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Preface

It is traditional for these volumes to contain short articles from a conference held
during a research program. Given the level of activity throughout the CRM
Intensive Research Program on Advances in Nonsmooth Dynamics, from the outset
we decided to focus this set of Extended Abstracts on the long-term program. So,
here you will find a collection of Abstracts from the opening Conference on Open
Problems in Nonsmooth Dynamics, held from February 1 to 5, 2016, the Advanced
Course on Piecewise Smooth Maps and Flows, held from April 11 to 15, 2016, the
Climate Workshop, held from March 29 to April 1, 2016, and many more short
articles summarizing seminars or informal presentations, as well as discussions that
arose over the course of the three-month program.

More than 120 researchers took part in the program, around 54 as researchers in
residence, with others attending the workshops and events held every few weeks.
Themed weeks also focussed on control electronics, life science applications
including sleep–wake cycles and predator–prey models, contact mechanics
including the Painlevé paradox and impacting chaos, genetic regulatory models and
systems with many switches, friction models derived from slow-fast or
rate-and-state systems, and methods of regularization. The actual list of theoretical
and applied problems being discussed is much longer. Nonsmooth dynamics in
2016 is an incredibly active field of research and finds new applications every year.
In the following pages, you will find a taster.

On the final day of the program, we met to review the open problems that
remained or had arisen during the program. The certainly not exhaustive list of most
prominent problems included external variable models of switching and the various
alternatives for regularizing nonsmooth systems using probabilistic, fractal, or
shadowing rules. We discussed the need for a better understanding of the link
between different discontinuous solution concepts such as blow-up/sliding/layers
and the applied models they represent (e.g., genetic regulatory models and climate
models), particularly how stability/uniqueness/robustness in a discontinuous model
relates to real switching in physical and biological models. We discussed the new
methods that are still needed for studying n-dimensions (invariant measures,
dimension of attractors, center/invariant manifolds). We discussed that a “less is
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more” approach needs to be applied to developing new analytical methods and
computational tools. We discussed the surprising results that had been found for
how noise and other nonidealities affect switching, and the need to understand the
effect of nonlinear terms on the many leading order expressions that are now
important in local classifications.

We also made a list of the big problems that have been solved recently, including
during the program. The major ones included recent results on pausing in nons-
mooth systems, the understanding of convex combinations or canopies as an
extension of Filippov’s convex sets, progress made during the program concerning
how various kinds of regularization (hysteresis/delay/noise/discretization) affect
sliding along the intersections of systems (to be reported later), we reviewed pro-
gress on the twofold singularity, on understanding how additive white noise affects
sliding modes (largely resolved, up to technical issues), and we were shown that
piecewise linear systems can have infinitely many limit cycles (with a nonlinear or
nonsmooth switching boundary).

Many, but not all, of these are captured in the following pages.

Milan, Italy Alessandro Colombo
Bristol, UK Mike Jeffrey
Barcelona, Spain J. Tomàs Lázaro
Barcelona, Spain Josep M. Olm
September 2016
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On Degenerate Cycles in Planar Filippov
Systems

Kamila da S. Andrade, R.M. Martins, and Marco Antonio Teixeira

Abstract The main objective of this paper is to study bifurcations of a vector field
in a neighborhood of a cycle having a homoclinic-like connection at a saddle-regular
point. In order to perform such a study it is necessary to analyze how the cycle can
be broken, in this way the approach is to look separately at local bifurcations and at
the structure of the first return map defined near the cycle.

1 Preliminary Concepts

Consider χr the set of all Cr -vector fields defined in R
2 endowed with the

Cr -topology. For X,Y ∈ χr define

Z(x, y) =
{
X (x, y), h(x, y) ≥ 0,

Y (x, y), h(x, y) ≤ 0,

where h : R2 → R is a smooth function such that� = h−1(0) ⊂ R
2 is a codimension

1 embedded submanifold, called the switching manifold. Such a vector field Z , as
defined above, is called a piecewise smooth vector field and it is usually denoted by
Z = (X,Y ). We also denote�+ = {(x, y) ∈ R

2 : h(x, y) > 0} and�− = {(x, y) ∈
R

2 : h(x, y) < 0}.
Let�r be the set of all Z = (X,Y )with X, Y ∈ χr , then�r can be identifiedwith

χr × χr and thus it is naturally endowed with the product topology. In the switching
manifold three regions are distinguished (see Fig. 1): the crossing region,

K. da S. Andrade (B)
Department of Mathematics, UFG, IME, Goiânia, GO 74690-900, Brazil
e-mail: ksandrade.mat@gmail.com

R.M. Martins · M.A. Teixeira
Department of Mathematics, Unicamp, IMECC, Campinas, SP 13083-970, Brazil
e-mail: rmiranda@ime.unicamp.br

M.A. Teixeira
e-mail: teixeira@ime.unicamp.br

© Springer International Publishing AG 2017
A. Colombo et al. (eds.), Extended Abstracts Spring 2016,
Trends in Mathematics 8, DOI 10.1007/978-3-319-55642-0_1
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Σe Σs Σc

Fig. 1 Illustrations of the regions in �

�c = {p ∈ � : XhYh(p) > 0},

the sliding region,

�s = {p ∈ � : Xh(p) < 0 and Yh(p) > 0},

and the escaping region,

�e = {p ∈ � : Xh(p) > 0 and Yh(p) < 0},

where Xh(p) = 〈X,∇h〉(p) is the Lie derivative of h in relation to the vector field
X , analogously Yh(p) = 〈Y,∇h〉(p) is the Lie derivative of h in relation to Y .

The concept of solutions and trajectories follows Filippov’s convention: it implies
that multiple solutions through points in � − �c are being considered; see [1, 2].

2 Statement of the Problem and Results

The main objective is to study bifurcations of a homoclinic-like connection through
a saddle-regular point, then consider a piecewise smooth vector field Z0 = (X0,Y0).
In order to conduct an analysis as simple as possible some generic conditions are
stated:

(i) BS(1): X0 has a hyperbolic saddle SX0 ∈ �, the unstable and stable manifold
of SX0 ,W

u(X0, SX0) andW
s(X0, SX0), respectively, are transversal to� at SX0 ;

(ii) BS(2): Y0 is transversal to �, Wu(X0, SX0), and Ws(X0, SX0) at SX0 ;
(iii) BS(3): the sliding vector field near the saddle point has SX0 as a non-degenerate

singularity;
(iv) BSC(1): the unstable manifold of SX0 which lies in �+, Wu+(X0, SX0), is

transversal to � at PX0 
= SX0 ;
(v) BSC(2): Y0 is transversal to � at PX0 and there exists t0 > 0 such that

ϕY0(t0, PX0) = SX0 with ϕY0(t, PX0) ∈ �− for all 0 ≤ t ≤ t0, where ϕY0(s, p)
denotes the flow of Y0 through p;

(vi) BSC(3): there exists a first returnmap defined inside the bounded region delim-
ited by Wu+(X0, SX0) and ϕY0(t, PX0).
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Fig. 2 A degenerate cycle
through a saddle-regular
point

PX0

SX0

Σ

Σs
Σc

undefined region

Under these conditions, there exists a degenerate cycle through the saddle-regular
point SX0 ∈ � which is a homoclinic-like connection, see Fig. 2.

In order to analyze all the bifurcations of this kind of degenerate cycle, observe that
there are two structures to be broken, the boundary singularity and the connection; in
what follows, we look carefully at these two structures. For the first one, the approach
is to study the local bifurcation of the saddle-regular point, while for the second one,
the approach is to study the structure of the first return map.

2.1 Bifurcations of a Saddle-Regular Point

As shown in Kuznetsov–Rinaldi–Gragnani [3], there are three different bifurcation
cases: BS1, BS2, and BS3. In BS1 and BS2 a pseudo-node merges when the saddle
is a real singularity (i.e., a singularity of X in �+) and the difference between them
is the position of the pseudo-node. In BS3 a pseudo-saddle merges when the saddle
is a virtual singularity (i.e., a singularity of X in �−).

2.2 Structure of the First Return Map

In order to conduct an analysis of the first return map, consider VX0 a neighborhood
of X0 such that any X ∈ VX0 has a unique singularity near SX0 which is a hyperbolic
saddle SX . We assume that, locally around the saddle point SX , the vector field X is
given by the following normal form; see Roussarie [4].

Theorem 1 Let X be a vector field sufficiently smooth having the origin as a hyper-
bolic saddle point and consider r = −λ1/λ2 the hyperbolicity ratio of the sad-
dle point (where λ2 < 0 < λ1 are the eigenvalues of the saddle point). Then, there
exists a map N : N → N such that, in some neighborhood of the saddle point, X is
Ck-equivalent to the polynomial vector field
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x
∂

∂x
+

(
−r + 1

q

N (k)∑
i=1

αi+1(x
p yq)i

)
y

∂

∂y
,

if r = p/q ∈ Q. If r /∈ Q, X is Ck-equivalent to the linear vector field

x
∂

∂x
− r y

∂

∂y
.

We restrict ourselves to the class of non-resonant vector fields, i.e., to the class
of vector fields having irrational hyperbolicity ratio. Consider Z = (X,Y ) ∈ VZ0

where X has an irrational hyperbolicity ratio. The first return map is constructed in
the following manner: let σ be a section in �+ “above” the saddle point, let ρ1 be
the map given by the flow of X from � (near the saddle point) to σ, let ρ2 be the
map given by the flow of X from σ to � (near PX0 ), and let ρ3 be the map given by
the flow of Y from � (near PX0 ) to � (near the saddle point). Now, the first return
map, which is defined in a half-open interval, is πZ (x) = ρ3 ◦ ρ2 ◦ ρ3(x).

In each case of a real saddle, boundary saddle or virtual saddle, there is a different
starting point to the first returnmap.Now, the strategy is to understand the graph of the
first return map when we approximate the starting point. This analysis is performed
by using the normal form given in Theorem 1 and the construction above. Then, it
is shown that the graph of the first return map πZ with starting point aZ satisfies the
following conditions:

β

α

γPE

γP1

γF

��

��
R1

4��

��
R1

5

��

��
R1

6

��

��
R1

7

R1
4

R1
5 R1

6 R1
7

β = 0 and α > 0

Fig. 3 Bifurcation diagram of Zα,β : case DSC11
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(i) if the saddle point is virtual, on the boundary or real with r > 1, the graph of πZ

tends to be tangent to the horizontal direction when we approximate to aZ ;
(ii) if the saddle point is real and r < 1, the graph of πZ tends to be vertical when

we approximate to aZ .

Based on all these analyses, the bifurcation diagrams can be sketched. The case
where we have a BS1 local bifurcation for the saddle-regular point and r > 1 is
illustrated in Fig. 3.
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Sliding Dynamics on Codimension-2
Discontinuity Surfaces

Mate Antali and Gabor Stepan

Abstract In this paper, the properties of codimension–2 discontinuity sufaces of
vector fields are presented which can arise from e.g., spatial Coulomb friction.
Concepts of sliding region and sliding dynamics are defined for these systems.

1 Introduction

Switching surfaces of Filippov systems are codimension–1 manifolds in the phase
space, where the vector field is discontinuous; see, e.g., di-Bernardo–Budd–
Champneys–Kowalczyk [3]. Codimension–2 discontinuity manifolds can also exist,
for example at the intersection of two switching surfaces; see Dieci–Difonzo [4] and
Jeffrey [5]. However, isolated codimension-2 discontinuities can also come about,
e.g., from the Coulomb friction between the surfaces of 3D bodies. In this paper, we
investigate these systems analogously to the concepts of Filippov systems.

2 Isolated Codimension–2 Discontinuity Manifolds

2.1 Filippov Systems

Consider a bimodal Filippov system in the form

F(x) =
{
F1(x) if H(x) > 0,

F2(x) if H(x) < 0,

M. Antali (B) · G. Stepan
Deparment of Applied Mechanics, Budapest University of Technology
and Economics, Budapest, Hungary
e-mail: antali@mm.bme.hu

G. Stepan
e-mail: stepan@mm.bme.hu

© Springer International Publishing AG 2017
A. Colombo et al. (eds.), Extended Abstracts Spring 2016,
Trends in Mathematics 8, DOI 10.1007/978-3-319-55642-0_2
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8 M. Antali and G. Stepan

where F1 and F2 are smooth vector fields onRm and the smooth function H : Rm →
R defines the switching manifold � := {x ∈ R

m : H(x) = 0}. We can call � the
codimension–1 discontinuity surface of F with uniform degree 1 of smoothness; see
di-Bernardo–Budd–Champneys–Kowalczyk [3, p. 75].

At a given point x0 ∈ �, let n1(x0) := ∇H(x0)/ ‖ ∇H(x0) ‖ and n2(x0) :=
−n1(x0) be the unit vectors orthogonal to�. The orthogonality and the norm ‖ · ‖ are
defined by the usual scalar product 〈 , 〉 on Rm . The uniform 1 degree of smoothness
ensures that at any point x0 ∈ �, the directional limits

lim
ε→0+

F
(
x0 + εn1(x0)

) = F1(x0), lim
ε→0+

F
(
x0 + εn2(x0)

) = F2(x0)

both exist and F1(x0) �= F2(x0). In the next subsection, codimension–2 discontinuity
surfaces with similar properties are defined.

2.2 The Codimension-2 Case

Let � be am − 2 dimensional smooth manifold embedded inRm . At a point x0 ∈ �

of themanifold, letTx0� denote the tangent space of themanifold and letOx0� denote
the corresponding orthogonal complement. At each point x0 ∈ �, let us choose two
orthonormal basis vectors nI (x0) and nI I (x0) of Ox0�, which depend smoothly on
x0. Then, the set of unit vectors of Ox0� can be generated by

n(φ)(x0) = nI (x0) cosφ + nI I (x0) sin φ,

φ ∈ [0, 2π); see Batlle [2]. At a point x0 of the manifold, the function n(φ) gives the
unit vector of Ox0� corresponding to the direction described by the angle φ.

Let F : Rm \ � → R
m be a vector field. If the limit exists, let us define

F∗(φ)(x0) = lim
ε→0+

F
(
x0 + εn(x0)(φ)

)
.

Definition 1 (Codimension–2 discontinuity surface) Consider the vector field F
on R

m and the m − 2 dimensional smooth manifold � in R
m . Suppose that:

(i) F is smooth on R
m \ �; (ii) F∗(φ)(x0) exists for all x0 ∈ � and φ ∈ [0, 2π);

(iii) F∗(φ)(x0) depends smoothly on both variables; and (iv) for any given x0 ∈ �,
the function F∗(φ) is not constant. Then, � is the isolated codimension–2 disconti-
nuity surface of F .

The system F with this type of discontinuity is not a Filippov system, and not
even a piecewise smooth system. There is not switching between two types of smooth
dynamics, but near the discontinuity set, we get infinitely many directional limits of
the vector field.
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3 Crossing and Sliding Regions

In case of Filippov systems, the crossing region 
�, and the sliding region �̂ are
defined, respectively, by


� := {x0 ∈ � : 〈F1, n1〉 · 〈F2, n2〉 (x0) < 0} ,

�̂ := {x0 ∈ � : 〈F1, n1〉 · 〈F2, n2〉 (x0) > 0} .

In case of crossing, trajectories reaching� also pass over�, while in case of sliding,
trajectories are stuck into the discontinuity set either in forward or in reverse direction
of time.

In case of a codimension–2 discontinuity surface, the crossing and sliding regions
can be defined analogously:

Definition 2 The crossing region 
� of a codimension–2 discontinuity surface
� is the set of points x0 ∈ � for that: (i) there exists φ1 ∈ [0, 2π) such that
〈F∗(φ1), n(φ1)〉 (x0) > 0; and (ii) there exists φ2 ∈ [0, 2π) such that 〈F∗(φ2), n(φ2)〉
(x0) < 0.

Definition 3 The sliding region �̂ of a codimension–2 discontinuity surface � is
the set of points x0 ∈ � for that: (i) 〈F∗(φ), n(φ)〉 (x0) < 0 for all φ ∈ [0, 2π); or (ii)
〈F∗(φ), n(φ)〉 (x0) > 0 for all φ ∈ [0, 2π).

That is, sliding region requires that the discontinuity manifold has to be either
attracting or repelling from all directions. If there exists an attracting and a repelling
direction, the trajectories cross the discontinuity set.

4 Sliding Dynamics

By using Filippov’s convex method, the sliding vector of Filippov systems can be
calculated in the form Fs = ∑2

i=1 αi Fi , with
∑2

i=1 αi = 1 and 〈Fs, n1〉 = 0, where
the dependence on the chosen point x0 ∈ � is not denoted. The resulting system of
linear equations determines the weights α1, α2 and the sliding vector Fs unambigu-
ously. The convex combination also requires α1,α2 ≥ 0, which is true exactly in the
closure of the sliding region �̂.

Analogously, the sliding vector in the codimension–2 case can be written as a
convex combination of the limit vector field,

Fs =
∫ 2π

0
α(φ)F∗(α)dφ, (1)
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where we require

∫ 2π

0
α(φ)dφ = 1, 〈Fs, nI 〉 = 0, 〈Fs, nI I 〉 = 0. (2)

Instead of the discrete weights, now we have a weight function α(φ) over [0, 2π).
Due to the convex combination, α(φ) has to be non-negative for all φ ∈ [0, 2π). In
general, the construction (1)–(2) does not provide an unambiguous sliding vector
Fs . This problem occurs also in the case of codimension–2 discontinuity surfaces
generated from intersections of codimension–1 surfaces; see Jeffrey [5].

However, the method determines the sliding vector completely in the special case
when F∗(φ) can be written into the form

F∗(φ) = F0 + A1 cosφ + B1 sin φ. (3)

The practical importance of this class is that it contains the case of discontinuity
from spatial Coulomb friction. From the Fourier expansion of the unknown weight
function α(φ), the condition (2) leads to the sliding vector

Fs = F0 + πa1A1 + πb1B1, (4)

where the coefficients a1 and b1 are determined by

[ 〈A1, nI 〉 〈B1, nI 〉
〈A1, nI I 〉 〈B1, nI I 〉

]
·
[
πa1
πb1

]
= −

[ 〈F0, nI 〉
〈F0, nI I 〉

]
. (5)

It is an open question whether there exists a natural choice of Fs if F∗(φ) has a
more general form than (3).

5 Example: Mass Points on the Plane with Coulomb
Friction

The results are demonstrated on a simple mechanical system. Consider two mass
points on the plane connected by a rigid rod with negligible mass; see Fig. 1. The
mass of both mass points is m and their distance is 2d. Suppose that one of the mass
points is subjected to Coulomb friction with constant C magnitude of the friction
force, and a constant torque M also acts in orthogonal direction of the plane.

The state of the system can be described by x = (u1, u2,ω), where the velocity
components u1 and u2 are measured in the co–rotating coordinate frame, and ω is
the angular velocity of the system. Then, Newton’s Second Law leads to
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Fig. 1 Sketch of the mechanical system and its phase space

ẋ = F(x) =
=

(
− C

2m
u1√
u21+u22

+ ωu2 − ω2d, −C
m

u2√
u21+u22

− ωu1 + M
2md , − C

2md
u2√
u21+u22

+ M
2md2

)
.

The codimension–2 discontinuity set is � = {(0, 0,ω) : ω ∈ R}. Let nI = (1, 0, 0)
and nI I = (0, 1, 0), then, the limit vector field becomes

F∗(φ) = (− C
2m cosφ − ω2d, −C

m sin φ + M
2md , − C

2md sin φ + M
2md2

)
. (6)

As (6) has the form of (3), the formulae (4)–(5) can be applied, an we obtain
a1 = −2mdω2/(Cπ), b1 = M/(2dCπ), and Fs = (0, 0, M/(4md2)). The sliding
region can be calculated according to Definition 3 by finding 〈F∗(φ), n(φ)〉 (x0) = 0,
and we get

�̂ = {
(0, 0,ω) : |ω| < ω̂

}
, (7)

where ω̂2 =
√(

C
2md

)2 − (
M

4md2

)2
; see Fig. 1. In the case M > 2dC , there is no slid-

ing region. These results are consistent with those calculated from the maximum
admissible static friction force from the Coulomb model. Moreover, the presented
method can be applied even if the static friction force cannot be determined; see
Antali–Stepan [1].
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Asynchronous Networks

Christian Bick and Mike J. Field

Abstract Asynchronous networks form a natural framework for many classes of
dynamical networks encountered in technology, engineering and biology. Typically,
nodes can evolve independently, be constrained, stop, and later restart, and interac-
tions between components of the network may depend on time, state, and stochastic
effects. We outline some of the main ideas, motivations and a basic result.

1 Asynchronous Networks: Motivation and Characteristics

Asynchronous networks are an approach to network dynamics that takes account of
features encountered in networks from engineering and biology, especially neuro-
science, and where techniques such as averaging or methods from statistical physics
may miss essential structure (see Bick–Field [3, Sect. 1] for a careful discussion).
Asynchronous networks may involve a mix of distributed and decentralized control,
adaptivity, event driven dynamics, switching, varying network topology and hybrid
dynamics. Network dynamics will generally only be piecewise smooth, nodes may
stop and later restart, and there may be no intrinsic global time. Intended appli-
cations range from switching problems involving power grids and microgrids (see
Dörfler–Chertkov–Bullo [6]), production and transport networks, and learningmech-
anisms from neuroscience such as Spike-TimingDependent Plasticity (see Gerstner–
Kempter–van-Hemmen–Wagner [8]). In these noteswe sketch someof themain ideas
and refer the reader to [3, 4] for more details and references. We summarize below
some of the key features of asynchronous networks:
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(i) state dependent and/or stochastic variation in connection structure and depen-
dencies between nodes;

(ii) synchronization events associated with stopping or waiting states of nodes;
(iii) order of events may depend on the initialization of the system;
(iv) dynamics is only piecewise smooth;
(v) aspects involving function, adaptation and control;
(vi) evolution only defined for forward time – systems are not time reversible.

1.1 Reductionism and Modularization of Dynamics

In nonlinear network dynamics and complex systems, generally, there is the question
as to how far one can make use of reductionist techniques; see Ladyman–Lambert–
Wiesner [10, 2.5]. For example, one approach, advanced by Kastan–Alon [9] in
systems biology, has been the identification and description of network motifs (small
network configurations that occur frequently in large biological networks). The
underlying premise is that a modular, or engineering, approach to network dynamics
is feasible: identify building blocks, connect together to form networks and then
describe dynamical properties of the resulting network in terms of the dynamics of
its components.

“Ideally, we would like to understand the dynamics of the entire network based on the
dynamics of the individual building blocks.” Alon [1, p 27].

Such a reductionist approach works well in linear systems theory, where a superposi-
tion principle holds, or in the study of synchronization in weakly coupled nonlinear
oscillators (for example, in Pecora–Carroll, [11]), but is usually unrealistic in the
study of heterogenous networks modelled by a system of analytic nonlinear differ-
ential equations: network dynamics may bear little or no relationship to the intrinsic
(uncoupled) dynamics of nodes.

If we emphasize function and allow for intermittent connection structure, then it
may be possible to apply reductionist principles. In Fig. 1 we show schematics of
a network with only intermittent connection between eight nodes.1 Each node Ni

will be given an initial state and started at time Ti ≥ 0. Nodes interact depending on
their state. For example, in the evolution depicted in Fig. 1, nodes N1, N2 will first
interact during the event indicated by Ea . Observe there is no global time defined
for this system but there is a partially ordered temporal structure: event Ec always
occurs after event Ea but may occur before or after event Eb. This network has also
a function: reaching the terminal states indicated on the right hand side of the figure.
Observe the possibility of a (dynamical) deadlock: network function is not achieved.

1For example, view Fig. 1 as being part of a threaded computer program and Ea, . . . ,Eh as being
synchronization events – evolution of associated threads is stopped until each thread has finished
its computation; variables are then synchronized across the threads.
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Fig. 1 A functional feedforward network with 8 nodes

Our main result is a modularization of dynamics theorem. Specifically, we give
general conditions that enable us to describe the function of a large class of functional
asynchronous networks in terms of the function of constituent subnetworks (as in
Fig. 1; details are in Bick–Field [4]). The theorem allows for events depending on
local times and for variation in the number of nodes (a dynamics version of aPetri Net;
see David–Alla [5]). Nonsmoothness is a crucial ingredient needed for this result. In
networks modelled by smooth dynamical systems, all nodes are effectively coupled
to each other at all times and so information propagates instantly across the entire
network. A spatiotemporal decomposition, such as is given by the modularization
of dynamics theorem, is only possible if the network dynamics is nonsmooth and
(subsets of) nodes are allowed to evolve independently of each other for periods
of time. This allows us to construct discrete dynamical units (for example, Alon’s
motifs), each with its own function, that together make up the dynamics of the
network. The result highlights what can get lost when averaging over a network: the
averaging out of the functional units and their temporal relations that yield network
function. A consequence is that, rather than asking how network dynamics can be
understood in terms of the dynamics of constituents, one has to ask how network
function can be understood in term of the function of constituents.

2 Abstraction

We give the formal setup for asynchronous networks in the simplest case, omitting
most technical details (for these, see Bick–Field [3]), and conclude with an example
of a transport network.

For k ∈ N, define k = {1, . . . , k} and k• = k ∪ {0}, and assume a network with k
nodes, N1, . . . , Nk . Let Mi denote thephase spaceof Ni , i ∈ k, and setM = ∏

i∈k Mi ,
the network phase space. A vector field f onM is a network vector field.
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Stopping, waiting, and synchronization are characteristic features of asynchro-
nous networks. If the node of a network is stopped or partially stopped, then node
dynamics will be constrained to a subset of the node phase space (a single point if
the node is stopped). We codify this situation by introducing a constraining node
N0 that, when connected to Ni , implies that dynamics on Ni is constrained. Set
N = {N0, . . . , Nk}. We often abuse notation and refer to the network N .

2.1 Connection Structures and Admissible Vector Fields

We represent interactions between distinct nodes in N by the network graph.
Connections N j → Ni encode dependencies, if i, j ∈ k, and constraints if j = 0,
i ∈ k.

A connection structure α is a directed network graph on the nodes N such that
for all i ∈ k, j ∈ k•, i �= j , there is at most one directed connection N j → Ni . An
α-admissible network vector field f has dependencies given by α (if N j → Ni /∈ α,
fα
i will not depend on x j and conversely). A generalized connection structure A is
a set of connection structures on N . An A-structure F is a set F = {fα | α ∈ A} of
admissible vector fields.

2.2 The Event Map and Asynchronous Networks

Suppose a generalized connection structureA and anA-structureF are given. Inter-
actions between nodes in asynchronous networks may be state or time dependent.
We consider state dependence and handle interactions and constraints using an event
map E : M → A.

Given a generalized connection structureA,A-structure F and event map E , the
quadruple (N ,A,F , E) defines an asynchronous network. Dynamics onN is given
by the state dependent network vector field F defined by

F(X) = fE(X)(X), X ∈ M. (1)

Subject to quite simple regularity conditions (see Bick–Field [3]), the network vector
field (1) will have a uniquely defined semi-flow (continuous in time but not neces-
sarily in the initial state).

Although the integral curves of (1) are not always the same as those obtained using
standard approaches to nonsmooth systems, there are relations between asynchronous
networks and Filippov systems; see Filippov [7]. This is explored further in [2, 3].
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Fig. 2 Three trains going through passing loops at 0 and L

2.3 Example: Two Passing Loops on Single Track Lines

In Fig. 2, we show three trains that have to traverse two passing loops. Train T1

starts at station A; train T2 at C ; train T3 at B. Once train T2 has traversed the first
passing loop it will continue on the branch line towards the second passing loop and
station B.

Wemodel the transport network using our abstraction of an asynchronous network
(see also Bick–Field [4]). Take Mi = R, αi = N0 → Ni , i ∈ 3 (αi corresponds to Ti

stopped). Take generalized connection structure A = {∅, α1, α2, α3, α1 ∨ α3, α2 ∨
α3}, where ∅ denotes the empty connection structure. Let v2 > 0 > v1, v3 and define
the A-structure F by

f∅ = (v1, v2, v3), fα1 = (0, v2, v3), fα2 = (v1, 0, v3),

fα3 = (v1, v2, 0), fα1∨α3 = (0, v2, 0), fα2∨α3 = (v1, 0, 0).

Define the event map E : M → A by

E(x1, x2, x3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 if x1 = 0, x2 < 0,

α2 if x1 > 0, x2 = 0 or x2 = L , x3 > L ,

α3 if x2 < L , x3 = L ,

α1 ∨ α3 if x1 = 0, x2 < 0, x3 = L ,

α2 ∨ α3 if x1 < 0, x2 = 0, x3 = L ,

∅ otherwise.

This defines the asynchronous networkN = (N ,A,F , E) and gives the correct train
dynamics. The modularization of dynamics theorem applies toN; see Bick–Field [4]
for details.

Acknowledgements C. Bick is supported, in part, by NSF Grant DMS-1265253 and Marie Curie
IEF Fellowship (project 626111). M.J. Field is supported, in part, by NSF Grant DMS-1265253
and Marie Curie IIF Fellowship (project 627590).
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Regularization by External Variables

E. Bossolini, R. Edwards, P.A. Glendinning,
M.R. Jeffrey, and S. Webber

Abstract Regularization was a big topic at the 2016 CRM Intensive Research Pro-
gram on Advances in Nonsmooth Dynamics. There are many open questions con-
cerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here,
we propose a framework for an alternative and important kind of regularization, by
external variables that shadow either the state or the switch of the original system. The
shadow systems are derived from and inspired by various applications in electronic
control, predator-prey preference, time delay, and genetic regulation.

1 Shadowing in One Variable

Begin with a one-dimensional dynamical system

ẋ = −λ + xb(x;λ), (1)

where λ = sign(x) with the sign function being ±1 for x ≷ 0 and having the set
value (−1,+1) for x = 0. This has an attracting fixed point on the discontinuity,
where ẋ = −λ. Define a switch-shadowing system
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ẋ = −λ + xb(x;λ), ẏ = (x − y)/γ,

where λ = sign(y), or a state-shadowing system

ẋ = −λ + yb(y;λ), ẏ = (x − y)/γ,

where λ = sign(x), γ > 0 is small, and y is an external variable representing some
extra stage in the switching process, such that each shadow system relaxes to (1) as
y → x . So, y tends to x like e−t/γ (for small γ where we can treat x as slow varying),
i.e., y shadows x .

We restrict attention to the neighbourhood of the equilibrium at x = y = λ = 0 in
each system. In the switch-shadowing system, the switching surface becomes y = 0,
and sliding no longer occurs because solutions all cross the surface (because the y
component does not switch) – the surface is ‘transparent’ in some nomenclature. In
the state-shadowing system the switching surface remains sliding.

We will analyze these using switching layer methods (see Glendinning–Jeffrey [2]
and next section).

For the switch-shadowing system on y = 0 the switching layer system is

ẋ = −λ + xb(x;λ), ελ̇ = x/γ,

for λ ∈ (−1,+1), ε → 0, and the Jacobian of the equilibrium is

(
∂ ẋ
∂x

∂ ẋ
∂ελ

∂ελ̇
∂x

∂ελ̇
∂ελ

)
=

(
b −1/ε

1/γ 0

)

with eigenvalues (b(0, 0) ± i
√

4 − b2γε)/2
√

γε → 1
2b(0, 0) ± i∞ as ε → 0. Out-

side the switching surface the dynamics spirals in as a ‘fused focus’ towards
x = y = 0, but once there, in the x-λ dynamics, the attractivity depends on the sign of
b(0, 0). In particular, ifb(0, 0) > 0 then the sliding equilibrium will become unstable,
and a limit cycle will be formed inside the switching layer (x,λ) ∈ R × (−1,+1).

For the state-shadowing system on x = 0 the switching layer system is

ελ̇ = −λ + yb(y;λ), ẏ = −y/γ,

where λ ∈ (−1,+1), and the Jacobian of the equilibrium is

∂(ελ̇, ẏ)

∂(ελ, y)
=

(−1/ε b(0; 0)

0 −1/γ

)

with eigenvalues −1/γ and −1/ε → −∞. In this case the equilibrium of the shadow
system remains an attractor; see Fig.1.
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Fig. 1 The original system and its two shadow regularizations

2 Shadowing in n Variables

Now take a multivariable state x = (x1, . . . , xn), and assume there is one switch
for every coordinate (this can be generalized later). So we have switching functions
h1, . . . hn , and switching multipliers λ = (λ1, . . . ,λn) where λi ∈ [−1,+1], such
that λi = sign hi for hi �= 0 and λi ∈ (−1,+1) for hi = 0. Letting f be a smooth
function of x and λ, the system

ẋ = f(x;λ), (2)

where λi = sign hi , is smooth except at the thresholds �i = {x ∈ R
n : hi = 0}.

In the piecewise smooth setting we assume each hi is a regular function of x,
some hi = hi (x). When hi = 0 for some i , we blow up the switching surface hi = 0
into a switching layer λi ∈ (−1,+1), with dynamics given by εi λ̇i = f(x;λ) · ∇hi
for εi → 0.

Take coordinates in which hi = xi for i = 1, . . . , n. When x lies on the intersec-
tion of all n switching thresholds, x1 = x2 = · · · = xn = 0, we study the dynamics
in the codimension n switching layer (λ1, . . . ,λn) ∈ (−1,+1)n given by

ε.λ̇ = f(0;λ), |ε| → 0,

where ε denotes the diagonal matrix with entries ε1, . . . , εn or, in components, εi λ̇i =
fi (0;λ1, . . . ,λn) for i = 1, . . . , n. Sliding modes are equilibria of the fast system.
We assume these lie at x = λ = 0, and are stable, which means that

∂ε.λ̇

∂ε.λ
= ε−1.

