
Less Is More II: An Optimistic View
of Piecewise Smooth Bifurcation Theory

Paul Glendinning

Abstract The analysis of piecewise smooth bifurcations reveals an alarming pro-
liferation of cases as the dimension of phase space increases. Rather than attempt
the derivation of exhaustive lists of possibilities, we describe ways of giving less
detailed, but possibly more useful, results.

1 Introduction

“Take some more tea”, the March Hare said to Alice, very earnestly.

“I’ve had nothing yet”, Alice replied in an offended tone, “so I can’t take more”.

“You mean you can’t take less,” said the Hatter: “it’s very easy to take more than nothing.”
[2, ch. 7].

Mathematicians often aim to produce classification theorems and, normally, these
attempt to be as complete as possible. However, as argued in Glendinning [4], the
number of bifurcations in piecewise smooth (PWS) systems increases alarmingly
with the dimension of the ambient phase space or the complexity of the system, and
this may mean that complete descriptions, in the same spirit as would be given for
smooth systems, become infeasible and certainly become unwieldy. This creates a
problem for mathematicians with a background in smooth bifurcation theory: there
are many potentially beautiful problems such as the existence of Shilnikov homo-
clinic bifurcations with sliding segments in local bifurcations of stationary points of
PWS systems (see Glendinning [4]), but if the general result is that for the boundary
equilibrium bifurcation in Rn then the local dynamics can contain analogues of any
bifurcation of smooth systems in Rn , as may well be the case, then it is unclear how
to proceed.

This dilemma suggests that mathematicians should find coarser, but generally
useful, statements about the local bifurcation structure of PWS system and provide a
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general framework or set of techniques which researchers interested in applications
can use on particular examples. Thus the theoretician might need to rein in his or her
natural inclination towards a detailed classification and provide, instead, descriptions
that are less complete but easier to follow and interpret. Or again describe some things
that cannot happen (as so much can). In this paper we give some examples of results
that fit into this ‘less is more’ way of seeing the dynamics of PWS systems.

2 PWS Maps of the Interval

There are a number of results describing the dynamics of PWS maps based on the
ideas of Milnor–Thurston [6], which was circulating in preprint form from 1977.
However, these results depend on a knowledge of kneading theory, an algebraic
version of symbolic dynamics, and this means the proofs may seem abstruse, and a
great deal of information is implicit in an algebraic invariant (the kneading invariant)
which characterizes the non-wandering set of a map. (A point x is wandering if there
exists an open neighbourhood U of x such that f n(U ) ∩ U = ∅ for all n > 0, and a
point is non-wandering if it is not wandering.) Aweaker version of their theorems can
be proved without recourse to new formalism. This simplified version is an example
of the ‘less is more’ approach: the result is general, but for any example more work
would be needed to add greater precision to statements. As is standard in the theory
of maps of the interval, there is an issue about the existence of homtervals. These are
open intervals J on which f n|J is a homeomorphism for all n = 0, 1, 2, . . .

Whilst I do not know of a detailed proof of the conjecture below, it seems reason-
able that it will follow by a similar argument to that used for Lemma2 below, but with
modifications to take homtervals into account (cf. [5, 6]). The dynamics is described
in terms of Markov partitions and Markov graphs. A Markov partition is a union of
closed sets that are permuted by the map and hence the images of elements in their
complement, (Li ), are either disjoint, f (Li ) ∩ L j = ∅, or L j ⊆ f (Li ). This means
that a Markov graph can be defined with vertices labelling the connected elements
of the complement and a directed edge from i to j if L j ⊆ f (Li ). Given any (finite
or infinite) path allowed by this graph, there exists a point passing through the sets
in the order described by the path.

Conjecture 1 Suppose that f : I → I is a PWS map with two continuous monotonic
branches and a single critical point or point of discontinuity. Then, there exists
0 ≤ n ≤ ∞ such that the nonwandering set can be written as a union An ∪ (∪n−1

0 Tk
)

(disjoint except possibly Tn−1 and An), where dynamics in Tk is determined by a finite
Markov graph (possibly zero entropy) and An is (up to homtervals) a union of periodic
orbits or a union of intervals if n < ∞ or a Cantor set if n = ∞.

Wewill sketch a proof in the case that themap is differentiable and expanding away
from the critical point or the point of discontinuity, which will be denoted by c. This
is Lemma2 below. The proof relies on the idea of induced maps and renormalization.
If c ∈ J write J = J0 ∪ {c} ∪ J1 where J0 = J ∩ {x < c} and J1 = J ∩ {x > c}.
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A map f is renormalizable if there exists J with c ∈ J and positive n0 and n1

with n0 + n1 > 2 such that f nk |Jk , k = 0, 1, is a homeomorphism and

f n0(J0) ∪ f n1(J1) ⊆ J.

If f is renormalizable, then the induced map F : J → J defined by F(x) = f nk (x)

if x ∈ Jk , k = 0, 1, is again a map with a single discontinuity or critical point.
Finally, f : I → I is transitive if for all open J ∈ I there exists n such that

I = ∪n
0c�( f k(J )).

