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Abstract Regularization was a big topic at the 2016 CRM Intensive Research Pro-
gram on Advances in Nonsmooth Dynamics. There are many open questions con-
cerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here,
we propose a framework for an alternative and important kind of regularization, by
external variables that shadow either the state or the switch of the original system. The
shadow systems are derived from and inspired by various applications in electronic
control, predator-prey preference, time delay, and genetic regulation.

1 Shadowing in One Variable

Begin with a one-dimensional dynamical system

ẋ = −λ + xb(x;λ), (1)

where λ = sign(x) with the sign function being ±1 for x ≷ 0 and having the set
value (−1,+1) for x = 0. This has an attracting fixed point on the discontinuity,
where ẋ = −λ. Define a switch-shadowing system
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ẋ = −λ + xb(x;λ), ẏ = (x − y)/γ,

where λ = sign(y), or a state-shadowing system

ẋ = −λ + yb(y;λ), ẏ = (x − y)/γ,

where λ = sign(x), γ > 0 is small, and y is an external variable representing some
extra stage in the switching process, such that each shadow system relaxes to (1) as
y → x . So, y tends to x like e−t/γ (for small γ where we can treat x as slow varying),
i.e., y shadows x .

We restrict attention to the neighbourhood of the equilibrium at x = y = λ = 0 in
each system. In the switch-shadowing system, the switching surface becomes y = 0,
and sliding no longer occurs because solutions all cross the surface (because the y
component does not switch) – the surface is ‘transparent’ in some nomenclature. In
the state-shadowing system the switching surface remains sliding.

We will analyze these using switching layer methods (see Glendinning–Jeffrey [2]
and next section).

For the switch-shadowing system on y = 0 the switching layer system is

ẋ = −λ + xb(x;λ), ελ̇ = x/γ,

for λ ∈ (−1,+1), ε → 0, and the Jacobian of the equilibrium is

(
∂ ẋ
∂x

∂ ẋ
∂ελ

∂ελ̇
∂x

∂ελ̇
∂ελ

)
=

(
b −1/ε

1/γ 0

)

with eigenvalues (b(0, 0) ± i
√

4 − b2γε)/2
√

γε → 1
2b(0, 0) ± i∞ as ε → 0. Out-

side the switching surface the dynamics spirals in as a ‘fused focus’ towards
x = y = 0, but once there, in the x-λ dynamics, the attractivity depends on the sign of
b(0, 0). In particular, ifb(0, 0) > 0 then the sliding equilibrium will become unstable,
and a limit cycle will be formed inside the switching layer (x,λ) ∈ R × (−1,+1).

For the state-shadowing system on x = 0 the switching layer system is

ελ̇ = −λ + yb(y;λ), ẏ = −y/γ,

where λ ∈ (−1,+1), and the Jacobian of the equilibrium is

∂(ελ̇, ẏ)

∂(ελ, y)
=

(−1/ε b(0; 0)

0 −1/γ

)

with eigenvalues −1/γ and −1/ε → −∞. In this case the equilibrium of the shadow
system remains an attractor; see Fig.1.
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Fig. 1 The original system and its two shadow regularizations

2 Shadowing in n Variables

Now take a multivariable state x = (x1, . . . , xn), and assume there is one switch
for every coordinate (this can be generalized later). So we have switching functions
h1, . . . hn , and switching multipliers λ = (λ1, . . . ,λn) where λi ∈ [−1,+1], such
that λi = sign hi for hi �= 0 and λi ∈ (−1,+1) for hi = 0. Letting f be a smooth
function of x and λ, the system

ẋ = f(x;λ), (2)

where λi = sign hi , is smooth except at the thresholds �i = {x ∈ R
n : hi = 0}.

In the piecewise smooth setting we assume each hi is a regular function of x,
some hi = hi (x). When hi = 0 for some i , we blow up the switching surface hi = 0
into a switching layer λi ∈ (−1,+1), with dynamics given by εi λ̇i = f(x;λ) · ∇hi
for εi → 0.

Take coordinates in which hi = xi for i = 1, . . . , n. When x lies on the intersec-
tion of all n switching thresholds, x1 = x2 = · · · = xn = 0, we study the dynamics
in the codimension n switching layer (λ1, . . . ,λn) ∈ (−1,+1)n given by

ε.λ̇ = f(0;λ), |ε| → 0,

where ε denotes the diagonal matrix with entries ε1, . . . , εn or, in components, εi λ̇i =
fi (0;λ1, . . . ,λn) for i = 1, . . . , n. Sliding modes are equilibria of the fast system.
We assume these lie at x = λ = 0, and are stable, which means that

∂ε.λ̇

∂ε.λ
= ε−1.