∂f
∂λ

(3)

has eigenvalues with negative real part at (0; 0).
Define a switch-shadowing system

ẋ = f(x;λ), ẏ = (x − y)/γ,

where λi = sign(yi ), or a state-shadowing system
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ẋ = f(y;λ), ẏ = (x − y)/γ,

whereλi = sign(xi ),γ > 0 is small (we could choose differentγi for each component
of y), and y is an n-dimensional external variable. As before, both tend to (2) as y
shadows x. Each has an equilibrium at x = y = λ = 0. For the switch-shadowing
system on y = 0 the switching layer system is

ẋ = f(x;λ), ελ̇ = x/γ,

for λ ∈ (−1,+1)n , and the Jacobian of the equilibrium is

⎛
⎝ ∂ẋ

∂x
∂ẋ

∂ε.λ

∂ε.λ̇

∂x
∂ε.λ̇

∂ε.λ

⎞
⎠ =

(
∂f(0;0)

∂x ε−1. ∂f(0;0)

∂λ

1/γ 0

)
,

where 1 is the n × n identity matrix. The stability of the term ε−1. ∂f
∂λ

from (3) does
not guarantee stability of the shadow equilibrium, which will depend crucially on
∂f(0;0)

∂x .
For the state-shadowing system on x = 0 the switching layer system is

ελ̇ = f(y;λ), ẏ = −y/γ,

where λ ∈ (−1,+1), and the Jacobian of the equilibrium is

∂(ε.λ̇, ẏ)

∂(ε.λ, y)
=

(
ε−1. ∂f(0;0)

∂λ
∂f(0;0)

∂y
0 −1/γ

)
.

In this case it seems likely that the equilibrium of the shadow system remains an
attractor, the stability of the term ε−1. ∂f

∂λ
from (3) and the term −1/γ playing the

crucial role.

3 Examples

The following examples motivated the shadow regularizations proposed above.

GeneticRegulatoryNetworks. A typical gene network protein-only model gives the
dynamics of the concentration xi of the protein product of a gene i , for i = 1, . . . , n,
as

ẋi = Bi (Z1, . . . , Zn) − αi xi , Zi = step(xi − θi ) ,

where αi , θi > 0. In Edwards–Machina–McGregor–van-den-Driessche [1], this is
extended to include the intermediary role of mRNA. Instead, we make xi the con-
centration of the i-th mRNA molecule, and yi the protein product concentration for
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gene i , then the proposed model is

ẋi = Bi (Z1, . . . , Zn) − αi xi , ẏi = κi xi − βi yi , Zi = step(yi − θi ),

with αi ,βi ,κi , θi > 0.

Time delay. Assume a system modelled by ẋ = f (x;λ) with λ = sign(x) actually
switches not exactly when a solution x(t) lies at x(t) = 0, but when x(t − τ ) with a
time delay τ . We can define a delayed variable y(t) = x(t − τ ), or let

ẋ = f (x;λ), ẏ = (x − y)/τ ,

where λ = sign(y).

Plankton. A predator-prey system discussed in Piltz [4] for predator population x3

and prey populations x1, x2, is

ẋ1 = {r1 − x3μ} x1

ẋ2 = {r2 − x3(1 − μ)} x2

ẋ3 = {q1x1μ + q2x2(1 − μ) − m} x3

⎫⎬
⎭ ,

where μ = step(x1 − ax2), in terms of constants r1, r2, q1, q2, m, a. This assumes
the consumption of prey is proportional to their population x1 or x2. If, instead, con-
sumption is proportional to a variable y1 or y2, which tends towards the population,
we have

ẋ1 = r1x1 − x3y1μ
ẋ2 = r2x2 − x3y2(1 − μ)

ẋ3 = {q1y1μ + q2y2(1 − μ) − m} x3

ẏ1 = (x1 − y1)/γ1

ẏ2 = (x2 − y2)/γ2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

where μ = step(x1 − ax2).

Electronic sensors. A typical form for a piecewise affine control system is

ẋ = Ax + bu,

where u = step(x1 − θ), in terms of a constant matrix A and vector b describing
electronic components. In Kafanas [3] it is noted that, although a control system
implements control on the state x, it does so by measuring not x itself, but a sensor
value y, hence a more faithful model is

ẋ = Ax + bu, ẏ = (x − y).κ,

where u = step(y1 − θ), for some diagonal matrix κ.
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4 A United Form

We can express both the switch and state shadow regularizations together by writing

ẋ = f
(
sμ(x, y);λ

)
, ẏ = (x − y)/γ,

where λi = sign
(
Sμ(xi , yi )

)
for vector and scalar shadow functions sμ(x, y) and

Sμ(x, y) which satisfy sμ(x, x) = x and Sμ(x, x) = x , for example sμ(x, y) = μx +
(1 − μ)y and Sμ(x, y) = μx + (1 − μ)y. The switch-shadowing and state-shadowing
systems are obtained at the extremes for μ = 1 and μ = 0 respectively. In the most
general case we could consider γ to be a (contracting) matrix, and/or a function of x
and y.

In the future, it will be interesting to study how the stability of equilibria is affected
under such regularizations in general, and the implications this has for the structural
stability of piecewise smooth systems.

A final but important note must be made if the switching layer expression ελ̇ = · · ·
is derived as the approximation to a smooth system (as in, e.g., GRN models [1]).
Then, the ε on the lefthand side of this expression is actually a function of λ, which
makes the vanishing entries of the Jacobians from ∂ελ̇

∂ελ
become nonzero and, while

we expect this not to qualitatively affect the result as ε → 0, further study is required.
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Characterizing Tipping in a Stochastic
Reduced Stommel-Type Model
in Higher-Dimensions

Chris Budd, Paul Glendinning, Kaitlin Hill, and Rachel Kuske

Abstract During the workshop on Climate Modeling in Nonsmooth Systems, one
of the major discussions involved investigating including more realistic elements,
such as fluctuations and time variation, in nonsmooth models that undergo a sudden
transition, with an emphasis on conceptual climate models. A number of models
were discussed, including the Stommel 1961 model, the Paillard 1997 model, the
Eisenman–Wettlaufer 2009 model, and the Hogg 2008 model.

1 Introduction

There has been significant recent interest in classifying the various ways in which
a dynamical system may undergo a critical transition, where there is a sudden large
change in the state of the system as a parameter is varied; see Kuehn [7]. Conceptual
climate models may provide pertinent examples of systems which may undergo a
critical transition: there is currently broad scientific andpublic interest inwhether sud-
den transitions may occur in certain climate systems, including the “thermohaline”
circulation in the Atlantic; see [1, 8].
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2 The Stommel 1961 Model

During the workshop one major discussion involved investigating how fluctuations
influence tipping in nonsmooth models. For example, in the case of periodic fluctua-
tions Zhu, Kuske, and Erneux studied how the frequency of additive periodic forcing
affects the timing of tipping from a smooth saddle-node bifurcation in a canonical
system with a slowly drifting bifurcation parameter; see [15].

Given the range of conceptual models that include non-smooth dynamics in
climate dynamics [5, 6, 10, 14], one could also ask how different type of fluctuations
and time dependence will influence their behaviour. Here, we give a description of
the Stommel model, as an illustration of the appearance of nonsmooth dynamics in
climate models; see details in [14]. The Stommel model is a conceptual model of
the ocean’s thermohaline circulation, which is a part of the global ocean circulation
that drives global ocean currents via density gradients determined by salt and heat
fluxes; see Rahmstorf [12] for a brief description of the thermohaline circulation,
and Dijkstra [3] for an expository analysis of the dynamics of the Stommel model.

In Stommel’s model the Northern Hemisphere is represented by two well-mixed
ocean boxes connected on the surface by an overflow and at the bottom by a capillary
tube [14]; see Fig. 1. The temperature and salinity in the polar region box are given by
Tp and Sp, respectively. Likewise, the temperature and salinity in the equatorial box
are given by Te and Se. The equations for themodel can be expressed in dimensionless
form, after rescaling Dijkstra [3], as

dT

dt
= η1 − T (1 + |T − S|),

dS

dt
= η2 − S(η3 + |T − S|),

Te TpSe Sp

Fig. 1 Diagram of the two-box Stommel model, based on [14, Fig. 5]: (Te, Se) represent equatorial
temperature and salinity, respectively, and (Tp, Sp) represent polar temperature and salinity. The
boxes are connected on top by an overflow and on the bottom by a capillary tube. The flow rate
between the two boxes is assumed to be equal and of opposite signs through the overflow and
capillary tube
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where T ≡ Te − Tp represents the temperature difference between the equatorial
and polar boxes, S ≡ Se − Sp represents the corresponding salinity difference, and
(η1, η2, η3) are constants.

The Stommel model is of particular interest in the context of conceptual climate
models due to the fact that the hysteresis observed in the model has consistently
been observed in models with increased complexity as well, in certain parameter
ranges in several intermediate-complexity models [13] and in some global circula-
tion models [4, 9]. This consistency of results throughout the hierarchy of model
complexity has lead to significant scientific consensus on the possibly that hysteresis
is physically possible in the system [11].

Mathematically, the Stommel model is a nonsmooth system, with a switch wher-
ever T = S. To simplify the location of the switch, one may define V ≡ T − S so
that the system becomes

dT

dt
= η1 − T (1 + |V |), (1)

dV

dt
= η1 − η2 + η3(T − V ) − T − V |V | . (2)

There are two fold bifurcations in the (η2, V ) plane, one smooth and one nonsmooth;
we are ultimately interested in determining which terms of the model are essential
to this behavior and how one might embed similar bifurcation behavior in a higher-
dimensional system. For the physically interesting values of the parameters, the
Stommel model has either one or three fixed points. As the parameter η2 varies, two
of these experience a boundary equilibrium bifurcation (BEB) when V = 0 leading
to a non-smooth fold bifurcationwhere both are annihilated/created [2]. The nature of
this transition can be studied through normal form analysis, presented in [2, Chap. 5].
One of these fixed points coalesces with the third at a standard smooth saddle node
bifurcation. For other values of the parameters η1 and η3, the BEB leads instead to
a persistence of the fixed point, again in line with the normal form analysis in [2].
We are ultimately interested in determining which terms of the model are essential
to this behavior and how one might embed similar bifurcation behavior in a higher-
dimensional system. It is also of interest as to whether some of the more subtle
dynamics associated with the nonsmooth bifurcation is realistic in a climate model.
We can also explore whether similar behaviour is observed in more regular systems,
for example, if the |V | term is replaced by

√
ε2 + V 2, ε > 0.

3 Workshop Discussion and Preliminary Steps

The discussion and ongoing study of the workshop participants centers on the idea of
generating a reduced form of the Stommelmodel and determining possible behaviors
of models with similar characteristics in higher dimensions. The goal of identifying
an appropriate reduced model is to provide a well-understood basis upon which
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more realistic fluctuations and time dependence can be built. In this section we
outline the preliminary steps we have begun to take toward embedding the dynamics
of the Stommel model in higher dimensions. Certainly the nonsmooth fold, and
resulting hysteresis, observed in the Stommel model is generic to BEBs in many
higher dimensional nonsmooth systems [2].However, it is not clear at presentwhether
the hysteretic behaviour identified by Dijkstra in experimental runs of global ocean
circulation models, is due to a BEB as modelled in the Stommel system, or to the
more usual mechanisms seen in smooth systems, associated with the existence of
multiple saddle node bifurcations.

Our first step was to determine the reduced form of the Stommel model in one
dimension,

dx

dt
= −(μ + 1) + 2 |x | − H(x)x2,

where H(x) is the Heaviside function. This equation retains the Stommel model
skeleton and has no attractors other than the stationary points. In two dimensions, the
bifurcations in the original bifurcation diagram (one smooth fold and one nonsmooth
fold) are preserved if the terms of the system (1), (2) are reduced to

dT

dt
= η1 − T (1 + |V |),

dV

dt
= η1 − η2 − T,

which can be shown using the trace and determinant of the Jacobian.
At the workshopwe also discussed possible behaviors ofmaps with similar forms.

Going forward, we have begun working on classifying behavior which may occur
in higher dimensional versions of the reduced Stommel model without changing the
projected dynamics in the (η2, V ) plane. Future planned steps include investigating
the influence of fluctuations and additional time variation.
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Global Bifurcations in a Class
of Discontinuous Piecewise Linear Systems

Juan Castillo and Fernando Verduzco

Abstract In this work, we show some global bifurcations for a class of three-
dimensional discontinuous piecewise linear (DPWL) systems having a unique two-
fold point of visible-invisible type. We consider the simplest case of DPWL systems,
with two vector fields separated by a switching plane with a unique equilibrium point
in each half-space.

1 The DPWL Class Under Study

Consider the next family of three-dimensional DPWL system with two parameters
separated by the switching plane � = {

x ∈ R
3 : x1 = 0

}
,

ẋ =
{
F1(x) = A1x + b1, if x1 < 0,
F2(x) = A2x + b2, if x1 > 0,

(1)

where,

A1 =
⎛

⎝
0 1 0
1 0 0
1 1 −1

⎞

⎠ , A2 =
⎛

⎝
0 0 1

−1 μ 0
−1 1 + μ −1

⎞

⎠ , b1 = b2 =
⎛

⎝
0
1

1 + δ

⎞

⎠ ,

with δ,μ ∈ (−1, 1). This family has a unique two-fold point since |M | = 1, where
M = (eT1 , eT1 A1, eT1 A2)

T (see [1, 5, 6]), with eT1 = (1, 0, 0), and this point is local-
ized at the origin. In fact, the two-fold point is not a singularity of (1) since
F1(0) = F2(0) and the tangencies are visible-invisible at this point. On � we distin-
guish the following regions:
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x

x
x

π

(a) (b)

Fig. 1 (a) Flows and regions in normal form. We can see how the flows ϕt in {x1 > 0} and ψt in
{x1 < 0} hit �s , pull �e or cross �c, the switching plane �. (b) Dynamics on the invariant plane
when there is a stable focus in {x1 > 0}

�s = {x ∈ � : x2 > 0 and x3 < 0} ,

�e = {x ∈ � : x2 < 0 and x3 > 0} ,

�c = {x ∈ � : x2x3 > 0} ;

see Fig. 1a.

Lemma 1 wT x = k is an invariant plane of the DPWL system (1) if and only if
there exist real eigenvalues λ ∈ σ(A1) and γ ∈ σ(A2) such that

{
AT
1 w = λw,

AT
2 w = γw,

and

{
wT b1 + λk = 0,
wT b2 + γk = 0.

The equilibria of the vector fields F1(x) and F2(x) are p1 = (−1, 0, δ)T and
p2 = (1 − δμ,−δ, 0)T , respectively. The spectrums of matrices A1 and A2 are,
respectively, σ(A1) = {−1,−1, 1} and σ(A2) = {−1, (μ ± i

√
4 − μ2)/2}. Using

Lemma 1, it is possible to prove that, for λ = γ = −1, the plane π = {x ∈ R
3 :

x3 = x2 + δ} is an attractive invariant plane for the DPWL system (1); see Fig. 1b.

Lemma 2 The DPWL system (1) has the invariant plane π, on which the dynamics
is given by the piecewise linear system

ẏ =
{

(y2, y1 + 1)T , if y1 < 0,
(y2 + δ,−y1 + μy2 + 1)T , if y1 > 0.

Besides, since π is a global attractor, the bifurcations undergoing the family (1)
happen at π.

Following Filippov’s convex method (see Filippov [2]), we can define a sliding
vector field in�s ∪ �e but, since the first component vanishes in this case, we define
the planar sliding vector field
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ż = Fs(z) = 1

x2 − x3

(
μx22 + x2 − x3

(1 + μ)x22 − 2x2x3 + (1 + δ)(x2 − x3) + x23

)
,

where z = (x2, x3)T . Notice that Fs(z) has no equilibria for the parameter values
considered. Regardless of wether the equilibria exist, if we take an initial condition
of the form z0 = (x20, x20 + δ)T , i.e., if we take z0 ∈ (�s ∪ �e) ∩ π, then

Fs(z0) =
(
1 − μ

δ
x220

1 − μ
δ
x220

)
.

That is, the intersection of the invariant planewith the switching plane is also invariant
under the sliding vector field.

2 Crossing Homoclinic Bifurcation: The Center-Saddle
Case

If we make μ = 0 and take δ as our bifurcation parameter in the DPWL system (1),
this undergoes a bifurcation that is only possible in nonsmooth systems and it happens
when δ varies from its nominal value δ = 0.

Proposition 3 Assuming μ = 0 in the DPWL system (1), the following hold:

(i) if δ = 0, there exists a crossing homoclinic orbit connecting the saddle point p1
to itself;

(ii) if δ < 0 (δ > 0), there exists a stable (unstable) center-cycle, i.e., a bounded
center configuration where its outermost periodic orbit (the tangent one to the
boundary at the point (0,−δ, 0)T ) is stable (unstable) from outside.

Remark 4 It is important to note that the sliding vector field in this case is linear,
that is, Fs(z) = (1, x2 − x3 + 1 + δ)T . This is because the singularity at the origin
is removed and moreover, when δ = 0, it holds that F1(x) = F2(x) = (x2, 1, 1)

T for
all x ∈ � ∩ π. That is, the DPWL system (1) is continuous in π. The bifurcations
considered in the next sections are obtained fixing δ and taking μ as the bifurcation
parameter; see [3, 4, 7, 8].

3 The Focus-Center-Sliding Cycle Bifurcation

Proposition 5 For the DPWL system (1) the following statements hold:

(i) if −1 < δ < 0 then there exists a stable focus for μ < 0, a stable center-cycle
for μ = 0, and a stable sliding limit cycle for μ > 0;

(ii) if 0 < δ < 1 then there exists an unstable sliding limit cycle for μ < 0, an
unstable center-cycle for μ = 0, and an unstable focus for μ > 0.
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We exclude the case δ = 0 since the DPWL system (1) does not satisfy the
hypotheses given in Ponce–Ros–Vela [8].

4 Continuation of the Sliding Limit Cycle: Sliding
Bifurcations

4.1 Buckling Bifurcation

Proposition 6 For the DPWL system (1) the following statements hold:

(i) if −1 < δ < 0 then there exists μ1 > 0 so that the standard piece of the stable
sliding limit cycle returns to the sliding segment at the invisible fold point;

(ii) if 0 < δ < 1 then there exists μ̃1 < 0 so that the standard piece of the unstable
sliding limit cycle returns to the sliding segment at the invisible fold point.

4.2 Crossing Bifurcation

Proposition 7 For the DPWL system (1) the following statements hold:

(i) if −1 < δ < 0 then there exists μ2 > μ1 so that the stable sliding limit cycle
becomes into a stable crossing limit cycle;

(ii) if 0 < δ < 1 then there exists μ̃2 < μ̃1 so that the unstable sliding limit cycle
becomes into an unstable crossing limit cycle.

5 Crossing Homoclinic Bifurcation: The Focus-Saddle Case

Proposition 8 For the DPWL system (1) the following statements hold:

(i) if −1 < δ < 0 then there exists a stable crossing limit cycle for μ2 ≤ μ < μ3,
a crossing homoclinic orbit for μ = μ3, and an unstable focus for μ > μ3;

(ii) if 0 < δ < 1 then there exists an unstable crossing limit cycle for μ̃3 < μ ≤ μ̃2,
a crossing homoclinic orbit for μ = μ̃3, and a stable focus for μ < μ̃3.
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Fig. 2 Bifurcation diagram
of the family (1) for the case
μ ≥ 0 and δ < 0

δ

μ

Figure2 shows the bifurcation diagram of the family (1) for the case μ ≥ 0 and
δ < 0.
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Single-Impact Orbits Near Grazing Periodic
Orbits for an Impact Oscillator

D.R.J. Chillingworth

Abstract We describe a geometric approach to understand the mechanism of cre-
ation and annihilation of single-impact periodic orbits close to grazing for a general
second-order one degree of freedom impact oscillator. Here, non-degenerate grazing
(nonzero acceleration) is assumed, with approaches to degenerate grazing also out-
lined: this is work in progress. The method in principle extends to more degrees of
freedom (coupled oscillators, for example) and to a variety of restitution rules such
as soft impacts, delays or sticking.

1 Introduction

The local and global dynamics of a periodically forced damped linear oscillator with
one degree of freedom with constant coefficients such as

ẍ + dẋ + kx = h sin t, x, t ∈ R

are very well understood and can be found in almost any textbook on ordinary differ-
ential equations. The same cannot be said, however, if the variable x is constrained
so that x ≥ c for a given constant c (the clearance) and a restitution law such as
ẋ �→ −r ẋ is applied whenever x = c. Many aspects of the behaviour are known
and a wide range of results indicating tantalising geometrical structures evident in
the global dynamics has been obtained, from the pioneering work of Whiston [16,
17] through the geometric, analytic and numerical investigations of Bishop [1],
Budd et al., [5, 6], Chin–Ott–Nusse–Grebogi [10], Nordmark [13], Nordmark–
Piiroinen [14], Zhao–Dankowicz [18] andmany others to the very detailed numerical
results due to Piiroinen [11]. Nevertheless, a full global picture is still lacking.

D.R.J. Chillingworth (B)
Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, UK
e-mail: drjc@soton.ac.uk

© Springer International Publishing AG 2017
A. Colombo et al. (eds.), Extended Abstracts Spring 2016,
Trends in Mathematics 8, DOI 10.1007/978-3-319-55642-0_7

37



38 D.R.J. Chillingworth

2 The Impact Surface

The purpose of this note is to advertise one particular application of an overall geo-
metric approach to understanding the dynamics of an impact oscillator that was first
introduced in Chillingworth [7], developed further in Chillingworth [8] and effec-
tively exploited in applications, for example, by Mason–Humphries–Piiroinen [12].
Following Sotomayor–Teixeira [15], the key idea applied here to general nonlinear
systems of the form

ẍ + f (x, ẋ) = g(t), x ∈ R (1)

is to ‘straighten out’ the flow of the system (1) regarded as an autonomous sys-
tem in (x, ẋ, t)-space R3, whereupon the obstacle x = c becomes a (non-planar)
2-manifold with some well-understood singular points and which is called here the
impact surface Vc. Specifically

Vc := {(v, τ , t) ∈ R3 : xc(v, τ , t) = c},

wherewewrite xc(v, τ , t) = x(c, v, τ ; τ + t) denoting the solution of (1)with initial
data (x, ẋ) = (c, v) when t = 0. The sequence of impacts with x = c for any orbit
(although not the geometry of the orbit itself away from x = c) can be read off by
starting at (v, τ , 0) in R3 with v ≥ 0, proceeding along the positive t-axis until first
meeting Vc, then applying a re-set map φ that takes the current data (ẋ, τ + t) as
new initial data (v, τ ), and finally applying the restitution map R that replaces ẋ by
−r ẋ (or possibly something more general) before setting off again along the positive
t-direction.

An elementary property of the impact surface is easily seen, namely, grazing
orbits: the condition that an orbit with initial data (v, τ ) should graze the obstacle
(that is, x = c and ẋ = 0) at t = t1 is precisely the condition that the line parallel to
the t-axis through (v, τ , 0) should be tangent to Vc at t = t1.

3 Single-Impact Periodic Orbits

Suppose now that the forcing function g(t) in (1) is periodic with period T > 0.
Locating single-impact T -periodic orbits can be described geometrically as follows.
Let

γ := {(v, τ , T ) ∈ Vc and (v, τ , t) /∈ Vc for 0 < t < T },

namely that part of the intersection of Vc with the plane t = T that can be ‘seen’ in
the positive t-direction from (v, τ )without obstruction by other parts of Vc. Let α be
the projection of γ into the (v, τ )-plane (the points from which γ is ‘seen’) and let β
be the image of γ under the re-set map φ. Then the points (if any) of α ∩ Rβ (mod T
in the τ -coordinate) are precisely the initial data points for single-impact T -periodic
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Fig. 1 The two curves
α = π(γ) and β = φ(γ)
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β

p′

v
t

τ

π

T

q

(τ ,0)p= ϕ

= T(τ +  , 0)

orbits. From this point of view, therefore, the study of single-impact T -periodic orbits
becomes the study of the intersections of α and Rβ.

Let π denote the restriction to Vc ⊂ R3 of the projection map (v, τ , t) �→ (v, τ ) ∈
R2. The local geometry of the two maps π,φ : Vc → R2, as well as their perturba-
tions, is governed by their singularity structure. The singular locus of the projection
π is the horizon curve Hc, where Vc is tangent to the t-direction (that is, ẋ = 0).
The singular locus of φ is, as shown in Chillingworth [7], the zero curve Zc, where
v = 0. The study of grazing single-impact T -periodic orbits and their bifurcations as
c and/or other parameters are varied, therefore, becomes the study of the singularities
of π and φ at points q ∈ Vc where v = 0 and ẋ = 0, that is, at points of Hc ∩ Zc.

In the least degenerate case of a grazing single-impact T -periodic orbit the initial
accelerationa = a(τ ) is nonzero and so at the correspondingpointq ofγ the tangency
ofVcwith the t-direction is quadratic (ẍ = a �= 0). In this case (seeChillingworth [7])
each of π and φ has a fold singularity at q. The curve γ through q is in each case
mapped to a curve tangent to the image of the fold curve; see Fig. 1.

Straightforward calculations show that the images of the fold curves for π and
φ have tangent directions (−xv, xτ ) and (1, a) respectively, the subscripts denoting
derivatives with respect to initial data, and so the curves α = π(γ) and Rβ = Rφ(γ)
cut transversely, provided xτ − arxv �= 0, where for general R(ẋ, τ ) we write r =
r(τ ) = −∂R/∂ ẋ at ẋ = 0. With this generic assumption and in view of the stability
of fold singularities, we immediately deduce the following result.

Proposition 1 Whena(τ ) �= 0 the grazing single-impact T -periodic orbit is isolated
(if v or τ varies there is no such nearby orbit). If μ is any perturbing parameter such
that the intersections of α, Rβ with the τ -axis pass through each other as μ passes
through 0 then a single-impact (non-grazing) T -periodic orbit persists for one sign
or the other of μ.



40 D.R.J. Chillingworth
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Fig. 2 Displacement of α and Rβ after perturbation. In case (a) the single-impact periodic orbit is
real (v > 0), while in case (b) it is unphysical (v < 0)

See Fig. 2 for a schematic illustration of this geometry. The case (a) shows a real
impact with initial velocity v > 0, while case (b) shows a virtual impact (v < 0).
Numerical continuation methods would of course detect both cases as it is only the
physical interpretation of the model that causes (b) to be rejected. Note that if the
grazing orbit at μ = 0 is hyperbolic for the ‘free’ system (obstacle removed), then it
persists as a non-impacting periodic orbit of the impact oscillator for one sign or the
other of μ. When the impacting and non-impacting T -periodic orbits are present for
the same sign of μ, the interaction is sometimes called a nonsmooth fold bifurcation.

The fold geometry just described was presented in Chillingworth–Nordmark [9],
but the next challenge is to understand the more complicated singularity deforma-
tions that arise when a T -periodic orbit with degenerate graze (zero acceleration) is
perturbed.

4 Degenerate Grazing

The singularity structure of the map π : Vc → R2 plays a key role in understanding
the geometry of impacting orbits close to a grazing orbit. The image in R2 of the
singular set forms the so-called apparent outline or apparent contour of Vc viewed
in the t-direction. The generic behaviour of apparent outlines and their deformations
under perturbation iswell understood as a sub-discipline of singularity theory; see, for
example, [2–4]. The singularities of the re-set map φ : Vc → R2 play an equivalent
role and, as shown above, it is the interaction of the singularities of π and φ that
govern the existence of impacting T -periodic orbits.

For nondegenerate grazing as studied above the singularities are no worse than
folds, which retain their geometry when perturbed. For degenerate grazing where
a(τ ) = 0, however, the singularities are typically swallowtail and beak-to-beak sin-
gularities and break up or (‘unfold’) under perturbation, so that tracking the inter-
sections of the arcs analogous to α and Rβ above becomes a much more delicate
task. In addition to this, the local geometry of Vc close to (0, τ ) and for small t > 0
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becomes significant: it controls complete and incomplete chatter arising from low-
velocity impacts (see [5, 8, 14] for example) and alters the interpretation of α ∩ Rβ.
There is much interesting geometry to elucidate here, and the investigation is work
in progress.

5 Generalisations

The impact surface method extends in principle to higher dimensions, for example
n coupled one degree of freedom oscillators with possible constraints ci ≤ xi ≤ di
for i = 1, 2, . . . , n. The ‘impact surface’ becomes a union of m ≤ 2n objects, each
typically a smooth manifold of codimension 1 in the space of initial data at impact
together with time elapsed since impact, while the ‘initial data’ plane (to which
data are re-set at each impact) becomes a union of m hyperplanes. Thus, there are
m projection maps π j and m re-set maps φ j for j = 1, . . . ,m. The local analysis
of singularities of these projection and reset maps continues to play a key role in
governing the dynamical behaviour close to grazing, but of course the technical
details become more complicated.

It is also straightforward to adapt themethod to soft impacts (restitutionwith delay)
or sticking: the impact surface and re-set map are unchanged, but the restitution map
becomes heavily dependent on the phase τ .

These formalisms, hardly yet developed in applications, generate a wealth of open
problems relating impact dynamics to geometry and singularity theory.
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A Choice Between Smooth and Nonsmooth
Models

Alessandro Colombo

Abstract Piecewise smooth systems are frequently used as an alternative repre-
sentation of mena with multiple time scales. One would of course expect that the
qualitative behaviour of a model be independent of the choice of a smooth or piece-
wise smooth representation. We address this issue by building on some classical
results from piecewise smooth systems theory.

1 Smooth or Piecewise Smooth?

Piecewise smooth and slow-fast systems are frequently used as alternative
mathematical representations of the same phenomenon. From an applied scientist’s
perspective, having a choice between two languages can be useful, for instance, to
pick the most appropriate formalism for a given numerical analysis tool, as long as
the differences in the results that can be expected are well understood. Unfortunately,
the differences in the behaviour of a smooth and piecewise smooth system that were
built to be ‘close’ are rarely well understood.

This problem was addressed many times in the literature, and a fruitful branch of
research started from the work Sotomayor–Teixeira in [3] on the smoothing of a two-
dimensional piecewise smooth system. What we propose here is a small extension
of this branch, mostly built on classical results available in Filippov [1]. Our main
results can be roughly stated as follows:

Statement 1 The dynamics of a piecewise smooth system is a superset of the dynam-
ics of the smooth system it represents (i.e., of its smoothing).

Statement 2 The bifurcation diagram of a piecewise smooth system contains all
transitions in the bifurcation diagram of its smoothing, but some of these transitions
can take place simultaneously.

A. Colombo (B)
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These two statements are formalised in Theorems 10 and 12, respectively. With
respect to existing results, they have the advantage of requiring no assumptions
on dimensionality, the relative geometry of flow and discontinuity surfaces, or on
structural stability. Furthermore, they are written assuming one smooth discontinuity
boundary for the sake of simplicity, but nothing in the proof prevents their extension
to arbitrarily many (possibly intersecting) boundaries.

The next section simply collects definitions and lemmas from Filippov [1],
reported here for reference. Our original results are in Sect. 3.

2 Preliminary Results

Lemma 3 (Filippov [1, Lemma 1]) If two nonempty closed sets A and B do not
have common points and B is bounded, then there exists points a ∈ A and b ∈ B
such that inf x∈A, y∈B |x − y| = |a − b| > 0.

Definition 4 (Upper semicontinuous) The function F(x) is upper semicontinuous at
the point x if supẋ′∈F(x′) inf ẋ∈F(x) ‖ẋ′ − ẋ‖ → 0 as x′ → x, where ‖ · ‖ is the Euclid-
ean norm.

Definition 5 (Basic conditions)A set-valued function F(t, x) in a domainG satisfies
the basic conditions if, for all (t, x) ∈ G, the set F(t, x) is nonempty, bounded,
closed, convex, and the function F is upper semicontinuous in t, x.

Lemma 6 (Filippov [1, Theorem 2]) Let F(t, x) satisfy the basic conditions in a
closed bounded domain D. Then each solution of the inclusion ẋ ∈ F(t, x) lying
within D can be continued on both sides up to the boundary of the domain.

Definition 7 A vector function y(t) is a δ-solution of the inclusion ẋ ∈ F(x, t) with
F upper semicontinuous in t, x if, on a given interval, the function y(t) is absolutely
continuous and almost everywhere ẏ(t) ∈ [coF(tδ, yδ)]δ , where the superscript indi-
cates a δ-neighbourhood of the superscripted set, and co(·) is the convex hull of its
argument.

Lemma 8 (Filippov [1, Lemma 1]) Let F(t, x) satisfy the basic conditions in the
open domain G, and let {xi (t)} be a sequence of δi -solutions of

ẋ ∈ F(t, x) (1)

lying for ai ≤ t ≤ bi in a closed and bounded domain G, with δi → 0, ai → a,
bi → b, xi (ai ) → x0 and xi (bi ) → x∗. Then, from the sequence {xi (t)}, one can
extract a subsequence which converges uniformly to the solution x(t) of (1) on each
[a′, b′] ∈ (a, b), and x(a) = x0, x(b) = x∗.
Lemma 9 (Filippov [1, Theorem 3]) Let the function F(t, x) satisfy the basic con-
ditions in the domain G. Let all solutions of ẋ ∈ F(t, x) exist for a ≤ t ≤ b and their
graphs lie in G. Then the set H of the points lying on these graphs at a ≤ t ≤ b is
bounded and closed.
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3 Main Results

The following theorem proves that each orbit of the smoothing of a piecewise smooth
system1 uniformly converges to an orbit of the piecewise smooth system.

