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Abstract We study the dynamics of a one dimensional discontinuous linear-power
map. It has a vertical asymptote giving rise to new kinds of border collision bifurca-
tions. We explain the peculiar periods of attracting cycles, appearing due to cascades
of alternating smooth and nonsmooth bifurcations. Robust unbounded chaotic attrac-
tors are also described.

1 Introduction

The large number of applied models characterized by sharp switching between dif-
ferent states are ultimately described by nonsmooth systems. One of the efficient
methods to investigate the dynamics of such systems is related to the construction of
a first return map on some Poincaré section of the phase space, leading to piecewise
smooth (PWS for short) maps, continuous or discontinuous. In particular, in engi-
neering the well known Nordmark systems associated with grazing bifurcations (see
[5, 6]) have been studied using PWS return maps with power function nonlinearities.
The present study deals with a particular case of such a map. It is defined by two
functions, fL(x) and fR(x), as follows:
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f : x �−→ f (x) =
{
fL(x) = ax − 1 i f x ≤ 0,

fR(x) = bx−γ − 1 i f x > 0,
(1)

where a, b and γ are real parameters, γ > 0.
The PWS map (1) for γ < 0 corresponding to the continuous case, has been con-

sidered by many authors; see, e.g., di-Bernardo–Budd–Champneys–Kowalczyk [1].
One of the characteristic features of map (1) is the occurrence of border collision
bifurcations (BCB for short). This term denotes the collision of an invariant set,
typically a periodic point, with a border at which the system function changes its
definition. In the study of one dimensional continuous PWS maps, the skew tent
map is used as a border collision (BC) normal form, which is a powerful analytical
tool to determine the effect of the BC of a cycle of any period; see Sushko–Avrutin–
Gardini [7] for a survey.

Besides γ < 0, also the case γ > 0 in which map (1) is a discontinuous map
with a vertical asymptote at x = 0, has been recently analyzed, mainly related to
the case of free terms equal to +1; see [3, 4]. In the present work we consider the
discontinuous map (1) and explain why peculiar cascades of alternating smooth and
nonsmooth bifurcations are observed, leading to the appearance of attracting cycles
of periods pi+1 = 2pi for odd i and pi+1 = 2pi − 1 for even i , where p0 = n, n ≥ 3,
is the period of an attracting cycle whose flip bifurcation (denoted S-flip) initiate the
cascade. We show also that map (1) can possess unbounded chaotic attractors which
are robust in some parameter regions and not robust in others. For all the proofs we
refer to Gardini–Makrooni–Sushko [2].

A typical view of the bifurcation structure of the parameter space of f is presented
in Fig. 1. In the following, after some preliminaries, we discuss first the parameter
range a < 0, b < 0, associated with invertible map and, thus, with more simple

Fig. 1 2D bifurcation diagrams of f in the (a, S(b))-parameter plane, where S(b) = arctan(b),
for 0 < γ < 1 in (a) and γ > 1 in (b); stripped regions are related to coexistence, colored regions
to attracting cycles of different periods, uncolored region to higher periodicity or chaotic attractors,
grey region to divergence. In (c) examples of map f are shown
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dynamics. Then we consider the range a < 0, b > 0, when f is noninvertible, which
we split in two subcases, for γ > 1 and 0 < γ < 1 related to quite different dynamics.

2 Preliminaries. Invertible Case: b < 0

The two partitions of the definition range of the map f are denoted as IL = (−∞, 0]
and IR = (0,+∞). To denote an n-cycle {xi }n−1

i=0 of the map f , we use its symbolic
representation, associating the symbol L with xi ∈ IL , and R with xi ∈ IR . The fixed
points of f are denoted as x = x∗

L = 1/(a − 1) ∈ IL , and x = x∗
R ∈ IR . The fixed

point x = x∗
L obviously exists for a < 1, being attracting for |a| < 1; at a = −1 it

undergoes a degenerate flip bifurcation (DFB for short). The fixed point x = x∗
R exists

for b > 0; it is repelling for γ ≥ 1, while for 0 < γ < 1 it undergoes a subcritical
flip bifurcation at

b = γγ

(1 − γ)γ+1
=: ψR,

being repelling for 0 < b ≤ ψR and attracting for b > ψR ; see Fig. 1. The following
propositions summarise the dynamics of f in the invertible case; see also Fig. 2.

Proposition 1 (Flip bifurcations of the 2-cycle LR) Let a < 0, b < 0, and γ > 0.
Then themap f given in (1) has a unique 2-cycle {x0, x1}with x0 < 1/a < 0, x1 > 0,
which undergoes a flip bifurcation at

b = 1

aγ

(
γ
a + 1

1 − γ

)γ+1

=: ψLR

Fig. 2 Bifurcation diagram a vs S(x) at b = −5, where S(x) = arctan(x). In (a) γ = 0.5, in (b)
γ = 2 and in (c) γ = 1, associated with the subcritical, supercritical and degenerate flip bifurcations
of the 2-cycle LR, respectively. For a = 1 related to DFB of x∗

L the interval [−1, 0] \ x∗
L is filled by

2-periodic points; additionally, for γ = 1 intervals (−∞,−1] \ x0 and [0,+∞) \ x1 are filled by
4-periodic points, being associatedwithDFBof the 2-cycle. The value a f is obtained by substituting
b = −5 and the related value of γ to b = ψLR ; see Proposition 1
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for γ 	= 1, and a = −1 for γ = 1. This flip bifurcation is subcritical for 0 < γ < 1
and the 2-cycle is attracting for b < ψLR; supercritical for γ > 1 and the 2-cycle
is attracting for b ≥ ψLR; degenerate for γ = 1, and the 2-cycle is attracting for
a < −1. Moreover, as a → 0−, the repelling 2-cycle LR disappears by a nonregular
BCB at a = 0: {x0, x1} |a=0 = {−∞, 0}.
Proposition 2 (BCB of the 4-cycle) Let a < 0, b < 0, and γ > 0. Then, for the map
f given in (1) at a = −1, a nonregular BCB of a 4-cycle (LR)2 occurs such that
for 0 < γ < 1 a repelling 4-cycle disappears as a → −1+; for γ > 1 an attracting
4-cycle disappears as a → −1−; the points of the 4-cycle (LR)2 at a = −1 are
{0,−∞,+∞,−1}.

