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Abstract The conventional existence-uniqueness theorems are not applicable for
differential equations with right hand sides as discontinuous state functions. This is
the case for the systems with discontinuous controls and sliding modes, when state
trajectories belong to discontinuity surfaces. Many authors offered their methods of
deriving sliding mode equations, or solution continuations on the discontinuity sur-
faces. Due to uncertainties of right hand sides, the proposed methods led to different
solutions. Thesemethods are compared, the reasons of ambiguity are discussed in the
paper. It is assumed that any solution is under the umbrella of the method proposed
by A.F. Filippov.

1 Introduction

The systems with control actions as discontinuous state functions are under discus-
sion. Relay systems and variable structure systems belong to this class. Relay systems
were employed actively at the first stage of the control theory history, because of their
ease of implementation, and to help control reach its full potential. Voltage control
of a DC generator, already described in the paper Kulebakin [3] from 1932, may
serve as an example; see Fig. 1, top. Any comments are hardly needed for a modern
reader. The principle operation mode, called “vibrational” in these papers, is nothing
but sliding mode in the modern terminology. The term “sliding mode” can be found
in the paper Nikolski [5] from 1934 about ship course control; see Fig. 1, bottom.
The theoretical methods of analysis and design were summarized in the monographs
Flugge-Lotz [2] and Tsypkin [6], published in theUSA andUSSR, respectively. Slid-
ing modes on a switching line for relay control were studied in these monographs.
The state plane of the system

ẍ = u (1)

with relay control
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Fig. 1 Examples of sliding mode control

u = −u0 sign(s), s = cx + ẋ, u0, c > 0. (2)

The state vector (x, ẋ) reaches the line s = 0 after a finite time interval and then
cannot leave it. This motion is called a sliding mode. The equation of switching line
cx + ẋ = 0 is used as the motion equation. Its solution depends on the switching
line equation and does not depend on properties of the plant to be controlled.

The property of invariance was utilized actively in the 1960’s in variable structure
systems, when the system behavior was studied in the space of an output variable
and its time derivatives. In contrast to relay systems, the amplitude of the control
signal u0 depended on the state vector. All these facts are well-known for a long
time, and mentioned in this paper to explain why development of new mathematical
methods is needed for this class of systems. Formally the mathematical problem of
describing sliding modes for the simplest second order systems (1) and (2) remains
open. Indeed, a Lipshitz constant does not exist for discontinuous systems, and as a
result the conventional uniqueness-existence theorems are not applicable. The above
offered solution x(t) = x0e−ct to equation cx + ẋ = 0 looks doubtful: if this function
is the solution, then it should turn the equation into an identity, but it is not clear what
the function sign(s)= sign(0) is equal to.

A.F. Filippov offered a new method [1] of solution continuation on discontinuity
surface for the systems with discontinuous right hand sides

ẋ =
{
f +(x, t) if s(x) > 0,
f −(x, t) if s(x) < 0,

x, f +, f − ∈ R
n, s ∈ R. (3)
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Fig. 2 Filippov method

For now, we confine ourselves to the simplified formulation of Filippov’s method;
see Fig. 2.

An equation ẋ = fsm , with a vector field fsm , describes a sliding mode on the sur-
face s(x) = 0, found from the convex hull of vectors f + and f −, which is a straight
line connecting the ends of these vectors (Fig. 2), given by fsm = μ f + + (1 − μ) f −
for 0 ≥ μ ≥ 1. The vector fsm lies in the intersection of the straight line with the
tangential plane to the surface s(x) = 0, and the coefficient μ is found from equation
[∇(s)]T fsm = 0. Actually, the method by Filippov postulates the sliding mode equa-
tion, but other methods of solution continuation on the discontinuity surface were
offered in a set of publications. These methods are discussed and compared in this
short paper.