Theorem 10 Consider two smooth vector fields f + and f − defined over a common
domain X, and take two smooth functions h : X → R and φ : R → R, and three
scalars λl ,λh ∈ R, ε ∈ R≥0. Consider the system �1 defined as

ẋ = F1(t, x) := f +(x)φ(h(x)/ε) + f −(x)(1 − φ(h(x)/ε))

φ(·) ∈ [λl,λh],
φ(h(x)/ε) = 1 when h(x)/ε ≥ 1

φ(h(x)/ε) = −1 when h(x)/ε ≤ −1,

and the system �2 defined as

ẋ ∈ F2(t, x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f +(x), h(x) > 0

f −(x), h(x) < 0,

co{λh f +(x),λl f +(x),
(1 − λh) f −(x), (1 − λl) f −(x)}, h(x) = 0.

Solutions of �2 are intended in the sense of Filippov. Assume that F2 satisfies the
basic conditions, and all its solutions exist for a ≤ t ≤ b and have graph in an open
domain G. Then, each orbit of �1 uniformly converges to an orbit of �2 in G for
ε → 0.

Proof By Lemma 9, the set H of points (t, x), a ≤ t ≤ b, belonging to the graph of
solutions of �2 is closed and bounded. By Lemma 3,

inf
α∈H,β∈∂G

|α − β| = ρ0 > 0. (2)

Take a closed and bounded d-neighbourhood Hd of H , with 0 < 2d < ρ0,
and take a sequence xi (t) of solutions of �1(εi ), i = 1, 2, . . ., with |t0i − t0| ≤ εi ,
|xi (t0i ) − x0(t0)| ≤ εi .

By construction, we have that

F1 ⊂ [coF2(t
εi , xεi )]εi , (3)

where the superscript indicates an εi -neighbourhood of the superscripted set. By (2),
Hd is contained inG so, by Lemma 6, each solution xi (t) can be continued both sides

1In fact, of a slight generalization of the smoothing in [3], where the smoothing functionφ is allowed
to take values in an arbitrary interval [λl ,λh], as long as it goes to ±1 out of an ε-neighbourhood
of the discontinuity.
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up to the boundary of Hd and, since Hd contains H , all xi (t) exist for all t ∈ [a, b].
Also, observe that all solutions xi (t) are absolutely continuous, being integrals of F1,
therefore by (3) they are εi -solutions of �2. By Lemma 8, a subsequence of {xi (t)}
converges uniformly to a solution of �2. �

Definition 11 (see Kuznetsov [2]) Two families of dynamical systems �1,ε(p) and
�1,ε′(p′) in the parameter p are topologically equivalent if

(i) there exists a homeomorphism of the parameter space hε,ε′ : R → R, p′ =
hε,ε′(p),

(ii) and there exists a parameter dependent homeomorphism of the phase space,
hε,ε′,p : Rn → R

n , mapping orbits of �1,ε(p) at parameter p onto orbits of
�1,ε′(p′) at parameter p′ = hε,ε′(p), and preserving the direction of time.

The following theorem states that the one-parameter bifurcation diagram of �1

limits to the one-parameter bifurcation diagram of �2 through a surjective but non-
injective mapping, i.e., all transitions in the bifurcation diagram of �1 are present in
the bifurcation diagram of �2, but some may take place simultaneously.

Theorem 12 Consider the systems �1 and �2 from Theorem 10, and let p be a
parameter of f + and f −. Take two continuous functions pL(ε) : [0, εmax] → R and
pH (ε) : [0, εmax] → R, with pL(ε) < pH (ε) for all ε ∈ [0, εmax]. Let the homeomor-
phism hε,ε′ of Definition 11 be surjective from (pL(ε), pH (ε)) to (pL(ε′), pH (ε′)) for
all pairs {ε, ε′}. Assume that
(1) for all ε, ε′ ∈ (0, εmax], the families of systems �1,ε(p), p ∈ (pL(ε), pH (ε)) and

�1,ε′(p), p ∈ (pL(ε′), pH (ε′)) are topologically equivalent;
(2) the homeomorphism hε,ε′ between the parameter spaces of �1,ε and �1,ε′ is

continuous in |ε − ε′| and equal to the identity at ε = ε′;
(3) the homeomorphism hε,ε′ between the parameter spaces of �1,ε and �1,ε′ is

Lipschitz in p, with Lipschitz constant independent of ε.

Then, for any ε ∈ (0, εmax],
(i) there exists a continuous but not necessarily invertible map Hε : [pL(ε),

pH (ε)] → [pL(0), pH (0)], p′ = Hε(p), and
(ii) there exists a map Hε,p : Rn → R

n, not necessarily invertible in x, mapping
orbits of�1,ε(p) at parameter p onto orbits of�2(p′) at parameter p′ = Hε(p).

Sketch of the proof Using Assumptions (1) and (2), for any �1,ε∗(p) we can con-
struct a path p(ε) : (0, ε∗] → R such that all �1,ε(p(ε)) are topologically equivalent
systems. The map Hε(p) is the limit of hε,ε′ as ε′ → 0, and is continuous being
a limit of a sequence of Lipschitz maps (3). Then, by Theorem 10, each orbit of
�1,ε(p(ε)) uniformly converges to an orbit of �2(p(0)) as ε → 0. The induced map
is the map Hε,p. �
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Sliding Mode Control of Heterogeneous
Systems

Manuel Domínguez-Pumar, Sergi Gorreta, Teresa Atienza,
Elena Blokhina, and Joan Pons-Nin

Abstract This paper establishes a link between closed-loop controls for heteroge-
neous systems and sliding mode controls. We demonstrate that sliding mode analysis
matches with experimental results from dielectric charge controllers. This approach
provides a new way to analyze the behaviour of different heterogeneous systems.

1 Introduction

In heterogeneous systems some of the state variables are not part of electronic circuits
or mechanical systems. In some cases these systems can be described by multiexpo-
nential models, on which different coexisting physical mechanisms generate differ-
ent time responses, i.e., thermal response of devices, charge trapping in dielectrics,
relaxation times in magnetic resonance imaging or even chemical sensing. The best
performance is often obtained when working in closed-loop configurations, be it
because the time response of the system is improved or because unwanted behaviour
is avoided.

There is a link between sigma-delta modulators (��) and sliding mode con-
trollers; see Sira-Ramírez [7]. This paper focuses on this connection in the case of
heterogeneous systems described by multiexponential models. The study-case is a
class of �� dielectric charge controllers for MEMS from [1, 6], shown in Fig. 1.
We provide experimental results in which control bitstreams are analyzed and com-
pared with sliding mode analysis. The effect of external disturbances due to ionizing
radiation is also investigated.
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Fig. 1 �� controls of dielectric charging: (a) first order; (b) second order

2 �� Controls of Dielectric Charge and Average System

The control loops use two different waveforms, BIT0 and BIT1, both to actuate the
MEMS and to indirectly sense the net charge stored in the dielectric; see Fig. 2. In
the MEMS used, applying BIT0 increases such charge while BIT1 decreases it. In
Fig. 1a the net charge is compared with a target value at sampling times nTS and,
depending on the result, either BIT0 or BIT1 is applied for the next cycle. The
actuation provided is bipolar and the switching takes place at the surface of the state
variables determined by total charge constant and equal to target value. This means
that, under some conditions, a sliding movement takes place on this surface.

Let us first generate an ‘equivalent average system’ to take into account the pre-
determined voltage switching done within BIT0 and BIT1. For an arbitrary binary
voltage signal v(t) ∈ {V +, V −}, we can describe the time-varying linear system as:

ẋ(t) =
{

A1x(t) + B1, v(t) = V +,

A0x(t) + B0, v(t) = V −,

where Ai ∈ R
n×n , Bi ∈ R

n , i = {0, 1}. In our case, we may use the charging models
obtained in Domínguez-Pumar–Gorreta–Pons-Nin–Blokhina–Giounanlis–Feely [2].
At the moment of switching between voltages, the state vector x(t) is continuous.
The output of the system is the net dielectric charge, q(t) = cT x(t), where c =
(1, . . . , 1)T ∈ R

n and q(t) ∈ R.
Now, considering the rapid deterministic switching related with BIT0 and BIT1

actuation signals, we have the following average control system, valid for TS → 0:

V+

V-

BIT0

(1- )Ts Ts

t

(1- )Ts Ts

V+

V-

BIT1

t

Fig. 2 Bipolar voltage waveforms used to actuate the MEMS



Sliding Mode Control of Heterogeneous Systems 51

ẋ =
{

Ab1 x + Bb1 , σ > 0,

Ab0 x + Bb0 , σ < 0,
(1)

with σ = cT x(t) − Qtarget, being Qtarget the desired-target amount of net charge, and

Ab1 = (1 − δ)A1 + δA0, Bb1 = (1 − δ)B1 + δB0,

Ab0 = δA1 + (1 − δ)A0, Bb0 = δB1 + (1 − δ)B0.

3 Sliding within the Control Surface S

To predict the conditions to have a sliding motion and the obtained behaviour of the
bitstreams, let us now analyze the system using the average system obtained. Here,
we apply the techniques used in relay feedback systems in [4, 5]. This will provide
conditions guaranteeing the existence of a sliding region within the control surfaceS.

We have that σ̇ = cT ẋ . Assuming that the control law tends to compensate charge,
i.e., we have cT Bb1 < 0 and cT Bb0 > 0, the following subset of the control surface

� := {
x ∈ R

n : cT Ab1 x < −cT Bb1

} ∩ {
x ∈ R

n : cT Ab0 x > −cT Bb0

} ∩ S

is attractive. This is due to the fact that, for any x ∈ R
n such that σ(x) < 0, we have

σ̇(x) > 0, whereas if σ(x) > 0 then we have σ̇(x) < 0. Therefore, we have σσ̇ ≤ 0
in a neighbourhood of �, which means that � ⊂ S is attractive.

Let us now assume that the conditions for an attractive control surface are fulfilled
and that the control surface is reached, therefore σ(x(t)) = cT x(t) − Qtarget = 0. The
average system, defined as the limit control for TS → 0, can be seen as a particu-
lar case of ẋ(t) = f (σ(x)), being f (σ(x)) a discontinuous function. Obtaining a
solution in the sense of Filippov yields

f (σ(x))

∣∣∣
σ(x)=0

:= α(x) f (σ(ζ))

∣∣∣
ζ→x,σ(ζ)>0

+ (1 − α(x))) f (σ(ζ))

∣∣∣
ζ→x,σ(ζ)<0,

(2)

with α(x) ∈ [0, 1]. In other words, the derivative will be tangent to the sliding surface,
i.e., f (σ(x))|σ(x)=0 ∈ Tx(t)S, being S the sliding manifold σ(x) ≡ 0. This implies
that

d

dt
(σ(x))

∣∣∣
σ(x)=0

= 0 = cT ẋ = cT f (σ(x))

∣∣∣
σ(x)=0,

with f (σ(x))|σ(x)=0 defined in (2), i.e., the system continues to slide on the surface
σ(x) = 0. Taking this into account, α(x) ∈ [0, 1] must be such that

cT
[
α(x)

(
Ab1 x + Bb1

) + (1 − α(x))
(

Ab0 x + Bb0

)] = 0,
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which means that

α(x) = − cT Ab0 x + cT Bb0

cT (Ab1 − Ab0)x + cT (Bb1 − Bb0)
. (3)

In fact, α(x) is the average output of the �� modulator as a function of the
instantaneous state vector x(t). It may also be seen as the equivalent control necessary
to keep the system in the sliding surface. From (3) we can find the non linear equation
describing the time evolution of the system once it has reached the sliding surface

ẋ = α(x)
(

Ab1 x + Bb1

) + (1 − α(x))
(

Ab0 x + Bb0

)
. (4)

Expressions (3) and (4) describe the time evolution of the charge control once
it is in the control surface σ ≡ 0. This represents the equivalent average system of
the systems defined in (1) when the �� control is in the fast switching regime, the
sliding region.

The average bitstream α(x) is obtained in real applications with a low pass filter;
see Fig. 1. Although the spectrum properties of 1st and 2nd order �� modulators are
clearly different, the average bitstream, i.e., the converted value of both controllers
seen now as analog-to-digital converters, will be the same. The reason is that the
average output will be the one necessary to keep the system on the control surface,
i.e., LPF{bn} = α(x).

4 Experiments and Discussion

In the experiments, the charge is sensed through the voltage shift, an affine function
of the net charge that can be easily obtained from measurements. Figure 3a reports
a control experiment on which three different target voltage shifts (thus three values

V+ = -V- = 4V, δ = 0.2, TS = 2.5s

(a) (b)

Fig. 3 (a) Voltage shift as a function of time when �� control is applied with three consecutive
target voltage shifts, +0.5V , −0.75V , and 0V ; (b) sliding mode analysis compared with the actual
measurements obtained with 1st and 2nd order �� controls
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Fig. 4 Voltage shift and
average bitstream when ��

control is applied to set zero
net charge, while the MEMS
is under a sequence of
radiation and no radiation
steps
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of Qtarget) are successfully achieved. As stated above, no differences were found
when using 1st or 2nd order �� controls. Figure 3b shows the excellent agreement
between the experimental bitstreams obtained using �� controls and the sliding
model analysis proposed here.

Figure 4 shows the results of an experiment in which ionizing Gamma radia-
tion is applied to the MEMS while control is setting zero net charge. A clear cor-
relation between the irradiation sequence and the average bitstream is observed.
Specifically, from the moment on which irradiation starts there is a change in the
bitstream, which is necessary to continue sliding on the control surface. This is
compatible with a mismatched disturbance in the sliding mode controller due to
the charge induced by radiation; see Domínguez-Pumar–Gorreta–Pons-Nin–Gómez-
Rodríguez–González-Castaño [3].
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Limit Cycle Bifurcation from a Persistent
Center at Infinity in 3D Piecewise Linear
Systems with Two Zones

Emilio Freire, Manuel Ordóñez, and Enrique Ponce

Abstract We consider a specific family of three-dimensional differential systems
whose vector field is continuous and piecewise linear, with two regions separated by
a plane. After detecting a center configuration at infinity, we look for possible limit
cycle bifurcation from such a center, by allowing parameter variations that do not
destroy the center configuration.

1 Introduction

We study the mechanisms leading to the appearance of periodic orbits in a 3D PWL
systemwith two linearity zones. The problem is motivated by a conjecture appearing
in Ponce–Ros–Vela [3], regarding the bifurcation of a small limit cycle associated
to a boundary equilibrium bifurcation. After some preparation work, which includes
a blow-up, the bifurcation of the small limit cycle is associated to the existence of
hyperbolic limit cycles in a differential system, namely

Ẋ = −Y,

Ẏ = X − Z ,

Ż = 1,

(1)

for X < 0, and
Ẋ = t X − Y,

Ẏ = m X − Z ,

Ż = d X + 1,

(2)

for X > 0. Here, the dot denotes derivative with respect a time τ , while t , m and d
stand for the trace, the sum of second order minors and the determinant, respectively,
of the matrix ruling the dynamics in the ‘right’ system.
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To investigate the existence of periodic orbits for system (1)–(2), we note first the
following straightforward result.

Lemma 1 If d ≤ 0 then system (1)–(2) cannot have periodic orbits.

It suffices to observe that, under hypothesis d ≤ 0, the derivative Ż > 0 and so
we cannot have closed orbits.

A first case where we can assure the existence of periodic orbits is when we are
near a bifurcation of the type focus-center-limit cycle; see Carmona–Freire–Ponce–
Ros–Torres [2, Theorem 1]. In such a case, an equilibrium point of node-focus
type becomes a node-center leading to a bounded period annulus in the focal plane,
with the biggest periodic orbit tangent to the plane X = 0. This critical situation
appears whenm > 0 andmt − d = 0 so that, if we consider t as being the bifurcation
parameter then its critical value is tc = d/m. Note that, according to Lemma 1, since
m > 0 we must have tc < 0.

By moving the bifurcation parameter t away from its critical value, a limit cycle
can bifurcate from thementioned periodic orbit tangent to the separation plane, under
adequate hypotheses. In fact, by resorting to Carmona–Freire–Ponce–Ros–Torres [2,
Theorem 1] for d < 0, we can state the following result.

Proposition 2 System (1)–(2)with 0 < m �= 1 and d < 0 undergoes a focus-center-
limit cycle bifurcation for t = tc; that is, from the linear center configuration that
exists for X > 0 when t = tc, one limit cycle appears for (1 − m)(t − tc) > 0 and
|t − tc| sufficiently small.

In particular, if m < 1 then the limit cycle bifurcates for t > tc and is orbitally
asymptotically stable, while when m > 1 one unstable limit cycle bifurcates for
t < tc.

The limit cycle predicted by Proposition 2 will persist for some range of values
of t until its possible disappearance in another bifurcation. Precisely, in this work we
are interested in the characterization of another bifurcation allowing us to assure such
disappearance (or its appearance, if we consider the opposite change in parameters)
of the limit cycle. A pertinent remark in such approach is the following.

Remark 3 System (1) admits the first integral H(X,Y ) = (X − Z)2 + (Y + 1)2, so
that there exists the family of invariant cylinders H(X,Y ) = k, which share as their
common axis the straight line X = Z , Y = −1.

From Remark 3, we can surmise the existence of a center at infinity, generated by
the above family of cylinders. Such a center, when considered in the corresponding
Poincaré sphere, should be limited to the half-sphere corresponding to X < 0, so
that from the outermost periodic orbit of the center another limit cycle bifurcation is
possible.

We remark that, while in Proposition 2 the center configuration is lost after the
bifurcation, here the change in parameters of the zone X > 0 does not alter the
dynamics in the other zone at all, and so the center at infinity will persist after the
possible bifurcation, to be just associated to a change in the stability of the outermost
periodic orbit of the center.
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2 Study of the Center at Infinity

Instead of considering the Poincaré compactification of the vector field (see Buzzi–
Llibre–Medrado [1]) we can simply study the most interesting chart at infinity, by
doing the change

X = u

w
, Y = v

w
, Z = − 1

w
,

where we assume w > 0.
After this change of variables, we arrive to the differential system

u̇ = −v + uw,

v̇ = u + 1 + vw,

ẇ = w2,

(3)

for u < 0, and
u̇ = tu − v + u(d · u + w),

v̇ = mu + 1 + v(d · u + w),

ẇ = w(d · u + w),

for u > 0.
In the invariant planew = 0 corresponding to the selected chart at infinity, it is easy

to see now that for system (3)we have indeed a linear center at (u, v, w) = (−1, 0, 0),
which is responsible for a period annulus tangent to the straight-line u = w = 0 at
the origin; see Fig. 1. This center is clearly a consequence of the invariant cylinders
of system (1).

Following the method of closing equations, we first obtain approximations of
high order both for the ‘right’ and the ‘left’ Poincaré maps in a neighborhood of the

Fig. 1 In the choosen chart
at infinity, the limit cycle
bifurcates from a persistent
center at the plane w = 0,
located in the region u < 0
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Fig. 2 The intervals of
existence of the limit cycle
according to Conjecture 5

origin at the plane u = 0. Thus, we compute (v1, w1) = PL(v0, w0) and PR(v1, w1),
imposing the equality (v0, w0) = PR(v1, w1); see Fig. 1.

As we have an invisible tangency at the line v = 0 on such a plane, the ‘right’ map
is an involution. Regarding Proposition 2, our main result is a kind of dual result, as
follows.

Theorem 4 System (1)–(2)with 0 < m �= 1 and d < 0 undergoes a limit cycle bifur-
cation from a center at infinity for t = d, so that one big limit cycle appears for
(1 − m)(t − d) < 0 and |t − d| sufficiently small.

In particular, if m < 1 then the limit cycle bifurcates for t < d and is orbitally
asymptotically stable, while when m > 1one unstable limit cycle bifurcates for t > d.

The proof of Theorem 4 requires a desingularization of the closing equations to
arrive at the corresponding bifurcation equation; such long computations will be
reported elsewhere.

Finally, it is natural to state the following conjecture; see Fig. 2.

Conjecture 5 System (1)–(2) with 0 < m �= 1 and d < 0 have at least one limit
cycle for all the values of t between tc and d. In particular, ifm < 1 then for tc < t < d
one limit cycle exists and it is orbitally asymptotically stable, while one unstable limit
cycle exists for d < t < tc when m > 1.
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Alternating Smooth and Nonsmooth
Bifurcations in a Discontinuous
Linear-Power Map

Laura Gardini, Roya Makrooni, and Iryna Sushko

Abstract We study the dynamics of a one dimensional discontinuous linear-power
map. It has a vertical asymptote giving rise to new kinds of border collision bifurca-
tions. We explain the peculiar periods of attracting cycles, appearing due to cascades
of alternating smooth and nonsmooth bifurcations. Robust unbounded chaotic attrac-
tors are also described.

1 Introduction

The large number of applied models characterized by sharp switching between dif-
ferent states are ultimately described by nonsmooth systems. One of the efficient
methods to investigate the dynamics of such systems is related to the construction of
a first return map on some Poincaré section of the phase space, leading to piecewise
smooth (PWS for short) maps, continuous or discontinuous. In particular, in engi-
neering the well known Nordmark systems associated with grazing bifurcations (see
[5, 6]) have been studied using PWS return maps with power function nonlinearities.
The present study deals with a particular case of such a map. It is defined by two
functions, fL(x) and fR(x), as follows:
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f : x �−→ f (x) =
{
fL(x) = ax − 1 i f x ≤ 0,

fR(x) = bx−γ − 1 i f x > 0,
(1)

where a, b and γ are real parameters, γ > 0.
The PWS map (1) for γ < 0 corresponding to the continuous case, has been con-

sidered by many authors; see, e.g., di-Bernardo–Budd–Champneys–Kowalczyk [1].
One of the characteristic features of map (1) is the occurrence of border collision
bifurcations (BCB for short). This term denotes the collision of an invariant set,
typically a periodic point, with a border at which the system function changes its
definition. In the study of one dimensional continuous PWS maps, the skew tent
map is used as a border collision (BC) normal form, which is a powerful analytical
tool to determine the effect of the BC of a cycle of any period; see Sushko–Avrutin–
Gardini [7] for a survey.

Besides γ < 0, also the case γ > 0 in which map (1) is a discontinuous map
with a vertical asymptote at x = 0, has been recently analyzed, mainly related to
the case of free terms equal to +1; see [3, 4]. In the present work we consider the
discontinuous map (1) and explain why peculiar cascades of alternating smooth and
nonsmooth bifurcations are observed, leading to the appearance of attracting cycles
of periods pi+1 = 2pi for odd i and pi+1 = 2pi − 1 for even i , where p0 = n, n ≥ 3,
is the period of an attracting cycle whose flip bifurcation (denoted S-flip) initiate the
cascade. We show also that map (1) can possess unbounded chaotic attractors which
are robust in some parameter regions and not robust in others. For all the proofs we
refer to Gardini–Makrooni–Sushko [2].

A typical view of the bifurcation structure of the parameter space of f is presented
in Fig. 1. In the following, after some preliminaries, we discuss first the parameter
range a < 0, b < 0, associated with invertible map and, thus, with more simple

Fig. 1 2D bifurcation diagrams of f in the (a, S(b))-parameter plane, where S(b) = arctan(b),
for 0 < γ < 1 in (a) and γ > 1 in (b); stripped regions are related to coexistence, colored regions
to attracting cycles of different periods, uncolored region to higher periodicity or chaotic attractors,
grey region to divergence. In (c) examples of map f are shown
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dynamics. Then we consider the range a < 0, b > 0, when f is noninvertible, which
we split in two subcases, for γ > 1 and 0 < γ < 1 related to quite different dynamics.

2 Preliminaries. Invertible Case: b < 0

The two partitions of the definition range of the map f are denoted as IL = (−∞, 0]
and IR = (0,+∞). To denote an n-cycle {xi }n−1

i=0 of the map f , we use its symbolic
representation, associating the symbol L with xi ∈ IL , and R with xi ∈ IR . The fixed
points of f are denoted as x = x∗

L = 1/(a − 1) ∈ IL , and x = x∗
R ∈ IR . The fixed

point x = x∗
L obviously exists for a < 1, being attracting for |a| < 1; at a = −1 it

undergoes a degenerate flip bifurcation (DFB for short). The fixed point x = x∗
R exists

for b > 0; it is repelling for γ ≥ 1, while for 0 < γ < 1 it undergoes a subcritical
flip bifurcation at

b = γγ

(1 − γ)γ+1
=: ψR,

being repelling for 0 < b ≤ ψR and attracting for b > ψR ; see Fig. 1. The following
propositions summarise the dynamics of f in the invertible case; see also Fig. 2.

Proposition 1 (Flip bifurcations of the 2-cycle LR) Let a < 0, b < 0, and γ > 0.
Then themap f given in (1) has a unique 2-cycle {x0, x1}with x0 < 1/a < 0, x1 > 0,
which undergoes a flip bifurcation at

b = 1

aγ

(
γ
a + 1

1 − γ

)γ+1

=: ψLR

Fig. 2 Bifurcation diagram a vs S(x) at b = −5, where S(x) = arctan(x). In (a) γ = 0.5, in (b)
γ = 2 and in (c) γ = 1, associated with the subcritical, supercritical and degenerate flip bifurcations
of the 2-cycle LR, respectively. For a = 1 related to DFB of x∗

L the interval [−1, 0] \ x∗
L is filled by

2-periodic points; additionally, for γ = 1 intervals (−∞,−1] \ x0 and [0,+∞) \ x1 are filled by
4-periodic points, being associatedwithDFBof the 2-cycle. The value a f is obtained by substituting
b = −5 and the related value of γ to b = ψLR ; see Proposition 1
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for γ 	= 1, and a = −1 for γ = 1. This flip bifurcation is subcritical for 0 < γ < 1
and the 2-cycle is attracting for b < ψLR; supercritical for γ > 1 and the 2-cycle
is attracting for b ≥ ψLR; degenerate for γ = 1, and the 2-cycle is attracting for
a < −1. Moreover, as a → 0−, the repelling 2-cycle LR disappears by a nonregular
BCB at a = 0: {x0, x1} |a=0 = {−∞, 0}.
Proposition 2 (BCB of the 4-cycle) Let a < 0, b < 0, and γ > 0. Then, for the map
f given in (1) at a = −1, a nonregular BCB of a 4-cycle (LR)2 occurs such that
for 0 < γ < 1 a repelling 4-cycle disappears as a → −1+; for γ > 1 an attracting
4-cycle disappears as a → −1−; the points of the 4-cycle (LR)2 at a = −1 are
{0,−∞,+∞,−1}.

3 Noninvertible Case: b > 0, γ > 1 (Periodicity Regions)

Proposition 3 (map g) Let b > 0 and γ > 0. Then the dynamics of the map f given
in (1) are in one-to-one correspondence with the dynamics of the map g defined by
three functions, fL(x), fM(x) = f 2R(x) and fR(x), as follows:

g : x �−→ g(x) =

⎧⎪⎨
⎪⎩

fL(x) = ax − 1 if x ≤ 0,

fM(x) = b
(bx−γ−1)γ − 1 if 0 < x < f −1

R (0) = b
1
γ ,

fR(x) = bx−γ − 1 if x ≥ f −1
R (0),

(2)

which is continuous at x = 0, with g(0) = −1, and discontinuous at x = f −1
R (0)

with limx→ f −1
R (0)− g(x) = +∞ and limx→ f −1

R (0)+ g(x) = 0.

The auxiliary map g is of help to study the dynamics of f in the noninvertible
case:

Proposition 4 Let b > 0 and γ > 1 be fixed, and a ∈ (ahR,−1), where a = ahR sat-
isfies the condition b = −a(−a − 1)γ of the first homoclinic bifurcation of x∗

R. Then,

(i) any fold bifurcation (either fold-BCB or S-fold) of the map g given in (2) is
associated with the appearance of a pair of cycles for map f , one attracting and
one repelling, whose periods differ by 1 (say n and n − 1);

(ii) let x = x∗ > 0 be a periodic point, closest to x = 0, of an attracting n-cycle of
f with a negative eigenvalue, which attracts all points of the interval (0, x∗),
and let R2σ0 be the symbolic sequence of this cycle (here, σ0 stands for the
remaining symbolic sequence, necessarily starting with L). Then, decreasing a it
is observed a cascade of alternating S-flip bifurcations and BCs leading to cycles
whose symbolic sequences can be written as R2σk , where σk = σk−1Tσk−1,
k = 1, 2, . . . , with the alternating symbols T = R2 and T = L. The symbol
T = R2 corresponds to an S-flip bifurcation, so that an attracting m-cycle in
this cascade is followed by an attracting 2m-cycle, while the symbol T = L is
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associated with a BC and the m-cycle is followed by an attracting (2m − 1)-
cycle.

For example, starting from an attracting 3-cycle, for decreasing a one observes a
cascade of bifurcations leading to appearance of attracting cycles of periods 6, 11,
22, 43, …

4 Noninvertible Case: b > 0, 0 < γ < 1 (Dominant Chaos)

Proposition 5 (robust unbounded chaos) Let 0 < γ < 1 and 0 < b ≤ ψR. Then,

(i) for ahL < a < −1, the map f has an unbounded chaotic attractor consist-
ing of intervals [−1, f 2R(−a − 1)], [ fL ◦ f 2R(−a − 1),−a − 1] and [ fR(−a −
1),+∞); here, a = ahL satisfies the condition of the first homoclinic bifurcation
of x∗

L defined by
b

(b(−a − 1)−γ − 1)γ
= a

a − 1
;

(ii) for ahR < a ≤ ahL the map f has an unbounded chaotic attractor consisting of
intervals [−1,−a − 1] and [ fR(−a − 1),+∞);

(iii) for aLR < a ≤ ahR, depending on the value of b, the map f may have the attract-
ing unbounded chaotic interval [−1,+∞); here, a = aLR satisfies the condi-
tion

b = − 1

aγ

(
−γ

a + 1

γ + 1

)γ+1

of the fold bifurcation of the 2-cycle LR (indicated in Fig.1 as φLR);
(iv) for a < aLR almost all the trajectories converge to the attracting 2-cycle born

crossing the curve φRL , and a chaotic repeller exists.

Proposition 6 Let 0 < γ < 1 and b > ψR. Then,

(i) for ahL < a < −1, the attracting fixed point x∗
R of the map f coexists with a

chaotic attractor in the unbounded invariant absorbing intervals

[−1, f 2R(−a − 1)] ∪ [ fL ◦ f 2R(−a − 1),−a − 1] ∪ [ fR(−a − 1),+∞);

(ii) for ahRR < a ≤ ahL , the attracting fixed point x∗
R of the map f coexists with a

chaotic attractor in the unbounded invariant absorbing intervals [−1,−a −
1] ∪ [ fR(−a − 1),+∞); here, a = ahRR is related to the first homoclinic bifur-
cation of the repelling 2-cycle;

(iii) for aLR < a ≤ ahRR, depending on the value of b, the fixed point x
∗
R may be the

unique attractor of the map f , and a chaotic repeller exists;
(iv) for a < aLR, the attracting fixed point x∗

R coexists with an attracting 2-cycle
born due to an S-fold crossing the curve φRL , and a chaotic repeller exists.
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Extending Slow Manifolds Near a Degenerate
Transcritical Intersection in Three
Dimensions

Christine Gavin, Philip J. Aston, and Gianne Derks

Abstract Motivated by a problem from pharmacology, we consider a general two
parameter slow–fast system in which the critical set consists of a one dimensional
manifold and a two dimensional manifold, intersecting transversally at the origin.
Using geometric desingularisation, we show that for a subset of the parameter set
there is an exchange of stabilities between the attracting components of the critical
set and the direction of the continuation can be expressed in terms of the parameters.

1 Motivation

We consider the pharmacological model of dimerisation, where a receptor binds to
two ligand molecules. The dimerisation model is an adaptation of the well studied
target mediated drug disposition model (TMDD) in which the receptor binds to one
ligand molecule; see Peletier–Gabrielsson [5] for more details. In both models, it
is assumed that the binding is the fastest process. This gives a separation of time
scales, which allows us to use geometric singular perturbation theory to analyse
these models. For the TMDD model, the critical set reduces to two intersecting one
dimensional manifolds. Using the results in Krupa–Szmolyan [3], it can be shown
that the slow manifold connects the two attracting branches of the critical set. For
the dimerisation model, the critical set reduces to an incoming one dimensional
manifold and an outgoing two dimensional manifold that intersect. By analysing this
type of intersection using geometric desingularisation, we will show the existence of
a transfer to the two dimensional manifold and determine the direction of the orbit
on this manifold away from the intersection, in terms of the model parameters.
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2 The General Problem

The canonical form for the problem of interest is given by

ẋ1 = (y + x2) x1 + λ1ε + O (
[x1 + x2 + y + ε]

[
(x1 + x2 + y)2 + ε

])
,

ẋ2 = (y + x2) (x1 − y + x2) + λ2ε + O (
[x1 + x2 + y + ε]

[
(x1 + x2 + y)2 + ε

])
,

(1)

ẏ = ε (1 + O (x1 + x2 + y + ε)) .

The critical set is the union of the one dimensionalmanifold {x2 = y, x1 = 0 : y ∈ R}
and the two dimensional manifold {x2 = −y : x1, y ∈ R}. The incoming manifold
S−
a = {x2 = y, x1 = 0 : y < 0} is attracting.Away from the intersection at the origin,

Fenichel theory [1] tells us that themanifolds in the critical set persist for ε sufficiently
small. We will investigate what happens to the incoming manifold, denoted by S−

a,ε,
as it passes by a neighbourhood of the origin, the extension of S−

a,ε is denoted by S̄
−
a,ε.

We do this using the blow up method and building on the work Krupa–Szmolyan [3].

