

According to the answer of SciDB developers on their forum (question posted by the
author of this paper in August 2016), above query is currently the fastest way to alter
chunk size in SciDB: http://forum.paradigm4.com/t/fastest-way-to-alter-chunk-size/.
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Abstract. Non-stationary dynamics and structure of stratified and homoge-
neous fluid flows around a plate and a wedge were studied on basis of the
fundamental equations set using methods of laboratory and numerical modeling.
Fields of various physical variables and their gradients were visualized in a wide
range of the problem parameters. Eigen temporal and spatial scales of large
(vortices, internal waves, wake) and fine flow components were defined. The
same system of equations and numerical algorithm were used for the whole
range of the parameters under consideration. The computation results are in a
good agreement with the data of laboratory experiments.

Keywords: Fundamental system � Laboratory experiment � High-resolution
computations � Flow around obstacles

1 Introduction

Since the pioneering papers by d’Alembert [1, 2] and Euler [3, 4] calculations of flow
patterns around obstacles with evaluation of forces, acting on their surfaces, occupy a
leading position in the theoretical and experimental fluid mechanics. Stability of the
interest to the problem is supported by its fundamental content and complexity, as well
as by diversity and importance of its practical applications. A particular attention is paid
to calculation of flow around obstacles with a rather simple shape, e.g. plate, cylinder,
sphere, etc., which symmetry is used for simplification of the governing equations [5].

Due to the complexity of analysis of the problem the traditional system of conti-
nuity and Navier-Stokes equations in the homogeneous fluid approximation is replaced
by various model systems, among which the boundary layer and turbulence theories are
the most widely used. However, new systems are characterized by their own sym-
metries not coinciding with these of the initial system of equations derived on basis of
the general physical principles [6]. Accordingly, the physical meaning of the quantities
denoted by the same symbols and the nature of their relations are changed in new sets.
Such transformations make it difficult to verify experimentally the results and compare
different mathematical models to each other.
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The techniques of experimental and theoretical studies of fluid flows conducted at
the Laboratory of Fluid Mechanics IPMech RAS are based on the fundamental system
including equations of state and transport of substance, momentum and energy for
inhomogeneous fluids [5].

In the environment, i.e. the Earth’s hydrosphere and atmosphere, and industrial
devices, fluid density, as a rule, is not constant due to inhomogeneity of either soluble
substances or suspended particles concentration or temperature and pressure distribu-
tions. Under the action of buoyancy forces fluid particles with different density move
vertically and form a stable continuous stratification which is characterized by buoy-
ancy scale, K ¼ d ln q=dzj j�1, frequency, N ¼ ffiffiffiffiffiffiffiffiffi

g=K
p

, and period, Tb ¼ 2p=N, which
are supposed to be constant in space and can vary from a several seconds in laboratory
conditions and up to ten minutes in the Earth’s atmosphere and hydrosphere [7].

In the present paper we study numerically and experimentally flow patterns of a
continuously stratified water solution of the common salt NaCl around 2D obstacles
with aspect ratio of about 20. Two kinds of obstacles were examined including rect-
angular plates with different sizes and a wedge, which have been objects of thorough
studies for the last century [8–10]. Main attention was paid to study the flow formation
and visualization of a spatial structure of different physical variables field in a wide
range of the flow condition.

2 Governing Equations, Basic Scales and Simulation
Conditions

Mathematical modeling of the problem is based on the fundamental system of equation
for multicomponent inhomogeneous incompressible fluid in the Boussinesq approxi-
mation [5] taking into account the buoyancy and diffusion effects of stratified com-
ponents. In the study of slow, as compared to the speed of sound, flows of fluids
characterized by high thermal conductivity, one can account in calculations only for
variations in density associated with concentration of the stratified component
neglecting temperature variations. Thus, the governing equations take the following
form [8, 10]

q ¼ q00 exp �z=Kð Þþ sð Þ; div v ¼ 0;

@v
@t

þ vrð Þv ¼ � 1
q00

rPþ mDv� s � g; @s
@t

þ v � rs ¼ jSDsþ vz
K
:

ð1Þ

Here, s is the salinity perturbation including the salt compression ratio, v ¼ (vx; vy; vzÞ
is the vector of the induced velocity, P is the pressure except for the hydrostatic one,
m ¼ 10�2 cm2=s and jS ¼ 1:41 � 10�5 cm2=s are the kinematic viscosity and salt
diffusion coefficients, t is time, r and D are the Hamilton and Laplace operators
respectively.

The proven solvability of the two-dimensional fluid mechanics equations enables
calculating flows around obstacles for both strongly (K ¼ 9:8 m, N ¼ 1 s�1,
Tb ¼ 6:28 s) and weakly (K ¼ 24 km, N ¼ 0:02 s�1, Tb ¼ 5:2 min) stratified fluids,
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and, as well, potentially (K ¼ 108 km, N ¼ 10�5 s�1, Tb ¼ 7:3 days) and actually
homogeneous media (K ¼ 1, N ¼ 0 s�1, Tb ¼ 1). In the case of potentially
homogeneous fluid, density variations are so small that cannot be registered by existing
technical instruments but the original mathematical formulation (1) is retained. In the
case of actually homogeneous fluid, the fundamental system of equations is degener-
ated on the singular components [7].

The experiments and calculations were carried out in two stages. Initially, an
obstacle with impermeable boundaries is submerged with minimum disturbances into a
quiescent stratified environment. Physically reasonable initial and boundary conditions
in the associated coordinate system are no-slip and no-flux on the surface of the
obstacle for velocity components and total salinity respectively, and vanishing of all
perturbations at infinity.

Diffusion-induced flow is formed due to interruption of the molecular transport of
the stratifying agent on the obstacle [8]. The calculated flow is then taken as initial
condition of the problem

vjt� 0¼ v1 x; zð Þ ; sjt� 0¼ s1 x; zð Þ; Pjt� 0¼ P1 x; zð Þ ; vxjR¼ vzjR¼ 0;
@s
@n

� ���
R
¼ 1

K
@z
@n ; vxjx;z!1¼ U; vzjx; z!1¼ 0;

ð2Þ

where, U is the uniform free stream velocity at infinity, n is external normal unit vector
to the surface, R, of an obstacle which can be either a plate or a wedge with length, L,
and height, h, or, 2h.

The system of equations and the boundary conditions (1)–(2) are characterized by a
number of parameters, which contain length K; L; hð Þ or time Tb; TL

U ¼ L=U
� �

scales
and parameters of the body motion or dissipative coefficients.

Large dynamic scales, which are internal wave length, k ¼ UTb, and viscous wave

scale, Km ¼ ffiffiffiffiffi
gm3

p �
N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K dmN
� �23

q
, characterize the attached internal wave fields struc-

ture [8, 10].
The flow fine structure is characterized by universal microscales, dmN ¼ ffiffiffiffiffiffiffiffi

m=N
p

,

djSN ¼ ffiffiffiffiffiffiffiffiffiffiffi
jS=N

p
, defined by the dissipative coefficients and buoyancy frequency, which

are analogues of the Stokes scale on an oscillating surface, dmx ¼ ffiffiffiffiffiffiffiffi
m=x

p
[5]. Another

couple of parameters such as Prandtl’s and Peclet’s scales are determined by the dis-
sipative coefficients and velocity of the body motion, dmU ¼ m=U and djSU ¼ jS=U [7, 8].

Relations of the basic length scales produce dimensionless parameters such as
Reynolds, Re ¼ L

�
dmU ¼ UL=m, internal Froude, Fr ¼ k=2pL ¼ U=NL, Péclet,

Pe ¼ L=djSU ¼ UL=jS, sharpness factor, np ¼ L=h or fullness of form, nS ¼ S=Lh,
where S is the cross-sectional area of an obstacle, and, as well, specific relations for a
stratified medium. The additional dimensionless parameters includes length scales
ratio, C ¼ K=L, which is an analogue of the reverse Atwood number At�1 ¼
q1 þ q2ð Þ= q1 � q2ð Þ for a continuously stratified fluid.

Such a variety of length scales with their significant differences in values indicates
complexity of internal structure even of such a slow flow generated by small buoyancy
forces, which arise due to the spatial non-uniformity of molecular flux of the stratifying
agent.
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The large length scales prescribe size selection for observation or calculation
domains, which should contain all the structural components studied, such as upstream
perturbations, downstream wake, internal waves, vortices, while the microscales
determine grid resolution and time step. At low velocities of the body motion, the
Stokes scale is a critical one, while at high velocities the Prandtl’s scale is dominant.

3 Laboratory Modeling of Flows Around a Plate

Experiments were carried out on the stands “Laboratory mobile pool” (LPB) and
“Experimental stand for modeling of surface manifestations of underwater processes”
(ESP) which belong to the Unique research facility “Hydrophysical complex for
modeling of hydrodynamic processes in the environment and their impact on the
underwater technical facilities, as well as the contaminant transfer in the ocean and
atmosphere (URF “HPhC IPMech RAS”)” [11]. The stands include transparent tanks
with windows made of optical glass which allows using high-resolution optical
observation devices such as the schlieren instruments IAB-451 and IAB-458. Models
were fixed on transparent knives to the towing carriage, which moved along the guide
rails mounted above the tank. Optical control of buoyancy profile and conductivity
probe measurement of buoyancy frequency were carried out before starting the
experiment. The following experiment was conducted after decay of all perturbations,
which were registered by contact and optical instruments.

Scale of the phenomena under study was limited to the size of the viewing area of
the schlieren instrument, which had diameter of 23 cm in these experiments. The
spatial resolution, limited by the optical characteristics of the instrument itself and the
recording equipment, which is being improved constantly with the development of
computer technology, did not exceed 0.05 cm in these experiments. The classical
“Vertical narrow slit-Foucault knife” and “Vertical slit-thread” techniques were used
for flow visualization. In these methods, colour and brightness variations of a flow
image are defined by value of the horizontal component of refraction index gradient
[10, 11]. Refraction index of the sodium chloride water solutions is proportional to
density, so schlieren images present patterns of the horizontal component of fluid
density gradient.

Technical capabilities of the LPB and ESP stands enable visualizing both the main
large-scale components of flows around obstacles, including upstream perturbations,
downstream wakes, vortices, internal waves, and the fine structure elements such as
high-gradient interfaces and filament in the both strongly and weakly stratified fluids.

Contours of phase surfaces of the upstream perturbations and attached internal
waves in Fig. 1 are quite adequately described by the existing analytical and numerical
models, which take into account geometry and velocity of body movement [8, 10].

Geometry of the high gradient interfaces, forming the environment fine structure, is
very diverse and depends on the shape and velocity of the body movement and the
stratification parameters, as well.

At small velocities of the body movement, sharp interfaces outline the density
wake. These envelopes did not contact with the body at the poles but touch it inside the
rear part (Fig. 1a). With increase in the plate velocity, the envelopes break down into
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filaments coexisting with internal waves in the central part of the downstream wake
(Fig. 1b). With a further increase in velocity of the body movement shapes of the
filaments are changed becoming similar to the forms of the phase surfaces of internal
waves over a wide barrier, which generates waves with large amplitudes (Fig. 1c).

Another type of the fine structure was observed in the wake past a thin horizontal
plate. Short filaments, forming a transverse structure (Fig. 1d), are well expressed here.
With increase in velocity of the plate movement the filaments are lengthened and fill
each compact vortex of the downstream wake, which is covered with its own high
gradient envelope. With a further increase in the velocity the whole flow pattern takes a
vortex structure (Fig. 1e) requiring for its resolution more precise instruments and high
speed sensors.

4 Method for Numerical Simulation of Flow Around
Obstacles

Numerical solution of the system (1) with the boundary conditions (2) was constructed
using our own solver stratifiedFoam developed within the frame of the open source
computational package OpenFOAM based on the finite volume method. The package,
which was originally developed for numerical calculation of 3D problems in fluid
mechanics, can effectively simulate 2D problems, as well, that is technically done by
selection of only a single computational cell in the third dimension and specification of
‘empty’ boundary conditions on the front and back boundaries of the calculation
domain.

a)  b) c)

d)    e)

Fig. 1. Schlieren images of the flow pattern around a plate: (a–c) – placed vertically, U ¼
0:03; 0:18; 0:29 cm=s (h = 2.5 cm, Tb ¼ 12:5 s); (d, e) – placed horizontallyU ¼ 2:3; 4:9 cm=s
(L = 2.5 cm, Tb ¼ 7:5 s).
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In order to account for the stratification and diffusion effects, the standard icoFoam
solver for unsteady Navier–Stokes equations in homogeneous viscous fluid was sup-
plemented with new variables, including density q and salinity perturbation s, and
corresponding equations for their calculation. We also added new auxiliary parameters
such as buoyancy frequency and scale, N; K, diffusion coefficient, jS, acceleration due
to gravity, g, and others. The Navier–Stokes equation for vertical velocity component
and the diffusion equation were supplemented with the terms characterizing effects of
buoyancy force and background stratification [12].

To interpolate the convective terms a limited TVD-scheme was used, which ensures
minimal numerical diffusion and absence of solution oscillations. For discretization of
the time derivative a second-order implicit asymmetric three-point scheme with
backward differencing was used, which ensures a good time resolution of the physical
process. For calculating the diffusion terms, based on the Gauss theorem within
orthogonal grid sections, a surface normal gradient was evaluated at a cell face using a
second order normal-to-face interpolation of the vector connecting centers of two
neighboring cells. In non-orthogonal grid regions, an iterative procedure with a user
specified number of cycles was used for non-orthogonal error correction due to a grid
skewness.

Meshing of the computational domain was performed using the open integrable
platform SALOME, which allows creating, editing, importing, and exporting CAD
(Computer Aided Design) models, as well as building a grid for them, using different
algorithms and connecting physical parameters with geometry of the problem under
study. For computational grid construction, the standard OpenFOAM utilities, such as
‘blockMesh’, ‘topoSet’, and ‘refineMesh’, were used, as well. The main OpenFOAM
C++ class ‘polyMesh’, which handles a grid, is constructed using the minimum amount
of information necessary to determine the partition elements and parameters such as
vertices, edges, faces, cells, blocks, external boundaries, etc. By choosing an appro-
priate type of computational grid, i.e. structured or unstructured, orthogonal or
non-orthogonal, consistent with boundaries of a domain or inconsistent ones, each of
which normally has its own advantages and disadvantages, one can provide successful
searching for solution of a problem under study. Therefore, methods for grid con-
struction were chosen individually for a particular problem based on values of typical
length scales and geometric complexity of a problem under consideration [13].

An unstructured grid, which consists usually of 2D triangles or 3D tetrahedrons,
can be applied to domains with arbitrary geometry without any restrictions on form and
number of boundaries of a computational domain. Due to a high level of automation, it
is possible to reduce significantly duration of grid reconstruction. However, the main
disadvantage of such a grid is an irregular structure of data, which requires sophisti-
cated methods for numerical solution of problems. Numerical algorithms are compli-
cated, as well, by usage of unstructured grids, requiring additional memory to store data
on connections between grid cells. Furthermore, increase in number of tetrahedral cells,
compared to that of hexahedral type, imposes more requirements for operational
memory resources.

Structured grids matching the external boundaries of a computational domain are
believed to be the most effective ones, which enable implementing computational
algorithms with a higher order accuracy and reducing both computation time and
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amount of RAM required. By creating a curvilinear mesh, one can align grid lines with
boundaries of a domain and, thereby, simplify specification of boundary conditions.
However, a number of additional terms usually appear in governing equations due to a
corresponding coordinate transformation. At the same time, procedures of a regular
grid construction require a certain level of skills, efforts and computing resources, and
can be applied only to a rather simple geometry of computational domain.

If it is impossible to construct a single mesh for a whole computational domain,
grid is divided into a certain number of blocks. Complexity of such an approach
consists in need for implementation of merging the solutions obtained in different
subdomains. However, the technique for construction of a block-structured computa-
tional grid provides wide opportunities for using efficient numerical methods inside
individual blocks with a regular grid structure.

Computation domain for the problems under consideration is a rectangle, which is
divided into seven blocks. An obstacle is located in the central part of the computation
domain, which is a plate or a horizontal wedge with length, L = 10 cm, and thickness,
h = 0.5 cm, or height of the base, h = 2 cm, respectively (Fig. 2).

The procedure for spatial discretization of the problem is parameterized that enables
reducing significantly duration of grid reconstruction when changing parameters of the
problem. The geometry of the computational domain allows constructing a block-
structured hexahedral computational grid with nodes aligned at the block interfaces.
Test computations with different grid resolutions confirm the need for resolving the
smallest micro-scales of the problems, since a relatively coarse grid with total number
of cells, Nc ¼ 5 � 105, gives unstable solution. Thus, numerical simulation of even 2D
problems on continuously stratified fluids flows around impermeable obstacles require
high-performance computing.

Algorithm for discretization of the computational domain involves mesh grading
towards the obstacle (Fig. 3a). Near the body, the aspect ratio of a grid cell is
approximately equal to unity, which has a positive effect on convergence of the solution.
The main disadvantage of this method consists in necessity of cells rearrangement in all
the subdomains at once if a grid is reconstructed, which leads to significant increase in
computation time. In order to improve the quality of the computational domain dis-
cretization the OpenFOAM utilities, such as ‘topoSet’ and ‘refineMesh’, are additionally
used, which enable selecting computational subdomains of interest and locally refining

Fig. 2. Scheme of the computational domain partitioning into blocks.
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them in accordance with prescribed scales and selected directions (Fig. 3b). The min-
imum mesh size of 2:5 � 10�3 cm near impermeable boundaries satisfactorily resolves
the diffusion microscale djSN with a relatively small total number of grid cells of 106

order.
However, partitioning of the grid cells even in a small part of the calculation

domain requires a corresponding decrease in time step that, in turn, leads to an increase
in duration of the computations. An essential disadvantage of additional local parti-
tioning is a significant change in size of the grid cells on the boundary of subdomains
that can affect the calculation results. By checking the constructed computational grid
with the utility ‘checkMesh’ we make sure of its compliance with a set of constraints
associated with the topology of the external boundaries and geometric characteristics of
the grid cells, i.e. aspect ratio, skewness, twisting, non-orthogonality, etc.

Discretization of the boundary conditions (2) was carried out using the standard and
extended utilities of the OpenFOAM package. The boundary condition on the surface
of an obstacle for salinity perturbation gradient, which depends on orientation of the
normal unit vector to the surface, was implemented by forming a non-uniform list of
the field values using the standard, extended and self-elaborated utilities of the package.
‘Empty’ boundary conditions were set on the front and back faces of the computational
domain, which exclude computations of the 2D problem in the third dimension.

To solve the resulting system of linear equations different iterative methods were
used such as conjugate gradient method with PCG preconditioning applied to sym-
metric matrices and biconjugate gradient method with PBiCG preconditioning used for
asymmetric matrices. As preconditioners for symmetric and asymmetric matrices DIC
and DILU procedures were chosen, which are based on simplified procedures of
incomplete Cholesky and LU factorization respectively. For coupling equations for
momentum and mass conservation a steady well-convergent algorithm PISO (Pressure-
Implicit Split-Operator) was used, which works in the most effective way for transient
problems.

The need for a high spatial resolution of the problem results in a quite large number
of computational cells that makes it irrational performing computations on a
single-processor computer. Decomposition of the computational domain for a parallel
run is carried out by a simple geometric decomposition in which the domain is split into
pieces in certain directions with an equal number of computational cells in each block.

 a)  b) 

Fig. 3. The scheme of the computational domain partitioning: (a) – with a linear grid refinement,
(b) – with an additional local partition.
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Such an approach allows setting a high spatial resolution of the computational domain
and studying the problem in a wide range of the basic parameters for a quite reasonable
time. The computations were performed in parallel using computing resources of the
supercomputer “Lomonosov” of the Scientific Research Supercomputer Complex of
MSU (SRCC MSU) and the technological platform UniHUB, which provides direct
access to the Joint Supercomputer Center Cluster of the RAS (JSCC RAS).

The calculations were terminated when the integral characteristics or their statistical
evaluations took values of steady-state regime. The spatial dimensions of the compu-
tational cells were chosen from the condition of adequate resolution of the fine flow
components associated with the stratification and diffusion effects, which impose sig-
nificant restrictions on the minimum spatial step. In high-gradient regions of the flow,
at least several computational cells must fit the minimal linear scale of the problem.
Calculation time step, Dt, is defined by the Courant’s condition, Co ¼ vj jDt=Dr� 1,
where Dr is the minimal size of grid cells and v is the local flow velocity. Additional
control was ensured by comparison of independent calculations for fluids with different
stratification.

5 Calculation Results

5.1 The Structure of Diffusion-Induced Flow on a Motionless Plate

In contrast to the stationary solutions by Prandtl [14], which lose regularity on hori-
zontal surface, the complete solution of the Eq. (1) for transient flow remains finite for
any sloping angle of the surface. A cellular flow structure is kept in patterns of all the
physical variables, but thicknesses of interfaces are specific for each parameter.

The calculated pattern of diffusion-induced flow on the horizontal plate, which
simulates the central section of impermeable obstacle with an arbitrary shape (Fig. 4a),
consists of a layered sequence of symmetrically arranged horizontal vortex cells [13].

Uniformity of the streamline pattern indicates similarity of the velocity profile
along the most length of the plate except for the narrow transition regions around its
edges. Values of fluid velocity and vorticity decrease sharply with distance from the
plate surface.

Even a small deviation from the horizontal position of the plate leads to violation of
the flow symmetry and formation of new circulation systems including ascending and

a) b)  c) 

Fig. 4. The diffusion-induced flows on an obstacle with horizontal boundaries: (a) – calculated
pattern of streamlines around the plate; (b, c) – patterns of density gradient field around the
horizontal disc, calculated numerically and schlieren-visualized in a laboratory tank.
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descending jets along the upper and lower sides of the plate respectively, and a system
of compensating circulating cells, as well [13]. The calculated and observed patterns of
the density gradient fields on the plate and disc are in a good agreement (Fig. 4b and c).

5.2 Diffusion-Induced Flow on a Wedge

An impermeable obstacle immersed in a stably stratified fluid at rest forms a complex
system of flows including the main thin jets along the sloping sides of the obstacle with
the adjacent compensating counterflows [15]. With a distance from the obstacles, the
layered structures are enlarged and the maximum fluid velocity decreases. Pattern of
the horizontal component of salinity gradient shows a multiscale flow structure,
including extended side flows and wavy structures (Fig. 5).

Positive values of a visualized field are coloured green, while negative ones are in
blue. Differences in values of a field between neighboring isolines are the same. The side
boundaries of a wedge-shaped obstacle with length, L = 10 cm, and maximal thickness,
h = 2 cm, can be either straight or curved in form of a concave or convex arc [16].

The additional fine-structure flow components, such as dissipative-gravitational
waves, are formed in form of rosettes around the corner points of the wedge, where
maximum value of the longitudinal component of salinity gradient, @s=@xj jmax¼
4 � 10�2, is observed, while the corresponding value of salinity perturbation s is an
order of 10�5.

Structure of the horizontal component of salinity gradient field depends essentially
on sign of the curvature of the wedge surface, the sharper the edges of the wedge the
more pronounced the visualized beams of strips with alternating signs (Fig. 5a). At the
same time, the maximum values are weakly dependent on curvature of the wedge sides.
For a convex wedge (Fig. 5b) when angle between the base and the side edge is close
to 90° the beam of fine structure elements is widened.

In the pattern of pressure perturbation field there is a deficit pronounced in front of
the tip, manifestation and height of which depends on curvature of the wedge side
(Fig. 6). This deficit zone causes pressure difference which results in self-motion of a
free wedge with neutral buoyancy observe in laboratory experiments.

The initial structure of the medium formed by diffusion-induced flows is changed
dramatically with start of forced motion of a body even with the lowest velocity

a) b)

Fig. 5. Field of the longitudinal component of salinity gradient, @s=@x, around a wedge with
concave (a) and convex (b) side boundaries (L = 10 cm, h = 2 cm, Tb ¼ 6:28 s, s ¼ t=Tb ¼ 16)
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comparable with the typical velocities of the diffusion-induced flow (Fig. 7). Upstream
perturbations, rosettes of transient and extended fields of attached internal waves and
downstream wake past extreme points of the body are formed in a continuously
stratified fluid. Number of the attached internal waves observed, which do not penetrate
into the wake behind the body, increases with time.

Structure of the calculated patterns of flow around a wedge is in an agreement with
the schlieren visualization of refraction coefficient gradient field in a laboratory tank by
“color shadow method” with a horizontal slit and grating for the bodies with other
geometrical forms [11].

5.3 Flow Around a Rectangular Strip

The fundamental system of equations allows calculating a complete flow pattern and
determining forces acting on a moving obstacle with a high degree of accuracy in a
wide range of parameters without additional hypotheses and constants. This allows
tracing a consistent restructuring of the flow due to “inclusion” of new components
such as internal waves at start of motion, non-stationary vortices in the wake past an
obstacle or rolling vortices along its surface (Fig. 8).

For all the velocities of the body motion, the flow field is characterized by a
complicated internal structure. In the flow pattern around motionless body dissipative

a)  b) 

Fig. 6. Fields of pressure perturbation, P, around a wedge with concave (a) and convex (b) side
boundaries (L = 10 cm, h = 2 cm, Tb ¼ 6:28 s, s ¼ t=Tb¼ =16 s = 16).

a) b) 

Fig. 7. Evolution of the horizontal component of salinity gradient perturbation field after start of
motion of a wedge with straight boundaries (L = 10 cm, h = 2 cm, Tb ¼ 6:28 s, U ¼
0:001 cm/s): (a, b) – s ¼ t=Tb ¼ 2; 50.
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gravity waves are manifested at the edges of the strip (Fig. 8a). Around the slowly
moving body a group of attached waves with lengths, k ¼ UTb ¼ 5:2 cm, are formed
at the edges of the plate in opposite phases (Fig. 8b). Then, the main flow components
become vortices, which are formed around the leading edge of the plate and manifested
downstream in the wake (Fig. 8c). With further increase in velocity of the body motion,
the flow pattern becomes more and more non-stationary (Fig. 8d).

Patterns of other fields have even more complicated fine structure. For comparison,
Fig. 9 shows patterns of pressure and density gradients fields, as well as baroclinic
vorticity generation and mechanical energy dissipation rates for both the strongly
stratified and potentially homogeneous fluids.

Complexity of the patterns of the pressure and density gradients fields shown in
Fig. 9 is attributable to the properties of differential operators generating two groups of
spots for each vortex core, which correspond to the regions of perturbation growth and
attenuation respectively. At the same time, advantage of studying these patterns con-
sists in a more complete visualization of the structural details, which makes it possible
to identify small-scale elements against the background of larger ones.

The transverse dimensions of the flow components, which are determined by the
values of kinetic coefficients in the given mathematical formulation, are minimal in the
patterns of the density gradient fields. The pressure gradient fields are generally
smooth, but close to the leading edge there are large variations due to the simultaneity
of generation of the both large (internal waves, vortices) and fine flow components
(Fig. 9a, b).

In the pattern of the horizontal component of pressure gradient, @P=@x, (Fig. 9a) a
sequence of spots with different signs is manifested like in the vertical component of
velocity field in Fig. 8d. At the time distribution of the vertical component of pressure
gradient, @P=@z , shown in Fig. 9b, demonstrates a more rarefied set of vertically
oriented spots with different colours. Here, the vortices are well resolved and, in par-
ticular, there are ten cores above the plate, as it is seen from the patterns in Fig. 9, which
is greater by one compared that to the case of the horizontal component of velocity field.

 a)  b) 

 c)  d)

Fig. 8. Field of the vertical component of velocity around the plate (N ¼ 1:2 s�1, L = 10 cm,
h = 0.5 cm): (a) – diffusion-induced flow for U ¼ 0; (b–d) – U ¼ 1:0; 5:0; 80 cm=s,
Re ¼ 103; 5 � 103; 8 � 104, Fr ¼ U=NLx ¼ 0:1; 0:5; 6:7, k ¼ UTb ¼ 5:2; 26; 418 cm.
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Even a more complicate flow pattern is resolved near the leading edge. In the weakly
stratified fluid, the perturbations degenerate more slowly as compared to that in the
strongly stratified medium and scales of the vortex structures are noticeably smaller.

The patterns of the components of density gradient are presented in Fig. 9c, d. In the
horizontal component of the density gradient field, thin layers with the both signs are
localized on the vortex shells, which are combined into compact spots behind the body.
In the weakly stratified fluid, the structures of the vertical component of density gradient
are oriented mostly horizontally and form its own system of spiral curls typical for
vortex elements. The local patterns of the physical variables in Fig. 9c, d are substan-
tially different, locations of the centers of the regions, which they outline, not coinciding.

It should be specially noted, the differences in the geometry and fine structure of the
pressure and density gradients fields, which determine the spatial and temporal vari-
ations of such a dynamic parameter as vorticity generation rate of the flow and, hence,
change in value of the vorticity itself.

Stratified fluid, 11.2 sN −= Potentially homogeneous fluid, 5 110 sN − −=

a)

b)

c)

d)

e)

f)

Fig. 9. Calculated patterns of instantaneous fields near the plate (L = 10 cm, h = 0.5 cm,
U ¼ 80 cm/s) in the stratified (left column N ¼ 1:2 s�1, Fr ¼ 6:7) and potentially homogeneous
fluids (right column N ¼ 10�5 s�1, Fr ¼ 8 � 105): (a, b) – horizontal and vertical components of
pressure gradient, (c, d) – horizontal and vertical components of density gradient, (e) – baroclinic
vorticity generation rate, (f) – mechanical energy dissipation rate.
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Due to the differences in the spatial and temporal scales of the flow components, a
general inhomogeneous distribution of the forces acting on the body, i.e. compression
on the leading edge and stretch at the initial section of the side surface, is here sup-
plemented with large variations in space and time. Further in the pressure field, deficit
zones (side stretching) are expressed due to the passage of centers of large vortices,
which are the main sources of the side surface oscillation leading to development of
such dangerous phenomena as buffeting and flutter. The difference in the fine details of
the pressure gradient fields in the wake of the body is due to the effects of buoyancy
forces, suppressing fluid transfer in the vertical direction, and the fine flow components.

There are two particular flow regions located exactly near the leading and trailing
edges of the plate, where the main generation of vorticity vector, X ¼ rot v , occurs as
a consequence of both the overall reorganization of the velocity field and the baroclinic
effects. Geometry of the density gradients field is complicated as the layered flow
structure is developed downstream from the leading edge. In the weakly stratified fluid,
range of oscillations of the vortices’ size in the wake increases with distance from the
trailing edge when stabilizing buoyancy forces are absent.

Pattern of the streamwise component of the baroclinic vorticity generation rate,
dX=dt ¼ rP�r 1=qð Þ, is presented in Fig. 9e, which is determined by the
non-collinearity of pressure rP and density gradients rq according to the Bjerknes
theorem. This field is the most complex and structured one in flows of inhomogeneous
fluids. There are regions of its generation and dissipation with size of an order of the
plate’s thickness manifested above and below the leading edge and in front of the body
respectively. Further downstream, the structures get thinner, and in addition to the
remaining vortex elements a number of multiple thin zones of vorticity amplification
and decay appear, which are gradually lengthened.

Fine linear structures are predominantly manifested in the wake behind the trailing
edge of the plate, which are oriented mainly in the direction of the flow and deformed
by the large irregularities. In the strongly stratified fluid, the perturbations of the both
signs are expressed along the whole length of the plate, but in the potentially homo-
geneous one they are only in the first quarter. There are regions of vorticity generation
and dissipation manifested in the areas of interaction of the vortices with the free stream
in the wake of the body. The geometry of the baroclinic vorticity generation rate field
explains the formation dynamics of vortex flow fine structure and the mechanism for
splitting of the fields into a set of layered structures observed in the schlieren images of
the wake flows [10, 11].

Field of the mechanical energy dissipation rate, e ¼ 0:5qmð@ti=@xk þ @tk=@xiÞ2,
presented in Fig. 9f, is different from zero in a relatively narrow zone in front of the
body, where the horizontal flow turns flowing the plate, and reaches maximal values in
the vortex structures at the first third of the plate’s length. Regions of dissipation,
observed at the second half of the plate, are larger in the potentially homogeneous fluid,
compared to that for the strongly stratified one. It should be noted a qualitative dif-
ference in geometry of the vorticity generation rate field with its pronounced fine
structures (Fig. 9c) and a relatively smooth distribution of the energy dissipation rate
field (Fig. 9f).

54 Yu.D. Chashechkin et al.



All the instantaneous flow patterns including the vorticity generation fields in Fig. 9
are in a continuous evolution. The variation of the velocity pattern in the kinematic
description is caused by the generation and break-up of new elements, such as vortices
due to the non-synchronized variation of the physical parameters with thermodynamic
nature, in particular, density and pressure gradients.

In the dynamic description, the generation of new elements with their own kine-
matics and spatial and temporal scales is associated with the high order and nonlin-
earity of the fundamental system of equations. Even in the linear approximation, the
complete solutions of this system contain several functions, which can be treated in the
nonlinear models as analogues of the components interacting with each other and
generating new types of disturbances [7].

The pressure perturbation field shows a strong dependence on the vertical dimen-
sion of the obstacle. In the wake past the thick plate, a number of large vortices develop
(Fig. 10, left column), while past the thin plate the transverse streaky structures are
manifested similar to ones observed in the experiments (Fig. 1). A more complete
collection of flow patterns past the plates with different shapes are presented in [8, 17].

6 Conclusion

Based on the open source software 2D numerical simulations of incompressible
stratified (strongly and weakly) and homogeneous (potentially and actually) fluids
flows were performed. The method allows analyzing in a single formulation the
dynamics and fine structure of flow patterns past obstacles in a wide range of strati-
fication and flow parameters.

Transient flow patterns past obstacles were analyzed, and physical mechanisms
were determined, which are responsible for formation of vortices in regions with high
pressure and density gradients near the edges of an obstacle. The calculation results are
in a qualitative agreement with the data from laboratory experiments.

Flow around obstacles is a complex, multiscale, and transient physical process,
which requires additional detailed experimental and theoretical study accounting for the
effects of diffusion, thermal conductivity, and compressibility of the medium with
control of the observability and solvability criteria for all the physical parameters and
structural components of the flows under study.

 a)

 b)

Fig. 10. Patterns of the pressure field around the horizontal plate (L = 10 cm, h = 0.5 cm,
U ¼ 80 cm/s): thick (h = 0.5 cm, left) and thin (h = 0.05 cm, right) ones: (a, b) – N ¼ 1:2 s�1

and N ¼ 0.
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Abstract. A parallel implementation of the ensemble optimal interpolation
(EnOI) data assimilation method for the high resolution general circulation
ocean model is presented. The data assimilation algorithm is formulated as a
service block of the Compact Modeling Framework (CMF 3.0) developed for
providing the software environment for stand-alone and coupled models of the
Global geophysical fluids. In CMF 3.0 the direct MPI approach is replaced by
the PGAS communication paradigm implemented in the third-party Global
Arrays (GA) toolkit, and multiple coupler functions are encapsulated in the set
of simultaneously working parallel services. Performance tests for data assim-
ilation system have been carried out on the Lomonosov supercomputer.

Keywords: Earth system modeling � Data assimilation � Ensemble optimal
interpolation � Coupler

1 Introduction

The up-to-date ocean models with ultra-high spatial resolution and the assimilation of
continuously incoming observations allow to implement an operational forecast of
three-dimensional state of the marine environment, similar to the meteorological
weather forecasts. As well ocean modeling is an important component in the climate
change researches and monitoring of the environmental state.

The solution of this problem is impossible without using of supercomputing
technology due to the large amount of receiving and processing information. The
amount of resources required to perform the quick calculations in high spatial reso-
lution models today estimated 102–103 processing cores for short-term forecasts, and
104–105 - for the medium and long term forecasts. Satellite observations of surface
temperature and surface topography with a resolution of 1 km (e.g. NASA AQUA,
AVISO project, etc.) are already available. This conforms to a flow of gigabytes of
observation data per day. It is important to assimilate the information correctly and
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quickly, especially when the spatial resolution of global ocean models will be about
1 km. The issue of computational efficiency becomes especially critical when the
model and the assimilation system functions in the operational mode for the
medium-term and short-term forecasts construction. Output delay of modern satellite
observations is about a couple of hours, a high spatial resolution of ocean models can
simulate the actions of eddy structures and the assimilation of satellite observations
serves theirs timely detection, that, consequently allows to predict dangerous natural
phenomenon such as storms and typhoons. Therefore during the development and
implementation of data assimilation methods you need to pay close attention to the
scalability of using methods and their ability to process large amounts of information.

Currently, there are few data assimilation algorithms, which are used in problems of
weather forecast and in operational oceanology. Used approaches can be divided into
variational (3d-Var, 4d-Var) [1] and dynamic-stochastic (mainly ensemble Kalman
filter - EnKF [2] and ensemble optimum interpolation - EnOI [3]). The main advantage
of assimilation methods based on EnKF and EnOI over variational approach (3d-Var,
4d-Var) is the fact that EnKF and EnOI don’t require the construction of model’s
adjoint operator, that it is often very difficult. The data assimilation based on the
ensemble approach in general can be implemented using a ocean model like a ‘‘black
box’’. Such methods can have efficient parallel realization and quite applicable for
global models, while the 4d-Var method due to the computational complexity today is
not used in any Global ocean model of the high spatial resolution [4].

The purpose of this work is implementation EnOI method as a Data Assimilation
Service (DAS) of framework CMF3.0 to use in models of high spatial resolution on
massive parallel computers with shared memory, replacing the integrated in the ocean
model previously used simple method multivariate optimum interpolation (MVOI) [5].

2 The Compact Computing Platform for Modeling CMF 3.0
and Service DAS

Along with the development of models of individual components of the Earth system,
the role of the instruments organizing their coordinated work (couplers, and the cou-
pling frameworks) becomes more and more important. The coupler architecture
depends on the complexity of the models, on the characteristics of interconnections
between models and on computer environment. Historically the development of cou-
plers follows the development of coupled atmosphere-ocean models. The first systems
combined physical components directly and don’t require additional code. As models
became more complex and segregate in individual programs there is appear a need to
separate one service component - coupler, which was engaged in data interpolation
between different model grids of components. At the first stage it was a simple set of
procedures to sending fields through the file system, and then was segregated in a
separate sequential program, the analogue of the central hub for communication
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between all models. As the increasing resolution of model’s grids the sequential
coupler’s algorithms became ineffective, it was completely replaced by entirely parallel
architecture.

The compact computing platform for modeling CMF is a framework for the cou-
pled modeling of the Earth system and its high-resolution components on parallel
computing systems. By using abstract interfaces the main program and the coupler
become completely independent from the number of connectable models - to work in
coupling system it is enough for user to create a derived class of his component [6].

Version CMF 2.0 of compact framework for modeling proved its aptness for
creating high-resolution models, it had several directions for improvement. Firstly,
although pure MPI-based messaging is quite fast, it needs explicit work with sending
and receiving buffers. Additionally, development of nested regional sea submodels
becomes quite difficult using only MPI-routines. CMF 2.0 test results showed that we
can easily sacrifice some performance and choose better (but perhaps less efficient)
abstraction to simplify messaging routines.

2.1 PGAS-Communicator

In version CMF 3.0 [7] it is used a Global Arrays library (GA) [8], which realizes the
paradigm PGAS (Partitional Global Adress Space). The library gives you access to the
global index of the array as if it is all available in the local memory.

CMF 3.0 contains class Communicator that encapsulates the logic of work with the
library and provides API for put/get operations in different component’s parts of global
data. It turned out that this approach allows not only simplifies the interaction of nested
components, but also provides a convenient replacement of the data exchange system
based on a direct MPI-approach between components and coupler.

As a result, all exchanges between parts of the system are implemented using class
Communicator. It contains a hash-table to store all the information about arrays,
including their status and meta-data.

2.2 The New Architecture of Coupling Model

As the complexity of the coupled system grows, it is need more convenient way of the
components combining. Originally appeared to web applications SOA (Service Ori-
ented Architecture) provides a good foundation for the solution of this problem.

In the CMF 3.0 all models send their requests to common queue (Fig. 1). Service
components receive from this queue only messages that can be processed, get the data
from a virtual global arrays and perform required actions. Architecture allows mini-
mizing the dependencies between physical and service components and make devel-
opment easier. Moreover, since all services inherit a general base class Service, the
addition of a new service is easy. Now CMF 3.0 includes the following independent
parallel services: CPL (Coupler service for operations of data interpolation in transit
between the model components on different grids), IOD (Input/Output Data service to
work with files), DAS (data assimilation service).
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In the CMF 3.0 was implemented service of data assimilation DAS for providing
the system of data assimilation work based on EnOI method (Sect. 3).

2.3 Coupler: Interpolation

Despite the fact that the logic of coupler interpolation subroutines remained the same,
PGAS abstraction allowed greatly simplify the code. Now all the data, necessary to
coupler process, are obtained from neighbors using the Communicator class. Disad-
vantage of this approach is the decreasing of performance associated with the inability
to use deferred MPI-operation and the availability of the library’s GA own costs.

To test the system used time estimate, including sending a request in queue,
sending the data, interpolation and pushing data into final destination arrays, i.e.
simulates the performance of all system. The tests were conducted on the Lomonosov
supercomputer.

Graph shows practically linear scalability (Fig. 2) [7]. Finally, the absolute values
*2–3 s on coupling (on 20–50 CPL cores) per modeling day satisfy the practical
purposes of the experiments.

Fig. 1. DAS (Data Assimilation Service) in the architecture of the compact framework CMF
3.0. There are three components in this example: ocean model (OCN), ice model (ICE),
atmosphere model (ATM). They send requests to the common message queue, where they are
retrieved by coupler (CPL), data assimilation (DAS), input and output data (IOD) services. The
data itself is transferred through the mechanism of global arrays, which are also used for
interprocessor communication in the components and in the DAS service.
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3 Description of DAS Service

3.1 EnOI Method: Basic Equations

Basic equations for methods EnOI and EnKF [2, 3] are follows:

xa ¼ xb þKðyobs � HxbÞ ð1Þ

K = BHT(HBHT + R)�1 ð2Þ

Where xb, xa are the model solution vectors of size n before and after data assimilation
(background and analysis, correspondent), where n - the number of grid points, which
has the order of 108 (for the ocean model with a resolution of 0.1 degrees); yobs - the
vector of size m of observations, where m - number of observation points (*104); K (n
* m) is Kalman gain matrix; R (m * m) is the variance matrix of the observational error
(it is diagonal if the data at observation points do not depend on each other), Hxb is the
projection of the background vector onto the observational space by the observational
operator H; Matrix B is the co-variance matrix of the model errors. Its rigorous defi-
nition usually is not given, but instead describes the method of its calculation.

In the method of multivariate optimum interpolation (MVOI) the elements of the
matrix B defined by function depending on the distance between grid points. The main
idea of the EnKF (and EnOI) method is that the covariance matrix B is obtained from
the ensemble of the state vectors of the model (sample).

Fig. 2. Operating time of the test for CMF 3.0 in seconds depending on the size (cores number)
of the coupler’s communicator (CPL service) on the Lomonosov supercomputer [7]. The X axis -
number of cores used by the CPL service, and on the Y - time, spending on the interpolation
operation performed by this service.
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Let

Xen
b ¼ x1b. . .x

en
b

� �� xb. . .xb½ � ð3Þ

is matrix of size n*en, where en - the number of ensemble elements (usually no more
than 100). Matrix columns are equal to the model state vectors (composed from 3d
arrays of temperature and salinity and 2d array of surface level) of the ensemble
members minus the ensemble average. Then the covariance matrix of the model B,
based on this sample:

Ben ¼ 1
en� 1

Xen
b ðXen

b ÞT ð4Þ

In this work it is used the computationally low-cost method of ensemble optimum
interpolation (EnOI), which is a simplification of the EnKF method. In EnOI method
elements of the ensemble are the states of the model, obtained and stored in the
calculation process in the previous few years (spin-up run). Technically implemented
the ability of using more complex approach as this done, for example, in the TOPAZ
project [9], when the model starts from a hundred (number of elements of the
ensemble) different initial conditions, then on the basis of a hundred forecasts the
covariance matrix B is build. It is easy to see that computational cost of this approach is
proportional to the number of elements in the ensemble, but these calculations can be
performed parallel as one hundred model predictions are made independently.

3.2 Features of the Parallel Implementation of EnOI Method

As well as any existing service of the software system CMF 3.0, data assimilation is
performed on separate computing cores. This allows to structure the system
co-simulation better, in order to make, each software component solve its own prob-
lem. At the same time the model of the ocean does not take part in the assimilation.
Only, results of the model calculation in the form of vector elements of the ensemble
are used. On their basis the covariance matrix of model B is calculated, to be more
accurate, a matrix (HBHT + R), which has a smaller dimension m * m. Data from the
ocean model is submitted to the service (usually once a modeling day) without the
request to the file system, which is important because the size of three-dimensional
state arrays for the ocean model with 0.1° resolution requires several gigabytes.

Problems andCauses of AllocationDataAssimilation into a Separate Service DAS.

1. Observational data (satellite or drifters data) almost always is distributed on the
estimated area of the ocean very irregularly, so if you use the same two-dimensional
processor decomposition of the ocean for them, the load on the computing cores
will also be distributed unevenly.

2. Covariance matrices occupy a significant amount of memory, and it is better to keep
them on the computing cores separately from model components.

3. DAS service can be shared between different components and this corresponds to
the concept where each software component solves its own problem.

62 M. Kaurkin et al.



General Algorithm of EnOI Assimilation.

• Constructing a new 1d domain decomposition where each sub-domain is assigned
to some processor of DAS (Fig. 3). The sub-domains are uniform according to
observation data and are not uniform according number of grid nodes. Sub-domains
have the form of horizontal stripes.

• Each ‘‘stripe’’ gets only its data of observation (xb) and only its part of the global
model state vector.

• Projection of model state vector in the observation points using bilinear interpo-
lation is calculated for each ‘‘stripe’’ (Hxb).

• Calculating the vector of observations innovation (yobs-Hxb) locally for each ‘‘strip’’
also.

• Asynchronous reading the ensemble of states (if necessary) in matrix Xb (dis-
tributing across DAS cores) building the projection of state vectors in the obser-
vation point Hxb.

• In order to invert the matrix (HBHT + R) its singular decomposition is used, it is
calculated using a parallel procedure pdegsvd from ScaLAPACK Library (Intel
MKL package).

• The array xa is sent back to the ocean component and used as an initial condition for
the further integration of the ocean model.

Remarks
Matrix H for bilinear interpolation is constructed for each DAS service call, as long as
the observational data is available each time in new points. As a result, every time a
new domain decomposition is built.

In order to implement the algorithm described above, the function calls from the
package BLAS and LAPACK (using Intel MKL) through the API Global Arrays
library are used. They have simplified the programming of interprocessor communi-
cations greatly.

Fig. 3. A two-dimensional field decomposition used in the INMIO ocean model and a
one-dimensional decomposition used in the DAS service. The dots show example of observation
data.
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3.3 Service DAS Testing

Due to the effective implementation of the EnOI method as a parallel software service
DAS, the solution of the data assimilation problem is scaled almost linearly (Fig. 4).
So, the assimilation of 104 observation points of satellite data on the 16 processor cores
takes about 20 s instead of 5 min on a single core, which would be comparable to the
time spent on daily ocean models forecast for 200 cores, which is unacceptable.

Fig. 4. Scalability of EnOI method in the context of the DAS service at the assimilation of 104

points on the Lomonosov supercomputer.

Fig. 5. The Sea Surface Temperature (SST) on 2008-06-29 in the North Atlantic region is
calculated using INMIO ocean model in the basic experiment, and the experiment with the data
assimilation by EnOI method. Circles show the location of ARGO drifters received data about
profiles of temperature and salinity. The size of circles is proportional to the difference between
the temperature of drifters and a modeling temperature. A cross mark in the circle means that the
modeling temperature is lower than a drifter temperature, a point mark in a circle - the model
temperature is higher.
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As an example of the data assimilation sea surface temperature (SST) in the INMIO
model [10] for the North Atlantic is shown (Fig. 5) without and with data assimilation
using DAS service [11]. By analyzing the size of circles, which are proportional to the
difference between the modeling SST and measurement data, it is possible to make a
conclusion about the effectiveness of assimilation. A big difference of these circles is
very well noticeable near the equator and the North Atlantic current, i.e. in those areas
where the dynamics of the ocean is significant expressed. The assimilation corrects the
model temperature in the right direction, in accordance with observation data.

4 Conclusion

This work presents the implementation of data assimilation algorithm based on EnOI
method as a service block of the original Compact Modeling Framework developed for
providing the software environment for the high-resolution stand-alone and coupled
models of the Global geophysical fluids.

CMF 3.0 utilizes Service Oriented Architecture design which allows one to divide
coupler responsibilities into separate services and greatly simplify the entire commu-
nication system through the use of PGAS abstraction. To test the performance of data
assimilation system and coupler were conducted tests on the Lomonosov supercom-
puter, which confirmed the numerical efficiency of the proposed numerical software.

The study was performed by a Grant #14-37-00053 from the Russian Science
Foundation in Hydrometcentre of Russia.
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Abstract. Direct Numerical Simulation, i.e., numerical integration of the
unsteady 3D Navier-Stokes equations is the most rigorous approach to turbu-
lence simulation, which ensures an accurate prediction of characteristics of
turbulent flows of any level of complexity. However its application to complex
real-life flows, e.g. the flows past airplanes, cars, etc., demands huge compu-
tational resources and, even according to optimistic assessments of the rate of
growth of computer power, will become possible only in the end of the current
century. Nonetheless, already today the most powerful supercomputers allow
DNS of some flows of high practical importance. The present paper demon-
strates this by an example of DNS of high Reynolds number transonic flow over
a circular cylinder with axisymmetric bump. The flow features shock wave
formation and its interaction with a turbulent boundary layer on the cylinder
surface, the phenomenon being of great importance for the aerodynamic design
of the commercial airplanes.

Keywords: Direct Numerical Simulation � Turbulence � Massively parallel
computations � Shock-boundary layer interaction

1 Introduction

Turbulent flows present the most common form of motion of gases and liquids, and a
reliable prediction of their characteristics is one of the highest priorities for aeronautics
and many other industries (ground transportation, ship-building, turbo-machinery,
chemical technology, ecology, etc.). The most rigorous (based on the “first principles”)
approach to solving this problem is the so called Direct Numerical Simulation (DNS),
i.e., numerical integration of the unsteady 3D Navier-Stokes equations which ensures
an adequate representation of any flows within the continuum medium assumption.
Hence, in principle, DNS provides a high fidelity tool for prediction of turbulent flows
of any level of complexity. However its application to computation of real-life flows
demands huge computational resources. This is caused by an extremely wide range of
the time and spatial scales of turbulence, which should be accurately resolved in the
framework of the DNS approach at high Reynolds numbers typical of aerodynamic
flows. As a result, even according to rather optimistic assessments of the rate of growth
of the computer power, DNS of the flow past a commercial airplane or a car will
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become possible only in the second half of the current century [1]. Nonetheless, already
today the most powerful of existing supercomputers allow performing DNS of some
flows of high practical importance.

In the present paper such a possibility is demonstrated by an example of DNS of the
transonic flow past a circular cylinder with an axisymmetric bump studied in the
experiments of Bachalo and Johnson [2] (B-J flow hereafter). This flow is characterized
by formation of a shock wave which interacts with the turbulent boundary layer on the
bump surface resulting in its separation and subsequent reattachment of the separated
shear layer to the cylinder surface. This phenomenon is typical of the cruise flight of the
commercial airliners (Mach number of the flow M = 0.7 – 0.9) and is directly related
to a so called transonic buffet, i.e., loss of stability of the flow past an airliner’s wing
and onset of intensive self-sustaining oscillations of the flow, which, in turn, may cause
resonating loads on the wing leading to its destruction. Hence elucidation of the
mechanism of the Shock-Boundary Layer Interaction and an accurate prediction of
characteristics of this phenomenon, which is only possible using by DNS, are not only
of great physical interest but also of significant practical value.

The DNS performed in the present study reproduces all the conditions of the
experiments [2], which were conducted in the wind-tunnel of the NASA Ames
Research Center. It has been carried out on two supercomputers. The first one is the
Mira cluster (IBM Blue Gene/Q system) of the Argonne National Laboratory, USA (6th

place in the Top500 List, June 2016). It has 49,152 Power PC A2 nodes (1.6 GHz)
with 16 four-thread cores each and the total shared RAM of 16 GB per node. The
second supercomputer is the cluster Tornado of the St.-Petersburg Polytechnic
University (the 159th place in the List). It has 612 nodes (Intel Xeon E5-2697v3 14C
2.6 GHz), each having 28 cores and the shared RAM of 64 GB per node. On both
clusters, simulations were performed with the use of a massively parallel in-house CFD
code Numerical Turbulence Simulation (NTS code).

The paper is organized as follows. Section 2 provides a brief description of the
NTS code, Sect. 3 presents results of the computations illustrating efficiency of the
code performance on both computers, and Sect. 4 discusses some results of the DNS of
the considered flow and presents their comparison with the experimental data [2].

2 NTS Code

This is a finite volume CFD code accepting structured multi-block overlapping grids of
Chimera type. It is aimed at computing turbulent flows and ensures a possibility of
simulating both incompressible and compressible flows in a wide range ofMach number.
Approaches to turbulence representation implemented in the code include the Reynolds
Averaged Navier-Stokes equation (RANS), Large Eddy Simulation (LES), hybrid
RANS-LES approaches and DNS. The code has passed through an extensive verification
by comparisons with other well established CFD codes (CFL3D code of NASA, GGNS
and BCFD codes of The Boeing Company, TAU code of DLR, ANSYS-CFX, and
ANSYS-FLUENT), and as of today is considered as one of the most reliable and efficient
research CFD codes for aerodynamic applications. Examples of previous DNS studies
carried out with the use of the NTS code can be found in [3, 4]. Below we briefly dwell

68 K.V. Belyaev et al.



upon the numerics implemented in the code for solution of the compressible Navier-
Stokes equations and on the approaches for massively parallel computations used in the
present study (a more detailed code description can be found in [5]).

2.1 NTS Code Numerics

For DNS of compressible flows considered in the present study, the code performs
numerical integration of the unsteady 3D Navier-Stokes equations with the use of the
implicit flux-difference scheme of Roe’s type [6] based on the MUSCL approach. The
inviscid and viscous components of the fluxes in the governing Navier-Stokes equa-
tions are approximated with the use of centered 4th and 2nd order schemes respectively.
The time-integration is performed with the use of the second order three-layer back-
ward scheme with sub-iterations in pseudo-time. For solution of the resulting set of
discrete equations, the code employs Gauss-Seidel algorithm with relaxation by planes.

2.2 Algorithm Parallelization

For parallel computations of the flow variables in the separate grid-blocks or in groups
of blocks, the NTS code employs a so called hybrid, Message Passing Interface (MPI)/
Open Multi Processing (OpenMP), concept of parallelization. This implies the use of
both MPI library (distributed memory parallelization technology) and OpenMP
instructions (shared memory technology). Other than that, OpenMP-instructions are
used for additional parallelization of computations inside individual blocks. An
important advantage of the hybrid parallelization concept over the use of only MPI or
only OpenMP strategies is its flexibility, i.e., simplicity of adapting to computers with
different architectures.

For enhancement of efficiency of the computations on supercomputers with a large
number of nodes/cores, an additional grid partitioning is employed, which is not dic-
tated by peculiarities of geometry of the flow in question. In order to keep the order of
spatial approximation at the boundaries of the additional (“artificial”) grid-blocks same
as that for the internal grid cells, the neighboring artificial blocks overlap by three cells
(see Fig. 1). The optimal size of the grid-blocks is 50,000–100,000 cells (further
decrease of the block-size results in a degradation of the parallelization efficiency).

Fig. 1. Schematic illustrating overlapping of artificial grid-blocks in NTS code
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It should be noted that parallelization is used not only in the code solver but also in
its input and output routines and that, in order to avoid memory restrictions typical of
many computers, each MPI process carries out I/O to its own separate file.

Finally, all the operations performed at the pre- and post-processing stages are
parallelized as well. This, again, is done to avoid the memory restrictions, since the
memory per node of the existing computers is insufficient not only for storing the
solutions obtained on the grids used in the present study (several billion cells) but even
such grids themselves.

The code is written in FORTRAN-90 and does not use any other libraries but the
standard MPI и OpenMP ones.

3 Parallelization Efficiency

In this section we present results of some preliminary tests carried out for assessing the
efficiency of parallelization of the NTS code on the Mira and Tornado computers.

An objective of the first test was evaluating efficiency of the OpenMP paral-
lelization. For that, measuring was performed of the time required for the single-block
grid computations on one node of the computers with the use of different numbers of
Open MP processes. The size of the block was about 100,000 cells (as mentioned
above, this size is close to the optimal one). Results of the test are shown in Fig. 2. The
figure suggests that the acceleration of the computations with increase of the number of
Open MP processes on the both computers is nearly the same and amounts to about 20
times for 30 OpenMP processes, i.e., about 67% of the ideal.

The second test (Weak-Scaling Parallel Performance Efficiency Test) was aimed at
an assessment of the efficiency of the MPI parallelization in the NTS code. The test
consists in performing computations, in which an increase of the problem size (the
number of grid-blocks) is accompanied by a proportional increase of the number of the

Fig. 2. Acceleration of computations ensured by the NTS code on one node of Mira and
Tornado computers with increase of the number of OpenMP processes
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computational nodes used, i.e., the computations are carried out with a constant
computational load per node. Considering the large difference of the number of nodes
of the Mira and Tornado clusters (49,152 and 612 respectively), the test was carried out
with the use of 512 to 16,384 nodes on Mira and 16 to 512 nodes on Tornado. Results
of this test are presented in Table 1 and in Fig. 3. One can see that even for the
maximum number of nodes (16,384 on Mira and 512 on Tornado), the efficiency of the
MPI parallelization remains not less than about 70%.

To summarize, the results of the preliminary tests suggest that the efficiency of
parallelization of the NTS code on the both computers is rather high. This has made it
possible to carry out DNS of the B-J flow in a reasonable time.

Table 1. Results of Weak-Scaling Parallel Performance Efficiency Test (dependence of relative
time per one iteration on the number of used nodes at a constant computational load per node)

Number of
nodes

Efficiency
(inverse
relative time
per iteration)

Mira Tornado Mira Tornado

512 16 1.0 1.0
1024 32 0.95 0.99
2048 64 0.875 0.98
4096 128 0.82 0.94
8192 256 0.78 0.89
16384 512 0.71 0.82

Fig. 3. Dependence of efficiency of MPI parallelization in the NTS code on the number of
computational nodes and cores (weak scaling test) on Mira (left) and Tornado (right) computers
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4 Description of the Production Simulation and Its Results

4.1 Problem Size, Computational Productivity, and Consumed
Computational Resources

The grid built for DNS of the B-J flow [2] ensures sufficient resolution of the entire
spectrum of the spatial scales of the flow down to the Kolmogorov length-scale at the
experimental flow parameters: the Mach M1 ¼ U1=a1 ¼ 0:875 (U1 is the
free-stream velocity, a1 is the speed of sound) and the Reynolds number Re ¼
q1U1c=l1 ¼ 6:7 � 106 (q1 is the density, l1 is the dynamic viscosity, c is the length
of the bump on the cylinder). The size of the grid is 9602 � 850 � 1024 cells in the
streamwise, radial, and azimuthal directions, respectively. Accounting for the need of
overlapping of the neighboring artificial grid-blocks (see Sect. 2.2), this amounts to 8.7
billion cells total (note that to the authors’ knowledge, these are the first aerodynamic
simulations in Russia carried out on such large grids).

The time-step in the simulation was also defined based on Kolmogorov’s time scale
and was set equal to 1:25 � 10�4 c=U1ð Þ. The full physical time of the simulation
including the time necessary for reaching the statistically developed regime and the
time required for accumulating the data sufficient for reliable statistics amounted to
about 5 c=U1ð Þ. Thus, the total number of time steps in the simulation was equal to
4 � 104. With the number of sub-iterations in pseudo-time at every time step equal to 10,
this amounts to 4 � 105 total iterations. The first half of the simulation (2 � 105 iterations)
was carried out on the Mira cluster and then the simulation was continued on the
Tornado cluster. The computation on Mira was performed with the use of 16,384 nodes
or 262,144 cores, and on Tornado 586 nodes, i.e., 16,408 cores were used.

Measurements conducted in the course of the computations have shown that the
wall-clock time per iteration on the Mira and Tornado machines was equal to 2.4 s and
7.2 s respectively. Hence, for the solution of the considered problem with the use of the
NTS code, the productivity of Tornado per one computational core and per one node
turned out to be, respectively, 5.3 times and 9.3 times higher than those of Mira. As for
the full resources for the problem solution, they turned out to be equal to 61,440,000
core-hours (267 wall-clock hours) on Mira and 11,500,000 core-hours (800 wall-clock
hours) on Tornado.

4.2 Major Physical Results of the Simulation

The value of the performed simulation consists, first of all, in generation of a huge
numerical database which significantly supplements the experimental database [2].
Namely, in the experiment, only some mean and major statistical flow characteristics
(Reynolds stresses) were measured in several flow cross-sections, whereas the per-
formed DNS provides detailed information on the unsteady turbulent structures
allowing computation of the high order turbulence statistics which is needed, e.g., for
development of Reynolds Stress Transport models for the RANS equations.

As an example, Fig. 4 shows a picture of the experimental visualization of the
surface flow obtained with the use of the oil-film technique (so called “oil flow
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pattern”) and a zoomed in fragment of the flow visualization from the DNS in the form
of an instantaneous isosurface of the “swirl” quantity k2 (the second eigenvalue of the
velocity gradient tensor) colored by the value of the streamwise velocity. The figure
clearly demonstrates that the experimental picture, in fact, provides only the location of
the line of the flow separation caused by the shock-boundary layer interaction, whereas
the visualization of the DNS results gives comprehensive information on the extremely
complex structure of turbulence in the boundary layer. This structure is characterized
by the presence of turbulent eddies with a wide range of resolved spatial scales, thus
considerably supplementing the experimental information.

Some other forms of visualization of results of the computations, illustrating wide
possibilities ensured by the DNS in terms of investigation of the internal structure of
turbulence and the nature of the shock-boundary layer interaction in the considered
flow are presented in Figs. 5, 6 and 7.

In particular, Figs. 5 and 6 present instantaneous fields of the vorticity magnitude
on the surface of the B-J body and in the cross-section of the flow located somewhat
upstream of the bump x=c ¼ �0:1ð Þ. Figure 5 visibly illustrates a radical transfor-
mation of the near-wall turbulence along the cylinder and, particularly, reveals a crucial
difference of its structure in the regions of zero, favorable, and adverse pressure gra-
dient, in the separation and reattachment zones, and in the area of the relaxation of the
reattached boundary layer. Figure 6 demonstrates a radical alteration of the turbulent
structures in the boundary layer as the distance to the solid wall is increased.

Finally, Fig. 7 compares a picture of the experimental holographic interferogram in
the vicinity of the bump and an instantaneous field of the magnitude of the pressure
gradient in a meridian plane in this region computed with the use of the DNS. One can
see that the experimental interferogram displays only the wave-pattern of the flow,
whereas the results of the DNS, along with this, give a clear idea of the rich structure of
the flow turbulence. It includes both fine-grained turbulence and relatively large nearly
coherent turbulent eddies in the area of the shock-boundary layer interaction and in the
separation bubble downstream of the shock caused by this interaction.