3 Noninvertible Case: b > 0, γ > 1 (Periodicity Regions)

Proposition 3 (map g) Let b > 0 and γ > 0. Then the dynamics of the map f given
in (1) are in one-to-one correspondence with the dynamics of the map g defined by
three functions, fL(x), fM(x) = f 2R(x) and fR(x), as follows:

g : x �−→ g(x) =

⎧⎪⎨
⎪⎩

fL(x) = ax − 1 if x ≤ 0,

fM(x) = b
(bx−γ−1)γ − 1 if 0 < x < f −1

R (0) = b
1
γ ,

fR(x) = bx−γ − 1 if x ≥ f −1
R (0),

(2)

which is continuous at x = 0, with g(0) = −1, and discontinuous at x = f −1
R (0)

with limx→ f −1
R (0)− g(x) = +∞ and limx→ f −1

R (0)+ g(x) = 0.

The auxiliary map g is of help to study the dynamics of f in the noninvertible
case:

Proposition 4 Let b > 0 and γ > 1 be fixed, and a ∈ (ahR,−1), where a = ahR sat-
isfies the condition b = −a(−a − 1)γ of the first homoclinic bifurcation of x∗

R. Then,

(i) any fold bifurcation (either fold-BCB or S-fold) of the map g given in (2) is
associated with the appearance of a pair of cycles for map f , one attracting and
one repelling, whose periods differ by 1 (say n and n − 1);

(ii) let x = x∗ > 0 be a periodic point, closest to x = 0, of an attracting n-cycle of
f with a negative eigenvalue, which attracts all points of the interval (0, x∗),
and let R2σ0 be the symbolic sequence of this cycle (here, σ0 stands for the
remaining symbolic sequence, necessarily starting with L). Then, decreasing a it
is observed a cascade of alternating S-flip bifurcations and BCs leading to cycles
whose symbolic sequences can be written as R2σk , where σk = σk−1Tσk−1,
k = 1, 2, . . . , with the alternating symbols T = R2 and T = L. The symbol
T = R2 corresponds to an S-flip bifurcation, so that an attracting m-cycle in
this cascade is followed by an attracting 2m-cycle, while the symbol T = L is
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associated with a BC and the m-cycle is followed by an attracting (2m − 1)-
cycle.

For example, starting from an attracting 3-cycle, for decreasing a one observes a
cascade of bifurcations leading to appearance of attracting cycles of periods 6, 11,
22, 43, …

4 Noninvertible Case: b > 0, 0 < γ < 1 (Dominant Chaos)

Proposition 5 (robust unbounded chaos) Let 0 < γ < 1 and 0 < b ≤ ψR. Then,

(i) for ahL < a < −1, the map f has an unbounded chaotic attractor consist-
ing of intervals [−1, f 2R(−a − 1)], [ fL ◦ f 2R(−a − 1),−a − 1] and [ fR(−a −
1),+∞); here, a = ahL satisfies the condition of the first homoclinic bifurcation
of x∗

L defined by
b

(b(−a − 1)−γ − 1)γ
= a

a − 1
;

(ii) for ahR < a ≤ ahL the map f has an unbounded chaotic attractor consisting of
intervals [−1,−a − 1] and [ fR(−a − 1),+∞);

(iii) for aLR < a ≤ ahR, depending on the value of b, the map f may have the attract-
ing unbounded chaotic interval [−1,+∞); here, a = aLR satisfies the condi-
tion

b = − 1

aγ

(
−γ

a + 1

γ + 1

)γ+1

of the fold bifurcation of the 2-cycle LR (indicated in Fig.1 as φLR);
(iv) for a < aLR almost all the trajectories converge to the attracting 2-cycle born

crossing the curve φRL , and a chaotic repeller exists.

Proposition 6 Let 0 < γ < 1 and b > ψR. Then,

(i) for ahL < a < −1, the attracting fixed point x∗
R of the map f coexists with a

chaotic attractor in the unbounded invariant absorbing intervals

[−1, f 2R(−a − 1)] ∪ [ fL ◦ f 2R(−a − 1),−a − 1] ∪ [ fR(−a − 1),+∞);

(ii) for ahRR < a ≤ ahL , the attracting fixed point x∗
R of the map f coexists with a

chaotic attractor in the unbounded invariant absorbing intervals [−1,−a −
1] ∪ [ fR(−a − 1),+∞); here, a = ahRR is related to the first homoclinic bifur-
cation of the repelling 2-cycle;

(iii) for aLR < a ≤ ahRR, depending on the value of b, the fixed point x
∗
R may be the

unique attractor of the map f , and a chaotic repeller exists;
(iv) for a < aLR, the attracting fixed point x∗

R coexists with an attracting 2-cycle
born due to an S-fold crossing the curve φRL , and a chaotic repeller exists.
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