3 Statement of the Main Result

For small fixed ρ > 0 and J a small open interval around 0 in R, we define the
following

�in = {ρ (0,−1,−1) + (x1, 0, y) : x1, y ∈ J } ,

�out
a = {

ρ
(
x̄−
1 ,−1, 1

) + (x1, 0, y) : x1, y ∈ J
}
,

�out
e = {ρ (0, 1, 0) + (x1, 0, y) : x1, y ∈ J } ,

where x̄−
1 = 1

2

[
1 + λ1 − λ2 −

√
(λ1 − λ2 − 3)2 − 8 (λ2 + 1)

]
.

Theorem 1 For fixed (λ1,λ2), there exists ε0 > 0 such that, for any ε ∈ (0, ε0],

(i) if (λ1,λ2) is in the shaded region or along the black line in Fig.1a, then the
extension S̄−

a,ε passes through �out
e at

(
hx (ε), ρ, hy(ε)

)
, where hx (ε), hy(ε) =

O(
√

ε);
(ii) if (λ1,λ2) is in the unshaded region in Fig.1a, the extension S̄−

a,ε passes through
�out

a .

The statement of this theorem is illustrated in Fig. 2.
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0
λ1

λ2

1

−1

Δin → Δout
e

Δin → Δout
a

Results of Theorem 1.

0
λ1

λ2

1

−1

1

2

34

Four regions we consider.(a) (b)

Fig. 1 The curve shown in these two figures is the union ofλ1 = 0 forλ2 > 1 (black line),λ2 = −1
for λ1 > 2 and (λ1 − λ2 − 3)2 − 8 (λ2 + 1) = 0 for 0 < λ1 ≤ 2 (red curve)

S̄−
a,ε

Δin

Δout
a

Δout
e

(a) (b)Dynamics when there is a tran-
sition of stability.

S̄−
a,ε

Δin

Δout
a

Δout
e

Dynamics when there is a fast
jump away from the origin.

Fig. 2 Summarises the results of Theorem 1. Bold blue curve gives the continuation of S−
a,ε in each

case, denoted by S̄−
a,ε

4 Sketch of the Proof of the Main Result

We add the trivial equation ε̇ = 0 to system (1) and define a blow up of the region
near the origin as x1 = r x̄1, x2 = r x̄2, y = r ȳ, ε = r2ε̄. Apart from the polar blow
up with x̄21 + x̄22 + ȳ2 + ε̄2 = 1, we will use five directional charts. The K1 and K3

charts are obtained by taking x̄2 = −1 and x̄2 = 1, respectively. The K4 and K5

charts are obtained by taking x̄1 = −1 and x̄1 = 1, respectively. We also have the K2

chart which is obtained by taking ε̄ = 1. Figure3 gives the dynamics in each of the
directional charts that are used in this section; see Kuehn [4] and references therein
for more details about the blow up technique.
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−2 0 2

−1

0

1

K3

x̄1

ȳ

−0.5 0 0.5

−0.5

0

0.5

K4

x̄2

ȳ

−0.5 0 0.5

−0.5

0

0.5

K5

x̄2

ȳ

Fig. 3 Dynamics in the directional charts in the invariant plane ε̄ = 0. Dashed lines and open
circles indicate that the point is unstable while solid lines and closed circles indicate that it is stable.
The red arrows highlight the direction of the flow on the invariant line

In the polar blow up the sphere ε̄ = 0 has two steady states corresponding to the
one dimensional critical manifold, denoted by P−

a and P+
r , where P−

a corresponds to
S−
a . There is a continuous curve of steady states corresponding to the two dimensional

critical manifold denoted by C . Furthermore, there are two steady states correspond-
ing to the critical fibre which we call qin and qout. All isolated steady states have a one
dimensional centre manifold and the curve C has a two dimensional centre manifold
in the invariant hyperplane r = 0.

4.1 Dynamics in the K2 Chart

The initial continuation of S−
a,ε is best described in the K2 chart.

Lemma 2 When λ1 = 0, the plane x̄1 = 0 is invariant in the K2 chart and the
continuation of the centre manifold of P−

a stays in this plane. When λ1 �= 0, the sign
of x̄1 in the continuation is given by the sign of λ1.

Lemma 3 If λ2 < 1 then the centre manifold of P−
a connects to the attracting part

of the centre manifold of C and if λ2 > 1 then the centre manifold of P−
a connects

to the centre manifold of qout.

Next, the further continuation on the centremanifolds is considered. Ifλ2 < 1 then
the K1 chart is used and ifλ2 > 1 it is the K3 chart.We divide the parameter space into
four regions, shown in Fig. 1b, where we observe different types of continuations.

4.2 Dynamics on the Centre Manifold of C

The dynamics on the attractive part of the centre manifold of the curve C can be
desingularised such that this part of the curve C has at most two fixed points, one
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of which is x̄−
1 if it is real. Note that these two steady states are found by solving a

quadratic equation so they are only real for a subset of (λ1,λ2) values.

(i) Region one: it can be shown that x̄−
1 is real and stable and the dynamics on the

centre manifold are attracted to this point.
(ii) Region two: the solutions of the quadratic are complex or the fixed points on the

attractive part of C have positive x̄2 hence they are not in K1. It can be shown
that the dynamics on the centre manifold moves the continuation in K1 to the
repelling part of the centre manifold of C . We then hand over to the K5 chart as
x̄1 > 0. The dynamics highlighted by the red arrow in Fig. 3c indicate that the
continuation in K5 has x̄2 → ∞ and ȳ → 0. Finally, we hand over to the K3

chart where the fact that x̄1 > 0 and the dynamics highlighted by the red arrow
in Fig. 3a indicate that the trajectory goes to qout.

4.3 Dynamics on the Centre Manifold of qout

The dynamics on the centre manifold of qout (indicated by the red arrows in Fig. 3a)
tell us that if the continuation approaches the K3 chart with x̄1 ≥ 0 then it is attracted
to qout, whereas if x̄1 < 0 it moves away from qout.

(iii) Region three: by Lemma 2, we approach the K3 chart with x̄1 ≥ 0. Hence, the
continuation goes to qout.

(iv) Region four: the continuation approaches the K3 chart with x̄1 < 0, hence it is
repelled. We now hand over to the K4 chart where the continuation is attracted
by the centre manifold of C (indicated by the red arrow in Fig. 3b). The desin-
gularised dynamics on the centre manifold directs the continuation towards the
stable point x̄−

1 .

The four possible types of continuations are shown in Fig. 4.

0

0

x2

λ1=5, λ2=−3

y

Region 1

0

0

x2

λ1=5, λ2=0

y

Region 2

0

0

x2

λ1=5, λ2=3

y

Region 3

0

0

x2

λ1=−1, λ2=3

y

Region 4

Fig. 4 A typical continuation from each region projected into the x2 − y plane. The x1 evolution
is not shown
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5 Conclusion and Discussion

We have described the fate of the incoming attracting slow manifold. This gives the
parameter values for which the slow manifold connects the two attracting manifolds
of the critical set. The parameter values for the dimerisation model always lie in this
set. Furthermore, we have determined a point x̄−

1 which gives the outgoing direction
on the two dimensional manifold along which the continuation moves away from the
intersection at the origin. Full details will be given in a forthcoming paper Gavin–
Aston–Derks [2], which will also include results for continuations on the red line in
Fig. 1a and on the size of the contraction of the transition map which transfers �in

to the appropriate �out section.
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Less Is More I: A Pessimistic View
of Piecewise Smooth Bifurcation Theory

Paul Glendinning

Abstract The analysis of piecewise smooth bifurcations reveals an alarming
proliferation of cases as the dimension of phase space increases. This suggests that
a different approach needs to be taken when trying to describe bifurcations. In par-
ticular, it may not be helpful to analyze particular bifurcations at the level of detail
that is standard for smooth systems.

1 Introduction

“Can you do addition?” the White Queen asked. “What’s one and one and one and one
and one and one and one and one and one and one?” “I don’t know,” said Alice. “I lost
count.” [2, Chap. 9].

With the analysis of more bifurcations of piecewise smooth (PWS) systems it is
becoming clear that there is a proliferation of cases as the dimension of the ambient
phase space increases. In smooth dynamical systems, the centre manifold theorem
implies that the range of typical local bifurcations is severely restricted and inde-
pendent from the phase space dimension. Indeed, only the saddle-node bifurcation
and Hopf bifurcation are generic, though the addition of symmetry or other special
features can add complications. The global bifurcations of typical smooth systems
are also constrained, although features such as Shilnikov’s Theorems for homoclinic
orbits, and the possibility of bifurcations being dense in parameter space mean that
it may be impossible to give a complete description. Nonetheless, there are robust
features common to all these bifurcations that can be described sensibly.

The situation for PWS systems appears significantly harder to deal with. Whereas
typical smooth systems have a manageable number of fundamental bifurcations, the
number of cases for PWS systems increases with the dimension of the phase space
in such a way that a complete classification would require the enumeration of an
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infinite set of possibilities. This may be good for the production of academic papers,
but it does not necessarily help us to understand potential applications.

These observations suggest that the attitude to bifurcations of PWS systems needs
to be somewhat different from that applied to smooth systems. In particular, it may be
more useful to develop weaker results which apply quite generally rather than to give
a complete picture of the bifurcations that can occur (a list that might take forever).
Such results might provide a rather less detailed description of possibilities, or the
development of techniques that would allow a more detailed description if the occa-
sion (i.e., the application) arose, but would not attempt to apply these methods to all
possible situations without further motivation. This is the ‘Less is More’ philosophy
of the title, described in greater detail in Glendinning [11].

In the remainder of this note we give examples of the proliferation described
above.

2 Transitions to Chaos in PWS Maps

For smooth maps of the interval, for example the quadratic map, the transition to
chaos is very easy to characterize. Let P be the set of periods for the map, i.e., if the
map is f then p ∈ P if and only if f has a periodic orbit of least period p. It follows
from the proof of Sharkovskii’s Theorem that, for any continuous non-chaotic map
of the interval,

P = {2n | 0 ≤ n ≤ N }

for some N ∈ {0, 1, 2, . . . } ∪ {∞}. To someextent this explainswhyperiod-doubling
cascades are so ubiquitous, though it also holds for Nordmark’s continuous square
root map where the stable periodic orbits form a period-adding sequence; see
Nordmark [14].

For PWS maps with discontinuities the situation is more complicated. If we con-
sider maps with a single discontinuity and with two increasing continuous branches,
then Gambaudo–Procaccia–Thomae–Tresser [6] shows that the only infinite sets of
periods that can occur on the boundary of chaos are arbitrary period multiplying

P = {pn | pn+1 = an pn an ∈ N, an ≥ 2}, (1)

though these correspond to points on a one-parameter boundary of chaos in a two-
parameter space; typically, the transition to chaos occurs after a finite number of
periods are created. This is a good example of the early theory of PWS maps devel-
oped in the context of the bifurcations of smooth flows.

In the more general case of PWS maps with a single discontinuity and two con-
tinuous monotonic branches at least one of which is decreasing, there is a new robust
route to chaos involving creation of infinitely many periodic orbits: the anharmonic
route [7]. In the case of one increasing and one decreasing branch this generates fixed
points and periods
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P = {pn | pn+1 = 2pn + (−1)n, p1 = 2},

and more general forms are also possible involving higher iterates of the map or
maps with two decreasing branches.

Furthermore, if we consider all possible sets of periodic orbits for non-chaotic
maps then the set of infinite possible periods on the boundary of chaos, ignoring the
multiplying of (1), is given by a subshift of finite type corresponding to different
sequences of renormalizations or induced maps; see Glendinning [8].

These results show that, even though the continuous case is constrained, what can
happen in the discontinuous case is complicated by a proliferation from essentially
one to uncountablymany possibilities.Moreover, whilst these can be characterized, it
is not clear which are relevant for the examples arising in PWS dynamics (which pos-
sibilities occur in expanding maps, or in piecewise linear maps?). The theory making
this analysis possible was developed in the late 1970s (see Milnor–Thurston [13])
and these ideas are worth revisiting.

3 The Border Collision Normal Form

Now, consider continuous PWS maps in dimension greater than one. Suppose that
phase space is divided into two regions by a switching surface and smooth maps
are defined on each side of the surface, and the PWS map is continuous but not
differentiable across the surface. Suppose a fixed point exists at some parameter
value in one region, and as parameters vary it moves to intersect the switching
surface. What happens?

Nusse–Yorke [15] shows that, given some genericity conditions, the bifurcation
is described locally by the border collision normal form, with leading order terms

zn+1 = F(zn) =
{

A0zn + m if x1 < 0,

A1zn + m if x1 > 0,

where A0 =
(

t0 1
−d0 0

)
, A1 =

(
t1 1

−d1 0

)
and m = μ(1, 0)T .

This can be generalized to Rn , where the map takes the same form and, provided
some simple genericity conditions hold, the matrices Ai can be written in observer
canonical form, where the first column is arbitrary and the remainder has ones on
the upper off-diagonal and zeroes everywhere else, and m = μ(1, 0, . . . , 0)T ; see di
Bernardo [3].

Using some beautiful technical results of Buzzi [1] and Tsujii [16], it is possible
to prove bifurcations from fixed points to n-dimensional attractors in these maps.

Theorem 1 (Glendinning [9, 10]) Consider the border collision normal form in R
n

(n = 2, . . .). There exist open regions of the parameter space Bn such that, for each
parameter in Bn, if μ < 0 then the border collision normal form has a stable fixed
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point; whilst if μ > 0 then the border collision normal form has at least one attractor
with an invariant measure absolutely continuous with respect to the n-dimensional
Lebesgue measure. If n = 2, then the attractor has topological dimension 2; and if
n > 2, then the attractor has Hausdorff dimension equal to n and generically has
topological dimension n.

What about other transitions: can we go from attractors of any given Hausdorff
dimension to any other Hausdorff dimension? If so, is this the right way of looking
at the problem? If not, how much is the dynamics constrained and how should this
be described?

4 Boundary Equilibrium Bifurcations

Boundary equilibrium bifurcations (BEBs) occur if a stationary point of a PWS
system intersects the boundary of one of the regions onwhich the smooth components
of the system are defined; see di-Bernardo–Budd–Champneys–Kowalczyk [4]. Even
in planar flows there are twelve cases that need to be considered; see Filippov [5].
The example below of a flow in R

3 shows just how complicated the bifurcation
can become in higher dimensions. This example has a Shilnikov homoclinic orbit
with a sliding section immediately after the bifurcation, and hence all the levels of
complexity of this three-dimensional flow; see Glendinning [12].

The example uses two differential equations with switching surface z = 0, so F+
defines the flow if z > 0 and F− defines the flow if z < 0, where

F+(x, ν) =
⎛
⎝−ρ a −ω

0 λ 0
ω b −ρ

⎞
⎠

⎛
⎝ x

y
z − ν

⎞
⎠ , F−(x, ν) = (U1,U2,U3)

T ,

with U3 > 0 and Uk �= 0, k = 1, 2. The upper flow F+ has a stationary point at
(0, 0, ν) so there is a BEB if ν = 0. Suppose that the remaining constants have been
fixed, except ω which will be used to explore the sensitivity of the bifurcation to
changes in the other parameters. Consider the case ν > 0. By scaling, we may set
ν = 1 and then the final parameter ω can be used to determine the different dynamics
that can occur.

The stationary point (0, 0, 1) has eigenvaluesλ and−ρ ± iωwhichmaybe chosen
so thatρ/λ < 1. Thus, if there is a homoclinic orbit, i.e., an orbit approaching (0, 0, 1)
in both forwards and backwards time, the classic results of Shilnikov proving the
existence of chaos hold with minor technological modifications to take the sliding
section into account; see Glendinning [12]. Numerical simulations show that ω can
be chosen so that the flow includes just such a homoclinic orbit and hence that the
dynamics in ν > 0 of this BEB is determined by a family of differential equations
(as the other parameters vary) which has complicated bifurcation structure itself.
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5 Conclusion

A subject comes of age when the extent and scope of the discipline is generally
accepted. Whilst many of the issues described above have analogues in smooth
bifurcation theory (for example, analysis of the fine structure of smooth Shilnikov
bifurcations shows that there are infinitely many cases) there are still tensions for
piecewise smooth bifurcation theory.What features should define a useful bifurcation
theory in piecewise smooth dynamics? An attempt to answer this question is made
in Glendinning [11]—here we have simply shown that a complete classification can
lead to very long lists. Of course there are many other complications (e.g., noise and
nonlinearity) not mentioned here, but the fundamental problem is: how do we select
methods and results to avoid endless lists?

Acknowledgements I am grateful to Mike Jeffrey and Rachel Kuske for conversations that helped
crystallize these ideas, and to the Simons Foundation for support at the CRM, Barcelona.
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Less Is More II: An Optimistic View
of Piecewise Smooth Bifurcation Theory

Paul Glendinning

Abstract The analysis of piecewise smooth bifurcations reveals an alarming pro-
liferation of cases as the dimension of phase space increases. Rather than attempt
the derivation of exhaustive lists of possibilities, we describe ways of giving less
detailed, but possibly more useful, results.

1 Introduction

“Take some more tea”, the March Hare said to Alice, very earnestly.

“I’ve had nothing yet”, Alice replied in an offended tone, “so I can’t take more”.

“You mean you can’t take less,” said the Hatter: “it’s very easy to take more than nothing.”
[2, ch. 7].

Mathematicians often aim to produce classification theorems and, normally, these
attempt to be as complete as possible. However, as argued in Glendinning [4], the
number of bifurcations in piecewise smooth (PWS) systems increases alarmingly
with the dimension of the ambient phase space or the complexity of the system, and
this may mean that complete descriptions, in the same spirit as would be given for
smooth systems, become infeasible and certainly become unwieldy. This creates a
problem for mathematicians with a background in smooth bifurcation theory: there
are many potentially beautiful problems such as the existence of Shilnikov homo-
clinic bifurcations with sliding segments in local bifurcations of stationary points of
PWS systems (see Glendinning [4]), but if the general result is that for the boundary
equilibrium bifurcation in Rn then the local dynamics can contain analogues of any
bifurcation of smooth systems in Rn , as may well be the case, then it is unclear how
to proceed.

This dilemma suggests that mathematicians should find coarser, but generally
useful, statements about the local bifurcation structure of PWS system and provide a
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general framework or set of techniques which researchers interested in applications
can use on particular examples. Thus the theoretician might need to rein in his or her
natural inclination towards a detailed classification and provide, instead, descriptions
that are less complete but easier to follow and interpret. Or again describe some things
that cannot happen (as so much can). In this paper we give some examples of results
that fit into this ‘less is more’ way of seeing the dynamics of PWS systems.

2 PWS Maps of the Interval

There are a number of results describing the dynamics of PWS maps based on the
ideas of Milnor–Thurston [6], which was circulating in preprint form from 1977.
However, these results depend on a knowledge of kneading theory, an algebraic
version of symbolic dynamics, and this means the proofs may seem abstruse, and a
great deal of information is implicit in an algebraic invariant (the kneading invariant)
which characterizes the non-wandering set of a map. (A point x is wandering if there
exists an open neighbourhood U of x such that f n(U ) ∩ U = ∅ for all n > 0, and a
point is non-wandering if it is not wandering.) Aweaker version of their theorems can
be proved without recourse to new formalism. This simplified version is an example
of the ‘less is more’ approach: the result is general, but for any example more work
would be needed to add greater precision to statements. As is standard in the theory
of maps of the interval, there is an issue about the existence of homtervals. These are
open intervals J on which f n|J is a homeomorphism for all n = 0, 1, 2, . . .

Whilst I do not know of a detailed proof of the conjecture below, it seems reason-
able that it will follow by a similar argument to that used for Lemma2 below, but with
modifications to take homtervals into account (cf. [5, 6]). The dynamics is described
in terms of Markov partitions and Markov graphs. A Markov partition is a union of
closed sets that are permuted by the map and hence the images of elements in their
complement, (Li ), are either disjoint, f (Li ) ∩ L j = ∅, or L j ⊆ f (Li ). This means
that a Markov graph can be defined with vertices labelling the connected elements
of the complement and a directed edge from i to j if L j ⊆ f (Li ). Given any (finite
or infinite) path allowed by this graph, there exists a point passing through the sets
in the order described by the path.

Conjecture 1 Suppose that f : I → I is a PWS map with two continuous monotonic
branches and a single critical point or point of discontinuity. Then, there exists
0 ≤ n ≤ ∞ such that the nonwandering set can be written as a union An ∪ (∪n−1

0 Tk
)

(disjoint except possibly Tn−1 and An), where dynamics in Tk is determined by a finite
Markov graph (possibly zero entropy) and An is (up to homtervals) a union of periodic
orbits or a union of intervals if n < ∞ or a Cantor set if n = ∞.

Wewill sketch a proof in the case that themap is differentiable and expanding away
from the critical point or the point of discontinuity, which will be denoted by c. This
is Lemma2 below. The proof relies on the idea of induced maps and renormalization.
If c ∈ J write J = J0 ∪ {c} ∪ J1 where J0 = J ∩ {x < c} and J1 = J ∩ {x > c}.
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A map f is renormalizable if there exists J with c ∈ J and positive n0 and n1

with n0 + n1 > 2 such that f nk |Jk , k = 0, 1, is a homeomorphism and

f n0(J0) ∪ f n1(J1) ⊆ J.

If f is renormalizable, then the induced map F : J → J defined by F(x) = f nk (x)

if x ∈ Jk , k = 0, 1, is again a map with a single discontinuity or critical point.
Finally, f : I → I is transitive if for all open J ∈ I there exists n such that

I = ∪n
0c�( f k(J )).

Lemma 2 If f : I → I with I smallest such interval and | f ′(x)| ≥ a > 1 if x �= c,
then either f is renormalizable or f is transitive.

Where does this get us? If f is transitive then the non-wandering set is I . If f is
renormalizable then the components of the set

K =
(

n0−1⋃

k=0

f k(J0)

)

∪
(

n1−1⋃

r=0

f r (J1)

)

are permuted by the map so the complement I\K is a union of closed intervals
(possibly trivial or even empty) Lk such that either f (Li ) ∩ L j = ∅ or L j ⊆ f (Li ),
the condition for a Markov graph. So, the dynamics is divided into the dynamics in
the sets Lk which is determined by a finite Markov graph and the dynamics induced
by the renormalized map (again a two monotonic branch map) in K .

Sketch of the proof of Lemma2 Intervals expand under iteration so images of any
open interval V must eventually intersect c. Call this image V0. Then V0 is divided
into two by c and each component will also return for the first time. Either these
returns are inside V0 (so f is renormalizable) or define V1 to be the union of V0

and its first returns. Repeat and note that each return is after the same or a shorter
number of iterations and hence either f is renormalizable or a larger interval V2

can be constructed from V1 and its returns. If f is not renormalizable then, for
every interval, the process never stops, the return times tend to a limit, and the
sets tend to a limit, V∞. If the sum of the limiting return times is greater than one
then f is renormalizable on V∞ (a contradiction), otherwise return times are 1 (and
this is achieved in finite time) and since I was minimal, V∞ = I and the map is
transitive. �

This is a simple way of describing the dynamics of all piecewise monotonic maps
with a single discontinuity. It has some detail (finite Markov graphs) but leaves a lot
unsaid, so it does not require sophisticated arguments: less is more.
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3 The Border Collision Normal Form: Young’s Theorem

Let x = (x1, x2)T , then the border collision normal form

xn+1 =
{

A0xn + m if (x1)n ≤ 0

A1xn + m if (x1)n ≥ 0
, with Ak =

(
tk 1

−dk 0

)
, k = 0, 1,

is a piecewise affine map of the plane, andm = μ(1, 0)T .
The parameter μ is considered to be the bifurcation parameter and some results

for these maps are described in Glendinning [4]. Banerjee–Yorke–Grebogi [1]
show that the border collision normal form has parameters with a trapping region,
and transverse intersections of stable and unstable manifolds and hence quasi-
one-dimensional attractors: this has been called robust chaos. Young [7] provided
the tools to make these statements more precise. Let R = [0, 1] × [0, 1] and let
S = {a1, . . . , ak} × [0, 1] be a set of vertical switching surfaces with 0 < a1 < · · · <

ak < 1. Then, f : R → R is a Young map if f is continuous, f and its inverse are C2

on R\S, and f = ( f1, f2)T satisfies the following expansion properties (H1)–(H3)
on R\S:

inf

{(∣∣
∣
∂ f1
∂x

∣∣
∣ −

∣∣
∣
∂ f1
∂y

∣∣
∣
)

−
(∣∣

∣
∂ f2
∂x

∣∣
∣ −

∣∣
∣
∂ f2
∂y

∣∣
∣
)}

≥ 0, (H1)

inf

(∣∣∣
∂ f1
∂x

∣∣∣ −
∣∣∣
∂ f1
∂y

∣∣∣
)

= u > 1, (H2)

sup

{(∣∣∣
∂ f1
∂y

∣∣∣ +
∣∣∣
∂ f2
∂y

∣∣∣
) (∣∣∣

∂ f1
∂x

∣∣∣ −
∣∣∣
∂ f1
∂y

∣∣∣
)−2

}

< 1. (H3)

Let Jac( f ) denote the Jacobian matrix of f and recall that u is defined in (H2).

Theorem 3 (Young [7]) If f is a Young map, |Jac( f )| < 1 for x ∈ R\S, and there
exists N ≥ 1 s.t. uN > 2 and if N > 1 then f k(S) ∩ S = ∅, 1 ≤ k < N, then f
has an invariant probability measure that has ‘absolutely continuous conditional
measures on unstable manifolds’.

The technical conclusion in quotation marks means that the invariant measure
projects nicely onto one-dimensional horizontal lines.

Remark 4 The theorem holds for C2 functions so, provided perturbations of the
normal form are C2 in phase space and C1 close in parameters, then conditions for
the theorem will still hold (if they hold in the first place) and so behaviour is robust.

Remark 5 The theorem, as actually stated inYoung [7], hasuN > 2 and f k(S) ∩ S =
∅, 1 ≤ k ≤ N . However, no extra conditions on images of S are required if N = 1
and if N > 1 then the requirement is that f N has similar geometry on vertical strips,
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which only requires non-intersection up to the (N − 1)-th iterate, so we are confident
that Theorem3 is what was intended in Glendinning [3].

The criteria for the theorem to hold are easy to verify numerically making it
possible to determine regions on which Young’s Theorem holds and compare these
with theoretical bounds in Banerjee–Yorke–Grebogi [1]; see Glendinning [3] for
details. The point about this result is that one could be tempted to provide further
details such as the Hausdorff dimension of the support of the measure (the attractor),
but that the statement that there is an attractor with an invariant measure having a nice
one-dimensional projection gives the essential picture without overcomplicating the
story: less is more.

4 Conclusion

The two results described here meet what I consider to be the ‘less is more’ criterion.
They hold for a good range of models, they are informative, but there is much
extra detail that they do not provide and they do not attempt a complete topological
classifications. Given the hazards created by the proliferation of bifurcations in PWS
systems outlined inGlendinning [4],we consider the existence of these results a cause
for optimism, and they provide a template for the expression of further descriptions
of PWS dynamics.

Acknowledgements I am grateful to Mike Jeffrey, Rachel Kuske and David Simpson for
conversations that helped crystallize these ideas, and to the Simons Foundation for support at
the CRM, Barcelona.
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On Semi-local Structural Stability
of Filippov Systems

Otávio M.L. Gomide, Marco A. Teixeira, and Ricardo M. Martins

Abstract We introduce the notion of semi-local structural stability which detects
if a nonsmooth system is structurally stable around the switching manifold. More
specifically, we characterize the semi-local structurally stable systems in a class of
Filippov systems on a compact 3-manifold which has a simply connected switching
manifold.

1 Basic Concepts

Let M be a compact oriented 3-manifold and let f : M → R be a smooth function
having 0 as a regular value, therefore � = f −1(0) is an embedded codimension 1
submanifold of M . Assume that � is connected and simply connected.

Consider M+ = f −1 ([0,+∞)) and M− = f −1 ((−∞, 0]). We define a non-
smooth vector field Z = (X,Y ) by:

Z(p) =
{
X (p), if p ∈ M+,

Y (p), if p ∈ M−,
(1)

where X and Y are vector fields of class Cr defined on M+ and M−, respectively.
Denote by�r (M) (or simply�r ) the set of nonsmooth vector fieldswith discontinuity
manifold �.
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If χ r (M) = χ r is the set of smooth vector fields on M equipped with the Cr -
topology, then we consider �r = χ r × χ r endowed with the product topology.

Definition 1 The Lie derivative of f in the direction of the vector field X ∈ χ r at
p ∈ � is defined as X f (p) = X (p) · ∇ f (p), and the successive Lie derivatives are
given by Xn f (p) = X (p) · ∇Xn−1 f (p). The tangency set of X with � is given
by SX = {p ∈ �; X f (p) = 0 and X (p) �= 0}; and a point p ∈ SX is said to be a
tangential singularity. Denote SZ = SX ∪ SY .

Filippov’s convention is used to define a local solution of Z = (X,Y ) (see
Guardia–Seara–Teixeira [1]) and we denote �F = �s ∪ �e. We recall that the
dynamics of Z in �F is given by the sliding vector field

FZ (p) = 1

Y f (p) − X f (p)
(Y f (p)X (p) − X f (p)Y (p)) . (2)

Now some essential types of tangential singularities are presented.

Definition 2 A point p ∈ � is said to be a fold point of X ∈ χ r (M+) if X f (p) = 0
and X2 f (p) �= 0. If X2 f (p) > 0 (resp., X2 f (p) < 0), then p is a visible fold (resp.,
invisible fold).

Remark 3 If X ∈ χ r (M−), the visibility condition is switched.

Definition 4 A point p ∈ � is said to be a stable cusp, or simply a cusp, of X if
X f (p) = X2 f (p) = 0, X3 f (p) �= 0 and {d f (p), dX f (p), dX2 f (p)} is a linearly
independent set.

Remark 5 The cusp points are isolated points located at the extremes of the curves
of fold points. By compactness, it follows that SX has at most a finite number of
cusps.

2 Typical Tangency Sets

In this section, the generic form of the tangency set SZ of a nonsmooth vector field
Z = (X,Y ) is established.

Definition 6 A point p ∈ SZ is said to be a tangential singularity of type:

(i) fold-regular if either p is a fold point of X and regular of Y or p is a fold point
of Y and regular of X ;

(ii) cusp-regular if either p is a stable cusp point of X and regular of Y or p is a
stable cusp point of Y and regular of X ;

(iii) two-fold (or fold-fold) if X f (p) = Y f (p) = 0 and X2 f (p) �= 0 �= Y 2 f (p).
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Definition 7 A vector field X ∈ χ r is said to be simple if either SX = ∅ or SX
is composed by fold points of X with at most a finite number of cusp points. If
Z = (X,Y ) ∈ �r is such that X and Y are simple and SX ∩ SY = ∅, then Z is said
to be simple. Denote the set of simple nonsmooth vector fields by �r

S .

Notice that SZ is composed by fold-regular and cusp-regular points when Z is
simple.

Proposition 8 If X ∈ χ r (M) is simple and SX �= ∅, then there exists n ∈ N such
that SX = 
n

i=1S
i
X , where each SiX is diffeomorphic to the unit circle S1.

This result follows from the fact that 0 is a regular value of the Lie derivative
X f : � → R, under its hypotheses.

Proposition 9 Let X ∈ χ r (M) be a simple vector field such that SX �= ∅, and let C
be a connected component of SX . Then, there exist neighborhoods V of X in χ r and
V of C in � such that, for each Y ∈ V , SY has a unique connected component in V .

Proposition 10 Let X ∈ χ r (M) be a simple vector field such that SX �= ∅, then
there exists a neighborhood V of X in χ r (M) such that, for every Y ∈ V , SY �= ∅
has the same number of connected components of SX .

Corollary 11 �r
S is an open set in �r .

Remark 12 �r
S is not dense in �r since a two-fold point p, where SX � SY at p, is

an open property.

Definition 13 A nonsmooth vector field Z0 = (X0,Y0) ∈ �r is said to be
S-persistent if there exists a neighborhood V of Z0 in �r such that, for every Z ∈ V ,
there exists a homeomorphism ϕ : SZ0 → SZ preserving the topological type of tan-
gential singularities. Denote by �r

P the set of S-persistent nonsmooth vector fields.

It follows from the definition and the above results that �r
S ⊂ �r

P .

Proposition 14 Z = (X,Y ) ∈ �r
P if and only if both X and Y are simple, and every

p ∈ SX ∩ SY is a two-fold point and SX � SY at p.

Theorem 15 �r
P is a residual set in �r , i.e., it is the complement of a countable

union of sets with empty interior closure.

Tangency set SX of X
Tangency set SY of Y
Two-fold point of Z = (X,Y )

Switching manifold Σ ∼= S
2

(a) (b) (c)

Fig. 1 (a) The general form of the tangency set of a simple vector field X ∈ χr ; (b) a typical
tangency set of Z ∈ �r

P ; (c) the general form of a typical tangency set for a simple nonsmooth
vector field Z ∈ �r

S
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Sketch of the proof It follows from Proposition14, and Vishik [4, Theorem 2].

Finally, the definition of typical tangency set is established; see Fig. 1.

Definition 16 A nonsmooth vector field Z ∈ �r has a typical tangency set if
Z ∈ �r

P .

3 Semi-local Structural Stability

Now, the previous set �r
P has to be (generically) restricted in order to get the persis-

tence of the phase portrait of the vector field around the whole switching manifold.

3.1 �-Block Stability

Now, a formal language to deal with the problem it is introduced.

Definition 17 A subset U �= ∅ of � is said to be a �-block of Z ∈ �r if U is a
connected component of �s ∪ �e. The empty set U = ∅ is said to be a (trivial)
�-block if �c = �.