Fig. 4. A picture of experimental “oil flow pattern” (left) and a zoomed in fragment of the
instantaneous isosurface of swirl in the vicinity of the bump crest colored by streamwise velocity
component (blue arrows show flow direction) (Color figure online)
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The last figure (Fig. 8) is aimed at demonstrating accuracy of the performed DNS.
It shows the longitudinal distributions of the mean (time and azimuthal direction
averaged) skin-friction and pressure coefficients, Cf ¼ 2sw=ðq1U2

1Þ and
CP ¼ 2ðp� p1Þ=ðq1U2

1Þ, predicted by DNS and a comparison of the latter with the
corresponding experimental distribution (in the experiment, the friction coefficient was
not measured). The fairly good agreement of the DNS with the data provides evidence

Fig. 5. Instantaneous field of vorticity magnitude on the model surface

Fig. 6. Instantaneous field of vorticity magnitude in a flow cross-section located upstream of the
bump at x=c ¼ �0:1ð Þ
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Fig. 7. Picture of holographic interferogram of the flow-field from the experiment [2] (up; white
arrow shows the flow direction) and zoomed in fragment of instantaneous field of magnitude of
pressure gradient from DNS (bottom)

Fig. 8. Streamwise distributions of friction (left) and pressure (right) coefficients
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of the high accuracy of the DNS predictions, on one hand, and serves as an independent
confirmation of correctness of the non-standard experimental setup, on the other.

5 Concluding Remarks

In this paper we describe an experience of DNS of transonic flow past a circular
cylinder with axisymmetric bump carried out on two supercomputers of considerably
different architecture and power (Mira of the Argonne National Laboratory, USA, and
Tornado of the St.-Petersburg Polytechnic University, Russia) with the use of the
massively parallel in-house CFD code NTS.

The experience is generally positive. In particular, it suggests that although the
computational grid required for the DNS of the B-J flow is extremely large (the size of
the grid used in the present simulation amounts to 8.7 billion cells), up-to-date
supercomputers are capable of such simulations. This supports the claim that DNS of
some very complicated aerodynamic flows at high Reynolds numbers, presenting not
only a purely physical interest but also significant practical value is, in principle,
possible already today. Other than that, high efficiency is demonstrated for the hybrid
MPI – OpenMP strategy of parallelization of the implicit numerical algorithm used in
the simulations for the numerical integration of the compressible unsteady 3D
Navier-Stokes equations.

In terms of flow physics, the primary value of the performed simulations consists in
accumulation of a comprehensive numerical database which significantly complements
the experimental database on the considered flow [2]. The resulting combined
experimental-numerical database may be used both for detailed analysis of the
mechanism of the shock-boundary layer interaction phenomenon and for creation and
calibration of semi-empiric turbulence models for the RANS equations which currently
are and will probably for a long time remain a major practical computational tool for
aerodynamic design.
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Abstract. Energy consumption of hybrid systems is an actual problem
of modern high-performance computing. The trade-off between power
consumption and performance becomes more and more prominent. In
this paper, we discuss the energy and power efficiency of two mod-
ern hybrid minicomputers Jetson TK1 and TX1. We use the Empirical
Roofline Tool to obtain peak performance data and the molecular dynam-
ics package LAMMPS as an example of a real-world benchmark. Using
the precise wattmeter, we measure Jetsons power consumption profiles.
The effectiveness of DVFS is examined as well. We determine the optimal
GPU and DRAM frequencies that give the minimum energy-to-solution
value.

Keywords: Nvidia Jetson · LAMMPS · Energy efficiency

1 Introduction

The method of molecular dynamics (MD) is a modern and powerful method of
computer simulations allowing to calculate the behavior of millions of atoms.
Based on the integration of classical Newton’s equation of motion, this method
allows one to estimate the evolution of systems consisted of particles that obey
the laws of classical mechanics. With the increase in available computation power
the size and complexity of models increase as well. Usually, it leads to significant
improvements in the accuracy of results. However, the growth of the compu-
tational demands has led to a situation when MD simulations are considered
among the main tasks for parallel computing.

The technological progress in the development of graphical accelerators
makes them quite powerful computation devices with relatively low price. GPUs
outperform the conventional processors in the constantly increasing number of
computational tasks in the price-to-performance ratio. This trend leads to the
situation when the use of graphical accelerators for MD computation has become
a common practice [1–9].

However, the increase of power consumption and heat generation of com-
puting platforms is also a very significant problem, especially in connection
c© Springer International Publishing AG 2016
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with the development of exascale systems. Measurement and presentation of
the results of performance tests of parallel computer systems become more and
more often evidence-based [10], including the measurement of energy consump-
tion [11], which is crucial for the development of exascale supercomputers [12].

The purpose of this work is to evaluate the efficiency of MD algorithms in
terms of power consumption on Nvidia Tegra K1 and X1 systems-on-chip (SoCs).

2 Related Work

The power and energy consumption have been under consideration for a long
time. For example, we could mention the work [13] that showed the way of low-
ering the energy consumption of processors by reducing the number of switching
operations. Joseph and Martonosi [14] investigated the problem of energy con-
sumption in its relationship with code optimization for 32-bit embedded RISC
processors. Russel and Jacome [15] discussed a more complex model of evalua-
tion of power consumption in real-time. The work [16] showed the evaluation of
energy consumption at the OS level.

The development of portable devices gave additional impulse to this filed
(e.g. see Zhang et al. [17]).

An important aspect of GPGPU technologies that makes them beneficial is
the energy efficiency. A lot of efforts have been invested into the low-level models
for modeling the energy consumption of GPUs. In recent review [18], the key
aspects of accelerator-based systems performance modeling have been discussed.
The McPAT model (Multicore Power, Area and Timing) [19] is considered as one
of the cornerstone ideas in this area. Another approach called GPUWattch [20]
is aimed at the prediction of energy consumption and its optimization through
careful tuning on the basis of series of microtests. These approaches make pos-
sible to accurately predict the power consumption of CPU and/or GPU with
accuracy of the order of 5–10%. However, the use of a specific model of energy
consumption (like McPAT or GPUWattch) for new types of hardware and soft-
ware is a very significant effort to be undertaken. Therefore, direct experimental
measurements of power consumption and energy usage are instructive.

The work of Calore et al. [21] discloses some aspects of relations between
power consumption and performance for Tegra K1 device running the Lattice
Boltzmann method algorithms. Our preliminary results on energy consumption
for minicomputers running MD benchmarks have been published previously for
Odroid C1 [22] and Nvidia Jetson TK1 and TX1 [23]. In the work of Gallardo
et al. [24] one can find the performance analysis and comparison of Nvidia Kepler
and Maxwell and Intel Xeon Phi accelerators for the hydrodynamic benchmark
LULESH. An energy-aware task management mechanism for the MPDATA algo-
rithms on multicore CPUs was proposed by Rojek et al. [25].

The method of determining the power consumption of large computer sys-
tems are constantly improving [12]. The work of Rajovic et al. [26] shows the pos-
sible way of designing HPC systems from modern commodity SoCs and presents
the energy consumption analysis of the prototype cluster created.
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3 Software and Algorithms

3.1 A Peak Load Benchmark: Empirical Roofline Toolkit

The performance of heterogeneous systems can be evaluated in different ways.
The consideration of only the theoretical peak performance can be instructive
(e.g. see [27,28]) but is not sensitive to details of algorithms. This approach is
justified for compute-bound algorithms only. For memory-bound algorithms, the
memory bandwidth is to be addressed.

This idea has led to the creation of the Roofline model [29]. The model
introduces a special characteristic called “arithmetic intensity”. It quantifies the
ratio of the number of arithmetic operations to the amount of data transferred.
Obviously, the limiting factor for algorithms with large arithmetic intensity is
the peak performance of a processor, while the memory bandwidth limits the
performance of algorithms with intensive data transfers.

The main outcome of the Roofline model is a graph of performance restric-
tions for algorithms with different arithmetic intensities. One can estimate the
performance of a system under consideration for a particular algorithm from
such a roofline plot. For example, the typical arithmetic intensity for Lattice
Boltzmann methods is less than one Flops/byte, whether for particle methods
this parameter is usually around ten Flops/byte.

One can use the Empirical Roofline Toolkit (ERT) [30] for evaluation of
memory bandwidth and peak computing power taking into account memory
hierarchy of today’s complex heterogeneous computing systems. The core idea of
the ERT algorithm consists in performing cycles of simple arithmetic operations
on the elements of an array of specified length. The algorithm varies the size
of the array and the number of operations on the same element of the array
(ERT FLOPS) in nested loops (Fig. 1). The change of the data array size helps

f o r ( i n t i =0; i<n ; ++i ){
i f (ERT FLOPS==1){

b1 = a [ i ] + alpha ;
}
i f (ERT FLOPS==2){

b1 = a [ i ]∗ b1 + alpha ;
}
i f (ERT FLOPS==4){

b1 = a [ i ]∗ b1 + alpha ;
b2 = a [ i ]∗ b2 + alpha ;

}
. . .
} ;

Fig. 1. An illustration for the ERT FLOPS parameter
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to detect the presence of caches. The change of operations number on one element
of array helps to identify automatic vectorization effects.

3.2 Classical Molecular Dynamics: LAMMPS

The LAMMPS package [31] is used in this work as an example of a real-life appli-
cation. It is a flexible tool for building models of classical MD in materials science,
chemistry and biology. LAMMPS is not the only MD package that is ported
to the hybrid architecture (for example HOOMD [32] was originally designed
with the perspective to run it on GPU accelerators). Two GPU MD algorithms
implemented in LAMMPS are considered in this work: USER-CUDA [33] and
GPU [34,35].

To evaluate the performance of the hardware available, we use the Lennard-
Jones fluid model (108,000 atoms, the density 0.8442σ−3, the cut-off radius 2.5σ,
NVE-ensemble, 250 timesteps).

4 Hardware

4.1 Tested Platforms

We consider two different generation of Nvidia Tegra SoCs installed in Jetson
TK1 and TX1 platforms. These SoCs consist of several ARM-cores and GPU on
a single chip. These platforms are designed for embedded applications (robots,
drones) and optimized for minimum power consumption with relatively high
performance.

These devices are aimed to be energy effective and usually operate in the
dynamic voltage and frequency scaling (DVFS) mode. In this mode, the GPU
memory and core frequencies change during the runtime that allows to reduce the
power consumption of hardware significantly. In the measurements, we disable
the DVFS mode by setting manually the GPU and DRAM frequencies. However,
we make several measurements with the DVFS mode enabled.

Nvidia Jetson TK1. Nvidia Jetson TK1 is a developer board based on the
32-bit Tegra K1 SoC with LPDDR3 (930 MHz). Tegra K1 CPU complex includes
4 Cortex-A15 cores running at 2.3 GHz, the 5-th low power companion Cortex
core designed to replace the basic cores in the low load mode to reduce power
consumption and heat generation. The chip includes one GPU Kepler streaming
multiprocessor (SM) running at 852 MHz (128 CUDA cores). Each Cortex-A15
core has 32 KB L1 instruction and 32 KB L1 data caches. 4-core cluster has 2 MB
of shared L2 cache.

The program environment of the device consists of Linux Ubuntu 14.04.1 LTS
(GNU/Linux 3.10.40-gdacac96 armv7l). The toolchain includes GCC ver. 4.8.4
and CUDA Toolkit 6.5.
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Nvidia Jetson TX1. Jetson TX1 is based on the 64-bit Tegra X1 SoC with
LPDDR4 memory (1600 MHz). Tegra X1 includes 4 Cortex-A57 cores running
at 1.9 GHz, 4 slower Cortex-A53 in big.LITTLE configuration and two GPU
Maxwell SMs running at 998 MHz (256 CUDA cores). Each Cortex-A57 core
has 48 KB L1 instruction cache, 32 KB L1 data cache and 2 MB of shared L2
cache.

The operation system is Linux Ubuntu 14.01.1 LTS with 64-bit core built
for aarch64. Nevertheless we use the 32-bit toolchain and software environment
(same as for Nvidia Jetson TK1), except for the newer CUDA Toolkit 7.0.

In summer 2016, the 64-bit userspace and toolchain have been released. Pre-
liminary tests show that the new 64-bit software can be noticeably faster in some
rare cases only.

4.2 Energy Consumption Measurement Technique

We use the SmartPower digital wattmeters with the integrated DC source to
measure the energy consumption of the Jetson boards. The wattmeter provides
voltage in the range from 3 to 5.25 V and measures the current and power con-
sumption every 0.2 s with a nominal error of less than 0.01 V. The wattmeter
shows the data on the display in real time and allows to transfer the data via
USB to the PC for further analysis.

Because both Jetson platforms have nominal voltage values higher than
5.25 V, we connect several SmartPower wattmeters in a sequential way to achieve
higher voltage (see Fig. 2). To confirm the accuracy of the achieved output volt-
age, we use the precise Tektronix TDS2014C oscilloscope. In this way we show
that the average error in the power consumption measurements are about 1%.

The nominal voltages are 12 V for Jetson TK1 and 19 V for Jetson TX1.
However, we discover that both devices can operate at much lower voltages:
down to 6 V for TK1 and 8 V for TX1.

Fig. 2. The Jetson TX1 and TK1 boards with the ODROID-C1 in the center (left
photo). The sequentially connected SmartPower wattmeters with the oscilloscope (right
photo)
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The measurement of energy consumption in a particular test consists in the
simultaneous execution of the logging program on the PC as well as the necessary
tests on the Jetson. The Jetson boards do not have any connected peripherals
except for the LAN cable.

We should note that other methods of measuring power consumption exist
as well. For example, built-in hardware counters can be used that allow a user to
accurately determine the chip power consumption. However, we are not aware
of the similar counters in Tegra SoCs and therefore measure directly the power
consumption of the entire development board.

5 Measurements Results

5.1 Energy Consumption for the ERT Benchmark

We use the results of the ERT launches to determine the ratio of the peak per-
formance (in GFlops) to the average power consumption during the benchmark.

On Fig. 3 one can see an example of the power consumption profiles for both
Jetson boards. Using the measured value of energy consumed for the bench-
mark launch and the peak performance obtained, one can determine the energy
efficiency of systems considered.

Since the first 10 s of the ERT benchmark are spent on rebuilding the binary,
this part of the log is not included in consideration.

The total energy consumption for the GPU single precision ERT benchmark
for TK1 is 5.9 W, with the maximum achieved performance in single precision
of 209.9 GFlops. This gives us the ratio of 35.5 GFlops/W. For TX1, the energy
consumption is 6.28 W, which is slightly above TK1. However, the newer device is
significantly superior in terms of achieved maximum performance (485.1 GFlops)
that gives a higher performance of 77.2 GFlops/W in single precision.

Fig. 3. An example of Jetsons power consumption profiles during ERT launches
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Both Jetson minicomputers demonstrate not very impressive results in dou-
ble precision: 2.1 GFlops/W for TK1 and 2.7 GFlops/W for TX1. The reason
for this is the significantly lower double precision performance with the energy
consumption level comparable to the single precision case.

On the other hand, the ERT launches on the ARM cores of TX1 show that the
Cortex-A57 core has much lower efficiency: 0.8 GFlops/W for double precision
and 4 GFlops/W for single precision.

5.2 Energy Consumption for the LAMMPS Benchmark

On Fig. 4, one can see typical power consumption profiles during LAMMPS
launches. The area under the graph represents the amount of energy spent for
the calculation.

Fig. 4. Power consumption profiles for the launches of LAMMPS with USER-CUDA
for TX1 in the maximum frequency mode and in the DVFS mode

As noted above, both Jetson systems support the DVFS energy optimization
mode. Therefore, we consider how the results change in the case of the activated
DVFS mode. Thus, for each launch of the standard Lennard-Jones benchmark
in the fixed maximum frequency mode, we have performed the same launch but
with the DVFS mode enabled.

Figure 4 shows the comparison of the LAMMPS energy consumption in DVFS
and fixed maximum frequencies modes. One can see that the DVFS-enabled
launch takes more time with clearly lower power consumption level.

To answer the question whether or not DVFS is beneficial, we calculate the
consumed energy per one LAMMPS launch with and without DFVS.

The results presented on Fig. 5 show that the total energy consumption values
for the LAMMPS calculations with the DVFS mode enabled are roughly equal
or higher than the corresponding values in the case of the DVFS mode disabled.
However, the times-to-solution with DVFS are much higher than in the case
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Fig. 5. Time-to-solution and the corresponding energy consumption values for the CPU
MD algorithm, GPU and USER-CUDA variants in the maximum frequency mode and
in the DVFS mode (single and double precision)

of the fixed maximum frequency. Therefore, the usage of DVFS in the cases
considered does not improve energy efficiency.

6 GPU and DRAM Frequencies Variation Effect

We use the USER-CUDA accelerated LAMMPS variant as a benchmark that
shows the effect of GPU and DRAM frequencies variation on the execution time
and the total energy consumption. The frequency of the GPU are changed from
one launch to another and the DRAM frequency is fixed for the whole group of
launches. For each group of experiments, we set the Jetson TK1 GPU frequency
to the following values (in MHz): 72, 108, 180, 252, 324, 396, 468, 540, 612, 648,
684, 708, 756, 804 and 852. The DRAM frequencies are fixed for each group at
the values of 924, 396, 204 and 102 MHz. For each launch, the power consumption
is measured.
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One can find the measurement results in Fig. 6. Initially, the increase of GPU
frequency is accompanied by the decrease in times-to-solution. In terms of energy
consumption, the situation is different. With the increase of GPU frequency,
the TK1 energy consumption decreases down to a certain limit and reaches its
minimum. After that, any increase of the GPU frequency leads to the increase
of energy consumption.

This minimum of power consumption is associated with the transition of
the LAMMPS USER-CUDA algorithm from the compute-bound mode to the
memory-bound mode. The GPU computational speed limits the total perfor-
mance of the system at low GPU frequencies. This situation corresponds to the
compute-bound mode. On the other hand, the DRAM memory bandwidth limits
the total performance at high GPU frequencies. This situation corresponds to
the memory-bound mode. An increased energy consumption in the latter case is

Fig. 6. LAMMPS power consumption on different TK1 memory frequencies with
USER-CUDA (upper plot) and GPU (lower plot) packages.
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not a desirable effect because this growth of consumption is not associated with
any significant speedup of the calculation.

Also, we notice that lowering the DRAM memory frequency shifts the point
of minimum consumed energy to lower GPU frequencies, as it might be expected.

7 Summary

We have described the energy consumption of the minicomputers Nvidia Jetson
TK1 and TX1 based on the hybrid systems-on-chip Nvidia Tegra K1 and X1.

The peak load benchmarks have been performed with the Empirical Roofline
Toolkit (with the CPU and GPU versions). The CPU version has shown 4
GFlops/W for single precision and 0.8 GFlops/W for double precision for one
Cortex-A57 core of Jetson TX1. The GPU version for Kepler TK1 and Maxwell
TX1 has shown 35.5 GFlops/W and 77.2 GFlops/W respectively for single pre-
cision and 2.1 GFlops/W and 2.7 GFlops/W for double precision.

Two CUDA-accelerated MD algorithms implemented in LAMMPS have
been used for energy consumption benchmarks (in single and double precision).
DVFS has been found inefficient for energy efficiency improvement in the cases
considered.

By changing GPU and DRAM frequencies on TK1, we have shown the tran-
sition of the both CUDA-based MD algorithms from the compute-bound to
memory-bound mode. We have located the minima of the energy-to solution
with respect to the set of GPU and DRAM frequencies considered.

In the future, we plan to conduct a similar analysis for systems with desktop
or server GPU accelerators. In addition, we are going to consider the case of
more complex molecular dynamics models, e.g. with the Coulomb interaction.
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used in this study. The work was supported by the grant No. 14-50-00124 of the Russian
Science Foundation.
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Abstract. Modern computational experiments imply that the resources of the
cloud computing environment are often used to solve a large number of tasks,
which differ only in the values of a relatively small set of simulation parameters.
Such sets of tasks may occur while implementing multivariate calculations
aimed at finding the simulation parameter values, which optimize certain
characteristics of the computational model. Applications of this type make a
large percentage of modern HPC systems load, which implies a need for
methods and algorithms for efficient allocation of resources in order to optimize
systems for solving such problems. The aim of this work is to implement a
PO-HEFT problem-oriented scientific workflow scheduling algorithm and to
compare it with other workflow scheduling algorithms.

Keywords: Problem-oriented environment � Workflow � Cloud � Simulation �
Scheduling algorithm � HEFT � PO-HEFT

1 Introduction

The last thirty years a revolutionary turn in the fundamentals of science and engi-
neering takes place. Computational methods have become the “third branch” of the
scientific approach, along with theory and experiment. Computational methods are
used in applications that involve data analysis and visualization of experiments results
[1]. The use of supercomputer simulation and data mining provides a qualitatively new
level of results in all fields of knowledge, allowing for numerical studies of physical,
biological, social and others processes, providing a real alternative for expensive (or
impossible) experiments [2, 3].

The typical scenario of computational experiment is a repetitive cycle consisting of:

1. transferring data to a supercomputer for analysis or simulation;
2. performing calculations;
3. storing results of calculations.

Thus, a typical computational experiment scenario can be implemented by the
so-called “workflows”. In [4] the following workflow definition is proposed: the
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automation of the processes, which involves the orchestration of a set of services,
agents and actors that must be combined to solve a problem or to define a new service.
The most common way of workflow representation is a directed graph, where nodes
correspond to the data processing actions, and edges represent data dependencies [5].
However, most of all, workflows are represented as Directed Acyclic Graph (DAG) [6]
or even as a series of actions (pipeline). The Directed Cyclic Graphs (DCG) are much
more difficult to implement because they require support of iterative computational
processes during their planning and execution [7].

In our case, the specifics of implementation of computational experiments are often
imply that resources of a distributed computing environment are often used to solve
numerous tasks from a narrow domain, differing only by values of a relatively small set
of simulation parameters.

To improve the utilization of computing resources, problem-oriented distributed
computing environments are created, providing the solution of problems in specific
subject areas (mathematics, computational fluid dynamics, computational chemistry,
computational engineering, etc.) [8–10]. This restriction allows to use the information
about the subject area to predict problem characteristics during the scheduling and
resources allocation stages, increasing the efficiency of available computing resources
usage [11].

The article [11] proposes an approach to the implementation of problem-oriented
scheduling of computing resources based on the PO-HEFT algorithm. The aim of this
work is to test the implementation of PO-HEFT algorithm and analyze its efficiency in
comparison with existing algorithms of workflow scheduling.

The paper is organized as follows. Section 2 provides an overview of current
approaches to scheduling and resource utilization prediction during workflow execu-
tion. In addition, we present analysis of existing platforms for the simulation of dis-
tributed computing environments, including cloud systems and workflow systems.
Section 3 presents the implementation of a scheduling algorithm PO-HEFT. Next, in
Sect. 4 the architecture of problem-oriented environment simulation system is pre-
sented. Section 5 is devoted to the implementation of the comparative evaluation of
problem-oriented workflow scheduling algorithms. In conclusion, a summary of the
work and the possible directions of further research are presented.

2 Review of Workflows Scheduling Methods

Workflow management algorithms can be divided into two categories: workflow
scheduling and workflow prediction algorithms. Workflow scheduling algorithms are
responsible for distribution of workflow tasks between the available computational
resources. Workflow prediction algorithms allow us to estimate the time required to
perform certain tasks and the entire workflow. Workflow scheduling algorithms can use
the prediction algorithms to achieve the optimal (or quasi-optimal) distribution of tasks
between the resources.
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2.1 Independent Tasks and Workflows Scheduling Algorithms

Authors of [12] provide a comparison of independent tasks scheduling algorithms,
including such algorithms like Opportunistic Load Balancing (OLB), Minimum Exe-
cution Time (MET), Minimum Completion Time (MCT), The Min-Min Heuristic, The
Max-Min Heuristic, etc. However, it is necessary to consider dependencies between the
tasks for workflow scheduling.

Let us consider the basic algorithms of workflow scheduling. Heterogeneous
Earliest Finish Time (HEFT) algorithm [13] is one of the most common workflow
scheduling algorithms. Let Txj j denote the size of task Tx and let R denote a set of

computing resources with an average computing power Rj j ¼ Pn
i¼1

Rij j=n. Then the

average time to complete the task on all available computational resources is:

E Txð Þ ¼ Txj j
Rj j ; ð1Þ

Let Txy denote the amount of data transferred between tasks Tx and Ty and R - a set

of available resources with an average power of data transfer R ¼ Pn
i¼1

Ri
�
n. Then the

average cost of data transfer between tasks Tx and Ty for all available resources is:

D Txy
� � ¼ Txy

R
; ð2Þ

In this case, the priority of task may be defined as:

rank Txð Þ ¼ E Txð Þþ max
Ty2succðTxÞ

ðD Txy
� �þ rankðTyÞÞ; ð3Þ

where succðTxÞ denotes the set of tasks that depend on the task Tx.
Thus, the task priority is directly determined by the priority of all its dependent

tasks. The procedure of assignment of tasks to the resources is implemented as follows:
a task with a higher priority, if all the tasks on which it depends are completed, is
assigned to the computational resource, providing less time for completion of this task.

Some science groups suggested modifications of the HEFT algorithm aimed at
solving certain problems in the workflow planning. So PDHEFT [14] makes it possible
to avoid the costs of data transfer between nodes through the duplication of tasks; PO–
HEFT [11] provides an estimation of computational task based on its type and input
parameters, predicting the time of task execution, scaling limits and the amount of
transmitted data; Dynamic Data-Resource-Selection (DDRS) [15] provides a dynamic
recalculation of priorities of tasks at certain intervals.

There are also several workflow scheduling algorithms that are not related to
HEFT:
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• Problem Oriented Scheduling (POS) [16] – provides a resource scheduling in
distributed problem-oriented computing environments. A distinctive feature of the
POS algorithm is that it considers the knowledge of domain specificity, enabling the
execution of a workflow task on multiple processor cores with the restrictions on the
scalability of this problem.

• Dominant Sequence Clustering (DSC) [17] – it consists of two phases. At the first
phase, the algorithm searches the critical path in the graph and makes the clustering
of problems along this path. Tasks of the same cluster are performed at the same
node. Then, the first phase is applied recursively to the remaining tasks. In the
second phase, some clusters are merged to reduce the amount of resources used.

• Critical Path First (CPF) [18] – it searches the critical path in the workflow graph
(the path with the highest span time). Tasks on the critical path are assigned to the
one computing unit to avoid the additional cost for communication. Other tasks are
assigned to the remaining nodes without an increase of overall execution time.

2.2 Algorithms of Resource Utilization Prediction

Analysis of the main areas of research in the field of workflow scheduling in distributed
computing environments shows that prediction of resource utilization in a computa-
tional environment is one of the most urgent issues today [19–21]. This is because the
main problem of all the algorithms considered above is the complexity of obtaining
information about the computational performance of tasks in the workflow before the
task has been completed. Therefore, different techniques and algorithms for compu-
tational performance prediction are used together with the scheduling algorithms.
A prediction object is a set of characteristics of the computational process, such as the
time to complete a task or a workflow, the amount of resources needed to complete a
task, the amount of input and output data, the degree of scaling and other parameters.

Existing approaches and techniques of assessment of task execution time can be
divided into three categories: static, dynamic and hybrid. Static approaches estimate
total workflow and its individual tasks before any execution has happened. In the
dynamic approach, estimation of the task execution time is carried out immediately
before its execution, considering the current state of the system and the available
resources. However, the best approach is a hybrid approach that combines the
advantages of both considered approaches.

The authors of [5] introduced the concept of a MAPE-K cycle (“Monitoring,
Analysis, Planning, Performance and Knowledge”) associated with the dynamic
scheduling. Initially, the entire workflow is estimated and the initial plan for its
implementation is built. Upon completion of each task, the estimated values are
replaced with real, and a workflow reassessment and possibly plan rebuilding are
performed. This allows the algorithm to immediately correct estimation errors and not
distribute them to the entire workflow.

Authors of the article [22] propose to use a regression model for estimation of task
execution time. This model shows the dependence of the number of CPU operations on
the size of the input data. This model in combination with the static (CPU speed) and

94 G. Radchenko et al.



dynamic (e.g. the amount of free RAM) execution node parameters allow evaluation of
the execution time of a task at the node computational node.

2.3 Workflow Simulation

Scientific Workflow Management System (SWMS) support the development,
deployment and analysis of the results of execution of scientific workflows. They
provide the automation of computational experiment cycle, making it easier for
researchers and engineers to use distributed computing resources, allowing them to
focus on solving practical problems, rather than on the computational process control
[1]. SWMS enables definition of an abstract workflow; construction of a Workflow
Execution Plan (WEP), considering the possibilities of optimization and parallel exe-
cution of individual actions and sub-flows; data sources management; workflow exe-
cution; and execution results gathering. There are several SWMS that are mostly used
by research groups, like Pegasus [23, 24], Taverna [25, 26], Askalon [27], Kepler [28],
Triana [29], etc.

To simulate the workflow scheduling algorithms some simulation systems can be
applied. One of the most used systems for workflow management platforms simulation
is the WorkflowSim [30], which is an extension of the CloudSim [31] simulator.

CloudSim is a tool for the simulation of cloud computing environments. It supports
the simulation of the components of cloud computing environments like data centers,
virtual machines, and resource allocation policies. CloudSim platform is highly
extensible, and therefore there exist a number of independent projects such as
CloudSimEx [32], WorkflowSim [30], Cloud2Sim [33], DynamicCloudSim [34] et al.,
which are focused on performance improvement or expansion of the system
functionality.

3 Implementation of the PO-HEFT Algorithm

We propose a PO-HEFT list-based algorithm for problem-oriented scheduling of
applications in cloud computing environments based on their execution profiles [11].
The proposed algorithm is based on the HEFT algorithm, but contains modifications in
calculating the task rank and considers the incoming communication value of its parent
task.

Cloud workflow execution system consists of a computing cluster, Infrastructure as
a Service (IaaS) cloud platform deployed on this computer cluster, and workflow
management platform that can provide execution of tasks in a certain order on a
computing cluster. We assume that the following elements are also determined in the
problem-oriented cloud computing environment [11, 35]:

• F – the set of all functions f , which are implemented in the domain of
problem-oriented cloud computing environment;

• M – the set of virtual machine images m, available for deployment at the nodes;
• p : m ! Z[ 0 – virtual machines performance characteristics;
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• bs f ; I in; p
� �

– the operator of execution time estimation of function f for a given set
of input data objects I in at a machine with performance p;

• bmðf , I in) – the operator of output size estimation. It provides a prediction of the total
size in bytes of all output data objects while executing function f with input
parameters values I in.

Then the task Tx is a separate instance of the function fx 2 F with certain set of
input data objects I in:

Tx ¼ fx I in
x

� �
: ð4Þ

Let the R be a set of virtual machines available for deployment with average
computational performance:

Rj j ¼
Xn
i¼1

Rij j
n

¼
Xn
i¼1

pi
n
: ð5Þ

In this case, the operator of estimation of execution time can be applied for esti-
mation of the E Txð Þ execution time:

E Txð Þ ¼ bs fx; I in
x ; Rj j� � ð6Þ

In the model of problem-oriented services, the amount of data returned by each task
Tx should be considered. We can use the operator of output size estimation bmðf ; I inÞ for
prediction of this value. Consequently, for estimation of data transfer time between two
tasks, the following formula can be used within the problem-oriented model:

D Txy
� � ¼ m̂ fx; I in

x

� � � �Rxy; ð7Þ

where �Rxy is the bandwidth of data transfer channel in the cloud computing system.
Thus, the priority of task can be determined as:

rank Txð Þ ¼ E Txð Þþ max
Ty2succðTxÞ

ðD Txy
� �þ rankðTyÞÞ; ð8Þ

where succ(Tx) - the set of all tasks, which depends on task Tx.
Pseudocode of PO-HEFT algorithm is shown in Fig. 1.
To implement operators bs and m̂ we apply heuristic prediction, which is based on

the analysis of the results of previous executions of similar tasks based on k-nearest
neighbors algorithm:

Step 1. Select information about all previous executions of the function f from a
database.
Step 2. For each previous execution, calculate a distance relative to the current
execution based on values of input parameters. We will use standard Euclidean
distance for calculating distance between values of input parameters:
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q I in; I in
j

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼0

Iini � Iinji
� �s

; ð9Þ

where Iini и Iinji – values of the i-th parameter for the current and j-th execution.
Step 3. Select k previous executions with a minimal distance.
Step 4. Calculate average execution time and average sizes of output files for
selected k previous executions.

Fig. 1. PO-HEFT workflow applications scheduling algorithm for problem-oriented computa-
tional environments.

Implementation and Evaluation of the PO-HEFT 97



4 Simulation of Workflow Execution System

4.1 Architecture of the Workflow Execution System

Let us consider the structure of workflow execution system. It consists of the following
components: DAX parser, prediction subsystem, scheduler, workflow engine, a data-
base that stores the statistics from previous executions. In addition, a profiler is running
on each virtual machine in a computing cluster. Profiler collects all the necessary
statistics and stores it in a database. A detailed diagram of the entire system is shown in
Fig. 2. At this work, prediction subsystem is implemented, which is then used to
implement the algorithm PO-HEFT.

Let us examine in more detail the individual components that make up the work-
flow execution system.

1. DAX parser – a component that receives an XML file that contains information
about the tasks, included in the workflow and their dependencies and returns a list
of tasks with dependencies in some internal representation, with which other
components of the system operate.

Fig. 2. Architecture of the workflow execution system
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2. Database of previous executions – a database, containing statistics on the previous
executions of individual tasks. Statistics on task includes input parameters, the size
of the output data and the execution time.

3. Prediction subsystem – a system for estimation of the execution time and the size of
the output data, based on input parameters and information about the previous
executions from the database.

4. Planner – a component that accepts a task list with dependencies and execution
time estimations; and returns workflow execution plan based on resources available
in a cloud platform.

5. Workflow Engine – a component, which acts based on the workflow execution plan
and sends the task to the node only if all parent tasks have been completed.

6. Profiler – component that runs on each virtual machine and collects statistics on the
execution of tasks.

We have developed a prediction subsystem and database of previous executions. We
used PostgreSQL as a database system. Prediction subsystem is written in Java pro-
gramming language. The remaining components of the test stand for the comparative
analysis of scheduling algorithms are implemented in the WorkflowSim simulator.

4.2 Model of the Executions History Database

To predict the execution time and the size of output data of these tasks, it is necessary
to have statistics on the previous executions of tasks of this type. We developed a
database, where the characteristics of the tasks’ executions would be stored. This data
will be used by the prediction system. Within the developed test stand, the following
information about executions of tasks on a computing cluster is stored in the database
(Fig. 3):

• tasks – names of tasks which can be executed;
• executions – statistics of tasks’ executions, including execution time measured in

milliseconds;
• input_sizes – sizes of input files;
• output_sizes – sizes of output files.

Fig. 3. Database scheme of executions history
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5 Evaluation of Workflow Scheduling Algorithms

5.1 Individual Tasks Prediction Algorithm

The set of 45 workflows of the Pegasus Project [36] was used to test the prediction
subsystem. Each workflow is represented by XML-file with «dax» («Directed Acyclic
graph Xml»). The total number of tasks in all collected workflows was about 24 000.
This set was divided into training and test parts. The training part has been loaded into
the database of previous executions, then the prediction algorithm described in Sect. 3
was used on the test part. The value of k was set to 10. The relative error was calculated
for each run, using the following formula:

di ¼ jTi
predicted � Ti

realj
Ti
real

: ð10Þ

Thus, we calculated the average relative error of all predictions. All collected data
was divided in different proportions in the training and test blocks, and for each
partition testing for prediction of individual tasks was performed. The test results are
shown in Table 1.

As seen from the test results, the accuracy of the prediction of the execution time of
the tasks and the output size is 5 to 7%, which decrease with the increasing of training
sample size.

5.2 PO-HEFT Algorithm

We have made a simulation of workflows execution based on the WorkflowSim
platform using the following algorithms:

– HEFT, implemented using the exact values of runtime and size of the output data
given from the DAX-files;

– PO-HEFT, which implements an estimation of the execution time and size of output
data based on information received from the prediction subsystem;

– RANDOM, which provides a random distribution of tasks on the nodes.

Table 1. Test results of prediction algorithm on individual tasks

Test
No.

«training part/test
part» partition ratio

Relative error of
the execution task
estimation (runtime)

Relative error of
the output data
estimation (outsize)

1 50/50 6.7% 6.3%
2 60/40 6.2% 5.8%
3 70/30 6.0% 5.6%
4 80/20 5.5% 5.3%
5 90/10 5.0% 4.8%
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HEFT and RANDOM algorithms implementations were used from the Work-
flowSim package. We used the CyberShake (30, 50, 100 and 1000 of tasks), Epige-
nomics (24, 46, 100, and 997 tasks) and Inspiral (30, 50, 100 and 1,000 tasks) [37]
workflows for the test. For each test, the largest workflow was taken and the smaller
workflows gradually loaded into the database of previous executions to evaluate the
quality of the prediction. In the first series of test runs, the testing was performed on a
set of 5 identical virtual machines with the following parameters: MIPS (million
instructions per second) = 1000 and Bandwidth (Megabytes per second) = 1000 run-
ning on the basis of a data center with the fully connected network topology.

To get consistent results, the RANDOM algorithm was executed for five times each
time, after which the result is determined as the average value of the obtained results.
Results of HEFT, PO-HEFT and RANDOM algorithms evaluation are shown in
Table 2 and Fig. 4.

Also, to evaluate the impact values of the parameter K, a series of experiments with
the use of PO-HEFT algorithm was carried out using various parameter K values in the
K-nearest algorithm. Test results of PO-HEFT algorithm depending on the amount of
information in the database and a parameter K are shown in Table 3.

Table 2. Comparison of the algorithms in a homogeneous computing environment

Workflow Algorithm

Workflow execution time (relative slowdown
compared with HEFT)
HEFT PO-HEFT RANDOM

CyberShake_1000 4 754 4 957 (+4.3%) 5 368 (+12.9%)
Epigenomics_997 776 051 789 115 (+1.7%) 885 290 (+14.1%)
Inspiral_1000 45 716 4 6791 (+2.3%) 50 860 (+11.3%)
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Fig. 4. Comparison of the algorithms in a homogeneous computing environment

Table 3. Test results of PO-HEFT algorithm with different parameters on workflows
CyberShake_1000, Epigenomics_997, Inspiral_1000

Workflow K = 1 K = 3 K = 5 K = 10

CyberShake_1000 4 843 4 843 4 942 5 034
Epigenomics_997 789 076 789 053 789 394 789 087
Inspiral_1000 47 612 46 524 47 301 46 910
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The results of the first series of experiments allow us to make the following
conclusions:

– on the analyzed workflows, even the random distribution of tasks (RANDOM
algorithm) on the compute nodes in a homogeneous computing environment gives
relatively good planning results, only 10–15% worse than HEFT algorithm;

– the scheduling results of the PO-HEFT algorithm, on average, are 2–4% worse than
the results of the HEFT algorithm;

– tasks in the analyzed workflows are characterized by a strong direct relationship
between the amount of input data, the execution time and the size of output data. In
this regard, PO-HEFT algorithm shows equally good results in average with the use
of values of the parameter K in a range from 1 to 10 in the K-nearest neighbors
algorithm.

In the second test series, five virtual machines were created with the parameters
shown in Table 4.

For the second series of experiments, the values of the parameter K for K-nearest
neighbors algorithm was equal to 10. The average test results of HEFT, PO-HEFT and
RANDOM algorithms are shown in Table 5 and in Fig. 5.

Based on these results, we can conclude that the PO-HEFT algorithm showed
slightly lower (1–4%) performance of workflow planning in comparison with the
HEFT algorithm. At the same time, HEFT algorithm in the planning process uses a
priori information about the time of the task execution and the amount of output data.
Besides, the efficiency of the algorithm PO-HEFT is several times better than the
RANDOM algorithm when a cloud computing environment may use virtual machines
with different computing capabilities.

Table 4. Parameters of virtual machines in the second series of experiment

VM_0 VM_1 VM_2 VM_3 VM_4

MIPS 200 400 600 800 1 000
Bandwidth (MB/s) 200 400 600 800 1 000

Table 5. Comparison of algorithms in the second test series

Workflow Algorithm

Workflow execution time
(number in parentheses indicates the relative slowdown
compared with HEFT)
HEFT PO-HEFT RANDOM

CyberShake_1000 7 795 8 106 (+3.8%) 23 716 (+204%)
Epigenomics_997 1 294 702 1 331 352 (+2.8%) 3 995 491 (+209%)
Inspiral_1000 79 130 79 051 (−0.1%) 230 608 (+191%)
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6 Conclusion

In this paper, the prototype of workflow prediction system in problem-oriented com-
puting environments was developed and PO-HEFT algorithm was tested. In the
absence of complete statistics of executions of real-world problems, a prototype has
been tested only on abstract workflows, which has only the size of the input file, but
does not have other parameters.

In the future, we plan to perform evaluation of the comparative effectiveness of
PO-HEFT, POS, and DSC scheduling algorithms based on the information about the
parameters of the executions of real workflows executed on resources of South Ural
State University supercomputer. However, we can already say that the PO-HEFT
algorithm can be implemented and is comparable in its effectiveness with the HEFT
algorithm.
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Abstract. In this paper, we present new partitioning algorithms for
unstructured meshes that prevent conflicts during parallel assembly of
FEM matrices and vectors in shared memory. The algorithms use a cri-
terion that determines if any two mesh cells are neighboring. This neigh-
borhood criterion is used to partition the mesh into layers, which are then
combined into blocks and assigned to different parallel processes/threads.
The proposed partitioning algorithms are compared with the existing
algorithms on quasi-structured and unstructured meshes by the number
of potential conflicts and by the load imbalance.

Keywords: Unstructured meshes · Mesh layers · Shared memory ·
Parallel FEM · Multicore processors

1 Introduction

The main objectives of mesh partitioning for parallel FEM are the following: (i)
uniform data distribution, (ii) minimization of communications, (iii) improve-
ment of data locality [1,2]. Geometric mesh partitioning algorithms, such as
recursive coordinate bisection [3], recursive inertial bisection [4], and algorithms
based on the space-filling curves [5], focus on load balancing. Graph and hyper-
graph partitioning algorithms [6] are applied to meshes to minimize communi-
cations by reducing the boundary between the resulting subdomains: multilevel
division k-way [7], spectral bisection [8]. There are combined graph and geomet-
ric approaches [9], which target both (i)–(ii).

In parallel FEM algorithms for multi-core processors, where memory is shared
between multiple processes/threads, good data locality and minimum resource
contention are expected from the partition. When shared memory is used, global
assembly operations become a bottleneck in parallel FEM algorithms [10]. In
assembly operations, concurrent adding of the matrix or vector elements that
correspond to the vertices common to multiple elements may result in conflicts
between processes/threads and computational errors. Shared memory conflicts
are resolved by different methods, such as atomic operations [11] and critical sec-
tions; replacing element-by-element assembly scheme by nodal assembly scheme;
mesh coloring based on graph coloring; etc.
c© Springer International Publishing AG 2016
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Graph coloring is widely used in parallel linear solvers to reorder unknowns
for more efficient parallel processing [12,13]. When applied to meshes, coloring
algorithms generate sets of disconnected mesh cells [14]. The time complexity of
the coloring algorithms is defined not only by the number of vertices, but also
by the vertex degrees (valence) and the choice of the initial vertex, so that the
graph coloring problem is NP-complete. To provide a uniform distribution of
mesh cells over parallel processes/threads and a good data locality, after mesh
coloring the cells should be additionally reordered.

In this work, we propose new layer-by-layer mesh partitioning algorithms,
which eliminate concurrent computations in assembly operations over the ele-
ments that have common vertices. These algorithms divide mesh into one-cell-
thick layers, which are then combined into subdomains and assigned to different
threads or processor cores. These algorithms are designed to improve the per-
formance of parallel element-by-element assembly. The proposed partitioning
algorithms are compared with the existing algorithms on quasi-structured and
unstructured meshes by the number of potential conflicts and by the load imbal-
ance.

The paper is structured as follows. In Sect. 2, we outline the new layer-by-
layer partitioning algorithm and introduce a neighborhood criterion. In Sect. 3,
we describe how this criterion is used for partitioning the mesh into one-cell-
thick layers. In Sect. 4, we combine the layers into subdomains, targeting a well-
balanced load distribution. In Sect. 5, we compare the results of layer-by-layer
and multilevel k-way graph partitioning in terms of memory conflicts. Section 6
concludes the paper.

2 Layer-by-Layer Partitioning of Finite Element Meshes

In this section, we introduce a neighborhood criterion, which is used to partition
mesh into layers. A new algorithm of layer-by-layer partitioning of unstructured
meshes is based on this criterion.

Usually, finite element meshes are unstructured so that the neighborhood
relationships of nodes or cells cannot be defined by incremental numbering of
nodes or cells. For element-by-element FEM, we propose the following neighbor-
hood criterion:

ωk ∈ Adj(ωj), if V (ωj)
⋂

V (ωk) �= ∅, (1)

where ωj , ωk are the cells of the mesh Ω; Adj(·) is the neighborhood operator;
V (ωj) and V (ωk) are the subsets of mesh nodes that correspond to the cells ωj

and ωk.
This neighborhood ratio reflects the data dependencies in element-by-element

assembly more accurately than the dual or nodal graphs of the mesh. Indeed,
with such a neighborhood criterion, each cell will have more neighbors, me, even
in quasi-structured meshes like the one shown in Fig. 1.

We propose a new algorithm that partitions the mesh into thin layers using
the neighborhood criterion. Algorithm 1 can be summarized as follows:
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a) b)

Fig. 1. Neighboring cells: (a) quasi-structured mesh, me = 26; (b) unstructured mesh,
me = 119.

1. First, one-cell-thick layers are formed using the neighborhood criterion.
2. Then, the layers are combined into subdomains.

In the following sections, we describe these steps in more detail.

3 Forming Layers Using the Neighborhood Criterion

In order to partition the mesh into one-cell-thick layers using the criterion (1),
we need to find the elements each node belongs to. Traditionally, unstructured
meshes are stored in memory as a set of finite elements, which are defined by
nodal connectivity. Therefore, the search of all elements the node belongs to
requires two loops over the mesh cells, which totals to O(2 · m · ne) operations,
where m is the number of finite elements; ne is the number of nodes in an
element.

The algorithm of forming mesh layers (Algorithm 2 ) can be summarized as
follows:

1. Choose an initial layer s1 = {ω
(i)
j }, j = 1, 2, . . . ,m1, where m1 is the number

of cells in s1.
2. Consequent layers si, i = 2, 3, ..., ns are defined as follows:

si =
{

Adj(si−1), i = 2;
Adj(si−1) \ si−2, i > 2,

(2)

where si{ω
(i)
j } is the set of cells in layer i; Ω

(i)
j is the j-th cell in layer i; mi

is the number of cells in si. In the (2), an Adj(si) =
⋃mi

j=1 Adj(ω(i)
j ) is the set

of cells neighboring to si.

This algorithm requires selecting the initial layer s1 and then defines sequent
layers. The choice of the initial layer s1 affects not only the number of layers ns,
but also the uniformity of distribution of cells in layers.
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Figures 2 shows the layers formed for quasi-structured mesh (a fourth part
of a membrane on Fig. 2a) and unstructured mesh (a frame construction on the
Fig. 2b). Here s1 is selected in the variant (xmin, y, z). Other cases of s1 selection
are shown on Fig. 3a and b.

a)

s1

b)

Fig. 2. Layers for unstructured meshes: (a) hexahedtral mesh, m = 31744, ns = 64;
(b) tetrahedral mesh, m = 485843, ns = 137

Distribution of cells between layers depends on the choice of the initial layer
in Algorithm 2. Table 1 shows the range of variation of the number of cells in the
layers for different numbers of layers ns for the quasi-structured and unstructured
meshes shown in Figs. 2 and 3. The columns are marked by a choice of the initial
layer s1 (see Figs. 2a, b, and 3). For example, (xmin, y, z) means that at least
one vertex in a cell of the layer s1 has the abscissa equal to xmin.

s1

a)

s1

b)

Fig. 3. Layers of unstructured mesh are formed with selected layer s1 in coordinate
directions: a)variant (x, ymin, z); b) variant (x, y, zmin).
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For the quasi-structured mesh, 32 ideally balanced layers were obtained (col-
umn (x, y, zmin)): mmax = mmin = 15872 cells. For the unstructured mesh
(column (x, ymin, z)), the maximum number of cells in a layer is 46635 for
m = 485843, and the minimum number of cells is 17 cells, the number of layers
ns = 47.

Table 1. Characteristics of layers constructed with different choice of initial layer

Parameters (xmin, y, z) (x, ymin, z) (x, y, zmin)

Quasi-structured mesh, m = 507904

mmin 1056 1568 15872

mmax 6112 5120 15872

ns 71 28 32

Unstructured mesh, m = 485843

mmin 9 17 14

mmax 9202 71548 12457

ns 137 47 140

The Algorithm 2 assumes that there may be discontinuous layers. In general,
the discontinuity of layers does not matter for element-by-element FEM schemes.
However, if the Schur complement method [15] is used, the layers must be con-
tinuous, and any two neighbor cells must share a face with each other. To find
the cells adjacent by faces, we re-use the neighborhood criterion (1). Namely,
out of all neighbors of a cell found with the criterion, we take only those who
have as many vertices common with the cell as the number of vertices in one
face. This number is equal to 3 for tetrahedral and 4 for hexahedral cells.

For detection of discontinuous layers, we take an arbitrary cell in layer si and
perform the breadth-first search for neighboring cells. Then, all cells from the
set of accessible vertices are moved to a new sublayer, s∗

j , and the search starts
again. Finally, for each discontinuous layer, we have a set of sublayers, {s∗

j}; for
each continuous layer – a single sublayer s∗

1.
After layer si was formed, there may be hanging cells, the cells that have

only one common vertex with this layer. This is the case for multiply-connected
domains/meshes. To exclude such cells and to merge them into layer si, we check
if this layer is discontinuous by faces. If the layer has more than one sublayer, we
find the sublayer with the maximum number of cells. This sublayer will become
a new si, while other sublayers will be merged with the previous layer si−1.

Accordingly to the neighborhood criterion, the number of layers ns is
bounded either by the number of cells in the direction of the diameter of the
computational domain or by the maximum number of mesh cells along the coor-
dinate directions. For example, for the hexagonal mesh of 10×10×100 elements,
the number of layers ns � 100. For the unstructured mesh with the same number
of tetrahedral cells, ns � 50.
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4 Combining Layers into Subdomains

In this section, we present different variants of combining the layers sj , j =
1, 2, . . . , ns of the unstructured mesh Ω into of the subdomains Ωi, i =
1, 2, . . . , nΩ . We estimate the load imbalance incurred by these partitioning
schemes and compare it with the multilevel k-way graph partitioning algorithm,
implemented in METIS [7]. We consider the following combinations of mesh
layers: block, parity of layer indices, and their modifications.

Block combination of mesh layers can be summarized as follows. First, all
layers are united: Ω =

⋃ns

i=1 si. Then, domain Ω is partitioned into subdomains
Ωi so that |Ωi| ≈ m/nΩ , i = 1, 2, . . . , nΩ , where nΩ is the number of subdomains.
Figure 4 shows the layers combined into two neighboring subdomains. Here, the
subdomain Ω1 (marked as A in the figure) includes seven full layers s1, s2 . . . , s7
and most of s8. The uniform distribution of finite elements will balance the
load between the processes of parallel FEM algorithm. However, it requires to
revisit the layers to satisfy the neighborhood criterion. The block partitioning
requires at least two layers in the subdomain to avoid the conflicts for shared
data between parallel processes. Otherwise, it will be necessary to sort the cells,
for example, at the coordinates of their centers.

Ω1 Ω2 . .. ΩnΩ

Fig. 4. Block combination of the layers of the quasi-structured hexahedral mesh.

Parity combination of mesh layers is based on the block combination and
can be summarized as follows. First, in subdomains Ωi, i = 1, 2, . . . , nΩ obtained
after the block combination, all layers are split into the sets of odd and even
indices (see Fig. 5). Then, odd- or even-numbered layers with indices i, i+nΩ , i+
2nΩ , . . . are merged as a new subdomain Ωi. Therefore, the blocked layers are
reshuffled based on the parity of their indices. Figure 6 illustrates selection of
layers for one subdomain.

We compared the results of layer-by-layer and multilevel k-way graph parti-
tioning in terms of load imbalance. Parity combination of layers was considered
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Fig. 5. Parity combination of the layers of the quasi-structured mesh: the layers with
fixed indices for eight subdomains Ωi, i = 1, 2, ..., nΩ .

in two variants: odd/even and odd+even, which specify if the even or odd or
both types of mesh layers will be processed in the OpenMP parallel regions of
the FEM algorithm (see Fig. 6).

s
(Ω1)
1

s
(Ω1)
2

s
(Ω1)
ns

Ω1

Fig. 6. Parity combination of the layers of the quasi-structured mesh into subdomain
Ω1.

Tables 2 and 3 show the maximum and minimum of numbers of cells in the
subdomains obtained with the help of different partitioning algorithms. It can
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Table 2. The maximum (upper) and minimum (bottom) of cells numbers mi for quasi-
structured mesh subdomains Ωi, i = 1, 2, ..., nΩ at a given nΩ .

nΩ METIS block odd even odd+even

8 63503 63488 31744 31744 63488

42964 63488 31744 31744 63488

16 32343 31744 17888 17824 35712

31507 31744 13856 13920 27776

32 16299 15872 10208 10144 20352

15408 15872 6144 6144 12288

60 8692 8465 6112 6048 12160

1876 8465 1568 1632 3200

be seen that the layer-by-layer algorithms based on the parity combination of
layers results in the least balanced distribution of mesh cells.

Table 3. The maximum (upper) and minimum (bottom) of cells numbers mi for
unstructured mesh subdomains Ωi, i = 1, 2, ..., nΩ at a given nΩ .

nΩ METIS block odd even odd+even

8 61163 60731 33838 34171 68009

60428 60726 17842 27448 55398

16 31180 30366 17781 17803 35419

29479 30353 11477 11506 23087

32 15638 15183 12965 13334 25729

14739 15170 4209 4469 8678

60 8340 8098 8839 9202 17605

7861 8061 1982 1877 3859

We improved the distribution of mesh cells in the balanced parity com-
bination scheme. In this scheme, first, layers s1, s3, s5, . . . are combined into
a subdomain Ω(odd), and layers s2, s4, s6, . . . – into subdomain Ω(even). Then,
Ω(odd) is partitioned into nΩ subdomains Ω

(odd)
i so that |Ω(odd)

i | ≈ |Ω(odd)|/nΩ .
Ω(even) is partitioned in the same way. Therefore, this scheme is well-balanced
by design.

5 Experimental Results

In this section, we compare the results of layer-by-layer and multilevel k-way
graph partitioning in terms of memory conflicts.

Figures 7 and 8 show the unstructured tetrahedral mesh partitioned into
nΩ = 8 subdomains by different algorithms. In contrast to multilevel k-way
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partitioning, the layer-by-layer algorithms put the subdomains in a special order.
Figure 7 shows subdomains obtained by means of block combination (a) and
parity combination (b). In both cases, all the subdomains have two neighbors,
whereas in Fig. 8, several subdomains have three or more neighbors.

a) b)

Fig. 7. Layer-by-layer partitioning of unstructured mesh, nΩ = 8: (a) block combina-
tion; (b) parity combination.

Note that after layer-by-layer partitioning (Algorithm 1 ), each mesh node
belongs to no more than two subdomains. This is not fulfilled by the multilevel
algorithm implemented in METIS, especially for large values of nΩ on adaptive
unstructured meshes as in Fig. 8.

Fig. 8. The unstructured mesh partitioned by the multilevel k-way algorithm, nΩ = 8.

When applied to multiply-connected domain, both layer-by-layer and mul-
tilevel partitioning schemes resulted in discontinuous subdomains. As men-
tioned above, discontinuous subdomains do not affect the computational stabil-
ity of parallel element-by-element finite element schemes but slow down memory
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access. Usually, the discontinuous parts of subdomains are either merged with
other subdomains to preserve the number of subdomains or considered as inde-
pendent subdomains. The proposed ordering of layers and subdomains simplifies
merging of the neighboring subdomains.

Table 4 shows the number of potential conflicts in parallel finite element
assembly of the vector for several mesh partitioning algorithms. A conflict occurs
when different processes simultaneously access the same node in a cell. In terms
of mesh, the conflict may occur for the cells than have common nodes and the
same numbers (indices) within two or more subdomains. Therefore, we estimate
the number of potential conflicts by the number of such cells.

In columns of Table 4, the numerator represents the number of cells whose
nodes are accessed from different subdomains (threads), the denominator – the
number of cells whose nodes are accessed from different subdomains using identi-
cal local indices. The estimate presented in the denominator is more strict, based
on the fact that the parallel processes (threads) start at the same time and access
each cell within equal periods of time from any of the parallel processes. If this
estimate is different from zero (Table 4), then the parallel assembly of finite
element vectors my result in computational errors.

Table 4. The number of possible conflicts in parallel vector assembly.

nΩ by generation METIS block odd even odd+even

Quasi-structured mesh, m = 507904

8 0 0 0 0 0 0

16 0 384/0 0 0 0 0

32 0 24/0 0 0 0 0

60 0 60/2 0 0 0 0

Unstructured mesh, m = 485843

8 284/88 7/2 0 0 0 0

16 623/198 13/4 0 0 0 0

32 1144/352 60/25 0 0 0 0

60 2425/815 169/71 167/40 0 0 4/3

In the experiments labeled “by generation”, we used the cell ordering
obtained from the mesh generator. The mesh was partitioned into nΩ subdo-
mains, with approximately the same number of cells each: Ωi ≈ m/nΩ . Compu-
tational errors due to the conflicts in shared memory may not show up because
of cell ordering (see Table 4, the second column).

When unstructured mesh is partitioned by parity of layers (odd+even), the
conflicts are related to load imbalance, namely, uneven distribution of cells
between subdomains. In this case, the mesh cells are accessed in a sequence
of two parallel OpenMP regions, separately for the odd (or even) layers.
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In the case of the block partitioning, conflicts are the result of discontinuity
of the layers. Combining layers eliminates these conflicts, but results in a less
balanced partitioning.

Finally, we examined the computational cost of the proposed layer-by-layer
partitioning algorithms based on Algorithm 1. Forming layers (first step of Algo-
rithm 1 ) is the most expensive part, which took 0.8–0.9 sec for unstructured
mesh (m = 485843) and 0.39–0.41 s for quasi-structured mesh (m = 507904).
Layers combining (second step of Algorithm 1 ) by parity took 0.005–0.006 s, the
block combining took 0.003–0.004 s.

6 Conclusion

In this paper, we presented the approach to adapt finite element algorithms to
stream processing paradigm, characteristic for hybrid architectures with mas-
sively parallel accelerators. The approach is based on partitioning unstructured
meshes so that concurrent access to shared data is eliminated and computational
load is balanced.

With layer-by-layer partitioning, we achieved 68% speedup of parallel finite
element vector assembly on a 61-core processor Xeon Phi 7110X, and 75%
speedup on two 4-core Xeon E5-2609. Due to the high efficiency of the assembly
operation, we achieved nearly linear speedup of the matrix-vector product in the
element-by-element scheme on unstructured meshes.

Comparison of layer-by-layer and multilevel partitioning shown that: (i) the
algorithms proposed in this paper outperform METIS up to three times; (ii) in
contrast to the multilevel algorithm, the execution time to form subdomains is
practically independent of the number of subdomains; (iii) ordering of layers and,
as a result, mesh subdomains optimizes communications in both partitioning and
assembly operations.

In future, we plan to develop algorithms for parallel forming layers, algo-
rithms for hierarchy of subdomains, and algorithms for partitioning multiply-
connected unstructured meshes into connected subdomains.
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Abstract. In this paper we present grid methods which we have devel-
oped for solving direct and inverse problems, and their realization with
different levels of optimization. We have focused on solving systems of
hyperbolic equations using finite difference and finite volume numer-
ical methods on multicore architectures. Several levels of parallelism
have been applied: geometric decomposition of the calculative domain,
workload distribution over threads within OpenMP directives, and vec-
torization. The run-time efficiency of these methods has been investi-
gated. These developments have been tested using the astrophysics code
AstroPhi on a hybrid cluster Polytechnic RSC PetaStream (consisting of
Intel Xeon Phi accelerators) and a geophysics (seismic wave) code on an
Intel Core i7-3930K multicore processor. We present the results of the
calculations and study MPI run-time energy efficiency.

Keywords: High performance computing · Intel Xeon Phi accelerators ·
Grid-based numerical methods

1 Introduction

Numerical methods have become very powerful tools for modeling problems
in physics and engineering. Many such problems can be described as a set of
hyperbolic equations. In the last decade, a large number of numerical meth-
ods have been developed and improved, with finite difference and finite volume
methods being almost the most popular. As models become more complex and
often require high accuracies of calculation, the use of modern accelerators is
more desirable. When moving towards exascale computing, energy consump-
tion increases dramatically and the run-time energy efficiency of calculations
becomes very important. In the recent past, geometrical decomposition of the
solution domain of a problem (through message passing interface, MPI) was
the only tool in parallelization. Since the release of multicore processors (e.g.
c© Springer International Publishing AG 2016
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2016, CCIS 687, pp. 118–131, 2016.
DOI: 10.1007/978-3-319-55669-7 10
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Graphics Processing Units and Xeon Phi processors), the combination of geo-
metrical decomposition with multithread parallelization and vectorization of the
calculations has become increasingly important.

Direct and inverse problems in geophysics are often impossible to solve ana-
lytically and hence numerical solution is the only option. One important example
is forward modeling of wave propagation through an elastic medium. This prob-
lem was first solved numerically using a finite difference scheme by Alterman in
1968 [2]. Later this method was applied to generate synthetic seismograms by
Kelly in 1976 [13]. A similar approach has been used to generate sound fields
in acoustic problems [22,24]. Solution of the direct wave propagation problem
is widely used in full waveform inversion problems where a good initial guess
is extremely important. This problem demands large computing resources and
time and hence more and more scientists have optimized their codes using APIs,
GPU and MPI parallelization. Examples of parallelizing large scale geophysical
problems can be found in [3,5,7,20,23,26].

When applying finite difference schemes to a problem it is necessary to cal-
culate a derivative on a stencil type structure. Unfortunately, it is impossible
to apply standard automatic vectorization techniques to a stencil type loop. In
this work we present a method of memory rearrangement which allows vector-
ization with high level instructions only. This method is universal to any stencil
type structure and its application considerably decreases the calculative time.
Moreover, a derivative order has very little effect on CPU time. This allows a
considerable increase in the accuracy of a scheme, without changing the CPU
time. In this paper we discuss issues of using the proposed method together with
OpenMP multithreading. We demonstrate the efficiency of the method on wave
propagation through an elastic medium.

Another example of a complex problem which requires parallelization is the
modeling of magnetic fields in astrophysics. Magnetic fields play a key role in
the formation of astrophysical objects. Taking magnetic fields into account when
modeling the evolution of interstellar turbulence makes a considerable difference
to the results (see [18]). In recent years, modeling magnetohydrodynamic tur-
bulence problems has helped our understanding of sub-alpha currents [19] and
the rate of star formation [4]. A comparison of different codes for subsonic tur-
bulence is presented in [14]. Classical methods for simulation of magnetohydro-
dynamic turbulence such as adaptive mesh refinement (AMR) and smoothed-
particle hydrodynamics are still widely used, but in recent years an impressive
range of new methods have been proposed (a good review of these methods can
be found in [15–17]).