2 Problem Statement

The motion of a finite-dimensional system with vector control is governed by the
equation

ẋ = f (x, t, u), x, f ∈ R
n, u ∈ R

m . (4)

Similarly to the simple examples in the introduction, each component of the control
is assumed to be a discontinuous state function

ui =
{
u+
i (x, t) if si (x) > 0,

u−
i (x, t) if si (x) < 0,

i = 1, . . . ,m. (5)

Scalar functions si (x) are continuous-differentiable and any solution of (4) for any of
the functions u±

i (x .t) exists and is unique. Sliding modes in (4) and (5) can occur at
each of the surfaces si (x) = 0 and, on their intersection, s(x) = 0, sT = (s1, . . . , sm);
see Fig. 3. The set of problems of interest are then: how tofind slidingmode equations,
whether they are unique, and if not, how to substantiate a choice of motion equations
for real processes.
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Fig. 3 Multidimensional sliding mode

3 Systems with Scalar Control

From the first view, system (4) and (5) with a scalar control u ∈ R is equivalent to
system (3), studied by Filippov, with f + = f (x, t, u+), f − = f (x, t, u−). How-
ever, dependence of the right hand side on the control gave birth to many methods
of deriving sliding mode equations, dictated by natural engineering arguments. For
example, relay control was replaced by a linear relation ks with k tending to infin-
ity [6], since the input of the relay s is close to zero (the trajectory belongs to the
surface s(x) = 0), while the output takes finite values. It was suggested towrite down
the solution in convolution form for linear systems, and to find a continuous control
such that s(t) = 0; seeNeimark [4]. Anothermethodwas based on the replacement of
discontinuous control by a continuous one such that s(t) = 0; see Utkin [7]. These
methods happened to result in different sliding motion equations and rather vivid
discussions on what method was correct.

We start with the example which served as a reason for doubts in the correctness
of Flippov’s method,

ẋ = Ax + bu1 + du2, u1 = −M1 sign(s), u2 = −M2 sign(s). (6)

Both components of control undergo discontinuities on the same plane s(x) =
cx = 0 (A, b, d, M1, M2, c are constants). From the first view, the unique slid-
ing equation can be derived by Flippov’s method with f + = Ax − bM1 − dM2,
f − = Ax + bM1 + dM2. Let the control u2 be implemented as a relay function
with small hysteresis, and M1 � M2, then a sliding mode can be enforced for any
value of u2 = M2 or u2 = −M2. Sliding mode equations can be derived following
Flippov’smethod for f + = Ax − bM1 + du2, f − = Ax + bM1 + du2. The control
u2 can take one of two possible values depending on initial conditions. This non-
uniqueness was the reason of doubts. But these doubts can be easily eliminated if we
use the exact recommendation of Filippov (in contrast to the simplified formulation
in the introduction):

ẋ = fsm, fsm(x, t) ∈ lim
ε→0

conv f (x + δx, t, u + δx))\N ,
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Fig. 4 Non-unique sliding
mode equations

where conv f (x + δx, t, u) means a minimal convex hull, corresponding to all
values of control in the vicinity ||δx || < ε, and the symbol \N means that a set
of zero measure can be excluded from this vicinity (or points of the discontinuity
surface where the control is not defined). There are four possible vectors in the right
hand side of the above example, corresponding to different combinations of u1 and
u2. The minimal convex hull of the four vectors is the polygon depicted in Fig. 4,
and its intersection with the tangential plane defines the set of all possible right hand
sides in the sliding mode equations. This set includes two different motion equations
in the above example, when control u2 could take one of two possible values.

Filippov’s method has a very simple interpretation in the time domain. Let the
right hand side of (4) take one of k possible values f1, . . . , fk in the vicinity of some
point in the state space, and let the time interval�t consist of k subsets�t1, . . . , �tk ,
�t = ∑k

i=1 �ti with values of right hand sides f1, . . . , fk correspondingly. Then

ẋ = lim
�t0

→ 1

�t

k∑
i=1

fi�ti = �k
i=1μi fi , μi = �ti

�t
, μi ≥ 0,

k∑
i=1

μi = 1.

The right hand side is nothing but the convex hull of f1, . . . , fk .
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