Now, a concept of structural stability for �-blocks is established. We remark that
the term semi-local is used to refer a phenomenon occurring in a neighborhood of
a compact set. It is similar to the concept of local behavior, by using a compact set
instead of a point.

Definition 18 Let Z0 = (X0,Y0) ∈ �r and assume that it has a�-blockU0. IfU0 �=
∅, then Z0 is U0-stable if there exists a neighborhood V of U0 (the closure of U0 in
�) in � and a neighborhood V of Z0 in �r such that, for every Z ∈ V ,
(i) Z has a �-block U such that U ⊂ V ;
(ii) V is minimal, i.e., there is a unique �-block in V ;
(iii) there exist neighborhoods VZ0 and WZ0 of U0 and U in M , respectively, and

a �-invariant order-preserving homeomorphism h : VZ0 → WZ0 which carries
orbits of Z0 onto orbits of Z .

If U0 = ∅, then Z is U0-stable if there exist neighborhoods VZ0 and WZ0 of �

in M , and a �-invariant order-preserving homeomorphism h : VZ0 → WZ0 which
carries orbits of Z0 onto orbits of Z .

Remark 19 Notice that the concept of U0-stability regards a small neighborhood of
U0 in M (not in �). Hence, it comprehends the sliding dynamics of Z0 = (X0,Y0)
on U0 and the orbits of X0 and Y0 which are sufficiently close of U0.
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Definition 20 We say that Z ∈ �r is �-stable (or semi-local structurally stable) if
every �-block U of Z is U -stable.

Notice that, if Z is�-stable then Z ∈ �r
P . The converse is not true, since two-fold

points are not generically locally structurally stable (see Teixeira [3]).

3.2 The �-Stable Simple Nonsmooth Vector Fields

Now, �-stable nonsmooth vector fields in �r
S are characterized.

Definition 21 Define�r
0(S) ⊂ �r as the set of nonsmooth vector fields Z such that:

(i) Z is simple;
(ii) FZ |�F

has a finite number of hyperbolic pseudo-equilibria, which are contained
in int(�F );

(iii) FZ |�F
has a finite number of hyperbolic pseudo-periodic orbits, which are

contained in int(�F );
(iv) FZ does not present any saddle connection;
(v) every orbit of FZ has at most a unique tangency point with SZ ;
(vi) each saddle separatrix of FZ is transversal to SZ .

Theorem 22 Assume Z is simple. Then, Z ∈ �r
0(S) if and only if Z is �-stable.

Sketch of the proof If some condition of �r
0(S) is not satisfied then Z is not �-stable

since a perturbation which changes the behavior of Z can be considered.
The main idea to prove the converse is to construct a neighborhood V of Z using

the tools developed in the previous sections. Then, Peixoto’s Theorem is used to
provide homeomorphisms between the �-blocks in �; see Peixoto–Peixoto [2].

Finally, we can extend each homeomorphism into a neighborhood of the�-block
in M (around the �-block). Therefore, each �-block is stable, which means that Z
is �-stable.

The following result follows directly from Peixoto–Peixoto [2] and the charac-
terization of �r

0(S).

Theorem 23 The set �r
0(S) is an open dense set in �r

S.
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Nonlinear Estimation of Synaptic
Conductances via Piecewise Linear Systems

Antoni Guillamon, Rafel Prohens, Antonio E. Teruel, and Catalina Vich

Abstract We use the piecewise linear McKean model to present a proof-of-concept
to address the estimation of synaptic conductances when a neuron is spiking. Using
standard techniques of non-smooth dynamical systems, we obtain an approximation
of the period in terms of the parameters of the system which allows to estimate the
steady synaptic conductance of the spiking neuron. The method gives also fairly
good estimations when the synaptic conductances vary slowly in time.

1 Introduction

The problem addressed in this manuscript is framed into the challenge of unveiling
the functional connectivity in the brain; that is, to obtain information about strength
and timing of the input currents (mediated by synapses) that a single neuron (the
post-synaptic cell) receives from others (the pre-synaptic ones). In particular, we
aim at disentangling the arrangement of excitation versus inhibition impinging on
the cell.Wewill focus on the estimation of the conductances of these currents, a quan-
tity which is not directly measurable but needs to be extracted from experimentally
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accessible data like themembrane potential of the neuron. For a review of the relevant
concepts in neuroscience, we refer the reader to the book Ermentrout–Terman [4],
and the introduction in Vich–Guillamon [8] for a quick survey on the problem of
estimation of conductances. A major hindrance in this problem is the estimation
when ionic currents are active, specially in spiking regimes, where ionic conduc-
tances are much higher than synaptic ones; see Guillamon–McLaughlin–Rinzel [6].
Nomethods are yet known to estimate synaptic conductances in this paradigm. From
amathematical point of view, this is indeed an inverse problem consisting of estimat-
ing some parameters from time courses of one variable of the associated dynamical
system. In this work, we aim at giving a theoretical proof-of-concept by consid-
ering a simplified model of neuronal activity, namely a non-smooth caricature of
the FitzHugh–Nagumo model (see Coombes–Thul–Wedgwood [3]), which allows a
very sharp approximation of the nonlinear f − I curve thanks to special properties
of piecewise linear systems.Moreover, the same idea could be applied to smooth sys-
tems with approximate expressions of the corresponding f − I curves. The model
we consider is a version of the McKean model as described in Coombes [2], where
the synaptic current, Isyn(v), has been considered apart from the rest of external
currents, I . That is, we consider the system

{
C v̇ = f (v) − w − w0 + I − Isyn(v),

ẇ = v − γw − v0,
(1)

where Isyn(v) = gsyn(v − vsyn) and f (v) is defined in a continuous but
non-differentiable way according to three zones of the phase space, left, middle
and right: f (v) = fL(v) := −v if v < a/2, f (v) = fM(v) := v − a if a/2 ≤ v ≤
(1 + a)/2, and f (v) = fR(v) := 1 − v if v > (1 + a)/2. For the significance of the
parameters involved in the model, see Coombes [2]. Here, we focus on the most
relevant parameters for this work. We consider to have a single source of synaptic
conductances, which is modeled by means of vsyn , the synaptic reversal potential,
and gsyn > 0, the synaptic conductance. The ionic currents are modeled through the
expression f (v) − w − w0 in the first equation of (1), designed to mimic the quali-
tative behaviour of the N-shaped v-nullcline of more biophysically realistic models.
Since C , the parameter related to cell membrane capacitance, is assumed to be small
and bounded, 0 < C � 0.1, system (1) is then a slow-fast dynamical system, where
v is the fast variable and w is the slow one.

In Abbott [1] and Tonnelier–Gerstner [7], the authors show the existence of two
values I1 < I2 for the applied current forwhich system (1)with Isyn(v) = 0 exhibits a
periodic orbit, which is unique, if and only if I1 < I < I2. In Coombes [2], approx-
imations of the period T were obtained, mainly based on the slow-fast nature of
the system.More recently, in Fernández-García–Desroches–Krupa–Clément [5], the
authors provide an approximate expression for the period T by taking advantage of
the slow invariant manifolds for C � 1. We show that the previous scenario per-
sists for Isyn(v) �= 0 and that the interval where periodic orbits exist depends also on
gsyn as well as the period, T = T (C, I, gsyn). We present a new approximation of
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T , T̂ , which includes this dependence on gsyn and, moreover, improves the existing
approximations. The key points are two refinements: the consideration of the flight
time in the central region, and a special projection on the slow manifold.

In the range of applied currents in which the neuron is spiking, we have found
numerical evidence that the period of this oscillation has a nonlinear but monotonic
dependence on gsyn . Hence, as a consequence of this monotonicity, by knowing T̂
and the applied current I (i.e., knowing the so-called f − I curve), we can compute
gsyn by solving numerically a non-linear equation with a unique solution, and thus
we are able to estimate the steady synaptic conductance of the neuron, which is the
goal of this work.

2 Main Result

It is easy to check that the system (1) with f (v) = fL(v) for all v has a unique fixed
point, pL ; similarly, considering f (v) = fM(v) and f (v) = fR(v) respectively, we
define pM and pR . When a limit cycle exists, both pL a pR , which have the same
Jacobian matrix, lie on the middle zone and so, they are only virtual equilibria;
however, their eigenvalues have influence in the dynamics. We denote by λq/s,L/M

the eigenvalues of the equilibrium points pL and pM of system (1), where q and s
stand for “fast” (eigenvalue with the biggest modulus) and “slow”, respectively. To
ensure the existence of a periodic orbit,we need to consider the next set of hypotheses:

gsyn > 1 − γ−1, |gsyn + Cγ| < 1, 0 < C ≤ C∗, and I1 < I < I2, (H)

where

I1 =
(a
2

− vsyn

)
gsyn + (γ + 1)a − 2v0 + 2γw0

2γ
, I2 = I1 + 1

2
gsyn + 1 − γ

2 γ
.

(2)
With these definitions, we can state the following result.

Theorem 1 Given system (1) under hypothesis (H), for a sufficiently small C > 0,
the period of the unique periodic orbit of the systemcanbewritten as T = T̂ + O(C),
with

T̂ =
2∑
j=1

1

λs,L
ln

(∣∣∣∣∣ γ(I − I j )Bl
γ(I − I j )Bl + (−1) j Kl

∣∣∣∣∣
)

+ 1

λq,M
ln

(∣∣∣∣ γ(I − I j )Bm + Km

γ(I − I j )Bm + Km, j

∣∣∣∣
)
,

where
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Bm = (γ + λq,M )
(
(Gsyn + 1)(λs,L − λs,M ) − γ(λs,L + λs,M ) − 2λs,Lλs,M

)
,

Bl = λq,L − λs,L ,

Kl = 1

2
(γ + λq,L )(Gsyn + γ + 2λs,L + 1),

Km = 1

2
(γ + λs,M )(Gsyn − γ + 1)

(
(Gsyn + 1)(λs,L − λq,M ) − γ(λs,L + λq,M ) − 2λs,Lλq,M

)
,

Km,1 = 1

2
(γ + λq,M )(Gsyn − γ + 1)

(
(Gsyn + 1)(λs,L − λs,M ) − γ(λs,L + λs,M ) − 2λs,Lλs,M

)
,

Km,2 = 1

2
(λq,M − λs,M )(γ + λq,M )(Gsyn − γ + 1)(Gsyn + γ + 2λs,L + 1),

Gsyn = gsynγ.

Sketch of the proof The period is obtained through straightforward computations
which are based on the local linearity of the vector field and the existence of two
points, on the switching line, belonging to the periodic orbit. These two points are
approximated as the intersection of the slow manifold with the switching line, since
the periodic orbit is assumed to pass exponentially close of the slow manifold. �

3 Application to the Estimation of Conductances

All our numerical tests show evidences that T̂ is monotonous with respect to gsyn in
the spiking region I ∈ (I1, I2); see (2). We have not been able to prove this property
yet, but it works for practical purposes and allows us to compute good estimations
of slowly-varying synaptic conductances in spiking regimes. It is quite obvious that
forcing the system (1) with a steady conductance, the system will exhibit a periodic
behaviour of period T and, therefore, solving the equation T̂ (C, I, gsyn) = T , wewill
recover the input synaptic conductance with high accuracy. The challenge, however,
is to know whether the conductances can be well estimated when they fluctuate. To
test it, we have forced the system (1) with prescribed conductance traces, gsyn(t),
and then proceed as follows:

(i) We extract the interspike intervals (distances from maxima) from the resulting
voltage trace, thus obtaining a sequence of fluctuating periods {Ti }Ni=1, where
N + 1 is the number of spikes in the simulation.

(ii) For each i = 1, . . . , N , we have solved (numerically) the equation T̂ (C, I, gsyn)
= Ti and choose the positive solution gsyn,i satisfying I1(gsyn,i ) < I < I2(gsyn,i )
to ensure that corresponds to a periodic orbit.

In Fig. 1, we show estimations obtained from three different prescribed inputs: a
sinusoidal drive, an oscillatory drive with two frequencies, and a stereotypical synap-
tic input to a single cell in visual cortex (units scaled to match (1)). We observe fairly
good estimations of synaptic conductances (see panels (a), (b), (d) and (e) in Fig. 1).
Comparing panels (a) and (b), we observe that, including a higher frequency in the
prescribed input, the estimations impoverish. In general, frequencies higher than
the sampling frequency are difficult to estimate. However, the reconstructed voltage
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(a) (b) (c)

(d) (e)

Fig. 1 Estimation of synaptic conductances for different inputs. (a, d, e) estimations of the time
course of gsyn when the neuron’s synaptic input is a sinusoidal drive, a two-frequency oscilla-
tory drive and a conductance trace taken from a realistic model, respectively; the time courses
of prescribed conductances appear in black, open circles indicate the estimates obtained with our
algorithm and the spline interpolations of these estimates are plotted in red; (b) estimated values
of gsyn against the prescribed values for the sinusoidal drive; (c) voltage trace using the prescribed
conductances for the sinusoidal drive (black) compared to the voltage trace reconstructed using the
estimated conductances (red)

using the estimated conductance (see panel (c)) exhibits a good agreement in both
cases (only sinusoidal drive is shown). Notice that when the prescribed conductances
are taken from a realistic model of V1 (see panel (e)), the estimation captures the
overall conductance profile but does not match at a smaller scale. In realistic inputs,
the conductances’ time-scale is variable, being very short in some moments. Thus,
we can only get a good estimation on average. A further improvement of our esti-
mation method will consist of introducing more Poincaré sections to estimate flight
times in shorter intervals (i.e., refining the sampling).
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Integral Curves of a Vector Field
with a Fractal Discontinuity

Jonathan Hahn and Mike R. Jeffrey

Abstract Nonsmooth systems are typically studied with smooth or piecewise-
smooth boundaries between smooth vector fields, especially with linear or hyper-
planar boundaries. What happens when there is a boundary that is not as simple,
for example a fractal? Can a solution to such a system slide or “chatter” along this
boundary? It turns out that the dynamics is rather fascinating, and yet contained
within A.F. Filippov’s theory (as promised in Utkin, Comments for the continuation
method by A.F. Filippov for discontinuous systems, parts I and II, [2] from this
volume).

As motivation, take a simple two-dimensional system with a discontinuity boundary
formed of the Koch curve of height ε, for small ε. First consider the vector fields
pointing horizontally above the surface and vertically below; see Fig. 1.

The boundary of the Koch curve has infinite length, and indeed between any two
points on the curve the length is infinite. However, the time spend on smaller and
smaller segments of the surface is ever decreasing. To find a solution to the problem

(ẋ, ẏ) =
{

(β, 0) if h > 0,
(0, 1) if h < 0,

for some β from, say, an initial condition at the left extreme of the curve as shown,
requires a recursive calculation.

The solution can only move up and to the right, via either vector field (with the
vector field so oriented, sliding does not occur) along the curve. This implies that
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Fig. 1 The two vector fields
separated by the Koch
snowflake fractal boundary

Fig. 2 The solution between
the largest peak and second
largest peak (dotted),
iteratively moving right and
upward

Fig. 3 The full solution with
initial condition at the left
extreme of the curve

the solution eventually reaches the highest peak of the switching surface. Having
travelled only horizontally or vertically, the total distance travelled must be 1/2 +√
3/3. A similar argument can be made to show the solution must reach the smaller

peak shown in Fig. 2. From that peak, the solution will move right until it reaches the
fractal boundary again, and then upward until it again hits the fractal boundary shown
below. From there, the fractal is a copy of the previous step, so we can recursively
iterate this path, scaling by 1/3 each time, until it reaches the largest peak.

The path through the first third of the path is a replica of the path we just drew,
since the fractal contains a scaled copy of itself. Recursively filling in this path we
can generate the full integral curve, with a total length of 1/2 + √

3/3. The integral
curve is itself a fractal, but one of finite length; see Fig. 3.

What then happens if both vector fields impinge on the switching surface, e.g.,

(ẋ, ẏ) =
{

(β,−β) if y > 0,
(0, 1) if y < 0,

(1)

for β > 0? The motion is sketched approximately in Fig. 4.
Whatever form the motion takes, denoting the upper and lower vector fields as

( f +, g+) and ( f −, g−), the speed of travel along the x-direction must be

ẋ = λ f + + (1 − λ) f −,
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Fig. 4 Two vector field covering on a Koch curve switching surface, and an integral solution

Fig. 5 Motion along a sawtooth switching surface if shallower (left) than the upper vector field,
or steeper (right) so that stick-slip occurs

where the motion consists only of a proportion of time λ in f + and 1 − λ in f −.
Even if the motion consists of a proportion of time μ± in f ±, and the remaining
proportion of time 1 − μ+ − μ− sliding along the surface with horizontal speed f s ,
then

ẋ = μ+ f + + μ− f − + (1 − μ+ − μ−) f s

but, since f s = λ f + + (1 − λ) f − (by Filippov’s method [1]),

ẋ = μ+ f + + μ− f − + (1 − μ+ − μ−){λ f + + (1 − λ) f −} = ν f + + (1 − ν) f −,

where ν = μ+ + (1 − μ+ − μ−). Solving for a value of ν that gives motion along
the switching surface, approximating the average verticalmotion as�y = O(ε) ≈ 0,
we find ν = g−/(g− − g+) hence ẋ = (g− f + − g+ f −)/(g− − g+), in either case
(i.e., with or without actual sliding along the surface), consistent with ideal Filippov
sliding on y = 0.

A simple example will establish the principle behind this. Take (1), where h = 0
is some complex threshold. Let us consider first a basic piecewise linear surface,
letting the switching surface be comprised of a sawtooth of angle α. As depicted
in the Fig. 5, depending on whether α < π/4 or α > π/4, solutions slide along the
sawtooth once they impact it, or slide and detach repeatedly.

For α < π/4, the vector fields are always pointing into the surface, so sliding will
occur everywhere. The sawtooth inclines have normal vectors (± sinα, cosα), so
the sliding condition for the vector fields above is
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(± sinα
cosα

)
·
{
λ

(
β

−β

)
+ (1 − λ)

(
0
1

)}
=⇒ λ = β−1

1 + β−1 ∓ tanα
,

and the average speed over the two inclines is

〈ẋ〉 = 2

ẋ−1
+ + ẋ−1

−
= 2

2(1 + β−1)
= 1

1 + β−1
.

For α > π/4, firstly, if the distance between peaks is 1, and the distance travelled
in the upper vector field before hitting the next incline is μ, then tanα = μ/(1 − μ),
hence μ = 1/(1 + cot α). Then the speed, averaging over motion through the upper
vector field and sliding on the upward incline (using the sliding vector field above) is

〈ẋ〉 = 1
μ
ẋ+ + 1−μ

ẋ−

= 1

μβ−1 + (1 − μ)(1 + β−1 + tanα)

= 1 + tanα

β−1 tanα + 1 + β−1 + tanα
= 1

1 + β−1
.

Let us compare these two results to the sliding vector field for a flat surface y = 0.
Solving ẏ = λ(−β) + (1 − λ) = 0 impliesλ = 1/(1 + β) giving ẋ = 1/(1 + β−1).
Hence, the form of the motion does not change the sliding vector field approximation
– Filippov’s method holds. These results are independent of the size of the sawtooth
pattern. Likewise if we calculate the portions of motion through the upper vector
field, lower vector field, and sliding vector field along the Koch curve, regardless
of the fractal structure of the path, ultimately the distance travelled is finite and the
speed of motion averages out to Filippov’s sliding vector field.

The result extends, of course, to many other structures where motion entirely
consists of motion through either the upper or lower vector field, or sliding according
to the convex combination along the boundary between them. The switching surface
might consist of a layer tiled with regions on which one or other vector field apply,
with sliding and crossing regions on their edges, again perhaps of a fractal structure;
see Fig. 6.

While an entertaining problem, this has the more serious aim of clarifying the
nature of switching surfaces to which the sliding concept applies. Filippov’s convex

Fig. 6 Along a tiled
switching surface of
thickness ε → 0, for the
vector fields above, solutions
will slide at a speed
〈ẋ〉 = 1/(1 + β−1) + O(ε)
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combination methodology has very wide applications, and makes less assumptions
about the nature of the switches surface than might be thought.

Finding the integral curves themselves is not a trivial problem, and although we
have argued above that the sliding mode must be as in Filippov’s theory, the explicit
calculation above should be extended to demonstrate how the limit along a fractal
surface tends to the convex combination result. It is possible that as yet unforeseen
dynamical issues may arise with more interesting surfaces, for example in the case
of two switches, a fractal surface can undoubtedly be expected to have less trivial
consequences.
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Why Nonsmooth?

Mike R. Jeffrey

Abstract Perhaps we should wrap up this volume by asking why nonsmooth
dynamics is the subject of a three month Intensive Research Program at the CRM
(February to April 2016), why it was the subject of more than 2000 papers published
in 2015 (and only 700 in the year 2000; data fromThomson ReutersWeb of Science),
and why it is a growing presence at international conferences involving mathematics
and its applications.We briefly survey herewhy discontinuity is not only important in
modeling real-world systems, but is also a fundamental property of many nonlinear
systems.

Before we even encounter calculus, we are taught how to apply Newton’s laws
to collisions —the punctuation of smooth motion by violent changes of speed or
direction. This is precisely the kind of thing that differential calculus usually avoids.
So we dutifully keep calculus separate from the practical discontinuities we become
increasingly familiar with: electronic switches, physical impacts, cellular mitosis,
human decisions, physical properties changing across boundaries between media.
But after many years in the wilderness, discontinuities are now also the subject of
increasingly rich and sophisticated theory in the context of dynamics and differential
equations.

Sometimes discontinuities afford a better representation of reality, other times
they offer a computationally convenient caricature of nonlinearity. But in fact, and
most fundamentally, they arise in the very calculus of ‘smooth’ nonlinear systems
themselves. This is the idea set out below.

‘Nonsmooth’ is a casual form of themore precise term ‘piecewise smooth’, mean-
ing smooth almost everywhere, except at certain isolated thresholds. So, almost
everywhere, the systems in our purview submit to all of the theory pertaining of
smooth dynamics, but at a discontinuity, as we are increasingly finding, all hell
breaks loose. But we are also discovering how this can be tamed, and brought under
the auspices of piecewise smooth dynamical systems theory.
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1 Analytic Domains and Divergent Sums

Far frombeing a crudemodeling tool, a discontinuity is actually a subtle phenomenon
that arises in the series expansions of functions. We will first describe it for simple
functions, then describe its application to things like WKBJ solutions of nonlinear
differential equations, and to stationaryphase orLaplacemethods applied to integrals.

‘What is your favourite sigmoid?’ is a social opening line perhaps found only at
workshops on nonsmooth dynamics, but its answer can be very revealing. A biologist
may prefer a Hill function, the neural networkers a tanh function, the numericists an
arctan. Look closely through all the complication of rate-and-state or hidden variables
in earthquake models, and you’ll often find the humble sign function of Coulomb
friction.

A sigmoid function ‘looks like an S’, asymptoting to constants at its tails whichwe
can scale to+1 and−1, and transitioningbetween the two in a smoothly differentiable
fashion. How do you approximate such a transition? Take the example of the sigmoid

y(x) = x√
ε2 + x2

≈ sign(x)
{
1 − 1

2 (ε/x)
2 + 3

8 (ε/x)
4 − 5

16 (ε/x)
6 + · · ·} (1)

Here, we have not taken the usual Taylor approximation about some finite x value,
e.g., y = x/ε − x3/2ε3 + · · · about x = 0, as such a polynomial approximation,
to any order, cannot capture the asymptotic character of y → ±1 as x/ε → ±∞.
That is instead given by approximating for large x/ε, about the ‘point at infinity’.
This is the approximation in (1), which captures the tails well, and even works quite
well deep into the regions |x | < ε, only failing ultimately as x approaches zero. The
leading order sign(x) term signifies the transition, regulated as x/ε shrinks by the
asymptotic terms in the tail.

As a series approximation, the behaviour of the righthand side of (1) is obvi-
ous. For x/ε � 1 the successive terms in 1 − 1

2 (ε/x)
2 + 3

8 (ε/x)
4 − 5

16 (ε/x)
6 + · · ·

are ever shrinking, so the series converges. Moreover, because |x/ε| is ‘far from’
the approximation’s centre at infinity, the approximation is very accurate (of order
O

(
εp+2/x p+2

)
if we truncate (1) at the (ε/x)p term).

At |x | = ε the trouble begins. The terms in the series are all of the same order (i.e.,
|x |/ε = 1), signalling that the series is no longer convergent, and no longer equates
to the function on the lefthand side of (1). As x passes through the region |x | < ε
around zero this allows the series to change its analytic form from 1 − 1

2 (ε/x)
2 +

3
8 (ε/x)

4 − 5
16 (ε/x)

6 + · · · to−1 + 1
2 (ε/x)

2 − 3
8 (ε/x)

4 + 5
16 (ε/x)

6 − · · · . This cre-
ates the ‘sign’ function out the front.

When functions undergo a jump in their analytic series expansion like this, it need
not be so simple, i.e., the forms for x > 0 and x < 0 could be entirely unrelated, say

y(x) =
{
y+(x) if x > +ε,
y−(x) if x < −ε,
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for different analytic expressions y+(x) and y−(x). It turns out that any systems that
jump in some way between different steady regimes of behaviour seem to do so in
this way, controlled by such a switching multiplier y. The difficulty in engineering
and natural sciences, in general, is that we do not know y. We do not even know
what equations might govern y. In optics, y might be subject to a wave equation,
in electromagnetism to Maxwell’s laws, in a fluids problem to the Navier–Stokes
equations, in quantum mechanics to Schrodinger’s equation. In those contexts we
can fill in the jump using asymptotic matching (see e.g., Bender–Orszag [1]). But
what equations should the albedo of the Earth’s surface obey in climate science? Or
the immune response of species in an ecosystem? Or the interfacial contact force
between rough irregular bodies? We know they jump, we know little of the process
by which they do so. So, we admit our deficiency, model the parts we can model
with confidence, and study the rest under the theory of piecewise smooth systems.

2 Coarse/Asymptotic Approx Where Precise Asymptotics
Are Unknown

Take a variable x = (x1, . . . , xn) whose dynamics depends on an external variable
y, and assume y switches between values ±1 as a function σ(x) changes sign
(generalizing from σ = x above), as ẋ = f(x; y) and Dy = p(y,σ, ε), where D
is some differential or integral operator. Many classes of such equations lead to
y ∼ sign σ + O (ε/σ). We already saw a trivial example above in (1), where y was
taken to be a sigmoid. A number of models are given in Jeffrey [3], whereDy = p is
an ordinary differential equation, partial differential equation, or integral equation,
for example:

(i) In the ordinary differential equation ẋ = f(x; y) and εẏ = (1 − y2)σ(x) − εy,
the variable y tends on the ε timescale to

y(σ) = sign(σ) − ε
2σ

{
1 − ε

4|σ| + O
(
(ε/|σ|)3)

}
.

(ii) In the partial differential equation ẋ = f(x; y) and ε2 ẏ = σ(x)yσ + εyσσ , the
variable y relaxes on the ε timescale to

y(σ) = sign(σ) −
√
2ε/π
σ

e−σ2/2ε(1 − √
ε/σ + O

(
ε/σ2

)
).

(iii) In summing over different oscillatory modes, or in using Laplace or Fourier
methods, we often face an integral equation for y like

ẋ = f(x; y) and y(ω) =
∫ ω

−∞
dk a(k) eψ(k).
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Fig. 1 The graphs of y(σ) for different ρ, which all limit to a sign function as ε → 0. For ρ > 0
the graph has peaks whose height is ε-independent, and therefore do not disappear as we shrink ε,
but get squashed into the region |σ| = O (ε)

If we take a(k) to be slow (polynomially) varying, and eψ(k) fast (exponentially)
varying, its asymptotics consists of terms of the form

y(σ) ≈ − a(ω)eψ(ω)

ψ′(ω) + a(ks)e
ψ(ks )

√
2π

−ψ′′(ks )
1+sign σ

2 + O (ε/σ) ,

where σ = Im [ψ(0) − ψ(ks)], and φ′(ks) = 0; see Jeffrey [3].

The point is that all of these take the form y ∼ sign σ + O (ε/σ). In piecewise
smooth dynamics we simply use y = sign(σ) and appeal to Filippov [2] (or alterna-
tive) for the rest. But what if the O (ε/σ) tail is nontrivial? For example, consider

y(σ) = −(1 − ρ)
ε

σ
+ sign(σ)

1+ ε2

σ2√
1+(1−ρ) ε2

σ2

,

which is non-monotonic forρ 	= 0 (andproduces theODEsolution above forρ = 0).1

As Fig. 1 shows, this has ρ-dependent but ε-independent peaks, which retain their
height in the limit ε → 0. How should we distinguish models with different ρ in the
limit ε → 0? We need a way to preserve the nonlinearity of the function as ε → 0
and y → sign(σ), i.e., to remove the ambiguity in sign(σ) at σ = 0.

Placing y inside f(x; y), we obtain an asymptotic expression for ẋ, expressed very
generally for some functions pn(x) and q(σ/ε), of the form

ẋ = p0(x) + p1(x) sign(σ) + q(σ/ε)
∞∑

n=1

pn+1(x)(ε/σ)n.

In Jeffrey [3] it is shown that this can be cast in an ε-independent form

ẋ = f(x; y) = f+(x) + f−(x)
2

+ f+(x) − f−(x)
2

y + (
y2 − 1

)
g(x; y). (2)

1For other examples try a Hill, tanh, or error function with complex argument σ + iρ.
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The first two terms will look familiar from Filippov’s convex combinations of f±, if
y ∈ [−1,+1]. The nonlinear term (

y2 − 1
)
g(x; y) is described as hidden because,

away from the switch where y ∼ ±1, the term y2 − 1 vanishes everywhere. Since (2)
is ε-independent it remains valid as we take ε → 0, so we may now treat y as simply
a sign function, y = sign(σ) for σ 	= 0 and y ∈ [−1,+1] for σ = 0.

A by-product of this (see Jeffrey [3]) is a dynamical expression enabling us to
resolve y ∈ [−1,+1] for σ = 0,

εẏ = f(x; y) · ∇ y(x)

as ε → 0 on σ = 0. We call this the switching layer system, and refer to the region
y ∈ (−1,+1), x|σ=0 ∈ R

n−1, as the switching layer on σ = 0.

3 Purchase Your Zoo Guides Here

Whatever the process lying behind the discontinuity (above we have focussed on its
occurrence as an asymptotic phenomenon), piecewise smooth dynamics allows us
to identify the jump with a well-defined switching surface, a topological object with
its own character (a manifold or variety), its own singularities (tangencies between
it and the vector fields f(x;±1)), and its own bifurcations (discontinuity-induced
bifurcations).

Recent advances in nonsmooth dynamics have opened the flood doors to new
discoveries, of new attractors and new forms of chaos, of bifurcations in systems
with multiple switches, with symmetries, or with hidden dynamics. As discussed in
Paul Glendinning’s Less Is More articles in this volume, the endless classifications
that are now possible create an exciting but ultimately self-serving exercise. There
are bigger questions out there, about how we put these ideas to use in applications,
and about what truly new phenomena there are to be found, such as bifurcations
that violate the rules of smooth systems, singularities that break down determinism,
and complex attractors that challenge our notions of dimension or codimension.
Important too is to continue pushing forward our understanding of what it means to
perturb a nonsmooth system, and what the effect is of modeling non-idealities like
noise, hysteresis, and delay.

We are making real strides forward. You have hopefully found some solutions,
and the beginnings of many ongoing discussions, in this volume.
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An Update on that Singularity

Mike R. Jeffrey

Abstract It took nearly 30 years from the translation of Filippov’s seminal book
to be able to say that the two-fold singularity is understood. We now know that its
structural stability requires nonlinear switching or hidden terms, and that it comes in
three main flavours, with numerous subclasses between which bifurcations can occur.
We know that it is neither an attractor nor a repellor, but a bridge between attracting
and repelling sliding and, in certain cases, is a source of determinacy-breaking.

1 A Bridge over Troubled Flows

Nothing epitomizes the intrigue of piecewise-smooth dynamics like the two-fold
singularity. It is incredibly simple to describe —a point where a flow is tangent to
a discontinuity threshold from both sides— yet intricate in its dynamics. Its under-
standing has pushed the boundaries of understanding in piecewise-smooth systems
more than any other discontinuity-induced phenomenon.

It took nearly 30 years, from the translation of Filippov’s seminal book introducing
the two-fold to the english speaking world, to resolving its switching layer behaviour,
before we could say that the two-fold singularity was understood. And it is now
understood, in wonderful detail: its structural and asymptotic stability [8, 10], its
bifurcations including its local form and the affect of higher orders [3, 4, 10], the
winding numbers when a flow rotates around it [5], the determinacy or determinacy-
breaking occurring when a flow passes through it [7], and even its extension to
multiple switches [9].

We now know that the two-fold singularity’s structural stability requires nonlinear
switching or hidden terms, and that it comes in three main flavours, with numerous
subclasses between which bifurcations can occur. We know that it is neither an attrac-
tor nor a repellor, but an organizing centre, a bi-directional bridge between attracting
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and repelling sliding on a switching surface, which can lead to the creation of a
determinacy-breaking attractor (described as non-deterministic chaos in [1–3, 7]).

The developments towards understanding the two-fold singularity can be traced
through the papers [3–6, 8–10, 15]. Attempts to look beyond nonsmooth theory into
the effects of regularization, introducing a non-ideal switch that is smooth, noisy,
delayed, or hysteretic, have begun in [11–13, 17]. Finally, while attempts to explore
its applications in electronics or mechanics have so far been somewhat unsatisfactory,
hints of a deeper role in phase randomization can be found in [14].

To summarize the story so far, we must begin, of course, with its definition.