The inverse coefficient problem for a system of 2D hyperbolic equations has
been studied in [1]. In this paper the acoustic tomography problem was refor-
mulated as an inverse coefficient problem for a system of first order hyperbolic
equations (system of acoustic equations). To solve the inverse problem the gra-
dient method to optimize an objective functional was chosen. This method is
widely used in inverse and ill-posed problem theory [8–12]. The main idea of the
method is to solve direct and conjugate problems at every time step. This means
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a numerical method to solve the direct problem needs to be well optimized. Here
we present a method of optimization which proved to be very efficient.

In the first two sections we discuss various levels of optimization for the above
astrophysics problem. The third section explains difficulties of automatic vector-
ization when applied to finite difference schemes. A method is proposed which
overcomes the difficulties and considerably improves performance. The fourth
section discusses the importance of run-time energy efficiency of calculations
and demonstrates impressive results for the AstroPhi code. The fifth section
presents results from numerical experiments.

2 Geometric Decomposition Pattern

The use of a uniform mesh gives us a possibility to apply a generic Cartesian
topology for decomposition of the calculative domain. This approach leads to
potentially infinite scalability of the problem. As shown in [17], the AstroPhi
code implements multilevel one-dimensional geometric decomposition of the cal-
culative domain. The first coordinate corresponds to the MPI level of paralleliza-
tion. Every MPI thread sends tasks to OpenMP threads, optimized for MIC
architectures. This type of topology is related to the topology and architecture
of the hybrid cluster RSC PetaSteam, which has been used for the numerical
simulations.

Various levels of AstroPhi code scalability have been tested on Intel Xeon
Phi 5120 D accelerators. A grid 512p × 256 × 256 has been used (where p is a
number of accelerators). Every accelerator has 4 logical cores. The calculative
domain is divided into data chunks of equal size, then the chunks are sent to
the accelerators. To study the scalability we have estimated the total run-time
(in seconds) for different numbers of Intel Xeon Phi accelerators. At every time
step a certain number of processes has to be completed. We calculate the total
run-time as the sum of the run-times of all these processes. The scalability has
been calculated according to the formula

T =
Total1
Totalp

, (1)

where Total1 and Totalp are a run-time and a calculation time on a single proces-
sor respectively, and the problem runs on p processors. The results are presented
in Table 1. From the table it is clear to see we have achieved an efficiency of 73%
on 256 Intel Xeon Phi 5120 D processors.

3 Multicore Threading on Intel Xeon Phi Accelerators

Parallelization of the AstroPhi code on Intel Xeon Phi accelerators has been
achieved through a standard technique:
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Table 1. Scalability T of the AstroPhi code on the hybrid cluster RSC PetaStream.
Time is in seconds.

MIC Total (SPb) Scalability (SPb)

1 55.5742 1.0000

8 56.3752 0.9857

64 64.1803 0.8659

128 68.6065 0.8101

256 76.1687 0.7296

1. decomposition of the calculative domain;
2. workload distribution amongst the available threads;

For this problem we applied decomposition to a 512×2562 grid on a single Xeon
Phi accelerator. To calculate the acceleration we have measured the calculation
time of each function of the numerical simulation and then calculated its sum-
mation on one thread and on p threads. The acceleration has been calculated
according to the formula

P =
Total1
TotalK

, (2)

where Total1 is the calculative time for one logical core, TotalK is the calculative
time for K logical cores. The results of testing the AstroPhi code on hybrid
cluster PetaStream (SPb) are presented in the Table 2.

Table 2. Acceleration P with increasing numbers of logical cores (on a single Xeon
Phi accelerator). The code has been tested on a hybrid cluster RSC PetaStream (SPb).
Time is in seconds.

Threads Total (SPb) P (SPb)

1 219.7956 1.0000

8 27.7089 7.9323

32 7.9673 27.5872

128 2.6271 83.6647

240 2.5905 84.8467

4 Vectorization

The first processor supporting a SIMD (Single Instruction Multiple Data)
instruction set was designed by Intel in 1999. This Streaming SIMD (SSE) exten-
sion accelerates the calculation due to the use of larger registers. The first SIMD
registers were designed to hold four 32-bit floats/two 64-bit doubles (128-bit reg-
isters). This means that 4 floats/2 doubles can be uploaded into a register and
the arithmetic and logic routine can be applied to a vector instead of a single
value.
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This simple idea has become very popular and nowadays almost all mod-
ern architectures support SIMD operations. The capacity of SIMD registers has
also been considerably increased. For example the Sandy Bridge microarchitec-
ture includes the AVX extension with 256-bit SIMD registers and the Skylake
microarchitecture includes the AVX-512 (Xeon models only) extension which
operates with 512-bit SIMD registers.

To be able to take advantage of automatic vectorization either an optimiza-
tion flag (/O2 and higher for Intel machines) needs to be switched on, or a
microarchitecture specific flag (ex. /QxSSE4.1, /QxAVX for Intel) should be cho-
sen. It is important to note that an automatic vectorization routine cannot be
applied to any loop. The memory in the loop needs to be aligned and the vector
length must be divisible by 4 (8 or 16 depending on the size of a SIMD register
and the bit size of values operated with). It is important that there shouldn’t be
any read-write memory conflict, for example a cycle of the type

for(int i = 0; i < N; i++){
a[i] = b[i] + c[i];

}

is automatically vectorizable (assuming the memory is aligned and N is divisible
by 4). However a loop of the type

__assumed_aligned(a, 32);
__assumed_aligned(b, 32);
#pragma simd
for(int i = 0; i < N; i++){

a[i] = b[i] + b[i + 2];
}

cannot be vectorized by high level instructions.
When calculating the derivative on a stencil structure we get a loop which is

not automatically vectorizable. However, the situation changes if we rearrange
the memory in the way described in Fig. 1. In this case the compiler will be
uploading and applying arithmetic and logical operations to all 4 values simul-
taneously and the necessary acceleration will be achieved.

Fig. 1. Memory reorganization for high level vectorization.
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In the case of larger than 128-bit registers or smaller bit size values it is
always possible to rearrange the data in a such way the compiler would work
with a vector of 8, 16, etc. In this case the values we use for calculation of one
derivative i will be located with the step spacing 8, 16 etc. from each other.

A very important property of such rearrangement is that the speed of deriv-
ative calculation is almost unaffected by the order of the derivative. This prop-
erty is especially important for problems where it is problematic to achieve the
required degree of accuracy due to long run times.

We have tested this property by calculating 2nd, 4th, 6th, 8th and 10th order
derivatives on the grid 8192 × 8192 (for 500 cycles). Note that the order of the
derivative increases the size of the stencil. Table 3 shows the calculation time
without memory rearrangement and automatic optimization (flag /Od for Intel),
without memory rearrangement and with aggressive automatic vectorization (flag
/O3 for Intel) and with memory rearrangement and with aggressive automatic
vectorization. The table shows that in the initial case, run time is 74% greater for
the 10th order than the 2nd order. When automatic vectorization is used without
memory rearrangement, run time is much shorter but the difference between 10th
order and second order becomes 200%. Finally, when vectorization is combined
with memory rearrangement, run time becomes almost independent of the order
of the derivative. The acceleration for 10th order is ≈ 11.57 times, compared
with ≈ 6.63 times for 2nd order.

Table 3. Applying different levels of optimization (see text for details) for derivatives
of a high order. Run time is in seconds.

Order /Od /O3, [1 × 1] /O3, [4 × 1]

2 311.601 63.978 40.987

4 378.303 96.804 41.502

6 433.277 122.147 42.687

8 485.380 158.753 41.350

10 543.615 192.288 46.996

5 Study of Run-Time Energy Efficiency

Nowadays, run-time energy efficiency is mostly used for commercial projects
working with big data problems. However, the idea of exascale computing is
becoming more and more popular and petascale computers are expected to be
widely used in the near future. Exascale computing is capable of more then 1018

calculations per second. The first petascale computers were released in 2008 and
are considered to be very promising and powerful tools for solving big data prob-
lems, for example modeling for climate, in geophysics and astrophysics. Running
such a computer efficiently is of great importance. If only 10 MW of energy for
running an exascale supercomputer were used inefficiently it could cancel out
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all the advantage of using it. Overall the definition of run-time energy efficiency
includes about 20 parameters, most of them related to run time efficiency. In
this work we assume the code to be efficient if

1. CPU cores and CPUs are used in the most efficient way;
2. the data exchange between the CPU cores and CPUs is minimized;
3. the code has good balance.

By minimizing data exchange between CPU cores/CPUs we reduce the waiting
time for a CPU/CPU cluster (the time while the CPU/CPU cluster doesn’t work,
awaiting the completion of all necessary processes). Good balance allows tasks
to be distributed in between cores and accelerators evenly. By applying these
ideas to the AstroPhi code we have reduced the time spent on data exchange
by MPI instructions to 7–8% of the total run-time. The level of imbalance has
been reduced to no more then 2–3% between all the threads. This helped us to
achieve 72% efficiency (scalability in the “weak” sense) in parallelizing on a 256
Intel Xeon Phi accelerator (more than 50K cores). Modern accelerators help to
achieve the maximum run-time efficiency by multithreading and vectorization.
By applying vectorization to the AstroPhi code we have achieved 6.5 times
acceleration and by run-time energy efficiency we have approached the efficiency
of libraries like MAGMA MIC [6].

6 Results

6.1 Modeling of Wave Propagation Through an Elastic Medium

To model wave propagation through two-dimensional elastic media the second
order wave equation is often reduced to a system of first order partial differential
equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ∂u
∂t = ∂σ11

∂x1
+ ∂σ12

∂x2
, ρ∂v

∂t = ∂σ22
∂x2

+ ∂σ12
∂x1

,

∂σ11
∂t =

(
λ + 2μ

)
∂u
∂x1

+ λ ∂v
∂x2

, ∂σ12
∂t = μ ∂u

∂x2
+ μ ∂v

∂x1
,

∂σ22
∂t = λ ∂u

∂x1
+

(
λ + 2μ

)
∂v
∂x2

,

(3)

where (u, v) is the velocity vector, σij is the stress tensor, and λ and μ are Lamé
parameters.

It is also usual to move from an ordinary grid to a staggered grid. The method
was first proposed in [25] to solve elastic wave propagation problems and has been
proved to have better stability and dispersion behavior for 4th order accuracy
schemes [21].

Let us define
δu ≡ ui−2 − 27ui−1 + 27ui − ui+1,
δv ≡ vj−2 − 27vj−1 + 27vj − vj+1,

δσ11 ≡ σi−1
11 − 27σi

11 + 27σi+1
11 − σi+2

11 ,

δσ22 ≡ σj−1
11 − 27σj

11 + 27σj+1
11 − σj+2

11 ,
δu+ ≡ uj−1 − 27uj + 27uj+1 − uj+2,
δv+ ≡ vi−1 − 27vi + 27vi+1 − vi+2.

(4)
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Then according to Finite Difference rules the new expression for σ11, σ22, σ12

and velocities u, v for every time step can be found as

σt
11 = σt−1

11 + (λ+2μ)Δt
24Δx1

δu + μΔt
24Δx2

δv,

σt
22 = σt−1

22 + μΔt
24Δx1

δu + (λ+2μ)Δt
24Δx2

δv,

σt
12 = σt−1

12 + Δtμ
24Δx2

δu+ + Δtμ
24Δx1

δv+,

ut+1/2 = ut−1/2 + Δt
24ρΔx1

δσ11 + Δt
24ρΔx2

(
σj−2
12 − 27σj−1

12 + 27σj
12 − σj+1

12

)
,

vt+1/2 = vt−1/2 Δt
24ρΔx1

(
σi−2
12 − 27σi−1

12 + 27σi
12 − σi+1

12

)
+ Δt

24ρΔx2
δσ22.

(5)

Figure 2 shows the general scheme for vectorization. It is clear to see that
application of boundary conditions for the problem will lead to divergence. This
happens because the boundary conditions will be applied to the internal points
of the problem. To eliminate this bottleneck we introduce virtual blocks. The
boundary conditions will be applied to virtual blocks instead and at every time
step we have to copy the data from internal points to the virtual ones to achieve
convergence.
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Fig. 2. Copying of data from real blocks to virtual.

Table 4 shows the acceleration of the problem for different sizes. If the flag
/O1 is switched on the compiler applies automatic optimization, but not vector-
ization. Flag /O2 and higher enables automatic vectorization.
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Table 4. Comparison of run time for problems of different sizes (N × N) without
optimization and with flags /O1 and /O3. The problems have been calculated on one
thread. Time is in seconds.

N /Od /O1 /O3 Acceleration

32 × 32 × 2 216.761 54.143 26.133 8.295

64 × 32 × 2 974.981 186.679 81.356 11.984

128 × 32 × 2 3789.820 705.704 309.508 12.245

The problem can easily be parallelized on available CPU cores by applying
OpenMP directives. The whole domain is divided into blocks. Each block has
so-called buffer points. At every time step the values from the buffer points are
updated by copying from the internal grid points of corresponding blocks. The
blocks are run in a random order. For our problem we have found the following
OpenMP structure gives the best acceleration

#pragma omp parallel
{

for (int j = 0; j < numberOfSteps; j++){
int i;

#pragma omp for private (i) schedule(auto)
//calculate velocity

#pragma omp for private (i) schedule(auto)
//copy velocities

#pragma omp for private (i) schedule(auto)
//calculate stress

#pragma omp for private (i) schedule(auto)
//copy stress

#pragma omp for private (i) schedule(auto)
//calculate boundaries

#pragma omp for private (i) schedule(auto)
//copy virtual blocks

}
}

It should be mentioned, that vectorization blocks can be arranged in a differ-
ent order and the order has a small influence on acceleration. For this problem
we studied [4 × 1], [1 × 4], [2 × 2] structures. They are presented in Fig. 3.

Experiments and results from VTune Intel Amplifier profiling proved the
best vectorization structure to be [4 × 1]. This structure is used in Table 5 for
OpenMP parallelization.

6.2 Modeling of Magneto-Hydrodynamics Turbulence Evolution

This numerical model is based on coupling of equations for multidimensional
magneto-gas-dynamics, the ordinary differential equation for the evolution of
the concentration of ionized hydrogen, and a special form for external force.
External force is found from the mass conservation law and Poisson equation.
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Fig. 3. Types of vectorization structure.

Table 5. Parallelization of seismic wave problem through OpenMP API. The size of
the problem is [4096×4096], the vectorization structure is [4×1]. In all cases the most
aggressive automatic vectorization has been applied. Time is in seconds.

N threads Run time Acceleration

1 82.300 1.000

4 28.157 2.923

6 25.286 3.255

Its time derivative can be described by the Cauchy–Kovalevskaya equation. By
using this mathematical model it becomes possible to formulate a generalized
parallelization calculation method [16], which is based on a combination of an
operator-splitting method, Godunov method, and a piecewise-parabolic approx-
imation on a regular grid cell. Figure 4 shows the result of the numerical sim-
ulations described above. The figure shows the high density area of a “palm
tree” shape, which resembles the nebular NGC 6188. Figure 5 shows the corre-
lation of M ∼ n2 (white line) and most of a nebular cloud n > 10 m−3 is in the
super-Alfvenic speed area. Contours of the cosine of the colinear angle between
velocity vector and magnetic field have a saddle shape (see Fig. 6). This means
that compression occurs along magnetic field lines.
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Fig. 4. Numerical simulation for magneto-gas-dynamics. Gas concentration is in cm−3

at a time t = 15 million years (back from now).

Fig. 5. Dependence of Alfven velocity (MA) on gas density (n).
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Fig. 6. Dependence of the cosine of colinear angle between velocity vector and magnetic
field from gas density.

7 Conclusions

In this paper we have demonstrated the following.

1. It is important to apply all levels of parallelization to big data problems: vec-
torization, multithread parallelization within shared memory API (OpenMP
directives in the test cases) and clusters.

2. Run-time energy efficiency is very important in parallelization as demon-
strated by application to modeling of magnetic fields in astrophysics
problems.

3. It is impossible to apply high level vectorization methodology to a stencil type
loop for a standard memory structure. We have presented a new method of
memory rearrangement which overcomes this bottleneck and allows automatic
vectorization to take place. In application to finite difference schemes we have
demonstrated the method to be particular efficient when using high order
derivatives. We proved that if the suggested memory organization is used,
the run-time for derivative calculations is almost independent of its order
(which is not the case for a standard memory structure!).
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4. We have presented the results of astrophysics code AstroPhi efficiency, (tested
on the hybrid cluster RSC PetaStream based on Intel Xeon Phi accelerators),
vectorization and multithreading withing OpenMP of seismic wave propa-
gation problem (tested on Intel Core i7-3930K machine) and the study on
AstroPhi code run-time energy efficiency. The results from numerical simula-
tions are presented.
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Abstract. In the paper we discuss the main features of the software
package for numerical simulations of the surface water dynamics. We
consider an approximation of the shallow water equations together with
the parallel technologies for NVIDIA CUDA graphics processors. The
numerical hydrodynamic code is based on the combined Lagrangian-
Euler method (CSPH-TVD). We focused on the features of the parallel
implementation of Tesla line of graphics processors: C2070, K20, K40,
K80. By using hierarchical grid systems at different spatial scales we
increase the efficiency of the computing resources usage and speed up
our simulations of a various flooding problems.

Keywords: Numerical simulation · Parallel technology · Graphics
processors · Shallow water equations

1 Introduction

Various hydrology problems for the real terrain surface b(x, y) with taking into
account important physical factors for large areas can be studied by using mod-
ern computational technologies [11]. Believed that control of the hydrological
regime of the floodplain landscape during the spring flood on large rivers is one
of the most important problem facing the numerical simulation [13]. Solution of
this problem requires a very efficient numerical method based on a parallel tech-
nology [5]. For example, to make a both ecological and economic management
of the Volga-Akhtuba floodplain we have to solve the optimization problem of
hydrograph for the specific conditions of each year [14]. We also need to explore
the results of different modes of operation of tens hydraulic structures in the
floodplain and for a new facilities projects. Each that research requires hundreds
of numerical experiments on the basis of a direct hydrodynamic simulation of
the shallow water dynamics on the area of 2000 × 20000 square kilometers.

Our practice of using large supercomputers1 for a large number of hydro-
dynamic simulations arises a number of problems related to necessity to do a
numerous simulations during the short time period and then following transfer

1 In particular, the one is at Research Computing Center of M.V. Lomonosov Moscow
State University [12].
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of a large massive of data for later processing and analysis. Both performance of
calculations and post-processing of the simulation data are an important factors
in the usage of such models in practice. An additional problem is the visualization
of the calculations, which seems a common difficulty for a very high-performance
machines [9]. However we can partly solve these problems in case of using the
computing resources such as personal supercomputers based on GPU accelera-
tors. The paper discusses the results of the software package development for
the parallel hydrodynamic simulations on the nodes C2070, K20, K40, K80.

2 Mathematical and Numerical Models

2.1 Basic Equations

Numerical simulations are based on the shallow water model (Saint-Venant equa-
tions) in the following form:

∂H

∂t
+

∂HUx

∂x
+

∂HUy

∂y
= σ , (1)

∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y
= −g

∂η

∂x
+ Fx +

σ

H
(Vx − Ux) , (2)

∂Uy

∂t
+ Ux

∂Uy

∂x
+ Uy

∂Uy

∂y
= −g

∂η

∂y
+ Fy +

σ

H
(Vy − Uy) , (3)

where H is the water depth, Ux, Uy are the horizontal components of water
velocity vector U , which is averaged along the vertical direction, σ is the surface
density of the water sources and drains [m/sec], g is gravitational acceleration,
η(x, y, t) = H(x, y, t) + b(x, y) is the free water surface level, Vx, Vy are the
mean horizontal velocity vector components of water at the source or drain
(V = Vxex + Vyey), Fx, Fy are the horizontal components of the external and
internal forces (F = Fxex + Fyey) acting the water layer. The total density of
the forces can be written as

F = F fric + F visc + F cor + F wind , (4)

where F fric = −λ
2U |U | is the force of bottom friction, λ = 2gn2

M

H4/3 is the value of
hydraulic friction, nM is the phenomenological Manning roughness coefficient,
F visc = ν(∂2Ux

∂x2 + ∂2Uy

∂y2 ) is the viscous force of internal friction between layers of
flow, ν is the kinematic turbulent viscosity, F cor = 2[U ×Ω] is the Coriolis force,
Ω is the angular velocity of Earth’s rotation, fwind = Ca

ρa

ρH (W −U)|W −U | is
the wind force acting on the water layer, parameter Ca determines the state of
the water surface, ρa and ρ are the densities of air and water, respectively, W is
the wind velocity vector in the horizontal direction.

The model (1)–(3) takes into account the following factors [3]: irregular,
inhomogeneous terrain b(x, y); flow interaction with the underlying inhomoge-
neous topography; Earth’s rotation; interaction of water flow with wind; sources,



134 T. Dyakonova et al.

caused by work of hydraulic structures and rainfall; filtration and evaporation;
internal friction due to turbulent transport.

In work [5] proposed the so-called “Co-design” approach of the computational
models construction. It takes into account the architecture of the supercomputer
when one is creating the program code. The increased efficiency is based on the
maximization of independent calculations and taking into account the peculiar-
ities of the numerical algorithms for solving the equations of Saint-Venant in
inhomogeneous terrain b(x, y).

2.2 Grids System and Matrix of Digital Terrain Elevation

Despite the complex, irregular topography of large rivers (Volga, Akhtuba)
riverbeds, numerous channels and small ducts, in the simulations with the
unsteady “wet-dry” type boundaries we used an uniform Cartesian grid Δxi =
Δyj = Δx = Δy which let us increase the efficiency of CSPH-TVD method (see
Sect. 2.3). Typical grid size 	 is limited by the depth of the fluid H. Since our
problem is strongly non-steady, the fluid depth in computational cells can vary
from 10 cm in the flooded areas of land up to 30 m in riverbed of the Volga.
Therefore, for the shallow water model we use a large-scale grid for the simula-
tion of deep channel areas and a small-scale grid for the calculations of flooded
land areas.

Figure 1 shows a grid structure which allows us to use efficiently computa-
tional resources because the fluid flow occurs only in a small number of cells. We
simulate the dynamics of the surface water on hierarchical grid system (HGS)
sequentially from the smaller to the largest scales with taking into account not
smooth source distribution. Zoom-in technology is used only for mission-critical
areas [2]. This type of simulation is based on usage of two (or even more) grids
with different spatial resolution depending on physical parameters of the water
flow. In this case the simulated flows on the small-scale grid affects on the simu-
lation on the larger grid. Zoom-in models without this feedback are less accurate
but faster in computational sense.

2.3 The Numerical Hydrodynamic Scheme

Figure 2 shows the calculation scheme of the CSPH-TVD method [1,6–8], where
h = Δx = Δy is the spatial resolution, 0 < K < 1 is the Courant num-
ber which determines the stability of our numerical scheme, Up = max[|Un

x +
sign(Fx)

√
hFx|, |Un

y + sign(Fy)
√

hFy|], Us = max(|Un
x | +

√
gHn, |Un

y | +
√

gHn.
There are four main stages of computations at a given time step tn. Lagrangian
approach is applied to the I and II stages, and the third and fourth stages are
based on Euler approach. Both source terms Q and σ (see Fig. 2 and (1)) are
determined by external and internal forces respectively, and they have to be cal-
culated firstly. Time step τn is also calculated at this stage. Then, at the second
stage, we calculate the changes of variables q by using the results we obtained
at the first stage. Thus, we find the displacement of the Lagrangian particles Δr
inside the cells. At this stage the predictor-corrector scheme gives the second



Numerical Model of Shallow Water: The Use of NVIDIA CUDA 135

Fig. 1. The hierarchical system of grids for the flooded area between the Volga and
Akhtuba Rivers.

order accuracy for time integration. In the third stage, the fluxes of mass and
momentum through the boundaries of Euler cells are calculated by using the
approximate solution of the Riemann problem. In the last stage we update the
values of q on the next time step tn+1 and here we also put back the particles
to the centers of the grid cells (xi, yj).

There are several advantages of the numerical scheme described above, such
as the second order of accuracy for the both time and spatial integration, the
conservativeness, the well-balanced property and the straightforward simulation
of a “water – dry bottom” dynamical boundaries without any regularization [4].

3 Parallel Realization of Numerical Model

CUDA technology was used to parallelize the CSPH-TVD numerical scheme
which in turn let us to use efficiently the hierarchical grid system (HGS, see
Sect. 2.1). This is due to the fact that HGS blocks are a kind of analogue of
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Fig. 2. The main stages of the computational scheme for the solution of shallow water
equations.

Fig. 3. The hierarchy of threads on the GPU devices adjusted for the dynamic
parallelization.

CUDA stream blocks, which provide the execution of CUDA-cores (Fig. 3). Using
CUDA dynamic parallelism is a feature of implemented approach that allows
detailed calculations of hydrodynamic flows in the small-scale grids with addi-
tional threads for the most important spatial zones associated with irregular
topography.

The computational algorithm described in Sect. 2 is parallelized by using
the hybrid OpenMP-CUDA parallel programming model. Activity diagram of
the main stages of the numerical algorithm is shown in Fig. 4. We use the
following notations for computing CUDA cores: K1—kernel Index block is the
determination of water-filled blocks; K2—kernel forces predictor calculates the
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Fig. 4. Activity diagram for the calculation module.

forces at the time tn on the Lagrangian stage; K3—kernel dt calculates the
time step Δtn+1, depending on the flow parameters on the layer n; K4—
kernel SPH predictor calculates the new provisions of the particles and the inte-
gral characteristics at time tn+1/2; K5—kernel forces corrector determines the
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forces on the intermediate time layer tn+1/2; K6—kernel SPH corrector calcu-
lates the positions of the particles and the integrated characteristics for the next
time layer tn+1; K7—kernel TVD flux calculates the flux physical quantities
through the cell boundaries at time tn+1; K8—kernel Final determines the final
hydrodynamic parameters at time tn+1.

The diagram in the Fig. 4 demonstrates the features of CSPH–TVD method.
We emphasize that the computational algorithm separation is optimal usage
of GPU resources of eight CUDA-cores in case of shallow water flows on the
irregular topography.

Fig. 5. Contributions of different stages of the CSPH-TVD numerical scheme at a given
time step.

Figure. 5 shows the execution time proportions of the main stages of the
numerical algorithm for the corresponding CUDA-cores. We spend almost 60%
of the time on the calculation of the fluxes for the TVD-stage kernel TVD flux
(see Fig. 5). This is because at this stage we solve the Riemann problem.
Taking into account the calculation of forces kernel forces predictor and ker-
nel forces corrector the total contribution from TVD-stage increases and it
is dominant. We have just over 8% from the Lagrangian stage (sum of ker-
nel SPH predictor and kernel SPH corrector). Thus, the SPH-stage significantly
improves the properties of the numerical scheme, but an additional stage has lit-
tle effect on the final calculation time.
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Fragment of the program (See below) implements the final stage of the cal-
culation (CUDA-core K8) with checking of the presence of liquid in the CUDA-
block with size of 16×16 cells. If liquid is absent in the started block (parameter
Index block is zero), the computations are skipped for all threads in the block.
Similar approach we apply for other CUDA-cores as well (K2, K4, K5, K6 and
K7).

The code fragment for CUDA-cores K8

__global__ void kernel_Final(double *H, double2 *HV, double *Ht,

double2 *HVt, double *Fh, double2 *Fv, int2 *Index_block,

double tau){

int ib=blockIdx.x+blockIdx.y*gridDim.x;

int x = threadIdx.x + blockIdx.x * blockDim.x, y = threadIdx.y +

blockIdx.y * blockDim.y;

int ind = x + y * blockDim.x * gridDim.x;

if(Index_block[ib].x > 0 || Index_block[ib].y > 0){

double dt_h = tau/dd.hp, Eps=dd.Eps, ht, Flux_h;

double2 hv=make_double2(0,0);

ht = Ht[ind]; Flux_h=Fh[ind];

if( ht>Eps || fabs(Flux_h)>Eps){

ht = dev_h(ht + dt_h*Flux_h);

hv.x = dev_hv(HVt[ind].x + dt_h*Fv[ind].x,ht);

hv.y = dev_hv(HVt[ind].y + dt_h*Fv[ind].y,ht);

}

H[ind]=ht; HV[ind]=hv; Ht[ind]=0; HVt[ind]=make_double2(0,0);

}else {Ht[ind]=0; HVt[ind] = make_double2(0,0);}

}

Parameter Index block is determined in the CUDA-core K1 (See below).
The variable Index block is the structure of type int2 containing two integer
fields Index block.x and Index block.y. The condition Index block.x > 0 indicates
the presence of water at least in one cell of this CUDA-block. If the condition
Index block.y > 0 is satisfied, there is a water at least in one of the CUDA-
block surrounding cells. Since there are liquid fluxes through the CUDA-block
boundaries on the Euler stage in the CUDA-core K7, we have to check the
availability of water in the boundary cells of the surrounding CUDA-blocks.

The code fragment for CUDA-core K1

__global__ void kernel_Index_block(int2 *Index_block, int *Index_Q,

double *H){

__shared__ int2 Sij[ithbx*ithby];

int ind_thb = threadIdx.x + ithbx*threadIdx.y;

int ib=blockIdx.x+blockIdx.y*gridDim.x;

int x = threadIdx.x + blockIdx.x*blockDim.x, y = threadIdx.y +

blockIdx.y*blockDim.y;

int tid, xx, yy, i, j, si, sj, Ni, Nj, isi, jsj, m;

double2 D=make_double2(0,0); int2 iD=make_int2(0,0);

if(threadIdx.x == 0){Ni=1; si=-1;}

else if(threadIdx.x == ithbx-1){Ni=1; si=1;}
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else {Ni=0; si=0;}

if(threadIdx.y == 0){Nj=1; sj=-1;}

else if(threadIdx.y == ithby-1){Nj=1; sj=1;}

else {Nj=0; sj=0;}

for(i=0; i<=Ni; i++){

isi = i*si;

if(x==0 && isi<=-1) xx = x;

else if(x==dd.Nx-1 && isi>=1) xx = x;

else xx = x + isi;

if(i==0) m=Nj; else m=0;

for(j=0; j<=m; j++){

jsj = j*sj;

if(y==0 && jsj<=-1) yy = y;

else if(y==dd.Ny-1 && jsj>=1) yy = y;

else yy = y + jsj;

tid = xx + yy*dd.Nx;

if(i>0 || j>0) {D.y += H[tid]; iD.y += Index_Q[tid]; }

if(i==0 & j==0) {D.x += H[tid]; iD.x += Index_Q[tid]; }

}

}

if(D.x>dd.Eps || iD.x>0) Sij[ind_thb].x=1;

else Sij[ind_thb].x=0;

if(D.y>dd.Eps || iD.y>0) Sij[ind_thb].y=1;

else Sij[ind_thb].y=0;

__syncthreads();

int k = ithbx*ithby/2;

while(k != 0){

if(ind_thb < k) {Sij[ind_thb].x += Sij[ind_thb+k].x;

Sij[ind_thb].y += Sij[ind_thb+k].y; }

__syncthreads();

k /= 2; }

if(ind_thb == 0) {Index_block[ib].x = Sij[0].x;

Index_block[ib].y = Sij[0].y; }

}

The two-level parallelization scheme (Fig. 6a) is more suitable for hybrid
systems type CPU + n× GPU. Direct Access technology provides the fast data
exchange at different GPU. This technology is applicable only for the GPUs,
which are connected to the PCI Express buses under the control of one CPU
(Fig. 6b).

4 Comparison of the Effectiveness for Different GPU

The Fig. 7 a shows the diagram of Software Productivity for four Tesla graphics
cards. The capture time executing CUDA kernels on the GPU (or GPU utiliza-
tion) are quoted in percentages. We used the NVIDIA Parallel Nsight for profiling
the program. In the transition to more efficient GPU with a large number of scalar
cores we have a decrease in the percentage of GPU utilization and it is related to
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Fig. 6. (a) The two-level scheme of parallelization with OpenMP–CUDA. (b) Archi-
tecture 2×CPU+4×GPU.

Fig. 7. (a) Time calculation of flooding dynamics for the northern part of the floodplain
for a period of 20 h on different GPU using the grid 1024×1024. (b) Distribution of
memory registers of GPU-multiprocessors on CUDA-cores for different GPU.

the number of computational cells 1024 × 1024 (with Δx = Δy = 50 m). GPU
utilization increases in the case of 10 − 25 m spatial resolution. It is important to
emphasize that the use of the spatial resolution < 10 m may violate the approxi-
mation of the shallow water equations. Thus, the use of personal supercomputers
with multi-GPU is the most suitable for the simulation of flooding over an area of
about 104 km2 considering the factor of GPU Utilization.

The Fig. 7 b shows a diagram of the distribution of memory registers on a
stream for CUDA-cores. We selected the parameters of the program for our
graphic accelerators to avoid the spilling of registers.
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5 The Simulation Results

We have a good agreement between the results of our numerical simulations and
observation data for the dynamics of water level on the gauging stations and
for the flooding area in May 2011 (Fig. 8, See details in the [6,7,11]). As an
example, consider the problem of emergency water discharge from the dam for
the rate of 100000m3/s. Simulations were performed for the north part of the
Volga-Akhtuba floodplain of the area 51200m×51200m. Breaking wave formed
due to the emergency discharge leads to the complete flooding of the studied
area of the floodplain for 20 h. The mean flow velocity in the floodplain is 5 m/s
and the average depth equals to 6 m. The ratio between the water and land in
the entire field of modeling is ∼ 35%, and its maximum is ∼ 60%. For such
problems, it is recommended to use the described approach (See Sect. 3) based
on check of the presence of liquid in the computing CUDA-blocks, that speed
up calculations by a factor of 1.5 − 2.

Fig. 8. A comparison of water levels η from observations (line 1 ) at gauging station
“Svetlyj Jar” with numerical simulation result (line 2 ).

The Fig. 9 shows the results of numerical modeling of flooding territories with
taking into account of the zoom-in approach. Calculations were performed for
the two grids:
— the global (main) grid which covers the entire area of simulations with the
number of cells equal to 1024 × 1024 (Δx = Δy = 50 m);
— the local grid for a critical region where we adopted a much higher spatial
resolution Δx = Δy = 12.5 m (size of calculation domain is 1024 × 1024, in the
vicinity of village or complex terrain).
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Fig. 9. Hydrological state in the floodplain at time t = 10h using the zoom-in approach.
Top frame shows the flow structure on the global grid. (Δx = Δy = 50m), bottom
frame shows the flow structure on the small grid (Δx = Δy = 12.5 m). The water depth
distributions and the velocity field are shown by the color and arrowheads respectively.
(Color figure online)
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6 Conclusion

We have investigated some features of the parallel implementation of numerical
models for the Saint-Venant equations in the case when the flooded area changes
in a wide range over the time. For example, the area under the water level may
increase by a factor of tens or even hundreds in the period of spring floods for
the Volga-Akhtuba floodplain. To improve the efficiency of these calculations
we used a hybrid OpenMP-CUDA parallelization approach and developed the
method for choice of the CUDA-blocks with the aim to control the presence
of liquid in the computational cells. Our parallel implementation reduced the
computation time by a factor of 100 − 1200 for different GPU in comparison to
sequential code.
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Abstract. The report is devoted to numerical simulation of interaction between
the post-shock wave frontal of supernova blast remnants and the gas of two
molecular clouds (MC). The dynamical formation of MC structures associated
with Kelvin-Helmholtz and Richtmayer-Meshkov instabilities occurring in the
cloud and interstellar medium interaction zone is simulated. The MC gas flow
evolution is derived from the time dependent equations of mass, momentum,
and energy conservation. High resolution computational meshes (more than two
billion nodes) were used in parallel computing on multiprocessor hybrid com-
puters. In the model two initially spatially separated clouds with different gas
density distribution fields interact with the post-shock medium. The peculiarities
of clump and shell fragmentation of clouds and formation of filamentous rudi-
ment structures are considered.

Keywords: Parallel computing � Supersonic turbulence � Shock waves �
Supernova blast remnants � Small molecular clouds

1 Introduction

The development of parallel algorithms intended for the solution of astrophysics
problems of sizeable spatial and time scales is a necessary step to further exaflops
calculations. The paper presents the results of using new computational codes to
simulate the interaction of shock waves of different nature and the molecular clouds
(MC) unevenly distributed in galaxies. There are many sources of shock wave
occurrence. They are formed by supernova explosions, collisions of giant molecular
clouds, and so forth [1]. Propagation and collision of shock waves and their interaction
with MCs are instrumental in the event chain resulting in a star formation via
self-gravity of gas in dynamically varying molecular clouds.

The concept of long-lived MCs has given place to the recognition that in terms of
galaxy age standards MCs are low-lifetime objects. Such clouds are quickly generated
from the matter of interstellar medium (ISM), a part of which falls under strong shock
wave compression in extended filaments and globules that eventually collapse and
partially convert into stars [2]. The ISM matter concentrates and condenses in a spatial
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network of filaments. Suitable conditions for the gravity force commencement are
engendering during the formation of the abovementioned structures. MCs are cold and
dense enough, so gravity force is a major contributor to the emergence of very dense
areas. At sufficiently small scales (about one parsec) the gravity begins dominating over
dynamic forces what can be accompanied by supersonic fluctuations of a matter. This
gives rise to numerous yet denser gas bulges, specific cores of protostars and their
clusters. Simulation of such astrophysical processes based on the gas-dynamic
description of turbulent mediums enables us to speak uniformly when describing the
form alteration of matter in galaxies [3].

Processing of astrophysical objects images obtained by means of orbiting and
Earth-based telescopes shows that the filament structures are widespread [4]. Star
formation is believed to occur within their limits. Current models of the MC formation
are associated with shock influence on the process of gravitational instability and
turbulence [5, 6]. The interstellar medium is heavily fragmented. Even at the largest
scales, small molecular clouds (SMCs) are seen as fragments inside the giant molecular
clouds (GMCs). These extended regions are caused by turbulence and have similar
fractal structures in larger formation [7].

In the paper the authors simulate and analyze the influence of shock waves and
generated turbulence on forming primary filamentary structures of evolving SMCs. The
gas density contrast v ¼ qcl

qism
varies in the range of 100–5000. The merge of SMCs into

GMCs with more powerful hydrodynamic and magnetic effects are required in order to
form dense structures. In some ways, observed in calculations the turbulent transfor-
mations of denser layers of clouds are initiating the further filamentous structures of
galactic scale. The analysis of filamentary structures is possible at primary stages of
their formation. This approach is common in a number of studies devoted to the
simulation of supersonic turbulent flows when solving the problems of astrophysics of
different spatial and temporal scales differing by several orders of magnitude [8].

In recent times, the concept that large-scale magnetic instabilities initiate the for-
mation of MCs, with their lifetime being � 2� 107 years, has got widespread use [9].
Ambipolar diffusion of magnetic flux [10] and turbulence transition of MCs [11] are
proposed as mechanisms causing the delay of star formation in MCs. The recent studies
have shown that only a small proportion of MCs are dense enough to be sources of
protostellar cores. Therefore, the observed low rate of star formation is caused by small
volumetric fraction of MCs that are sufficiently dense to contain protostellar cores [12].

Current models of the MC formation are associated with the gravitational instability
and turbulence influence on these processes [5]. In terms of galaxy, gravity can lead to
the highly dynamic collapse of MC matter (� 107 years). However, turbulence pro-
cesses caused by the gravity, the effects of shock waves from supernova explosions, the
collisions with the remnants of supernova shells, the density drops of galaxy spiral
arms, the MC collisions with other clouds may accelerate the collapse of MC matters.
Viewed in this way, a MC state is an intermediate redistribution of turbulent energy
cascade when it enters a MC at small dissipative scales [13].
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2 Simulation of Shock Wave Collision with Two MCs

The objects studied in the paper have a wide range of sizes and densities. The inter-
stellar medium that fills in our and other galaxies has a density of about 10�25 g � cm�3;
the density of MCs which are generated by interstellar matter is two or three orders of
magnitude greater. After the shock wave interaction with MCs their density further
increases by several orders of magnitude. Such a wide range of values for reference
distances and densities imposes narrow constraints on numerical mesh size, which are
necessary to achieve a sufficient spatial resolution of emerging flows in simulation.
Small-size mesh calculations lead to loss of resolution of fast-fluctuating variables and
important flow details. As shown in [9], the acceleration and mixing in MCs occur up
to five times as fast on a low resolution mesh.

In calculations, we used meshes with resolution from 512 � 256 � 256 to
2048 � 1024 � 1024 nodes. To make hydrodynamic calculations of the shock wave
interaction with a MC in adiabatic approximation it is necessary to use at least about
100 mesh nodes per MC initial radius. The chosen resolution affects the visualization of
filament formation areas. The calculations made suggest that it is difficult to distinguish
the details of formation of vortices and strains of filamentous structures in low reso-
lution meshes.

Numerical simulation is conducted for the case of shock wave interaction with two
MCs, with Mach number being equal to seven, which are at various compression stages
and therefore have different radial density distribution over their volumes. Main
gas-dynamic characteristics are put in correspondence with the accepted values of a
pioneer work [3] and of recent studies [2, 14–16], where the shock wave interaction
with a single cloud was simulated.

2.1 Initial Conditions

Before disturbance the interstellar medium contains substance in a plasma state
(T � 10000K). Cold molecular clouds (T � 100K) of high density are nonuniformly
distributed in the medium. Initially the clouds are in dynamic equilibrium with back-
ground gas. The model uses the ideal gas law with c ¼ 5=3. The density of interstellar
medium is based on qism ¼ 2:15 � 10�25 g � cm�3, the temperature is Tism ¼ 104

K; uism ¼ 0:0. The cloud density is qcl ¼ 1:075 � 10�22 g � cm�3, the temperature is
Tcl ¼ 100K; ucl ¼ 0:0. Gas parameters behind the shock wave are determined by the
Rankine–Hugoniot equations. Mach number for a shock wave is equal to M ¼ 7, the
density is qsw ¼ 8:6 � 10�25 g � cm�3, the temperature is Tsw ¼ 1:5 � 105 K, the velocity is
ush ¼ 104 km/s The shock front thickness is rather large and is � 2�5 pc which is much
more than a cloud radius. Cloud dimensions are of 0.1 pc, the period of time the shock
wave propagates the upper cloud diameter �tswoc is about 2000 years (“swoc” – shock
wave over cloud).

Figure 1 shows the initial location of clouds. At the initial moment the shock wave
impacting the conventional boundary of the upper cloud is approaching to spherical
MCs. The assumed layout of lower C1 and upper C2 clouds is provided with various
laws of density distribution, each one emphasizing the individual character of their
gravity fields.
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The density profiles shown are determined in accordance with the recommenda-
tions of smoothing boundary density distributions in [14, 17] where collisions of shock
waves with single MCs were simulated. The initial mass of clouds C1 and C2 are
assumed as 0:005M� and 0:007M�, respectively (in solar mass fractions). The contrast
density ratio in the globular formation center is assumed as v ¼ qcl

qism
¼ 500. The

computation domain is a parallelepiped of 3.2 � 1.6 � 1.6 pc. The MC standard
radius corresponds to 128 mesh nodes. Boundary conditions for primary variables at
the lateral boundaries of the computation region are taken as open.

2.2 Parallelization and Performance Optimization

To compute the MC 3D motion and evolution, a set of Euler equations written in a
conservative form are used. To solve the equations a numerical simulation with dif-
ference scheme of high resolution like TVD is used. The difference scheme has
second-order accuracy and allows high-accuracy computations to be done for the zones
close to shock waves and contact discontinuities, and nonphysical oscillations to be
prevented. The problem is solved with an Euler mesh. The mathematical statement of
the problem and its numerical simulation is detailed in [18].

A computation procedure is used to compute on multiprocessor hybrid computers
with OpenMP and CUDA. OpenMP was set up with Intel VTune Amplifier XE. The
amplifier can profile applications in the cluster node directly. Lightweight Hotspots
analysis is used. Xeon E2630 and Xeon E5 2650 Ivy Bridge processors are set up.

The parallel part of computations is performed with either GPU or Intel Xeon
processors. The computations are performed on cluster nodes having 24- or 40-core

Fig. 1. Computational domain layout
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processors and with OpenMP. When CUDA is applied, NVIDIA GeForce 980 TI with
6 Gb DDR5 is used. 70% of the computation time is devoted to the computations of
hydrodynamic flows at 3D mesh cell boundaries. A parallel algorithm is built for faster
execution; it computes the flows with all CPU cores available. Details of the proposed
algorithm and its fine-tuning with software tools can be found in [16]. An algorithm
based on CUDA platform is built to accelerate the computations. It employs the
technology of CUF kernel generation which is usually used for basic cycles. These
directives tell the compiler how to generate kernels for the basic embedded loop of the
host program. Thus, the generation of CUF kernels for cycles allows the computation
to be performed in GPU directly from the host program.

Comparing the efficiency of CPU and GPU computations is not entirely correct.
The thing is that the efficiency of Intel and PGI compilers used by FORTRAN is pretty
much different. For this reason the authors compare the efficiency of CPU and GPU
computations at the estimated level since the difference of one and the same code
(OpenMP) efficiency on one and the same processor is more than 30%. For not very
large mesh dimensions, up to 1024 � 512 � 512 nodes, GPU parallelization gives
better results in time than OpenMP parallelization. With the mesh dimension increase
GPU computation speed reduces. It is connected with the larger volume of the infor-
mation transmitted via rather low bus PCI-E.

The computations performed with various computation meshes shows qualitatively
identical results but in different degree of detail. The chosen resolution limits the
identification of flow instability details and fluctuation magnitudes, the monitoring of
the compression of shell boundary layers and the formation of emerging filaments.

2.3 Analysis of MC Forming after Shock Impact

At initial time, when a bow shock wave rounds clouds, a wave is formed behind its
front. The wave moves towards the flow and forms a primary disturbance. Because of
the sudden gas density change at MC boundaries the Richtmyer–Meshkov instabil-
ity occurs. Simultaneously the flow velocity slope increases between the cloud
boundary layers in the region of mixing with surrounding gas, with the Kelvin–
Helmholtz instability occurring. There occur convective acceleration and whirling of
the boundary layers of the conventional border between a MC and a surrounding
matter, zones with large and small gas density. The mixing of C1 and C2 cloud spatial
tracks looks like the formation of Kármán vortex streets.

Figure 2 shows the dynamics of shaping with numerical schlierens in a central
cross-section of the computational domain, morphology of cloud mixing, and density
gradient distribution with shock wave wakes. The figures show how shock waves
compress the selected regions of gas flows and sharply increase their density. The
interference of reflected shock waves and the intensive fluctuations of supersonic
velocity fields in gradient zones lead to sharp differentiation of gas density, up to the
contrast density ratio v � 2000. Gas compression zones concentrate along film shells
of a conventional cylinder-conical form and elongated in the direction of the shock
wave propagation.
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The global circulation of a gas flow in the mixing zone begins to appear after cloud
C1 being rounded by a shock wave and finds its source in two vortex lines born inside
the cloud at the back side. The flow swirl occurs in accordance with the scheme of
spatial twin vortex, see Fig. 3. Positive and negative boundary values of the longitu-
dinal component variable of the vortex field rotation are shown in light and dark tones,
respectively. The variable distribution is shown on the Q-criterion field isosurface.
Initially, a vortex wake of the upper cloud is sucked inside the rear part of the lower
one, and then the transformation of helixes with reverse twist and turn in the direction

Fig. 2. Change of MC density structure from t ¼ 40 � tswoc to t ¼ 600 � tswoc
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of cloud drift occurs. The wake shifts and their upstream turn happen. With the flow
development the vortex lines elongate, kink, take the form of hairpins, and expand in
the bend region.

Figure 4 shows typical vortex formation with torus-like structures, elongated loops,
and helical deformations.

Fig. 3. General flow circulation inside MCs at initial stages from t ¼ 80 � tswoc to t ¼ 120 � tswoc
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Fig. 4. Q-criterion distribution Q ¼ 100Þð – vortex indicator with velocity contours over and
inside a MCs for different time stages t=tswoc
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To differentiate some peculiarities of the flow vortex structure, the authors compute
Q-criterion fields, the second invariant of a velocity gradient tensor being used to
identify the regions of small-scale vortex concentrations. The grey color palette maps
of local velocity shown on Q-criterion surfaces are illustrative of gas flow intermit-
tency. Vortices have smaller distribution density within the mixing region, at the
boundaries and surfaces of elongated filamentous film rudiments the vortex distribution
densities are significantly higher and show a local velocity slope in different MC
regions.

The gas flows in the mixing region show high turbulence. The fluctuation intensity
in boundary zones increases by an order, and the fluctuations take on values exceeding
local supersonic velocity by more than one third at the measuring points.

Figure 5 shows the distribution fields of the peculiarities for one of MC evolution
periods. The spatial location analysis of intensive fluctuations shows that their sharp
change zones are associated with their following the conventional boundaries of fila-
mentous formations.

Figure 6 illustrates a MC fragmentation. To provide visual convenience the authors
show only half of 3D presentation of density visibility isosurfaces ðv ¼ 10; 100; 500Þ,
bounded v–surfaces are shown as translucent ðv ¼ 1000; 2000Þ. The right part of the
figure shows breaking cloud fragmentation with a spatial division of forming fila-
mentous regions with v ¼ 600, condensations formed at longer evolution periods.

Fig. 5. High relief of turbulent velocity fluctuation intensity for u0= Uj j, built in mid-plane of
MC mixing region, at t ¼ 300 � tswoc
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The analysis of forming ‘clump and shell’ filamentous structures elongated by
shock wave strengths shows that the fragmentation of a two cloud system in time
generally follows time pictures of breaking described in [2, 14–17] for single MCs.
Under more general simulation conditions it is more evident and natural when shock
waves interact with initially spatially distributed clouds and various gravity field dis-
tributions. The continuation of collision simulation for molecular cloud systems allows
the intermediate filamentous rudiment formations to be revealed [19].

Tracking changes in a gas size distribution in an actual time of numerical experi-
ments shows that longer time of deforming cloud drift leads to the fact that the median
of MC density fraction distributions shifts to their density visibility increase v up to the
magnitudes of order of 700. To clarify possible variations of this factor value, probably
oscillating in time, the additional numerical research is necessary. The research should
be predicted till the estimated time of about 10000 � tswoc, the model being added with
magnetic fields with computational meshes two-three times greater than the present
work provides.

Fig. 6. Gas density fragmentation at t ¼ 500 � tswoc and filamentous structure evolution. The
bottom fragment shows the numerical schlieren for density gradient at t ¼ 480 � tswoc
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Abstract. In this paper, a numerical scheme for solving a system of
convection-diffusion-kinetics equations of a mathematical model of transport of
small pollutant components with their chemical interactions in the atmospheric
boundary layer is presented. A new monotonized high-accuracy spline scheme
is proposed to approximate the convective terms. Various approaches to par-
allelization of the computational algorithm are developed and tested. These are
based on a two-dimensional decomposition of the calculation domain with
synchronous or asynchronous interprocessor data communications for dis-
tributed memory computer systems.

Keywords: Pollutant transport in the atmosphere � Parallel computing �
Two-dimensional decomposition � High-accuracy numerical scheme

1 Introduction

Mathematical modeling is presently an efficient tool for monitoring and prediction of
atmospheric air pollution on regional and urban scales under increased emissions of
anthropogenic pollutants into the atmosphere due to industrial development, heat and
electrical power engineering, combined with ever larger vehicular emissions.

The methods of air pollution estimation were greatly improved when the
empirical-statistical analysis of air quality by Gaussian-type models was replaced by
atmospheric diffusion theories [1]. The description of pollutant transport by turbulent
diffusion equations is more versatile, since it allows studying pollutant dispersion from
sources of various types and taking into account precipitation, chemical reactions, and
other processes under variable weather conditions by using meteorological parameters
calculated with mesoscale meteorological models [2].

A detailed simulation of complex atmospheric processes on regional scales
involves many calculations. The computational workload will only increase when such
models involve finer spatial resolution and incorporate a wider range of atmospheric
phenomena [3].

When implementing numerically the atmospheric boundary layer and pollutant
transport models, it is important to choose a good-quality difference scheme with
minimum artificial viscosity for the approximation of the convective terms of the
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equation. In the present paper, we propose a high-accuracy monotonized scheme that
has an advantage over such schemes as MUSCL, ENO, and SUPERBEE [4–6], which
are widely used for solving transport problems.

The purpose of this study is to develop a difference scheme based on local weight
splines to approximate the convective terms of the transport equation and test some
parallel algorithms based on a two-dimensional decomposition of the grid domain for
solving numerically the equations of a three-dimensional predictive model of pollutant
transport with chemical reactions.

2 Three-Dimensional Predictive Model of Pollutant
Transport with Chemical and Photochemical Reactions

To calculate the concentrations of pollution components with chemical interactions
between them, we use an Eulerian turbulent diffusion model with transport equations of
advection, turbulent diffusion, and chemical reactions [7]:

@Ci

@t
þ @UCi

@x
þ @VCi

@y
þ @WCi

@z
¼� @

@x
ciuh i � @

@y
civh i � @

@z
ciwh i

� riCi þ Si þRi; i ¼ 1; ::; ns: ð1Þ

Here Ci and ci are the mean and pulsational components of the ith pollutant component
concentration, respectively; U, V, u, and v are the mean and pulsational components of
the horizontal wind velocity vector; W and w are the mean and pulsational components
of the vertical pollutant velocity component; h i denotes Reynolds averaging; Si is a
source term of emission of pollutant components into the atmosphere; Ri is the rate of
formation and transformation of the pollutant by chemical and photochemical reactions
with participation of the pollutant components; ri is the wet deposition rate due to
precipitation; ns is the number of the pollutant chemical components with concentra-
tions to be determined; x and y are the horizontal coordinates, Ox-axis is directed to the
east and Oy-axis, to the north; z is the vertical coordinate; t is the time and T is the
simulation time period. The calculation domain is a parallelepiped, Lx and Ly are its
horizontal dimensions and h is its height, −Lx/2 � x � Lx/2, −Ly/2 � y � Ly/2,
0 � z � h, 0 � t � T.

Equation (1) are underdetermined, since, in addition to the concentrations Ci to be
determined, they have some unknown functions, the correlations ciuh i, civh i, and ciwh i,
which simulate turbulent diffusion of the pollutant. In this paper, these are determined
from some closure relations obtained by equilibrium approximations for the differential
equations of turbulent mass fluxes under the conditions of local homogeneity of the
atmospheric boundary layer [7]:

ciuh i ¼ � s
C1h

1� C2hð Þ ciwh i @U
@z

þ u2
� � @Ci

@x
þ vuh i @Ci

@y
þ wuh i @Ci

@z

� �
; ð2Þ
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civh i ¼ � s
C1h

1� C2hð Þ ciwh i @V
@z

þ uvh i @Ci

@x
þ v2
� � @Ci

@y
þ wvh i @Ci

@z

� �
; ð3Þ

ciwh i ¼ � s
C1h þD1CF

� 1� C3hð Þ g
H

cihh iþ uwh i @Ci

@x
þ vwh i @Ci

@y
þ w2
� � @Ci

@z

� �
;

ð4Þ

hcihi ¼ �s
cx
2

hciwi @H
@z

þhhui @Ci

@x
þhhvi @Ci

@y
þhhwi @Ci

@z

� �
: ð5Þ

Here s is the time scale of turbulent pulsations, g is the acceleration due to gravity, C1h,
C2h, C3h, D1C, and cx are empirical constants, F is a function determining the influence
of the surface on the turbulent structure of the flow, H and h are mean and pulsational

components of the potential temperature: H ¼ T P0=Pð ÞR=cp , P is the pressure, P0 is the
pressure on the surface, cp is the specific heat capacity of air at constant pressure, T is
the absolute temperature, and R is the gas constant.

In this system, the Reynolds stresses uvh i, uwh i, vwh i and the turbulent heat fluxes
uhh i, vhh i, whh i are unknown. Some relations presented in paper [8] are used to specify
these correlations.

A simplified photochemical scheme of Danish Meteorological Institute (DMI) is
currently incorporated into the model [9].

3 Initial and Boundary Conditions. Deposition and Emission

Boundary conditions of dry deposition of the pollution components in the form of a
simple model of resistance and of the pollutants coming from ground-based sources Sgi
are specified on the lower boundary [10]:

� ciwh i ¼ VdiCi � Sgi ; i ¼ 1; ::; ns; ð6Þ

Vdi ¼ 1
ra þ rb þ rc

; ra ¼ W z=z0; z=Lð Þ
v�

; rb ¼ 2 Sci=0:72ð Þ2=3
jv�

; ð7Þ

W z=z0; z=Lð Þ ¼ ln z=z0ð Þ � 2 ln
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1�9z=L

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�9z0=L

p
� �

; z=L� 0

ln z=z0ð Þþ 6; 34 z
L � z0

L

� �
; z=L[ 0:

8<
: ð8Þ

Here Vdi is the rate of dry deposition of the ith pollutant component, ra is the aero-
dynamic resistance of turbulent atmosphere by the topographic elements of the surface,
rb is the laminar sublayer resistance by the roughness elements of the surface, rc is the
vegetation-caused resistance, z0 is the roughness height, L is the Obukhov scale, Sci is
the Schmidt number for the ith pollutant component, j ¼ 0:41 is the von Karman
constant, and v� is the dynamic velocity.
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Simple gradient conditions are specified on the upper boundary for the concen-
trations Ci:

@Ci

@z
¼ 0; i ¼ 1; . . .; ns: ð9Þ

On the lateral boundaries of the calculation domain, we use “radiation”-type con-
ditions allowing perturbations generated in the domain (errors of the method and
rounding errors) to leave it without reflection. These are formulated as follows (index
i is omitted):

@C
@t

þVph
@C
@n

¼ @C0

@t
þVph

@C0

@n
; ð10Þ

where C is a concentration, C0 is a basic concentration of the pollutant, n is the normal
to the surface, and Vph is the phase velocity.

The basic values are taken as initial conditions for the pollutant concentration
distribution in the atmosphere. The values of the pollutant components in the atmo-
sphere after some preliminary simulation period (several dozens of hours) are close to
those in real conditions. The basic values of the pollutant components are calculated
separately in the absence of anthropogenic sources.

The fields of meteorological characteristics of the atmospheric boundary layer are
calculated by a mesoscale meteorological model [11].

4 Numerical Calculation Method

To describe the numerical method, we restrict our consideration to the one-dimensional
nonsteady convection diffusion equation (u = const, D = const > 0):

@U
@t

þ u
@U
@x

¼ D
@2U
@x2

þ SU; 0\x\X; 0\t� T: ð11Þ

Initial condition: t ¼ 0; U 0; xð Þ ¼ U00 xð Þ:
Boundary conditions: x ¼ 0; U t; 0ð Þ ¼ U0 tð Þ; x ¼ X; @U

@x ¼ 0:

For the domain 0� x�X, we construct a grid (Fig. 1) with non-overlapping finite
volumes, which is uniform in time and space:

X0

1 2x 3 2x 1 2Nx 1 2Nx

Nx1x x
...

Fig. 1. Uniform grid along the Ox-axis.
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�xh;s ¼ fðtn; xmÞ; tn ¼ s � n; xm ¼ h � mþ h=2; n ¼ 0; . . .;N; m ¼ 0; . . .;M � 1;

h ¼ X=M; s ¼ T=Ng: ð12Þ

Here xmþ 1=2; m ¼ 0; . . .;M are the locations of finite volume edges; and xm; m ¼
1; . . .;M are the locations offinite volume nodes. Let Un

m � U tn; xmð Þ be a grid function.
Then, according to the second step of the finite volume method, all terms of Eq. (11)

are integrated over the mth finite volume on the time interval [tn, tn+1]. Some interpo-
lation formulas are used to calculate the integrals, and finite difference ones to calculate
the derivatives. Thus, we obtain an explicit difference scheme of the following form:

Unþ 1
m � Un

m

s
þ u

Un
mþ 1=2 � Un

m�1=2

h
¼ D

Un
mþ 1 � 2Un

m þUn
m�1

h2
þ SU: ð13Þ

Each term of Eq. (11) is expressed in terms of discrete values of U at some neighboring
nodes, except for the convective term, in which the dependent variable values at the
finite volume edges are used. To determine these values in terms of the grid function
values at the grid nodes, schemes of various orders of accuracy are currently used. The
upstream and central difference schemes are most popular [12]. The former has con-
siderable scheme viscosity, and the latter is non-monotonic. Therefore, to numerically
describe the processes with dominant convection, high-order monotonized schemes
[4–6, 13] (each of them has certain advantages and shortcomings) are preferable.

In this paper, a new monotonized scheme of high order accuracy (up to the fourth
order where the grid function is monotonic) is proposed to approximate the convective
term of the equation under consideration. This scheme is constructed with local weight
cubic splines capable of reproducing a monotonic distribution of the dependent variable
at the next time level.

Consider a local weight cubic interpolation spline constructed using “slopes”.
Let us introduce a local grid �xh ¼ xj�1; xj; xjþ 1; xjþ 2

	 

on the interval [0, X]. Here,

h denotes the distance between the grid nodes. On each elementary interval [xi, xi+1] we
introduce a third-order polynomial Si(x) whose coefficients are to be determined. For
convenience, Si(x) is written in the following form:

SiðxÞ ¼ ai0 þ ai1ðx� xiÞþ ai2ðx� xiÞ2 þ ai3ðx� xiÞ3;
x 2 ½xi; xiþ 1�; i ¼ j� 1; j; jþ 1; SiðxiÞ ¼ Ui; i ¼ j� 1; j; jþ 1; jþ 2;
S0i xið Þ ¼ S0i�1 xið Þ; i ¼ j; jþ 1; wi�1S00i�1 xið Þ ¼ wiS00i xið Þ; i ¼ j; jþ 1:

ð14Þ

Since it is planned to construct (determine the coefficients of) the weight cubic spline
using “slopes”, ðS0i xið Þ ¼ mi; S0i xiþ 1ð Þ ¼ miþ 1; i ¼ j� 1; j; jþ 1Þ, and make the
solution to the problem unique, we set the following additional conditions at the
boundaries:

mj�1 ¼ @U
@x

� �

j�1
; mjþ 2 ¼ @U

@x

� �

jþ 2
: ð15Þ
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To determine the spline coefficients, we use the continuity of the first derivative, the
conditions of interpolation, and wi�1S00i�1 xið Þ ¼ wiS00i xið Þ; i ¼ j; jþ 1. Finally, we obtain
the following system:

mj�1 ¼ @U
@x

� �

j�1
wi�1

h
mi�1 þ 2

wi�1

h
þ wi

h

� �
mi þ wi

h
miþ 1 ¼

3
Ui � Ui�1

h2
wi�1 þ Uiþ 1 � Ui

h2
wi

� �
; i ¼ j; jþ 1

mjþ 2 ¼ @U
@x

� �

jþ 2
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð16Þ

The derivatives in this system are approximated by second-order finite differences. This
system has strict diagonal dominance, which provides the existence and uniqueness of
the weight cubic spline.

Now we obtain the following formula for the construction of splines using “slopes”:

SiðxÞ ¼ miþ 1 þmi
h2 ðx� xiÞ3 � 2 Uiþ 1�Ui

h3 ðx� xiÞ3 þ 3 Uiþ 1�Ui
h2 ðx� xiÞ2

� 2mi þmiþ 1
h ðx� xiÞ2 þmiðx� xiÞþUi:

ð17Þ

The weights wi may be specified in various ways. For a spline without oscillations to
interpolate monotonic data, B.I. Kvasov’s theorem presented below can be used [14].