Lemma 2 If f : I → I with I smallest such interval and | f ′(x)| ≥ a > 1 if x �= c,
then either f is renormalizable or f is transitive.

Where does this get us? If f is transitive then the non-wandering set is I . If f is
renormalizable then the components of the set

K =
(

n0−1⋃

k=0

f k(J0)

)

∪
(

n1−1⋃

r=0

f r (J1)

)

are permuted by the map so the complement I\K is a union of closed intervals
(possibly trivial or even empty) Lk such that either f (Li ) ∩ L j = ∅ or L j ⊆ f (Li ),
the condition for a Markov graph. So, the dynamics is divided into the dynamics in
the sets Lk which is determined by a finite Markov graph and the dynamics induced
by the renormalized map (again a two monotonic branch map) in K .

Sketch of the proof of Lemma2 Intervals expand under iteration so images of any
open interval V must eventually intersect c. Call this image V0. Then V0 is divided
into two by c and each component will also return for the first time. Either these
returns are inside V0 (so f is renormalizable) or define V1 to be the union of V0

and its first returns. Repeat and note that each return is after the same or a shorter
number of iterations and hence either f is renormalizable or a larger interval V2

can be constructed from V1 and its returns. If f is not renormalizable then, for
every interval, the process never stops, the return times tend to a limit, and the
sets tend to a limit, V∞. If the sum of the limiting return times is greater than one
then f is renormalizable on V∞ (a contradiction), otherwise return times are 1 (and
this is achieved in finite time) and since I was minimal, V∞ = I and the map is
transitive. �

This is a simple way of describing the dynamics of all piecewise monotonic maps
with a single discontinuity. It has some detail (finite Markov graphs) but leaves a lot
unsaid, so it does not require sophisticated arguments: less is more.
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3 The Border Collision Normal Form: Young’s Theorem

Let x = (x1, x2)T , then the border collision normal form

xn+1 =
{

A0xn + m if (x1)n ≤ 0

A1xn + m if (x1)n ≥ 0
, with Ak =

(
tk 1

−dk 0

)
, k = 0, 1,

is a piecewise affine map of the plane, andm = μ(1, 0)T .
The parameter μ is considered to be the bifurcation parameter and some results

for these maps are described in Glendinning [4]. Banerjee–Yorke–Grebogi [1]
show that the border collision normal form has parameters with a trapping region,
and transverse intersections of stable and unstable manifolds and hence quasi-
one-dimensional attractors: this has been called robust chaos. Young [7] provided
the tools to make these statements more precise. Let R = [0, 1] × [0, 1] and let
S = {a1, . . . , ak} × [0, 1] be a set of vertical switching surfaces with 0 < a1 < · · · <

ak < 1. Then, f : R → R is a Young map if f is continuous, f and its inverse are C2

on R\S, and f = ( f1, f2)T satisfies the following expansion properties (H1)–(H3)
on R\S:
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Let Jac( f ) denote the Jacobian matrix of f and recall that u is defined in (H2).

Theorem 3 (Young [7]) If f is a Young map, |Jac( f )| < 1 for x ∈ R\S, and there
exists N ≥ 1 s.t. uN > 2 and if N > 1 then f k(S) ∩ S = ∅, 1 ≤ k < N, then f
has an invariant probability measure that has ‘absolutely continuous conditional
measures on unstable manifolds’.

The technical conclusion in quotation marks means that the invariant measure
projects nicely onto one-dimensional horizontal lines.

Remark 4 The theorem holds for C2 functions so, provided perturbations of the
normal form are C2 in phase space and C1 close in parameters, then conditions for
the theorem will still hold (if they hold in the first place) and so behaviour is robust.

Remark 5 The theorem, as actually stated inYoung [7], hasuN > 2 and f k(S) ∩ S =
∅, 1 ≤ k ≤ N . However, no extra conditions on images of S are required if N = 1
and if N > 1 then the requirement is that f N has similar geometry on vertical strips,
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which only requires non-intersection up to the (N − 1)-th iterate, so we are confident
that Theorem3 is what was intended in Glendinning [3].

The criteria for the theorem to hold are easy to verify numerically making it
possible to determine regions on which Young’s Theorem holds and compare these
with theoretical bounds in Banerjee–Yorke–Grebogi [1]; see Glendinning [3] for
details. The point about this result is that one could be tempted to provide further
details such as the Hausdorff dimension of the support of the measure (the attractor),
but that the statement that there is an attractor with an invariant measure having a nice
one-dimensional projection gives the essential picture without overcomplicating the
story: less is more.

4 Conclusion

The two results described here meet what I consider to be the ‘less is more’ criterion.
They hold for a good range of models, they are informative, but there is much
extra detail that they do not provide and they do not attempt a complete topological
classifications. Given the hazards created by the proliferation of bifurcations in PWS
systems outlined inGlendinning [4],we consider the existence of these results a cause
for optimism, and they provide a template for the expression of further descriptions
of PWS dynamics.
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