Definition 1 A two-fold is a point xp in a system

ẋ =
{
f+(x) if σ(x) > 0
f−(x) if σ(x) < 0

}
, where

σ(xp)

f±(xp) · ∇σ(xp)

}
= 0

and, with certain non-degeneracy conditions satisfied at xp, namely (f± · ∇)2σ �= 0,
0 /∈ fλ · ∇x and, with transversality of the surfaces σ = 0, f+ · ∇σ = 0, f− · ∇σ = 0.
We will introduce the combination fλ below.

The local dynamics depends entirely on two parameters evaluated at xp,

ν+ = (f+·∇)(f−·∇)σ√
|(f+·∇)2σ.(f−·∇)2σ| and ν− = − f−·∇f+·∇σ√

|(f+·∇)2σ.(f−·∇)2σ| ,

characterizing the local curvature of the flow. The product ν+ν− has a simple geo-
metrical interpretation: it quantifies the jump in the vector field between f± at the
singularity. Measuring angles from to the ‘+’ or ‘−’ folds respectively, letting
s± = sign(f± · ∇)2σ,

ν+ν− = −s+s− cot φ − cot θ+
+

cot φ − cot θ−
+

= −s+s− cot φ + cot θ−
−

cot φ + cot θ+
−

,

where φ is the angle between the folds, and θij is the angle of f i from the ‘ j’ fold,
measured in the plane spanned by f+ and f−, with i and j denoting the labels + or −.

The leading order expansion of the two-fold singularity (sometimes called the
‘normal form’ in a somewhat loose usage of the terminology) is given by

(ẋ1, ẋ2, ẋ3)=
{

(−x2,−s+, ν+) if x1 > 0
( x3 , ν−, s− ) if x1 < 0

}
+ (

O
(|x|2) ,O (|x|) ,O (|x|)) , (1)

where s± = sign
[
(f± · ∇)2σ(xp)

]
, and in higher dimensions by ẋi≥4 = O (|x|) for

i = 4, 5, . . .; see [4, 6].
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visible-invisible

v+

v−

visible two-fold

rep. att.

v+

v− + fold

− fold

att.

rep.

invisible two-fold

v+

v−
k=0,1,2

k=1,2k=2
k=3
k=4...

k=0,1,2
k=∞

k=0,1

rep. att. rep.

rep.

att.

att
.

re
p.

+ fold

− fold

+ fold

− fold

att.

Fig. 1 Two-folds come in three flavours, formed by the different combinations of visible or invisible
folds as determined by the signs of s±. Top Regions of attracting sliding (att., shaded), repelling
sliding (rep., shaded), and crossing (unshaded) all meet at the singularity. Bottom Their sliding
and crossing topologies in the ν± parameter plane are shown below; for the invisible two-fold, k is
the number of windings between visits to the sliding regions, tending to infinity where ν+ν− ≥ 1
in ν± < 0; see [4, 5] for details

2 Bifurcation Diagrams

Almost everything we understood until the year 2009 could already be found in
Filippov’s book [6], but much of it was presented in the form of unexplained diagrams
whose original source is unknown (with their description emerging across [4, 5, 16]).

The wealth of information we have on the leading order dynamics (the truncation
of (1)) is summarized in the Fig. 1 below; see [4, 5] for details.

The folds are: (i) both visible if s+ > 0 and s− < 0 at xp; (ii) both invisible if
s+ < 0 and s− > 0 at xp; and (iii) one visible and one invisible if s+s− > 0 at xp

(we sometimes refer to these as the flavours of two-fold).

3 Crossing Maps and Winding Numbers

The distinguishing feature of the invisible two-fold is that the flow can wind repeat-
edly around the singularity, making repeated visits to the crossing regions, possibly
between entry/exit points to/from the attracting/repelling sliding regions.

Let y = (x2, x3) denote a point on the switching surface x1 = 0, and yi denote an
iterate of the return map to the switching surface under the flow. A single return to
the surface is given by
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Tatt

Tatt

Trep

att.

rep.

Trep
Tatt

Tatt

Trep

Trep
att.

rep.

att.

rep.

Fig. 2 The nonsmooth diabolo: invariant manifold (left) around an invisible two-fold. Right top
shown in the switching plane, the manifold bifurcates and disappears at ν+ν− = 1; see Jeffrey–
Colombo [10]. Right bottom the effect of higher order terms, showing a particular case leading to
a determinacy-breaking attractor —as the flow exits the repelling sliding region, the crossing flow
wraps it back around (via k windings) into the attracting sliding region, whereupon the sliding flow
re-injects it back into the repelling region; when all local trajectories pass through the singularity,
determinacy is broken; see Colombo–Jeffrey [3]

y2m+1 = B±y2m , B+ =
( −1 0

−2ν+ 1

)
and B− =

(
1 −2ν−
0 −1

)
,

where B+ and B− are applied in x2 < 0 and x3 < 0, respectively. Therefore, the
second return map, on x2 < 0 or x3 < 0, is

y2m+2 = A±y2m , A± = B∓B± . (2)

Since the maps are associated with folds, they are involutions so, (B+)2 = (B−)2 = 1
and A+ = (A−)−1. The solutions to the difference equation (2) are now obviously

y2m = (A+)my0 or y2m = (A−)my0 ,

and a little trigonometry using the substitution ν+ν− = cos2 � provides

(A±)m = sin[2m�]
sin 2�

A± − sin[2(m − 1)�]
sin 2�

1 .

This is also the source of the crossing numbers k in the previous figure. The main
dynamical features revealed by the map are shown in Fig. 2.

4 Sliding Dynamics and Hidden Instability

To derive sliding dynamics, we need to define a combination of f± on the switching
surface. It turns out that Filippov’s combination hides a structural instability, in

(ẋ1, ẋ2, ẋ3) = 1
2 (1 + λ) (−x2,−s+, ν+) + 1

2 (1 − λ) (x3, ν
−, s−),
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essentially because the value λ = (x3 − x2)/(x3 + x2) for which sliding occurs is
singular at x2 = x3 = 0. It is shown in Jeffrey [8] that a structurally stable combina-
tion is

(ẋ1, ẋ2, ẋ3) = 1
2 (1 + λ)

(−x2, −s+, ν+) + 1
2 (1 − λ)

(
x3, ν−, s−

) + (1 − λ2)(α, 0, 0)

for small α �= 0. A well-defined manifold M of sliding solutions then exists,

M = {
(λ, x2, x3) | 1

2 (1 − λ) x3 − 1
2 (1 + λ) x2 + α(1 − λ2) = 0

}
,

inside the layer (λ, x2, x3) ∈ (−1,+1) × R
2, with M normally hyperbolic except

on

L =
{
(λ, x2, x3) ⊂ M : λ = 2

2α + x3 − x2

x3 + x2
= − x3 + x2

4α

}
,

which corresponds to the two-fold magnified inside the switching layerλ ∈ (−1,+1),
(x2, x3) ∈ R

2. The dynamics inside the layer is given by

(ελ̇, ẋ2, ẋ3) = 1
2 (1 + λ)

(−x2, −s+, ν+) + 1
2 (1 − λ)

(
x3, ν−, s−

) + (1 − λ2)(α, 0, 0),

for ε → 0, which can be transformed into the well-known singularity of folded
slow-manifolds associated with canards in smooth slow-fast systems,

(εẋ, ẏ, ż) = (y + x2, pz + qx, r) + (O (εx, εz, xz) ,O
(
z2, xz

)
,O (z, x)),

provided α �= 0, where p, q, r, are real constants, and provided the conditions
1
2 (ν+ − ν−) ≤ 1 = −s+ = s− or 1

2 (ν+ − ν−) ≥ −1 = −s+ = s− do not hold.
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Sensor Effects in Sliding Mode Control
of Power Conversion Cells

Georgios Kafanas

Abstract Sliding mode controllers are ideally modeled as responding to the state
of a system when, in practice, only a measurement of the state is available, provided
by non-ideal sensors. We provide an equivalent control model for a buck converter
system that includes the dynamics of the sensors. The results demonstrate some
limitations of the basic equivalent control method in determining the stability of
systems with sensors.

1 Introduction

Power electronics provide a class of variable structure systems where sliding mode
control has been applied extensively. The implementation of most sliding mode con-
trollers requires the evaluation of a function of the system state called the switching
function. The system state is measured using sensors, which can also be modeled as
dynamic systems.

Inmost design approaches, the exact sensor dynamics are neglected.The controller
is designed assuming ideal sensors. The resulting switching frequency is evaluated
and used to determine a sensor cut-off frequency that ensures timescale separation
between the sensor and converter dynamics.

In efforts to improve the power density of converters, the switching frequency
increases such that the converter and the sensors operate in similar time scales. Thus
the basic assumption in the derivation of slidingmode control, that non-ideal behavior
disappears as the switching frequency increases, is no longer valid. In this report, we
investigate how the sensor dynamics affect the equivalent control method as a design
and analysis tool for power electronics.
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2 Dynamics of Sensors

In our model, the state of the system is not directly available but all state variables
are measured by senors whose state is directly observable. The dynamics of the buck
converter is modeled by a first order ordinary differential equation

dxsys
dt

= fsys(xsys, u),

where

fsys(xsys, u) =
(
0 − 1

L

1
C − 1

RC

)
· xsys + u

(
0 − 1

L

1
C − 1

RC

)
. (1)

The state xsys = (iL , vC)T of the buck converter consists of the current of the inductor,
iL , and the voltage of the capacitor, vC . The control input u is discontinuous, taking
values 0 or 1. We denote the measurement of some variable z by ẑ. A first order
integrator is a good model for a popular class of sensors, the voltage and current
transducers, over a wide range of switching frequencies.

To describe the dynamics of the extended system including the sensors, we add
the sensor dynamics in the dynamics of the converter. The state of the converter, xsys,
and the sensors, xsen, are

xsys =
(
iL
vC

)
, xsen =

(
îL
v̂C

)
.

The dynamics in the extended system are

dxsys
dt

= fsys(xsys, u),
dxsen
dt

= fsen(xsys, xsen),

where u ∈ {0, 1} is the control input, fsen is as defined in (1), and

fsen(xsys, xsen) =
(
ki 0
0 kv

)
· (
xsys − xsen

)
.

The extended system state is now the combination of the converter and sensor
states

x =
(
xsys
xsen

)
.
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The extended system dynamics is then dx
dt = f (x, u), where

f

((
xsys
xsen

)
, u

)
=

(
fsys(xsys, u)

fsen(xsys, xsen)

)
.

The converter dynamics is independent of the sensors. This is a reasonable assump-
tion, as the sensors draw small amounts of power from the converter.

3 Sliding Surfaces with Sensors

The objective of the controller is to maintain the state of the system in some man-
ifold given by an equation of the form H(x) = 0. In the model of the buck con-
verter extended to included non-ideal sensors, only the converter state is limited to a
manifold H(xsys) = 0. We let

H(xsys) = (
cosφ sin φ

) ·
(
xsys − x∗

sys

)
, (2)

where x∗
sys = (v∗

C/R, v∗
C )T is the desired pseudo-equilibriumof the slidingmode, and

φ is a design parameter. The condition for the manifold H(xsys) = 0 to be attracting
under a control input u is

H(xsys) �= 0 ⇒ H(xsys) · [L f (x,u)H ](x) < 0, (3)

where the operatorL f (x,u) is the Lie derivative along flows in the vector filed defined
by f (x, u).

In a control system with sensor dynamics only the state of the sensors, xsen, is
available to construct the control input. The switching surface will be determined by
the equation

H(xsen) = 0. (4)

Any implementation of the sliding mode control will actually impose the invariant
H(xsen) = 0 rather that H(xsys) = 0.

4 Constructing the Equivalent Control

The equivalent control method from Edwards–Spurgeon [1] allows us to determine
the continuous feedback control ensuring that, after the state reaches the surface (4),
the state remains there. The equivalent control ueq is defined as the control input u
solving

[L f (x,u)H ](x) = 0
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on H(xsen) = 0. In our system a modification to the traditional equivalent control
method is made. Computing [L f (x,u)H ](x), the result

[L f (x,u)H ](x) = ∇x H · dx
dt

= ∇x H · f (x, u)

= ∇xsysH · fsys(xsys, u) + ∇xsenH · fsen(xsys, xsen)

= ∇xsenH · fsen(xsys, xsen) = (ki x1 − ki x3) cosφ + (kvx2 − kvx4) sin φ,

is not a function of u. Instead, we use [L f (x,u)H ](x) = 0 as the switching surface,
and thus define the equivalent control as the solution of

[L2
f (x,u)H ](xsen) = 0

on [L f (x,u)H ](x) = 0. The resulting control input exists and is given by a function
of x denoted ueq(x).

The desired pseudo-equilibrium of the system is x∗ = (x∗T
sys, x

∗T
sen)

T , where x∗
sen =

x∗
sys and x∗

sys is defined by (2). The surfaces H(xsys) = 0 and [L f (x,u)H ](x) = 0
intersect at x∗; if x∗ is a stable pseudo-equilibrium for the sliding mode on
[L f (x,u)H ](x) = 0 the system is stabilized on x∗, the desired state on H(xsys) = 0.

5 System Stability

The system is stable under the control input ueq if it makes the manifold H(xsys) = 0
attracting. We introduce for x = (xTsys, x

T
sen)

T the equation

L(x) = H(xsys) · [L f (x,ueq(x))H ](x).

According to (3), the manifold H(xsys) = 0 will be attracting if H(xsys) �= 0 implies
L(x) < 0. With the transformation T from z = (y, ε1, δ, ε2)T to x = (iL , vC ,

îL , v̂C)T ,

T

⎛
⎜⎜⎝

y
ε1
δ
ε2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

v∗
C
R

v∗
C

v∗
C
R

v∗
C

⎞
⎟⎟⎟⎟⎠ + y

⎛
⎜⎜⎝

− sin φ
cosφ

− sin φ
cosφ

⎞
⎟⎟⎠ + ε1

⎛
⎜⎜⎝
cosφ
sin φ
cosφ
sin φ

⎞
⎟⎟⎠ + δ

⎛
⎜⎜⎝

0
0

− sin φ
cosφ

⎞
⎟⎟⎠ + ε2

⎛
⎜⎜⎝

0
0

cosφ
sin φ

⎞
⎟⎟⎠ ,

the function L is expressed in terms of perturbations z from the pseudo-equilibrium,
x∗, of the sliding mode, [L f (x,u)H ](x) = 0, as a quadratic form �(z) = L(T (z)),
where �(z) = zT Qz for some symmetric matrix Q.

The quadratic form � is always negative when Q is negative definite. This is
equivalent to all the eigenvalues of Q being negative. There are three eigenvalues:
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(i) λ1 = 0, with a two dimensional eigenspace. The eigenspace can be decomposed
in a subspacewhere H(xsys) = 0 and a subspacewhere H(xsen) = 0 and H(xsys)
is not identically zero. In the later case, H(xsys) �= 0 and L(x) = 0 so, the surface
is not attracting.

(ii) λ2 < 0, with an eigenspace where H(xsys) · H(xsen) > 0.
(iii) λ3 > 0, with an eigenspace where H(xsys) · H(xsen) < 0.

The spectral analysis of Q indicates that themanifold H(xsys) = 0 is not attracting
in pseudo-equilibrium point x∗ under the equivalent control. Practical experience
and simulations reveal that a limit cycle appears in the system under a hysteric
implementation of the sliding mode controller. Thus, under the equivalent control, a
stable limit cycle is expected to appear around the pseudo-equilibrium.

6 Conclusions

A model for the equivalent control of the buck converter with sensors was derived
and used to determine the local stability of the pseudo-equilibrium on the sliding
mode. The sliding mode control with direct access to the system state converts the
discontinuous system to a continuous systemwhere a stable equilibrium point exists.
When the sensor dynamics is modeled, the equilibrium point of the sliding mode
control becomes unstable.A stable limit cycle is expected to exist around this unstable
equilibrium point.

Acknowledgements The authorwould like to thankDrMikeR. Jeffrey for his insightful discussion
and comments.

Reference

1. C. Edwards, S.K. Spurgeon, Sliding Mode Control: Theory and Applications (CRC Press, Boca
Raton, 1998)



Variational Time Stepping for Nonsmooth
Analytical System Dynamics

Claude Lacoursière and Tomas Sjöström

Abstract The discrete time variational principle is applied to the Lagrangian
formulation of multidomain nonsmooth dynamics to produce a stable time step-
ping scheme. Examples from electronics are used to demonstrate how to construct
pseudo-potentials of nonsmooth devices such as transistors.

Analytical system dynamics provides a systematic framework to construct the equa-
tions of motion of multidomain models; see Layton [7]. Elements are describes
with scalar functions representing kinetic or potential energy or “dissipative pseudo
potentials”. Boundary conditions are then enforced using kinematic constraints of
various types. The equations ofmotion are then derived using the FourierD’Alembert
principle of stationary action, which can include inequality and impact conditions
using different families of variations; see Leine–Aeberhard–Glocker [8]. Numerical
methods for time integration can then be derived using the discrete time variational
principle; seeMarsden–West [9]. These generally have advantageous properties such
as symplecticity for conservative systems, and are stable even at low order.

We add two things to this, namely, a regularization procedure based on Legendre–
Frenet transforms which allows to take the uniformly convergent limits of arbitrarily
strong potentials, as well as “ghost” variables which help with the derivation of the
equations of motion and numerical time integration methods of dissipative systems.
We illustrate this with Coulomb friction for rigid bodies as well as bipolar junction
transistors for electronics. Models for op-amps and other types of transistors are
currently under development.

Let q and q̇ be generalized coordinates and velocities of the entire system. We
write T (q, q̇) and U (q) for total kinetic and potential energy, and R(q, q̇) ≥ 0 for
dissipation pseudo-potentials. The latter are assumed sub-differentiable and they
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generate forces according to f = −∂R/∂q̇ and dissipate energy at the rate q̇ · f .
Holonomic constraints are defined with differentiable functions g(q) which restrict
q to g(q) ≥ 0, and introduce forces according to f = GTλ, where G = ∂g(q)/∂q ,
and λ is a Lagrange multiplier. We also have non-holonomic constraints defined via
restrictions a(q, q̇)q̇ � 0, and produce forces f = Aβ̇, where A = ∂a/∂q̇ and β̇ is
a Lagrange multiplier. The time derivative is explained shortly.

Strong potentials of the form U (q) = (1/(2ε))g2(q) and pseudo-potentials
R(q, q̇) = (1/(2γ))a2(q, q̇) are useful for modeling and constraint realization. To
be able to take the limit ε → 0 and γ → 0, we use half Legendre transforms

U (q) = − ε

2
‖λ‖2 − λ · g(q),

R(q, q̇) = −γ

2
‖β̇‖2 − β̇ · a(q, q̇),

with 0 ≤ λ ⊥ g(q) ≥ 0. The new variables λ and β can now be incorporated in new
generalized coordinates q̃ = (q,λ,β). Given that the quadratic terms for λ and β
are negative, these are ghost variables with no kinetic energy; see De Felice [3]. The
limit of ε → 0 is well defined if we introduce dissipation (see Bornemann [1]) and
this is then done with

R(q̃, ˙̃q) = τ

2ε
‖ġ‖2 = −τε

2
‖λ̇‖2 − τ λ̇ · ġ(q),

which reveals the significance of writing β̇ for the Lagrange multipliers of pseudo-
potentials’ Legendre transforms. The pseudo-potentials are known to converge to
nonholonomic constraints as γ → 0; see Karapetian [4]. As the notation suggests,
we now consider all constraints as limits of strong potentials with ε = γ = 0 and
therefore, the variables q̃ are constrained only by inequalities. The Lagrangian and
pseudo-potentials then read

L(q̃, ˙̃q) = T (q, q̇) − Ū (q) + ε

2
‖λ‖2 + λ · g(q),

R = R̄ − γ

2
‖β̇‖2 − β̇ · a(q, q̇),

where Ū (q) and R̄(q, q̇) are “weak” potentials and pseudo-potentials. The Fourier–
D’Alembert principle then reads

δ

∫ T

0
dsL(q̃, ˙̃q) −

∫ T

0
dsδq̃(s)

∂R(q̃, ˙̃q)

∂ ˙̃q ≥ 0, (1)

and the complementarity conditions 0 ≤ λ ⊥ g(q) ≥ 0 and 0 ≤ β̇ ⊥ a(q, q̇) ≥ 0, as
follows from our definitions (and is well known; see Lanczos [6]). These conditions
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imply that if a limit condition is reached, the forces push the system back into the
feasible region.

We use the discrete to variational principle (see Marsden–West [9]) to construct
a time-stepping scheme using the definitions

S[q̃] =
∫ T

0
dsL(q̃, ˙̃q) =

N∑
k=0

∫ (k+1)h

kh
dq̃L(q̃, ˙̃q) =

N∑
k=0

L d(q̃k, q̃k+1),

and ∫ h

0
ds f · δq̃(s) = f (+)

d (q̃0, q̃1)δq̃0 + f (−)
d (q̃0, q̃1)δq̃1,

where h > 0 is a fixed time step. Details of the discretization are found elsewhere
(see, e.g., Lacoursière–Linde [5]), and the final form reads

⎡
⎣ M̃ −GT

k −AT
k

Gk ε̃ 0
Āk 0 γ̃

⎤
⎦

⎡
⎣q̇k+1

λ
ν

⎤
⎦ =

⎡
⎣Mq̇k + h f

ζ
ρ

⎤
⎦ , (2)

with 0 � λ ⊥ ζ � 0, 0 � ν ⊥ ρ � 0 and qk+1 = qk + hq̇k+1. All quantities with
˜(·) depend on the timestep. Stepping then requires the solution of Mixed Linear
Complementarity Problems (MLCP)s. This is solvable for conservative systems if
we have bisymmetry, i.e., Āk = Ak .When then have a P problem if ε̃ > 0 and γ̃ > 0,
and a P0 problem otherwise; see Cottle–Pang–Stone [2]. The parameters ε̃, γ̃ protect
against rank deficiency and yet have physical meaning.

We now consider three examples where Ã �= A, and analyze the feasibility of the
MLCP in Eq. (2) with Coulomb friction, simple diodes and the bipolar transistor.

For Coulomb friction we introduce a distance function g(q) leading to standard
0 ≤ g(q) ⊥ ν ≥ 0, where ν is themagnitude of the contact force. Stiction is enforced
by defining a tangential contact velocity v = A(q)q̇ where A is the projection onto
the plane tangent to ∇g(q) and so, for finite viscosity,

Rs = 1

2γ
‖a(q, q̇)‖2 = −γ

2
‖v‖2 − β̇ · v.

The Coulomb cone condition is then ‖β̇‖ ≤ μν, where μ > 0 is a friction coefficient.
The maximum dissipation principle then states that v · β̇ = −‖v‖‖β̇‖. This is done
by putting dissipative pseudo-potentials on the magnitude of the ghost β̇ with

Rc = − 1

2γ
(μν − ‖β̇‖)2 = γ

2
σ̇2 + σ̇(μν − ‖β̇‖),
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where 0 ≤ σ̇ ⊥ μν − ‖β̇‖ ≥ 0. The negative sign is important and follows from
the fact that β is a ghost variable and therefore negative energy. Taking the limit
ε = 0 = γ, the variational principle then leads to the forces on the originalq variables,
GT ν and AT β̇, as well as the following equations corresponding to ν, β̇, and σ̇
derivatives in Eq. (1): 0 ≤ g(q) ⊥ ν ≥ 0, Aq̇ + t σ̇ = 0 with t = β̇/‖β̇‖, and 0 ≤
μν − t · β̇ ⊥ σ̇ ≥ 0, showing that Ã �= A. One can linearize the norm operator (see
Stewart–Trinkle [10]) and in doing so, the MLCP in Eq. (2) is copositive meaning
that it is solvable, with some caveats.

The simple diode with thermal voltage v (θ) and reverse bias current q̇ (r) has
current q̇ , no potential and no kinetic energy, but the dissipation potential

R (d) = v (θ)q̇ (r)

(
log

(
1 + q̇

q (r)

)
− q̇

q̇ (r)

)
, (3)

where q̇ ≥ −q̇ (r). Conservation of charge leads to Kirchhoff’s current law after dif-
ferentiation, Gq̇ = 0 = ġ, and the potential differences across the components are
then �v = GTλ, where the Lagrange multipliers λ are node voltages. The constitu-
tive equations then lead to

0 ≤ �v = ∂R (d)

∂q̇
= v (θ) log

(
1 + q̇

q̇ (r)

)
⊥ q̇ − q̇ (r) ≥ 0

and this still has the correct symmetry. Suitable discretization in time gives a nonzero
numerical impedance.

Using the Ebers–Moll’s equations, the bipolar transistor can be represented in

terms of two “natural diodes” with currents ˙̃q (1)
and ˙̃q (2)

related to the Common–
Emitter and Base–Emitter currents q̇ (ce), q̇ (be) via

[ ˙̃q (1)

˙̃q (2)

]
=

[
Q11 Q12

Q12 Q22

] [
q̇ (ce)

q̇ (be)

]
,

where the matrix Q =
[
Q11 Q12

Q12 Q22

]
is symmetric and positive definite. Each new

current ˙̃q (i)
, i = 1, 2, satisfies the diode law in Eq. (3). Changing variables leads to

changing Kirchhoff’s current law to read

Gq̇ = GQ−1 ˙̃q, (4)

but the dynamics is then

0 ≤ �v (ce) = v (θ) log

(
1 + q̇ (1)

q̇ (r)

)
⊥ ˙̃q (1) − q̇ (r) ≥ 0,
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Fig. 1 Diode bridge
simulations

Spice

Non-
smooth

0 ≤ �v (be) = v (θ) log

(
1 + q̇ (2)

q̇ (r)

)
⊥ ˙̃q (2) − q̇ (r) ≥ 0.

We now have an asymmetry in the system matrix in Eq. (2), which can be written as
H = H0 Q̃, where Q̃ is the block diagonal, symmetric and positive definite matrix
representing the transformation in Eq. (4). If we assume that H0 is a P0 matrix,
multiplicative properties of determinants lead to the conclusion that H = H0 Q̃ is
also P0. But now that the bisymmetry is lost, H is no longer positive definite, and
not copositive either. This brings questions regarding the solvability of the mixed
system.

The plot in Fig. 1 is representative of numerical results which can be obtained
with this method. The efficiency gain is obvious when counting the number of time
steps required to simulate one period of a diode bridge. The order of the numerical
method is low, but the efficiency gain is visible. We used large time steps here, one
tenth of the period, to demonstrate how the nonsmooth stepping has good stability
properties. Multidomain results are similar but would go beyond the scope here.

We have shown how non-smooth analytical systems dynamics can be formulated
applied systematically tomultidomain systems, and discretized to produce stable and
efficient time-stepping schemes. Only natural boundary conditions for coupling dif-
ferent domains are used, and the technique allows for ideal, infinitely stiff couplings
without artificial elasticity. There are open questions related to solvability, however,
and the conversion of conventional models to this formulation is counter-intuitive.
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The Chaotic Behavior of Piecewise Smooth
Dynamical Systems on Torus and Sphere

Ricardo M. Martins and Durval J. Tonon

Abstract In this work we discuss the appearance of minimal trajectories for the
flow of piecewise smooth dynamical systems defined in the two dimensional torus
and sphere in such a way that the switching manifold breaks the manifold into
two connected components. We show that the number of pseudo-singularities of
the sliding vector field is an invariant for the structural stability and study global
bifurcations. Using a generic normal form, we prove that these systems can present
chaotic behavior.

1 Introduction

In this paper we consider piecewise smooth dynamical systems of the form

ẋ =
{
X (x) if x ∈ M

+,

Y (x) if x ∈ M
−,

(1)

where M is the sphere S
2 or the torus T

2 decomposed as M = M
+ ∪ M

−, with
� = M

+ ∩ M
− a smooth curve breaking M into two connected components and

X,Y are smooth vector fields on M. The dynamics over � is defined to satisfy
Filippov’s convention; see Filippov [4]. A dynamical system like (1) will be denoted
by (X,Y ) and referred to as the vector field (1).

The theory of piecewise smooth vector fields has been developing very fast in
the last years, mainly due to its strong relation with branches of applied science,
such as mechanical, aerospace engineering, electrical and electronic engineering,
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physics, economics, among others areas. Indeed, PSVF are in the boundary between
mathematics, physics and engineering, see Makarenkov–Lamb [8] and Teixeira [10]
for a recent survey on this subject, where models from control theory are discussed.

2 Main Results

Let M denote the two dimensional torus T2 or the sphere S2. In both cases, we will
consider M obtained as the usual quotient of the square I × I = [0, 1] × [0, 1].

Consider the switching manifold, denoted by �, as � = �1 ∪ �2 = {(t, 0), t ∈
I } ∪ {(t, 1

2 ), t ∈ I } forM = T
2, and� = {(t, 1

2 ), t ∈ I } forM = S
2.With the usual

topologies on I × I generating M, these choices of � break M into two connected
components, M+ = M ∩ (I × [1/2, 1]) and M

− = M ∩ (I × [0, 1/2]).
In this paperwe study piecewise smooth vector fields X = (X+, X−), where X+ is

defined onM+, and X− is defined onM−. Over� = M
+ ∩ M

− we adopt Filippov’s
convention.

Our main goal is to describe the global dynamics of X in the cases where the
singularities of X are generic or do not exist (regular case). The main techniques
used are the theory of contact between a smooth vector field with the switching
manifold and the dynamics of the first return map, which may be generalized to
higher dimensions. We also employ a version of the Poincaré–Bendixson Theorem
that was proved recently for PSVF on the plane; see Buzzi–de-Carvalho–Euzébio [1].

Local normal forms for the two dimensional case are exhibit in Guardia–Seara–
Teixeira [5] and Kuznetsov–Rinaldi–Gragnani [7]. Therefore, we start the study of
global dynamics on the two dimensional torus and sphere considering these families
(only codimension zero). However, the normal forms of codimension zero for the
three dimensional case (where the approach developed in this paper can be adapted)
are exhibited in Carvalho–Tonon [3].

The main results are the following.

Theorem 1 Let X be a PSVF defined on M with switching manifold �. Suppose
that X is regular-transversal to �, without singularities or tangencies, taken in its
normal form X = (X+, X−), where X+(x, y) = (a, σ1) and X−(x, y) = (b, σ2),
with σi = ±1, i = 1, 2.

(i) If σ1σ2 > 0 and M = T
2 the trajectories of X are periodic if a ± b ∈ Q; oth-

erwise, M is a non trivial wandering set.
(ii) If σ1σ2 > 0 andM = S

2 the trajectories of X connect the north and south poles
of the sphere.

(iii) If σ1σ2 < 0 then the switching manifold presents a sliding motion that is a
global attractor or repeller, according to the signs of σ1 and σ2.

Proof For proving (iii), note that if σ1σ2 < 0 then the system presents a sliding
motion on one of components of the switching manifold, and the dynamics on the
manifold is constant.
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Now we prove (i) where M = T
2. Note that the existence of periodic orbits is

equivalent to the existence of n0 ∈ N such that ϕ
n0
X (p) = kp, where k ∈ N, p ∈

�1 and ϕX is the flow of X . Given p = (x, 0) ∈ �1 we get φX−(p) = (a/2σ1 +
x, 1/2) = (x2, 1/2) and φX+(x2, 1/2) = (a/2σ1 + b/2σ2 + x, 1) = (x3, 1).

In this case, the global dynamics of X is given by the first return map and we can
write explicity

ϕn
X (x, 0) =

(
n

2

(
a

2σ1
+ b

2σ2

)
+ x,

n

2

)
(2)

for n ≥ 2, where overline denotes the representant of the class of equivalence (with
respect to the equivalence relations (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y) for defining
the torus on I × I ).

Therefore, the necessary and sufficient condition to get periodic orbits, in this
case, is ϕ

n0
X (x, 0) = (x, 0), for some n0 ∈ N. By (2), the last equation is satisfied if

and only if
n0
4

(
aσ2 + bσ1

σ1σ2

)
∈ Z

or, equivalently, a ± b ∈ Q. So, we conclude that there exist periodic orbits for X if
and only if a ± b ∈ Q. Otherwise, if a ± b /∈ Q, then the orbits of X are not periodic
and X does not have singular points. Therefore, by applying the version of Poincaré–
Bendixson Theorem for PSVF in Buzzi–de-Carvalho–Euzébio [1], we conclude that
the orbits of X , in this case, are dense. This ends the proof of (i). The proof of (ii)
is similar, but one has to recall that every trajectory connecting the top and bottom
borders of the square are connecting the north and south poles of S2. ��

Theorem 1 is a piecewise smooth version of the well know Kronecker–Weyl
Equidistribution Theorem; see Hasselblatt–Katok [6, Proposition 4.2.1]. However,
our approach is distinctly from that used in the proof of this theorem. In the present
case, we analyse directly the dynamics of the first return map in the context of PSVF.

In the case where the PSVF present a finite number of fold singularities or a
finite number of critical points of the sliding vector field, the topological behavior
of X changes drastically when the number of these points changes. In particular,
the presence of chaotic behavior is a generic property in the sense of Buzzi–de-
Carvalho–Euzébio [2].