Theorem 1. Let a weight cubic spline S 2 C1 a; b½ � with boundary conditions S0 x0ð Þ ¼
f 00 and S0 xnþ 1ð Þ ¼ f 0nþ 1 interpolate monotonic data fif g; i ¼ 0; . . .; nþ 1. If the
inequalities 0� f 00 � 3f x0; x1½ �, 0; le f 0Nþ 1; le 3f xN ; xNþ 1½ �,

wi�1

wi

hi
hi�1

� f xi; xiþ 1½ �
f xi�1; xi½ � � 2; and

wi

wi�1

hi�1

hi
� f xi�1; xi½ �

f xi; xiþ 1½ � � 2;

are valid, S0 xð Þ� 0 for all x 2 a; b½ �, that is, the spline S is monotonic on [a, b].

An analog of this theorem can be formulated for monotonically decreasing data.
The following algorithm may be used in calculating the weight coefficients [14].

Let a parameter wi�1 be given. Assume that wi ¼ wi�1. Check the inequalities of the
theorem to be used. If some condition is violated, express wi from this and change the
inequality into an equality. Start the algorithm with w0 ¼ 1, and find all the parameters
wif g providing monotonicity of the weight cubic spline for arbitrary monotonic data. If

at some step wi \ e; wi [ 1=eð Þ, set wi ¼ e; wi ¼ 1=eð Þ, where e is a sufficiently small
positive number that makes it possible to avoid nulling (overflow).

Returning to the construction of the difference scheme, consider ae method of
approximating Un

mþ 1=2 in the convective term based on the thus obtained local cubic
spline:
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Un
mþ 1=2 ¼ Sm xmþ 1=2

� �
: ð18Þ

The spline construction algorithm allows a monotonic approximation of monotonic
data. However, if the data are not monotonic, there arises the problem of monotonicity.
To avoid this problem, a limiter is further applied to the spline [15].

In this case, the spline approximation is as follows:

Un
mþ 1=2 ¼

Un
m þ 1

2 �max 0;min 2H;W; 2ð Þ½ � � Un
mþ 1 � Un

m

� �
; u[ 0

Un
mþ 1 � 1

2 �max 0;min 2H; Ŵ; 2
� �h i

� Un
mþ 1 � Un

m

� �
; u� 0;

(
ð19Þ

where

H ¼ Un
m � Un

m�1

Un
mþ 1 � Un

m
; W ¼ Sm xmþ 1=2

� �� Un
m

0:5ðUn
mþ 1 � Un

mÞ
; ð20Þ

Ĥ ¼ Un
mþ 2 � Un

mþ 1

Un
mþ 1 � Un

m
; Ŵ ¼ Un

mþ 1 � Sm xmþ 1=2
� �

0:5ðUn
mþ 1 � Un

mÞ
: ð21Þ

To test the feasibility of the constructed scheme, consider the problem (11) at
SU(t, x) = 0, X = 2 without diffusion and at the following initial conditions:

U00 xð Þ ¼ 1; x 2 0:75; 1:25ð Þ
0; x 62 0:75; 1:25ð Þ:


ð22Þ

The exact solution of this problem may be written as U� t; xð Þ ¼ U00 x� utð Þ:
This problem has been calculated under the following conditions: M = 100, u = 1,

D = 0, h = 0.02, s = 0.004, T = 50 s.
The problem has also been solved by the other above-listed [4–6] methods. The

error norm values are presented in Table 1.

Table 1. Comparison of the methods accuracy

Method max
m¼0;...;M

UN
m � U�ðT; xmÞ

�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m¼0;...;M

UN
m�U�ðT;xmÞj j2

r

M

1. Upwind 0.44374 0.01129
2. MLU 0.28130 0.00522
3. MUSCL 0.27333 0.00513
4. ENO 0.31731 0.00618
5. Spline 0.21682 0.00401
6. Harten scheme 0.36789 0.00810
7. SuperBee 0.32330 0.00607
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On the basis of these data one can conclude that the use of the spline function has
an advantage over the other schemes.

5 Parallelization of the Numerical Algorithm

The calculation domain is a 50 	 50 	 2 km parallelepiped located in the atmospheric
surface layer such that its square base has a part of the underlying surface with a large
population area in its center. In the calculations the pollutant emission from some area
sources on the surface is taken into account. The domain is covered with a calculation
grid of Nx 	 Ny 	 Nz = 100 	 100 	 30 nodes. The prediction simulation period is
typically 48 h. The time step is Dtc = 6 s for the calculations of chemical transfor-
mations and Dt = 60 s for the convection-diffusion ones. The fields of meteorological
characteristics needed for the calculations are prepared before the calculation of the
concentration fields using a mesoscale model [11].

This model is mostly used for short-term predictions of air quality over urban
territories. Therefore, it is important for the calculation time to be as small as possible.
The currently available workstations and servers with multicore architecture cannot
provide the needed speedup when using the typical sequential or shared memory
version of the program. However, the usage of the distributed memory computers can
decrease the overall calculation time.

In parallel implementation of the algorithm, choosing an optimal method of dis-
tributing the calculations among the processors is very important. This is determined by
the peculiarities of the algorithm itself, the computer system architecture, the number of
processors available for the calculations, as well as by some physical and computa-
tional considerations. Let us consider some peculiarities in the development of parallel
programs and assess the speedup and efficiency at a two-dimensional grid domain
decomposition. The scheme of the calculation domain is presented in Fig. 2.

Fig. 2. Schematic diagram of the calculation domain and two-dimensional decomposition at
parallel implementation of the explicit-implicit method using four processors as an example
ðp ¼ 4; px ¼ 2; py ¼ 2Þ.
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The (2 � ix � Nx + 1) 	 (2 � iy � Ny + 1) calculation domain is bordered by
two rows of fictitious cells along the perimeter to implement the calculation template
being used and provide second or higher order of approximation.

6 Implementation of the Two-Dimensional Decomposition

The two-dimensional decomposition implies better scalability of the problem solved by
finite difference or finite element methods on multi-processor computer systems, since
this approach allows using a larger number of processors. For example, under some
constraint on the width of the grid domain being processed p2 parallel processes can be
used at the two-dimensional decomposition.

The two-dimensional implementation using the MPI library [16] differs consider-
ably from the one-dimensional one. First, it is necessary to organize a two-dimensional
topology of the simultaneous processes. In the present paper, a Cartesian topology
version is chosen. After the MPI is initialized and the number of processors to be used
is defined, the MPI_Dims_Create procedure choosing optimal parameters
px 	 py = p for the two-dimensional decomposition is called. With these parameters
the MPI_Cart_Create procedure creates a Cartesian topology with renumbering of the
processes (px and py are the numbers of one-dimensional decompositions performed
independently along the Ox and Oy coordinate directions).

Subsequent calls of the MPI_Comm_Rank and MPI_Cart_Shift procedures allow
determining the new number of the process and the new numbers of neighboring
processes in the Cartesian topology. The dimensions of the subdomains for each of the
processes are calculated simultaneously. This approach makes it possible to organize
calculations at any number of processors. However, for a balanced distribution of the
load it is recommended to choose an value for p satisfying the condition px ¼ py ¼ ffiffiffi

p
p

.
Second, the two-dimensional decomposition implementation of the interprocessor

data exchanges is more complicated. In the one-dimensional case, the direction of
decomposition can always be chosen so that the elements of the three-dimensional
concentration array along the boundary are located in the memory successively one
after another, which is certainly convenient for the formation of the message. However,
at the two-dimensional decomposition this cannot be done for all directions of the
decomposition. Therefore, to organize data exchanges using the MPI_Type_Hvector
procedure, new data types are created. These are three-dimensional arrays of
cross-sections of the subdomain by the planes X = const and Y = const (g_vector and
h_vector, see Fig. 2) with dimensions (Nz, 1, Ny/py) and (Nz, Nx/px, 1), respectively.
The data exchange between the processors is performed using such blocks with
non-blocking exchange operations MPI_ISEND and MPI_IRECV.

Third, at the two-dimensional decomposition it is not easy to “assemble” the
solution on one processor element. To do this, for instance, before delivering it to a file,
the processes form one-dimensional data arrays and send them to processor element
“0”, which collects the data received and rewrites them in an appropriate order to a
three-dimensional array.
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7 Speedup and Efficiency

In this paper, the speedup of the parallel algorithm in comparison to the serial one and
its efficiency are studied experimentally. For this aim a series of calculations has been
performed on a TSU cluster called Cyberia for a simulation period of one hour, a
100 	 100 	 30 calculation grid, and a DMI kinetic scheme of chemical and
photo-chemical reactions [9]. To provide load balancing and, thereby, achieve the best
efficiency, calculations are made with a number of processes such that the number of
grid nodes processed by each processor element being the same (weak speedup esti-
mation). 1, 4, 16, 25, and 100 processors of the calculation cluster are used. The
speedups are presented in Fig. 3 with two variants of data package exchange between
the processors:

– Configuration 1: two-dimensional decomposition, synchronous exchanges
(send/recv);

– Configuration 2: two-dimensional decomposition, asynchronous exchanges, “ad-
vanced transmitions” (isend/irecv).

In the case of a small number of processes (up to 16) the use of advanced transmitions
does not provide any advantage. However, the situation changes when the number of
processes increases. With 16 and more processors the number of inter-processor
exchanges increases, which increases the idle time of the processors waiting for
completion of the message transfer with blocking operations. The efficiency of con-
figuration 1 decreases, which is especially demonstrated by the high performance of the
program with asynchronous operations (Configuration 2) (Fig. 3).
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Fig. 3. Parallel program speedup for various calculation domain decompositions.
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Thus, the results of the calculations have shown that when more than 16 processes
are used the technology of advanced sending makes it possible to increase the effi-
ciency of the parallel program operation by 8–12% in comparison to the use of
blocking procedures of message exchange. This is a rather impressive figure when a
large volume of calculations is performed.

8 Numerical Experiment

The problem to be solved is as follows: there is a permanent pollutant emission in an
urban region at one grid cell of the zone being considered. The horizontal dimensions
of the zone are 50 	 50 km. The grid has 100 nodes in each horizontal direction and
30 height levels. A two-day wind field predicted by a mesoscale model is also used in
the calculations [11].

In the center of the zone there is an area from which a gaseous pollutant is emitted
at a rate of 104 mg/s. The problem is to predict the concentration with the wind field for
the subsequent time. To solve this problem, three methods of approximating the
convective terms of the transport equations are considered MLU, MUSCL [4, 15], and
the spline interpolation being proposed. The figures below show the pollutant con-
centration propagation and the wind field for 29 and 41 h of physical time after the start
of the simulation.

It follows from the wind fields shown in Fig. 4 that in the first case (a) the surface
wind direction is North-West. This situation leads to a considerable scheme diffusion,
since the wind is directed at an angle of 45° to the grid lines [12]. The other case (b) is
also of interest, with restructuring of the surface wind field and “returning” of the
pollutant being transported back to the source.

Fig. 4. Surface pollutant concentrations and wind field after (a) 29 h and (b) 41 h.
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Figures 5 and 6 show the pollutant concentration distributions at the same times
when the MLU schemes [4] and MUSCL [15], as well as the spline scheme, are used.
The comparison of the results is made using the local concentration maxima in the right
lower corner of the figures. The schemes MLU and MUSCL show similar results. The
results of the spline scheme provide a larger size of the zone with higher pollutant
concentration. That is, according to Fig. 5 in this zone the surface pollutant concen-
tration is 0.002 mg/m3 over the larger part of the territory, and with the two other
schemes a concentration of 0.0015 mg/m3 is predicted. The spline scheme more
accurately predicts the concentration level with less smoothing of the numerical
solution. Similar conclusions can be made from Fig. 6.

The above results make it possible to conclude that the spline scheme constructed
to approximate the convective terms of the transport equation has less scheme diffu-
sion. This allows one to make better prediction of local maxima in the numerical
solution of pollutant transport problems in the atmosphere.

MLU MUSCL Spline scheme 
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Fig. 5. Pollutant concentration after 29 h.

MLU MUSCL Spline scheme 

Fig. 6. Pollutant concentration after 41 h.
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9 Conclusions

A numerical scheme for solving a system of convection-diffusion-kinetics equations of
the mathematical model for transport of small pollutant components with chemical
interactions in the atmospheric boundary layer is presented. A new monotonized
high-accuracy spline scheme is proposed to approximate the convective terms. It has
been shown that this scheme has an advantage over the monotonized schemes of
second or third order used to solve such problems. Various approaches to construct the
parallel computational algorithm are developed and tested. These approaches are based
on a two-dimensional decomposition of the calculation domain with synchronous or
asynchronous methods of interprocessor data transmission for distributed-memory
computer systems. It has been shown that advanced transmissions of the calculated
boundary values of the grid function with asynchronous data exchanges speeds up the
calculations.
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Abstract. To carry out some calculations in physics and Earth sciences,
for example, to determine spherical harmonics in geodesy or angular
momentum in quantum mechanics, it is necessary to compute normal-
ized Legendre polynomials. We consider the solution to this problem on
modern graphics processing units, whose massively parallel architectures
allow to perform calculations for many arguments, orders and degrees of
polynomials simultaneously. For higher degrees of a polynomial, compu-
tations are characterized by a considerable spread in numerical values
and lead to overflow and/or underflow problems. In order to avoid such
problems, support for extended-range arithmetic has been implemented.

Keywords: Normalized Legendre polynomials · Extended-range
arithmetic · GPU · CUDA

1 Introduction

Associated Legendre polynomials are solutions of the differential equation

(1 − x2)
d2

dx2
Pm
n (x) − 2x

d

dx
Pm
n (x) +

[
n(n + 1) − m2

1 − x2

]
Pm
n (x) = 0, (1)

where degree n and order m are integers satisfying 0 ≤ n, 0 ≤ m ≤ n, and x is
a real variable in the interval [−1, 1] which is usually expressed as cos θ, where
θ represents the colatitude [1, Chap. 15].

These polynomials are important when defining geopotential of the Earth’s
surface [2,3], spherical functions in molecular dynamics [4], angular momentum
in quantum mechanics [5], as well as in a number of other physical applica-
tions. The accuracy and scale of numerical simulations directly depend on the
maximum degree of a polynomial which can be correctly computed. Modern
applications typically operate upon first-kind (m = 0) polynomials at a degree
of 103 or higher. The functions Pm

n (x) grow combinatorially with n and can
overflow for n larger than about 150. Therefore, for large n, instead of Pm

n (x),
normalized associated Legendre polynomials are computed. There are a number
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of different normalization methods [6, Chap. 7]. We consider the computation of
fully normalized polynomials

P̄m
n (x) =

√
2n + 1

2
(n − m)!
(n + m)!

(1 − x2)m/2 ∂m

∂xm
Pn(x), (2)

which satisfy the following equation:
∫ 1

−1

{P̄m
n (x)}2dx = 1. (3)

Mathematical properties and numerical tables of P̄m
n (x) are given in [7]. A

number of recursive algorithms are suggested to evaluate P̄m
n (x) [8–10]. One of

the most common ones is based on the following relation [8]:

P̄m−1
n (x) = 2mx√

(1−x2)(n+m)(n−m+1)
P̄m
n (x) −

√
(n−m)(n+m+1)
(n+m)(n−m+1) P̄

m+1
n (x). (4)

The starting points for recursion (4) are the values P̄n+1
n (x) = 0 and

P̄n
n (x) =

√
1
2

3 · 5 · · · (2n + 1)
2 · 4 · · · 2n

(1 − x2)n/2. (5)

Equations (4) and (5) are asymptotically stable at any admissible parameters
x, m and n, so if we consider them in terms of pure mathematics, they are
appropriate for computing polynomials of an arbitrarily high degree. In practical
computation, however, there are difficulties in computing (4) and (5) when n
becomes large [3]. This is due to the following reasons:

– computations take an unacceptable long time;
– overflow or underflow exceptions may occur.

The first of these problems stems from the fact that during the numerical
simulation it is required to compute many polynomials of different degrees at
a fixed angle, or many fixed degree polynomials for a variety of angles. An
effective solution to this problem has been made possible thanks to the intensive
development of new generation massively parallel computing architectures, such
as graphics processing units (GPUs).

The second problem is related to the limited dynamic range of real num-
bers which are represented in computers [11]. As a result, if x is about ±1, the
computation of the starting value P̄n

n (x) leads to underflow, even though the
desired value P̄m

n (x) is within an acceptable dynamic range. For example, if x =
0.984808, which corresponds to angle θ ≈ 10◦, then P̄ 5000

5000 (x) ≈ 1.42 × 10−3801

while P̄ 0
5000(x) ≈ 3.32 × 10−1. The smallest normal value in IEEE-754 double-

precision format is approximately equal to 10−308. Thus, to evaluate P̄ 5000
5000 (x),

it is necessary to extend the dynamic range by more than an order of magni-
tude. The value of P̄ 5000

5000 (x) is not of independent practical interest, however,
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it is impossible to start recursion for calculating P̄ 0
5000(x) without it being cor-

rectly computed, because if, due to underflow, P̄ 5000
5000 (x) = 0, then all following

values P̄ 4999
5000 (x), P̄ 4998

5000 (x), etc. will also become zero. On the other hand, calcu-
lating the fraction in (5) in a conventional way (first the numerator, and then
the denominator) may lead to overflow exception. Some information about the
range of angles and limitations to polynomial degrees at which calculations in
IEEE-754 arithmetic do not result in exceptions is given in [2].

To avoid overflow or underflow problems, methods using global scaling coef-
ficients are suggested [9]. However, as noted in [3], this solves the problem only
for limited ranges of arguments and degrees. The general solution to the overflow
and/or underflow problem when computing the normalized Legendre polynomi-
als is suggested in [8] and involves the use of extended-range arithmetic.

In this paper we consider parallel computation of normalized polynomials
P̄m
n (x) of high degrees in extended-range arithmetic using CUDA-compatible

GPUs. Due to a high level of task parallelism, the transfer of computations to the
GPU has allowed to achieve significant performance improvement, as compared
with the CPU implementation.

2 Extended-Range Arithmetic

2.1 Basic Algorithms

Currently, IEEE-754 standard is the main standard for binary floating-point
arithmetic [12]. It defines two most widely used formats: a single-precision for-
mat (binary32) and a double-precision format (binary64). These formats are
supported, to some extent, at both the hardware level and the level of program-
ming language. In 2008, a revision to IEEE-754 standard was published, which
further describes the quadruple-precision binary format—binary128, and two
decimal formats—decimal64 and decimal128 [13]. However, support for these
new formats is currently implemented in quite rare cases. The properties of
single- and double-precision binary formats are presented in Table 1. In this
table, the number of digits of the significand, p, defines precision of the format;
integers emin and emax are the extremal exponents; nmax is the largest positive
finite number, nmin is the smallest positive normal number, and smin is the small-
est positive subnormal number; the segment [nmin, nmax] specifies the range of
positive normal numbers, and the segment [smin, nmax] specifies the total range
of positive finite numbers.

Table 1. The properties of IEEE-754 single-precision and double-precision formats

p emin emax nmin nmax smin

binary32 24 −126 +127 2−126 (2 − 2−23) × 2127 2−149

binary64 53 −1022 +1023 2−1022 (2 − 2−52) × 21023 2−1074
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The situation when the intermediate result of an arithmetic operation or
function exceeds in magnitude the largest finite floating-point number nmax =
(2 − 21−p) × 2emax in IEEE-754 standard is defined as overflow. When there
is overflow, the result, depending on the used rounding mode, is replaced with
infinity (±∞) or the largest finite floating-point number. The situation when the
intermediate result of an arithmetic operation is too close to zero, i.e. in mag-
nitude it is strictly less than the smallest positive normal number nmin = 2emin

is defined as underflow [13,14]. When there is underflow, the result is replaced
with zero, subnormal number, or the smallest positive normal number. In all
cases, the sign of the rounded result coincides with the sign of the intermediate
result. The exceptions examined are presented in Fig. 1.

0

–nmin nmin–nmax nmax

Overflow OverflowUnderflow

Fig. 1. Overflow and underflow in floating-point arithmetic

One of the ways to eliminate overflow or underflow is scaling. This method
requires estimating the source operands and multiplying them by factor K chosen
so that all intermediate results are within the normal range. After the computa-
tion of the final result, scaling is carried out by dividing it by K [14]. In terms of
computing speed, this technique is evidently the best one. However, it requires a
detailed analysis of the whole computing process and is not applicable in many
cases. A more common approach is emulation of extended-range arithmetic. To
do this, the integer e is paired with a conventional floating-point number f , and
this pair is considered as a number

f × Be, (6)

where B is a predetermined constant that is a power of the floating-point base [8,
11]. Significand f can take values in the interval (1/B,B). Given this, B must be
such as for any arithmetic operation performed with f , no underflow or overflow
occurs. It is advisable that B is a natural power of two (for a binary computer).

For instance, if

– f is a double-precision number (binary64),
– e is a 32-bit signed integer (−2147483648 ≤ e ≤ 2147483647) and
– B = 2256,

then the range of the represented numbers will exceed 10±165492990270.
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The algorithms for basic extended-range operations are considered in [8,11],
and therefore, we will focus only on some of them. In the following, we will assume
that the base of exponent B is uniquely determined and the extended-range
number is represented by a pair (f, e). Algorithm 1 performs the “adjustment”
of the number. It is one of the basic extended-range arithmetic algorithms. It
provides control of the value range of significand f , as well as its correction in
case the input is incorrect encoding of zero.

Algorithm 1. Adjustment of the extended-range representation
1: procedure Adjust(f, e)
2: if f = 0 then
3: return (0, 0)
4: else if |f | ≥ B then
5: f ← f/2log2 B � Subtracting log2 B from exponent of f
6: e ← e + 1
7: else if |f | ≤ 1/B then
8: f ← f × 2log2 B � Adding log2 B to exponent of f
9: e ← e − 1

10: end if
11: return (f, e)
12: end procedure

It is important to note that it is not always enough to carry out the Adjust
procedure only one time. This can take place at least in the following two cases:
(a) when the number is converted from the machine format or a format with
different from the current exponent base; (b) when subtraction of almost equal
numbers (or addition with different signs) is performed. In any of these cases,
it is possible that, after the Adjust procedure has been performed, significand
f is less than 1/B. If it is ignored and the computation process is continued,
gradual “zeroing” of the result is likely to take place. To avoid this, it is possible
to use a cyclic adjustment procedure which is implemented by Algorithm2.

Algorithm 2. Cyclic adjustment of the extended-range representation. Proce-
dure should be used in conversion, signed addition and subtraction algorithms.
1: procedure CyclicAdjust(f, e)
2: (f1, e1) ← Adjust(f, e)
3: while e �= e1 or f �= f1 do
4: (f, e) ← (f1, e1)
5: (f1, e1) ← Adjust(f, e)
6: end while
7: return (f, e)
8: end procedure
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Algorithm 3 performs addition of extended-range representations. Algorithms
for subtraction and comparison are quite similar to the addition algorithm, so
their description seems to be unnecessary.

Algorithm 3. Adding extended-range numbers, (fz, ez) ← (fx, ex) + (fy, ey)
1: procedure Add(fx, ex, fy, ey)
2: if fx = 0 and ex = 0 then return (fy, ey)
3: else if fy = 0 and ey = 0 then return (fx, ex)
4: end if
5: Δe = |ex − ey|
6: if ex > ey then
7: fz ← fx + fy × 2−Δe×log2 B

8: ez ← ex

9: else if ey > ex then
10: fz ← fy + fx × 2−Δe×log2 B

11: ez ← ey

12: else if ey = ex then
13: fz ← fx + fy

14: ez ← ex

15: end if
16: return CyclicAdjust(fz, ez)
17: end procedure

2.2 Implementation of Extended-Range Arithmetic

We have implemented all basic algorithms of extended-range arithmetic, and a
number of mathematical functions for CPUs and NVIDIA CUDA-compatible
GPUs. Do to it, data types shown in Fig. 2 were declared.

Fig. 2. Extended-range data types: er frac t—standard floating-point number
(double by default), er exp t—machine integer (int64 t by default)
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The list of implemented CPU- and CUDA-functions includes the following:

– memory management and constants initialization;
– addition, subtraction, multiplication and division, supporting four IEEE-754

rounding modes, as well as comparison functions;
– integer floor and ceiling functions, computation of the fractional part;
– functions of converting numbers from the double-precision IEEE-754 data

type to extended-range data type, and vice versa;
– factorial, power, square root, and a number of other mathematical functions.

The exponent base B is defined in parameters. By default B = 2. It is quite
enough for the computation carried out. The declaration of CPU- and GPU-
functions is identical (cuda namespace is used for GPU-functions). Pointers are
used for effective passing of parameters. All functions are thread-safe.

Efficiency of extended-range arithmetic is largely determined by the speed of
converting numbers from the machine floating-point representation to extended-
range representation, and vice versa. To implement these procedures, we used bit-
wise operations. In particular, Fig. 3 shows the subroutine er set d that converts
a conventional IEEE-754 double-precision number into the extended-range rep-
resentation. This subroutine uses the DoubleIntUnion structure, which allows
storing double and integer data types in the same memory location.

Fig. 3. Conversion of a double-precision floating-point number into the extended-range
representation. For the double data type, SIGN OFFSET = 63, EXP OFFSET = 52 and
EXP BIAS = 1023.
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3 Computation of Normalized Legendre Polynomials
on CPU and GPU

3.1 Computation of Starting Point of Recursion

Our implementation of normalized Legendre polynomials computation is based
on the recursion (4), which, in turn, requires computation of relation (5). In case
of high degree n of polynomial, direct computation of (5) is time-consuming
since it requires computing two double factorials in the extended-range arith-
metic, (2n+1)!! = 3 ·5 · · · (2n+1) and (2n)!! = 2 ·4 · · · 2n. When one polynomial
is computed, it is not critical. However, the problem becomes urgent when many
polynomials of various degrees are computed sequentially. In addition, in case
of direct computation of factorials in the machine-precision floating-point arith-
metic, significant rounding errors can accumulate. To partially solve the prob-
lem, the ROM lookup table (LUT) can be used which stores values (i·2h+1)!!

(i·2h)!! for

i = 1, 2, . . . , N , where h and N are some integers. Then, for computing (2n+1)!!
(2n)!! ,

where n is the polynomial degree, one has to take the �n/h�-th value from LUT,
and compute

∏n−q
i=1

2(q+i)+1
2(q+i) , where q = h�n/h�, and multiply these two values.

The size of LUT is determined by step h and the maximum degree of polynomial
n we want to compute. For instance, if n = 50000 and h = 100, LUT will contain
N = 500 values. LUT content is computed in advance with high precision, after
which it is converted into the extended-range format.

3.2 Developed Software for Computing Legendre Polynomials

Based on the implemented extended-range arithmetic functions (Subsect. 2.2),
CPU- and CUDA-subroutines were developed, which allow computing P̄m

n (x)
for large n ≥ 0 and at any m, 0 ≤ m ≤ n. They are shown in Table 2.

For implementation on the GPU, the direct paralleling scheme was chosen,
according to which i-th GPU thread computes a polynomial of degree n[i] and
order m[i] for argument x[i]. The result is written with a corresponding offset to
res array. The number of the required thread blocks is defined by the following:

N =
⌈

vector size

max threads per block

⌉
, (7)

where vector size is the size of the input vectors, max threads per block is the
maximum number of threads in a block. If N does not exceed the maximum
number of blocks for the device, fully parallel computation of all polynomials is
possible. Otherwise, some threads compute more than one polynomial. Listing
of CUDA kernel legendre lst is given in Fig. 4.

4 Experimental Results

The evaluation of correctness and efficiency of the developed subroutines was
carried out within HP SL390+NVIDIA Tesla M2090 stand of UniHUB.ru plat-
form at the Institute for System Programming of the Russian Academy of Sci-
ences [15]. Three software implementations of the recursive algorithm (4) have
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Table 2. Subroutines to compute normalized Legendre polynomials

Subroutine Parameters Description

legendre eqls er t res Computation of P̄ n
n (x) in accordance with

(5) with optimization from Subsect. 3.1.
The result is a pointer res.

er t x

uint32 t const n

legendre recur er t res One iteration of recursion (4). For the given
P̄ m

n (x) (parameter p1) and P̄ m+1
n (x)

(parameter p2) P̄ m−1
n (x) is computed. The

result is a pointer res.

er t x

er t p1

er t p2

uint32 t const n

uint32 t const m

legendre er t res Computation of normalized Legendre
polynomial P̄ m

n (x) of degree n and order m.
The result is a pointer res.

double const x

uint32 t n

uint32 t m

legendre lst er arr t res Computation of the vector of normalized
Legendre polynomials for given vector of
arguments x, vector of degrees n, and vector
of orders m. The result is a pointer res to an
array.

double const *x

uint32 t const *n

uint32 t const *m

uint32 t size

been examined: CPU- and GPU-implementations based on extended-range arith-
metic, and calculations using the GNU MPFR Library.

In the first experiment, we examined dependence of computation time for the
first-kind polynomial on n. The value cos(179◦) ≈ −0.999848 was taken as an
argument. The degree n varied in the range of 100 to 53200, and it was doubled
at each stage of the testing procedure. The results are presented in Fig. 5(a).

In the second experiment, vectors of polynomials were calculated at fixed
m = 0 and n = 20000, whose size ranged from 32 to 8192. The arguments were
defined by the formula xi = cos

(
i × 180

vector size

)
, which allowed calculations for

each vector in the angular range [0◦, 180◦], having a uniform step determined
by the size of the vector (vector size). The experiment results are shown in
Fig. 5(b). Longer GPU computation time, observed at the vector size greater
than 2048, is explained by the limited resources of the used device.

It is worth noting that the subroutines for computation of normalized and
non-normalized associated Legendre polynomials are implemented in a number
of well-known software packages, such as The GNU Scientific Library, Boost,
ALGLIB. However, they allow calculations only for rather small degrees (up to
several thousand). Therefore, these implementations were not analysed in the
experiments.
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Fig. 4. CUDA kernel for computing normalized Legendre polynomials

The computed polynomials P̄m
n (cos θ) for n = 1000, 5000, 15000, 20000, m =

0 with intervals of θ equal to 1◦ are shown in Fig. 6, and the logarithms of the
starting values (5) for recursion (4) are shown in Fig. 7.

(a) (b)

Fig. 5. Experimental results: computation time of P̄ m
n (x) at fixed m = 0 and x =

cos(179◦) versus degree n (a); computation time of the vector of P̄ m
n (x) at fixed m = 0

and n = 20000 versus the vector size (b)
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Fig. 6. Normalized associated Legendre polynomials

Fig. 7. Logarithms of the starting values for recursive computation of normalized asso-
ciated Legendre polynomials
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5 Conclusion

The paper considers the problem of GPU-based calculation of normalized asso-
ciated Legendre polynomials. At high degrees n and orders m, this polynomials
are characterized by a large spread of numerical values, which greatly limits the
possibility of their correct computation in IEEE-754 arithmetic. In particular,
when n = 20000, obtaining correct results in the double-precision format is only
possible for angles ranging from 75◦ to 105◦. Calculations for angles beyond this
range result in underflow. To overcome this limitation, extended-range arith-
metic is implemented on GPU. The experimental evaluation shows that, thanks
to the natural task parallelism and a simple computation scheme, the use of
GPU is effective even with small length vectors. With increasing problem size
the speedup becomes more significant.

When parallel computation of polynomials of the same degree for a set of
different arguments is made, the computation scheme is balanced, since time
complexity of the extended-range arithmetic operations does not depend signifi-
cantly on the magnitude of the arguments. If vectors of polynomials of different
(high) degrees are computed, then, to improve the GPU-implementation perfor-
mance, a more complicated computation scheme involving load balancing can
be applied.
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Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
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Abstract. The modern stage of the industry evolution is characterized
by introduction of nanotechnologies in production. Therefore, scientific
researches of various technological processes and facilities at different
levels of detailing up to atomic are become actual. Multiscale modeling
of microsystems, which combines the methods of continuum mechanics
and molecular dynamics, has become one of the possible approaches.
This report presents elements of supercomputer technology and software,
which enable us to solve some problems of nanotechnologies within the
chosen approach.
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1 Introduction

At present time the world and domestic industry develop their production by
implementing the perspective nanotechnologies. In this connection, the scientific
research of engineering processes and complex technical systems at different scale
levels down to atomic has become particularly relevant. The multiscale model-
ing of microsystems combining methods of continuum mechanics and molec-
ular dynamics became one of widely used mathematical approaches. However
the realization of multiscale computer researches demands development of new
steady numerical methods, parallel algorithms and software tools for ultra-high
performance calculators.

In this work the supercomputer technology details and the software allow-
ing to solve some urgent problems of nanotechnologies within the chosen app-
roach are represented. Micro- and nanosystems are the main object of the
research. These systems are used in the solution of practically important prob-
lems related to the application of modern micro- and nanoelectronics. Creation
of new nanocoverings and nanomaterials by the methods of a gasdynamic spray-
ing the nanoparticles on a substrate [1,2], and also the analysis of chips life
c© Springer International Publishing AG 2016
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cycle, including the problems of interconnections degradation in electronic cir-
cuits [3–6] have been chosen as applications. In this a little heterogeneous applied
subject the general fundamental component was selected. It is connected to
simulation of nonlinear processes in metal–metal, metal–gas, gas–gas, and also
metal–semiconductor, metal–dielectric microsystems.

The chosen microsystems differ in the fact that at relatively small sizes of
their active elements or layers (about tens or several hundred nanometers) the
systems themselves can have quite impressive sizes (from few microns to few
centimeters) in one or several dimensions. Therefore, modeling of such systems
is necessary to produce at least two scales. The first of them refers to the system
in general (macrolevel), the second – to the separate small parts of system down
to the molecules and atoms (microlevel).

As basic models at the macrolevel the different variants of hydrodynamic
system of equations were chosen. They included the elastodynamics (QGD)
[7,8] system of equations supplemented by the electrodynamics equations. As
basic model at the microlevel Newton’s dynamic equations were used. State-
ments of specific mathematical problems are the boundary or initial-boundary
value problems for these equations supplemented by material conditions includ-
ing equations of state and connections. Numerical methods for solving problems
at macrolevel are the grid and are based on the finite volume method [9]. Numer-
ical methods for solving Newton’s equations are based on the Verlet scheme [10].
The general numerical procedure represents a method of splitting into physical
processes [11]. The parallelism principles on coordinates and functions [12] and
the domain decomposition technology [13] are used in parallel realization of the
specified numerical algorithms. Program implementation of approach is executed
on a hybrid technology [14] and is oriented on application of MPI [15], OpenMP
[16] and CUDA Toolkit [17] software. Computer calculations were performed on
systems with central, vector and graphic processors (CPU, VPU and GPU).

2 Statements of Mathematical Problems

In this section, examples of specific problems relevant to the subject areas men-
tioned above are given.

2.1 Mathematical Model for the Problem of Gasdynamic Spray

The central problem of gasdynamic spray modeling is the calculation of gas
mixture flow near the solid surface of installation. As mentioned above, for this
purposes it is proposed to use a multiscale approach, where research is carried out
on at least two scale levels – the basic one (macroscale, ranges from a few tens of
microns to tens of millimeters) and the additional one (microscale, of the order of
a micron or less). The mean gas flow in the channel is computed at the basic level.
At the additional level, calculation is performed for the interactions: (1) between
the gas molecules (determining the flow characteristics); (2) between the gas
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molecules and the solid surface atoms (describing boundary-layer phenomena).
The implementation is based on splitting into physical processes.

At macroscales it is offered to use quasigasdynamic system of equations in
relaxation approximation [7]. Motivation for this is the fact that the QGD sys-
tem belongs to the class of kinetically-consistent approaches and significantly
expands the possibilities of Navier-Stokes model. Their main difference of QGD
from the Navier-Stokes equations is the use of a spatiotemporal averaging pro-
cedure for determining the basic gasdynamic parameters (density, momentum,
and energy). Moreover, the QGD equations have terms that implement addi-
tional smoothing in time and are effective regularizers. The influence of these
terms is exhibited in the case of strongly unsteady flows at Knudsen numbers
close to unity. One more factor in favor of choosing the QGD equations is the
nondimensionalization parameter size on space coinciding with the mean free
path of gas molecules. The mean free path in temperature range 100 – 1200 K
(characteristic for spraying tasks) is between tens and hundreds of nanometers
to tens of microns. At last, explicit versions of sampled QGD equations allow use
both structured and unstructured grids, and build effective parallel algorithms,
that are easy to implement on modern high-performance computing systems.

As an example, we consider a problem about binary gas mixture flow in
a microchannel of spraying installation. The length and diameter can vary in
a wide range, so that the Knudsen number can range from 0.001 to 1. In the
case of a gas mixture, the QGD system is written for each gas separately, but
moment and energy equations include exchange terms, which are responsible for
the agreement between the mixture parameters as a whole.

We write down QGD system of equations for the case of binary gas mixture in
a form invariant under coordinate system, together with the equations of state:

∂ρl

∂t
+ div W(ρ)

l = 0, l = a, b, (1)

∂

∂t
(ρlulk) + div W(ρuk)

l = S
(ρuk)
l , l = a, b, k = x, y, z, (2)

∂El

∂t
+ div W(E)

l = S
(E)
l , l = a, b, (3)

El = ρl

(
1
2
|u|2 + εl

)
, pl = ZlρlRlTl, εl = cV,lTl, l = a, b′ . (4)

Here a and b are labels of gases of which mixture consists. Each gas has its own
mass density ρl = mlnl, mass of molecule ml, number density (concentration) nl,
temperature Tl and macroscopic velocity ul . Other parameters: pl are partial
pressures, El are total energy densities, εl are internal energies, Zl are com-
pressibility factors, cV,l are heat capacities at constant volume, Rl = kB/ml are
gas constants (kB is the Boltzmann’s constant). Vectors W(ρ)

l , W(ρuk)
l , W(E)

l

coincide, up to the sign, with the density fluxes, fluxes of the corresponding
components of the momentum density and energy density. They include QGD
corrections proportional to Maxwell relaxation time, and depend on the coeffi-
cients of viscosity μl and thermal conductivity χl . The exchange terms S

(ρuk)
l
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and S
(E)
l take into account the momentum and energy redistribution between

the gas mixture components depending on the molecular collision frequency.
At microscales the method of molecular dynamics (MD) [18–21] is used. In

this case at the microlevel far from the channel walls the particles of two kinds
(molecules of two gases) are considered, near the walls the particles making the
wall material (usually metal) are added. The behavior of particles is described
by the following Newton’s equations:

ml
vl,i

dt
= Fl,i, vl,i =

drl,i

dt
, i = 1, ..., Nl, l = a, b, c . (5)

Here i is particle’s index, l is particle’s kind (a and b designate a molecules
of the first and second gases, c designates a metal atoms), Nl is total particle
number of kind l . The particle of kind l with index i has mass ml, its own
position vector rl, i, velocity vector vl,i and total force Fl,i acting on this particle.
The interaction of particles is described using the potentials depending on the
particles coordinates. The choice of interaction potential is based on comparing
the mechanical properties of computer model of a potential and actual material
(more details in [18–21]).

The initial conditions at the microlevel are determined by the equilibrium or
quasi equilibrium thermodynamic state of particle system at given temperature,
pressure, and mean momentum. The boundary conditions at the molecular level
depend on the situation to be simulated. To determine the general properties of
the medium, it is sufficient to consider a distinguished three-dimensional volume
of it with periodic boundary conditions on all coordinates. In the study of actual
geometry microsystems, such as a microchannel, one or several directions are of
finite size and the shape of the object is preserved by choosing a suitable potential
or fixing the system. The temperature and total momentum of the system are
controlled with the help of thermostats algorithms.

The system of QGD equations is closed by initial and boundary conditions.
The initial conditions correspond to an equilibrium state of the gas medium
without interactions with external factors. It is possible to consider the case
of a quiescent gas medium in the entire computational domain. The densities,
velocities, and total energies of the gas components are set at the channel inlet.
“Soft” boundary conditions [7] are specified on free surfaces. A special micro-
scopic system consisting of gas molecules and metal atoms is introduced near the
channel walls. The boundary conditions on the wall are set as third-kind con-
ditions describing the exchange of mass, momentum components, and energy
between the gas mixture in the flow and in the near-wall layer. These condi-
tions involve accommodation coefficients determined by tabulated physical data
(which is possible for limited ranges of temperatures and pressures) or computed
using the MD method. Another variant of formulating the boundary conditions
is the direct MD computation of density, momentum, and energy fluxes through
the boundary of the near-wall layer.

To conclude this section we note that for the metal surfaces of the channel
the equation of heat conduction and/or the equation of thermoelasticity should
be written on a macrolevel. However, in this case they can be replaced with
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conditions of thermostatting and reset moment which are easily joined in a
system of Eq. (5) by introducing the thermo- and the barostats adjusting the
particle velocities [19].

2.2 Mathematical Model of Interconnects Degradation

The problem of interconnects degradation in electric circuits of chips is one of
the reasons of rates deceleration in development of modern electronics. Physical
process of interconnects degradation is associated with formation of structural
defects, and then pores and breaks in the electrical lines supplying the chip [3–
6]. Formation of structural defects in metal is connected in its turn with the
electronic wind phenomenon when in case of current passage the freely moving
electrons of a conduction band begin to pull out metal ions from its crystalline
grid. This process significantly amplifies at reducing the cross section of conduc-
tors. In many previous studies it was shown that the pore formation process is
not normal diffusion process. Its driving force is the free energy of disordering the
atoms in a metal grid generated by at least four factors: an electromagnetic field,
heat, mechanical stresses and chemical interactions at the medium boundary. It
is necessary to add capillary phenomena to this also.

The description of the specified physical processes of pore formation in case
of the modern interconnects sizes of hundreds and even tens of nanometers can’t
be carried out only on the basis of the hydro- and electrodynamics equations.
It is also necessary to use multiscale approach. In this paper in addition to the
macromodel used in [3] it is offered to consider the grain structure of conductors
and their surroundings materials calculated at the molecular level. As a result,
kinetic coefficients in the macroequations and boundary effects will be calculated
directly by methods of molecular dynamics that will make calculation as realistic
as possible.

Here is an example of such a complex model. First, we write the hydro- and
electrodynamics equation in quasi stationary quasi neutral case:

{
div j = 0, j = σeE, r ∈ Ω1 ;
div D = 0, D = εeE, r ∈ Ω2 ; (6)

E = −∇ϕ, r ∈ Ω = Ω1 ∪ Ω2 ; (7)

div q = γ0 (E · j) , q = −kT ∇T, r ∈ Ω ; (8)

div σi = 0, i = 1, 2, 3, r ∈ Ω ; (9)

σij = 2μεij + δij

(
λdiv u −

(
λ +

2
3
μ

)
α

)
,

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3, r ∈ Ω ;

(10)

∂C

∂t
= −div W, W = −DC∇C − D̄C∇Φ, r ∈ Ω1, t > 0 . (11)
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Here r = (x1, x2, x3)
T is position-vector in a space, j, D, σe, εe, E and ϕ are

vector of electric current density, electric induction vector, nonlinear conduc-
tivity of conductors, dielectric permittivity of conductors surrounding, tension
and potential of electric field respectively; div and ∇ are operators of divergence
and gradient in Cartesian coordinates with position-vector r, Ω is computational
domain comprising conductors Ω1 and insulators Ω2 ; q, kT , T are heat flux vec-
tor, nonlinear tensor of temperature conductivity, temperature, γ0 is dimension-
less parameter; σi = (σi1, σi3, σi3)

T are column vectors constituting the tensor
of thermoelastic stresses, u = (u1, u2, u3)

T is displacement vector, μ = μ (T ),
λ = λ (T ) are dimensionless nonlinear coefficients of the Lame, α = α (T,C) is
nonlinear function of load arising during thermal expansion of the metal and the
change of its mass composition; C is mass fraction (normalized concentration)
of metal in conductors, t is time, W is total diffusion flux, DC and D̄C nonlinear
diffusion coefficients depending on C and T , Φ = Φ (ϕ,C, T,H) is generalized
thermodynamic potential (H trace of thermoelastic stresses tensor).

The boundary and initial conditions are as follows:

j · n =

⎧
⎪⎪⎨

⎪⎪⎩

jin, r ∈ ∂Ω
(1)
1 ,

jout, r ∈ ∂Ω
(2)
1 ,

0, r ∈ ∂Ω
(3)
1 ,

D · n = 0, r ∈ ∂Ω2 ; (12)

T = T0, r ∈ ∂Ω ; (13)
⎧
⎨

⎩

∂σij

∂xj
= 0, u = u0, r ∈ ∂Ω(1),

σi · n = 0, r ∈ ∂Ω(2) ;
(14)

C|t=0 = Ci1, r ∈ Ω1 ; (15)
⎧
⎪⎨

⎪⎩

C = Ci1, r ∈ ∂Ω
(1)
1 ,

∇C · n = 0, r ∈ ∂Ω
(2)
1 ,

W · n = 0, r ∈ ∂Ω
(3)
1 .

(16)

Here ∂Ω
(1)
1 , ∂Ω

(2)
1 , ∂Ω

(3)
1 are boundary regions of contact of the conductor with

the feeding elements (on them input currents with density jrmin are set), bound-
ary regions of the contacts which are leading out current (on them output cur-
rents with density jrmout are set), the boundary regions adjoining to insulators,
∂Ω is boundary of computational domain, ∂Ω(1), ∂Ω(2) are two parts of the
common boundary, where various conditions to thermomechanical stresses are
set (on the first the displacements are set, on the second the free boundary con-
ditions are set), n is external normal to boundaries, T0 is the chip temperature,
Ci1 is equilibrium mass fraction of metal in the conductor. Note that at the
internal borders between the conductors and dielectrics the standard conjuga-
tion conditions are given.

The coefficients of the Eqs. (6)–(11) are discontinuous and in a nonlinear
manner depend on temperature and mass fraction of metal. The specific form
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of the used dependences is very diverse and is determined by conditions of the
modeled physical experiment and parameters of an electric circuit. One way to
determine these dependencies is to apply the methods of molecular dynamics.
Therefore, the second part of the problem is to solve Newton’s equations in the
whole calculation domain or only at boundaries between the different materials
(because information about properties of materials on these boundaries is avail-
able least of all). Actually the system of Newton’s equations in this case has
the same form as the system (5) and is added by different initial and bound-
ary conditions depending on physical conditions. The quantity of particle kinds
depends on composition of the used materials. For the modern types of chips as
conductors the compounds of copper (the main composition of the conductor)
and tantalum (the hardening shell of the conductor) are used. As insulators the
silicon oxides and carbides are used.

3 Numerical Methods, Parallel Algorithms and Programs

The proposed multiscale approach can be used in two ways:

(1) using MD simulation it is possible to create the database on material prop-
erties and to use it in macromodels for determination of kinetic coefficients,
the equations of state parameters and boundary conditions;

(2) it is possible to carry out MD computation during macroscopic calculations
within a method of splitting into physical processes and to use them as the
subgrid algorithm adjusting medium macroparameters.

The first way of calculations leads to large computational cost at the stage
of calculation preparation and to large volumes of the disk space required to
store the calculated initial data. The second way of calculations (direct macro-
scopic and microscopic simulation) is more justified if the database on material
properties is incomplete or at all is absent. In this situation the second way pro-
vides a complete simulation cycle by all necessary data and allows to coordinate
processes on micro- and macrolevels, and also to make calculations for a certain
specific set of conditions and at the same time to accumulate the database for a
case of repeated computing experiments.

Let us consider some details of developed approach in relation to the problems
discussed above in the case of use the full version of computing.

3.1 Numerical Algorithm for Solving the Problems of Spraying

In solving gasdynamic spraying tasks in the full version (QGD + MD), the QGD
system of the equations is sampled by the finite volume method [9] on the suitable
structured or unstructured grids and is solved on the basis of explicit or implicit
schemes on time (in implicit schemes case a suitable iterative process is applied).
MD system of equations is used as a sub-grid algorithm and solved by means of
Verlet scheme [10]. At the microlevel all calculations are made independently in
each control volume of a spatial grid, except for boundary cells. In boundary cells
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the nonlocal MD scheme of computations can be used. This is especially relevant
in a case of large Knudsen numbers (about 1 and more) when QGD system loses
accuracy owing to violation of the gaseous medium continuity hypothesis.

As a result, the overall algorithm consists of four basic steps:

(1) calculating the macroparameters of gas components according to grid ana-
logues of QGD equations excluding exchange terms in grid cells where
approximation of a continuous medium is valid;

(2) MD calculation of kinetic coefficients, equations of state parameters and
exchange terms in average flow field based on local algorithms;

(3) MD calculation of kinetic coefficients, equations of state parameters,
exchange terms and parameters of boundary conditions near the computa-
tional domain boundaries and the boundaries between the different material
types on the basis of nonlocal algorithm;

(4) return to a macrolevel and correction of gases moment and total energy
densities, and also of a metal surface state.

Criterion for stopping the MD calculations is either the achievement of char-
acteristic time of molecular system evolution (maxwellization time), or small
change (for 1–2%) one or more macroparameters of molecular system (average
momentum, averages kinetic and/or potential energies). A detailed presentation
of the algorithm is considered in [21].

Emphasize once more that the difference of the proposed approach from other
approaches in literature is the possibility of simulating the complex gas flows. It
is provided by means of the MD methods determining the kinetic coefficients and
exchange terms necessary for computation of the QGD system of equations, the
compressibility coefficients and specific heat capacities underlying the equations
of state and also boundary conditions.

3.2 Numerical Algorithm for Solving the Problems of Interconnects
Degradation

The total numerical algorithm for solving the problems related to modeling of
degradation processes in electronic circuits interconnects is similar to discussed
in Sect. 3.1. Difference is that in this case on a macrolevel more difficult system
of electrohydrodynamics (EHD) equations is considered. Also in this case it is
possible to consider truncated (EHD + the database of molecular simulation)
and full (EHD + MD) calculation ways. The quantity of calculation components
increases both in connection with a large number of the macroequations, and
with a large amount of the considered materials. In addition, at macro- and at
microlevels it is necessary to take into account the formation of the defects, pores
and vacuum layers appearing in investigated materials, and also the phenomena
of penetration the atoms and molecules of one material in thickness of another.
In general, the method of calculation remains the same:

(1) calculating the macroparameters according to grid analogues of EHD equa-
tions in grid cells where approximation of a continuous medium is valid;
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(2) MD calculation of separate and mixed materials macroparameters away from
the boundaries based on local algorithms;

(3) MD calculation of macroparameters near the computational domain bound-
aries and the boundaries between the different material types on the basis
of nonlocal algorithm;

(4) return to a macrolevel and correction of macroparameters in all grid points.

3.3 Parallel Implementation of Proposed Approach

Parallel implementation of proposed multiscale approach assumes use a clus-
ter (or a supercomputer) with the central or hybrid architecture having several
multi-core central processors (CPU), and also several vector or graphic proces-
sors (VPU or GPU) on each node. Parallelization of algorithm is performed on
the principles of coordinate parallelism and domain decomposition. The main
calculation on a macrolevel is made by the discrete QGD or EHD equations on
the grid distributed between cluster nodes by means of domain decomposition
technique. Inside node the computations on a macrolevel are distributed between
CPU threads. Subgrid MD computations are made by VPU or GPU in case of
their existence. Multisequencing of computations on a macrolevel between the
CPU threads is also made geometrically. Multisequencing of MD computations
is made by dividing the entire set of particles belonging to one grid cell on groups
of identical power. Each unit of VPU or GPU threads processes one or several
molecular groups belonging to one or several grid nodes. More parallelization
details were discussed in [19–22]. A brief study of the parallelization quality for
the proposed approach is discussed in Sect. 4.

3.4 Program Realization

As mentioned above, program implementation of approach is executed on a
hybrid technology [14] used MPI [15], OpenMP [16] and CUDA [17]. Devel-
opment was carried out in the languages of ANSI C/C++ with templates of
hybrid parallel applications developed for GIMM NANO software tool [23], cre-
ated within the state contract No. 07.524.12.4019 of the Ministry of Education
and Science of the Russian Federation. As a result, following program variants
have been established and registered in Rospatent:

– GIMM APP QGD CPU is a program of calculation on CPU the two-
dimensional and three-dimensional gas mixture flows in microchannels;

– GIMM APP MD CPU Gas Metal is a program of calculation on CPU the
gas-metal microsystems;

– GIMM APP MD GPU Gas Metal is a program of calculation on GPU the
gas-metal microsystems;

– GIMM APP QGD MD CPU is a program of calculation on CPU the two-
dimensional and three-dimensional gas mixture flows in microchannels based
on QGD + MD approach.
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The GIMM APP QGD GPU and GIMM APP QGD MD GPU programs
are at the stage of testing and registration, they are oriented on more inten-
sive use of graphics accelerators possibilities.

At a stage of development there are programs of calculation of degradation
processes in electronic circuits interconnects named GIMM APP VOID EGD
HYB, GIMM APP VOID MD HYB and GIMM APP VOID EGD MD HYB.
These programs are oriented on joint use of the CPU and GPU. Also the editor
of microstructures GIMM MICRO STRUCT EDITOR allowing to create model
microstructures of the size, unlimited on data volume, is developed.

In addition the specialized software [24,25] for processing and visualization
of the distributed results of molecular simulation was developed. This software
will be a basis of visualization system in the cloud version of the GIMM NANO
program tool.

4 Results

In this section some of the results obtained by the developed numerical approach
and software will be discussed.

4.1 Simulation of Gas Flows in Microchannels

As an illustration of using the developed parallel tool for problems of multiscale
gasdynamic processes modeling following information is presented here. The gas
mixture flow in a metal microchannel of square cross section was considered. The
calculations were performed on the mixed algorithm represented the alternation
of QGD and MD computing in all cells of the grid, including the boundary cells.
Calculations of gas mixture flows were provided on K100 hybrid cluster with
CPU and GPU with the help of parallel programs GIMM APP QGD MD CPU
and GIMM APP QGD MD CPU. The K100 has 64 nodes, each node of the clus-
ter has two CPU Intel Xeon X5670 (6 cores and 12 threads per one CPU) and
three GPU NVidia Tesla C2050 (448 CUDA cores per one GPU). We tested our
software on 3D Cartesian grid with sizes 240240720 cells. The calculations were
connected with evolution of nitrogen and hydrogen jet in nickel microchannel
with sizes 30 × 30 × 90 microns. Each grid cell in dependence on physical con-
ditions can consist of 500–50000 gas particles. The results of testing are shown
on Fig. 1. These results confirm that using of CPU systems is more effective.
Nevertheless using of GPU allows reducing calculation time by 6–10 times. The
above conclusions characterize exactly the K100 architecture in which the CPUs
are relatively slow and GPUs have a small graphics memory. The using of more
modern GPU devices (NVidia Tesla K40 or K80) will decrease calculation times
by 20–40 times and increase the efficiency of GPU computations [26].

Concurrently with development of final versions of a numerical technique and
program tools the simulation of separate model subtasks was carried out. In par-
ticular, subsonic, transonic and supersonic flows of pure gases and a binary gas
mixture on the example of hydrogen and nitrogen were numerically analyzed.
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Fig. 1. Speed up (on a left) and efficiency (on a right) of QGD-MD algorithm obtained
by separate calculations on CPUs and GPUs.

The results obtained in preliminary calculations in good agreement with the
known tabular data and experimental results. In [27] the nitrogen and hydrogen
mixture flow was calculated on an output from a micronozzle in the semi-open
microchannel and further to the free space. The calculation results were close
to data of experiments. In [27] combining the micro- and macromodels of the
gas medium in a uniform research object was offered. In [28] interaction of a
gas flow with microchannel walls on the example of nitrogen-nickel system was
considered. This calculation represents a technique of receiving boundary con-
ditions by direct MD computation. In [19–21,29,30] methods for calculating
the thermodynamic equilibriums in metal–metal, gas–gas and gas–metal sys-
tems were developed. In particular, nickel–nickel, aluminum–aluminum, argon–
argon, nitrogen–nitrogen, nitrogen–nickel systems were considered. In [20] on the
example of nitrogen the technique of specification of the equations of state was
considered. Without giving specific results of calculations here, we would like to
emphasize that the developed multiscale numerical procedure has proved its effi-
ciency on this class of tasks and leads to great prospects when using computing
systems of the PFLOPS and EFLOPS performances.

4.2 Modeling the Processes of Void Formation

Simulation of degradation processes in interconnects can be observed in a full-
scale experiment by means of the roentgenogram analysis where the regions of
voids (pores) formation in the electrical line material are well visible. However
the roentgenogram is made quite rarely and after there was a line interruption.
And it is quite difficult to track an interruption dynamics. These circumstances
induce to use mathematical simulation as the analysis tool.

By means of the technique provided in paper [3] the effect of pore formation
was obtained (see Figs. 2 and 3) and the research of its dynamics was conducted.
However calculations were carried out in two-dimensional statement and didn’t
consider a lot of physical factors. In this work with the help of new approach
it was succeeded to repeat the received result in a three-dimensional case. Even
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Fig. 2. Distribution of the copper mass fraction in interconnect before of pore birth
(left) and in the final of its evolution (right). The digits 1, 2, 3, 4 and 5 are designate
the copper, tantalum, isolator, thermal isolator and pore

Fig. 3. Isolines of the current modulus in interconnect before of pore birth (on a left)
and in the final of its evolution (on a right)

more exact calculation shall take into account the grain structure of metals
and the dielectrics isolating them and the phenomenon of interpenetration of
materials each other. Considering this circumstance, we note that in general
the developed approach and its program implementations allow conducting such
kinds of research. There is an open question of computing resources necessary
for this purpose. Nevertheless, the maximum use of hybrid computing systems
is the major direction in carrying out numerical experiments.
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Abstract. In this paper we consider the efficiency of hybrid systems-
on-a-chip for high-performance calculations. Firstly, we build Roofline
performance models for the systems considered using Empirical Roofline
Toolkit and compare the results with the theoretical estimates. Secondly,
we use LAMMPS as an example of the molecular dynamic package to
demonstrate its performance and efficiency in various configurations run-
ning on Nvidia Tegra K1 & X1. Following the Roofline approach, we
attempt to distinguish compute-bound and memory-bound conditions
for the MD algorithm using the Lennard-Jones liquid model. The results
are discussed in the context of the LAMMPS performance on Intel Xeon
CPUs and the Nvidia Tesla K80 GPU.

Keywords: ARM · GPU · Maxwell · Kepler · Roofline · LAMMPS

1 Intoduction

Today, microcircuits technology is close to reaching the physical limits beyond
which the increase in the density of transistors on a chip becomes very prob-
lematic. Further gain of computing power of supercomputers is connected with
significant increase in the number of nodes and the search of more sophisticated
technologies.

One of the directions of developement is the widespread use of accelerators
such as GPUs that is the transition to heterogeneous systems. Despite the fact
that GPU originally were created for mass market, their attractive price-to-
performance ratio lead to the adoption of such devices for high performance
computations with the development of GP-GPU technologies. Another trend is
the increasing attention to energy-efficiency and the rise of ARM architecture
on the server market [1].

If you use coprocessors the limitation is usually in the fact that these devices
are physically separated from the CPU. Communication could become much
easier by placing the CPU and co-processor on a single chip. Such systems-
on-chip (SoC) exist, e.g. AMD Accelerated Processing Units, ARM SOCs with
c© Springer International Publishing AG 2016
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2016, CCIS 687, pp. 199–211, 2016.
DOI: 10.1007/978-3-319-55669-7 16
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Mali GPUs, Intel CPUs with HD Graphics. Recently, Nvidia combined these
two trends in one device and released Tegra K1 SoC and then Tegra X1 SoC.
These are SoCs that combine multiple ARM Cortex-A cores and Nvidia GPU(s).
After nine years of development, the Nvidia CUDA technology has appeared in
many scientific and engineering programs. The novel 64-bit architecture ARMv8
demonstrates the potential for high performance computing [2]. With low power
consumption, Tegra SoCs could be considered as possible prototypes of the future
HPC hardware.

The rapid development of hardware increases the significance of the efficiency
tests of new architectures. Benchmarking of (super) computer system has several
decades of history (see [3–6]). The spectrum of the computational algorithms
became wide enough so the carefully selected set of tests are an important tool
in the development of new supercomputers. Measurement and presentation of the
results of performance tests of parallel computer systems become more and more
often evidence-based [7], including the measurement of energy consumption [8],
which is crucial for the development of exascale supercomputers [9].

2 Literature Review

An attempt to compare the MD algorithm efficiency of different architectures
(CPU and CPU + GPU) has been made previously [10,11]. This comparison
has been done in a rather empirical way without an in-depth consideration of
the underlying connection between the software and the hardware. A system-
atic comparison of hybrid systems with different accelerators has been presented
recently in [12] using the LULESH proxy application. The efficiency of the astro-
physical code on different accelerators has been compared in [13] with the focus
on Intel Xeon Phi. The empirical tuning of the GPU algorithm parameters pro-
vides a significant speedup and better utilization of GPU [14].

Some preliminary results on the floating-point performance of ARM cores and
their efficiency in classical molecular dynamics has been published in [15]. The
recent paper of Laurenzano et al. [16] is dedicated to new ARMv8 processors
comparison with Atom and Xeon CPUs. It collects a huge set of test results,
which have been analyzed using statistical methods. An original approach is
used to identify the bottlenecks of each CPU architecture.

Recently, there have been several studies of Tegra SoCs for HPC applica-
tions. Using unified memory (supported since CUDA 6.5), Ukidave et al. showed
increasing CPU-GPU data throughput in Tegra K1 in comparison with the data
transfer rate over the PCIe bus [17]. Haidar et al. considered the performance
and the energy efficiency by using the MAGMA linear algebra library on Jet-
son TK1 [18]. Stone et al. measured the performance of the basic packages of
computational biology on some of the new heterogeneous platforms, Jetson TK1
and Jetson TX1 including [19]. Our preliminary results for Nvidia Jetson TK1
and TX1 have been published in [20].
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3 Test Setup

3.1 Hardware

Nvidia Jetson TK1. Nvidia Jetson TK1 is a developer board based on the
32-bit Tegra K1 SoC with LPDDR3 (930 MHz). Tegra K1 CPU complex includes
4 Cortex-A15 cores running at 2.3 GHz, the 5-th low power companion Cortex
core designed to replace the basic cores in the low load mode to reduce power
consumption and heat generation. The chip includes one GPU Kepler streaming
multiprocessor (SM) running at 852 MHz (128 CUDA cores). Each Cortex-A15
core has 32 KB L1 instruction and 32 KB L1 data caches. 4-core cluster has 2 MB
of shared L2 cache.

The program environment of the device consists of Linux Ubuntu 14.04.1 LTS
(GNU/Linux 3.10.40-gdacac96 armv7l). The toolchain includes GCC ver. 4.8.4
and CUDA Toolkit 6.5.

Nvidia Jetson TX1. Jetson TX1 is based on the 64-bit Tegra X1 SoC with
LPDDR4 memory (1600 MHz). Tegra X1 includes 4 Cortex-A57 cores running
at 1.9 GHz, 4 slower Cortex-A53 in big.LITTLE configuration and two GPU
Maxwell SMs running at 998 MHz (256 CUDA cores). Each Cortex-A57 core
has 48 KB L1 instruction cache, 32 KB L1 data cache and 2 MB of shared L2
cache.