∂f
∂λ

(3)

has eigenvalues with negative real part at (0; 0).
Define a switch-shadowing system

ẋ = f(x;λ), ẏ = (x − y)/γ,

where λi = sign(yi ), or a state-shadowing system
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ẋ = f(y;λ), ẏ = (x − y)/γ,

whereλi = sign(xi ),γ > 0 is small (we could choose differentγi for each component
of y), and y is an n-dimensional external variable. As before, both tend to (2) as y
shadows x. Each has an equilibrium at x = y = λ = 0. For the switch-shadowing
system on y = 0 the switching layer system is

ẋ = f(x;λ), ελ̇ = x/γ,

for λ ∈ (−1,+1)n , and the Jacobian of the equilibrium is

⎛
⎝ ∂ẋ

∂x
∂ẋ

∂ε.λ

∂ε.λ̇

∂x
∂ε.λ̇

∂ε.λ

⎞
⎠ =

(
∂f(0;0)

∂x ε−1. ∂f(0;0)

∂λ

1/γ 0

)
,

where 1 is the n × n identity matrix. The stability of the term ε−1. ∂f
∂λ

from (3) does
not guarantee stability of the shadow equilibrium, which will depend crucially on
∂f(0;0)

∂x .
For the state-shadowing system on x = 0 the switching layer system is

ελ̇ = f(y;λ), ẏ = −y/γ,

where λ ∈ (−1,+1), and the Jacobian of the equilibrium is

∂(ε.λ̇, ẏ)

∂(ε.λ, y)
=

(
ε−1. ∂f(0;0)

∂λ
∂f(0;0)

∂y
0 −1/γ

)
.

In this case it seems likely that the equilibrium of the shadow system remains an
attractor, the stability of the term ε−1. ∂f

∂λ
from (3) and the term −1/γ playing the

crucial role.

3 Examples

The following examples motivated the shadow regularizations proposed above.

GeneticRegulatoryNetworks. A typical gene network protein-only model gives the
dynamics of the concentration xi of the protein product of a gene i , for i = 1, . . . , n,
as

ẋi = Bi (Z1, . . . , Zn) − αi xi , Zi = step(xi − θi ) ,

where αi , θi > 0. In Edwards–Machina–McGregor–van-den-Driessche [1], this is
extended to include the intermediary role of mRNA. Instead, we make xi the con-
centration of the i-th mRNA molecule, and yi the protein product concentration for
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gene i , then the proposed model is

ẋi = Bi (Z1, . . . , Zn) − αi xi , ẏi = κi xi − βi yi , Zi = step(yi − θi ),

with αi ,βi ,κi , θi > 0.

Time delay. Assume a system modelled by ẋ = f (x;λ) with λ = sign(x) actually
switches not exactly when a solution x(t) lies at x(t) = 0, but when x(t − τ ) with a
time delay τ . We can define a delayed variable y(t) = x(t − τ ), or let

ẋ = f (x;λ), ẏ = (x − y)/τ ,

where λ = sign(y).

Plankton. A predator-prey system discussed in Piltz [4] for predator population x3

and prey populations x1, x2, is

ẋ1 = {r1 − x3μ} x1

ẋ2 = {r2 − x3(1 − μ)} x2

ẋ3 = {q1x1μ + q2x2(1 − μ) − m} x3

⎫⎬
⎭ ,

where μ = step(x1 − ax2), in terms of constants r1, r2, q1, q2, m, a. This assumes
the consumption of prey is proportional to their population x1 or x2. If, instead, con-
sumption is proportional to a variable y1 or y2, which tends towards the population,
we have

ẋ1 = r1x1 − x3y1μ
ẋ2 = r2x2 − x3y2(1 − μ)

ẋ3 = {q1y1μ + q2y2(1 − μ) − m} x3

ẏ1 = (x1 − y1)/γ1

ẏ2 = (x2 − y2)/γ2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

where μ = step(x1 − ax2).

Electronic sensors. A typical form for a piecewise affine control system is

ẋ = Ax + bu,

where u = step(x1 − θ), in terms of a constant matrix A and vector b describing
electronic components. In Kafanas [3] it is noted that, although a control system
implements control on the state x, it does so by measuring not x itself, but a sensor
value y, hence a more faithful model is

ẋ = Ax + bu, ẏ = (x − y).κ,

where u = step(y1 − θ), for some diagonal matrix κ.
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4 A United Form

We can express both the switch and state shadow regularizations together by writing

ẋ = f
(
sμ(x, y);λ

)
, ẏ = (x − y)/γ,

where λi = sign
(
Sμ(xi , yi )

)
for vector and scalar shadow functions sμ(x, y) and

Sμ(x, y) which satisfy sμ(x, x) = x and Sμ(x, x) = x , for example sμ(x, y) = μx +
(1 − μ)y and Sμ(x, y) = μx + (1 − μ)y. The switch-shadowing and state-shadowing
systems are obtained at the extremes for μ = 1 and μ = 0 respectively. In the most
general case we could consider γ to be a (contracting) matrix, and/or a function of x
and y.

In the future, it will be interesting to study how the stability of equilibria is affected
under such regularizations in general, and the implications this has for the structural
stability of piecewise smooth systems.

A final but important note must be made if the switching layer expression ελ̇ = · · ·
is derived as the approximation to a smooth system (as in, e.g., GRN models [1]).
Then, the ε on the lefthand side of this expression is actually a function of λ, which
makes the vanishing entries of the Jacobians from ∂ελ̇

∂ελ
become nonzero and, while

we expect this not to qualitatively affect the result as ε → 0, further study is required.
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