Theorem 2 Let X = (X+, X−) be aPSVFonM, where X+ is a linear flow transver-
sal to �, and X− is a vector field without singularities onM− and with a finite and
even number of visible tangencies. Then,

(i) if M = T
2, generically X is chaotic on T

2, that is, X is topologically transitive
and present sensitive dependence on the initial conditions;

(ii) if M = S
2, generically M = Mh ∪ Mc, where Mh,Mc are open invariant sets,

Mh is foliated by homoclinic trajectories, and X restricted to Mc has a chaotic
behavior (in the sense of [2]), withMh ∩ Mc a homoclinic trajectory.
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Fig. 1 Dynamics of
X = (X+, X−) on the
hypotheses of Theorem 2

A proof of Theorem 2 can be found in Martins–Tonon [9], and Fig. 1 illustrates
its dynamics.
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Non-smooth Hopf-Type and Grazing
Bifurcations Arising from Impact/Friction
Contact Events

Karin Mora and Chris Budd

Abstract A new discontinuity-induced bifurcation, referred to as nonsmooth Hopf-
type bifurcation, observed in a nonautonomous impacting hybrid systems in R

4 is
presented. The system studied models the bouncing motion, repeated instantaneous
impacts with friction, in rotating machines with magnetic bearing support. At the
nonsmooth Hopf-type bifurcation point a stable regular equilibrium and two unstable
small amplitude 1-impact periodic orbits arise. The existence of this bifurcation
scenario depends on a complex relationship between damping, the restitution, and
the friction coefficient.

1 Introduction

Rotating machines with magnetic bearing support comprise a set of electromag-
nets which enable the levitation of a driven rotating beam. Their operation can be
compromised, even result in destruction, through the interactions between the rotor
and the touchdown bearing (TDB), which protects the rotor and other components.
Assuming these interactions are instantaneous impacts, also referred to as bouncing,
a hybrid system formalism can be adopted to study the dynamics and bifurcation
structure.

The analysis of similar systems but without damping and/or stiffness has shown
that these systems exhibit rich complex dynamics and discontinuity-induced bifur-
cations (DIB): Childs [1] showed that impact dynamics can give rise to parametric
excitation in rotating machines; Li–Païdoussis [4] studied numerically the bifurca-
tion structure of a simplified model without stiffness and damping; Lu–Li–Twizell
[5] derive the existence condition for periodic orbits with one impact per period,
referred to as 1-impact periodic orbits, in an undamped system, and Keogh–Cole [3]
showed such orbits can also be observed in a system with damping and stiffness.
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Fig. 1 (a) Schematic of a rotating machine with impact at the contact point CP. (b) Schematic of
the nonsmooth Hopf-type bifurcation (NSH) at γ∗ in phase space (x, y). As γ decreases towards
γ∗ the admissible equilibrium (black dot) and periodic orbits (black loops) bifurcate into virtual
orbits (grey) at the NSH point. The amplitudes of the 1-impact periodic orbits (loops) vanish at the
NSH point

In thisworkwe adopt the latter spring-dampermodel,whereNewton’s lawof resti-
tution and Coulombs friction law account for the energy dissipation during impact;
see Fig. 1a.We systematically analyse DIBs in impacting hybrid systems by studying
1-impact periodic orbits in the rotating frame. Due to the geometry of the problem,
different coordinate systems are exploited to show how a seemingly degenerate bifur-
cation corresponds to a known one. We also show that one scenario, the nonsmooth
Hopf-type bifurcation, is new. At this bifurcation point, a stable regular equilibrium
and two unstable1-impact periodic orbits arise; see Fig. 1b. The existence of this
scenario depends on a complex relationship between damping, the restitution, and
the friction coefficient. The majority of this extended abstract summarises the results
reported in Mora–Budd–Glendinning–Keogh [6].

2 Magnetic Bearing System as an Impacting Hybrid System

2.1 Equation of Motion in Free Flight

We consider a simplified mechanical model of a rigid magnetic bearing system
comprising a rotor spinning with constant speed � > 0 within a clearance radius
cr to the fixed TDB; see Fig. 1a. The rotor has radius R and mass m. The system
is under proportional-integral-derivative (PID) control and thus the effect of the
magnetic bearing on the rotor’s response can be modelled by a linear spring–damper
system with stiffness k and damping c. In free flight, the complex equation of motion
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of the rotor with centre z ∈ C is given by

mz̈(τ ) + cż(τ ) + kz(τ ) = fu e
i�τ , if |z(τ )| < cr , (1)

where the (̇ ) denotes the derivative with respect to time τ , fu ∈ C is the mass unbal-
ance force with fu = m ec �2eiφ and depends on the unbalance eccentricity ec, and
unbalance phase φ. Below we alternate between Cartesian coordinates z = x̃ + i ỹ
and polar coordinates z = r̃ ei θ̃ to better illustrate the system’s properties.

2.2 Reset Law

The reset law describes the velocity change of the dynamical system (1) at the
i-th impact, i.e., if |zi | = cr , at time τi with i ∈ {0, 1, 2, . . .}. It maps the velocity
immediately before impact żi,− := ż(τi,−) to the corresponding velocity immediately
after impact żi,+ := ż(τi,+), while the position zi is unaffected by the impact, i.e.,
zi,− = zi,+ = zi .

We make three assumptions to obtain the reset law. Firstly, the TDB behaves like
an infinitely stiff surface, which cannot be penetrated. Then, the finite contact forces
are approximated by idealized impulsive normal and tangential forces, Fc and Ff ,
respectively. Secondly, the rotational speed � > 0 is large and thus unaffected by
the impact, and it remains fixed. Thirdly, both � and the radii ratio R/cr are large,
so that the relative velocity vrel,i,± at the contact point CP,

vrel,i,± = R� + cr
˙̃θi,±, if |zi | = cr ,

does not change sign and remains positive during an impact; see Fig. 1a. Then,
the reset law is consistent with other restitution models such as the kinematic and
energetic impact law; see Nordmark–Dankowicz–Champneys [7]. The reset law,
derived by applying the law of momentum conservation as well as Fc and Ff , can
be stated in polar coordinates

˙̃ri,+ = −d ˙̃ri,−, and ˙̃θi,+ = ˙̃θi,− − μ(1 + d)
˙̃ri,−
cr

, if |zi | = cr , (2)

where d is the restitution coefficient, and μ is the friction coefficient.

2.3 Scaling and the Rotating Frame

The hybrid dynamical system (1), (2) is simplified by introducing dimensionless time
t = �τ , and radius r = r̃/cr , and by observing the system in the rotating frame, i.e.,
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we introduce the complex coordinate U = x + iy = reiθ with θ = θ̃ − t . Then the
equation of motion (1) in the rotating frame can be expressed in terms of the complex
vector w(t) = (

U (t), U̇ (t)
)ᵀ
,

ẇ(t) = Aw(t) + b, if |U | ≤ 1, (3)

where the matrix A and the vector b are constant,

A =
(

0 1
1 − ω2 − iγ −γ − 2i

)
and b =

(
0

ρeiφ

)
,

and where γ = c/(m�) is the scaled damping, ω2 = k/(m�2) is the scaled stiffness,
and ρ = ec/cr is the scaled eccentricity radius. Similarly, the reset law (2) takes the
form

wi,+ = wi,− −
(

0
(1 + d)(1 + iμ)ṙi,− Ui

)
, if |U | = 1. (4)

The impact surface is � := {w : |U | = 1}. Orbits which are physically realistic are
referred to as admissible, and virtual otherwise. Periodic orbits with one impact per
period in the rotating frame are referred to as 1-impact periodic orbits.

3 1-Impact Periodic Orbit

To derive the global necessary existence and stability conditions of the 1-impact
periodic orbit, the Poincaré map PI : � → �,wi+1,− = PI (wi,−) is applied. This
map is nonlinear in general, uniquely defined if ṙi,− > 0 and smooth, provided that
ṙi+1,− > 0; see di-Bernardo–Budd–Champneys–Kowalczyk [2]. 1-impact periodic
orbits are fixed points of PI . A system of algebraic equations derived from the
hybrid flow of (3), (4) determine the impact period T = T (γ,ω, d,μ), which does
not depend on the unbalance force, the impact angle θi,− = θi,−(T, ṙi,−), the normal
velocity ṙi,− = ṙi,−(T ), and the tangential velocity θ̇i,− = θ̇i,−(T, ṙi,−).

The global analysis of 1-impact periodic orbits shows that the impact map PI

can have at most finitely many fixed points with pairs of orbits having the same
period. For the bifurcation analysis below we only consider the four orbits with the
smallest period Ta , Tb, Tc, and Td . They are the most likely orbits to be admissible.
The larger the impact period T the more likely it is that the trajectories cross the
boundary between the Poincaré points; this sufficient condition has to be determined
numerically. The numerical stability analysis has shown that only one of these orbits,
with period Td and large amplitude, is stable.

The trajectories of these four orbits in the fixed frame correspond to periodic
orbits if the ratio of the impact period and the period of the rotating frame T/(2π) is
a rational number. Otherwise these trajectories are impacting quasi-periodic orbits.
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4 Nonsmooth Hopf-Type and Other Discontinuity-Induced
Bifurcations

In this section we give a brief overview of the DIBs observed in the system (3), (4),
as the scaled damping parameter γ is varied. We also show that the coordinate frame
is crucial for classifying DIB scenarios.

The hybrid system in the co-rotating frame (3) has a stable equilibrium solution
w = w∗ := −A−1bwhen impacts are absent. When it crosses the boundary |U | = 1
it transitions from an admissible to a virtual equilibrium in a boundary equilibrium
bifurcation (BEB) at the point w = −A−1b, γ = γ∗ := √

ρ2 − (1 − ω2)2. In the
fixed frame, this equilibrium corresponds to a periodic orbit with period 2π, which
undergoes a degenerate grazing bifurcation for γ = γ∗. We consider this bifurca-
tion degenerate as the orbit lies tangential to the impact surface � along the entire
boundary.

Four 1-impact periodic orbits are created in a smooth fold bifurcation at γ = γF,1.
If γ∗ < γF,1, then these four orbits are admissible and as γ decreases the two small
amplitude orbits undergo a second bifurcation with the regular equilibrium w = w∗
at the point γ = γ∗; see Fig. 1b. At this point all admissible orbits become virtual.
This is a new type of DIB and is termed nonsmooth Hopf-type bifurcation (NSH) due
to its nature. In the fixed frame, this scenario corresponds to the bifurcation of one
nonimpacting periodic orbit, with period 2π which grazes, and two periodic or quasi-
periodic orbits, i.e., if T/(2π) ∈ Q or T/(2π) ∈ R \ Q, respectively. Thus, it does
not correspond to the nonsmooth fold bifurcation scenario; see di-Bernardo–Budd–
Champneys–Kowalczyk [2]. If γ∗ > γF,1 then only two of the 1-impact periodic
orbits are admissible and the nonsmooth Hopf-type bifurcation is not observed.

Numerically, we have observed that, setting the friction coefficient μ to zero, with
the same system parameters that give rise to four admissible 1-impact periodic orbits,
only orbits with very large period T > 20 exist. The trajectories of these orbits are
very likely not admissible. Thus we conjecture that the friction coefficient is a critical
parameter for the existence of 1-impact periodic orbits and for observing the NSH
bifurcation.
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Number of Limit Cycles for Some
Non-generic Classes of Piecewise Linear
Differential Systems

Douglas D. Novaes

Abstract Recently, some upper bounds were found for the maximum number of
limit cycles for some non-generic classes of planar piecewise linear differential sys-
tems with two zones separated by a straight line. However, many distinct cases were
considered. Here the main properties of those classes are identified, this allows us to
unify the approach and to extend the results. We also study a new class of differential
systems.

1 Introduction and Statements of the Main Results

Let F±(x, y) = A±(x, y)T + (b±
1 , b±

2 ), A± = (a±
i j )2×2, be linear vector fields. This

work is concerned about crossing limit cycles of piecewise linear differential systems
having the form

(
ẋ, ẏ

)T = Z(x, y) = (
F+, F−)

(x, y) =
{
F+(x, y) if x ≥ 0,
F−(x, y) if x ≤ 0.

(1)

Denote by � = {(x, y) : y = 0} the set of discontinuity of (1). From now on, a
crossing limit cycle will be called only by limit cycle.

It was conjectured in Han–Zhang [5] that a planar piecewise linear differential
system with two zones separated by a straight line has at most two limit cycles. A
negative answer for this conjecture was provided in Huan–Yang [6] via a numerical
example having three limit cycles. Analytical proofs for the existence of these three
limit cycles were given in [3, 7]. Finally, in Freire–Ponce–Torres [4] some general
conditions were studied to obtain these three limit cycles. Recently, perturbative
techniques (see [9, 10])were used togetherwith newly developed tools onChebyshev
systems (see Novaes–Torregrosa [12]) to obtain three limit cycles in such systems.
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When a general curve of discontinuity is considered instead of a straight line, there
is no upper bound for the maximum number of limit cycles that a differential system
of this family can have. It is a consequence of a conjecture stated in Braga–Mello
[1] and then proved in Novaes–Ponce [11].

It is easy to see that a±
12 > 0 is a necessary condition for the existence of crossing

limit cycles (see Freire–Ponce–Torres [2]). So, define

δ± = a±
22

a±
12

b±
1 − b±

2 .

Let det(·) and tr(·) denote the determinant and the trace of a matrix, respectively.
When det(A±) �= 0 the vector field F± vanishes at the point

(
x±, y±) =

(
a±
12b

±
2 − a±

22b
±
1

det(A±)
,
a±
21b

±
1 − a±

11b
±
2

det(A±)

)
.

Note that x± = −a±
12δ

±/ det(A±).
In Llibre–Novaes–Teixeira [8], tools and ideas to estimate bounds on the maxi-

mumnumber of limit cycles that the differential system (1) can havewere introduced.
The equality tr(A+)tr(A−) = 0 was assumed in some of the cases considered there.
The ideas of [8] can be followed straightly to obtain the next result.

Theorem 1 If tr(A+)tr(A−) = 0, then the differential system (1) admits at most two
limit cycles and this maximum is reached.

Among all the cases addressed in [8], assuming that the lateral differential systems
are non–singular, the authors also proved that if one of the lateral differential systems,
F+ or F−, has a singularity on the line of discontinuity� then the differential system
(1) can have at most two limit cycles. This result can be generalized as follows.

Theorem 2 If δ+δ− = 0 then the differential system (1) admits at most two limit
cycles and this maximum is reached.

In the above case, the equality tr(A+)tr(A−) = 0 is not assumed. In this direction
a third result is obtained.

Theorem 3 If tr(A+) + tr(A−) = 0, det(A+) − det(A−) = 0, and δ+ + δ− = 0,
then the differential system (1) does not admit limit cycles.

Let F(x, y) be a linear vector field, and let R(x, y) = (−x, y) be an invo-
lution. Assume that F+(x, y) = F(x, y) and F−(x, y) = −R ◦ F ◦ R(x, y + k),
k ∈ R. It easy to see that Z = (F+, F−) satisfies the hypotheses of Theorem3.
The proof of Theorem3 follows by showing that differential systems for which
their hypotheses hold are actually equivalent to a differential system Z = (F+, F−)

such that F−(x, y) = −R ◦ F ◦ R(x, y + k). In this case, if k = 0 then Z is R–
reversible which implies the non–existence of limit cycles. The parameter k breaks
the reversibility, however limit cycles cannot appear.
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In Sect. 2 some preliminary results are introduced. In Sect. 3 the proofs of
Theorems1, 2, and 3 are discussed. The proof of Theorem3 is treated with more
detail.

2 Preliminar Results

As usual, the following open regions are distinguished on �: Crossing Region:
�c = {p ∈ � : F+

1 (p)F−
1 (p) > 0}; Escaping Region: �e = {p ∈ � : F+

1 (p) >

0, F−
1 (p) < 0}; and Sliding Region: �s = {p ∈ � : F+

1 (p) < 0, F−
1 (p) > 0}. Let

�c+ ⊂ �c denote the points p ∈ �c such that F+
1 (p) > 0 and F−

1 (p) > 0.
Denote byϕ±(t, x, y) = (

ϕ±
1 (t, x, y),ϕ±

2 (t, x, y)
)
the solutions of the lateral dif-

ferential systems (ẋ, ẏ)T = F±(x, y) such that ϕ±(0, x, y) = (x, y). The existence
of an interval domain I ⊂ �c+

and functions t± : I → R
±, such that, for y ∈ I ,

ϕ±
1 (t±(y), 0, y) = 0, ϕ+

1 (t, 0, y) > 0 for every 0 < t < t+(y), and ϕ−
1 (t, 0, y) < 0

for every t−(y) < t < 0 is a necessary condition for the existence of limit cycles.
In this case, the differential system (1) admits a limit cycle passing through (0, y∗),
y∗ ∈ I, if and only if y∗ is a solution of the equation

f (y)
.= ϕ+

2 (t+(y), 0, y) − ϕ−
2 (t−(y), 0, y) = 0. (2)

In general the functions t±(y) cannot be obtained explicitly.However, their inverse
ξ± : t±(I ) → I may be explicitly computed.

Proposition 4 Assume that there exist an interval domain I ⊂ �c+
and func-

tions t± : I → R
±, such that, for y ∈ I , ϕ±

1 (t±(y), 0, y) = 0, ϕ+
1 (t, 0, y) > 0 for

every 0 < t < t+(y), and ϕ−
1 (t, 0, y) < 0 for every t−(y) < t < 0. Then, t±(y) are

invertible and their inverses ξ± : t±(I ) → I satisfy ϕ±
1 (t, 0, ξ±(t)) = 0 for every

t ∈ t±(I ).

In Freire–Ponce–Torres [2], assuming a+
12a

−
12 > 0,which is a necessary condition

for the existence of limit cycles, the authors provided the following normal form for
the differential system (1):

( ˙̃x, ˙̃y)T =
{
F̃+(̃x, ỹ) if x̃ > 0,
F̃−(̃x, ỹ) if x̃ < 0,

(3)

F̃+(̃x, ỹ) =
(
T+ −1
D+ 0

) (
x̃
ỹ

)
−

(−k
a+

)
,

F̃−(̃x, ỹ) =
(
T− −1
D− 0

) (
x̃
ỹ

)
−

(
0
a−

)
,
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with T± = tr(A±), D± = det(A±), and

a− = a−
12b

−
2 − a−

22b
−
1 , k = a−

12

a+
12

b+
1 − b−

1 , a+ = a−
12

a+
12

(
a+
12b

+
2 − a+

22b
+
1

)
.

The homeomorphism h, which transforms the differential system (1) into the canon-
ical form (3), leaves the line of discontinuity � invariant. The crossing and sliding
sets, tangency points, and boundary equilibria of the original differential system (1)
are transformed by h into sets and points of the same type by the differential system
(3). Moreover, there is a topological equivalence between the differential systems
(1) and (3) for all their orbits not having points in common with the sliding set.

3 Sketches of the Proofs of the Main Results

The proofs of Theorems1 and 2 follow by finding explicitly at least one of times
t+(y) or t−(y). It is assured by hypotheses. Without loss of generality, suppose that
one is able to find t−(y). Using Proposition4 to invert the function t+(y) (which
from hypotheses can be found explicitly as ξ+(t)) Eq. (2) becomes equivalent to

g(t)
.= f (ξ+(t)) = ϕ+(t, 0, ξ+(t)) − ϕ−(t−(ξ+(t)), 0, ξ+(t)) = 0,

for which the number of solutions can be estimated; see Llibre–Novaes–Teixeira [8].
To see Theorem3, take F±(x, y) = A±(x, y)T + (b±

1 , b±
2 ), A± = (a±

i j )2×2, and
assume that tr(A+) + tr(A−) = 0, det(A+) − det(A−) = 0, and δ+ + δ− = 0. Thus
the differential system (1) is transformed into the canonical form (3), where

F̃+(̃x, ỹ) =
(
T −1
D 0

) (
x̃
ỹ

)
−

(−k
a

)
,

F̃−(̃x, ỹ) =
(−T −1

D 0

)(
x̃
ỹ

)
−

(
0

−a

)
,

T and D are the trace and the determinant of the matrix A+, respectively, a = a+,
and k = (a−

12/a
+
12)b

+
1 − b−

1 . Taking the involution R(x, y) = (−x, y), the rela-
tion F̃−(x, y) = −R ◦ F̃+ ◦ R(x, y + k) is obtained. From now on we shall drop
the tildes. As before, ϕ±(t, x, y) = (

ϕ±
1 (t, x, y),ϕ±

2 (t, x, y)
)
denote the solutions

of the lateral differential systems (ẋ, ẏ)T = F±(x, y) such that ϕ±(0, x, y) =
(x, y). It is easy to see that ϕ−

1 (t, x, y) = −ϕ+
1 (−t,−x, y + k) and ϕ−

2 (t, x, y) =
ϕ+
2 (−t,−x, y + k) − k.
As a necessary condition for the existence of periodic solutions, assume the exis-

tence of an interval domain I ⊂ �c+
and a function t+ = τ : I → R

+, such that,
for y ∈ I , ϕ+

1 (τ (y), 0, y) = 0 and ϕ+
1 (t, 0, y) > 0 for every 0 < t < τ (y). Note
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that, in this case, t−(y) = −τ (y + k). Indeed ϕ−
1 (−τ (y + k), 0, y) = −ϕ+

1 (τ (y +
k), 0, y + k) = 0, andϕ−

1 (t, 0, y) = −ϕ+
1 (−t, 0, y + k) < 0 for every−τ (y + k) <

t < 0 and y + k ∈ I . Let ϕi = ϕ+
i so, Eq. (2) reads

f (y) = ϕ+
2 (τ (y), 0, y) − ϕ−

2 (−τ (y + k), 0, y)

= ϕ2(τ (y), 0, y) − ϕ2(τ (y + k), 0, y + k) + k = 0.

From the above expression it follows that the equation f (y) = 0, for k �= 0, does
not have solution for y ∈ I . Indeed, without loss of generality, assume that y >

0; if k > 0 then the first return of y to �, ϕ2(τ (y), 0, y), is strictly greater than
the first return of y + k to �, ϕ2(τ (y + k), 0, y + k). Therefore, ϕ2(τ (y), 0, y) −
ϕ2(τ (y + k), 0, y + k) > 0 and consequently f (y) > 0. Analogously, if k < 0 we
would conclude that f (y) < 0.
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An Equivalent Formulation of the Averaged
Functions via Bell Polynomials

Douglas D. Novaes

Abstract WeuseBell polynomials to provide an alternative formula for the averaged
functions. This new formula can make the computational implementation of the
averaged functions easier.

1 Introduction and Statement of the Main Results

The averaging theory is one of the best analytical methods to study isolated periodic
solutions of differential equations in the presence of a small parameter; see, for
instance, Llibre–Moeckel–Simó [5] and the references therein. Usually, this theory
deals with differential systems in the following standard form

x ′(t) =
k∑

i=0

εi Fi (t, x) + εk+1R(t, x, ε), (t, x) ∈ R × D, (1)

where D is an open bounded subset of Rn, |ε| �= 0 is a small parameter, and the
functions Fi : R × D → R

n for i = 1, 2, . . . , k, and R : R × D × (−ε0, ε0) → R
n

are T –periodic in the first variable and Lipschitz in the second variable. As one
of the main hypotheses, it is assumed that the solution ϕ(t, z) of the unperturbed
differential system, x ′(t) = F0(t, x), is T –periodic in the variable t for every initial
condition ϕ(0, z) = z ∈ D.

The averaging method consists in defining a collection of functions fi : D → R
n ,

called averaged function of order i , for i = 1, 2, . . . , k, which control (their simple
zeros control), for |ε| �= 0 sufficiently small, the isolated periodic solutions of the
differential system (1). In Llibre–Novaes–Teixeira [6] it has been established that
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fi (z) = yi (T, z)

i ! , (2)

where yi : R × D → R
n , for i = 1, 2, . . . , k, are defined recurrently by the following

integral equation

y1(t, z) = ∫ t
0

(
F1 (s, ϕ(s, z)) + ∂F0 (s, ϕ(s, z)) y1(s, z)

)
ds,

yi (t, z) = i ! ∫ t
0

(
Fi (s, ϕ(s, z))

+
i∑

l=1

∑

Sl

1

b1! b2!2!b2 · · · bl !l!bl ∂
L Fi−l (s, ϕ(s, z))

l⊙

j=1

y j (s, z)
b j

)
ds.

(3)
In Eq. (3), Sl denotes the set of all l-tuples of non-negative integers (b1, b2, . . . , bl)
satisfying b1 + 2b2 + · · · + lbl = l, and L = b1 + b2 + · · · + bl . Here, ∂ L F(t, x)
denotes the Frechet’s derivative with respect to the variable x . It is a L–multilinear
map applied to a “product” of L vectors of R

n ,
⊙L

j=1 y j ∈ R
nL , where y j =

(y j1, . . . , y jn) ∈ R
n . Formally,

∂ L F(t, x)
L⊙

j=1

y j =
n∑

i1,...,iL=1

∂ L F(t, x)

∂xi1 · · · ∂xiL
y1i1 · · · yLiL .

In [6, 7] the averaging theory at any order was developed to study isolated periodic
solutions of nonsmooth but continuous differential system. Recently, the averaging
theory has also been extended to study isolated periodic solutions of discontinuous
differential systems; see [2, 4, 8, 9]. The next theorem is proved in Llibre–Novaes–
Teixeira [6].

Theorem 1 (Llibre–Novaes–Teixeira [6]). Assume the following conditions:

(i) for each i = 0, 1, . . . , k and t ∈ R, the function Fi (t, ·) is of class Ck−i , ∂k−i Fi
is locally Lipschitz in the second variable, and R is a continuous function locally
Lipschitz in the second variable;

(ii) for some r ∈ {1, 2, . . . , k}, fi = 0 for i = 1, 2, . . . , r − 1 and fr �= 0;
(iii) for some a∗ ∈ D with fr (a∗) = 0, there exists a neighborhood V ⊂ D of a∗

such that fr (z) �= 0 for all z ∈ V \ {a∗}, and that dB ( fr (z), V, 0) �= 0.

Then, for |ε| > 0 sufficiently small, there exists a T –periodic solution x(·, ε) of (1)
such that x(0, ε) → a∗ when ε → 0.

The above symbol dB denotes the Brouwer degree; see Brouwer [1] for a general
definition. When fr is a C1 function and the Jacobian determinant of fr at z ∈ V
is distinct from zero (we denote J fr (z) �= 0) then the Brouwer degree of fr at 0 is
given by

dB( fr , V, 0) =
∑

z∈Z fr

sign
(
J fr (z)

)
,
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where Z fr = {z ∈ V : fr (z) = 0}. In this case, J fr (a
∗) �= 0 implies dB( fr (z),

V, 0) �= 0.
In Itikawa–Llibre–Novaes [2], there can be found some examples where higher

order averaged functions (2) are used to estimate lower bounds for the maximum
number of limit cycles of some classes of smooth and nonsmooth differential systems.

In practicalmeans, the evaluation of the recurrence (3) is a computational problem.
Therefore, in this notes, we shall use the partial Bell polynomials to provide an alter-
native formula for the recurrence (3). Since the Bell polynomials are implemented
in algebraic manipulators as Mathematica and Maple, this new formula can make
easier the computational implementation of the averaged functions. In the sequel,
for p and q positive integers, we recall the partial Bell polynomials:

Bp,q(x1, . . . , xp−q+1) =
∑

S̃p,q

p!
b1! b2! · · · bp−q+1!

p−q+1∏

j=1

(
x j

j !
)b j

,

where now S̃p,q is the set of all (p − q + 1)-tuples of nonnegative integers (b1, b2,
. . . , bp−q+1) satisfying b1 + 2b2 + · · · + (p − q + 1)bp−q+1 = p, and b1 + b2 +
· · · + bp−q+1 = q.

Theorem 2 For i = 1, 2, . . . , k the recurrence (3) reads

y1(t, z) = Y (t, z)
∫ t

0
Y (s, z)−1F1 (s, ϕ(s, z)) ds,

yi (t, z) = Y (t, z)
∫ t

0
Y (s, z)−1

(
i !Fi (s, ϕ(s, z))

+
i∑

m=2

∂mF0 (s, ϕ(s, z)) Bi,m
(
y1(s, z), . . . , yi−m+1(s, z)

)

+
i−1∑

l=1

l∑

m=1

i !
l! ∂

mFi−l (s, ϕ(s, z)) Bl,m
(
y1(s, z), . . . , yl−m+1(s, z)

))
ds,

(4)

where Y (t, z) is the n × n fundamental matrix solution of the periodic linear dif-
ferential system u′(t) = ∂F0(t, ϕ(t, z)) u(t) such that Y (0, z) = I d is the identity
matrix.

Proof Firstly, recall two equivalent definitions of the Faá di Bruno’s Formula about
the l-th derivative of a composite function; see Johnson [3]. Let g and h be sufficiently
smooth functions then
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dl

dαl
g(h(α)) =

∑

Sl

l!
b1! b2!2!b2 · · · bl !l!bl g

(L)(h(α))

l⊙

j=1

(
h( j)(α)

)b j

=
l∑

m=1

g(m)(h(α))Bl,m
(
h′(α), h′′(α), . . . , h(l−m+1)(α)

)
,

where Sl is the set of all l-tuples of non-negative integers (b1, b2, . . . , bl) satisfying
b1 + 2b2 + · · · + lbl = l, and L = b1 + b2 + · · · + bl , and Bl,m is the partial Bell
polynomials.

Now define a function h(α) such that h(0) = ϕ(s, z) and h(i)(0) = yi (t, z), for
i = 1, 2, . . . , k. Therefore the sum over Sl in the expression (3) for yi reads

1

l!
dl

dαl

(
Fi−l (s, h(α))

)∣∣∣
α=0

=
∑

Sl

1

b1! b2!2!b2 · · · bl !l!bl ∂
L Fi−l (s, ϕ(s, z))

l⊙

j=1

y j (s, z)
b j

= 1

l!
l∑

m=1

∂m Fi−l (s, ϕ(s, z))Bl,m
(
y1(s, z), . . . , yl−m+1(s, z)

)
.

Substituting the above expression in (3) we get

yi (t, z) = i !
∫ t

0

(
Fi (s, ϕ(s, z))

+
i∑

l=1

l∑

m=1

1

l!∂
mFi−l (s, ϕ(s, z)) Bl,m

(
y1(s, z), . . . , yl−m+1(s, z)

))
ds,

(5)

which is still an integral equation. We note that the function yi (s, z) appears in the
right hand sideofEq. (5) onlywhen l = i andm = 1. Since Bi,1

(
y1(s, z), . . . , yi (s, z)

)

= yi (s, z) and yi (0, z) = 0 the above integral equation satisfies the linear differential
equation

∂

∂t
yi (t, z) =∂F0 (t, ϕ(t, z)) yi (t, z) + i !Fi (t, ϕ(t, z))

+
i∑

m=2

∂mF0 (t, ϕ(t, z)) Bi,m
(
y1(t, z), . . . , yi−m+1(t, z)

)

+
i−1∑

l=1

l∑

m=1

i !
l! ∂

mFi−l (t, ϕ(t, z)) Bl,m
(
y1(t, z), . . . , yl−m+1(t, z)

)
.

(6)

Hence, proceeding as above, now for y1 in the expression (3), and solving the dif-
ferential equation (6) for i = 1, 2, . . . , k, we obtain (4). �
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Smoothing a Piecewise-Smooth: An Example
from Plankton Population Dynamics

Sofia H. Piltz

Abstract In this workwe discuss a piecewise-smooth dynamical system inspired by
plankton observations and constructed for one predator switching its diet between two
different types of prey. We then discuss two smooth formulations of the piecewise-
smooth model obtained by using a hyperbolic tangent function and adding a dimen-
sion to the system. We compare model behaviour of the three systems and show an
example case where the steepness of the switch is determined from a comparison
with data on freshwater plankton.

1 Introduction

Here, we consider an existing piecewise-smooth model for a system of one predator
and two prey, inspired by studies of plankton populations suggesting predator-prey
interaction and adaptive feeding of a predator governing the dynamics observed in
a freshwater lake in spring; see Müller–Schlegel [4] and Tirok–Gaedke [10]. While
the piecewise-smooth system providing prey switching is a possible mechanistic
explanation for the observed patterns of population oscillations (see Piltz–Porter–
Maini [6]), it is not clear whether there exists such “discontinuous” predator feeding
behaviour. Therefore, we discuss here two smooth analogs of the piecewise-smooth
system and compare their dynamical behaviour. In addition, we compare model
predictions to data to get more insight into the steepness of the transition function.

2 Methods

We consider the following piecewise-smooth system describing adaptive feeding of
a predator z on its preferred and alternative prey, p1 and p2, respectively:
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ẋ =
⎡
⎣
ṗ1
ṗ2
ż

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f+ =
⎡
⎣

(r1 − z)p1
r2 p2

(Eq1 p1 − m)z

⎤
⎦ , if h = p1 − aq p2 > 0

f− =
⎡
⎣

r1 p1
(r2 − z)p2

(Eq2 p2 − m)z

⎤
⎦ , if h = p1 − aq p2 < 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1)

The parameters r1 and r2 (where r1 > r2 > 0) are the respective per capita growth
rates of the preferred and alternative prey, e > 0 is the proportion of predation that
goes into predator growth, q1 and q2 are nondimensional parameters representing
the predator’s desire to consume the preferred and alternative prey, respectively, and
m > 0 is the predator per capita death rate per day.

As aq (which correspondsmathematically to the slope of tilted switchingmanifold
h = p1 − aq p2 = 0, and biologically, to the slope of the assumed linear trade-off in
the predator’s preference for prey) is decreasedbelow its critical value (aqcrit = q2/q1),
the piecewise-smooth system undergoes a centre to two-part-periodic orbit (C2PO)
bifurcation, where the eigenvalues of the pseudoequilibrium of the system cross
the imaginary axis, and the cusp for f+ is aligned with the pseudoequilibrium. In
the C2PO bifurcation, an attracting pseudoequilibrium becomes repelling and an
adding-sliding periodic orbit arises from a family of centres; see Piltz–Porter–Maini
[6]. The mechanism of the C2PO bifurcation can be illustrated by the nullclines
of the sliding vector field of (1): For aq < aqcrit , the cusp lies at the intersection of
the boundary between crossing and sliding regions and one branch of a hyperbola-
nullcline; see Fig. 1a. At the bifurcation point, both the pseudoequilibrium and the
cusp move and become located on the same line (see Fig. 1b), and for aq > aqcrit , the
pseudoequilibrium and the cusp are no longer aligned; see Fig. 1c.