The operation system is Linux Ubuntu 14.01.1 LTS with 64-bit core built
for aarch64. Nevertheless we use the 32-bit toolchain and software environment
(same as for Nvidia Jetson TK1), except for the newer CUDA Toolkit 7.0.

In summer 2016, the 64-bit userspace and toolchain have been released. Pre-
liminary tests show that the new 64-bit software can be noticeably faster in some
rare cases only.

Server with Nvidia Tesla K80. The high-performance server based on two
Intel Xeon E5-2697 v3 CPUs is used in this paper for the representative com-
parison. These CPUs are x86 64 Haswell processors with 14 hardware cores that
support hyper-threading and run at 2.8 GHz. The server includes one Nvidia
Tesla K80 accelerator. In has about 5000 CUDA cores running at 627 MHz (the
frequency is increased in the turbomode).

3.2 Software

Empirical Roofline Toolkit. In this work we use Empirical Roofline Toolkit
1.1.0, its source codes are available on Bitbucket [21].

The GCC keys for Jetson TK1 are ‘-03 -march=armv7-a -mtune=
cortex-a15 -mfpu=neon-vfpv4 -ffast-math’.

For TX1 we use ‘-03 -macrh=armv8-a -mfpu=neon-vfpv4 -ffast-math’.
For Haswell CPU we use ‘-03 -march=haswell -mtune=haswell -mavx2

-mfma -ffast-math’.
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LAMMPS. To compile LAMMPS for Cortex-A15/A57 cores of Tegra K1/X1
we use the same options as for the Empirical Roofline Toolkit. We compile
LAMMPS with the USER-OMP package for OpenMP support. For the GPU
package we use ‘arch=sm 32’ for K1 and ‘arch=sm 53’ for X1. For the USER-
CUDA package we use ‘arch=21’ for both K1 and X1.

There are differences in LAMMPS compilation with GPU or USER-CUDA
packages. For the GPU package there is a straightforward way to use any CUDA
architecture. However the developers of the currently unsupported USER-CUDA
provided scripts and documentation only for few outdated architectures. Despite
this fact, we compiled USER-CUDA for sm 32 and sm 53 architectures in order
to test Jetsons TX1 and TK1. Measurements revealed that the performance
of USER-CUDA depends very little on the architecture type (at the level of a
measurement accuracy) that is why we use ‘arch=21’ for all reported USER-
CUDA benchmarks.

4 Roofline Performance Model

4.1 Roofline

The Roofline performance model [6] was developed in the LBNL “Performance
and Algorithms Research” group. It can represent on a single plot limitations
caused by processors peak performance, memory bandwidth and effects of cache
memory hierarchy and vectorization.

The key concept for understanding the Roofline model is the arithmetic inten-
sity of an algorithm. The definition of this quantity is as follows: the arithmetic
intensity is the ratio of the total number of arithmetic operations to the total
number of transmitted data bytes. For visualization of the model it is necessary
to depict the computer’s performance in GFlops/sec as a function of the arith-
metic intensity in Flops/byte. The resulting curve limits the area where all kinds
of algorithms lie for the computing system considered. Moreover, these curves
are displayed in straight lines when the double logarithmic scale is applied.

In this work the Empirical Roofline Toolkit is used to build Roofline models.
The basic idea is in the calculations of simple arithmetic operations on the ele-
ments of an array of a certain length with the corresponding time measurement
of the task execution time. The arithmetic intensity and the size of the working
set vary on the separate steps of the test. This allows one to plot the dependence
of performance on the arithmetic intensity taking into account the effects of the
memory hierarchy.

4.2 Theoretic Estimates

This section shows how peak values are estimated in this study.
The theoretical bandwidth of the L1 cache can be estimated as CPUfreq

[GHz] ∗ 32[Bits] ∗ (1[Input] + 1[Output]). The theoretical bandwidth of DRAM
transfers is much lower DRAMfreq[GHz] ∗ 8[Byte] ∗ (1[Input] + 1[Output]).
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The aggregate L2 bandwidths is estimated as[Number of SMs] ∗ SMfreq

[GHz] ∗ 32[Banks] ∗ 4[Bytes] ∗ 0.5 (54.4 GB/s for one Kepler SM of Tegra
K1 and 128 GB/s for two Maxwell SMs of Tegra X1).

1e+00

1e+01

1e+02

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

15.2 GByte/s
18.4 GByte/s

2/3*18.4 GByte/s

1/4*25.6 GByte/s 1/2*14.88 GByte/s

To
ta

l b
an

dw
id

th
 (

G
B

yt
e/

s)

Working set size (byte)

TX1 DP
TK1 DP
TX1 SP
TK1 SP

Xeon E5-2697 v3 DP
Xeon E5-2697 v3 SP

1e+00

1e+01

1e+02

1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

480 GByte/s

128 GByte/s

54.4 GByte/s

25.6 GByte/s

14.88 GByte/s

To
ta

l b
an

dw
id

th
 (

G
B

yt
e/

s)

Working set size (byte)

TX1 DP
TK1 DP
TX1 SP
TK1 SP

Tesla K80 DP
Tesla K80 SP

Fig. 1. Dependence of the CPU (top) and GPU (bottom) memory bandwidth against
the working set size. For comparison we provide plots built on the Xeon processor with
accelerator

4.3 Analysis

Figure 1 shows the dependence of the bandwidth on the amount of data to be
processed by SoC.

The bandwidth data for one CPU core of Tegra K1 show that the sustained
bandwidth is about 85% of the L1 peak value. The sustained bandwidth for
L2 is about 2/3 smaller. The bandwidth data for Tegra X1 show a very close
agreement with the theoretical value and no difference between L1 and L2. In
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Fig. 2. Roofline model for CPU (top) and GPU (bottom) in Jetson TX1 and Jetson
TK1 using double precision

single precision Tegra X1 shows the L1/L2 bandwidth about 5/6 of the double
precision value.

The sustained DRAM bandwidth values for the single core Roofline tests are
1/2 and 1/4 of the theoretical peak for TK1 and TX1 respectively.

For the GPU Roofline benchmark, we observe the aggregate L2 bandwidths
close to the estimated peak values. We do not observe any significant difference
between double and single precision in this case. Figure 1 illustrates the small
difference in GPU L2 cache sizes for Kepler (1.5 Mb) and Maxwell (2 Mb) SMs. So
far it remains unclear why the memory bandwidth is reduced when the working
set size is above 50–70 MB.

Figure 2 shows that the peak performance values of A15 and A57 ARM cores
are very close: 0.9 Flops/cycle for A15 (close to the previous estimate [15]) and
1.2 Flops/cycle for A57 (our preliminary benchmark for TX1 with the unof-
ficial 64-bit libraries has shown the same value). For single precision, we get
5.0 GFlops/sec for A15 and 5.1 GFlops/sec for A57.

The disassembly shows that the Roofline binary uses FMA instructions on
Cortex-A5/15/57 but at the same time requests an additional data movement
operation that leads to lower Rpeak results. In the ARM instruction set FMA
operations are represented only as a = a + b · c, while in FMA3 (for example in
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Haswell CPUs) there are two other forms a = a · c + b and a = a · b + c. The
GCC compiler considered does not perform effective vectorization using FMA
operations despite the fact that they are available and could provide x2 or x4
performance increase.

For GPUs, the observed single precision peak performance is 209.9
GFlops/sec for one Kepler SM and 485.1 GFlops/sec for two Maxwell SMs. These
values are close to the theoretical peak of 218 GFlops/sec and 511 GFlops/sec
respectively. The double precision peak performance values are 13.6 GFlops/sec
and 15.9 GFlops/sec respectively. They agree with the expected value of
16 GFlops/cycle in double precision that is the same both for Tegra K1 and
X1 (the FP64 rates are 1/24 the FP32 rate for K1 Kepler and 1/32 the FP32
rate for TX1 Maxwell).

5 Classic Molecular Dynamics and LAMMPS

5.1 Molecular Dynamics Method

The molecular dynamic method is based on solving the Newtonian equations
of motion of individual particles and it is a research instrument of the greatest
importance. The computational performance and the efficiency of parallelization
are the main factors that limit spacial and temporal scales available for the MD
calculations. The currently achieved limits are trillions of atoms [22] and millisec-
onds of time [23] with a typical MD step about 1 femtosecond. The bottleneck
in the MD algorithm is the computational complexity of interatomic potentials.
Hybrid architectures are considered as the main opportunity to speed up super-
computer nodes. MD algorithms on graphics accelerators are a particular case
of porting MD algorithms on SIMD architectures.

5.2 LAMMPS and Hybrid Architectures

LAMMPS package is used in this paper, it is a flexible tool for building models
of classical MD in materials science, chemistry and biology [24]. LAMMPS is
not the only MD package that is ported to the hybrid architecture (for example
HOOMD [25] was originally designed with the perspective to run it on GPU
accelerators). The USER-CUDA [26] and GPU [27,28] packages were the first
implementations of the MD algorithm for hybrid architectures in LAMMPS.
Another hybrid implementation of the MD algorithm in LAMMPS in based on
the KOKKOS C++ library [29].

The USER-CUDA package supports only CUDA-compatible devices. Unlike
the GPU-package, this package is designed to allow an entire LAMMPS calcu-
lation for many time steps to run entirely on the GPU (except for inter-nodes
MPI communication), so that atom-based data do not have to move back-and-
forth between the CPU and the GPU. Neighbor lists are also constructed on
the GPU, while in the GPU package either CPU or GPU can be deployed for
the neighbor list construction. Nevertheless the non-GPU operation calls in the
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LAMMPS input script make data move back to the CPU, which may result in
performance degradation. The USER-CUDA package is tested in this work in
the double, single and mixed precision modes.

The GPU package supports both CUDA and OpenCL. The package was
designed to exploit common GPU hardware configurations where one or more
GPUs are coupled to one or more multi-core CPUs. The specifics of the algorithm
is that data move from the host to the GPU every time step. Unlike USER-
CUDA, the GPU package allows to start multiple CPU threads per one GPU
module and can perform force computation on CPU and GPU simultaneously
(however in our tests any combination other than 1 CPU core per 1 GPU leads
to performance degradation). In this work we use the CUDA version of the GPU
package, building the library for this package with all three supported precisions
in the double, single and mixed modes.

Another hybrid implementation of the MD algorithm in LAMMPS is based
on the KOKKOS library that can be deployed with pthreads, OpenMP, and
CUDA back-ends. As in the GPU package, MD computations are off-loaded from
CPU to GPU. This implementation supports calculations in double precision
only.

101 102 103

101

102

Fig. 3. Performance of MD algorithms as a function of the number of neighbors M in
the Lennard-Jones liquid model (the scheme illustrate the number of neighbors M = 5
for the given cut-off radius Rcut).
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Fig. 4. The normalized sustained performance of LAMMPS for four systems with dif-
ferent CPU types as a function of the number of nearest neighbors in the Lennard-Jones
liquid model.

5.3 Test Model

The Lennard-Jones liquid model is used as benchmark with the density
0.8442σ−3, N = 108000 particles and 250 timesteps with the NVE integrat-
ing scheme. The minimum cut-off radius considered is 1.8σ that corresponds to
about M = 18 nearest neighbors per particle. In this study we consider different
cases with increasing cut-off radius (up to about M ∼ 3000 nearest neighbors
per particle).

The cut-off radius defines the amount of calculations with the same data set
of N particles. In terms of the Roofline model, we can say that the arithmetic
intensity of the MD algorithm is directly proportional to the number of neighbors
M . Thus, the ratio of M over the total calculation time should be proportional to
the number of Flops spent for the MD algorithm computations (for the Lennard-
Jones model in LAMMPS every pair interaction takes 23 Flops, or a half of this
number if the Newton’s third law is taken into account). This is an analogue of
the Rmax value of the standard High Performance Linpack benchmark.

These data are displayed on Fig. 3 for the USER-CUDA package in double
and single precision, the USER-OMP package (based on OpenMP) in double
precision and KOKKOS in the CUDA mode and the OpenMP mode.

The USER-CUDA algorithm is memory bound for small number of neigh-
bors M that is why the ratios of the performance in double precision to the
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performance in single precision (x2.5 for Tegra K1 and x2.8 for Tegra X1) are
determined by the memory bandwidth ratios (in single precision there are twice
less data and the GPU L2 bandwidth is slightly higher as well). We see the GPU
performance is x1.8 times higher than the 4-cores performance obtained with
USER-OMP that is close to the peak performance ratio of the Maxwell GPU and
4 Cortex-A57 cores 15.9/(4*2.3)∼1.7. USER-CUDA demonstrates quite poor
performance in single precision: the algorithm is always strongly memory-bound
since the increase of the number of neighbors results in complicated memory
access patterns.

Comparison of TX1 and K80 shows that the performance is still memory
bandwidth limited even for large numbers of neighbors. For example, this ratio
for the KOKKOS case is ∼16 (Fig. 3). At the same time the ratio of the memory
bandwidths is ∼5–8 and the ratio of the peak performance values is ∼350.

On Fig. 4, we show the values of the sustained performance normalized over
the peak performance for four different CPU types. We see that the weakest
Cortex-A5 core (see [15]) is the most effective in terms of the peak performance
utilization. The explanation of this fact is that the Cortex-A5 based ODROID-
C1 minicomputer has better balance between the memory subsystem speed and
the CPU speed.

The analysis made with the Haswell CPU shows that the Empirical Roofline
Test binary uses in the main computational cycle vector FMA instructions from
the AVX2 set, which provide an eight-fold acceleration. At the same time, the
GCC compiler uses only two FMA instructions per a Lennard-Jones interaction
in LAMMPS. This fact shows that the increased peak performance of novel
Intel CPU architectures is not transferred easily into the sustained performance
of such a software as LAMMPS.

6 Conclusion

In this work we quantify the Jetson TK1 and novel TX1 boards performance
using the Roofline model and the Empirical Roofline Toolkit. We consider both
single and double precision performance. Different implementations of the MD
algorithm in LAMMPS are used for benchmarking. We have collected data about
memory bandwidth and cache hierarchy. These results are compared with theo-
retic estimates.

For benchmarking we use 3 hybrid implementations of MD algorithm from
LAMMPS package and the OpenMP parallel version. We have proposed a new
method for varying arithmetic intensity of the MD task by changing the cut-off
radius of the pair potential in the MD model. Thus, we show the transition of
MD calculation from memory-bound to compute-bound mode. The comparison
of the hybrid MD algorithm data for Tegra TX1 with the data for the Xeon-based
server with Tesla K80 shows that the hybrid MD algorithm becomes partially
memory-bound on K80, even for large cut-off radii.

We consider the sustained performance normalized over the peak perfor-
mance for Cortex-A5, A15 and A57 systems as well as for the Sandy Bridge
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system. The results show that the slowest system based on Cortex-A5 is the
most efficient in terms of the sustained performance ratio over the peak perfor-
mance. This result illustrates the need for the balance between the performance
of the memory subsystem and the CPU.
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Abstract. This paper is devoted to the new edition of the parallel
Pursuit algorithm proposed the authors in previous works. The Pur-
suit algorithm uses Fejer’s mappings for building pseudo-projection on
polyhedron. The algorithm tracks changes in input data and corrects the
calculation process. The previous edition of the algorithm assumed using
a cube-shaped pursuit region with the number of K cells in one dimen-
sion. The total number of cells is Kn, where n is the problem dimen-
sion. This resulted in high computational complexity of the algorithm.
The new edition uses a cross-shaped pursuit region with one cross-bar
per dimension. Such a region consists of only n(K − 1) + 1 cells. The
new algorithm is intended for cluster computing system with Xeon Phi
processors.

Keywords: Non-stationary linear programming problem · Fejer’s
mappings · Pursuit algorithm · Massive parallelism · Cluster computing
systems · MIC architecture · Intel Xeon Phi · Native mode · OpenMP

1 Introduction

In the papers [7,8], the authors proposed the new Pursuit algorithm for solving
high-dimension, non-stationary, linear programming problem. This algorithm is
focused on cluster computing systems. High-dimensional, non-stationary, linear
programming problems with quickly-changing input data are often seen in mod-
ern economic-mathematical simulations. The non-stationary problem is charac-
terized by the fact that the input data is changing during the process of its
solving. One example of such problem is the problem of investment portfolio
management by using algorithmic trading methods (see [1,2]). In such prob-
lems, the number of variables and inequalities in the constraint system can be in
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the tens and even hundreds of thousands, and the period of input data change
is within the range of hundredths of a second. The first version of the algorithm
designed by the authors used a cubic-shaped pursuit region with the quantity
of K cells in one dimension. In this case, the total number of cells is equal to
Kn, where n is the dimension of the problem. This results in the high compu-
tational complexity of the algorithm. In this paper, we describe a new edition
of the Pursuit algorithm, which uses a cross-shaped pursuit region with one
cross-bar per dimension and containing only n(K − 1) + 1 cells. The main part
of the Pursuit algorithm is a subroutine of calculating the pseudoprojection on
the polyhedron. Pseudoprojection uses Fejer’s mappings to substitute the pro-
jection operation on a convex set [4]. The authors implemented this algorithm in
C++ language parallel programming technology OpenMP 4.0 [6] and the vector
instruction set of Intel C++ Compiler for Xeon Phi [9]. The efficiency of the
algorithm implementation for coprocessor Xeon Phi with KNC architecture [10]
was investigated using a scalable synthetic linear programming problem. The
results of these experiments are presented in this paper. The rest of this paper
is organized as follows. In Sect. 2, we give a formal statement of a linear pro-
gramming problem and define Fejer’s process and the projection operation on a
polyhedron. Section 3 describes the new version of the algorithm with a cross-
shaped pursuit region. Section 4 provides a description of the main subroutine
and subroutine for calculating the pseudoprojection of the revised algorithm by
using UML activity diagrams. Section 5 is devoted to investigation of the effi-
ciency of Intel Xeon Phi coprocessor usage for computing pseudoprojection. In
conclusion, we summarize the results obtained and propose the directions for
future research.

2 Problem Statement

Given a linear programming problem

max {〈c, x〉 |Ax ≤ b, x ≥ 0} . (1)

Let us define the Fejer’s mapping ϕ : Rn → R
n as follows:

ϕ (x) = x −
m∑

i=1

αiλi
max {〈ai, x〉 − bi, 0}

‖ai‖2
ai. (2)

Let M be a polyhedron defined by the constraints of the linear programming
problem (1). This polyhedron is always convex. It’s known [3] that ϕ will be
a single-valued continuous M -fejerian mapping for any αi > 0 (i = 1, . . . ,m),
m∑

i=1

αi = 1, and 0 < λi < 2. Putting in formula (2) λi = λ and αi = 1/m (i =

1, . . . ,m), we get the formula

ϕ (x) = x − λ

m

m∑

i=1

max {〈ai, x〉 − bi, 0}
‖ai‖2

ai, (3)
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a) double index numbering (χ, η) b) linear numbering

Fig. 1. Cross-shaped pursuit region (n = 2, K = 7).

which is used in the Pursuit algorithm.
Let us set

ϕs(x) = ϕ . . . ϕ︸ ︷︷ ︸
s

(x). (4)

Let the Fejerian process generated by mapping ϕ from an arbitrary initial
approximation x0 ∈ R

n to be a sequence {ϕs(x0)}+∞
s=0. It is known that this

Fejerian process converges to a point belonging to the set M:

{ϕs(x0)}+∞
s=0 → x̄ ∈ M. (5)

Let us denote this concisely as follows: lim
s→∞ ϕs(x0) = x̄.

Let ϕ-projection (pseudoprojection) of point x ∈ R
n on polyhedron M be

understood as the mapping πϕ
M (x) = lim

s→∞ ϕs(x).

3 Description of the Revised Algorithm

Without losing of generality, we may suppose all the processes are carried out
in the region of positive coordinates.

Let n be the dimension of solution space. The new edition of the algorithm
uses a cross-shaped pursuit region. This region consists of n(K−1)+1 hypercubi-
cal cells of equal size. The edges of all cells are codirectional with the coordinate
axis. One of these cells designates the center. We will call this cell central. The
remaining cells form an axisymmetrical cross-shaped figure around the central
cell. An example of a cross-shaped pursuit region in a two-dimensional space is
presented in Fig. 1. The total number of cells in the cross-shaped pursuit region
can be calculated by the following formula:

P = n(K − 1) + 1. (6)
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Each cell in the cross-shaped pursuit region is uniquely identified by a label
being a pair of integer numbers (χ, η) such that 0 ≤ χ < n, |η| ≤ (K − 1)/2.
From an informal point of view, χ specifies the cell column codirectional to the
coordinate axis indexed by χ, and η specifies the cell sequence number in the
column in relation to the center cell. The corresponding double index numbering
is shown in Fig. 1(a).

We will call the vertex closest to the origin a zero vertex. Let (g0, . . . , gn−1)
be the Cartesian coordinates of the central cell zero vertex. Let us denote by s
the cell edge length. Then the Cartesian coordinates (y0, . . . , yn−1) of the zero
vertex of the cell (χ, η) are defined by the following formula:

yj =
{

gχ + ηs, if j = χ
gj , if j 	= χ

(7)

for all j = 0, . . . , n − 1.
Informally, the algorithm with cross-shaped pursuit region can be described

by the following sequence of steps.

1. Initially, we choose a cross-shaped pursuit region which has K cells in one
dimension, with the cell edge length equal to s, in such a way, that the central
cell has nonempty intersection with the polyhedron M .

2. The point z = g is chosen as an initial approximation.
3. Given dynamically changing input data (A, b, c), for all cells of cross-shaped

pursuit region, the pseudoprojection from the point z on the intersection of
the cell and polyhedron M is calculated. If intersection is empty, then the
corresponding cells are discarded.

4. If the obtained set of pseudoprojections is empty then we increase the cell
size w times and go to the step 3.

5. If we receive a nonempty set of pseudoprojections then, for each cross bar,
we choose the cell for which the cost function takes the maximal value at the
point of pseudoprojection if it exist. For the set of cells obtained in such a way,
we calculate the centroid and move point z at the position of the centroid.

6. If the distance between centroid and central cell is less than 1
4s then we

decrease the cell length s 2 times.
7. If the distance between centroid and central cell is greater than 3

4s then we
increase the cell length s 1.5 times.

8. We translate the cross-shaped pursuit region in such a way that its central
point be situated at the centroid point found at the step 5.

9. Go to the step 3.

In the step 3, the pseudoprojections for the different cells can be calculated
in parallel without data exchange between MPI-processes. This involves P MPI-
processes, where P is determined by the formula (6). We use the linear cell
numbering for the distributing the cells on the MPI-processes. Each cell of the
cross-shaped pursuit region is assigned an unique number α ∈ {0, . . . , P − 1}.
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The sequential number α can be uniquely converted to the label (χ, η) by
the following formulas1:

χ = (α − 1) ÷ (K − 1) (8)

η =

⎧
⎨

⎩

0, if α = 0
(α − 1) mod K−1

2 − K−1
2 , if 0 ≤ (α − 1) mod (K − 1) < K−1

2

(α − 1) mod K−1
2 + 1, if (α − 1) mod (K − 1) ≥ K−1

2

(9)

The reverse conversion of (χ, η) in α can be performed by the formula

α =

⎧
⎨

⎩

0, if η = 0
η + K−1

2 + χ(K − 1) + 1, if η < 0
η + K−1

2 + χ(K − 1), if η > 0
(10)

Figure 1(b) shows the linear numbering corresponding to the double index num-
bering shown in Fig. 1(a).

4 Implementation of Revised Algorithm

This section describes the changes in the implementation of the new version of
the Pursuit algorithm with reference to the description given in the paper [8].

4.1 Diagram of Main Subroutine

The activity diagram of the main subroutine of the Pursuit algorithm is shown in
Fig. 2. In the loop until with label 1, the approximate solution z = (z0, . . . , zn−1)
of the linear programming problem (1) is permanently recalculated according to
the algorithm outline presented in the Sect. 3. As an initial approximation, z
may be chosen as an arbitrary point.

The main subroutine of the Pursuit algorithm is implemented as an inde-
pendent process, which is performed until the variable stop takes the value of
true.

The initial setting of the variable stop to the value false is performed by the
root process corresponding to the main program. The same root process sets the
variable stop to the value true, when the computations must be stopped.

In the body of the loop until, the following steps are performed. In the step 2,
the K parallel threads are created. Each of them independently calculates the
pseudoprojection from the point z on the intersection of the i-th cell and poly-
hedron M (i = 0, . . . , P − 1). Recall that P is equal to the number of MPI-
processes that in turn is equal to the total number of cells in the cross-shaped
pursuit region calculated by the formula (6). The activity diagram of subroutine
π for calculating the pseudoprojection is described in Sect. 4.2.

In the loop for with label 3, for each cross bar χ = 0, . . . , n − 1, we calculate
the sequential number α′

χ of the cell in this cross bar, in which the cost function
C takes the maximum. It is calculated in the loop with label 5. In order to
1 We use symbol ÷ to denote the integer division.
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Fig. 2. Main subroutine of Pursuit algorithm.
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guarantee the correct execution of the cycle 5, we initially assign the value MinInt
to variable α′

χ. This value corresponds to the minimal value of the integer type.
In the step 6, we calculate the sequential number α for the cell with label (χ, η)
by using formula (10).

The subroutine π calculating the point xα = (x0, . . . , xn−1) of pseudoprojec-
tion from the point z on the intersection of polyhedron M with the cell with
number α assigns value −1 to x0 when the pseudoprojection point xα does not
belong to the polyhedron M . This situation occurs when the intersection of the
polyhedron M with the cell with number α is empty. If xα belongs to the poly-
hedron then value of x0 can’t be negative because of our assumption that all the
processes are carried out in the region of positive coordinates (see Sect. 3). This
condition is checked in the step 7. Cases with x0 = −1 are excluded from con-
sideration. If all the cells in the current cross bar of pursuit region have empty
intersection with polyhedron M then the variable α′

χ saves the value MinInt.
This case is fixed in the step 10.

Then, in the loop 9, a new approximate solution z′ of the problem (1) is
calculated. Variable k takes the value which is equal to the number of cross bars
having the nonempty intersections with polyhedron M . For this purpose, in the
step 8, it is assigned the zero value. In the step 10, the cross bars having the
empty intersections with polyhedron M are excluded from consideration. In the
step 11, we calculate the sum of all pseudoprojection points, in which the cost
function takes maximum, and assign this value to z′.

If in the step 12 we have k = 0, it means that the pursuit region has empty
intersection with polyhedron M . In this case, the length s of cell edge is increased
w times, and we go back to the step 1. The constant w is a parameter of the
algorithm. If in the step 12 we have k > 0 then the new approximation z′ is
assigned the value which is equal to the centroid of all the cell selected in the
loop labeled 9.

In the step 13, we investigate how far the new approximation z′ is distant
from the previous approximation z. If the distance between z′ and z is greater
than 3

4s then the length s of cell edge is increased 1.5 times. If the distance
between z′ and z is less than 3

4s then the length s of cell edge is decreased 2
times. If the distance between z′ and z is greater than or equal 1

4s and less than
or equal 3

4s then the length s of cell edge is unchanged. The values 1/4 and 3/4
are the parameters of the algorithm.

In the step 14, the pursuit region is translated by vector (z′ − z), z is
assigned z′, and computation is continued.

4.2 Diagram of Subroutine Calculating Pseudoprojection

In Fig. 3, the activity diagram of the subroutine calculating the pseudoprojection
x = π(z, α) from the point z on the intersection of the polyhedron M and the cell
with number α calculated by the formula (10) is presented. The pseudoprojection
is calculated by organizing a Fejerian process (5) (see Sect. 2). In the step 1, the
initialization of the variables used in iterative process is performed. The initial
value of x is assigned to point z; the zero vertex y of the cell with number α is
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Fig. 3. Subroutine π calculating pseudoprojection.
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Fig. 4. Subroutine of zero vertex calcu-
lation for cell with number α.

Fig. 5. Model-n synthetic problem.

calculated by using subroutine zero (see Fig. 4); the variable part of extended
column b′ of the constraint system is obtained by intersecting the polyhedron
M and the cell with number α is defined (see [8]). In the loop 2, we calculate
normsq being a vector of squares of norms of rows of the extended matrix A′:
normsqi = ‖a′

i‖2 (see [8]).
In step 1, we organize an iterative process which calculates a pseudoprojection

based on the formula (3). The subroutine dataChange changes the input data
every t seconds (where t is a positive number, which can take a value less than 1).

The iterative process is terminated when the distance between the last two
approximations x and x′ is less than ε. In the step 1, the subroutine in (see
[8]) checks belonging of the obtained pseudoprojection point x to the cell with
the number α. If x does not belong to the cell with the number α, then x[0] is
assigned the value (−1). The constant ε defines a small positive number, which
allows to correctly handle approximate values.

The activity diagram of the subroutine which calculates the zero vertex of
the cell numbered α is presented in Fig. 4. Calculations are performed by using
the formulas (8), (9) and (10).

5 Computing Pseudoprojection on Intel Xeon Phi

The most CPU intensive operation of the Pursuit algorithm is the operation com-
puting the projections, which is implemented in the subroutine described in the
Sect. 4.2. In order to achieve a high performance we investigated the possibility
of effective use of coprocessors Intel Xeon Phi to calculate the pseudoprojection.

In our experiments, we exploited a self-made synthetic linear programming
problem Model-n presented in the Fig. 5. Such the problems allow us to easily
calculate the precise solution analytically. Therefore, they are well suited for
algorithm validation and scalability evaluation.
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We implemented the algorithm in C++ language using OpenMP. The task
run was performed on Xeon Phi in native mode [10]. For computational experi-
ments, we used the computer system “Tornado-SUSU” [5] with a cluster archi-
tecture. It includes 384 processor units connected by the InfiniBand QDR and
Gigabit Ethernet. One processor unit includes two six-core CPU Intel Xeon
X5680, 24 GB RAM and coprocessor Intel Xeon Phi SE10X (61 cores, 1.1 GHz)
connected by PCI Express bus.

In the first series of experiments, we investigated the efficiency of paralleliza-
tion of calculating pseudoprojection for different numbers of threads. The results
are presented in Fig. 6. The pseudoprojections were calculated on the intersec-
tion of the polyhedron defined by constrains of linear programming problem
Model-n and the cell with edge length s = 20 having coordinates of zero ver-
tex equaling to (100, . . . , 100). The calculations were conducted for the dimen-
sions n = 1200, 9600, 12000. The graphs show that the parallelization efficiency
is strongly depends on the dimension of the problem. So, for the dimension
n = 1200, the speedup curve actually stops growing after 15 threads. This
means that a problem of such dimension cannot fully load all cores of Xeon
Phi. The situation is changed when n = 9600 and more. Speedup becomes near-
linear up to 60 threads, which is equal to the number of cores in Xeon Phi.
Then parallelization efficiency is decreased, and for the dimension n = 9600, we
even observe a performance degradation. The degradation is most evident at the
point corresponding to the use of 180 threads. This dip is due to the fact that is
not divisible by the dimension of 9600 divisible by 180, hence the compiler can-
not uniformly distribute the iterations of the parallel for cycle between threads.
The same situation takes place at the point “45 threads” for the dimensions
1200 and 9600. However, if the dimension is increased up to 12000, this effect is
weakened.

In the second series of experiments, we compared the performance of two
CPUs Intel Xeon and coprocessor Intel Xeon Phi. The results are presented in
Fig. 7. The calculations were made for the dimensions n = 9600, 12000, 19200.
For the Intel Xeon Phi, we made two builds: without the vectorization (MIC)
and with the vectorization including data alignment (MIC+VECTOR). In all
the cases, for the 2×CPU runs we used 12 threads, and for Xeon Phi runs we
used 240 threads. The experiments show that for the dimension n = 9600 the
2×CPU outperform the coprocessor Xeon Phi, for the dimension n = 12000
the 2×CPU demonstrate the same performance as the coprocessor Xeon Phi
does, and for the dimension n = 19200 the coprocessor Xeon Phi noticeably
outperforms 2×CPU. At the same time, for the dimensions 9600, 12000 and
19200, the vectorization and data alignment provides a performance boost of
12%, 12.3% 20% correspondingly. Thus, we can conclude that the efficiency of
the Xeon Phi coprocessor usage increases with the growth of the problem dimen-
sion. Simultaneously the significance of the vectorization and data alignment is
increased.
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Fig. 6. Speedup of computing pseudo-
projection on Xeon Phi.

Fig. 7. Performance comparison of CPU
and Xeon Phi (MIC).

6 Conclusion

The paper describes a new version of the Pursuit algorithm for solving high-
dimension, non-stationary linear programming problem on the modern cluster
computing systems. The distinctive feature of the new version is that it uses a
cross-shaped pursuit region consisting of n(K −1)+1 cells, where n – dimension
of the problem, K – number of cells in one cross-bar. The previous version
of the algorithm uses a cube-shaped pursuit region consisting of Kn cells that
results in high computational complexity of the algorithm. The results of the
computational experiments investigating the efficiency of the coprocessor Xeon
Phi use for pseudoprojection computation were presented. In these experiments,
a synthetic linear programming problem was used. Studies have shown that the
use of Intel Xeon Phi coprocessors is effective for high-dimension problems (over
10000). Our future goal is to investigate the efficiency of the proposed algorithm
on the cluster computing systems using MPI technology.
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Abstract. In the present paper an approach to solving the global opti-
mization problems using a nested optimization scheme is developed. The
use of different algorithms at different nesting levels is the novel element.
A complex serial algorithm (on CPU) is used at the upper level, and a
simple parallel algorithm (on GPU) is used at the lower level. This com-
putational scheme has been implemented in ExaMin parallel solver. The
results of computational experiments demonstrating the speedup when
solving a series of test problems are presented.

Keywords: Global optimization · Multiextremal functions · Dimension
reduction · Parallel algorithms · Speedup · Graphics accelerators

1 Introduction

Let us consider the problem of search for a global minimum of an N -dimensional
function ϕ(y) within a hyperinterval D

ϕ∗ = ϕ(y∗) = min {ϕ(y) : y ∈ D}, (1)
D =

{
y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N

}
, (2)

where a, b ∈ RN are given vectors.
The numerical solving of problem (1) is reduced to building an estimate

y∗
k ∈ D corresponding to some measure of proximity to point y∗ (for example,

‖y∗ − y∗
k‖ ≤ ε, where ε > 0 is given accuracy) based on a finite number k

of computations of the objective function values. With respect to the class of
considered problems, the fulfillment of two important conditions is suggested.

First, it is suggested that the objective function ϕ(y) may be defined not
analytically (as a formula) but algorithmically as a result of execution of some
subroutine or library.

Second, it is suggested that the function ϕ(y) satisfies a Lipschitz condition

|ϕ(y1) − ϕ(y2)| ≤ L ‖y1 − y2‖ , y1, y2 ∈ D, 0 < L < ∞, (3)

with an a priori unknown constant L. This suggestion is typical for many
approaches to solving the global optimization problems (see, for example
[1–5]). It can be interpreted (with respect to the applied problems) as the reflec-
tion of the limited power causing the changes in the modeled system.
c© Springer International Publishing AG 2016
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2016, CCIS 687, pp. 224–235, 2016.
DOI: 10.1007/978-3-319-55669-7 18
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The multiextremal optimization problems are more computational costly
essentially as compared to other types of the optimization problems since the
global optimum is an integral characteristic of the problem being solved and
requires the investigation of the whole search domain. As a result, the search
for the global optimum is reduced to the generation of a grid in the parameter
domain, and to the choice of the best function value on the grid. At that, the
computational costs of solving the problem increase exponentially with increas-
ing dimension.

A novel approach to solving the global optimization problems has been devel-
oped under the supervision by prof. R.G. Strongin at Lobachevsky State Uni-
versity of Nizhny Novgorod (see [6–12]). Within the framework of this approach,
solving of the multidimensional problems is reduced to solving a series of nested
problems with a lower dimension. For the efficient solving of the multidimen-
sional problems with the computationally inexpensive objective function, it is
proposed to transfer solving of the nested subproblems to the graphics acceler-
ator completely.

2 Core Global Search Algorithm with Parallel Trials

As a base problem, we will consider a one-dimensional multiextremal optimiza-
tion problem

ϕ∗ = ϕ(x∗) = min {ϕ(x) : x ∈ [0, 1]}, (4)

with objective function satisfying the Lipschitz condition.
Let us give the description of Parallel Global Search Algorithm (PGSA)

applied to solving above problem (let us formulate it here according to [6]). Let
us assume the problem to be solved in a parallel computational system with p
processors.

The algorithm for solving problem (4) involves constructing a sequence of
points xi, where the values of the objective function zi = ϕ(xi) are calculated.
Let us call the function value calculation process the trial, and pair (xi, zi) the
trial result. At each iteration of the method p of trials is carried out in parallel,
and the set of pairs (xi, zi), 1 ≤ i ≤ k = np, makes up the search data collected
using the method after carrying out n steps.

At the first iteration of the method the trials are carried out in parallel
at arbitrary internal points x1, . . . , xp of the interval [0, 1]. For example, these
points can be uniformly distributed over the interval. The results of the trials
(xi, zi), 1 ≤ i ≤ p, are saved in the database of the algorithm.

Suppose, now, that n ≥ 1 iterations of the method have already been exe-
cuted. The trial points xk+1, . . . , xk+p of the next (n + 1)-th iteration are then
chosen by using the following rules.

Rule 1. Renumber points of the set

Xk = {x1, . . . , xk} ∪ {0} ∪ {1}, (5)



226 K. Barkalov and I. Lebedev

which includes boundary points of the interval [0, 1] and the points
{
x1, . . . , xk

}

of the previous k = k(n) = np trials, with subscripts in increasing order of
coordinate values, i.e.,

0 = x0 < x1 < · · · < xk < xk+1 = 1. (6)

Rule 2. Supposing that zi = ϕ(xi), 1 ≤ i ≤ k, calculate values

μ = max
2≤i≤k

|zi − zi−1|
Δi

, M =
{

rμ, μ > 0,
1, μ = 0,

(7)

where r > 1 is a preset reliability parameter of the method, and Δi = xi −xi−1.
Rule 3. Calculate a characteristic for every interval (xi−1, xi), 1 ≤ i ≤ k +1,

according to the following formulae

R(1) = 2Δ1 − 4
z1
M

, (8)

R(i) = Δi +
(zi − zi−1)2

M2Δi
− 2

zi + zi−1

M
, 1 < i < k + 1, (9)

R(k + 1) = 2Δk+1 − 4
zk
M

. (10)

Step 4. Arrange characteristics R(i), 1 ≤ i ≤ k + 1, in decreasing order

R(t1) ≥ R(t2) ≥ . . . ≥ R(tk) ≥ R(tk+1) (11)

and select p maximum characteristics with interval numbers tj , 1 ≤ j ≤ p.
Rule 5. Carry out new trials at the points xk+j , 1 ≤ j ≤ p, calculated using

the following formulae

xk+j =
xtj + xtj−1

2
, if tj = 1 or tj = k + 1, (12)

xk+j =
xtj + xtj−1

2
− ztj − ztj−1

2M
, if 1 < tj < k + 1. (13)

The algorithm terminates if the condition Δtj < ε is satisfied at least for one
number tj , 1 ≤ j ≤ p; here ε > 0 is the preset accuracy. As current estimate of
the optimum at the step n we accept the values

ϕ∗
k = min

1≤i≤k
ϕ(xi), (14)

x∗
k = arg min

1≤i≤k
ϕ(xi). (15)

This method of the parallel computations organization has the following sub-
stantiation. The characteristics of intervals (8)–(10) used in the algorithm can be
considered as some measures of probability of localization of the global minimum
point within these intervals. Inequalities (11) arrange the intervals according to
the characteristics of these ones, and the trials are executed in parallel in the
first p intervals with the highest probabilities to find the global optimum point
in. Various modifications of this algorithm and the corresponding theory of con-
vergence are presented in [6].
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3 Dimension Reduction

3.1 Dimension Reduction Using Peano Curves

For decreasing the complexity of the global optimization algorithms generating
nonuniform coverages of the multidimensional search domain, various dimension
reduction schemes are widely used. These schemes allow reducing the solving of
the multidimensional problem to solving a family of connected subproblems of
lower dimension (in particular, to the one-dimensional problems).

The use of Peano curve y(x)
{
y ∈ RN : −2−1 ≤ yi ≤ 2−1, 1 ≤ i ≤ N

}
= {y(x) : 0 ≤ x ≤ 1} (16)

unambiguously mapping the interval of real axis [0, 1] onto a N -dimensional
cube is the first of the dimension reduction methods considered. Problems of
numerical construction of Peano-type space filling curves and the corresponding
theory are considered in detail in [6,13]. Here we will note that a numerically
constructed curve (evolvent) is 2−m accurate approximation of the theoretical
Peano curve, where m is an evolvent construction parameter.

By using this kind of mapping it is possible to reduce the multidimensional
problem (1) to a univariate problem

ϕ(y∗) = ϕ(y(x∗)) = min {ϕ(y(x)) : x ∈ [0, 1]}. (17)

An important property of such mapping is preservation of boundedness of func-
tion relative differences (see [6,13]). If the function ϕ(y) in the domain D satisfies
the Lipschitz condition, then the function ϕ(y(x)) on the interval [0, 1] will sat-
isfy a uniform Hölder condition

|ϕ(y(x1)) − ϕ(y(x2))| ≤ H |x1 − x2|1/N , (18)

where the Hölder constant H is linked to the Lipschitz constant L by the relation

H = 2L
√

N + 3. (19)

Relation (18) allows adopting the algorithm for solving the one-dimensional
problems presented in Sect. 2 for solving the multidimensional problems reduced
to the one-dimensional ones. For this, the lengths of intervals Δi involved into
rules (3)–(5) of the algorithm are substituted by the lengths in a new metrics

Δi = (xi − xi−1)
1/N (20)

and the following expression is introduced instead of formula (13):

xk+j =
xtj + xtj−1

2
− sign(ztj − ztj−1)

1
2r

[∣∣ztj − ztj−1

∣∣
μ

]N

, if 1 < tj < k + 1.

(21)
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3.2 Nested Optimization Scheme

Nested optimization scheme is based on a well known relation (see [15])

min
y∈D

ϕ(y) = min
a1≤y1≤b1

min
a2≤y2≤b2

. . . min
aN≤yN≤bN

ϕ(y), (22)

which allows replacing the solving of multidimensional problem (1) by solving a
family of one-dimensional subproblems related to each other recursively.

Let us introduce a set of functions

ϕN (y1, . . . , yN ) = ϕ(y1, . . . , yN ), (23)

ϕi(y1, . . . , yi) = min
ai+1≤yi+1≤bi+1

ϕi+1(y1, . . . , yi, yi+1), 1 ≤ i ≤ N − 1. (24)

into consideration. Then, according to relation (22), the solving of initial problem
(1) is reduced to solving a one-dimensional problem

ϕ1(y∗
1) = min

a1≤y1≤b1
ϕ1(y1). (25)

However, at that, every calculation of a value of one-dimensional function ϕ1(y1)
in a certain point implies solving a one-dimensional minimization problem

ϕ2(y1, y∗
2) = min

a2≤y2≤b2
ϕ2(y1, y2), (26)

etc. up to calculation of ϕN .
For the nested scheme presented above, a generalization (block nested opti-

mization scheme), which combines the use of evolvents and the nested scheme
has been proposed in [14] with the purpose of efficient parallelization of the
computations.

Let us consider vector y as a vector of block variables

y = (y1, y2, . . . , yN ) = (u1, u2, . . . , uM ), (27)

where the i-th block variable ui is a vector of dimension Ni of components
of vector y, taken serially i.e. u1 = (y1, y2, . . . , yN1), u2 = (yN1+1, yN1+2, . . . ,
yN1+N2), . . . , uM = (yN−NM+1, yN−NM+2, . . . , yN ), at that N1 + N2 + . . . +
NM = N .

Using the new variables, main relation of the nested scheme (22) can be
rewritten in the form

min
y∈D

ϕ(y) = min
u1∈D1

min
u2∈D2

. . . min
uM∈DM

ϕ(y), (28)

where the subdomains Di, 1 ≤ i ≤ M , are projections of initial search domain
D onto the subspaces corresponding to the variables ui, 1 ≤ i ≤ M .

The formulae defining the method of solving of problem (1) based on relation
(28), in general, are the same to the ones of nested scheme (23)–(25). It is only
necessary to substitute the original variables yi, 1 ≤ i ≤ N , by the block variables
ui, 1 ≤ i ≤ M .
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At that, the nested subproblems

ϕi(u1, . . . , ui) = min
ui+1∈Di+1

ϕi+1(u1, . . . , ui, ui+1), 1 ≤ i ≤ M − 1. (29)

in the block scheme are the multidimensional ones. The dimension reduction
method based on Peano curves can be applied to solving these ones. It is a
principal difference from the initial scheme.

The number of vectors M and the quantity of components in each vector
N1, N2, . . . , NM are the parameters of block nested scheme and can be used
for the forming of the subproblems with necessary properties. For example, if
M = N i.e. ui = yi, 1 ≤ i ≤ N, the block scheme is identical to the initial one;
each nested subproblem is a one-dimensional one. And if M = 1, i.e. u = u1 = y,
the solving of the problem is equivalent to solving this one using a single evolvent
mapping [0, 1] into D; the nested subproblems are absent.

4 Organization of Parallel Computing

For organization of parallel computing, we will use a small (2–3) number of nest-
ing levels. Correspondingly, the initial problem of large dimension is subdivided
into 2–3 nested subproblems of lower dimension. Then, applying the parallel
methods of global optimization in block nested scheme (28) to the solving of
nested problems (29), we obtain a parallel algorithm with a high degree of vari-
ability. For example, it is possible to vary the number of processors at different
nesting levels, to apply various parallel search methods at different levels, and
also to use various types of computing devices.

For instance, for solving the problems with computationally inexpensive func-
tions, one can use Parallel Global Search Algorithm on CPU at the upper nest-
ing level and employ the scanning method on a uniform grid on GPU at the
lower one. Note that the implementation of PGSA with the use of computation
accelerators in the problems with time-consuming objective functions has been
considered in details in [17,18].

The scanning method is featured by the fact that all computations can be
executed independently. The parallelization of the scanning method can be orga-
nized easily by means of subdivision of the grid into several subdomains of equal
size and simultaneous search of the solution in these subdomain in different
thread blocks.

Within this approach to the parallelization of the scanning method, the objec-
tive function values would be computed many times in every thread. The com-
putations within a thread block are executed in the following way. All threads
in a block compute the objective function values in parallel. Then, the synchro-
nization is performed inside the block. After that, the zeroth thread chooses
the best value in the block and saves it in the global memory. The process is
repeated until all necessary trials are completed. Upon completing the compu-
tations, the lowest value among the blocks is selected, and the point of the best
value is returned. Shared memory is allocated for the blocks in amount necessary
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for storing the coordinates of the points computed in parallel and the function
values obtained. The data transfer from CPU to GPU will be minimal: it is
required to send the fixed coordinates of the trial point to GPU and to receive
the coordinates and values of current global minimum point found back.

The general scheme of the computations using several cluster nodes and
several GPUs is presented in Fig. 1. The processes of a parallel program will
make a tree corresponding to the nesting levels of the subproblems. According
to this scheme, the nested subproblems

ϕi(u1, . . . , ui) = min
ui+1∈Di+1

ϕi+1(u1, . . . , ui, ui+1), i = 1, . . . ,M − 2, (30)

are solved using CPU only. In these subproblems, the values of the function
ϕ(y) are not computed directly since the calculation of the values of functions
ϕi(u1, . . . , ui) is defined when solving the minimization problems of the next
level. Each subproblem is solved in a separate process; the exchange of the results
is organized by means of MPI.

The subproblem of the lowest (M − 1)-th level

ϕi(u1, . . . , uM−1) = min
uM∈DM

ϕM (u1, . . . , uM ) (31)

differs from all previous subproblems because the values of the objective func-
tion are computed within this one since ϕM (u1, . . . , uM ) = ϕ(y1, . . . , yN ). This
subproblem is executed in a separate process also and can be solved on CPU
(using Global Search Algorithm) as well as on GPU (using the scanning method
over a uniform grid).

Fig. 1. The scheme of the parallel computing on a cluster

5 Numerical Experiments

Computational experiments were carried out on a high-performance cluster of
Lobachevsky State University of Nizhny Novgorod. The cluster node included
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two Intel Xeon L5630 CPUs, 24 Gb RAM, and two NVIDIA Tesla M2070 GPUs.
The CPU had 4 cores, i.e. 8 cores were available in each node. For the imple-
mentation of the GPU algorithm, CUDA Toolkit 6.0 was used. To carry out the
computational experiments ExaMin parallel solver developed in Lobachevsky
State University of Nizhny Novgorod was used.

The efficiency of the parallel algorithm was estimated by solving a set of test
problems, selected from some class randomly. At that, each test problem can be
considered as particular realization of a random function defined with a special
generator. We have used well known GKLS generator of test problems for the
multiextremal optimization [16]. This generator allows generating multiextremal
optimization problems with known properties (the number of local minima, the
size of their domains of attraction, the global minimum point, etc.). The compar-
ison of several serial optimization algorithms carried out using GKLS generator
in [17,18] has demonstrated the advantage of serial Global Search Algorithm
over the other similar purpose algorithms.

The numerical experiments were carried out using Simple and Hard function
classes from [19]. The global minimum y∗ was considered to be found if the
algorithm generates a trial point yk in δ-vicinity of the global minimum, i.e.∥∥yk − y∗∥∥ ≤ δ. The size of the vicinity was selected (according to [19]) as δ =
‖b − a‖ N

√
Δ, where N is the problem dimension, a and b are the borders of

search domain D, the parameter Δ = 10−4 at N = 2, Δ = 10−6 at N = 3, 4 and
Δ = 10−7 at N = 5. When using GSA, the parameter r was selected to be 4.5
for Simple class and 5.6 for Hard class. The evolvent construction parameter was
fixed as m = 10. The maximum allowable number of iterations was Kmax = 106.

In the first series of experiments, 800 problems of various dimensions have
been solved in order to estimate the efficiency of the parallel algorithm using the
resources of CPU only. At that, block nested optimization scheme has not been
used, i.e. core Parallel Global Search Algorithm was used only.

In Table 1, the run time (in seconds) and the averaged number of iterations
when running the serial algorithm are presented. The speedup of the parallel
algorithm run on CPU using p threads is presented in Table 2.

Table 1. Average time and number of iterations on CPU

N = 2 N = 3 N = 4 N = 5

Simple Hard Simple Hard Simple Hard Simple Hard

tav 0.02 0.05 0.03 0.08 0.19 0.57 0.24 3.84

kav 2349 4731 2129 5382 12558 37410 15538 247784

The results demonstrate an insignificant speedup of the parallel algorithm.
This agrees with our assumptions completely since the values of the objective
functions generated by GKLS generator are computed fast, and the effect of
extra costs for the organization of the parallel computations become essential.
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Table 2. Average speedup on CPU

p N = 2 N = 3 N = 4 N = 5

Simple Hard Simple Hard Simple Hard Simple Hard

2 7.38 6.5 1.1 1.01 1.35 1.32 0.68 1.2

4 1.16 0.63 1.33 1.12 1.53 1.37 0.99 1.29

8 6.87 0.9 1.36 1.33 1.49 1.61 0.62 2.22

16 0.78 1.64 1.43 1.29 1.61 1.89 1.71 1.75

The analogous behavior of the algorithm has been observed when running
PGSA using GPU. In Table 3, the speedup in time of the algorithm with the
use of GPU relative to the serial algorithm is presented. The values are given
subject to the number of threads p; both accelerators available on the node have
been employed.

Table 3. Average speedup on GPU

p N = 2 N = 3 N = 4 N = 5

Simple Hard Simple Hard Simple Hard Simple Hard

128 4.6 4.97 1.06 1.19 1.12 1.38 0.66 1.82

256 3.37 6.11 1.02 1.34 1.6 1.51 1.02 2.35

512 2.27 4.36 0.76 1.36 1.59 1.53 0.83 1.29

Further, let us consider solving the problems using the parallel scanning
method implemented on GPU. The solution found by the scanning method
was adjusted by Hooke-Jeeves method (see, for example, [20]). In Table 4, the
speedup of scanning method relative to serial GSA on CPU is presented. In the
computations, two accelerators have been used as before.

It is seen from the table, that when using the scanning method on GPU,
a greater speedup has been achieved than when using GPU for the parallel
computation of the function value within the framework of PGSA. Also, the
experiments have demonstrated the speedup to decrease with increasing dimen-
sion since the increasing of the number of nodes in the uniform grid in the
search domain takes place. Consequently, the use of scanning method on GPU
is advisable for solving the problems of low dimension.

The main computational experiments has been carried out on a series of 200
multiextremal problems of the dimensions N = 6 and N = 8 from Simple class
using the block nested optimization scheme. When solving the problems from
these classes the parameters r = 4.5, Δ = 10−8 for N = 6 and Δ = 10−9 for
N = 8 were used. In accordance with block nested scheme (28), two levels of
subproblems with the dimensions N1 = N2 = 3 for the six-dimensional problems
and N1 = N2 = 4 for the eight-dimensional ones were used. The maximum
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Table 4. Speedup of GPU scanning method relative to CPU serial GSA

N = 2 N = 3 N = 4

Simple Hard Simple Hard Simple Hard

39.31 15.49 31.28 11.73 7.6 2.6

allowable number of iterations of the algorithm was Kmax = 106 at each level.
When using the scanning method on GPU, the step of the uniform grid in the
search domain was selected to be 0.1; upon completing the computations, the
found solution was adjusted by the local method.

Table 5 presents the averaged time (in seconds) of solving the problem in the
following modes:

– on CPU using serial Global Search Algorithm (GSA column);
– in the parallel mode using the block nested optimization scheme (B-GSA

column). At each nesting level, Parallel Global Search Algorithm was used;
two CPU available on the cluster node were employed in the computations;

– in a hybrid mode using the block nested optimization scheme (H-GSA col-
umn). At the first nesting level, PGSA on CPU of a cluster node was used;
at the second nesting level 2 graphics accelerators available on the same node
were employed;

– in the hybrid mode using the block nested optimization scheme (M-GSA
column). At the first nesting level, PGSA on CPU of a cluster node was
used, at the second level, four cluster nodes and 8 graphics accelerators were
employed, which the parallel scanning method was running on.

In Table 6, the speedup of the method in the same modes relative to the
serial running is presented. The number of the unsolved problems is given in the
braces; the time spent for trying to solve these ones was not taken into account
when calculating the averaged run time of the algorithm.

Table 5. Averaged time of solving the problems of dimensions 6 and 8

N GSA B-GSA H-GSA M-GSA

6 53.5(20) 4.4 1.1 0.4

8 72.6(19) 78.3 10.7 3.1

The results of experiments confirm the use of the block nested optimization
scheme in solving the problems of large dimension to give a considerable speedup
as compared to the initial serial algorithm. At the same time, the use of the scan-
ning method implemented on GPU at the lower nesting levels allows obtaining an
additional speedup for the problems with computationally inexpensive objective
function.
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Table 6. Speedup for solving the problems of dimensions 6 and 8

N B-GSA H-GSA M-GSA

6 12.1 48.4 133.7

8 0.9 6.8 23.4

6 Conclusion

In the present work, a multilevel scheme of dimension reduction in the global
optimization problems combining the use of Peano curves and the nested scheme
is considered. For solving the reduced subproblems, Parallel Global Search Algo-
rithm is used. The issues of the efficiency of using the proposed multilevel scheme
for the problems with a small time of computing the objective function values
are discussed. In order to estimate the speedup of the parallel algorithm exper-
imentally, the computational experiments have been carried out on a series of
test problems of various dimension. The results of experiments demonstrate the
proposed multilevel scheme to allow employing the heterogeneous resources of
modern computer systems (CPU, GPU) efficiently and achieving a considerable
speedup.
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Abstract. A step-by-step computer simulation variant for making scramjet
mathematical model is offered. The report considers an approach related to 3D
mathematical models development of scramjet components further reduced to
1D models. Mathematical models of physicochemical processes in combustor
cooling system are discussed with the aim of subsequent engine performance
optimization depending on fuels used. Then 1D separate component models are
used to make up a full-scale scramjet model. The one-dimensional models allow
calculation times significantly reduce, and the simulation accuracy is condi-
tioned by precision of 3D models to 1D models reduction.

Keywords: Supercomputer simulation � Scramjet � 3D model � 1D model �
Models reduction

1 Introduction

Fast development of computer technology has resulted in a new research method
appearance - a computer experiment based on the triad “model-algorithm-program” [1].
As a rule, a mathematical model consists of systems of nonlinear differential equations
in partial derivatives, integral or integral-differential equations together with boundary
and initial conditions. These equations usually express the fundamental conservation
laws of main physical values (energy, momentum, mass, etc.). The computing algo-
rithm implies operational procedures by means of which numerical solutions of
mathematical model equations are found.

Originally, the mathematical models contained many admissions, which allowed
finding solutions of background equations analytically or with minimum calculations.
However, as far as computation capability was growing the mathematical models got
more complex and permitted explication of physicochemical process particularities
running in hardware design elements. Full-scale simulation based on 3D (non)
steady-state mathematical model of entire technical unit often with inclusion of its
adjacent space is most valuable. Such simulation allows realizing technical unit opti-
mization, revealing its physicochemical process features at different working state,
studying various factors impact on efficiency, and getting other useful information on
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technical unit under investigation. Besides, full-scale modeling greatly reduces
experimental study volumes and cuts development and design time for technical device
with optimum performance.

Full-scale simulation shortages should include mathematical models complexity
tied with computing domain features and/or running physicochemical processes, as
well as large computation work volume necessary for conducting numerical solutions
of basic equations. As a rule, mathematical models comprise boundary (stationary
processes) or initial-boundary (unsteady processes) tasks, which, due to approximation
and linearization, reduce to systems of linear algebraic equations (SLAE) with sparse
and ill-conditioned matrix coefficients. Modern models lead to SLAE consisting of 108

equations and more. At present, the computing algorithms efficiency designed for such
SLAE solutions completely depends on mesh performance. Quite recently a multigrid
technology is designed for solving a large class of boundary and initial-boundary
problems on structured meshes both in sequential and parallel performances [2]. The
computation scope for solution of large class of (non)linear boundary value problems is
shown close to optimum and makes up OðN � lgNÞ arithmetical operations, where N is
the number of unknowns. We emphasize that multigrid technology contains the min-
imum problem-dependent components, and a close-to-optimal computing efficiency is
achieved without algorithm adapting to boundary tasks under solving. In other words,
the present multigrid technology is specially designed for autonomous software.

Meanwhile a computing mesh with the specified characteristics can be built in
rather simple geometry domains. If the domain geometry is complex, unstructured
meshes are usually used. At present an efficient algorithm for solving boundary and
initial-boundary problems on unstructured meshes still is not designed, thus a forced
step is transition from full-scale to bit-by-bit simulation.

The step-by-step simulation is based on breaking the original unit in separate nodes
(elements). A mathematical model is built per any element; separate models interaction
is taken into account with the help of boundary conditions. The present approach
capability is limited by inaccuracy of boundary conditions formulation, so step-by-step
simulation fails to realize technical unit optimization, especially when elements number
is great enough.

The project studies possible creation of high-speed ramjet on solid fuel with system
of active cooling combustor (Fig. 1). Gases generated during solid propellant com-
bustion in autonomous gas-generator (1) are used for solid fuel gasification (2) for
ramjet. Gas temperature reduces, since heat is partly absorbed in solid fuel gasification
process. Further gas mixture enriched by solid fuel gasification products enters the
combustor cooling system. Gas mixture in cooling system ducts is heated and ther-
modestructed generating lighter hydrocarbon compounds and radicals. The ther-
modestruction process runs with significant heat absorption providing ramjet
combustor efficiency. Besides, thermodestruction products possess increased reactivity
that makes much easier their ignition and combustion in air flow. The heat absorbed
during fuel destruction process in cooling system ducts returns in combustor providing
high propellant combustion completeness. Then thermodestruction products enter
combustor burning and creating ramjet thrust. The proposed ramjet scheme is featured
by using solid fuel, which allows creating unique flying vehicles, having no analogues
in the world, with increased shelf time and high operative readiness. At present a range

Supercomputer Simulation of Physicochemical Processes 237



of scramjet designs is considered using cryogenic fuels. Cryogenic hydrogen most
often is in the first place. Practically, they speak about hypersonic flying vehicles
having sufficient “cold reserve” on board for cooling heat stressed elements of engine
and airframe design. However, cryogenic fuel scramjet usage is complicated by sig-
nificant overhead expenses and technical difficulties connected with fuel low
temperature.

When simulating a contradictory situation often appears: on the one hand, full-scale
simulation can’t be realized because of limited computer capability and absences of
efficient numerical solution methods of basic equations, but, from the other side,
step-by-step modeling fails to get answers to interesting issues due to inaccurate
boundary conditions statement at element junctions. The only contradictory situation
outcome is: at first to develop 3D mathematical models of separate technical unit
elements, which hereinafter are reduced to 1D models. Further separate element 1D
models form full-scale 1D model of the entire technical unit. Usage of 1D models
greatly shorten computation time, and simulation accuracy is conditioned by reducing
3D models to 1D ones.

The present work aims at development and testing reduction methodology of 3D
mathematical models to 1D models using as an example one of main ramjet compo-
nent - combustor cooling system.

2 Processes Simulating in Cooling System

2.1 Cooling System Panel

The ramjet combustor is the most heat stressed element of high speed flying vehicle with
atmospheric operation zone. The ramjet combustor walls are cooled by fuel further

Fig. 1. Ramjet basic diagram: 1 – solid fuel propellant, 2 – ramjet solid fuel
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entering through pylons system combustor, where it mixes with atmospheric bleed air
and burns creating engine thrust. The ramjet cooling system should provide the required
temperature mode of combustor walls, i.e. to save it from destruction due to overheat.

The combustor cooling system appearance is singular defined by engine perfor-
mance depending on flying vehicle designation. To avoid specific engine linkage works
[3, 4] offer for cooling system a panel design way: combustor walls are cooled by
special panels, which number depends on fuel consumption (i.e. on flying vehicle
designation). Thus, the same panels can be used in various ramjet cooling systems.

The panel used is built on sectional principle (Fig. 2), which has indisputable
advantages at combustor cooling system development. Strictly speaking, cooling
system design depends on hypersonic flying vehicle purpose. Exactly, the sectional
principle allows physicochemical processes in scramjet combustor cooling system to
research without linkage to specific flying vehicle. In particular, a three-sectional panel
scheme is shown in Fig. 3.
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Fig. 2. Heat exchange panel section of cooling system

Fig. 3. Cooling system three-sectional panel
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Hereinafter we use for computation 20-section panel. Hydrocarbon fuel enters
cooling system duct, where it is heated and possibly subjected to thermal decompo-
sition (Fig. 3). Duct geometry is such chosen to provide intensive heat exchange and
sufficient heat-transfer agent dwell time under relatively small hydraulic resistance. The
washed wall roughness of cooling system panel internal duct is accepted 4 � 10�5 m. In
more details the panel used and simulation results of heat exchange associated are
described in [3, 4].

2.2 Simplified 3D Model of Associated Heat Exchange

Individual natural hydrocarbons such as ethane (C2H6), propane (C3H8), butane
(C4H10), and pentane (C5H12) when heating decompose on more simple hydrocarbons,
and moreover this decomposition process is endothermic, i.e. it runs with heat
absorption. Under raised pressure these hydrocarbons easy condensate in liquids, so
they might be kept as fluids in a sealed container at ambient temperature. The
hydrocarbons, which absorb heat under thermal decomposition and are used as fuels for
flying vehicles, have got the name “endothermic fuels” (EF).

At present in the world extensive experimental and theoretic-computing studies are
conducted for possible EF usage in various flying vehicles. One of the difficulties is
building mathematical models of EF thermal decomposition in ramjet cooling system
ducts. Presently several EF decomposition models are offered differing on process
description depth, versatility, and number of empirical constants and functions used.

For engineering applications the simplest EF decomposition model is based on
replacing actual hydrocarbon compound by some fictitious material, which decom-
poses without intermediate reactions. The literature sometimes calls such models
single-staged. Empirical constants and functions necessary for fictitious material
description are so selected that in some sense get the coincidence of computed data
with actual EF experimental data.

Works [3, 4] show that different mathematical models of physicochemical pro-
cesses at EF decomposition in forced flow conditions of heated rough ducts can be
reduced to single-stage models with a single additional convective-diffusive equation.
The mathematical model presented of associated heat exchange under turbulent flows
of EF decaying in heated rough curvilinear ducts of scramjet combustor cooling system
is founded on the following positions:

Position 1. Initial EF is substituted by some fictitious media (FM), which thermal
characteristics (density, viscosity, thermal conductivity, and heat capacity) depend on
pressure, temperature, and function W, hereinafter named local decomposition degree.

Position 2. Mathematical model of associated heat exchange under turbulent flow of
decaying EF, apart from equations of continuity, motion, turbulence, energy (for
flows), and thermal conductivity (for duct), should contain the equation for local
decomposition degree computation.

Position 3. Energy equation should contain a source member providing endothermic
effect at FM decomposition.
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The equation for function W calculation has the form

@ðqŴÞ
@t

þr q~VŴ
� � ¼ r DŴrŴ

� �� qf p; T ; Ŵ
� �

;

where DŴ is “diffusion” factor, and function Ŵ is connected with decomposition degree

by relation Ŵ ¼ lnð1�WÞ.
The energy equation at presence of endothermic reactions has the form

@ðqiÞ
@t

þr q~Vi
� � ¼ r krTð Þ � S;

where i is EF enthalpy. Source member S� 0 in this case depends on fuel decompo-
sition degree and temperature as follows

S ¼ ABqexp Ŵ� E
RT

� �
;

where B is empirical factor dependent on EF type.
Thereby, any spatial model of associated heat exchange under turbulent flow of

decaying EF in heated curvilinear ducts can be reduced to a simplified model, which
contains only three empirical parameters A, B and E [3, 4].

2.3 Reduction of 3D (Three-Dimensional) Model to 1D
(One-Dimensional) Model

The present work plots 1D mathematical model of hydrodynamics and associated heat
exchange in 20-section panel based on 3D simulation results without and providing
hydrocarbon fuel thermal decomposition.

We use the following 3D model equations:

(a) thermal conductivity equation (in panels metal)

0 ¼ @
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@z
k
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� �
;

(b) energy equation (in panel duct flowpath)
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The assumptions used at plotting 1D mathematical model of associated heat
exchange in cooling system panel:

Assumption 1. Only one panel side is heated, the rest sides are heat isolated. Specific
flow heat density qw used for panel heating can change only along axis X (Fig. 4).
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Assumption 2. Along axis X convective heat transfer is dominant in contrast with
thermal conductivity.

Assumption 3. Pressure drop between inlet and exit panel sections of cooling system is
relatively small, so we expect that media thermal characteristics (density, viscosity,
thermal conductivity, heat capacity) depend only on temperature. As a rule, media
thermal characteristics are approximated by polynomials of the type

cpðTÞ ¼
XK
k¼0

hkT
k ð1Þ

where cp is specific media heat capacity under constant pressure, T is absolute
temperature, hk, k = 0,1,K, K are known polynomial factors.

Providing Assumption 2 the energy/thermal conductivity equations are

@ quIð Þ
@x

þ @ qvIð Þ
@y

þ @ qxIð Þ
@z

¼ @
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k
@T
@y

� �
þ @

@z
k
@T
@z

� �
þ S ð2Þ

where u,v and x are velocity vector components in directions x, y and z, corre-
spondingly, I is enthalpy, k is thermal conductivity factor, q is density, S is source
member conditioned by possible flow physicochemical conversions. Since panel
domain X consists of metallic case XM and flow path part XF i.e. X = XM U XF, than
functions (2) are:

u ¼ u; ðx; y; zÞ 2 XF

0; ðx; y; zÞ 62 XF
;

�
x ¼ x; ðx; y; zÞ 2 XF

0; ðx; y; zÞ 62 XF

�

t ¼ t; ðx; y; zÞ 2 XF

0; ðx; y; zÞ 62 XF
;

�
S ¼ S; ðx; y; zÞ 2 XF

0; ðx; y; zÞ 62 XF

�

q ¼ qF ; ðx; y; zÞ 2 XF

qM ; ðx; y; zÞ 62 XM
;

�
k ¼ kF ; ðx; y; zÞ 2 XF

kM ; ðx; y; zÞ 62 XM

�

Here lower indexes M and F attribute to panel metal and heat-transfer agent
accordingly. Thereby, defining separate functions we can combine the energy equation
for heat-transfer agent and thermal conductivity equation of panel material in a united
energy/thermal conductivity equation.

Fig. 4. Ramjet combustor wall cooling system by panel

242 V. Volokhov et al.



We divide the panel in control volumes

Xi ¼ x; y; zð Þ : x 2 xi; xiþ 1½ �; y 2 0; LY½ �; z 2 0; LZ½ �f g

where LY = 0.07 m and LZ = 0.04 m are maximum panel dimensions in directions
Y and Z accordingly, xi is typical sections shown in Fig. 3, moreover i = 1,2,K, N,
where N = 41 for 20-section panel. Integrating energy/thermal conductivity Equa-
tion (2) on volumes Xi we obtain the following form of energy/thermal conductivity
equation

ZLY

0

ZLZ

0

quIð Þjxiþ 1
xi dzdyþ Zxiþ 1

xi

ZLZ

0

qvIð ÞjLY0 dzdx

þ Zxiþ 1

xi

ZLY

0

qxIð ÞjLz0 dydx

¼ Zxiþ 1

xi

ZLZ

0

k
@T
@y

� �����
LY

0
dzdxþ Zxiþ 1

xi

ZLY

0

k
@T
@z

� �����
LZ

0
dydx

þ Zxiþ 1

xi

ZLY

0

ZLZ

0

Sðx; y; zÞdzdydx

After transformations the energy equation takes form

Ih iiþ 1� Ih ii¼
LY xiþ 1 � xið Þ

2G
qw xið Þþ qw xiþ 1ð Þð Þþ V

G
S�

where G is mass heat-transfer agent consumption, Ih ii is mean mass enthalpy in i-th
section

Ih ii¼
1
G

Z

A

quIð Þjxida

The last member type follows from the mean value theorem

Zxiþ 1

xi

ZLY

0

ZLZ

0

Sðx; y; zÞdzdydx ¼ VS�

where V is duct flowpath volume between sections xi and xi+1, S� is mean source
member value in volume V.

First we consider the simplest case, when there is no heat release or absorption in
heat-transfer agent flow: S = 0. Knowing heat load on cooling panel we easily define
mean mass heat-transfer agent enthalpy. However for calculation of mean mass
heat-transfer agent temperature it is necessary to use the relation known from ther-
modynamics for isobaric process
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dI ¼ cp Tð ÞdT ) I Tð Þ � I T0ð Þ ¼ ZT

T0

cp Tð ÞdT

where T0 is heat transfer agent temperature at cooling panel duct inlet. Since enthalpy is
accurately determined to additive constant, I(T0) = 0 can be taken, i.e.

I Tð Þ ¼ ZT

T0

cp Tð ÞdT ¼
XK
k¼0

hk
ZT

T0

TkdT ¼
XK
k¼0

hk
kþ 1

Tkþ 1 � Tkþ 1
0

� � ð3Þ

Formally, knowing mean mass heat-transfer agent enthalpy I its mean mass tem-
perature can be found as transcendental Equation (3) solution. Much handy, exact, and
quicker to tabulate I(T) function and approximate it by a polynomial of the type

T Ið Þ ¼
XM
m¼0

cmI
m:

So hereinafter consider known the dependency

Th ii¼
XM
m¼0

cm Ih imi :

To find the panel heated wall temperature use the Newton law:

qw xið Þ ¼ a xið Þ Tw xið Þ � Th ii
� �

:

First believe that 3D calculation is executed and wall temperature T(xi) and mean
mass heat-transfer agent temperature Th ii known. Specific flow heat density qw(xi) is
also known (boundary conditions). It is easy to find on mean mass temperature values
of dynamic viscosity l(xi), thermal conductivity k(xi), and specific heat capacity under
constant pressure cp(xi) in section considered xi (Fig. 3). Then for each section we can
compute numbers of Nusselt (Nu), Reynolds (Re), and Prandtl (Pr):

Nu ¼ ade
k

;Re ¼ 4
P
G
l
;Pr ¼ lcp

k
ð4Þ

where de and P are equivalent hydraulic diameter and washed perimeter, accordingly.
The results of 3D simulation approximate by the following functional dependency

Nu ¼ v1Re
v2Prv3 ð5Þ

where v1, v2, и v3 are empirical constants depending on panel geometry, heat-transfer
agent, and boundary conditions.
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2.4 One-Dimensional Simulation of Associated Heat Exchange in Ramjet
Cooling System Panel Without Providing Hydrocarbon Fuel Thermal
Decomposition

Initial data for heat exchange computation in 20-section panel (Fig. 2) are:

• hydrocarbon fuel type: pentane C2H5;
• heat-transfer agent mass flow: G = 0.0067 kg/s;
• pentane temperature at cooling system panel duct inlet: T0 = 300 K;
• pentane pressure at cooling system panel duct inlet: P0 = 5 MPa;
• mean heat load: qw � 1 MWt/m2.

Three-dimensional computation series is firstly executed without providing pentane
thermal decomposition (S� ¼ 0); on the grounds of calculation results the following
values of criteria Eq. (5) empirical factors are obtained:

Nu ¼ 0:00011Re1:23Pr1:29:

The procedure at 1D simulation is (i = 2, 3, K, N):

1. Calculation of mean mass enthalpy Ih iiþ 1

Ih iiþ 1¼ Ih ii þ
LYðxiþ 1 � xiÞ

2G
qw xið Þþ qw xiþ 1ð Þð Þ;

2. Calculation of pentane mean mass temperature Th iiþ 1;
3. Calculation of dynamic viscosity l, thermal conductivity k, and specific heat

capacity under constant pressure cp on pentane mean mass temperature Th iiþ 1
known;

4. Calculation of numbers Reynolds (Re) and Prandtl (Pr) on (4);
5. Calculation of Nusselt number on (5), determination of heat exchange factor a

a ¼ Nu
k
de

;

6. Calculation of ramjet combustor wall temperature under the Newton law

Tw xið Þ ¼ Th ii þ
qwðxiÞ
aðxiÞ :

Note that Tw is maximum wall temperature, i.e. the temperature of cooling system
panel side closest to combustor. Exactly this temperature is a factor limiting ramjet
combustor capacity. Temperature of the opposite side can be taken with sufficient
accuracy equal to heat-transfer agent mean mass temperature.

Figure 5 presents pentane temperature and maximum temperature of cooling sys-
tem panel wall (on combustor side) obtained by results of 1D and 3D modeling.
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2.5 Computing Experiments

For 3D modeling a computing mesh is used consisting of 3837240 control volumes in
flowpath and 12660951 control volumes in cooling panel build (Fig. 6). Computing
time for one variant makes up from 10 to 14 days on computing system consisting of
24-48 cores with RAM memory up to 2 Gb/core. Many computing experiments are
conducted on clusters of Institute of Problems of Chemical Physics of RAS and high
capacity multicore graphic station (GPU acceleration is not applied in the experiments).
More than 20 experiments of various computing complexity (defined by mesh nodes
calculation accuracy) has been performed. Satisfactory convergence of 3D and 1D
reduced computing models is shown.

Similar methodology can be applied for 3D modeling associated heat-exchange in
different geometry panels and reducing the results obtained to 1D models. Obviously, a
strong variation of heat-transfer agent thermal characteristics prevents usage of alike
geometry panels. A typical inverse task is seeking for optimum geometry of panel inner
ducts flowpath, which most of all are solved by reducing to direct tasks combination.
Application for direct tasks solution of 1D models allows computing volume greatly
reduce, and 3D models mainly use for test calculations.

Fig. 5. Results comparison of 1D and 3D modeling
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3 Conclusion

Thus, the reduction of 3D models to 1D models allows parametric study of complex
technical units to conduct at small computation scope. The key reduction moment to
mathematical models is getting type (5) relations.

More difficult problem represents provision of heat-transfer agent decomposition
since the duct geometry renders greater influence on chemical processes, than on heat
exchange. Meanwhile, the mean mass decomposition degree in 1D approach can be
computed as follows:

W
^

D E
iþ 1

� W
^

D E
i
¼ AF

2G
qiexp � E

R Th ii

� �
þ qiþ 1exp � E

R Th iiþ 1

� �� 	
� � i;

where empirical function � i takes into account spatial effects at decomposition EF.
Mathematical models of complex technical systems such as scramjets can be built

as 3D models of separate units with their further reduction to 1D models. Results of
supercomputer modeling separate units can be brought to one-dimensional models and
subsequent engine optimization under minimum computing efforts.

The activity is a part of thework“Supercomputer simulation of physical and chemical
processes in the high-speed direct-flow propulsion jet engine of the hypersonic aircraft
on solid fuels” supported by Russian Science Foundation (project no. 15-11-30012).

Fig. 6. Unstructured mesh in cooling panel build
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Abstract. The addition of an optical wireless switching network with advanced
functionalities to a supercomputer system is proposed. The structure of links of
nodes (computer devices) a complete graph in which only links are realized is
necessary. The switching units are located only in the sources and receivers. The
structure of the network links can be changed quickly during execution of the
single program instruction. The calculations may be executed for the data in the
message without requiring additional time.

Keywords: Wireless optical network � Retroreflector � Dynamical
reconfiguration � Distributed synchronization � Barrier synchronization �
Distributed computing � Fault tolerance

1 Introduction

The features of supercomputers (SCs) that contain numerous interacting devices are
largely determined by a switching system. These switching systems have a fixed
topology of network connections, transport data using a switch of messages, eliminate
conflicts, and perform intermediate storage of transmission data. The data are processed
beyond the switching system. Thus, the functions of SC devices are clearly separated.

This paper, in order to facilitate and accelerate the interaction of SC components,
proposes the incorporation of a wireless optical network in the SC switching system.
This network integrates the SC facilities for switching and computation. Optoelec-
tronics are used because it is not possible to achieve new networking capabilities using
only electronic means.

1. The wireless optical network brings together many nodes (devices of the system) to
form a fully connected structure (complete graph).

2. It implements only those connections that are required at the current time.
Switching means are located directly at the data source and at the data receiver.
Changing the structure of the connections is feasible in the nanosecond range. Thus,
the structure of the links can vary not only from program to program but also for the
execution of a single program command.

3. Direct interconnection of the nodes allows circuit switching to be used instead of
message switching, thus securing the continuous connection of the nodes. Simpli-
fication of the process connection allows the exchange of short messages.

4. The opportunities described in points 1–3 make it possible to adapt the structure of
the physical connections in the system to the structure of the connections in the
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program, thereby eliminating the appearance of long chains of connections through
the switching system.

5. Fast synchronization of the sources in the network allows the receiver to receive
messages from sources at the same time or one after the other without pauses
between messages.

6. Sending a message simultaneously to a group of receivers is slightly different in
complexity and execution time from sending a message to one receiver.

7. Messages may clash only at the entrance to the receiver, but such conflicts are
eliminated quickly.

8. The tools of the network can perform data processing in a message without addi-
tional time during this processing. Thus, in the SC that uses the proposed network,
there will not be a complete separation of all systems into switching and computing
means.

9. There are rapid means of simultaneous notification of all network nodes regarding
the current state of the network.

The combination of these features not only enables the network to more flexibly
and quickly carry out the exchange of messages but also affects the other SC functions.
For example, network tools perform distributed computing, simplify the decentraliza-
tion of control system performance, and increase the speed of the diagnostic status of
the network and of a system.

Thus, the network structure adapts under the program requirements during the
execution command of the program, supports fast mass interactions in the SC, imple-
ments distributed computing jointly with the transfer of messages, and extends the
capabilities of designing algorithms and application software. Thus, this paper examines
the network, which combines transportation and data processing (TDP network).

2 Optical Components of TDP Network and Network
Connections

2.1 Network Nodes

In the network, there are three types of nodes: the object, the repeater, and the informer
of the system [1]. Here and below, we denote the object i as Oi, the repeater j as Rj, and
the systems informer as SI. If we do not need to distinguish between the R and SI, they
will be denoted as the communication module MS.

The object performs domestic actions (computing, storage). It also performs the
organization of interaction between network nodes. The object sends optical signals to
the communication modules and receives signals from them. Signals may be of several
types that differ qualitatively, for example, by frequency. The node does not distinguish
signals of the same type that are received simultaneously.

The object sends a message a specially organized sequence of optical signals—to
the nodes. There are two types of signals: pulse signals, the duration of which is known
for all components of the network, and continuous signals, the duration of which is
variable and is determined by the signal source.
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The repeater receives the signals from the object and uses the retroreflector, which
reflects without delay each incoming signal to its source. The repeater uses pulsed or
continuous signals of one type to modulate the signals to another type. Thus, let a
group of objects send continuous signals of f1-type to a specific repeater and one of the
objects send an additional message A of signal-type f2. Let the repeater modulate
signals f1 by signals f2, thereby copying the incoming message A. Then, this message
will get all objects of the group. Therefore, the repeater does not create new signals for
communication between objects. It uses only signals of the objects. The object uses the
demultiplexer, which sends signals to the selected repeater or to the group of repeaters
or to the system’s informer. The object sends to module MS an optical signal *f, which
prohibits the return to objects signal f1. The repeater has a memory element. The object
sends to the repeater the optical signals *f1 and *f2, which switch the memory element
to an “on/off” state, respectively. In the “on” state, the repeater does not return signals
f1 to objects.

The SI is different from the repeater: while receiving the signals from objects, it
creates a characteristic only for the non-directional signal fsi and sends it to all network
objects.

2.2 Communication in the Network (Interaction of Nodes)

The organization of the connections between objects is specific. The object-source
signal does not send signals directly to the receiver. Instead, the following procedure is
performed. The object-receiver signal selects the repeater through which the receiver
will receive signals intended for it, and the receiver sends a continuous signal f1 into a
repeater. The object-source sends a continuous signal f1 and the signal f2 of a message
into a repeater selected by the receiver. The repeater forwards the signals of the source
to the receiver by modulating the signals f1 of the receiver by means of the signal f2
from the source. An object, as described above, sends signals to a specific repeater,
simultaneously to a group of repeaters, or to all repeaters simultaneously. The receiver
that transmits the message to the source can act like the source, but it can send a
message only into its own MS, which sees the source. Figure 1 shows the types of
communication network facilities. For simplicity, only repeaters of the receivers (black
circles), which are placed between the source and the receiver, are shown.

      1a                           1b                                        1c

Fig. 1. Types of connections in a network
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In Fig. 1a, the source (not painted over) sends a message to a randomly selected
group of receivers. In Fig. 1b, an arbitrary group of sources sends messages to a single
receiver. In Fig. 1c, a group of sources, using a repeater of an object-broker (or an
independent repeater), sends a message to a group of receivers.

In Fig. 1a, a single source can simultaneously access a group of receivers. In
Fig. 1b, a group of sources has access to a receiver; there is a way to resolve the
conflict access of the sources to the receiver. In Fig. 1c, the access conflict of sources to
the mediator is eliminated, and the messages are then synchronized. Receivers watch
for the mediator and receive from it the messages of the sources.

The topology of connections is changed by sending the appropriate command for a
particular object or simultaneously to group of objects or to all objects using the SI.
Section 7 shows that the existing technical facilities allow you to change the topology
quickly. Establishing a direct link between objects allows them to have a connection for
a long time (channel switching).

3 Synchronization of the Sources

Synchronous signals from different sources must come simultaneously in an arbitrary
MS in response to the synchronization signal coming from the MS (Sect. 4) [1, 2]. The
travel time from object Oi to MSj and back is denoted as Tij. Methods for determining
the time of delivery from the source to the receiver are known. We do not dwell on
them and assume that sources know the time of delivery of the signal to each MS.

For synchronization, an arbitrary object Oi sends a signal to MSj with the delay (1).

�Ti ¼ Tmax � Tij ð1Þ

Here, Tmax � max Tij. Then, the signals of all identically acting objects arrive
simultaneously to MSj with the same delay Tmax. As a result, the identical bits of
messages from different objects are merged into a single message.

If messages must arrive to the MS one after another as a single message without
time spaces, each object Oi has to transmit its message with the delay Tmax – Tij + Q,
where Q is the total length of messages transmitted by the objects prior to the object Oi.

For slow networks, there is a possible delay of Tmax + Q, but in fast networks, this
leads to a substantial reduction in capacity.

4 Eliminating Access Conflict of Sources to the MS

If the sources are sending signals to the MS without synchronization, conflict appears at
the entrance to a repeater and must be eliminated.

- Method of Fixed Scales [1]. Sources use the moment of detection of the conflict as a
synchronization command going from the MS, and then sources transmit the message
to theMS-logical scale, which is a sequence of bit positions. The source that transmits a
message to MS at the so-called temporary time scale, where one of the positions of the
scale is assigned to each source, is entitled to send a message to the given MS. The
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conflicting source inserts one in its position. The logical scale arrives to the MS and is
returned to all conflicting sources that determine the ordinal number of their trans-
mission. The messages are transmitted sequentially as a single message, which elim-
inates the conflict.

In some cases, it is advisable to renounce the fixed number of scale positions. For
example, the receiver may access an unknown number of sources. In these cases, apply
the following uses of the scale with an element of randomness.

- Priority Method. A scale is generated. Different binary priority codes are assigned to
the sources. The source randomly selects a scale position and places into it the value of
the highest bit of its priority code.

The scale is sent into the MS and returned to the sources. Now, the well-known
method of conflict elimination is used [2]. The sources may send in the bit position of
the scale zero and one bits simultaneously. In this case, the sources that sent zero bits
have finished struggling for the right to transmit a message. The rest of the sources
operate with the next position of the priority code until exhausting all positions of the
priority code.

As a result, the scale will have only conflict-free sources. Then, the positions where
no struggle occurred are ignored. If the struggle is won by more sources than the
receiver can service, part of the source is rejected.

- Random Method. Assume that only a minor part of objects needs to access the
receiver simultaneously. The source selects randomly a scale position and writes into it
a bit equal to one. The scale length is selected to be sufficiently large to minimize the
probability of more than one source selecting the same position. The actions over this
scale are the same as those over the deterministic one. Under this condition, the
probability of conflict of the source messages is small.

5 Distributed Computing, Group Commands

5.1 Distributed Computing

This section describes network tools that perform two types of data processing for the
messages sent over the network.

– Type 1. Operations: logical sum, logical product, the determination of maximum or
minimum are realized in a network for two or a large group of operands at the same
time. The result of operation is accessible to all participants of the operation
simultaneously.

– Type 2. Calculations are done for the numbers included in the transmitted message,
which passes through a chain of series-connected objects. Carrying out calculation
requires no delay in the transmission of a message. All logical operations, finding of
max, min, arithmetic addition, subtraction and multiplication are performed.
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Operations are Type 1. A group source simultaneously sends messages to the MS
module so that they overlap each other bit by bit, forming a common message. Each
digit in the message is represented by two bits: 10 for unit and 01 for zero.

All objects watching this MS will receive a message from the MS. For the operation
“logical addition,” the imposition of a pair of bits 10 and 01 must be interpreted as a
unit. For the operation “logical multiplication,” the imposition of a pair of bits 10 and
10 must be interpreted as a unit.

When the maximum and minimum values of sources are determined, they send a
message to the MS as in the previous case, but only one bit is allocated for the number
position in the message. In such messages transmitted to the MS from sources, each
such number position is allocated for a separate subgroup of the group of sources. The
sources of all sub-groups will calculate a maximum (minimum) value in all subgroups
simultaneously. These subgroup sources send the messages containing numbers in MS
such that similar bits of the numbers coincide. Next, every source sends in MS the
high-order digit of a number, which must be compared. The MS returns a signal to the
source, and if this source has sent to the MS a digit zero and received from the MS a
digit one, then this source is stopped. This operation continues for all other positions of
the compared numbers. As a result, the sources of all subgroups will compute the
maximum number from the numbers sending their sources. These actions do not differ
from the actions with the priority process scale (Sect. 5). By inverting the message
representation of bits one and zero, we may calculate minimum in a similar way.

This result created the MS without the participation of any logic devices and is very
fast. For example, let us require comparing N numbers distributed between N objects.
Usually, this requires many operations. In our case, a calculation requires simultaneous
sending of N numbers to the MS, and the result is available simultaneously for all
objects.

Performing Operations of Type 2. Let objects be connected in the chain: the first
object sends a message to the R of the second object, the second object receives the
message and sends it to the R of the third object, and so on. The numbers in the
message are transmitted by signals of two types: fa for a bit value 1 and fb for a bit value
0. All steps of the operation are carried out without delay in the message received by
the object, as shown in Fig. 2.

fa , fb S fb fa Ua Ub Gb Ga
*fa

*fb
*fa ,*fb

Fig. 2. Computation in the chain
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The device in Fig. 2 receives signals fa or fb. Separator S directs the incoming
signal, depending on its value, into one of the two paths. The object in the chain sends
electrical control signals to the switches Ua and Ub. To perform the computation, the
object controls the switches before the arrival of the next bit in the message. For this,
the object uses only the value of the bit number stored in the object and a type of
operation. After that device receives an input signal, it goes to a switch and then goes to
one of two sources Ga or Gb, which generate signals *fa or *fb, respectively. The signal
from the switch turns it and the signal from (Ga, Gb) is directed to the next object in the
chain.

Objects are realized via the following four steps, using Ua and Ub.
Action M1. The signal fa (fb) is transformed into output signal * fb (*fa). Action M2.

The signals fa and fb are transformed into *fa. Action M3. The signals fa and fb are
transformed into * fb. Action M4. The signals fa and fb are transformed into *fa and *fb,
respectively.

These actions do not analyze the value of the incoming signal; therefore, the output
signal has no time delay.

Actions M1–M4 are sufficient for performing the referred above operations with the
number in the message and with the number stored in the object [1, 2]. Examples of
performing distributed computations without delay are given in [3].

The signal *fa formed instead of fa, and signal *fb formed instead of signal fb
because the MS, receiving a signal 2 from the source, converted this signal to signal f1.
Therefore, in Fig. 2, the inlet signal and outlet signal should be different types.

We emphasize that the use of pairs of signals fa and fb for the computations in the
chain requires using the corresponding pair of signals instead of the above signals f1
and f2.

Here are two simple examples that show the absence of delay in operations of type 2.
Assume that chain objects must perform the bitwise logical multiplication. Each

object before the operation analyzes the value of the bit stored in the object and
prepares the following step. If the value of the bit is 0, it is necessary to perform action
M3 differently from M4. Then, a message is transmitted into the chain, and the time
needed for it to move on the chain while performing logical multiplications is the same
as the time of moving without multiplication.

Now, we add the current bit of the binary number stored in the object and the bit
that comes from the chain. If the object must be added to a zero, then it selects action
M4; otherwise, action M1 is selected. Because each object in the chain selects the
previous action that comes from the bit from the chain, the switching time in the chain
of objects is not cumulative.

Note for operation 2. To execute the cyclic operations, the last object in the chain
must be connected to the first object. To perform the branching, which requires
restructuring the network structure, the initiator of the branching must send a branch
instruction. Some branching may be performed locally by any object in the chain, thus
changing its actions based on previous results.
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5.2 The Command for a Group of Objects

The command for a group of objects (GC) is a message moving along a chain of
objects and carrying data and instructions to the objects to process the data indicated in
GC, to change the instructions in the GC and perform local actions in the object [2].
Regarding changes in the GC content, the object analyzes part of the GC passing
through it and replaces the remaining part with its information without delaying GC via
this transformation. As a result, the GC moving along the chain of objects captures the
information about the objects and varies itself along the way. Its effect on the object
depends on the actions of the object’s predecessors in the chain. A message can also be
a group program consisting of a sequence of GCs generated by several objects. In the
application of computational operations of type 1, GC can come to many objects
simultaneously.

6 Examples of Using the Network Capabilities

6.1 Barrier Synchronization

The barrier synchronization is a laborious problem for programming. Let a group of
P sources transmit messages to the receivers waiting for these messages. Transmission
is possible after preparation of messages by all sources, which requires different times.
In a group of P sources, a representative of the entire group is assigned. Its repeater
MSp is known for all sources and receivers that watch MSp.

After preparing a message, the sources transmit to MSp a continuous signal *f for-
bidding return of signals f2. Having prepared a message, the source removes this signal.
Upon readiness of all sources, MSp begins to return the signal f2. Having received f2,
the objects transmit the messages synchronously with delays *Ti to the repeater MSp,
and all receivers get it as a united message.

6.2 Synchronization of Messages Sent from the Source to a Group
of Receivers

The message source sends a request to receivers regarding the adoption of the message.
In response to the request, each receiver sends a signal *f1 to its module MS that forbid
him to return signals f1. When the receiver is ready to receive messages, the receiver
sends the signal *f2 to the MS and the ban will be lifted.

The source monitors the modules MS of all receivers, sending to all MS simulta-
neously signals f1; the disappearance and then appearance of clock signal f1 serves as a
transmission opportunity.

Using signals *f1, *f2 and instead *f (Sect. 6.1), the receiver eliminates the need for
a continuous transmission of signals to the MS.
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6.3 Networking in MPI

This important topic is touched upon briefly; examples of the impact of the network
properties on the implementation of the MPI functions will be given, and the possibility
of creating new functions will be shown.

1. The use of channel switching (Sect. 2) establishes a connection between the source
and the receiver for the required time, which simplifies the implementation of a
number of functions of MPI.

2. Suppose that a group of processes, each of which is located in a separate object of a
network using the MPI_ALLTOALL function, must transport a message to all
processes—receivers also located on the individual objects. Usually, this function
requires long-term action of the program. With the use of barrier synchronization
(Sect. 6.1), it is quickly carried out in the hardware of the network controller of the
object.

3. The receivers are located as in paragraph 2. The source of command MPI_BCAST
must send copies of a message to a group of receivers. The source previously must
ascertain their willingness to receive the message. To check it, the source uses rapid
synchronization from Sect. 6.2. Then, copies of the messages are sent
simultaneously.

4. The function MPI_GRAPH_CREATE displays virtual topology relations in the
program into the topology of the real system. The direct neighbors in a virtual
topology in a real system can be connected through a long chain of links.

The proposed system has a real short connection between the devices for each long
virtual link in the program. These links are created rapidly in real time. The established
connection is maintained for an arbitrary length of time.

New functions MPI creation. The above examples relate only to the implementation
of MPI functions, but the network also allows developing new MPI functions. For this,
the network has new features: fast-change topology network, channel switching, syn-
chronization, method of conflict resolution, and methods of distributed computations.

6.4 Evolutionary Computation

In many evolutionary algorithms, a group of objects, acting in parallel, repeatedly finds
private solutions, which are also repeated, that are compared to find the maximum or
minimum. The methods of calculating the max or min from Sect. 5.1 work very
quickly. There is the next variant of such actions. Initially, each object finds the best
local solution. This may require different times for them. To determine the point in time
when these calculations will all be completed, is used barrier synchronization is used.
After synchronization, the max must be determined via an operation of type 1 or 2.

6.5 Fighting with Failures in the Network and in the System

Consider two issues: the elimination of network damages which violate the integrity of
the system and the search for the quantity and location of faulty system objects. The
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only type of network components whose damage affects the integrity of the system is
the MS. If the object-receiver detects failure in its module MS, it uses a spare module.
Possible access conflict must be resolved, as done in Sect. 4. If failures are greater than
the available number of spare MS modules, the object will be connected to a module
that is already occupied by other objects and will use the module in conjunction with
them. Thus, if there is at least one serviceable moduleMS, the system remains operable.
To determine the quantity and location of faults in the system, objects are connected
together into a chain. GC is moved into the chain. To identify the faulty objects in a
chain, each active object puts into the GC its name or coordinates in the system.

7 Network Amdahl’s Law for the TDP Network

According to Amdahl’s Law, if a program contains a portion that is run in parallel on n
computers and a sequential part, then the time the program is run is reduced (2).

T ¼ Ts þ Tp
�
n ð2Þ

Here, T, Ts, Tp are the execution time of the program and of its serial and parallel
portions, respectively. With increasing n, the contribution of the second term is
reduced.

Taking into account transfer of the messages through the network, this law takes the
form of a network Amdahl’s law (3).

T ¼ Ts þ Tp
�
nþ Tnw ð3Þ

Here, Tnw is time spent on transfer in the network. Typically, these expressions are
converted, but this form will be sufficient.

For the TDP network, the runtime in network Amdahl’s law is different (4).

�T ¼ k1Ts þ k2Tp=nþ Tpnw þ k3Tnw ð4Þ

Here, k1, k2, k3 are the numerical coefficients, and Tpnw is part of the computing
facilities running on the network. Due to the emergence of Tpnw, the values of the
constituent expressions can change, which is taken into account by the coefficients.
Times Ts and Tp may be reduced due to the transmission of the data for processing to
the network. The Tnw value may be reduced due to the emergence of Tpnw; thus, k3Tnw
becomes less than Tnw. Let us determine the possibility of *T < T.

For the operations in the article, this ratio is realized, as demonstrated, for example,
for the logical multiplication in Sect. 6.1.

This operation requires only one transfer of the number from objects to the MS, as
the calculation time is not spent and *T = Tmax (transfer requires 3 ns for a distance of
1 m). As a result, all the coefficients k equal zero. Thus, we excluded all successive
operations; the result was obtained in the shortest possible time, without the involve-
ment of computational tools. Objects use only their own network channels without
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affecting the other objects. Messages can have a small length. The complex exchange
protocol is excluded. Time of the operation is irrespective of the quantity of operands.

These features are specific also for other operations in the paper.
Conclusions of Amdahl’s law for the TDP network show that this network has new

properties.

8 The Technical Implementation of Network Resources

To implement the proposals described in this paper, the components that perform
functions of the demultiplexer, the repeater and the systems informer must be devel-
oped. Analysis of the literature shows the presence of devices that are close to those
required. We refer, in particular, to the following results.

Demultiplexer - stored in every object and connects an object to any MS or,
simultaneously, to any group of MS. The required organization of the demultiplexer is
described in [4, 5], where for a laser lattice was used. Articles [6, 7] are examples of
realizations of laser lattices.

Repeater. The main components of the repeater are the retroreflector, the light
modulators, and the photo detectors [1, 8, 9]. As an example of a work where all of
these components are used, we give present the results of paper [10] in a condensed
form.

In Fig. 3, 1 = the light signal coming from a remote laser source; 2 = the lens;
3 = the plate, with many modulators/photo detectors; 4 = the mirror located in the lens
focal surface. Items 2 and 4 are components of the retroreflector “cat’s eye”.

Signal 1 is focused on mirror 4 and returns to the source. Signals from other sources
fall into other parts of the mirror and return to the sources. In the forward and reverse
paths, each signal passes through one corresponding element 3.

Element 3 is used as a photo detector to receive a signal. It is used as a light
modulator to return a signal to the source. The signal of the source carries the message
received by photo detector 3. The source transmits a continuous signal after the
transmission of the message, using 1. This signal, modulated by element 3-modulator,
returns the message of the receiver to the source. Thus, each source has an independent
operating channel. Currently, there are similar approaches of other authors.

   1         2             3 

Fig. 3. Repeater with retroreflector
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Repeaters in the present paper require similar components with the following
modifications.

– Simplification: modulator/photo detector (3) should be common to all objects.
– Increasing complexity: the modulator must be selective in frequency. However, it is

possible to have only the means of paper [10]: the device, according to Fig. 3,
allows you to split the stream after the lens into two streams and send them to two
devices (3, 4).

Systems Informer. Recently, developments of devices transmitting signals with
modulation speeds above 10 GHz have appeared [11].

There have been publications on the development of systems on a chip using
optical wireless communication nodes [12]. Some solutions discussed in our paper are
also applicable in such systems. As in [12], in our case, we can create wireless links in
dust proof construction comprising only optoelectronic components of the repeaters
and the communication modules.

9 Conclusion

The most distinguishing features of the considered network are as follows.

– The topology of the offered wireless optical network can be changed during the
execution of a single program command.

– Messages sent by many sources in the network are delivered to the receiver (or
group of receivers) as a united message without temporary pauses between the
individual messages.

– In the content of transmitted messages, the network tools can perform calculations
without spending extra time for calculation.

– The network tools significantly accelerate the implementation of a number of
complex functions (for example, MPI) and enable new types of applied algorithms
to be constructed.

One of the founders of the modern theory of complex networks, A.L. Barabási,
emphasized [13] that networks have become the focal point of all areas of research in
the XXI century.

This is true for SCs, in which a network connects individual devices to form a
single complex system. The paper shows that the impact of networks in this area may
be beyond their use as a means of transporting messages.
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Structure for Better Mapping of Parallel

Applications
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Abstract. We consider a new approach to the classical problem of allocating
parallel application processes to nodes of a high-performance computing sys-
tem. A new algorithm which analyzes the communication structure of processes
is presented. The obtained communication structure can be used to recommend
mapping for a high-performance computing system with a given topology. The
input for the proposed algorithm is the data representing the total length of
messages sent between every two processes. A set of processes is analyzed as a
system of particles which evolve under the influence of attractive and repulsive
forces. The identified configuration of the particles reflects the communication
structure of the underlying parallel application and can be used for effective
mapping heuristics.

Keywords: Mapping � Supercomputers � Parallel applications

1 Introduction

Current development of large-scale parallel architectures is closely associated with a
rapid growth in number of computing nodes per system: top-10 systems from The
Top500 list [1] comprise from hundreds of thousands to millions of cores. At the same
time, a number of direct communication links between nodes in most cases remains
comparatively constant at about several dozens due to physical and technical con-
strains. Therefore fully interconnected networks are not practically feasible as increase
in number of nodes implies quadratic growth in number of links per system and linear
growth in number of links per node [2].

Total execution time of a parallel application to a large extent depends on time
consumed by exchange of data between parallel applications’ processes (communi-
cation time). Increase in the number of nodes leads to a larger average distance between
nodes, and, therefore, larger communication costs for processes allocated to these
nodes, which may substantially inflate communication time required to run an
application.

Communication patterns may vary significantly. There are two base types of
communications, which can even use different hardware implementations within a
single computing system: all-to-all communications, where a process sends a message
to every other processes, and point-to-point communications, where a process sends a
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message to particular another one. All-to-all communications are essentially featured
with low scalability, whereas communication time required for point-to-point com-
munications can be reduced. This reduction among other means can be achieved by
allocating the processes communicating heavily with each other to the closest possible
nodes. Advantageously prevalent number of practically significant parallel applications
have sparse communication patterns, where point-to-point communications prevail and,
moreover, each process communicates with relatively small amount of other processes
[3]. Beyond that several recent works offered a potential to replace all-to-all by
point-to-point communications [4].

In this paper we focus on the mapping problem, which is to allocate the processes
communicating heavily with each other to the closest possible nodes of the parallel
system. The found placement is referred as the mapping. The mapping problem has
been proven to be NP-complete [2].

Recent results in this field are represented primarily by heuristic algorithms to find a
mapping which minimizes a chosen metric, e.g. hop-byte metric, congestion, average
dilation, and, eventually, communication and execution time. For example, [5] pro-
vides a combination of greedy heuristics resulting in reduction of parallel application
execution time by 25% compared to standard mapping. The referred result was
achieved running the parallel application with a recursive doubling communication
pattern on a 3D-torus system (Cray XT5 Kraken at NICS).

Most commonly used and investigated mapping algorithms are based on graph
bisection algorithms (please refer for description to [5]), various greedy approaches
(partly summarized in [5] as well), including greedy heuristics originally developed for
mathematically equivalent problems like heuristics searching for local optimal solution
for quadratic assignment problem [6], modifications of greedy heuristics for graph
embedding [3]. Large number of authors are implementing the pairwise interchanges
algorithm [7] for mapping optimization. In majority of works topology-aware algo-
rithms are developed which receive system topology as an input and use this infor-
mation on each step. Comprehensive survey of previously introduced methods and
heuristics is provided in [10].

In this paper we introduce a new approach to solve mapping problem: we propose
to generate mappings based on the preliminary analysis of parallel application com-
munication patterns. We suggest performing this analysis using application’s com-
munication matrix. The result of such analysis may serve as an input for various newly
created topology-aware mapping algorithms and improve the results of the existing
ones. More precise explanation and detailed recommendations for practical application
are provided in Sects. 3, 7 and 8 of this paper.

This paper is structured in the following way: we formally define the mapping
problem (Sect. 2), we validate relevance and practical importance of communication
structure analysis (Sect. 3), we introduce an algorithm to perform communication
structure analysis (Sect. 4), we present an implementation of the algorithm (Sect. 5)
and test results (Sect. 6), and then provide with practical applications of the proposed
algorithm to the mapping problem (Sect. 7). Key results, conclusions and directions for
future work are summarized in Sects. 8 and 9.
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2 Mapping Problem Formalization

Let a parallel application and its processes be denoted as S ¼ s1; s2; . . .; sNsf g. We
assume that Nq of identical nodes of a parallel system Q ¼ q1; q2; . . .; qNq

� �
are

available to run this parallel application and that only one process will be allocated to
each node, i.e. target mapping is a permutation:

qi ¼ qðsiÞ: ð1Þ

During execution of a parallel application each process communicates with other
processes by sending messages. We denote the total length of all messages sent from
process si to process sj plus total length of all messages sent from process sj to process
si as fi;j ¼ f ðsi; sjÞ.

The communication matrix F ¼ fi;j
� �

is symmetrical and is defined by the parallel
application and its input data. The communication matrix does not depend on the
mapping or the parallel system topology. Matrix F may correspond to the entire
execution time or only part of it. The latter may be of interest if the goal is to analyze a
particular phase of the parallel application.

Various system resources are utilized when data is sent from one process to another.
Therefore, communication costs should be taken into account. We denote the com-
munication costs of sending a message with a length of 1 from node qi to node qj as
E ¼ ei;j

� �
. In this paper we assume ei;j to be constant and not dependent on processes

allocated to nodes qi and qj. Thus, E is defined only by the parallel system topology. In
the simplest case (a homogeneous system) communication costs may be approximated
by a distance between nodes. The communication time required to send a message from
process si to process sj can be approximated as a product of the communication costs and
length of the message. Therefore, the total communication time required for data
exchange between process si and all other processes given mapping (1) is

Ei ¼
X

j;i6¼j
eq sið Þq sjð Þfi;j: ð2Þ

The problem of finding a mapping minimizing

E ¼
X

i¼1;...;Ns
Ei

� �
ð3Þ

is called amapping problemwith function E being the total communication cost function.

3 Generating a Mapping Based on the Communication
Structure Analysis

Apparently, an obvious idea is that optimal mapping for point-to-point communications
should be achieved by allocation processes which communicate with each other most
to nodes which are closest to each other in the given parallel system architecture.
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Various researches [5] have explored this idea and performed experiments proving that
even simplest greedy algorithms employing this principle are effective. By effective-
ness in this case we understand practically meaningful result which is an execution time
reduction achieved for various parallel applications by running them with recom-
mended mappings instead of standard ones. It is worth to mention though that previ-
ously proposed algorithms ignored substantial part of information provided as input
(communication matrix or equivalent), which implicates that the results may be further
improved. Additionally precise knowledge of target parallel system architecture is used
on every iteration step in majority of studied approaches, which makes these results
inapplicable to even slightly different topology without repetitive calculations.

For example, algorithms based on recursive bisection do not take into account
communications between clusters obtained on previous iterations meaning very gen-
erally that half of information gets lost on each step. Researches have already pointed
out the possibility of obtaining poor quality results using this approach [9]. Same
construction is used in hierarchical mapping algorithms (e.g. [11]), which aim to reduce
the size of a problem. Negative consequences caused by such construction are some-
times party mitigated by authors (for example, a fine-tuning step is introduced in [11]
as a final stage of the algorithm) but cannot be completely eliminated. The greedy
heuristics proposed in [3] and [5] (and similar algorithms are frequently proposed in
many different works) are picking up next process to place from a set consisting of
every process which communicates to already placed ones. Communication between
processes in this case is considered only to determine an order of consideration. Such
greedy approaches as well as algorithms based on recursive bisection are thus not
considering general communication structure. If these algorithms are applied to a
parallel application with a block diagonal communication matrix (and, to be precise, we
assume that block size is not power of 2), this communication structure will not be
recognized and will be only partially captured by an output mapping.

Researchers from Berkley have studied parallel applications and algorithmic
methods used in different fields taking into account its short- and long-term practical
significance [8]. They outlined thirteen practically important classes of algorithms
which have similar computation and communication patterns (“Thirteen Dwarves”). In
particular, Spectral Methods (e.g. FFT) Dwarf and Structured Grids Dwarf were out-
lined. Typical communication matrices for those Dwarves are block diagonal matrices.
Moreover, a block structure is remained when application is scaled, i.e. when number
of processes running for application increases.

Thus, it is necessary to develop a method to better analyze communication patterns.
To highlight the broader meaning of the desired results we would refer to the output of
such analysis as communication structure instead of communication patterns. Under-
standing communication structure of a parallel application is important to ensure more
suitable (and, thus, effective) mapping strategies are proposed. In addition, such
communication structure analysis will provide opportunity to generate scalable map-
ping algorithms for parallel applications with scalable communication matrices. This is
especially relevant given already mentioned [3] deterioration in quality of greedy
algorithms when applied to larger size problems.

Summarizing the above, we propose to decompose the mapping problem and to
solve it in two steps:
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• Step (problem) 1: an analysis of communication structure. Step 1 does not depend
on a target parallel system topology.

• Step (problem) 2: a mapping generation. Step 2 is performed based on Step 1’s
output and target parallel system topology and does not require parallel application
itself or any other information on parallel application.

It is important to keep in mind that Step 1 is to analyze overall communication
structure and should not be limited to a cluster analysis of processes. As shown before
the latter approach may miss critical information needed to recommend suitable
mapping.

This approach also results in ability to generate mappings for a given parallel
application and for various target topologies without repetitive calculations once Step 1
is performed.

In the following section we present an algorithm to analyze communication
structure. The proposed algorithm is based on simulation of attractive and repulsive
forces similar to intermolecular forces or gravity/repulsion between planets.

4 Attraction & Repulsion Algorithm for Communication
Structure Analysis

4.1 Idea and Description

We represent each process as a particle on plane. Let’s assume certain forces act on
particles defining the motion laws. The idea is to define forces and, subsequently,
motion laws so that particles corresponding to processes communicating with each
other more extensively are moved closely to each other. If the mapping strategy
allocates neighboring particles to nodes close to each other, then the proposed forces
and motion laws should lead to minimization of the communication cost function (3).

Let’s assume there are two forces acting on particles:

• Attractive Force. The attractive force arises between two particles independently of
the distance between them. The greater the communication fi;j between two pro-
cesses, the greater the attractive force acting between the corresponding particles is.

• Repulsive Force. The repulsive force between two particles increases when particles
move closer to each other. While the distance between particles is at an acceptable
level the repulsive force between them is insignificant or close/equal to 0.

We propose the following formalization of the idea.
If two processes i and j communicate with each other, i.e. if fi;j [ 0 then we assume

that the attractive force acts on corresponding particles with its module linearly
dependent on communication:

Fatt
i;j

�!���
��� ¼ catt � fi;j ð4Þ
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The attractive force is non-zero and catt [ 0 is constant for all pairs of particles.
On the contrary, the repulsive force does not depend on communication and does

not equal zero only if the distance between the particles is less than a certain threshold.

Fp
i;j

�!���
��� �!dist i;jð Þ�1

0 ð5Þ

At the same time the repulsive force rapidly increases to infinity when two particles
move closer to each other.

Fp
i;j

�!���
��� �!dist i;jð Þ!01 ð6Þ

Various functions may be chosen to define the repulsive force as long as criteria (5)
and (6) are satisfied. As an example we propose using the inverse squared distance
between particles.

We denote coordinates of particle i at time t as~ri tð Þ. The motion law for particles
can be written as:

~ri tþ hð Þ ¼~ri tð Þþ h
X
j

Fatt
i;j

�!þ Fp
i;j

�!� �
ð7Þ

Initial coordinates of particles can be set randomly or, if any prior knowledge is
available, predefined.

Additional forces may be introduced to achieve better visualization of the simu-
lation process. These forces may include an attraction to the center or repulsion from
predefined boundaries. These additional forces are optional and should not affect the
result to a significant extent.

4.2 Iterative Simulation

The proposed algorithm is an iterative simulation of particle movements driven by
attractive and repulsive forces. It receives the communication matrix of a parallel
application as the input and returns the final coordinates of the particles on the plane to
use in mapping generation strategies.

1. Create particles sk with random coordinates ~rs corresponding
to each process of parallel application S

2. Until the stopping criteria is satisfied, for each iteration i
do:

For each particle sk of parallel application S:
Calculate the sum of attractive and repulsive forces act-
ing on this particle
Update the coordinates of the particle as per the motion
law:
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~rsk ið Þ ¼~rsk i� 1ð Þþ Fatt
sk

�!þ Fp
sk

�!

3. End of iterations
4. Return particle coordinates ~rs ið Þ (“configuration of

particles”)

5 Attraction & Repulsion Algorithm Implementation

We have prepared test implementations of the Attraction & Repulsion Algorithm in
Visual Studio 2010 and Matlab using matrix operations. Experiments for the appli-
cations with up to 2048 processes were performed. The number of iterations was
chosen either empirically or using the stopping criteria based on the average position
for the last several iterations, i.e.:

• The average coordinates for the last n and m iterations (pn rsk
�!� 	

and pm rsk
�!� 	

respectively) are calculated for each particle sk corresponding to the processes of the
parallel application S;

• If
P

s pnðrsk
!Þ � pmðrsk

!Þ
���

���\e, then the stopping criteria is satisfied.

6 Attraction & Repulsion Algorithm Results

6.1 Test Example

Let’s consider the following test problem. Let’s assume a parallel application has 20
running processes. Processes 1–10 are communicating with each other and not com-
municating with processes 11–20. Similarly, processes 11–20 are communicating only
between each other. The total size of the messages sent between each two processes (if
not zero) is a positive constant.

It is obvious that communication-wise the processes are split into two equal groups.
Let’s refer to processes 1–10 as Group 1 and to processes 11–20 as Group 2. The
particles of Group 1 are represented by lighter unfilled circles, the particles of Group 2
are represented by darker filled circles.

This obvious conclusion should be expressed via the communication structure
analysis and reflected in the recommended mapping, and thus we should expect the
Attraction & Repulsion Algorithm to reflect it in the final particle configuration.

6.2 Step-by-Step Execution on a Test Example

We set the initial coordinates so that particles are spread across a circle with the center
at (0, 0) as shown in Fig. 1. Based on our experiments these initial coordinates rep-
resent the worst-case scenario for the proposed algorithm with the most number of
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iterations needed to achieve convergence. Lines originating from the center of each
particle illustrate the direction in which this particle moves.

Figures 1, 2 and 3 show the first iterations of the algorithm. As elements of the
communication matrix are non-negative numbers, particles are attracted to each other
and thus move closer to the center until repulsive forces start to prevail. The velocities
of particles decrease during this phase. In Fig. 3 we can see the particles moved as
close as possible to each other.

Figures 4, 5 and 6 show reconfiguration of the particles after the whole system gets
disturbed by an increased effect of the repulsive forces. The velocities of particles
increase during this phase leading to rapid reconfiguration. In Fig. 5 the particle
configuration begins to reflect the group structure of the communications: particles
within Group 1 and Group 2 move closer to each other. Group 1 starts to appear in
Fig. 6.

Fig. 1. Initial position Fig. 2. Moving towards the center

Fig. 3. Equivalence of repulsive and attractive forces
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Figures 7, 8 and 9 show the last iterations of the algorithm. The formation of Group
1 is evident in Fig. 7, it generated a repulsive force towards the particles of Group 2.
Driven by these forces, Group 1 moves away from the particles of Group 2 in Fig. 8.
The final configuration is presented in Fig. 9. The velocities of particles at the end of
the algorithm’s execution are close to zero and the groups are clearly structured.

6.3 Analysis of Communications Typical to Structured Grid Class
of Algorithms

As pointed out in Sect. 3, one of the most practically important classes of algorithms is
the Structured Grid class [8]. A typical communication matrix for this class is presented
in [8]. We took this matrix as a base for our experiments and analyzed communication
structure via Attraction & Repulsion Algorithm. In Fig. 10 we present the

Fig. 4. Repulsive effect Fig. 5. Start of reconfiguration

Fig. 6. Separation of the groups
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communication matrix we analyzed, which was created based on the corresponding
matrix in [8]. We define Internal, Middle and External Diagonals as shown in Fig. 10
and present results achieved by Attraction & Repulsion Algorithm in three cases:

(1) Communications on Internal Diagonals prevail: Fig. 11
(2) Communications on Middle Diagonal prevail: Fig. 12
(3) Communications on External Diagonal prevail: Fig. 13

Figures 11, 12 and 13 show final configurations of the particles in each case.
A number of a corresponding process is written nearby the respective particle. These
experiments were performed with an attraction to center force to achieve better
visualization.

As shown in Fig. 11 if values on Internal Diagonal are larger than on Middle and
External Diagonals, particles form groups of size 4. At the same time communications
on Middle and External Diagonals are not neglected: in fact, we can easily see that
groups of size 4 also form larger groups of size 32.

Fig. 8. Groups diverge further

Fig. 9. Final configuration

Fig. 7. Group 1 is formed
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Fig. 10. Analyzed communication matrix

Fig. 11. Final configuration received by Attraction & Repulsion Algorithm for the analyzed
communication matrix in case communications on the Internal Diagonals prevail
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Fig. 12. Final configuration received by Attraction & Repulsion Algorithm for the analyzed
communication matrix in case communications on the Middle Diagonal prevail

Fig. 13. Final configuration received by Attraction & Repulsion Algorithm for the analyzed
communication matrix in case communications on the External Diagonal prevail
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In Fig. 12 groups of size 32 are more obvious as Middle Diagonal implies blocks of
size 32. Processes with close numbers are closer to each other as the Internal Diagonals
are taken into account.

In Fig. 13 configuration corresponds to External Diagonal communications to a
larger extent, meanwhile still keeping groups of size 4.

All experiments show that Attraction & Repulsion Algorithm not only catches the
most prevailing communications but also takes into account less intensive ones.

6.4 Dependence of the Final Configuration on the Initial Coordinates

The Attraction & Repulsion Algorithm is by definition a gradient algorithm, meaning
that the final configuration and convergence to a local optimum depends on the initial
coordinates of particles. Nevertheless, in our experiments the final configuration of
particles was affected very little by changing their initial positions.

7 Practical Application

The Attraction & Repulsion Algorithm calculates the configuration of particles cor-
responding to the processes of a parallel application representing the communication
structure of the latter. The particles corresponding to the processes communicating
intensely with each other are close to each other in the output configuration.

After the final configuration of particles is obtained, the determined patterns, groups
and mutual spatial arrangement of the particles may be used to generate effective and
suitable mappings. For example, the euclidian distance between the particles can be
considered as a proximity measurement to use in other greedy algorithms (in particular,
in algorithms described in [5]).

The determined group structure can be used to reduce the power of a set of
processes to the power of a set of nodes available for a particular application on a given
parallel system instead of the recursive bisection approach (described, for example, in
[3, 7]) widely used for these purposes. A graphical interpretation of the Attraction &
Repulsion Algorithm’s results provides a visual interface to researchers giving an
opportunity to create heuristics for a chosen type of communication structure or even
manually define/chose mappings based on an observed communication structure. The
proposed algorithm may also be used for clusterization purposes.

The Attraction & Repulsion Algorithm does not rely on a target parallel system
topology. Instead it analyzes communications between the processes of a parallel
application and produces the configuration of particles corresponding to the commu-
nication structure. The algorithm captures the group structure and other patterns which
are not evidently derived from observation of the communication matrix.

As shown in Sect. 3 of the paper, the proposed algorithm is especially relevant for
widespread parallel applications belonging to the Structured Grids and FFT classes.
The Attraction & Repulsion Algorithm may be used to generate scalable mappings and
be applied to solving the mapping problem via decomposition (Step 1 referred to in
Sect. 3), thus saving resources utilized for repetitive calculations for various parallel
system topologies.
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8 Conclusions

The evolution of modern high-performance parallel computing systems has resulted in
an increasing number of nodes, while the number of direct links between nodes is
increasing far less rapidly. This leads to inflation of the average distance between nodes
and thus potentially extends communication time.

Therefore, optimization of time spent on communication becomes critically
important to ensure proper performance of parallel applications. The mapping problem,
or the problem of allocating processes to nodes in a way that minimizes communication
time, is one of the directions for improving the overall performance and execution time
of a parallel application.

The mapping problem has been proved to be NP-complete. Current studies are
searching for better heuristics for the mapping problem but in most cases ignore the
overall communication structure of a parallel application.

We have demonstrated in Sect. 3 that proper communication structure analysis may
open the gates to scalable mapping generation techniques. In the same section we
proposed considering the mapping problem as a composition of two sub-problems: a
communication structure analysis (does not depend on target topology) and mapping
generation based on the communication structure for a given topology.

We have introduced a new algorithm for the analysis of the communication
structure of a parallel application. The analysis is performed based on the communi-
cation matrix of a parallel application.

We envisage a wide range of practical applications of the proposed algorithm as its
output reflects the communication structure in a most general way, creating an
opportunity to:

• Determine proximity of the processes based on the final configuration received by
the proposed algorithm: several algorithms for mapping rely on proximity for
decision-making at every iteration, while simple metrics do not capture the overall
communication structure which is identified by the Attraction & Repulsion
Algorithm;

• Cluster a set of processes based on the final configuration: clusterization may be
used instead of bisection to split a graph into a number of sub-graphs or to generate
mapping;

• Create more suitable heuristics based on an understanding of the communication
structure.

Additional advantages of the Attraction & Repulsion Algorithm include:

• Graphical visualization of the results: a researcher may choose heuristics from a
given set or define their own based on the communication structure;

• Independence from topology: this algorithm can be used as an algorithm for Step 1
of the proposed mapping problem decomposition.
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9 Future Work

We envisage the following as the most promising areas of further research:

• A study and analysis of the communication structures for different classes of par-
allel applications using the Attraction & Repulsion Algorithm;

• Generation of effective mapping strategies for various parallel system topologies
using the particle configurations obtained by the Attraction & Repulsion Algorithm;

• An experimental study of performance of the existing mapping algorithms on
various topologies if modified to account for the particle configurations of the
Attraction & Repulsion Algorithm for a particular parallel application.
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Abstract. The paper is devoted to the experimental comparison of performance
and fault tolerance of software packages Pyramid, X-COM and BOINC. This
paper contains the technique of carrying out the experiments and the results of
these experiments. The performance comparison was carried out by assessing
the overhead costs to arrange parallelization by data. In this case special tests
simulating typical tasks of parallelization by data were designed by the authors.
The comparison of fault tolerance was performed by simulating various emer-
gency situations that arise during computations.

Keywords: Parallelization by data � BOINC � X-COM � Software package
pyramid � Overhead costs to arrange parallelization � Fault tolerance of parallel
computations

1 Introduction

Among various application tasks solved with the help of supercomputers an important
group is formed by the tasks of parallelization by data, when one and the same
computation sequence (application algorithm) is performed at all members of the set
(pool) of input data. In this case, the computation algorithm may often be implemented
in the form of a single sequential program (SSP), for which the size of the input data is
defined by the value of one or several parameters. Such amounts of computing job form
the pool of the input data that is eventually defined by the set of all values of SSP
parameters and their all possible combinations.

Modern cluster computing systems consist of integrated nodes, where a separate
control host can usually be distinguished. During parallelization by data one or several
instances of SSP with different values of input data are performed on each node. To
arrange the parallel computations means to launch SSP instances on the whole set of
the available resources, in this case maximal performance and fault tolerance have to be
provided.

During parallelization by data the computing rate is usually directly proportional to
the capacity of the computing resources, CPU cores in particular. Modern cluster
computing systems can have up to several thousands of nodes with the total number of
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cores 105–106 or more. Longtime execution of the application tasks in such system is
associated with high probability of fault on one or several nodes in the cluster during
computation. Organization of fault tolerant parallel computations involves both
recurrent saving of checkpoints and eliminating faulty nodes with automatic redistri-
bution of the computing load to non-faulty nodes. In the case computations continue
with some rate degradation.

To arrange parallel computations with parallelization by data, a number of tech-
nologies can nowadays be applied, including the one realized by the software package
(SP) Pyramid [1]. The paper [2] contains experimental comparison of the Pyramid with
the technologies MapReduce and MPI. The authors continued the experiments started
in [2] on the comparison of the Pyramid with the alternatives, in this paper the software
packages X-COM [3] and BOINC [4] are considered as such.

Thus far, experimental comparisons of the mentioned SPs for handling the tasks of
parallelization by data have not been performed. This paper is meant to make up for
this deficiency and to provide the users with information for further choice of the
software package.

2 Software Packages for Arrangement of Parallel
Computations with Parallelization by Data

The software package (SP) Pyramid [1] is intended for operation at a hierarchically
structured computer system. The computer system includes the central server, the
cluster management servers, and nodes as parts of the clusters. The Pyramid was
initially designed for application programmers to get rid of parallel programming
problems. The applied computing algorithm is realized in the form of a SSP, while
launching a massive set of SSP instances on the cluster nodes and distributing the
computing job is the care of the Pyramid software.

The Pyramid package provides computation reliability and fault tolerance. Failure
of one or several nodes as well as one or several clusters does not lead to stopping the
computations, it only slows them down. As soon as the disabled node is restarted (after
recovery) the Pyramid automatically begins to distribute the computing job to it.
Furthermore, the Pyramid saves checkpoints, which allows restoring the computations
after the entire computer system failure.

Let us consider the alternatives of the Pyramid package: the SPs X-COM and
BOINC.

The system X-COM is designed by the specialists of Research Computing Center
of Moscow State University and is written in Perl programming language, which makes
it one of the most lightweight means of parallelization by data. X-COM is based on
client-server architecture. X-COM server is in charge of dividing the original task into
blocks (jobs), distributing the jobs to the clients, coordinating all the clients, checking
the result integrity and accumulating the results. Any computational unit (workstation
computer, cluster node, virtual machine) able to perform an instance of an application
program can act as the client. The clients are computing the blocks of the application
task (jobs received from the server), requesting jobs from the server, and transferring
results to the server.
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BOINC implements one of the types of distributed computing – volunteer com-
puting. Their specific feature is using the idle resources of PCs, workstations, computer
clusters, when the resource is not used by its owner. At idle time, BOINC can use the
resource to perform an application SSP developed as a part of a BOINC project. An
example of BOINC project is SETI@HOME [5], a scientific experiment that uses
Internet-connected computers in the Search for Extraterrestrial Intelligence (SETI).
Project members participate by running a free program that downloads and analyzes
radio telescope data.

Same as X-COM, BOINC consists of the server that distributes jobs, and a number
of clients that carry out the distributed jobs. The BOINC server contains at least one
web-server for client calls receiving and processing, database server that stores the
assigned jobs status and the complying results, the scheduler that assigns the jobs to the
clients. In the last few years, BOINC has gained widespread use; this software is
constantly progressing, being supported by many millions of volunteer users and
programmers.

We would like to highlight the following major differences of the SPs X-COM and
BOINC from the Pyramid package:

1. X-COM and BOINC are designed for arranging parallel computations in distributed
metacomputing system, though they can also be used in a single computing cluster.
The Pyramid does not work in the distributed environment.

2. To solve an application task, X-COM and BOINC require developing the server and
the client management programs, whereas for the Pyramid it is enough to prepare
the job passport.

3. With X-COM and BOINC, saving checkpoints is the care of the management
programs developer. The Pyramid saves checkpoints automatically.

The purpose of this research is to define the performance level of using the SPs
X-COM and BOINC for arrangement of parallelization by data in the undistributed
computing environment, as compared to the SP Pyramid.

3 Methods of Experimental Comparison of the Software
Packages for Parallelization by Data

The authors carried out the comparison of the software packages Pyramid, X-COM and
BOINC according to the factors of performance and fault tolerance, with a dedicated
method applied to define the value of each factor experimentally. The study of the
published papers on the research topic revealed that assessment of performance of
software packages for parallelization by data is carried out by measuring the time of
performing test programs simulating the real computing jobs. In the papers [6–9], the
word count example is used to assess the performance of the software packages. In the
paper [7] the authors use the test that counts all the occurring RGB colors in a given
bitmap image and the test that computes a line that best fits a file containing coordi-
nates. In [9] the test that counts user visits to Internet pages is used for performance
assessment.
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The fault tolerance of the software for arrangement of parallel computing is
assessed by simulating a failure of one or several nodes at different stages of the
computing process. In [8] the authors carry out a series of experiments simulating loss
of connection with the host in the moment of the processed job uploading, in the
middle of the computations, and during the results acquisition.

As the test rig for research the SPs Pyramid, X-COM and BOINC, the authors used
the computing cluster consisting of 7 nodes, with each node containing two 4-core
CPUs Intel Xeon L5408, thus making the total number of CPU cores – 56. The cluster
is equipped with a virtualization platform, which allowed installing the researched SPs
as a set of virtual machines under the control of the guest OS Linux Debian version 8.

3.1 Methods of Comparison by Performance

To compare the performance of the software packages the authors defined the overhead
costs for parallelization as the time spent by each SP to arrange the computations. The
overhead costs were defined as follows.

Let the single sequential program (SSP) process the whole input data on one CPU
core for a certain time T. If parallelization by data is applied at p CPU cores, the time
T of processing the same size of input data will ideally be reduced by factor of p. This
will not happen in reality because of the overhead costs to arrange the parallelization:
time costs for data transfer among the cluster nodes, for requesting the services
(DBMS, web-server, scheduler, and etc.), delays between receiving the data and
starting its processing, between the end of processing and the start of results transfer.

Let us introduce the definition of an elementary computing job, by which we will
mean the processing of an indivisible (atomic, elementary) chunk of the input data. An
elementary job can be the processing of a string generated from input arguments or read
from a text file, or exhaustive search of values at a certain minimal range of the input
data. It is important that an elementary job cannot be divided in smaller parts and,
consequently, cannot be parallelized.

Let an elementary job be done for the time s, and the entire size of the input data
make N elementary chunks. Consequently, at one CPU core the entire size of the input
data will be processed for the time T1 ¼ N � s. In case of using p CPU cores the ideal
time of the processing Tp will be

Tp ¼ T1
p

¼ N � s
p

ð1Þ

Let the researched SP perform the processing of the input data at p CPU cores for
the time Texp(p). Then the share of the overhead costs l introduced by the SP will make

l ¼ Tp
Texp pð Þ ¼ 1� N � s

p � Texp pð Þ ð2Þ

As we can see, the share of the overhead costs depends on the parameters N, s
and p. By varying the values of one of those parameters, with other two values stable,
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we can assess the dynamic pattern of the overhead costs to arrange the parallelization
by data for each of the researched SP.

3.2 Test Cases

For experimental definition of the overhead costs the SSP test cases should be chosen.
The cases should meet the following requirements:

1. The test SSP should be able to process from one to any number of elementary
chunks of input data, i.e., SSP should be able to perform any number N of ele-
mentary jobs.

2. For the test SSP, the feature of setting the time s for performing an elementary job
should be considered.

3. If the test SSP performs N elementary jobs for the time s for each, then the time of
performing the SSP at one CPU core should equal N � s.

4. The data chunk processed by the test SSP should completely be defined by the
values of its parameters.

5. Cases when the data chunk processed by the SSP is defined by the value (value
range) of single parameter are quite common. It is therefore reasonable to consider
such cases separately using the suitable test case.

6. We should separately consider the case when the data chunk processed by the SSP
is defined by the combination of values (value ranges) of several parameters, which
drastically increases the complexity of organizing the parallel computations. Notice
that this case in particular is typical with the SP Pyramid practical using because this
software implements exhaustive search of all possible combinations for several SSP
parameters.

7. We should separately consider the case when the data chunk is defined by a string
(string range) of the input text files. This case is typical for X-COM and BOINC
application.

To perform the experimental comparison the authors developed three test appli-
cations that meet the stated requirements.

The test case Opp_one simulates the execution of a SSP with single input
parameter. The value of this parameter sets the range of the input data as the triple
“a b s”, where a is the beginning of the range, b is the end of the range and s is the
step. For example, the triple “10 20 3” sets the sequence of the searched numbers 10,
13, 16, 19, each of the numbers defines the elementary chunk of data. The test Opp_one
has the feature of setting the data chunk processing time s. E.g., if set s = 1 s, the time
of processing the data chunk set by the input parameter “10 20 3” will make 4 s.

The test case Opp_three simulates the execution of a SSP with three input
parameters. The values of the first two parameters define the ranges of the input values
as triples “a b s”, where a is the beginning of the range, b is the end of the range and s is
the step. The value of the third parameter defines the list of the searched strings. E.g., if
the value of the first parameter is “10 15 3”, the value of the second is “1 2 1” and the
value of the third is “str1 str2”, then the input data chunk is defined by 8 possible
combinations of the three parameters values:
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“10 1 str1” “10 1 str2” “10 2 str1” “10 2 str2” “13 1 str1” “13 1 str2” “13 2 str1”
“13 2 str2”

Same as the test Opp_one, the test Opp_three provides the opportunity of setting
the time s for processing one combination of the input parameters values, i.e. the time
of processing of one elementary data chunk. For our example with s = 1 s, the time of
processing the eight combinations will make 8 s.

The test case Opp_file simulates the processing of the strings read from a text file
sent to it as the parameter. The program receives two parameters at the input – the file
name with the strings and the time s of processing one string from the file. E.g., if the
file contains 20 strings, and the time s of processing one string is 2 s, the execution
time of the test case Opp_file at one CPU core will be 40 s.

3.3 Methods of Comparison by Fault Tolerance

Considering the structure of the experimental rig the following method was used for
testing the fault tolerance of the compared SPs. All potential failures can be divided
into three groups: failures related to the cluster node rebooting, failures related to
emergency power off of one or several nodes, and failures related to loss of connection
in the interconnect. To simulate the failures of the first group, one of the cluster nodes
was rebooted during the computations (by virtual machine restarting at the hypervisor
control panel). The failures of the second group were simulated by powering off the
node during the computations (by switching off the virtual machine at the hypervisor
control panel). Besides the simulation of one node failure, the failure of all nodes of the
cluster and the control host was emulated. After switching off the nodes were restarted,
with further attempt to proceed with the interrupted computations. To simulate the
failures of the third group, the virtual switch was switched off.

4 Results of the Performed Experiments

4.1 Results of the Experiments for Defining the Overhead Costs

During the experiments, for each of the compared SPs the elapsed run time of the three
test cases – Opp_one, Opp_file, and Opp_three – was measured, then the overhead
costs to arrange the parallelization by data were calculated by the formula (2). Time of
carrying out each test case was measured in three stages:

• with variable number of CPU cores p and constant input data size in N elementary
chunks and time s of processing one elementary data chunk;

• with variable s and constant p and N;
• with variable N and constant p and s.

Figure 1 presents the dynamic pattern of the overhead costs to arrange the paral-
lelization of the SPs X-COM, BOINC and Pyramid for test case Opp_one with variable
number of CPU cores, 105 elementary chunks data size, and 1 s time of processing one
elementary chunk. Notice the increase of the overhead costs of BOINC from 6% to 26%.
X-COM and the Pyramid show a slow increase of the overhead costs from 2% to 6–7%.
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Figure 2 presents the dynamic pattern of the overhead costs for test case Opp_one
with variable value of one elementary chunk processing time, 105 elementary chunks
data size, and 56 CPU cores. With the time increase of processing one elementary
chunk, BOINC shows the decrease of the overhead costs from 51% to 20%, with their
further stabilization at 18–20%. X-COM and the Pyramid show a slow decrease of the
overhead costs share from 12% to 2%.

Figure 3 shows the dynamic pattern of the overhead costs for the test case Opp_one
with variable data size, 56 CPU cores, 1 s time of processing one elementary chunk.
BOINC shows the decrease of the overhead costs from 34% to 20%, with their further
stabilization at 20%. X-COM and Pyramid show a slow decrease of the overhead costs
from 6% to 1%.
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Fig. 1. Overhead costs for test case Opp_one with variable number of CPU cores, N = 105
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Fig. 2. Overhead costs for test case Opp_one with variable value of time of processing one
elementary chunk, N = 105 elementary chunks, p = 56
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The results presented in Figs. 2 and 3 indicate the performance increase of the
compared SPs in the case of coarsening grain of parallelism as in the case of increasing
the input data size.

Figure 4shows thedynamicpatternof theoverheadcosts for the test caseOpp_filewith
variable number of cores. The size of the input text file was 105 strings, the time of
processing of one elementary data chunk (one string from the file) was 1 s. All compared
SPs show the increaseof theoverheadcosts.X-COMshows the share of theoverhead costs
from 2% to 6%, the Pyramid – from 7% to 14%, BOINC – from 5% to 36%.

Figure 5 presents the dynamic pattern of the overhead costs for the test case
Opp_file with variable number of strings in the input text file, 1 s time of processing
one string, and 56 cores. X-COM shows the decrease of the overhead costs from 7% to
2%, with the file size of 50,000 strings and more the overhead costs are 2%.
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Fig. 3. Overhead costs for test case Opp_one with variable input data size, p = 56, s = 1 s
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Fig. 4. Overhead costs for test case Opp_file with variable number of cores, N = 105 strings,
s = 1 s
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The Pyramid shows the decrease of the overhead costs from 15% to 11%, and with the
file size 20,000 strings and more the costs are within 10–11%. BOINC shows a rela-
tively quick decrease of the overhead costs with the increase of the file size up to
100,000 strings, then presenting a slight change of the overhead costs within 20–22%.

Figure 6 presents the dynamic pattern of the overhead costs for test case Opp_file
with variable time of processing one string, data size 105 strings in the file and 56 cores.
X-COM shows a quick decrease of the overhead costs from 15% to 5%, with a further
slow decrease down to 2%. The Pyramid shows a slow decrease of the overhead costs
from 16% to 6%. BOINC shows a quick decrease of the overhead costs with the
increase of the time for processing one string up to 2000 ms, then presenting a slight
change of the overhead costs within 20–22%.
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Fig. 5. Overhead costs for test case Opp_file with variable number of strings in the file, number
of CPU cores p = 56, s = 1 s
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Fig. 6. Overhead costs for test case Opp_file with variable time of processing one string,
N = 105 strings, p = 56
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Figure 7 presents the dynamic pattern of the overhead costs for the test case
Opp_three with variable number of CPU cores, data size of 105 elementary chunks, and
1 s time of processing one elementary chunk. X-COM shows the increase of the
overhead costs up to 23%, and then a decrease down to 13%. The Pyramid shows a
slow increase of the overhead costs from 2% to 5%. With BOINC, the overhead costs
increase quickly from 11% to 33%.

Figure 8 presents the dynamic pattern of the overhead costs for the test case
Opp_three with variable time of processing one elementary chunk, data size 105 ele-
mentary chunks, 56 cores. X-COM shows the decrease of the overhead costs share
from 14% to 11%, the Pyramid – from 9% to 1%, BOINC – from 54% to 24%.
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Fig. 7. Overhead costs for test case Opp_three with variable number of cores, N = 105 of
elementary chunks, s = 1 s
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Figure 9 presents the dynamic pattern of the overhead costs for the test case
Opp_three with variable data size, 56 CPU cores, 1 s time of processing one ele-
mentary chunk. With X-COM, the overhead costs share is within the range of 11–12%.
The overhead costs of the Pyramid decrease from 4% to 2%, and BOINC shows the
decrease from 34% to 20%.

4.2 Results of the Experiments for Fault Tolerance Comparison

During the experimental testing for fault tolerance all compared SPs showed equal
reaction to all the emergency situations simulated according to the method:

• after the rebooting of a cluster node, the computing job starts to be distributed to it
automatically;

• if a node is off, the computing job is distributed among the living nodes;
• if the control host fails the computations stop;
• if the network interface of the control host is switched off, the control host endlessly

expects connection with the hosts;
• if the network interface of a node is switched off, the computing job is redistributed

among the other nodes;
• if all nodes are restarted, after the attempt to continue the interrupted job the

computations continue from the moment of the last checkpoint saving.

5 Conclusions

1. BOINC has showed many-fold larger overhead costs compared to the Pyramid and
X-COM. This is mostly due to the complex structure of the software that contains a
number of components including DBMS. BOINC was designed for reliable oper-
ation in distributed environment, and using it within single cluster systems is
impractical.
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Fig. 9. Overhead costs for test case Opp_three with variable input data size, p = 56, s = 1 s
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2. Overhead costs of all SPs in all test cases increase with the increase of the number
of cores, and, as a rule, decrease with the increase of the input data size and the time
of processing one elementary data chunk.

3. X-COM has showed many-fold better results with processing the strings read from
a text file, with the best performance (overhead costs about 2%) on large files with a
coarse-grained parallelism.

4. The Pyramid has showed many-fold better results with processing several SSP
parameters, which is logical as this software is the only one of the researched SPs
that implements exhaustive search of all possible combinations for several SSP
parameters.

5. All researched SPs have showed equally high fault tolerance.
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Abstract. Educational course “Introduction to Parallel Computing” is
discussed. A modern method of presentation of the educational mate-
rials for simultaneous teaching a large number of attendees (Massive
Open Online Course, MOOC) has been applied. The educational course
is delivered in the simplest form with a wide use of the presentational
materials. Lectures of the course are subdivided into relatively small top-
ics, which do not require significant effort to learn. This provides a con-
tinuous success of learning and increases the motivation of the students.
For evaluation of the progress in the understanding of the educational
content being studied, the course contains the test questionnaires and the
tasks for the development of the parallel programs by the students them-
selves. The automated validation and scalability program evaluation are
provided. These features can attract a large number of attendees and
pay the students’ attention to the professional activity in the field of
supercomputer technologies.

Keywords: Parallel computing · Massive Open Online Course ·
Shared-memory systems · OpenMP

1 Introduction

Parallel computing is a relatively new field of computer science. The problem
of developing effective methods of teaching the parallel computing fundamen-
tals is particularly acute when it comes to the need for a rapid transition from
theory to practice, from the mathematical foundations of parallel methods to
implementation of specific applications.

E-learning is a new stage of developing the educational technologies based
on self-paced study of a discipline. The purpose of e-learning is to provide the
ability of obtaining the necessary knowledge for maximally possible number of
interested parties, regardless of their age, social status and location. At the same
time, the basis of the learning process is an intensive self-study, largely due to
the presence of a strong motivation.
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The paper describes the e-learning course “Introduction to Parallel Comput-
ing”. This course is based on the e-learning system http://mc.e-learning.unn.ru
of Nizhni Novgorod State University. The course is aimed at the students who
have programming skills in the programming language C/C++ (implementa-
tion, compilation, debugging). Along with this, it is assumed that these students
have basic mathematical knowledge corresponding to the second or third course
of university. A distinctive features of the course are its availability for a large
number of persons of different social groups and the possibility of automatic
self-control. The course provides both automatic control of theoretical knowl-
edge gained during the study of lecture materials and practical knowledge gained
during the development of parallel programs.

The paper is structured as follows. In Sect. 2, we consider similar mas-
sive open online courses (MOOC) on the parallel computing. Sections 3 and
4 describes the lecture and practical parts of the course. Section 5 provides a
method of studying the course. Section 6 describes the methodology of assess-
ment of students’ knowledge. Section 7 provides a brief background on the devel-
opment tools of the course.

2 Related Works

The field of parallel computing is rapidly growing. With the emergence of new
hardware architectures and parallel programming techniques learning technolo-
gies and related training courses are developed. The structure of such courses is
standardized and described in a number of recommendations [1,2].

During the creation of the System of scientific and educational centers of
supercomputer technologies, covering the whole territory of Russia, training
curricula of entry-level professionals, retraining and advanced training of the
teaching staff are developed as well as education programs of special groups, and
distance learning programs based on Internet-University of Supercomputer Tech-
nologies [3]. Distinctive features of the Internet-University project are implemen-
tation of the classic forms of learning based on new technologies and accessibility
of education through the use of the Internet [4]. This project can be considered
one of the first steps towards solving the problem of the mass popularization of
supercomputer technologies.

At present, more and more popularity gains new training techniques and pre-
sentation of educational materials for the training of a large number of students
(Massive Open Online Course, MOOC) [5]. This procedure is not spared the
field of parallel computing. Next, we consider MOOCs on parallel technologies
because it is the subject of this paper.

Among the most relevant courses on the site MOOC [5] which are similar
in the subject and the content to the developed course there are such courses
as “Parallel Programming Concepts” [6], “Parallel Programming” [7] and “High
Performance Scientific Computing” [8]. The first of these courses [6] considers
parallel programming models (data parallelism, message passing, the model of
functional programming), patterns and some of the best programming prac-
tices for shared-memory and distributed-memory systems. This course is a wide

http://mc.e-learning.unn.ru
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overview of parallelism concepts. The course [7] considers parallel programming
fundamentals, and demonstrates, how well ideas of functional programming fall
to the paradigm of data parallelism. In general, [7] aims to the specialists in
the field of functional programming. The course [8] aims to the learning tools
and techniques of parallel programming. This one contains technical description
of the command line (Unix, Mac OS), revision control systems, base materials
on OpenMP and MPI technologies for the programming language FORTRAN,
the possibility of parallel programming in IPython, questions of testing soft-
ware, its verification and validation, as well as other issues that inevitably arise
in the process of developing computationally-intensive applications. Among the
advanced level courses “Intro to Parallel Programming. Using CUDA to Harness
the Power of GPUs” [9] and “Heterogeneous Parallel Programming” [10] can be
identified. Both courses involve the study of parallel programming foundations
for GPU on the example of NVIDIA CUDA technology.

The developed course is an attempt to explain the basics of parallel comput-
ing in the most simple and understandable way with the widespread use of video
presentations and materials. This provides assignments for self-development of
parallel programs on the example of one of the widely used technologies of paral-
lel programming for shared memory systems OpenMP. In contrast to the courses
discussed above, our course provides automatic knowledge control which reduces
lecturer labor costs and accelerates obtaining feedback. The automatic control
implies theoretical knowledge control through quizzes and practical knowledge
control through the automatic validation and scalability evaluation of parallel
programs developed for solving well-known mathematical problems. Moreover,
the student receives a full test report about program execution.

The course materials are developed based on a textbook [11], as well as
previously used in the skill enhancement programs in Nizhni Novgorod State
University [12] and training programs of special groups in the field of high-
performance computing.

3 Summary of the Lectures

The theoretical part of the course consists of 10 lectures, each lecture is separated
into small topics. The lecture is supported by its description, the topic – by a
presentation and a short video that is not longer than 15 min in order to improve
the quality of material perception and assimilation. Moreover, there is a video
containing a discussion of key issues considered in the lecture at the end of the
theoretical part of the lecture.

The importance of parallel computing is discussed in the first lecture Intro-
duction to parallel programming. The general course structure is stated. The
hardware and software requirements to solve practical problems are described.

Lecture 1. Introduction to parallel programming.
Topic 1. Importance of parallel computing.
Topic 2. General characteristics of the course.
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The notion of parallel computing is introduced in the second lecture Basic
concepts of parallel programming. General performance measurements (speedup
and effeciency) are considered. The problem of computing the sum of a sequence
of numbers is discussed to demonstrate applicability of the stated metrics of a
parallel algorithm. By this example, the difficulties in parallelization of a sequen-
tial algorithm that is not initially focused on a possibility to organize parallel
computations are noted. In order to uncover a “hidden” parallelism, a possibil-
ity to convert the origin sequential computational scheme is demonstrated, the
cascade scheme obtained as a result of this conversion is described. By the same
example, it is shown that a greater parallelism of computations being performed
may be achieved if introducing redundant computations.

Lecture 2. Basic concepts of parallel programming.
Topic 1. The notion of parallel computing.
Topic 2. Performance metrics.
Topic 3. Supercomputers today.

The third lecture Parallel programming with OpenMP technology provides
the overview of the OpenMP technology to form a base for a quick start in the
development of parallel applications for shared-memory systems. A number of
concepts and definitions that are fundamental for the OpenMP standard are
given. The OpenMP directives and their basic clauses are discussed in this lec-
ture. The parallel directive is described; an example of the first parallel program
using OpenMP is demonstrated. The concepts of construct, region and section
of a parallel program are discussed. The questions of computing load balanc-
ing among threads are considered by the example of the data parallelism for
loops. The for directive is described, the methods of controlling the distribution
of loop iterations among threads are stated. The issues of controlling the data
environment for threads running are considered. The notions of shared and local
variables for threads are introduced. The description of the important reduction
operation often used when processing shared data is given. The problem of com-
puting load balancing among threads based on the task parallelism is considered
and the sections directive is described. Some additional information about the
OpenMP technology is given in the lecture description.

Lecture 3. Parallel programming with OpenMP technology.
Topic 1. Approach fundamentals.
Topic 2. OpenMP directives. Parallel region definition.
Topic 3. OpenMP directives. Management of data scope.
Topic 4. OpenMP directives. Computation distribution between threads.
Topic 5. OpenMP directives. Reduction.

The purpose of the fourth lecture Principles of parallel algorithm design is
learning the methodology of parallel algorithm development. This methodology
includes the stages of decomposing computations into independent subtasks,
analysis of information dependencies, scaling and disributing the set of subtasks
among computing elements of certain available computer system. The discussed
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method of parallel algorithm design is demonstrated by the example of solving
the gravitational N -body problem.

Lecture 4. Principles of parallel algorithm design.
Topic 1. Scheme of developing parallel program.
Topic 2. Stages of parallel algorithm design. Decomposing computations into
independent subtasks.
Topic 3. Stages of parallel algorithm design. Analysis of information depen-
dencies.
Topic 4. Stages of parallel algorithm design. Scaling the set of subtasks.
Topic 5. Stages of parallel algorithm design. Subtasks distribution among
computational elements.

The fifth and sixth lectures provide classic examples of parallelism for the
problems of matrix-vector and matrix-matrix multiplication. This lectures cover
the possible schemes of matrix distribution among threads of a parallel pro-
gram oriented on a multiprocessor shared-memory computing system and/or on
a computing system with multicore processors. The data partitioning schemes
are the general schemes that can be used to organize parallel computations for
any matrix operations. Among the discussed schemes there are the methods to
partition matrices into stripes (vertically or horizontally) or into rectangular
sets of elements (blocks). Each algorithm is introduced according to the general
scheme of parallel method design – first the basic subtasks are selected, then the
information dependencies of the subtasks are determined, after that the subtask
scaling and distributing among computing elements are discussed. In conclusion
the efficiency analysis of the parallel computations for each algorithm is carried
out, the results of computational experiments are demonstrated. The possible
variants of implementation are given.

Lecture 5. Parallel methods of matrix-vector multiplication.
Topic 1. Sequential algorithm.
Topic 2. Execution time evaluation of the sequential algorithm.
Topic 3. Parallelization principles of matrix computations.
Topic 4. Matrix-vector multiplication in the case of rowwise data partitioning.
Topic 5. Efficiency analysis of rowwise data partitioning.
Topic 6. Matrix-vector multiplication in the case of columnwise data parti-
tioning (self-study).

Lecture 6. Parallel methods of matrix-matrix multiplication.
Topic 1. Sequential algorithm.
Topic 2. Basic parallel matrix multiplication algorithm.
Topic 3. Matrix multiplication algorithm based on block-striped data
partitioning.
Topic 4. Block algorithm with efficient cache memory usage.
Topic 5. Matrix multiplication algorithm based on the band data partitioning
(self-study).
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The seventh lecture Parallel programming with OpenMP technology
(advanced) is a logic continuation of the third lecture that covers the basic direc-
tives of the OpenMP technology. The objective of this lecture is to discuss basic
methods to organize thread interactions in a parallel program developed using
OpenMP, and also to study OpenMP functions and environment variables, which
allow us to control the execution environment for the OpenMP programs. The
description of some more directives (master, single, barrier, flush, thread-
private, copyin) is also given in this lecture.

Lecture7.ParallelprogrammingwithOpenMPtechnology(advanced).
Topic 1. OpenMP directives. Synchronization.
Topic 2. OpenMP functions.

The next lecture Parallel methods for solving partial differential equations
covers the problems of numerical solution of partial differential equations. The
Dirichlet problem for the Poisson equation is considered as a training example.
The most widely spread approach to numerical solution of differential equations
is the finite difference method. The required amount of computations for this
method is huge. This lecture discusses the possible methods to organize paral-
lel computations for the grid methods on the shared-memory and distributed-
memory multiprocessor computing systems. When discussing the organization
of parallel computations in the shared-memory systems, the attention is paid
to the OpenMP technology. The problems that arise when applying this tech-
nology and the solution of these problems are also considered. The deadlock
problems are solved with the help of semaphores; the unambiguous calculations
are achieved applying the red/black row alternation scheme.

Lecture 8. Parallel methods for solving partial differential equations.
Topic 1. Problem statement.
Topic 2. Deadlock problem.
Topic 3. Possible ambiguous computations in parallel programs.
Topic 4. Elimination of ambiguous computations.
Topic 5. Wavefront schemes of parallel computations.
Topic 6. Block-wise data representation.

A classification of the computing systems is introduced, the parallelism con-
cepts based on multithreading and multiprocessing are considered in the ninth
lecture Parallel computing organization for the shared-memory systems. The lec-
ture gives a brief characteristic of multiprocessor computing systems of the
MIMD type according to the Flynn’s classification. Taking into account the
way RAM is used in the systems of this type they are subdivided into two
important groups of shared-memory and distributed-memory systems – multi-
processors and multicomputers. Then, it is noted that the most perspective way
to achieve high-performance computing nowadays is to organize multiproces-
sor computing devices. To ground this statement the main methods to organize
multiprocessing are considered in details – Symmetric Multiprocessor (SMP),
Simultaneous Multithreading (SMT) and multicore systems. As a continuation
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of the theme of multicore processors, analysis of a number of particular mul-
ticore processors widely used nowadays and developed by the major software
companies is represented in the lecture description. Moreover, to give a com-
plete picture the lecture description covers a number of hardware devices (video
cards and computing co-processors) that can be used to achieve a considerable
calculation speedup.

Lecture 9. Parallel computing organization for the shared-memory
systems.
Topic 1. Parallelism as the basis for high-performance computing.
Topic 2. Classification of computational systems.
Topic 3. Symmetric multiprocessor systems.
Topic 4. Simultaneous multithreading.
Topic 5. Multicore systems.

The tenth lecture Modeling and analysis of parallel computations explains
the theoretical foundations of modeling and analysis of parallel computing. The
model of graph “operation-operands” is introduced, this model can be used for
description of the information dependencies existing in the algorithms selected
for solving a problem. Representation of computations using the similar models
allows to obtain analytically a number of characteristics of parallel algorithms
being developed. The execution time, scheme of optimal scheduling, estimates
of maximum possible performance of methods for solving stated problems are
among such characteristics. To construct the theoretical estimates more quickly
the lecture also consideres the concept of paracomputer as a parallel system with
an unlimited number of processors.

Lecture 10. Modeling and analysis of parallel computations.
Topic 1. Modeling parallel computations.
Topic 2. Model analysis.
Topic 3. Efficiency characteristics of a parallel algorithm.
Topic 4. Examples of efficiency analysis.

4 Summary of the Course Assignments

The practical part of the course consists of the following components:

1. Quizzes. It supposes testing the knowledge gained during the lecture study.
Each quiz contains several questions with a set of possible answers.

2. Assignments for self-study. This is assignments related to the estimating
performance measurements or developing parallel programs using OpenMP
technology. For example, the course contains the following assignments:
develop a model and estimate the speedup and efficiency measurements for
the problem of dot product of two vectors; develop a program to search the
minimum (maximum) value among the vector elements and etc. Student per-
forms verification and validation of the prepared solution by himself. The
material required for solving these problems is represented in the lectures.
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3. Labs. The course contains four labs, that involve the development of parallel
programs for shared-memory systems using OpenMP technology. A system of
automatic control conjugated with the e-learning system performs validation
and scalability evaluation of the program. This system provides web-interface,
where students are able to upload their programs and to track the stage of
automatic control. There is a possibility to view compilation and test reports
to estimate faults of the developed program.

At the same time, to understand the importance and significance of parallel
computing the course contains the demonstration of real projects carried out
in Nizhni Novgorod State University, these projects use parallel computing for
solving complex practical problems. Essentially these is interviews with project
leaders who talk about the importance of the use of parallel computing for mod-
eling the dynamics of the heart, digital medicine and many other fields. The
study of this material does not affect the assessment of the student’s knowl-
edge, however, it is recommended by the lecturers in order to expand listener’s
horizons.

5 Learning Methods

The course is available for participating from September to December. Supposed
that students study the lecture materials by them-self in accordance with the
proposed curriculum. Methods of self-study of the course consists of the following
actions (Fig. 1):

1. Study materials of each topic in a lecture (presentation, video). For more
information, the student can apply to the lecture description, which is a
comprehensive document with dedicated sections for each topic of the lecture.

2. Watching a video with a discussion of key lecture issues.
3. Solving assignments for self-study (if any).
4. Implementing lab (if any).
5. Performing the appropriate quiz to the lecture.
6. Watching a video with an example of a project carried out in Nizhni Novgorod

State University, which uses parallel computing to solve complex practical
problems (if any).

To access to the materials of the next lecture, you have to complete the lab (if
any) and the lecture quiz successfully. The student chooses by him-self the time
of learning the lecture materials and performing the practical assignments in the
period of availability of the course for registration. Questions arising during the
course study, student is able to ask lecturers or other students in a course forum.
Based on points obtained for labs and quizzes the student receives a final record
of points that represents the level of material digestibility. Points are computed
automatically to ensure the objectivity of knowledge assessment.
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Fig. 1. The scheme of learning the course “Introduction to Parallel Computing”
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6 Assessment

Assessment of students’ knowledge is carried out on the following information:

1. Points obtained for quizzes of lectures. The maximum grade for each
quiz question is “1”. If the question has only one correct answer then the
student receives “1” in the case of correct answer and “0” otherwise. In the
case of presence N correct answers the student receives “1/N” point for each
correct answer.

2. Points obtained for labs. The maximum grade for each lab is “100”. The
student receives maximum grade if the program has been successfully com-
piled and all tests passed. To validate the program the student has to complete
the following steps:

– Upload the source code of the program.
– Choose the compiler to build the source code.

When the system of automatic program validation and scalability evaluation
receives new job, it performs a sequence of actions described below.

– Building the source code using the specified compiler. If the source code
wasn’t compiled successfully, student is able to analyze compilation report
to reveal errors.

– Validating the program on synthetic data. Lecturer prepares three pro-
grams: generator to generate input data, solver to solve the assigned
problem correctly for any input data and checker to compare output of
the solver and the student’s program. Each test involves data preparation
by the generator, the solver execution to compute correct decision, the
student’s program execution on different number of threads (for example,
1, 2, 4, 8), correctness verification by the checker, speedup evaluation for
each number of threads and its comparison with the reference speedup
specified by the lecturer according to the theoretical estimates.

At the end of validation and scalability evaluation the student receives a test
report that contains detailed information about his program execution and its
testing. The report contains number of threads created during program exe-
cution, verdict (test accepted or failed), speedup, efficiency, execution time,
memory required for the program execution, exit code and checker message.

Notice that the system of automatic program validation and scalability eval-
uation does not provide the analysis of the source code for technological defects.

7 Development Tools of the Course

The course “Introduction to parallel computing” is based on the e-learning sys-
tem http://mc.e-learning.unn.ru of Nizhni Novgorod State University, which
is developed on the open-source e-learning platform Moodle (Modular Object-
Oriented Dynamic Learning Environment) [13]. This platform is a well-known
and it is actively supported by the community. The platform provides a wide
range of possibilities for developing and preparing the content of online-courses.

http://mc.e-learning.unn.ru
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Each object on the course page is a component of a special type listed below.

1. “Label” is used to represent plain text on the page or another component of
the course.

2. “URL” is used to add links to external resources, particularly videos of
lectures.

3. “File” module enables a lecturer to provide a file as a course resource: course
program, presentation and text description of a lecture.

4. “Page” module enables to create a web page resource using the text editor.
It is helpful for convenient and functional display of videos with discussions
of substantive issues of the course lectures and interviews with project man-
agers, which decide practically important problems with the use of parallel
computing.

5. “Quiz” is used to prepare the test content for each lecture and to determine
an evaluation system for each question. The teacher can allow the quiz to be
attempted multiple times, with the questions shuffled or randomly selected
from the question bank [13].

6. “Forum” allows students to communicate with lecturers and other partic-
ipants. The forum activity module enables participants to have asynchro-
nous discussions i.e. discussions that take place over an extended period of
time [13].

7. “Assignment” is useful to represent control assignments. The assignment
activity module enables a teacher to communicate tasks, collect work and
provide grades and feedback [13].

8. “Glossary” is used to create a dictionary for the developed course.

If the content of the course is ready for publication, you have fast Internet
and proper skills to work with Moodle, preparing the course pages takes no more
than one workweek of the course developer. Learning Moodle capabilities is not
difficult problem because there is a large number of tutorials in the Internet
supported by numerous videos.

Developing the system of automatic parallel program validation and scalabil-
ity evaluation is a particular technical problem that supposes the development
of connected services, applications and web-services. The problem of integrating
this system with Moodle is easy to solve because of the existence of documented
application programming interface (API). Development of the specified system
and organization of its interaction with Moodle is out of the scope of this paper.

8 Employment

The course passed by the test group of students from Lobachevsky State Univer-
sity of Nizhni Novgorod. It is assumed that the course will be employed during
International scientific youth school “High-performance computing, optimization
and applications” that will take place in Lobachevsky State University of Nizhni
Novgorod from November 7 till 11, 2016.
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9 Conclusion

This paper represents the course “Introduction to parallel computing” in the
development of which a modern method of presentation of the educational mate-
rials for simultaneous teaching a large number of attendees has been used. The
course curriculum, the method of self-study and assessment methodology are
described. The general goal of the course is a self-study of parallel computing
fundamentals using the most simple and comprehensible form, implying the pres-
ence of a wide range of presentations and video materials. The structuring of
the course and the presence of the large number of assignments for self-control
help to improve the quality of self-study of parallel computing foundations. A
distinctive feature of the course is automatic knowledge control. The control
implies theoretical knowledge control through quizzes and practical knowledge
control through the automatic validation and scalability evaluation of parallel
programs developed for solving well-known mathematical problems. These fun-
damental features are able to attract a large number of listeners and thereby to
pay students’ attention to professional work in the field of parallel computing
and supercomputing technologies.

In the nearest future, we plan to prepare English version of the course. More-
over, we suppose to extend practical part of the course by the applied problems
of global optimization [14,15], image processing, computational geometry and
another interesting fields.
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Abstract. The paper presents two models of parallel program runs on
platforms with shared and distributed memory. By means of these mod-
els, we can estimate the speedup when running on a particular com-
puter system. To estimate the speedup of OpenMP program the first
model applies the Amdahl’s law. The second model uses properties of
the analyzed algorithm, such as algorithm arithmetic and communica-
tion complexities. To estimate speedup the computer arithmetic perfor-
mance and data transfer rate are used. For some algorithms, such as the
preconditioned conjugate gradient method, the speedup estimations were
obtained, as well as numerical experiments were performed to compare
the actual and theoretically predicted speedups.

Keywords: Parallel computations · Computational complexity ·
Communication complexity · Speedup

1 Introduction

During the last decades a parallel computing has been the basic tool for the
solution of the most time consuming problems of mathematical physics, linear
algebra, and many other branches of modern supercomputer application [1].
The most fitted parallel computational model allows to adequately estimate the
numerical algorithms efficiency. It gives a possibility to compare the performance
of the analyzed algorithms for the concrete architectures and choose the most
successful ones in advance.

There are a lot of parallel computation models (see, for example, [1–3]),
however some of them are too superficial to estimate the quantitative speedup
values, on the contrary the other requires to take into account too detailed
information on the algorithm and a run of code implementation. Moreover, the
most of the models do not reflect the peculiarity of the architectures of the
computers, on which the implemented algorithms are running. Using only macro-
structure of algorithms there would be interesting to decide which algorithm
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properties are the most important for deriving of practical quantitative speedup
estimates and which computation systems characteristics could be applied to get
these estimates.

To analyze an algorithm properties for different computer architectures, for
example, for computers with the shared or distributed memory fitted computa-
tional models may be required. While analyzing algorithms for each computa-
tional model a knowledge of the conditions and regions of the model applicability
becomes very important.

This paper describes two parallel computation models, presents the efficiency
estimations obtained on their base, and defines the conditions of their applica-
tions. Specification and analysis of the parallel efficiency upper bounds estimates
are performed for some linear algebra algorithms, including the preconditioned
conjugate gradient method. The qualitative comparison of estimates obtained
and results of numerical experiments are presented.

2 Parallel Computational Model for the Shared Memory
Computers

Let the parallel computations be performed on a shared memory computer and
programming environment OpenMP be used for parallelization. In the most
simple cases, OpenMP can be treated as an insertion of compiler directives
for loops parallelization. At some intermediate parallelization stage or due to
intrinsic algorithm properties some arithmetic operations can be performed in a
serial mode.

Let us consider that the computations are sufficiently uniform by the set of
arithmetic operations performed and, in principle, we can calculate the amount
of such operations and obtain the total numbers of parallel and serial operations.
Let the fraction of serial operation be f ∈ [0; 1] (this value sometimes is denoted
by “s” from “serial” but we are not doing so to separate the usage of “S” for
speedup).

If the time T for the arithmetic operations is linear with respect to the number
of arithmetic operations, then it is easy to estimate the maximum speedup, which
can be obtained for some implementation of the considered algorithm.

2.1 Amdahl’s Law

Let denote by T (p) the time of program running on p processors, than the
speedup received for computations using p processors will be expressed by clas-
sical formula:

S(p) = T (1)/T (p). (1)

If the fraction of serial operations is equal to f , then using formula (1) we can
estimate the maximum achievable speedup by the following way:

S(p) = T (1)/(fT (1) + (1 − f)T (1)/p)) = p/(1 + f(p − 1)). (2)
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The last formula expresses the Amdahl’s law [5]. It can also be treated in more
general case as the maximum achieved speedup which can be obtained for arbi-
trary parallel architecture for the analyzed algorithm or the program code [6].

For the analysis of the obtained formula (2) it can be noted that if the fraction
of serial operations is just 1%, then when running the program on 100 proces-
sors, the serial part of the code on a single processor will take about the same
time as the parallel part of operations on 100 processors. It results in about 50
speedup (or 50% of efficiency). If the number of processors used can be arbitrar-
ily increased, then the maximum achieved speedup will be equal to S = 1/f .
Another extreme case is the linear speedup S(p) = p achieved for f = 0.

In addition, we can define the best conditions of the Amdahl’s law applicabil-
ity for a shared memory computer, that is, when the algorithm actual speedup
will be close to the estimated by (2). The basic conditions are:

– the arithmetic operations are quite uniform;
– all the used threads take part in the computations of the parallel part of the

code;
– load balancing for all active threads;
– scalability of threads usage, i.e., the performance of the threads does not

depend on the threads number (or, in other words, the execution time for
the parallel part of the code is actually p times reduced when running on p
threads).

Let us analyze the last condition in more detail.

2.2 Actual Efficiency of the Parallel Program

Let us inquire the issue: which maximum speedup can be achieved for the ideally
parallel algorithm on some parallel computer cluster.

We consider implementation of DAXPY operation from BLAS1, which with
the OpenMP directive can be written as following:

#pragma omp parallel for
for (i=0; i<n; i++) y[i] += a * x[i];

The numerical experiments were performed on the computer cluster [7] of the
Institute of Numerical Mathematics of the Russian Academy of Sciences (INM
RAS). The computer nodes specification from x6core queue that has been used
for the experiments are:

– Compute Node Asus RS704D-E6;
– 12 cores (two 6-cores processors Intel Xeon X5650@2.67GHz);
– RAM memory: 24 GB;
– Disc memory: 280 GB;
– Operating system: SUSE Linux Enterprise Server 11 SP1 (x86 64).
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Table 1. The efficiency of the DAXPY operation within OpenMP and MPI
environment.

p E∗
omp S∗

omp E∗
mpi S∗

mpi

1 1.000 1.00 1.000 1.00

2 0.939 1.87 0.948 1.89

3 1.778 5.33 0.994 2.98

4 1.929 7.71 0.987 3.94

5 1.496 7.48 0.994 4.97

6 1.481 8.89 0.986 5.92

7 1.095 7.66 0.997 6.98

8 1.011 8.09 0.977 7.82

9 0.863 7.77 0.988 8.89

10 0.842 8.42 0.933 9.33

11 0.638 7.02 0.960 10.56

12 0.385 4.63 0.985 11.82

The Intel C compiler 4.0.1 with the MPI 5.0.3 support was used.
For comparison, the above mentioned code fragment has been run not only

under the OpenMP environment but under MPI environment as well. The values
of speedup (1) and the efficiency E = S/p obtained are given in Table 1. Some
specific results were defined for the parallelization by OpenMP:

– the expected reduction of the efficiency E∗
omp for large number of threads

p = 11, 12 due to insufficient bandwidth of the memory channel;
– the unexpected superlinear speedup for p = 3, ..., 8 threads, that violate the

Amdahl’s law, probably due to coherent memory access operations and effec-
tive compiler processing.

In case of the MPI implementation the computational efficiency E∗
mpi for

such an “ideal” algorithm has expectedly been very close to 1.
Thus, if we would like to improve the formula of the Amdahl’s law (2) in

accordance with the specific of the numerical experiment on the certain computer
cluster, we should multiply the right-hand side of the Eq. (2) by E∗

omp:

S(p) = pE∗
omp/(1 + f(p − 1)). (3)

The value of E∗
omp here would be considered as given in tabular form in accor-

dance with Table 1. Then the possible superlinearity would be included in for-
mula (3), that prevents the failure of the Amdahl’s law.

3 Parallel Computation Model for Distributed Memory
Computers

The key peculiarity of the parallel algorithm execution on the distributed mem-
ory computer is a memory exchange operations and an additional loss of the
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efficiency connected there with. Issues connected with the memory exchanges
can be considered in more detail.

3.1 Message Transmission Rate

To estimate the time spent at the data exchanges the well-known formula can
be used:

Tc = τ0 + τcLc, (4)

where τ0 is the initialization time for the message transmission, τc is the rate of
the data exchange (i.e., measured by time of the data exchange of unit length), Tc

is the time spent for the transmission of length Lc. Generally, the initialization
time τ0 (latency of the transmission) can be rather long, for example, τ0 =
100τc, i.e., the time spent for transmission of 100 words can take just only two
times more than the transmission of one word. However, if the length of the
transmission is large enough, for example, greater than 1000, than the latency
can be neglected.

The most effective algorithm implementation would be the implementation of
a transmission of great length. Such an algorithms are called the algorithms with
“large-grained” parallelism. If this algorithms class is analyzed, the simplified
formula can be applied:

Tc = τcLc. (5)

In other words, we neglect the latency of the communication network and con-
sider that the rate of data transmission is specified only by network capacity. It
should be noted that in the specified propositions the transmission time becomes
linear with respect to the data length. Additionally, it means that the total length
of all transmissions will define the total transmission time for several successive
transmissions. Subsequently, this fact allows us to essentially simplify the effi-
ciency estimation of the parallel algorithms analyzed.

3.2 Estimate of the Algorithm Parallel Efficiency

Let us introduce the same notations as in Subsect. 2.1. Let p be the number of
processors used and T (p) be the execution time for the algorithm on p proces-
sors. Respectively, the speedup that can be obtained by the algorithm will be
expressed by the formula S = T (1)/T (p), while the efficiency of the algorithm
will be specified by the ratio E = S/p.

To estimate the computation time for the algorithm we need the knowledge of
both characteristics of the analyzed algorithm and the parameters of the parallel
computer used.

Let La be the total number of arithmetic operations of the algorithm and τa
is the time spent per one such operation. Similar, let Lc be the total transmission
length and τc be the time of transmission of the unit length. Then, the total time
for arithmetic operations can be expressed by the formula Ta = τaLa and the
total time for communications is Tc = τcLc.
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Now, everything is ready to speedup estimation, but we introduce two aux-
iliary values. The first one will describe the general characteristic of the parallel
computer properties:

τ = τc/τa, (6)

specifying how many arithmetic operations can be performed when transmitting
a number from one processor to another (in case of theoretically unlimited fast
data transmissions or formally synchronous transmissions, τ = 0; for computers
with sufficiently fast transmissions we can expect approximately τ = 10; while
on case of slow communications we have about τ = 100).

The second important value is the characteristic of the algorithm parallel
properties:

L = Lc/La, (7)

denoting a value being reverse to how many arithmetic operations are actually
performed by the algorithm when transmitting a number.

Finally, we can estimate the speedup:

S = S(p) = T (1)/T (p) = Ta/(Ta/p + Tc/p) = pTa/(Ta + Tc) = p/(1 + Tc/Ta)
= p/(1 + (τcLc)/(τaLa)) = p/(1 + τL), (8)

and, analogously, estimate the efficiency:

E = S/p = 1/(1 + τL). (9)

As a result, we obtain a fairly simple formula for efficiency estimate, depending
on two parameters τ and L only, characterizing parallel properties of computer
and algorithm, respectively. At first glance, it is surprising that the last formula
has no explicit dependence on the number of processors p, but what actually
happens is that it implicitly presents in characteristic L via the dependence of
all transmissions Lc total length with the given amount of processors p.

Let us summarize the assumptions that has been made during derivation of
the upper bound of the speedup and efficiency of the parallel algorithm when
running on the shared memory computer:

– in contrast to the Amdahl’s law formula, it is considered that all computations
are completely parallelizable and sequential part of the algorithm is absent
(f = 0);

– the delay in computations is due to the data transmissions only, and the
algorithms with synchronous communications are mainly suited for this model;

– parallel computations are well balanced, i.e., there is no delay due to
imbalance;

– computational nodes are uniform, it means that parameter τ is the same for all
nodes (though as it is known MPI can be performed on nonuniform computer
systems);

– the arithmetic operations rate τa is independent on the number of processors
p (for distributed memory computers it is performed more frequently, than on
the shared memory computers with the use of OpenMP, see Table 1);

– the data transmission rate τc is independent on the number of processors p as
well (this less obvious fact means the scalability of communication network).



310 I. Konshin

3.3 Estimation of the Linear Algebra Algorithms Parallel Efficiency

Let us consider the application of the constructed speedup and efficiency esti-
mates for some examples of linear algebra algorithms.

Example 1 (ideally parallel operations).

(a) Sum of two vectors:

Zi = Xi + Yi, i = 1, ..., n. (10)

(b) Vector normalization (multiplication by a constant):

Xi = αXi, i = 1, ..., n. (11)

(c) AXPY operation (as a combination of two above mentioned operations,
intensively used in numerical methods, implemented in BLAS1):

Yi = αXi + Yi, i = 1, ..., n. (12)

(d) Multiplication of block-diagonal matrix by a vector, each block corresponds
to certain processor, moreover a sparsity structure inside each block does
not matter if total amount of nonzero elements inside blocks are about the
same.

(e) Solution of linear system with block-triangular matrix when performing
forward or backward substitutions. As in the previous case, the block
structure can be arbitrary if the number of nonzero elements in each block
triangle is about the same.

It is obvious that for these operations it is not necessary to perform the
data transmissions (Lc = 0, and hence L = 0), therefore the speedup will be
linear: S = p for any value of τ , and the efficiency will be overall: E = 1. The
computations are independent, and for cases (a)–(c) it is possible to exploit
maximum number of processors p = n. It should be noted that in all cases the
uniform load balancing is assumed, i.e., vector components amount for the cases
(a)–(c) and number of nonzero elements inside the block for the cases (d) and (e).

Example 2 (dot product or inner product).

c =
n∑

i=1

XiYi. (13)

Firstly, we should locally compute the partial sum at each processor, and then it
is necessary to compute the total summation and send the result to processors.
By means of MPI library it can be done by using, for example, the function
MPI Allreduce(). The way of this function implementation is not fixed in MPI
standard and is left at the discretion of specific MPI implementation. However,
to estimate the speedup we can apply the simplest way by sending the partial
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sums to a master processor and perform summation on it, and then distribute
a result to other processors.

The total number of arithmetic operations (considering the summation with
multiplication as a single operation, as well as a separate summation on the
master processor) will be equal to La = n + (p − 1), but the total length of all
data exchanges is Lc = 2(p − 1).

As while calculating L we are interested only in the ratio of these values, it
is more convenient to write them down with respect to a local processor, i.e.,
La = (n + (p − 1))/p and Lc = 2(p − 1)/p. Further, if not stated otherwise we
will mean precisely such estimates.

As a result, the speedup estimate will look like:

L = Lc/La = 2(p − 1)/(n + (p − 1)), (14)
S = p/(1 + 2(p − 1)τ/(n + (p − 1))). (15)

For example, for n = 106 and τ = 10 we can calculate several estimate values:

S(p = 1) = 1, S(p = 100) ≈ 99.8, S(p = 1000) ≈ 980, (16)

and for τ = 100 with the same vector dimension we obtain:

S(p = 1) = 1, S(p = 100) ≈ 98, S(p = 1000) ≈ 800. (17)

The dot product operation is very important and is frequently used in linear
algebra. It is observed that in case the amount of processors increases up to
p = 1000, there is a drastic fall of operation speed. The estimations provided by
this paper indirectly confirm this observation.

Example 3 (multiplication of a dense matrix by a vector). Let us consider the
matrix-by-vector multiplication for dense square matrix:

Yi =
n∑

j=1

AijXj , i = 1, ..., n, (18)

considering that on each processor the portion of block rows are stored, as well
as the corresponding parts of vectors X and Y :

[:] [== == ==] [:]
--- ---------- ---
[:] = [== == ==] * [:]
--- ---------- ---
[:] [== == ==] [:]

To perform the multiplication, it is necessary to collect on each processor the
copy of vector X of full dimension, and then to perform multiplication on the
local part of the matrix A located on the processor.
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Let n be a matrix dimension, and the matrix rows are distributed by proces-
sors equally, then:

La = n2/p, Lc = (n/p)(p − 1), L = Lc/La = (p − 1)/n, (19)

S = p/(1 + (p − 1)τ/n). (20)

If n = 1000 and τ = 10, then S(p = 1) = 1, S(p = 10) ≈ 9, S(p = 100) ≈ 50.

Example 4 (multiplication of a transposed dense matrix by a vector). Let us con-
sider the matrix-by-vector multiplication for a transposed dense square matrix:

Yi =
n∑

j=1

AT
ijXj , i = 1, ..., n, (21)

considering that on each processor the portion of block rows of A (block columns
of AT ) is stored, as well as the corresponding parts of vectors X and Y :

[:] [:: :: ::] [:]
--- ---
[:] = [:: :: ::] * [:]
--- ---
[:] [:: :: ::] [:]

To perform the multiplication, first, it is necessary to compute the local
partial sum Z (of full dimension) as the product of the local block columns
and the local part of the vector X, then send the parts of the vector Z to the
respective processors, and, finally, sum the received parts of the vector Z to
obtain the final local part of the vector Y .

Let n be the matrix dimension, then:

La = n2/p, Lc = (n/p)(p − 1), L = Lc/La = (p − 1)/n, (22)

S = p/(1 + (p − 1)τ/n). (23)

It is surprising, that, despite of the very different algorithm structure, the
obtained estimate is the same as in Example 3. This is due to the same total
length of interprocessor communications.

Example 5 (multiplication of a band matrix by a vector). Let us consider the
matrix-by-vector multiplication for a band matrix stored by rows considering as
it was stated before that each processor stores a portion of matrix rows as well
as the corresponding parts of vector X and the resulting vector Y :

[:] [=== ] [:]
--- --------- ---
[:] = [ === ] * [:]
--- --------- ---
[:] [ ===] [:]



Parallel Computational Models to Estimate an Actual Speedup 313

The portion of block rows of matrix A is stored on each processor, as well as
the corresponding parts of vectors X and Y .

Let n be the dimension and r be the bandwidth of the matrix, then in order to
perform the multiplication of the local part of the matrix each processor should
additionally receive r components of vector X from two neighbouring processors:

La = (2r + 1)n/p, Lc = 2r(p − 1)/p, (24)

L = (2r/(2r + 1))(p − 1)/n ≈ (p − 1)/n, S ≈ p/(1 + (p − 1)τ/n). (25)

The most surprising in this estimate is the fact that it reproduces almost exactly
the previous estimates and is almost independent on the half bandwidth r. It
means, that although the number of arithmetic operation is reduced, the com-
munication length is reduced in the same proportion.

Example 6 (multiplication of a sparse multi-diagonal matrix by a vector). Let us
consider the matrix-by-vector multiplication for a sparse matrix with nonzero
elements located on diagonals corresponding some discretization stencil. Let each
processor stores a portion of matrix rows as well as the corresponding parts of
vector X and the resulting vector Y :

[:] [\\ \ ] [:]
--- ----------- ---
[:] = [ \ \\\ \ ] * [:]
--- ------------ ---
[:] [ \ \\] [:]

Let n be the dimension and r be the semi-bandwidth of the matrix, and
d be the total number of diagonals in the matrix (or number of vertices in
the discretization stencil), then in order to perform the multiplication of the
local part of the matrix A each processor (as in the previous example) should
additionally receive r components of vector X from two neighbouring processors:

La = dn/p, Lc = 2r(p − 1)/p, L = 2r(p − 1)/(dn), (26)

S = p/(1 + 2r(p − 1)τ/(dn)). (27)

It worth to note, that for two-dimensional problem of size n = m × m with the
use of 5-point discretization stencil the parameters of sparse matrix are equal to
r = m and d = 5. For three-dimensional problem of size n = m × m × m with
the use of 7-point discretization stencil we should take r = m2 and d = 7.

It is worth to note, that the effective semi-bandwidth of the matrix depends
on distribution of the domain to processors, for example, in three-dimensional
case it is advantageous to cut the domain by 3D domains but not by slices. It may
essentially reduce the total communication length and increase the efficiency of
the sparse matrix-by-vector operation.

However, in comparison with the multiplication by a matrix with a dense
band, the low efficiency of such an operation is due to the respectively less
number of arithmetic operation for the same semi-bandwidth, and consequently
for the same communication costs.
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3.4 Conjugate Gradient Method

As the final example, we derive the estimate for the preconditioned conjugate
gradient (PCG) method [8].

We consider the most simple but frequently used preconditioner: the block
Jacobi structure with no overlap and incomplete Cholesky IC0 factorization of
each block. The basic operations involved in this algorithm have already been
studied in Subsect. 3.3:

– three “AXPY” operations (Example 1c);
– two inner “DOT” products (Example 2);
– multiplication of a sparse multi-diagonal matrix by a vector “MVM”

(Example 6);
– solution of linear system with block-diagonal preconditioner matrix “SOL”

(Example 1e).

We can write out now the speedup estimate for an iteration of PCG
algorithm.

Example 7 (conjugate gradient method). The computational and communica-
tional costs for a single iteration of conjugate gradient method with IC0 precon-
ditioning consist of

La = 3LAXPY
a + 2LDOT

a + LMVM
a + LSOL

a

= 3(n/p) + 2(n/p) + (dn/p) + (dn/p) = (2d + 5)n/p, (28)
Lc = 3LAXPY

c + 2LDOT
c + LMVM

c + LSOL
c

= 3 · 0 + 2(2(p − 1)/p) + (2r(p − 1)/p) + 0 = (2r + 4)(p − 1)/p. (29)

After that the “parallelism” characteristic of the algorithm can be expressed as

L = Lc/La = (2r + 4)(p − 1)/((2d + 5)n), (30)

while the speedup estimation will be expressed as follows:

S = p/(1 + τL) = p/(1 + (2r + 4)τ(p − 1)/((2d + 5)n)). (31)

3.5 Numerical Experiment and Comparison with the Speedup
Estimate

For the numerical experiments INM RAS cluster [7] with already described in
Subsect. 2.2 computational nodes from queue “x6core” was used.

First, we compute the “parallelism” characteristic of the computer, which was
applied in Subsect. 3.2 when deriving the estimate. Operation DOT over double
precision vectors of length 106 was used to estimate the arithmetic performance
of the cluster, while two simultaneous asynchronous data exchanges with the
double precision vectors of the same length was used to estimate the transmission
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rate. The communications were performed without overlapping with arithmetic
operations. The following values were obtained:

τa = 3.14 · 10−10, τc = 3.06 · 10−8. (32)

It means that the main “parallelism” characteristic of the computer can be set
to:

τ = τc/τa = 100. (33)

To verify the obtained estimates the developed in the INM RAS parallel program
platform INMOST [9] was used. It can be loaded as a source code from [10]. As
the model problem we have used the test program solver test002 developed by
the author of the paper, the program is accessible from the same site as well. The
linear system matrix were constructed by discretization of 3D 7-point stencil for
the domain of size n = m × m × m. The resulting linear system was solved by
PCG method from the external package PETSc [11]. The additive Swartz method
with no overlap and IC0 factorization in subdomains was used by setting the
following parameters:

-ksp_type cg
-pc_type asm
-pc_asm_overlap 0
-sub_pc_type ilu
-sub_pc_factor_levels 0

A set of problems with different dimensions was considered, the dimension of
domain in each direction was m = 64, 96, 128, 160. The total number of unknowns
ranged from about 262 thousand to about 4 million, while a number of processors
was chosen equal to p = 1, 2, 4, 8, 16, 32, 64.

For the final form of the PCG method speedup formula estimated by (31) the
following parameters were used r = m2, n = m3, d = 7, and τ = 100. For four
considered linear systems the actual speedup with respect to the run on a single
processor were obtained, and the plots of theoretical estimates by formula (31)
were drawn as well. The obtained plots are presented on Figs. 1 and 2. It is worth
to note that the plots behavior is qualitatively coincided.

Fig. 1. The speedup estimated by formula (31) and the actual speedup for problems
with m = 64, 96, 128, 160.
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Fig. 2. Comparison of estimated and actual speedup for problems with m =
64, 96, 128, 160.

4 Conclusions

Two parallel computation models were presented for computers with both shared
and distributed memory. Based on the macro-structure algorithm properties the
speedup estimates were obtained for runs on parallel computers. The estimate
for shared memory computers is built on the portion of serial computations of
the algorithm, while the estimate for distributed memory computer clusters is
based on the “parallelism” characteristics of both the considered algorithm and
the computer in use.

The numerical experiments demonstrate that the theoretical speedup esti-
mates and the actual experiment results are in qualitative agreement.
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Abstract. The paper introduces techniques for solving various large-scale
graph problems on hybrid architectures. The proposed approach is illustrated on
the computation of minimum spanning tree and shortest paths. We provide a
precise mathematical description accompanied by the information structure of
required algorithms. Efficient parallel implementations of several graph algo-
rithms are proposed based on this analysis. Hybrid computations allow using all
the available resources on both multi-core CPUs and GPUs. Our implementation
uses out-of-core memory algorithms to handle graphs that don’t fit in the main
memory. Experimental results confirm high performance and scalability of the
proposed solutions. Moreover, the proposed approach can be applied to other
graph processing problems, which have recently rapidly increased in demand.

Keywords: Hybrid computations � CUDA � GPU � Large-scale graph
processing � Graph algorithms � APSP � MST � All pairs of shortest paths �
Minimum spanning tree

1 Introduction

Large-scale graph processing problems are recently becoming more and more
demanded in various application fields. The most common examples are social net-
works and web-graphs, containing millions of vertices and billions of edges. Current
paper reveals possibility of processing these graphs on server architecture with modern
multi-core CPUs and GPUs installed. Such large graph processing presents many
challenges, including: limited GPU’s memory for graph storage, poor data locality, lot
of cache misses and as a result extremely long computation time. Moreover, it’s not
always clear if it is better to solve graph problem on CPUs, GPUs, or if it is possible to
use hybrid approach. This paper introduces supercomputer co-design technology,
aimed to help researchers implement specific graph problem on various hardware
architectures and platforms.

The proposed techniques are applied to implementation of two important graph
processing problems: computation of minimum spanning tree (MST) and all pairs of
shortest paths (APSP). For each of these problems a detailed algorithm analysis and its
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informational structure are provided. As a result, efficient parallel implementations
have been developed, accompanied by performance and scalability studies.

2 Target Platform

All algorithm research and implementations are designed for server architecture, with
modern multi-core CPUs and Nvidia GPUs installed. This architecture is well suited for
solving large-scale graph problems for the following reasons: first, modern servers have
significant amount of memory to store real-world graphs, and, secondly, have sufficient
parallelism resources to process these graphs in a reasonable amount of time. The ratio
of the CPU and GPU memory is an important feature of the selected architecture;
usually, servers have significant amount of memory (up to several tens or hundreds
GB), while GPU memory is very limited (around 6–24 GB on modern GPUs).

Provided in the current paper, experiment results were obtained on a single node of
Russian top-performance supercomputers “Lomonosov” [1] (early stages) and
“Lomonosov-2” (final results). The compute node of last one is equipped with the
following hardware:

– 14-core CPU Intel® Xeon® E5-2697 with hyperthreading supports;
– 64 GB RAM;
– NVIDIA® Tesla™ K40 GPU with 12 GB device memory.

3 Design Principles

This section describes techniques for graph problems solution. Proposed techniques
involve graph problem properties research, which helps to create an efficient parallel
implementation. This implementation must be able to solve the problem at hand with
any possible configuration of provided hardware. Several fundamentally different
server architectures are considered to be the target platform:

1. server with a high-performance CPU and a modern GPU or multiple GPUs;
2. server with a high-performance CPU, but with no GPU (or with outdated models);
3. server with an outdated CPU, but with a modern GPU.

Architecture of the first type will solve graph problems much more efficiently in hybrid
computational mode, of the second type — in CPU-only mode, of the third — in
GPU-only. In ideal case, any implementation aimed for further usage in different
application fields must be able to process graphs efficiently on any types of architec-
ture. That’s why before implementing specified graph problem it is necessary to answer
the following questions:

– Is it better to use CPU or GPU mode on the available hardware?
– Is it possible to implement hybrid computational mode?
– Is it possible to use multiple GPUs?
– Is it possible to implement the algorithm for any graph size?
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To answer the questions listed above, current paper suggests the following technology.
While researching selected graph problem from the theoretical point of view, it is
necessary to:

1. formulate a precise mathematical description of the selected graph problem;
2. review existing algorithms;
3. select most suitable graph storage format;
4. research information structure of reviewed algorithms (using information graphs),

to select the algorithm with the largest parallelism resource or most suited for
current hardware;

5. create a modified algorithm for current hardware specifications.

During the implementation stage, from the programming point of view it is
important to:

1. implement different computation approaches, most common are: CPU, GPU, hybrid;
2. support out-of-core computational mode at least on GPUs (that allows processing

graphs with a size larger than current memory available by parts);
3. accurately implement selected algorithm, while using all available parallelism

resource;
4. perform different tests on various graph types and sizes, as a result presenting

performance and scalability results.

The following sections show how the described technology was applied to different
graph problems — minimum spanning tree and all pairs of shortest paths computation.
The application of described technique allowed creation of flexible high-performance
parallel implementations for these problems.

4 Minimum Spanning Tree

4.1 Mathematical Description and State-of-Art

Minimum spanning tree (MST) problem was firstly described in Boruvka paper [2].
Given a connected undirected graph G ¼ ðV ;EÞ with vertices V ¼ ðv1; v2; . . .; vnÞ and
edges E ¼ ðe1; e2; . . .; emÞ, with assigned weights wðeÞ to each e 2 E, it is required to
compute a tree T � �E connecting all the vertices and having a minimal possible
weight of all such trees.

If the graph G is not connected, such tree doesn’t exist. In this case it is required to
compute MST for each connected component of graph G. The set of such trees is called
minimum spanning forest (MSF). These notions are considered to be the same later in
the article.

There is an important MST property, called edges associativity, later used in the
proposed algorithm. This property can be formulated in the following way:

MST E1 [E2. . . [Enð Þ ¼ MSTðMSTðE1Þ [MST E1ð Þ [ . . . [EnÞÞ
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There are three most common algorithms for solving MST problem: Boruvka,
Kruskal [3], and Prim [4] algorithms. All these algorithms have sequential complexity
of O m log nð Þ operations for graphs with n vertices and m edges. However, the largest
parallelism resource has Boruvka algorithm, that’s why current implementation of
MST problem is largely based on this algorithm.

Boruvka’s algorithm is introduced in paper [2]. First attempts to implement this
algorithm on multi-core processors are described in paper [5]. Also, several imple-
mentations on GPUs are described in papers [6, 7]. Paper [7] offers several opti-
mizations, such as GPU primitive operations like scan and prefix sum usage.

4.2 Graph Storage Format

It is important to determine graph storage format before implementing any graph
algorithm. The chosen format influences performance and even computational com-
plexity of corresponding algorithm heavily. Work edges list format is selected. This
decision has been made for the following reasons:

– edges lists can be efficiently merged and divided;
– MST operation doesn’t require traversals of adjacent vertices to a specified one;

moreover, each iteration of algorithm traverses all the edges in parallel, that’s why
edges list usage doesn’t lead to significant performance losses;

– the graph is undirected, so in edges list format it is possible to store only half of the
edges (for example with source vertex ID less that destination vertex ID).

Each edge is represented by three values (source vertex ID, destination vertex ID, edge
weight) in current implementation. The edge weight can be represented by any char-
acteristic or number (with a certain order relation <and>). During all of the tests 32-bit
floating point numbers have been used.

4.3 Modifications to the Classical Algorithm

The chosen Boruvka algorithm was implemented with both CPU-based and
GPU-based approaches. Hybrid implementation is a simple generalization of GPU
version for large-scale graph processing in combination with CPU one. Medium-sized
graphs (which fit into host or device memory) are processed with standard Boruvka
algorithm. Sometimes during the computations it is necessary to check to which
components belong a specified vertex. Union-Find data structure [8] is used for this
purpose. Implementations of both CPU and GPU algorithms are very similar, so the
description, provided below, suits for both cases.

Techniques for Solving Large-Scale Graph Problems 321



Algorithm 1. Boruvka algorithm for medium-sized graph processing

1. In the beginning each vertex belongs to separate component.
2. On each step:
(a) For each component an incident edge with minimal weight is found. 
(b) Minimal edges are added to MST, while corresponding components are merged. 
3. Algorithm stops when only single component remains, or there is no incident edge 

in any component

In edge list format atomic operations are required on 2.a step where minimal edges
updates occur. But this doesn’t result into a huge problem, since provided tests
demonstrate that atomic operations don’t cause significant performance losses either on
CPUs or GPUs.

For large-scale graph processing on GPUs slightly different algorithm is used:

Algorithm 2. Modified algorithm for large-scale graph processing

1. Graph edges list is divided into parts (fragments); each part fits into device 
memory.

2. Each part is loaded to device memory.
3. For each loaded part a separate MST computation is performed (using algorithm 

1).
4. The edges, which belong to MST for current fragment are loaded back to CPU and 

merged into common edges list.
5. For the new edges list (from step 4) MST is calculated. The resulted tree is the

required answer for the whole algorithm.

All minimum spanning trees for the separate fragments on step (3) can be computed in
parallel; the only requirement for efficiency is balanced workloads (so computation of
each MST can be performed for the same amount of time).

The same way hybrid computation approach works: for example, if graph doesn’t
fit into device memory, half of its edges can be processed on CPU in step (3), while the
other part — on GPU. The computation of final MST can be performed either on CPU
or GPU. Same idea can be used to compute MST on multiple GPUs too. This approach
results into significant performance boost on really large graphs.

Same idea can be applied to process graphs with a size larger than host memory.
Described algorithm requires only to store O(|V|) data, which is significantly less than
O(|E|) in standard algorithm.

4.4 Resource of Parallelism and Information Graph of the Algorithm

To evaluate how proposed implementations use inner parallelism of described algo-
rithm, information graphs of algorithm are used. Information graphs can be defined as a
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directed graph with vertices corresponding to algorithm operations and edges corre-
sponding to data dependences between them (some operation output used as an input
by different operations). Information graph is introduced in book [9].

There are two levels of parallelism in modified Boruvka algorithm: parallelism in
standard Algorithm 1 (bottom), and parallelism while processing different fragments in
Algorithm 2 (top). More specific description of these levels are listed below:

– minimal incident edge search can be performed for each fragment in parallel that
allow creating efficient implementations of both CPU and GPU algorithm on the
bottom parallelism level;

– MST computation for each fragment can be performed in parallel on the top par-
allelism level. This allows using multiple GPUs or a hybrid approach.

Informational graphs are provided in the following figures with detailed descriptions.
Figure 1 corresponds to standard Boruvka (Algorithm 1), Fig. 2 — to a large-scale
graph (Algorithm 2).

Fig. 1. Informational graph of Algorithm 1

Fig. 2. Informational graph of Algorithm 2
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The bottom level parallelism (Fig. 1) is represented on levels {3, 4, 5}, which
correspond to operations of minimal edges search, and on levels {6, 7, 8}, corre-
sponding to merge trees operations. Different copy and initialization operations {1, 2,
8, 9} can be also executed in parallel. On each main loop iteration the remaining trees
count value is being checked {12}. If it hasn’t changed during current iteration — loop
break occurs.

The top level parallelism (Fig. 2) is represented by parallel computations of min-
imum spanning trees {compute_mst} for different edges list fragments. These com-
putations are followed by final MST computation that uses results of previous
computations; afterwards final results are saved to output arrays {save_results}.

4.5 Performance Analysis

Most of the performance results are provided for synthetic RMAT [10] graphs, since
these graphs have very similar structure with real-world social networks and web
graphs. It’s important to notice that graph structure may strongly influence the per-
formance, so in addition to RMAT, SCCA2 [11] and random uniform graphs have been
used during the testing process.

In this work performance metric is used to compare different versions (CPU, GPU
and hybrid). Performance is defined as TEPS, and is equal to amount of traversed edges
per second. In addition to different computational modes comparison, the performance
can be compared for different graph sizes and types. This comparison helps to
understand how graph processing efficiency changes with graph size variation; usually
performance goes down with graph size increase because graph data becomes larger
than cache or device memory, etc.

The results provided have been obtained for graphs with vertices count in range
from 220 to 227. All graphs have RMAT structure and average connections count equal
to 32. Thus, the maximum size of graph, which has been processed during program
testing was 48 GB of the total 64 GB RAM in current system.

Figure 3 demonstrates performance comparison of different computational modes.
First let’s examine GPU version performance: on graph scale 20–25 a slight perfor-
mance drops can be noticed. The reason is that graph size grows, resulting to a less
frequent cache usage. The drop between 25–26 sizes is much more significant and has
different cause — graph of 226 size doesn’t fit into device memory and requires
processing by parts. The reason why hybrid computational mode starts giving signif-
icant performance improvements at the same size is because one part can be processed
now on CPU. The bigger graph is — the better computational balance can be achieved,
that’s why on 27 scale hybrid modes gives even better speed up.

Figure 4 shows CPU version scalability for different threads count (from 1 to 28).
Current testing environment has 14-core CPU, so 28 threads are running in hyper-
threading mode, which gives significant performance boost, as shown on figure.

The result of performance comparison for different graph types is provided on
Fig. 5. All tests provided on this figure have been obtained on graph with fixed 222 size
and average degree equal to 32.
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5 Shortest Paths

5.1 Mathematical Description and State-of-Art

Given an undirected graph G ¼ ðV ;EÞ with vertices V ¼ ðv1; v2; . . .; vnÞ and edges
E ¼ ðe1; e2; . . .; emÞ with weights wðeÞ assigned for e 2 E. Edges sequence pu;¼
ðe1; . . .; ekÞ from vertex u to vertex v, where all edges distinct from one another and has
the same direction is called path between vertices u and v. Path length is defined as total
weight of edges, which belong to it:
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wðpu; vÞ ¼
X

wðeiÞ: i ¼ 1; k

Path with a minimal possible length between vertices u and v is called shortest path.
Depending on pairs selection between which it is necessary to find shortest paths, the
following problem types can be denoted:

1. SPSP (Single Pair Shortest Path) — computation of shortest paths between two
vertices;

2. SSSP (Single Source Shortest Path) — computation of shortest paths between
single specified vertex and all other graph vertices;

3. SDSP (Single Destination Shortest Path) — computation of shortest paths from all
graph vertices to a specified one;

4. APSP (All Pairs Shortest Path) — computations of shortest paths between all pairs
of graph vertices. This problem can be reduced to applying SSSP algorithms to each
graph vertex.

In this work APSP problem is being solved. Although, when it is applied to large-scale
graphs, several problems arise: more than quadratic computational complexity and as a
consequence too long computational time, required for graph processing. Moreover,
output data has quadratic size from graph vertices count (it is necessary to store |V|
distances with |V| length). That’s why the following generalization of this problem has
been created: instead of computing pairs from all |V| graph vertices, distances just from
several source-vertices have to be calculated. With only single source vertex current
generalization can be reduced to SSSP problem, while with |V| different source vertices
it can be reduced to APSP.

Shortest paths problems are studied in papers [12–14], where most common
Dijkstra’s, Bellman-Ford and Floyd-Warshall algorithms are introduced. Among these
algorithms Dijkstra’s has the best sequential complexity Oðmþ n log nÞ. In fact, it
asymptotically the fastest known sequential algorithm for this class of problems. The
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problem with Dijkstra’s algorithm is that it is purely sequential, although some
researchers attempted to implement it on parallel CPU and GPU [15] architectures.

In contrast to Dijkstra’s, Belman-Ford algorithm has great parallelism potential, but
worse sequential complexity —O mnð Þ in the worst case and O mð Þ in best. The
implementation of this algorithm on GPU architecture is described in paper [16].

Floyd-Warshall algorithm also has large resource of parallelism; approaches for its
implementation on GPUs are presented in paper [17]. But drawback of this algorithm is
that it requires storing matrix of distances between all graph vertices, what is impos-
sible even in distributed memory of largest clusters.

5.2 Graph Storage Format

Edges list storage format is selected again for APSP problem, since it allows processing
graphs efficiently, which doesn’t fit into device memory. But edges list format isn’t
suitable for Dijkstra’s algorithm, because it requires adjacent vertices traversal on each
iteration. Since the further described implementation requires execution of Dijkstra’s
algorithm on CPU, an extended edges list format is suggested. List of edges is stored in
sorted order (by source vertex ID), with an additional array with pointers to the incident
edges for each vertex. This approach is quite similar to compress adjacency list format,
described in paper [7].

5.3 Modifications to the Classical Algorithm

Modified APSP problem requires computation of shortest paths form several source
vertices to all other graph vertices. This computations are independent and can be
performed in parallel, what gives a great parallelism potential; moreover, they can be
performed by different algorithms and on different hardware (for example on CPU and
GPU). Algorithm selection is influenced heavily by graph size and computational
mode, which can be done in the following ways:

1. Dijkstra’s algorithm is used on CPU (single copy on every core for each source
vertex);

2. Bellman-Ford algorithm is used on CPU (optionally, if RAM size doesn’t allow
storing distance arrays for each core);

3. Bellman-Ford algorithm is used on GPU.

Hybrid computations are performed on “top” level of algorithm, where independent
calculations of source-vertices are performed. A shared task queue is created for this
purpose, where each task contains information about single source-vertex, required to
be processed. Each CPU thread might have several behavior options listed below:

1. computation coordination for single GPU (multiple threads required for multiple
GPUs);

2. its own computations, using Dijkstra algorithm;
3. participating in collective problem solution together with other threads, using

Belman-Ford algorithm.
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function APSP (in: Graph graph, array source_vertices[]; 
out: distances_file)
{ 

Queue tasks = create_task_queue()
for each vertex in source_vertices

add vertex to tasks
parallel section
{ 

while tasks.not_empty()
{ 
in atomic do
{ 

cur_vertex = tasks.pop()
} 
if thread.algorithm = CPU_DIJKSTRA

call cpu_dijkstra(cur_vertex)
else if thread.algorithm = CPU_BELLMAN_FORD

call cpu_bellamn_ford(cur_vertex)
else if thread.algorithm = GPU_BELLMAN_FORD

call gpu_bellamn_ford(cur_vertex)
} 

} 
} 

Here cpu_dijkstra and cpu_bellamn_ford functions are standard implementations of
sequential Dijkstra’s and parallel Bellman-Ford algorithms; gpu_bellman_ford function
have several modifications over a standard algorithm:

– large-scale graph can be processed on GPU even if it doesn’t fit into device
memory;

– instead of single source vertex the function processes multiple vertices (usually 8 of
them), since it optimizes memory accesses and data movements to device memory.

Next paragraph describes GPU algorithm for large-scale graphs processing. In the
initial part of computations all edges are divided into equal (or almost equal) parts:
E ¼ E1[E2[ . . .[Ek. Then the following steps are executed:

Algorithm 3. Bellman-Ford GPU algorithm for large-scale graph processing

1. Initialization: for each vertex initial distance ( ) = ∞ is set; the only exception is 
source vertex,with ( ) = 0 distance. 

2. Big iteration: 
(a) Next edges portion is loaded to device memory.
(b) Small iteration: standard Bellman-Ford algorithm is performed for edges . 
(c) Step (b) is repeated until on current small iteration distances array stops changing
(d) Algorithm is repeated from step (a) until all graph parts are processed
3. Algorithm is repeated from step 2 until all distances stop changing on big iteration
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5.4 Resource of Parallelism and Information Graph of the Algorithm

In this section information graph will be used again to evaluate how current imple-
mentation uses parallelism resources of described algorithms. As already mentioned in
previous section, proposed algorithm has two levels of parallelism: in standard
Bellman-Ford algorithm (the bottom level), and during different source-vertices pro-
cessing (the top level) (Fig. 6).

The bottom level parallelism is represented on levels {2 and 3}; these operations
correspond to initialization of distances array (2) and updating those using edges weights
(3). Operation (4) is checking, if there were any changes during current iteration.

The top level parallelism is represented on parallel planes and corresponds to
parallel computation of shortest paths for different source vertices.

5.5 Performance Analysis

Performance metrics will be used again to compare different versions (CPU, GPU,
hybrid and sequential). Provided results are obtained for graphs with vertices count in
range from 220 to 227. All graphs have RMAT structure and average connections count
equal to 32. Also, CPU computations can be performed with different algorithms —
Dijkstra’s and Bellman-Ford, what is also reflected in the following diagrams.

Figure 7 demonstrates performance comparison of different computational modes.
Since processed graph is directed now, it requires twice more memory compared to
MST case, so graph with size 225 doesn’t fit into GPU memory. That’s the reason of

Fig. 6. Informational graph of APSP algorithm
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significant performance drop between 24–25 graph sizes. Also, since Dijkstra’s algo-
rithm usage on CPU outperforms Bellman-Ford, hybrid approach with Dijkstra’s
algorithm most of the time significantly outperform its counterpart.

Figure 8 demonstrates performance comparison for different graph structure types:
RMAT, SCCA2, random-uniform. All tests provided on this figure have been obtained
on graph with fixed 222 size and average degree equal to 32.
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6 Conclusions and Future Work

The paper introduces techniques for solving large-scale graph problems on modern
server architectures with different hardware configurations. Proposed technology was
successfully applied to research and implementation of two important graph problems
— computation of minimum spanning tree and all pairs shortest paths. Three different
computational modes were discussed and implemented during problem analysis: CPU,
GPU and hybrid.

Parallel high-performance implementations were developed as a result, capable of
processing graph with vertices count up to 227 and average connections count 32. The
implementation of APSP operation achieves 800 MTEPS performance, while MST
operation — 350 MTEPS. Also, hybrid computation offers significant performance
boost in several situations. As a result of provided analysis it becomes possible to select
computational mode and other implementation preferences according to the size
problem and the platform hardware to maximize the performance on the selected
platform.

Future plans are facing research on other important large-scale graph problems,
including strongly connected components, transitive closure and bridges computation.
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Abstract. This paper examines the prospects of the Elbrus computing
platform for high-performance computations. The results of the most rep-
resentative HPC benchmarks (HPCC, NPB, HPCG) and their analysis
were presented. The testbed node was equipped with four MCST Elbrus-
4C processors and DRAM DDR3 with total capacity 48 Gb. Different
factors affecting the performance of FT and MG tests from NPB bench-
mark suite were analyzed by using Paraver tool, hardware performance
counters (HPC) and MPI communications data. The scalability of geo-
logical application implementing the double-square-root (DSR) prestack
migration method was investigated. Benchmark results show that the
code customization to reveal platform-specific optimizations is required
for the best performance. Nevertheless, the scalability analysis demon-
strates that most tests are linearly scalable within a certain range of
processor numbers.

Keywords: HPC Benchmarking · The Elbrus Platform · Scalability
analysis · HPL · HPCC · NPB

1 Introduction

The main goal of this work is the initial assessment of the computational poten-
tial of the Elbrus [1] platform for HPC, and particularly the feasibility of its
usage in geophysics.

A simpler way to examine the total performance of the architecture is to use
of benchmarking suites for measuring host CPU performance, memory transfer
rates, support libraries, drivers, and compilers effectiveness.

In this research, the HPCC, HPCG, NAS parallel benchmarking suites have
been chosen for understanding the performance of scientific applications using
Elbrus architecture in HPC. The benchmark reports for test runs with different
configurations have been analyzed. We have studied not only peak results, but
total performance, portability, programmability, and potential built-in capabili-
ties of the architecture.

The execution time measurement is, in fact, the preliminary assessment of
the system performance. The tracing of the program execution with the subse-
quent analysis could be used for the further architecture characterization. This
c© Springer International Publishing AG 2016
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2016, CCIS 687, pp. 333–344, 2016.
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method allows to gather the performance information by monitoring the appli-
cation run via the microprocessor behavior and intra-node communications. The
tracing method can be used for static and dynamic analysis of the application
runtime and computation pattern. In this work, we have used the instrumen-
tation package for profiling and tracing of two application with an illustrative
internal structure.

Finally, it is well known that the software from different scientific disciplines
varies significantly in program structure and dynamic behavior. So the architec-
ture cannot be accurately characterized with the typical benchmarks only. In
this work we have measured the scalability of the real application that processes
synthetic seismic reflection data by a depth migration method.

2 Features and Specifications of the Computing Node

Features and specifications of the Elbrus Compute Node are summarized in the
Table 1.

Table 1. Specifications of the Elbrus Compute Node

Characteristics Specifications

CPU 4 × Elbrus-4C (Architecture e2k (VLIW);
800 MHz, 4 cores, Theoretical Peak
Performance - 4 × 25.6 GFlops (double
precision))

Total 16 cores, 102.4 GFlops (double precision)

RAM 12 × Micron DDR3 4GB, 1600 MHz. 48 GB
Total

Energy consumption 300 Watt (Under the HPL benchmark)

3 Standard Benchmarks

There are a lot of benchmarks designed to help evaluating the performance of
the compute node and to address the interactions among hardware components,
system software on the one side and application scientific software on the other
side. Benchmark suites are developed for particular programming and paral-
lelization models and implemented by special libraries, so careful selection of
the appropriate benchmarks is required for accurate performance prediction.

The chosen benchmarks with results description are shown below. Wide con-
figuration range for problem sizes, blocks, number of threads and processes has
been used in all test runs to evaluate not only the peak performance, but the
computational effectiveness under different settings. Tuning optimization flags
in an architecture-dependent manner has been done for all benchmarks. The
mpich-3.1.4 library has been used for communications.
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3.1 HPCC

The HPCC benchmark suite [2] is one of the most popular benchmarks suites,
it also includes the High Performance Linpack (HPL) benchmark used in the
Top500 list. Tests of the HPCC benchmark suite exploit a range of memory
access patterns. It consists of four local (matrix-matrix multiply, STREAM,
RandomAccess and FFT) and four global (High Performance Linpack—HPL,
parallel matrix transpose—PTRANS, RandomAccess and FFT) kernel bench-
marks. The maximal HPL benchmark results obtained for the computing node
under the test are listed in the Table 2.

Table 2. The HPL benchmark results

Attribute Value

Problem size (N) 36000

Block size (NB) 176

Process grid (P ×Q) 2× 8

Time, sec 378.66

Performance, GFlops 82.15

The native EML mathematical library has been used for basic linear algebra
calculations. The directory [3] for the hardware support of memory coherence
was turned on.

The state-of-the-art scientific application are handling the big data, so the
memory measurements is one of the priority areas for benchmarking. The results
for the StarSTREAM benchmark that measures sustained memory bandwidth
to/from memory are listed in the Table 3.

Table 3. The StarSTREAM benchmark results

Test Bandwidth, GB/sec

1 thread 2 threads 4 threads 8 threads 16 threads

Copy 14.020 8.528 3.990 3.995 3.884

Scale 14.273 8.824 4.245 4.235 4.177

Add 15.412 8.799 4.078 4.063 3.976

Triad 15.865 9.229 4.315 4.313 4.168

3.2 NAS Parallel Benchmark

The NAS Parallel Benchmark suite (NPB) [4] consists of five parallel kernels
and three simulated application benchmarks. The benchmarks are derived from
computational fluid dynamics (CFD) applications. Although these applications
are not typical for all areas of science and technology, it covers a wide range of
problem types.
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The observations made in the study are described below:

1. The best results using GFLOPs metric are obtained at the BT benchmark
(Block Tri-diagonal solver).

2. MPI version demonstrates good scalability as the number of cores increases
from 1 up to 16. For example, the IS benchmark demonstrates sub-linear
scalability for all versions (MPI, OMP) and all used classes (B, C).

3. The BT and LU benchmarks show similar performance results. Performance
results show a small increase with increasing the benchmark class from B to
C.

The FT, MG and LU benchmarks was of special interest to us, because these
benchmarks are partly reflecting the typical computational pattern, mathemat-
ical and computing techniques, and interdependency of computational blocks
used in seismic imaging and fluid dynamics fields. The testing results for MPI
version are listed in the Table 4, where process is MPI-process.

Table 4. The NPB benchmark results

Benchmark Class Performance, GFlops

1 process 2 processes 4 processes 8 processes 16 processes

FT B 0.886 1.816 3.588 6.621 10.525

FT C - 1.748 3.447 6.402 10.366

MG B 1.663 3.388 6.506 10.487 16.04

MG C - 3.958 7.617 12.25 13.751

LU B 1.621 3.107 6.295 11.179 19.784

LU C - 3.162 6.321 11.390 20.872

As the results of these benchmarks given in the Table 4 show we have observed
good scalability despite the different structure of the conducted benchmarks. In
many of the benchmarks, the increasing of the problem class slightly affects the
total performance what represents balanced share of the workload and good
potential for increasing number of nodes in computational cluster.

3.3 The Fourier Transform

The Fourier transform is one of the most common methods used in virtually all
areas of engineering and science. There are plenty of seismic image processing
algorithms, particularly, that are based on Fourier transform.

We have used special benchmarks to assess the optimization impacts during
fast Fourier transformation using FT benchmark from NPB test suite. The “non-
optimized” test run has been done with the only “-O3” optimization flag. The
“optimized” test run has been done with optimization flags listed below:
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Optimization Flags

FFLAGS = -O3 -fwhole -mcpu=elbrus-4c -fcache-opt -ffast -ffast-math

Moreover, the directory for hardware support of memory coherence was
turned on.

The results of comparative benchmarking are listed in the Table 5.

Table 5. The NPB-FT comparative benchmarks results

Performance, GFlops

1 process 2 processes 4 processes 8 processes 16 processes

Non-optimized version 0.515 0.809 1.439 2.589 3.600

Optimized version 0.886 1.816 3.588 6.621 10.525

Acceleration 1,720 2,245 2,493 2,557 2,924

While the source codes have remained unchanged the almost 3-times per-
formance speedup have been gained. To attain the next level of FFT calcula-
tions performance we use architecture-optimized programming libraries. There
is Fast Fourier transformation library specialized for the Elbrus microproces-
sors. Tables 6 and 7 show the results of a Fourier transformations benchmarking
implemented by specialized library. In all runs one core of the Elbrus-4S CPU
was simulated. The 100*Th./Exp. column contains the Theoretical to Experi-
mental performance ratio percentage. It should be taken into account that basic
Fourier Transformation (so called butterfly in the context of the Cooley-Tukey
FFT algorithm [5]) takes 10 flops or 8 fmuladd combined operations.

Table 6. Direct fourier transform

Benchmark Performance, GFlops 100*Th./Exp.

Theoretical Experimental

Complex-to-Complex (16-bit) 8 6.723 84

Complex-to-Complex (32-bit) 8 6.9 86

Complex-to-Complex (64-bit) 4 4.08 97.56

Real-to-Perm (16-bit) 8 5.67 70.9

Real-to-Perm (32-bit) 8 6.299 78.7

Real-to-Perm (64-bit) 4 3.33 83.3

Note: In the tables there are benchmarks with the value of experimental
performance higher than the value of the theoretical performance. This effect
is possible due to decreasing of arithmetical operations number in the different
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Table 7. Inverse fourier transfrom

Benchmark Performance, GFlops 100*Th./Exp.

Theoretical Experimental

Complex-to-Complex (16-bit) 8 6.723 84

Complex-to-Complex (32-bit) 8 8 100

Complex-to-Complex (64-bit) 4 3.98 99.5

Real-to-Perm (16-bit) 8 5.16 64.5

Real-to-Perm (32-bit) 8 6.67 83.3

Real-to-Perm (64-bit) 4 3.47 86.9

algorithm stages (multiplication by −1.0 is not executed, by it counts as real mul-
tiplication in theoretical performance computations). The type1-to-type2 (N-bit)
notations in the tables refers to the Input and Output data formats. Although
the results shown in the Tables 6 and 7 reflect the Fourier Transform performance
using one core they can be scaled linearly for small data (<2Mb, local L2 cache
size), so we have reason to expect e.g. 6.299 * 4 = 25,196 GFlops performance for
the direct Fourier Transform for Real-to-Perm (32-bit) data.

The overheads should affect the performance with data size and number
of used CPU cores increasing, nonetheless according to this benchmarking the
architecture have significant potential.

4 Study of Parallel Executions Characteristics on the
Elbrus Architecture Using Trace-File Analysis

A trace-file analysis allows to collect performance metrics at known points in
source code what provides with information about the correlation between per-
formance and the dynamic behaviour of application. In this work we have used
the Paraver [6] performance analyzer based on traces generated by the Extrae [7]
package.

4.1 FT

The FT benchmark solves a three-dimensional partial differential equation
(PDE) using the fast Fourier transform (FFT). In the performance analysis
the MPI-version of test application and class C for test problem have been used.
There is the linear performance increase with increasing the MPI-processes num-
ber from 1 up to 16, so it is not possible to assess the optimal processes number
for the FT benchmark in this case (Table 8).

The idle and running time periods are distributed symmetrically by compu-
tation processes during the runtime and correlate to the time to communication
synchronizations (Fig. 1).
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Table 8. The Idle/Running periods for FT benchmark, class C

Number of processes Idle time, % Running time, %

2 11.39 88.61

4 5.80 94.20

8 8.99 91.01

16 11.95 88.05

According to The Elbrus architecture specificities the information about
VLIW instructions per cycle were gathered instead of the standard IPC metric
(Instructions per Cycle). The VLIW IPC distribution (Fig. 2) have some kind
of symmetry reflecting the good balance of computations and communications
during the test execution.

Moreover, we can assume that workload becomes more equally distributed
as the number of used computational cores increases (as it is shown on the Fig. 2
the label color of computation intensity shifts from dark-blue to the light-blue
and green).

Because of the good balance of computations and communications for FT
application in perspective we may expect its further scalability on the Elbrus
platform.

a) b)

Fig. 1. MPI-communication during the FT test runtime, class C; a) 2 MPI-processes,
b) 16 MPI-processes
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a) b)

c) d)

Fig. 2. VLIW IPC during the FT test runtime, class C: a) 2 MPI-processes, b) 4
MPI-processes, c) 8 MPI-processes, d) 16 MPI-processes (Color figure online)

4.2 MG

The MG test approximates the solution to a three-dimensional discrete Poisson
equation using the V-cycle multigrid method.

This benchmark requires well structured local and distant communications.
We have used MPI-version, class B for trace-file analysis. According to the MPI
communication patterns (Fig. 3), it’s difficult to distinguish different process
groups. The MPI calls and computations period are distributed quite uniformly.

Unlike the FT workload, there is significant difference between the workload
level (Fig. 4) for the first and second MPI-process in the first (a) case. The
workload equalizes with the processes number increasing what can be explained
by the increasing of CPU usage efficiency in the case of 16 cores. It also reflects
good scalability potential for the tested architecture.

5 The WEMIG2DMPI Seismic Module

The WEMIG2DMPI module is a part of the GEOLAB [8] software for seis-
mic data processing used in the oil and gas exploration industry. The WEMIG
is a 2D-seismic migration method using reverse-time wavefield continuation in
frequency/space domains and depth imaging.
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a) b)

Fig. 3. MPI-communication during the MG test runtime, class B; a) 2 MPI-processes,
b) 16 MPI-processes

a) b)

Fig. 4. VLIW IPC during the MG test runtime, class B: a) 2 MPI-processes, b) 16
MPI-processes

This WEMIG2DMPI module has been compiled with following optimization
flags:
Optimization Flags

-O3 -mcpu=elbrus-4c -mptr64 -ffast -ffast-math

The runtime dependency for WEMIG2DMPI module (Fig. 5) shows its good
scalability on the Elbrus architecture. Meanwhile the performance decreasing has
been observed for the number of MPI-processes higher than the half a number
of used CPU cores (Nproc ≡ 8 − 9).
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Fig. 5. The test runtime (in sec) in benchmarking the WEMIG2DMPI module as
function of number of MPI-processes

It can be supposed that for the scientific applications with the similar compu-
tation/communication patterns high performance could be achieved as well with
increased number of computation cores. Nevertheless, primarily the architecture-
dependent optimization required including specialized libraries.

6 Architecture Differentiation

The Elbrus microprocessor family belongs to the VLIW architecture class. The
main VLIW feature is explicit instruction-level parallelism. Different instruc-
tions that allow simultaneous execution, are statically scheduled into Very-Long
Instruction Words, which are later treated by CPU pipeline as single instruc-
tions, and ideally are executed one per CPU cycle.

This approach simplifies the process of microprocessor development compa-
rably with the superscalar architecture, especially supporting out-of-order exe-
cution, but it transmits the task of parallelism detection to the compiler (or to
the qualified assembler developers).

The execution performance in terms of IPC (Instructions Per Cycle) for the
Elbrus (and other VLIW architectures with explicit speculative instructions exe-
cution) for one session is defined as follows:

IPC(program) =
∑

WI∈program

[
∑

oper∈WI prob(oper)] ∗ Cexec(WI)
Cycles(program)

, (1)

where WI – Very–Long Instruction Word;
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Cexec(WI) – The number of Very-long Instruction Word executed in one
session;

Cycles(program) – The total number of cycles during execution;
prob(oper) – the operation “profitableness”– a complex numeric characteris-

tic that reflects the level of usefulness of operations. It can roughly be described
as probability of speculative operation result not being thrown away as unneeded
in data flow. For non-speculative operations prob(oper) = 1.0.

Consequently, the effective performance depends on:

1. Width (number of operations) of the Very-Long Instruction Word
2. High operations profitableness in the Very-Long Instruction Word
3. Presence of the pipeline stalls (bubbles) that increase Cycles(program).

The optimizing compiler is responsible for providing positive factors for effec-
tive performance, but it still requires additional efforts from the developers.

Combining the developers and compiler efforts one could achieve high per-
formance on VLIW architectures for wide range of algorithms.

7 Conclusion

In this work we have studied the computation behavior of different bench-
marks including pseudo-real applications. The applications with different pat-
terns demonstrates good scalability on the Elbrus platform. The presented
results especially for FFT calculations allow comparison with the modern CPUs
and systems.

The trace analysis of some standard benchmark tests has shown effective
CPU utilization during the runtime and tendency to workload equalization with
increasing of number CPU cores.

The architecture principles has been analyzed to better understand of the
benefits and the pitfalls of the usage of the Elbrus platform. The Fourier trans-
form example illustrates the importance of architecture-dependent optimization.

Proper optimization of some benchmark tests brings out the architecture
performance potential of the Elbrus platform.

In further work We are planning to apply architecture-dependent optimiza-
tion to seismic imaging applications.

Based on the results of our benchmark tests We can presumably expect that
the increasing of number of computation cores can lead to further applications
scalability and performance growth.
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Abstract. At the moment a lot of supercomputing applications are inefficient in
terms of the usage of available resources. To decrease the number of such
inefficient applications, a tool for supercomputer task flow analysis and detec-
tion of inefficient application runs is needed. In this paper several supervised
machine learning methods are considered to solve this issue. The classification
performed by these methods is based on system monitoring data (e.g. CPU load,
network usage etc.). The experiments on real data show that the Random Forest
algorithm is currently the best option to accomplish given goal. At the moment
the resulting classifier model is being tested on the “Lomonosov” supercom-
puter. The experiment results demonstrating the efficiency of the resulting model
are also included in this paper.

Keywords: Supercomputer � High performance computing � Task flow �
Anomaly detection � Program efficiency � Machine learning

1 Introduction

It is very essential that supercomputer’s resources are used efficiently. Inefficient usage
leads to partially idle resources that could have been used much more efficiently by
other users. Also users get results later than expected due to slower execution of their
programs. Considering all this, the detection of inefficient applications is essential. In
order to solve this problem, a tool that analyzes the supercomputer task flow, detects
inefficient application runs and notifies users about these applications is being
developed.

There are different tools that help to analyze the behavior of a single program (e.g.
Scalasca, Vampir [12], HPCToolkit), and these tools can be used to detect different
kinds of efficiency issues. But the problem is that users very often don’t even realize
that their applications can run inefficiently, so these tools are rarely used. There are also
tools like NuPIC [1] and Rocana [2] that detect anomalies in the data flow in real time,
but they can only analyze the data flow presented by {time:value}. So these tools can
be used to analyze only one dynamic characteristic (e.g. CPU load, memory usage) and
they can only point to the fact that something is unusual. But in future we also want to
know why these unusual events occur. Moreover, some anomalies can be detected only
by analyzing multiple dynamic characteristics. Taking all this into account, these tools
are not suitable for solving given problem.
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I searched for papers about supercomputer task flow analysis and real time anomaly
detection using machine learning techniques but no researches on this topic were
found. Although some related papers about the usage of machine learning methods in
program efficiency analysis can be found [3–5]. For example, in the paper [5] super-
vised machine learning methods were used to classify launched applications. Authors
tested the machine learning algorithms on the problem of finding the inefficient pro-
grams in the large set of programs to select a suitable algorithm for their task. But they
used their own criteria of what should be called an “inefficient program”, e.g. CPU load
<30, clock ticks per instruction <2. This kind of anomaly detection is very simple and
detects only obvious types of anomalies.

2 Definition of Anomaly

First step was to define the term “anomaly”. An anomaly is the application that uses the
resources of supercomputer very efficiently or inefficiently so it stands out from the
general supercomputer task flow. Finding the exact criteria of application abnormality
is not possible at the moment because there is a vast amount of applications on
supercomputer that are very different by their properties and the problems they solve.
That was one of the main reasons for using machine learning.

There are different kinds of anomalies:

1. Very efficient and very inefficient programs. Very efficient program makes good use
of the supercomputer resources and runs a lot more efficiently than an average
program, i.e. it optimally distributes work between nodes, minimizes cache misses,
etc. Very inefficient program usually wastes resources due to its inefficient imple-
mentation of the algorithm or an error occurred in the program, i.e. deadlock,
infinite loop, etc. It would be better to detect not only inefficient programs but also
efficient ones because these programs could be analyzed to make a recommendation
list for other users on how to write efficient programs.

2. Anomalies in the supercomputer task flow, in the user task flow and within a single
program. Anomalies in the supercomputer task flow are efficient or inefficient
programs that differ greatly in comparison with an average program in the task flow.
Anomalies in the user task flow are programs that are different from the other
programs of the particular user. This kind of anomaly is interesting because it can be
assumed that usually user launches similar programs that are comparable. If there is
a program that is drastically different from the others then there is a possibility that
this program behaves not as planned and should be treated as suspicious. Also these
kinds of programs can be very similar to many other programs in supercomputer
task flow and often are labeled as normal while analyzing the overall flow, but they
are considered as abnormal to the particular user. Example of the outliers in the user
task flow is given in Fig. 1. An anomaly within a single program is found not by
comparing it to other programs but by analyzing its dynamic characteristics’
behavior during the execution. This can lead to discovery of dependencies between
dynamic characteristics for different types of inefficient programs.
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In this work it was decided to focus on detecting anomalies in the overall super-
computer task flow.

3 The Use of Machine Learning Methods

All tested machine learning techniques required applications to be presented in a
unified format. In this case all supercomputer application data is collected by the
monitoring system of the “Lomonosov” supercomputer. It gives access to the following
dynamic characteristics:

• level 1 cache misses per second (cache_1),
• level 3 cache misses per second (cache_3),
• system load (Loadavg),
• CPU load (cpu_load),
• memory load operations per second (mem_load),
• memory store operations per second (mem_store),
• amount of received bytes per second via Infiniband (ib_rcv_data),
• amount of received packets per second via Infiniband (ib_rcv_pckts),
• amount of sent bytes per second via Inifiniband (ib_xmit_data),
• amount of sent packets per second via Infiniband (ib_xmit_pckts).

Every dynamic characteristic is represented by time series and every application has
different amount of elements in series due to different execution times. That’s why it
was decided to use feature based classification. Two features where chosen to represent
time series: median and oscillation rate. Other features like average, quantile, disper-
sion were also considered, but they gave less accurate results.

It was decided to compare the following supervised machine learning classifiers:
Random Forest [8], Linear Discriminant Analysis [6] and Decision Tree. For Decision
Tree, the CART [7] algorithm was used. Other classifiers like Naïve Bayesian or
AdaBoost were also tested but they showed worse results than tested methods.

Fig. 1. Example of the anomalies in the user task flow. Each dot represents the user task with
given average number of memory writes per second.
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The training data contained 300 programs and 3 classes were selected: normal,
abnormal and suspicious. Training data was built manually and contained 110 pro-
grams in normal class, 130 programs in abnormal class and 60 programs in suspicious
class. Program was considered suspicious if it couldn’t be clearly classified as normal
or abnormal.

Accuracy of the model was calculated on the test set. Accuracy was considered as
ratio of correctly classified elements to a total number of elements in the set. Training
data was randomly divided into 4 parts and 1 part was considered as the test set. Then
the method that is very similar to the 4-fold cross-validation was used. Remaining data
was divided into 4 subsamples, a single subsample was retained as validation set, and
other 3 subsamples were used as the training set. The classifier was trained on the
training set and accuracy on validation set was calculated. It was done 4 times, for
every possible subsample as the validation set. The best out of 4 trained classifiers is
chosen based on the accuracy on corresponding validation set. Then the accuracy of the
chosen best model on the test set is calculated. This accuracy of the classifier model
was considered as its accuracy on test set. Chosen classifiers show these results:

• Linear Discriminant Analysis: 0.74 on the training data.
• Decision Tree: 0.75 on the test set.
• Random Forest: 0.82 on the test set.

Linear Discriminant Analysis was considered not suitable for the problem because
this algorithm showed very poor results even on the training data. Decision Tree and
Random Forest achieved better results, but Random Forest always showed better
results than Decision Tree classifier, and that lead to choosing Random Forest as the
final classifier for the system. Also because of the fact that Random Forest is an
ensemble of trees and classification is done by voting, the information about how many
trees voted for each class can be retrieved. This information can be useful: while
classifying the element, if all trees voted for a particular class then this element is
considered as normal and most probably classified correctly; but if trees voted for
different classes then this could mean that this element has unique properties and
should be analyzed more properly.

One of the main parameters of Random Forest classifier is the number of trees in
the ensemble. Multiple numbers of trees were tested. The accuracy increased until the
number of trees reached 256 and didn’t increase afterwards. That’s why in this work
the parameter was set to 256.

Next step was to find out if the accuracy of the classifier can be increased. ROC
curve graphs for Random Forest and Decision tree classifiers were built (Figs. 2 and 3)
that show how well classifiers predict different classes.

The area under the curve also shows how well the classifier works – is predicts
better if the area under the curve is higher. As can be seen, both Random Forest and
Decision Tree classify suspicious programs a lot worse than normal or abnormal
programs. After analyzing distributions of dynamic characteristics it was found out that
suspicious program’s behavior sometimes very alike to the normal or abnormal pro-
grams. Due to this reason the classifier sometimes mislabels the program. The con-
fusion matrix (Table 1) that was built using the test set also shows that suspicious
programs are very difficult to classify correctly.
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Fig. 2. ROC curve for Random Forest classifier

Fig. 3. ROC curve for Decision Tree classifier

Table 1. Confusion matrix for Random Forest classifier

Classified as
Normal Abnormal Suspicious

Actual classes Normal 25 0 2
Abnormal 1 35 1
Suspicious 3 4 6
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The training data was built iteratively. When the number of samples reached 100,
the accuracy of the classifier didn’t increase and stayed on the same level. It is best
shown on the graph of the learning curve for Random Forest classifier in Fig. 4
(learning curve shows how accuracy changes while increasing the amount of elements
in the training set).

It is clear that when the number of samples is above 100 the accuracy stays on the
same level. There is a possible explanation related to the misprediction of suspicious
programs that are alike with normal and abnormal programs. Increasing the amount of
samples does not solve the problem of similarity of classes. That’s why other methods
were tested trying to increase the accuracy. These two methods have been tried:

• Dimension reduction of the samples, i.e. usage of only a part of the dynamic
characteristics that are available.

• Usage of new dynamic characteristics derived from available characteristics.

Linear Discriminant Analysis was used for the dimension reduction, but the method
showed that all dynamic characteristics are important and dimension reduction only
decreases the accuracy. For example, the accuracy dropped from 0.82 to 0.76 when
dimension had been halved.

Then the method with derivation of new dynamic characteristics was tried out. First
of all, it is unclear which dynamic characteristics should be used. Two methods were
tried: (1) manually select some dynamic characteristics that can presumably increase
the accuracy; and (2) automatically search for the dynamic characteristic with defined
formula that gives the best accuracy.

Fig. 4. Learning curve for Random Forest classifier
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Five derived characteristics were manually added and it increased the accuracy of
the Random Forest classifier up to 0.835 with the same parameters. Following dynamic
characteristics were used:

• ln(ib_rcv_pckts_median/ib_rcv_pckts_oscil)
• ib_rcv_pckts_median/ib_xmit_pckts_median
• cpu_user_median/cpu_user_oscil
• ib_xmit_data_median/ib_xmit_pckts_median
• ln(cache_3_median/cache_3_oscil)

Also the best dynamic characteristic described as the ratio of two dynamic char-
acteristics was searched. While using one or two best dynamic characteristics found by
brute force, the accuracy increased up to 0.83 and 0.845 correspondingly. It is very
difficult at the moment to search for 3 best dynamic characteristics because the com-
plexity of the algorithm grows exponentially. It was decided to stick to the manually
selected dynamic characteristics because we understand well what they indicate.
Alternatively, derived dynamic characteristics found by brute force seem random, and
currently it is unclear for us why they increase the accuracy (e.g. ib_xmit_data_
median/loadavg_oscil).

At the moment the Random Forest classifier is used with the accuracy of 0.835 on
the test set.

4 Proposed Method Implementation and Evaluation

The diagram of developed system is shown in Fig. 5.

Fig. 5. System’s diagram. Solid lines show implemented links, dashed lines show currently not
implemented links.
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Analysis module and data display interface were developed. In this work super-
computer administration system is Octoshell [9], a tool also being developed in the
research center in Moscow State University. Link between analysis module and
supercomputer administrations system will be essential in future when system will have
to promptly alert users about detected programs.

This project is implemented using Python 2.7 language. Scikit-learn [10] library was
used because of its variety of optimized machine learning algorithm implementations.

The overall classification algorithm is arranged as follows:

1. The “Lomonosov” supercomputer has monitoring system that collects the data on
every program that is being executed at the moment. Monitoring system has its own
database where the basic information about the programs is stored (i.e. amount of
cores, launch time, partition name). When program finishes its execution, new
record in database is created. All the data on dynamic characteristics is held in raw
format, i.e. <timestamp>; <node>; <mean value>; <max value>; <minimal value>.
Monitoring system saves data every 5 min which means it collects data for 5 min
and then calculates mean, maximum and minimum values for every node.

2. Every 30 min the tool described in this paper scans the monitoring system database
to detect finished programs.

3. Raw monitoring system data is processed and mean, median, maximum and min-
imum values are calculated for each program.

4. After the data is collected, trained model classifies the program.

At the moment this application is running on the “Lomonosov” supercomputer and
classification is done in real time. Because of the fact that data is collected and pro-
grams are classified every 30 min, the amount of programs is small which means that
classification works very fast (fractions of seconds).

Fig. 6. Example of the report sent by email
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Every day the report is formed based on the detected abnormal and suspicious
programs. It is then sent to the supercomputer administrators by email. The example of
the report is shown below (Fig. 5). Normal, abnormal and suspicious probabilities are
the portions of trees in the classifier that have selected given class.

An example of the detected anomaly is shown below. Figures 6 and 7 show the
graph of the number of level 3 cache misses per second and the number of writing to a
memory per second correspondingly. These graphs were given by the system of report
generation JobDigest [11] that also uses monitoring data. This system was very helpful
in building training set for the classifier.

Fig. 7. Number of level 3 cache misses per second

Fig. 8. Number of memory writes per second
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All other dynamic characteristics have the same behavior as amount of level 3
cache misses per second. As can be seen the application’s behavior is not usual. First
hour of the execution dynamic characteristics have very low values but it can be
explained by data loading and distribution of the work between the nodes. The
behavior of the program is normal for the next few hours but then it becomes very
suspicious due to complete lack of level 1 and 3 cache misses. There is a possibility
that the data perfectly fits in the cache memory, but this possibility is very slim and it
much more likely indicates an error in the program. This program behavior is at least
suspicious and the user must be warned about it (Fig. 8).

5 Conclusion and Future Work

In this work, the tool that analyzes “Lomonosov” supercomputer task flow and detects
inefficient programs was developed. At the end of the day the report is formed that
contains all information about the programs labeled as suspicious or abnormal. The
report is sent to administrators. This system is currently being tested on the “Lomo-
nosov” supercomputer and it shows very accurate results (e.g. all detected programs are
in fact abnormal or suspicious).

This system only detects if a program has abnormal behavior or not. Future works
may involve detecting the reason why program behaves that way and testing other
methods to analyze the monitoring data. Also this system detects anomalies only in the
overall task flow; it is planned to learn to detect anomalies in the user task flow as well.
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Abstract. The Branch-and-Bound (B&B) is a fundamental algorithmic scheme
for a large variety of global optimization methods. For many problems B&B
requires the amount of computing resources far beyond the power of a
single-CPU workstation thus making parallelization almost inevitable. The
approach proposed in this paper allows one to evaluate load balancing algo-
rithms for parallel B&B with various numbers of processors, sizes of the search
tree, the characteristics of the supercomputer’s interconnect. The proposed
approach was implemented as a special tool that simulates the process of res-
olution of the optimization problem by B&B method as a stochastic tree
branching process. Data exchanges are modeled using the concept of logical
time. The user-friendly graphical interface can render both real traces and ones
produced by the simulator. It provides efficient visualization of the CPU’s load,
data exchanges and progress of the optimization process.

Keywords: Performance analysis and simulation � Parallel computing � Global
optimization � Branch-and-Bound methods � Load balancing

1 Introduction

The Branch-and-Bound method (B&B) is one of the main approaches to the resolution
of mathematical programming problems [1, 2]. In contrast to heuristic and stochastic
methods, B&B ensures the accuracy of the found solutions and, in some cases, can
solve the problem exactly. For realistic problems B&B can consume computational and
time resources, significantly exceeding the available capacity. Parallel computing can
be used to speed up and reduce the memory requirements for B&B implementation.
Balancing computational load between processors plays an important role in the par-
allel implementation of global optimization methods [3–5]. Typically load balancing
means transmission of jobs from one processor (core) to another along the
computations.

Today most powerful supercomputers contain 106 computational cores and this
number continues to grow thus making load balancing a very challenging problem.
There is a clear demand for deep and systematic study and comparison of various load
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distribution strategies. Performing such evaluation on a real multiprocessor computing
system requires multiple runs on the very expensive equipment. We propose to use the
simulator for these purposes. The simulator allows one to study performance of load
balancing algorithms with various numbers of processors, sizes of the search tree, the
characteristics of the supercomputer’s interconnect. The process of resolution of the
optimization problem by B&B method is replaced by a stochastic branching process.
Data exchange and computations are modeled using the concept of logical time.

Another important problem is an adequate visualization of the algorithm perfor-
mance. To address this issue we developed a user friendly graphical interface that
enables convenient performance analysis through processor load charts communication
tables and aggregate statistics.

2 Related Works

Tools for automated performance analysis and visualization play and important role in
parallel application lifecycle. Monitoring systems Ganglia [6], Nagios [7], DiMMon [8]
etc. are aimed at collecting and presenting to the user the overall information on
supercomputers’ performance, including CPU load, memory consumption and data
exchange traffic. Such tools are indispensable for assessing the performance of com-
putational clusters or grid systems.

Another family of tools such as TAU [9], HPCToolkit [10], Paraver [11], Vampir
[12], HOPSA [13] focus on the performance of individual parallel applications. They
can trace and analyze profiling information, including pipeline stalls, cache misses,
inter-cache communication in multi-core and multi-socket configurations. For dis-
tributed memory system they also collect data exchange information, analyze and
visualize the performance of message passing. A good survey of parallel application
performance measurement tools can be found in [14].

The tools outlined above can be very helpful for application performance analysis
of virtually any parallel application. Unlike this general purposed approach we focus on
a particular class of applications: parallel branch-and-bound solvers. Though the
visualization part has a lot in common with the mentioned software the data collection
part is completely different. Our tool simulates the process of resolution of the opti-
mization problem by B&B method as a stochastic tree branching process. Data
exchanges are modeled using the concept of logical time. Such an approach enables
rapid evaluation of various load-balancing algorithms without expensive runs on a real
supercomputer. The developed tool could serve as a good problem specific addition to
other performance analysis software.

To the best of our knowledge the only tool for parallel B&B simulation was
proposed in [15]. This tool used Unix fork/exec mechanism to simulate multipro-
cessing and pipes to simulate message-passing. This approach works well for moderate
number of processes. However this approach has a very poor scalability since the
overhead of running thousands of independent processes in modern OSes can
remarkably impact the performance thereby affecting the accuracy of simulation.

Using Simulation for Performance Analysis 357



3 Distributed Memory Branch-and-Bound Implementation

The goal of global optimization (GO) is to find an extreme (minimal or maximal) value
f* = f(x*) of an objective function f (x) on a feasible domain X � Rn. The value f* and
feasible point x� 2 X are called optimum and optimal solution respectively. Without
loss of generality one can consider only minimization problems:

f xð Þ ! min; x 2 X ð1Þ

The Branch-and-Bound (B&B) is a general name for methods to split an initial
problem into subproblems which are sooner or later eliminated by bounding rules.
Bounding rules determine whether a subproblem can yield a solution better than the best
solution found so far. The latter is called the incumbent solution. Bounding is often done
by comparing lower and upper bounds: a subproblem can be pruned if the lower bound
for its objective is larger or equal to the current upper bound, i.e. incumbent solution.

Numerous Branch-and-Bound algorithms were developed for different global
optimization problems. Some of them were very successful for particular problem
kinds, e.g. Travelling Salesman or Knapsack problems. However for many problems
Branch-and-Bound methods require the amount of computing resources beyond the
power of a single-CPU workstation. Fortunately Branch-and-Bound is highly suitable
for parallel and distributed computing: after splitting the parts of the solution space can
be processed independently and simultaneously.

Another great advantage of B&B methods is that the general scheme does not
significantly vary from one problem to another. The splitting and bounding rules may
differ while keeping the general scheme almost intact. The direct consequence of this is
the possibility to separate problem-independent and problem-specific parts. Such
separation saves a lot of efforts when implementing a new problem or a new method.
This is especially true for tools targeted at parallel and distributed environments
because the “parallel” part is reused for different optimization problems. We follow this
approach in our tools: the computing space management, the work-distribution and
communication among application processes is problem-independent.

Our parallel library for global optimization BnB-Solver [16] is built on top of MPI
[17] which implies that parallel processes communicate via message-passing. Each
process do three basic kinds of activity: performing steps of B&B method, sending data
and receiving data. Transmitted data consists of sub-problems and/or incumbent
solutions and commands. Exchanging sub-problems performs computations redistri-
bution among processes in order to make the load more or less even. Sending
incumbents ensures fast error propagation among parallel processes.

According to the aforementioned concepts managing the resolution process includ-
ing data exchanges can be encapsulated in a special component called the scheduler. The
problem-specific part is managed by another component – the solver that provides
methods to solve the problem, read its state (the number of subproblems in a queue) fetch
and extract subproblems. Sending and receiving of subproblems is implemented by the
communicator component. These parts are composed together by a special bridge class
that invokes respective methods of the scheduler, the solver or communicator (Fig. 1).
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The proposed approach separates the managing part from implementation details part
thereby providing an opportunity for an independent schedulers testing and verification.

The scheduler is a finite state machine that accepts events and issues actions.
Possible events and actions are listed in Tables 1 and 2 respectively. The bridge
invokes method action() of the scheduler class that accepts an event and the solver state

Fig. 1. Class diagram of fundamental interactions

Table 1. Event types

Event type Arguments Description

ERROR Error code An error occurred
START The beginning of computations
DONE The real number of

steps done
The requested number of steps done

SENT The number of
transmitted items

The requested sending message action
done

DATA_ARRIVED The process that
sent the data

The receive command finished and the
requested data received

COMMAND_ARRIVED The process that
sent the data

The command arrived
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as input parameters and generates an action on output. Then the bridge invokes the
methods associated with the action of the solver or communicator.

The scheduler can trace all transitions from one state to another, actions, events and
their arguments. If logging is enabled the traces of all processes are collected, merged
and written to file system. Then these traces can be processed and visualized by GUI
described below.

4 Simulation of Parallel B&B

The simulator was designed for convenient fast and efficient performance testing of
parallel schedulers. The simulator uses the real scheduler which is taken intact from the
library and provides ‘fake’ implementations of the solver and the communicator. This
approach enables the rapid testing of the schedulers on large trees and thousands of
processors because the time consuming resolution steps and communications are
substituted by formal actions which take nearly zero time.

The parallel processing is simulated serially. For each simulated process the
instance of the scheduler is created. The simulator cyclically iterates through these
instances and invokes action() methods. If the action is SOLVE then the specified
number of steps is simulated and the logical clock is increased according to the
modelled time. The B&B method is substituted by a random branching process where
the node generates two new nodes with a probability decreasing with distance between
the tree root and the node. When the node reaches the maximal tree depth the prob-
ability becomes zero. Thus the maximal tree depth controls the size of the whole tree.
The time of solving is modelled using the simple formula:

t ¼ n ts; ð2Þ

where n is the number of performed steps and ts is the time of one step.

Table 2. Action types

Action type Arguments Description

SOLVE Number of steps Perform given number of B&B
steps

EXIT Terminate the process
SEND_COMMAND The receiver process

number, command
number and
arguments

Send the given command to
the specified process

SEND_SUBS_AND_RECORDS The receiver process
number, number of
subproblems to
transmit

Send the specified number of
commands and the incumbent
solution to the specified
process

RECV The id of process the
data is waited from

Issues the receive command
and waits for the message
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The data transmission is simulated using the concept of logical clock [18]. When
the SEND_SUBS_AND_RECORDS command is issued the communicator object
stores the message and its timestamp obtained by increasing the current time on a
process by the modelled time of a message transmission. The time required to transmit
the message is computed by the following formula:

t ¼ S tp þ Lþ S=B; ð3Þ

where S is the size of the message, tp is time needed for packing a unit of data at a
sender process, L is the network latency, defined as the time needed to transfer the
minimal amount of data throughout network and B is the bandwidth – the amount of
data transmitted through the network in a unit of time.

When the RECV command is issued by a scheduler the recipient process the
communicator looks up for available messages for this process and if one is encoun-
tered it compares the logical time on a recipient tR with the message time stamp tS. The
logical time on a recipient is adjusted to the maximum of these values and the obtained
value is increased by time required to unpack the message:

tR ¼ maxðtR; tSÞþ S tu; ð4Þ

where S is the size of the message, tu is time needed for unpacking a unit of data on the
recipient.

During the simulation all events and actions are logged. The log files contain all
information about logical time of various simulated events. This information is used by
graphical user front-end described in the next section.

5 Graphical Front-End

The log files are not suitable for direct analysis by a human. The graphical front-end is
aimed at user-friendly graphical visualization and performance analysis of traces
produced by either simulator or the real solver. Based on the collected traces the GUI
performs the following activities:

– visualizes processors’ loads;
– visualizes data exchange among processors;
– computes aggregated performance information such as speedup and efficiency.

Figure 2 shows the window demonstrating processor load plots for individual pro-
cessors. At the bottom of the window there is a slider similar to one used in multimedia
players. It allows an easy and natural navigation throughout the trace. Such repre-
sentation is convenient for a moderate number of processors. However for hundreds
and thousands of processors it can be very inefficient. For such cases BNB-Visualizer
provides the processor grid (Fig. 3) which scales well. Blue color is used for depicting
computations, red color marks processors blocked in the receiving state. Green color
means the processor is sending data.
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Communications are visualized using two-dimensional chart where processors are
aligned along horizontal (senders) and vertical (receivers) axes. The receive actions are
visualized by a horizontal blue line and the send action is represented by a vertical
green line (Fig. 4). At the Figure lines (1) and (2) correspond to a successful message
transmission from the process 9 to the process 0. Line (3) depicts the unsatisfied send
issued by the process 0.

The cumulative information about the processors’ usage and performance metrics is
shown in a separate tab (Fig. 5). This performance chart shows the number of pro-
cessors occupied at the given moment of time (blue color) and the number of free
processors (green color).

6 Experiments

6.1 Case Study I: Selecting Best Parameters for Adaptive Load Balancing

The simulator was used to study the comparative performances of a family of load
balancing algorithms working as follows. At the initial phase the 1st (master) processor
generates some number of sub-problems. At the second stage each of remaining pro-
cessors (slaves) gets a sub-problem from the master and starts its resolution. The

Fig. 2. Processors’ load plots
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solution process on a slave is interrupted each T iterations and then the slave sends S
sub-problems or less to the master. If there are remaining sub-problems on a slave it
resumes B&B method. The master processor stops receiving sub-problems from slaves
when the number of sub-problems in its pool exceeds M and resumes receiving when it
drops below m. This is done by setting parameter S to 0 or to its original value.

Figure 5 shows the performance chart for small values of T. The very intensive data
exchange among parallel processes doesn’t yield good performance because of large
communication expenses.

For moderate values of T the performance is better but we can see significant
performance losses at the final stage of the algorithm (Fig. 6). In the middle of the
computational process the load balance is good but at the terminal stage it is quite bad.

The natural solution to avoid such performance losses is to introduce dynamic
adaptation: when the number of subproblems on the master drops below the number of
free processors the parameter T is decreased in 10 times. Thus at the middle of
computations when the demand for load redistribution is small T is kept relatively
large. At the final stage T decreases in order to provide good load balancing among
process through intensive exchange of subproblems. This leads to a better performance
(Fig. 7).

Fig. 3. Processors’ grid (Color figure online)
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Fig. 4. Communications visualization (Color figure online)

Fig. 5. The performance for small values of T (Color figure online)
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6.2 Case Study II: Studying Performance of Parallel Frontal Algorithm

In the second case study we simulated the simplest possible load balancing scheme –

frontal branching. In this approach the master performs T B&B steps thereby pro-
ducing a number of sub-problems. Then each sub-problem is sent to the respective
slave and is solved completely. The results are collected and the best found solution is
selected and supplied to the user. The number of available cores is supposed to be
larger than the number of subproblems generated by the master.

Fig. 6. The performance for moderate values of T

Fig. 7. The performance for dynamic adaptation of T
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Theoretical studies [19, 20] for a particular case of B&B method suggest that the
speedup of frontal branching is a unimodal function of the threshold value T . We used
simulator to check whether this is the general behavior and assess the influence of the
network latency. The simulator was run in batch mode on random trees with maximal
depth varied from 30 to 50 and with different values of T from 100 to 1000. The results
showed that though the behavior is not necessary strictly unimodal the trend is obvious:
there is a value of T where the speedup reaches its maximum and then starts to
decrease.

Figure 8 shows the plot of the speedup as a function of T for a random tree of depth
40. Two graphs show the speedup as a function of T for zero latency (red) and non-zero
latency (blue). We observe quasi-unimodal behavior for both cases. As expected the
speedup for non-zero latency is less than for zero latency case.

7 Conclusions

The paper discussed the simulator of parallel Branch-and-Bound method that can be
used for a deep study and comparison of load balancing algorithms. Though the
simulation can’t completely replace the testing on a real multiprocessor it can signif-
icantly reduce the number of expensive runs on a supercomputer. Since the traces
produced by the simulator follow the same format as the parallel solver the graphical
front-end supports performance visualization for both the simulator and the opti-
mization library. The simulator can run in batch mode to perform large-scale simulation
for comprehensive performance analysis, e.g. produce scalability charts [21].

Fig. 8. The speedup as a function of T
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In the future we are going to implement more sophisticated hierarchical intercon-
nect models in our tool and perform a comprehensive analysis and comparison of
various load balancing algorithms.
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