The piecewise-smooth system in (1) can be smoothed out by using hyperbolic
tangent functions as follows:

u2

u3
u1 = 0

cusp

r1 + r2

aq < aqcrit

u2

u3
u1 = 0

cusp

2m(1+a2
q)

e(q1aq+q2)

r1 + r2

aq = aqcrit

u2

u3
u1 = 0

cusp

r1 + r2

aq > aqcrit(a) (b) (c)

Fig. 1 The mechanism for the C2PO bifurcation in (1) represented after a coordinate change u1 =
p1 − aq p2, u2 = aq p1 + p2, and u3 = z on the u2-u3-plane. We denote the repelling/attracting
pseudoequilibrium with an open/filled grey circle, the cusp with an open black circle, nullclines in
red, and an example trajectory in blue. We have shaded the sliding region
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ṗ1 = (r1 − z)p1
(
1+tanh(k(p1−aq p2))

2

)
+ r1 p1

(
1−tanh(k(p1−aq p2))

2

)
,

ṗ2 = r2 p2
(
1+tanh(k(p1−aq p2))

2

)
+ (r2 − z)p2

(
1−tanh(k(p1−aq p2))

2

)
,

ż = (Eq1 p1 − m)z
(
1+tanh(k(p1−aq p2))

2

)
+ (Eq2 p2 − m)z

(
1−tanh(k(p1−aq p2))

2

)
,

(2)

where k determines the steepness of the hyperbolic tangent and of the predator’s
feeding behaviour. Alternatively, one can find a four-dimensional smooth analog for
the system in (1) by constructing equations for a system variable q that changes in
response to the prey abundance. Biologically, q can be considered as the predator’s
trait that undergoes contemporary (i.e., ε = 1) or rapid (ε � 1) evolution according
to the fitness-gradient dynamics (see [1–3]):

dp1
dt = ṗ1 = g1(p1, p2, z, q) = r1 p1 − qp1z ,

dp2
dt = ṗ2 = g2(p1, p2, z, q) = r2 p2 − (1 − q)p2z ,

dz
dt = ż = g3(p1, p2, z, q) = eqp1z + e(1 − q)q2 p2z − mz ,

ε
dq
dt = εq̇ = f (p1, p2, q) = q(1 − q)Ve(p1 − aq p2) ,

(3)

where V is a nondimensional constant and constitutes the term for additive genetic
variance, q(1 − q)V .

3 Results

Using linear stability analyses, we find that the piecewise-smooth system (1) and its
two smooth analogs, (2) and (3), all exhibit a steady state, where all three popula-
tions coexist at positive densities. In the case of the piecewise-smooth system, this
steady state is a pseudoequilibrium located on the switching boundary and attracting
for a large part of the parameter regime (i.e., when aq > q2/q1); see Piltz–Porter–
Maini [6]. Similarly, aq > q2/q1 is a sufficient condition for stability of the same
coexistence steady state in the smooth system (2), when k is large enough; see
Piltz–Harhanen–Porter–Maini [5]. Moreover, there exists an interval of intermediate
k values, k0 < k < k1, for which the coexistence state is stable also for aq < q2/q1,
[5]. However, the coexistence steady state in the four-dimensional smooth analog
(3) (with ε = 1) is stable only for aq = q2/q1 and, otherwise, it is unstable; see
Piltz–Harhanen–Porter–Maini [5]. For ε � 1, there is a time scale difference between
the fast dynamics of the added system variable q (i.e., evolutionary changes) and the
slow population dynamics (i.e., demographic changes) in the smooth system (3).
Thereby, singular perturbation theory can be used to show that there exist periodic
orbits in the resulting 1 fast-3 slow system for ε = 0 that persist for ε > 0; see
Piltz–Veerman–Porter–Maini [7].
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Fig. 2 Normalised predator abundance z(t) for simulations of (2) [for parameter values e = 0.25,
q1 = 1, q2 = 0.5, (left) r1 = 1.1, r2 = 0.3, m = 0.2, aq = 0.03, k = 86, and (right) r1 = 2.3,
r2 = 0.5, m = 0.3 aq = 0.03, k = 16], (circles) normalised data, and frequency of k at the most
strict tolerance level for (left, Tol = 0.008) selective predator Rimostrombidum lacustris in 1991
and (right, Tol = 0.02) unselective predator Balanion planctonicum in 1998 in Lake Constance;
see [8, 9]

While it is not clear if the switch in the adaptive feeding of a predator on two
prey is instantaneous as the piecewise-smooth system (1) assumes, it is not known
which of the several possible smooth formulations best describe prey switching. To
determine the steepness of a switch from z feeding on p1 to p2, and vice versa, we
compare model predictions of (3) with data collected from protist-predators (i.e.,
single cell organisms that feed on phytoplankton). We simulate (3) numerically with
several different parameter values — including the slope of the hyperbolic tangent
k — calculate the distance to the data points, and either reject or accept k values that
yield large or small least-square error between a simulation and the data. For the first
iteration we choose k values from a uniform distribution between 1 and 100, and
for the subsequent iterations we choose k from the accepted values of the previous
iteration. Our parameter fitting suggests that large k values fit the data for a selective
predator better than small, suggesting the use of a piecewise-smooth model as a good
approximation for feeding behaviour; see Fig. 2.

4 Discussion

Although at the extremes (i.e., when k → ∞ and when q = 0 and q = 1 for
the smooth systems (2) and (3), respectively) the smooth analog agrees with the
piecewise-smooth system (1), the dynamical behaviour of the two systems may not
always be the same. For example, a smoothing with hyperbolic tangent function
preserves the densities at, and stability of, the coexistence equilibrium when the
transition is steep enough, whereas a smoothing that introduces an extra dimension
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to the system changes the stability of the same equilibrium. In addition, where the
smooth analog (2) exhibits convergence to an equilibrium for gradual transition,
there is a periodic orbit in the piecewise-smooth system. These observations suggest
that even though there is a parameter/variable regime where the piecewise-smooth
system and its smooth analog overlap “on paper”, their dynamical behaviour may be
quite different.

One way to justify (or discard) the use of a piecewise-smooth model —either as a
simplification of a steep transition or introduced by the physical or other properties
of the application— is to construct several smooth analogs and let the data indicate
which model best describes it. Data comparison can be used to get insight into the
steepness of a discontinuous switch, as done here, or to choose between different
competing models. The latter could be done with a heuristic method (e.g., model
choice using approximate Bayesian computation with sequential Monte Carlo; see
Toni–Welch–Strelkowa–Ipsen–Stumpf [11]) or using existing toolboxes for system
identification (e.g., in Matlab). As concerns analytical computations, the expres-
sions for the equilibrium and its eigenvalues in the piecewise-smooth system (1)
are much easier to analyse than those of its smooth analogs. However, despite the
fact that the piecewise-smooth system has fewer parameters than its smooth analogs,
numerical simulations of piecewise-smooth systems can result in long computation
times because of more complex algorithms than those used to solve smooth sys-
tems. As a result, the advantage of fitting fewer parameters can be erased by longer
computation times when several iterations are required for reliable parameter fitting.
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A Note on Frictional Slip Patterns

Thibaut Putelat

Abstract A possible origin of the frictional travelling waves usually occuring
between sliding interfaces is discussed: various solutions, including propagating
wavetrains, pulses and fronts, can appear under rate-and-state friction from
homoclinic or heteroclinic bifurcations.

1 Introduction

The understanding of the spatio-temporal dynamics of frictional slip along extended
solid interfaces is of great importance, both theoretically and in practice, acrossmany
industrial or natural contexts such as brake squeal or earthquake mechanics. Various
regimes of stick-slip travelling waves are often observed numerically as for instance
in the recent simulations of a brake pad [2], or experimentally as in the careful
monitoring of friction rupture fronts controlling the onset of frictional slip [3]. The
intricate nature and diversity of earthquakes recorded over the past decade ranging
from aseismic events, episodic tremors, slow and fast earthquakes is also most star-
tling; e.g., see [9, 11]. The emergence of such a variety of inhomogeneous frictional
sliding modes, either in engineering or geophysical contexts, is a difficult problem
due to itsmultiple scales nature caused by the complexity of the friction phenomenon,
its modelling and its coupling with the elastic wave radiation. Even in the case of the
idealised situation of a long thin elastic plate, a plethora of solution types, including
propagating wavetrains, pulses and fronts, can appear under non-monotonic rate-
and-state friction from homoclinic or heteroclinic bifurcations; see [12]. Here, we
briefly sketch the analysis for visco-elastic rate-and-state friction models motivated
by the experimental results reported in [7].
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2 Rate-and-State Friction

The phenomenological rate-and-state framework of friction [1, 13, 16] is a physically
motivated smooth regularisation of Coulomb friction where three crucial experimen-
tal observations are incorporated, namely: the time dependence of static friction in
quasi-stationary contact and the velocity dependence of dynamic friction, together
with sliding memory effects via an interfacial state variable φ(t) quantifying the
interface resistance to slip whose characteristic relaxation timescale is denoted t∗.
Accordingly, classical rate-and-state models are usually defined by the pair of empir-
ical equations

τ = F(v,φ;σ) and φ̇ = −g(v,φ;σ)/t∗, (1)

where the interfacial shear stress τ depends on the interfacial slip rate v, state
φ and normal stress σ, which is considered uniform here. A classical realisation
is given by the Dieterich law defined by F/σ := μ∗ + a ln(v/V∗) + b ln(φ) and
g := φv/V∗ − 1; see [16]. Such friction models are remarkably universal across a
wide variety of materials and can be microphysically justified from Eyring’s theory
of thermally activated rate processes (cf. [14]), which determine that the irreversible
contribution to the interfacial slip rate is a nonlinear function virr = f (τ ,φ;σ). To
extend the domain of validity of this framework into the moderate to high frequency
domain, experimental observations [4, 6, 7] suggest to take into account the elastic
deformation of the contact region from the introduction of an interfacial shear stiff-
ness k. Hence, the total interfacial slip rate v results from the sum of these elastic
and irreversible contributions, i.e., v = τ̇/k + f (τ ,φ;σ), or equivalently

τ = F(v − τ̇/k,φ;σ). (2)

Classical rate-and-state frictionmodels are formally recovered from (2)with k → ∞.

3 Problem Formulation

Lying on a flat and rigid horizontal foundation, the sliding of a thin elastic plate of
arbitrary wide extent driven by a constant shear stress τ̄ := μ̄σ̄ applied at its top
and subjected to a uniform pressure σ̄ is considered. The plate’s thickness, density,
Young’s modulus and Poisson’s ratio are respectively denoted h, ρ, E and ν. In the
limit of large wavelength of the plate longitudinal wave (λ � h), the distribution
of the longitudinal stress and displacement components can be assumed uniform
across the plate’s cross-section; see Kolsky [10]. The equation of motion of the plate
then follows from considering the balance of forces applied to a cross-section of
infinitesimal width. Coupled with rate-and-state friction (1)2–(2), a dimensionless
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‘shallow layer’ approximation to the three-dimensional elasto-dynamic equations is
derived as, with abuse of notation,1

u,t t − u,xx + τ = τ̄ , τ,t = κ[u,t − f (ζτ ,φ)], φ,t = −rg(u,t ,φ), (3)

where u(x, t) is the plate horizontal displacement. Denoting cl the slab’s longi-
tudinal wavespeed defined by c2l = E/[ρ(1 − ν2)], the key dimensionless para-
meters characterising the interplay between the elastic and frictional waves are
ζ = (ρcl)/(σ̄/V∗), r = (h/cl)/t∗ and κ = (kh)/(ρc2l ). Typically r � 1 represents
the ratio of the perturbation propagation characteristic timescale over the charac-
teristic interface rejuvenation timescale, whereas ζ ∝ σ̄−1 � 1 is the ratio of the
mechanical and interfacial impedances. Due to the large value of the interfacial
stiffness (> 1012 Pa/m), we expect κ � 1. We note however that such an interfa-
cial stiffness could result from some interfacial gouge/wear instead of interfacial
asperities, which could in turn reduce the order of magnitude of κ.

Within the travelling coordinate system z := r(t + x/V ) and denoting v :=
rdu/dz, the travelling-wave reduction of (3) leads to the multiple timescale dynam-
ical system

γdv/dz = τ − τ̄ , dτ/dz = (κ/r)[v − f (ζτ ,φ)], dφ/dz = −g(v,φ), (4)

whose solution types and bifurcation structure are briefly described in what follows
as the key parameters τ̄ and γ := r(1 − V 2)/V 2 are varied.

4 Stability of Uniform Sliding

The study of the stability of a uniform sliding state (v0,φ0) shows that thewavelength
of linear waves is consistent with the long-wave approximation and that the inter-
facial stiffness is stabilising. The growth rate of an infinitesimal perturbation δu :=
(u,t ,φ) − (v0,φ0) = (v̂, φ̂) exp[i(ωt − kx)] is governed by the dispersion relation
k2 − ω2 − iωβ(ω) = 0, in which the ratio β(ω) = − rg,φF ′

ss+iωF,v

(rg,φ+iω)(1+iωF,v/κ)
, represents

the friction frequency response function defined and measured in Cabboi–Putelat–
Woodhouse [7]. It can be shown (see also [15, 16]) that uniform and steady sliding is
unstable for velocity-weakening friction (F ′

ss < 0), through a Hopf bifurcation with
critical angular frequency ωc, to long wavelength perturbations whose wavenum-
bers satisfy k < kc, where k2c = ω2

c

{
1 + [

rg,φ(F,v − F ′
ss)

]
/
[
(rg,φ)

2 + ω2
c

]}
with

ω2
c = −(rg,φ)

2(F ′
ss/F,v)/

[
1 + rg,φ(F,v − F ′

ss)/κ
]
. Along with examples of friction

curves, Fig. 1a shows an example of domain of unstable wavelengths λ > λc =
2π/kc. The interfacial stiffness increases λc which means its effect is stabilising.

1Note that all symbols are dimensionless quantities in what follows.
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Besides, as the critical wavenumber for the Dieterich law reads k̄2c = (r/ζ)(b −
a)(1 + rζv2/a) and bounds the instability domain, we can conclude that the long-
wave approximation λc � 1 remains valid provided r/ζ � 4π2/(b − a).

5 Variety of Solution Types

Varying the shear stress τ̄ between the local extrema of a spinodal frictionmodel [13],
we find the occurrence of travelling self-healing ‘slip pulses’, reminiscent of the
pulses described by Heaton [8], arising from a homoclinic bifurcation of travelling
periodic slip patterns born in a Hopf bifurcation promoted by velocity-weakening
friction, see Fig. 1b, c. Such slip pulses are anchored at the equilibrium saddle point
lying on the low-velocity-strengthening branch of the friction curve. Interestingly,
the existence of a high velocity strengthening branch also allows the existence of
‘stick pulse’ which corresponds to a narrow travelling ‘stick’ zone. Along the bifur-
cated branch, travelling wave-trains of slip pulses develop from a canard explosion,

(a) (b) (c) (d)

Fig. 1 (a) Steady-state friction characteristics and corresponding critical wavelengths λc (r =
10−6, ζ = 10−7): κ = 1 (solid line), κ → ∞ (dashed line). The domain of unstable wavelengths is
limited to the domain of friction velocity weakening (dotted lines: monotonic friction). (b) Typical
bifurcation diagrams for (4) under spinodal friction [13] leading to homoclinic connections (•)
from the growth of wavetrains born at a Hopf bifurcation (�) (the red lines correspond to the
maximum and minimum amplitude along the branch of periodic orbits): (top) slip pulse, (bottom)
stick pulse. (c) Numerical approximations of slip pulse (top, γ = 10−4/ζ) and stick pulse (bottom,
γ = 10−6/ζ) of period � = 100 for κ = 100(r/ζ) (the dotted lines delineate the three uniform
sliding states). (d) Sketch of typical phase diagram of travelling wave patterns (κ → ∞, see [12]):
loci of slip pulses (homsl ), stick pulses (homst ), detachment fronts (hetd ), attachment fronts (heta)
as saddle-saddle connections; Hopf bifurcation locus (H); saddle-node bifurcation loci at the local
extrema of friction (sn); Stick-slip wave-trains (WT). Generic detachment (DF), attachment (AF)
and mixed (MF) fronts as saddle connections to the equilibrium point of the velocity weakening
branch. Takens–Bogdanov points (BT). Uniform slab’s slip rates solve μss(v) ≡ μ(v,φss(v)) = μ̄
and g(v,φss(v)) = 0
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which can lead either to wave-trains of slip or stick pulses. Heteroclinic connections
corresponding to travelling ‘detachment’ (similar to [3, 5]) or ‘attachment’ fronts
promoting the slab acceleration or deceleration are also possible. When the inter-
facial stiffness is neglected, these saddle-saddle connections exist on lines within a
(γ, μ̄) phase diagram and delineate domains of generic travelling fronts and wave-
trains of different types (see Fig. 1d and Putelat–et al. [12] for more details). The
effect of κ on the topology of this phase diagram is under current investigation and
will be published elsewhere. We note, however, that this bifurcation structure also
strongly depends on the mathematical details of the friction model, in particular the
state evolution equation. For instance, the classicmonotonicDieterich–Ruina friction
models [16] only allows for wave trains of slip-pulse solutions in an exponentially
narrow window of τ̄ .

6 Conclusion

This work shows how introducing a smooth and non-monotonic rate-and-state inter-
facial friction model allows for the existence of different localised modes of fric-
tional slippage as saddle-saddle connections with slip or stick pulses, detachment
or attachment fronts along with travelling wavetrains, all in the same mathematical
formulation of regional contact and within the well established theory of smooth
dynamical system and global bifurcations. Careful consideration of the choice of the
non-monotonic friction law and the type of interfacial state kinetics is necessary to
capture the full richness of wave types. In such an idealised configuration of a thin
elastic slab, this plethora of behaviours and the question of their physical selection
may explain why friction experiments are difficult and associated with challeng-
ing repeatability issues [17]. This work may also shed new light on the complex
and diverse dynamics of earthquake ruptures in particular with respect to the large
variability of earthquake duration and frequency spectrum [9, 11]. Future work will
explore the possibility of complex or irregular patterning from Shilnikov bifurca-
tion or bursting dynamics scenarii that the three dimensional phase space and the
slow-fast multiscale nature of system (4) may allow.

Acknowledgements The author acknowledges support by the UK EPSRC programme grant
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Climate in Barcelona Is Wonderful

Andrew Roberts

Abstract The Mathematics and Climate Research Network (MCRN) was invited
to run an informal Climate Modeling Workshop as part of the Intensive Research
Programme on Advances on Nonsmooth Dynamics hosted by the Centre de Recerca
Matemàtica (CRM). The workshop was attended by a core group of about 10 partici-
pants with a nice mix of junior and senior researchers. A summary of the proceedings
of the workshop is presented here.

1 Introduction

The Mathematics and Climate Research Network (MCRN) was invited to run an
informal Climate Modeling Workshop as part of the Intensive Research Programme
on Advances on Nonsmooth Dynamics hosted by the Centre de Recerca Matemàtica
(CRM), in Barcelona. Kaitlin Hill, Julie Leifeld, and myself were happy to accept,
and a workshop was organized with the help of programme organizer Mike Jeffrey.
The workshop was attended by a core group of about 10 participants with a nice mix
of junior and senior researchers, in addition to other attendees of the programmewho
selectively attended presentations of interest.

The number and lengths of presentations were limited in order to facilitate group
discussions and collaboration. With the exception of the opening and concluding
presentations given bymyself and Chris Budd, respectively, the workshop’s speakers
were asked to highlight open problems involving conceptual climate models that
contain (or may contain) nonsmooth dynamics. I was extremely happy with the
quality of the discussions that arose throughout the workshop. Here, I will present a
summary of the proceedings that were directly motivated from climate applications.

A. Roberts (B)
Mathematics and Climate Research Network, Cornell University,
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2 Day 1: MCRN Organizers Present

I kicked off the workshop with an overview of conceptual climate models in order
to make sure everyone had been exposed to the basics, beginning with foundational
models such as Budyko’s energy balancemodel [3], and Stommel’s ocean circulation
model [11]. Next, I highlighted some recent work from the MCRN and CliMath-
Net [1, 2, 8–10, 12]. Finally, I proposed that a rigorous treatment of a particular
ocean circulation model by Colin de Verdiére [4] could motivate exploring possible
dynamics when a singularly perturbed system contains a variable that is slow on one
side of a switch an fast on the other.

Kaitlin Hill’s presentation focused on the cryosphere, beginning with an overview
of classical energy balance models and their connection to understanding a climate
state known as Snowball Earth (where the entire planet is covered in ice). She con-
tinued to describe recent work done in the area byMCRNmembers [2], including an
overview of her own work [5]. She also discussed her interest in developing and ana-
lyzing a conceptual model for fluid and salt convection through the mushy layer and
nearby ocean. The mushy layer problem drew the attention of nearly all workshop
attendees, leading to a large group discussion in the afternoon.

Rounding out the presentations on the first day was Julie Leifeld, who presented
her research on Welander’s model of convective mixing in the ocean [6, 7, 13].
Her presentation generated two interesting discussions throughout the week. The
first consisted primarily of relationships between the blow-up method used in her
analysis and regularization. The second was specific to her results, showing that a
stable node border-collision bifurcation in theWelandermodel produces a continuum
of homoclinic orbits at the bifurcation, and a large attracting periodic orbit after the
bifurcation. It was pointed out that this behavior is reminiscent of a canard explosion,
although themodel has no time-scale separation. Thus, it is not clear what the analogs
of the stable and unstable critical manifolds should be.

3 Day 2: CliMathNet Presentations

The second day featured presentations from the MCRN’s partner network in the
UK, CliMathNet. Paul Glendenning opened the day with a wonderful account of
research that resulted from friendly conversations with his neighbour. He discussed
a few variations on conceptual models of the first oxygenation event. The models
he discussed were smooth, but contained rapid transitions that he proposed could be
modeled with a switch.

Rachel Kuske then discussed relationships between nonsmooth dynamics and
tipping points, particularly focusing tipping due to noise. Rachel’s talk generated
the most cohesive plan for a long-term research project involving at least four of
the conference attendees. Motivated by Stommel’s model [11], the group explored
generalized nonsmooth saddle-node bifurcations. Part one of the research project will
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involve determining if nonsmoothness can produce local behavior near a saddle-node
bifurcation that leads to non-tipping behavior. Eventually, the group would like to
see if the non-tipping persists under noise.

For the final presentation on the second day, Courtney Quinn presented on her
research involving glacial cycles in the Quaternary period (2.6 million years ago
until present). She explained that Milankovitch cycles explain some aspects of the
oscillatory pattern, but the aspects that remain unexplained are likely due to internal
processes. One particular example of an internal process is energy transport, and
Courtney demonstrated the benefits of modeling energy transport using delay equa-
tions. A Boolean delay equation was introduced, incorporating a prevailing theme
of the workshop, namely state switches.

4 Day 3: Summary and Discussion

Chris Budd opened the morning session of day three with a presentation tailored to
integrating themany themes that had arisen in the presentations and discussions of the
first two days. His talk served to organize the collective thoughts of the participants,
often contextualizing the interesting questions in the broader areas of climate science
and/or nonsmooth dynamics. Chris’ talk was the perfect opening with the rest of the
day, which was designed for discussion and collaboration. I would like to thank
all of the presenters and participants for the insights and attitudes that made our
deep discussions so enjoyable. I learned a lot as a result of the workshop, as I hope
everyone did, and I anticipate the unresolved questions will lead to more insights in
the future. One thing is certain, however: the climate in Barcelona is wonderful.

Acknowledgements I would like to thank the MCRN, funded through NSF grants DMS-0940363
and DMS-1239013, for their support. Additionally, I would like to thank the CRM and programme
organizers for inviting us to participate.
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Open Problems on Border-Collision
Bifurcations

David J.W. Simpson

Abstract The collision of a fixed point with a switching manifold in a
piecewise-smooth continuous map, known as a border-collision bifurcation, can give
rise to a seemingly endless zoo of complicated dynamics. An understanding of these
dynamics, which are described merely by piecewise-linear continuous maps, is one
of the most fundamental problems in nonsmooth bifurcation theory. This extended
abstract recalls some aspects of border-collision bifurcations and provides a list of
pertinent open problems for future research.

A map on D ⊂ R
N of the form

x �→

⎧
⎪⎪⎨

⎪⎪⎩

f1(x; ξ), x ∈ D1,

...

fm(x; ξ), x ∈ Dm,

(1)

where each fi is a smooth function of the state variable x ∈ Di ⊂ D and ξ ∈ R
M is

a parameter, is said to be piecewise-smooth. As ξ is varied in a continuous fashion,
collisions between invariant sets of (1) and its switching manifolds (the boundaries
of theDi ) give rise to discontinuity-induced bifurcations. Following [3, 11], we refer
to the collision of a fixed point of (1) with a switching manifold as a border-collision
bifurcation (BCB) if, in a neighbourhood of the bifurcation, the switching manifold
is smooth, (1) is continuous, and derivatives Dx fi are bounded. Here, we briefly
describe BCBs and list some open problems. For a more detailed review, refer the
reader to Simpson [14].
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1 The Piecewise-Linear Approximation

In the neighbourhood of a BCB, (1) is piecewise-linear to leading order. To analyse
a BCB it is helpful to study the piecewise-linear approximation to (1), because this
approximation is relatively straightforward to study, and structurally stable dynamics
of the approximation are exhibited by (1). Here, we write such piecewise-linear
continuous maps as

x �→
⎧
⎨

⎩

ALx + bμ , x1 ≤ 0,

ARx + bμ , x1 ≥ 0,
(2)

where x = (x1, . . . , xN ) is the state variable, μ ∈ R is a parameter governing the
BCB, AL and AR are constant N × N matrices differing in only their first columns,
and b ∈ R

N is a constant vector. The structure of the dynamics of (2) is inde-
pendent to the magnitude of μ, so it suffices to describe the dynamics of (2) for
each sign of μ (i.e. for μ < 0 and μ > 0) as the dynamics at μ = 0 is typically
unimportant.

2 Fixed Points and Period-Two Solutions

Here, we summarise the nature of the simplest invariant sets of (2) assuming that
certain genericity conditions are satisfied (omitted for brevity). As noted in as early
as in Brousin–Neimark–Feigin [1], the map (2) has two potential fixed points:

xL = (I − AL)
−1bμ, xR = (I − AR)

−1bμ.

These are admissible (i.e. valid fixed points of (2)) either for different signs of μ,
or the same sign of μ. An LR-cycle (period-two solution involving one point with
x1 ≤ 0 and one point with x1 ≥ 0) is admissible either for one sign of μ, or no sign
of μ; see Feigin [4]. This suggests that there are five cases for the admissibility and
coexistence of fixed points and period-two solutions of (2); see Feigin [5]. However,
in [5] no example of the case that xL and xR exist for one sign of μ and an LR-cycle
exists for the other sign of μ was given. Recently, linear algebra arguments were
used to show that this case cannot occur; see Simpson [13]. Consequently, there are
exactly four cases, and the results of [5] allow us to determine which case (2) belongs
to by simply looking at the eigenvalues of AL and AR ; see Table1.
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Table 1 The four cases for fixed points and period-two solutions of (2). For each J = L , R, the
quantity σ+

J (resp. σ−
J ) denotes the number of eigenvalues of AJ greater than 1 (resp. less than−1).

σ+
L + σ+

R

Even Odd

σ−
L + σ−

R Even xL and xR admissible
for different signs of
μ; LR-cycle virtual
for all μ �= 0

xL and xR admissible
for the same sign of μ;
LR-cycle virtual for
all μ �= 0

Odd xL and xR admissible
for different signs of
μ; LR-cycle
admissible for one
sign of μ

xL , xR and the
LR-cycle admissible
for the same sign of μ

3 Open Problems

Here we provide a list of open problems in no particular order.

(i) Mode-locking regions of (2) typically exhibit a distinctive chain structure with
points of zero width called shrinking points. At a shrinking point, (2) has a peri-
odic solution with two points on the switching manifold. The nature of mode-
locking regions near shrinking points is explained by the unfolding theorems of
[15, 16], but the overall structure and geometry of mode-locking regions is not
understood. For instance what scaling laws govern the distribution of shrinking
points and the width of the mode-locking regions?

(ii) With N = 1 (i.e. in one dimension) the only periodic solutions of (2) that can be
attracting are those with symbolic itineraries involving either at most one L or at
most one R; see [9, 10]. In higher dimensions, attracting periodic solutions are
possible for a wider range of itineraries. It remains to classify such itineraries,
even for N = 2.

(iii) Recently, it was shown that (2) can exhibit infinitely many attractors; see Simp-
son [12]. Grazing-sliding bifurcations of Filippov systems provide an important
application for BCBs, and multiple attractors can be created in such bifurca-
tions; see di-Bernardo–Kowalczyk–Nordmark [2]. As noted in Glendinning–
Kowalczyk–Nordmark [7], it would be useful to know how many attractors can
be created simultaneously in grazing-sliding bifurcations. It remains to show
whether or not the mechanism for infinitely many attractors of [12] can be
realised in grazing-sliding bifurcations.

(iv) In Glendinning [6] it was shown that (2) can exhibit attractors filling an N -
dimensional region of the phase space.Moreover, such N -dimensional attractors
are robust to small changes in the entries of AL , AR and b. Then, can (2) exhibit a
k-dimensional attractor, for any k = 1, . . . , N , that is robust in the same sense?
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(v) Unlike local bifurcations of smooth maps, BCBs do not occur on centre mani-
folds. For this reason, dynamics nearBCBs cannot be understoodby the classical
procedure of dimension reduction via a centre manifold. However, if the eigen-
values of AL and AR involve different orders of magnitude, an approximate
dimension reduction may be possible in a manner akin to geometric singular
perturbation theory.

(vi) Piecewise-linear discontinuous maps can be viewed as a natural generalisation
of (2). The lack of continuity allows for more dynamical structures. These have
been well studied in one dimension (see Granados–Alsedà–Krupa [8] for a
recent review), but appear to be almost unexplored in higher dimensions.
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Nonsmooth Maps and the Fast-Slow
Dynamics of Sleep-Wake Regulation:
Part I

Anne C. Skeldon and Gianne Derks

Abstract Sleep-wake regulation is an example of a systemwithmultiple timescales,
with switching between sleep and wake states occurring in minutes but the states of
wake or sleep usually existing for some hours. Here,we discuss some general features
ofmodels of sleep-wake regulation.We show that some typical models of sleep-wake
regulation can be reduced to one-dimensional maps with discontinuities, and show
that this reduction is useful in understanding some of the dynamical behaviour seen
in sleep-wake models.

1 The Two-Process Model

Sleep is fundamental for the well-being and functioning of humans and animals
[1, 2, 5], yet many features of sleep are not well understood. Mathematical models
have played an important role in the investigation of proposed biological mecha-
nisms,with the classicTwo-Process (TP)model providing a successful and influential
framework to describe key features of sleep-wake regulation; see Daan–Beersma–
Borbély [3]. The TP model considers two interacting oscillating processes: a circa-
dian process C(t) and a homeostatic sleep process. The homeostatic sleep process
takes the form of a relaxation oscillator that results in a sleep pressure, H(t), which
monotonically increases during wake and is dissipated during sleep. Switching from
wake to sleep and from sleep to wake occurs at upper and lower threshold values of
the sleep pressure, respectively. These threshold values aremodulated by the periodic
circadian process C(t); see Fig. 1.

In its simplest form, the homeostatic sleep pressure, in normalized coordinates,
is given by:
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Fig. 1 Graphical illustration of the two process model showing the homeostatic sleep pressure,
H(t), increasing during wake and decreasing during sleep. Here, a = 0.15, H+

0 = 0.7, H−
0 = 0.4,

and χw = χs = 1.25

H(t) =
{
Hs(t) = H(t0) e−(t−t0)/χs

(during sleep);

Hw(t) = 1 + (H(t0) − 1) e−(t−t0)/χw

(during wake).
(1)

Switching fromwake to sleep occurs when H(t) = H+(t) ≡ H+
0 + aC(t), and from

sleep to wake occurs when H(t) = H−(t) ≡ H−
0 + aC(t), where C(t) = cos(2πt)

is the circadianoscillation and timehas been scaled so that a periodof one corresponds
to a period of one day. The time constants χw and χs describe the rate of build-up and
dissipation of the homeostatic sleep pressure during wake and sleep, respectively.
The mean upper and lower thresholds are H+

0 and H−
0 , respectively, and a is the

amplitude of the circadian oscillation. The solution shown in Fig. 1 represents a
sleep-wake pattern with one sleep episode per day. However, already in the first
in-depth description of the model in Daan–Beersma–Borbély [3], it was recognised
that, by varying the parameters, many different patterns of sleep could be obtained.
One of our aims is to understand how these different patterns occur.

The TP model can be represented as a one-dimensional map by considering suc-
cessive values of the sleep onset timing [6, 7], as illustrated in Fig. 2a and described
as follows. Let the homeostatic sleep pressure H(t) be on the upper threshold curve
at time T n

0 , H(T n
0 ) = H+(T n

0 ), then run the TP model through one sleep/wake cycle
to obtain the time T n+1

0 when H(t) next reaches the upper threshold curve. Taking
all values for T n

0 ∈ [0, 1] and considering T n+1
0 mod 1 results in a map, as shown in

Fig. 2c. Two features of the map that may be surprising at first sight are the following:

(i) The map has a gap with an infinite derivative to the left of the gap and a bounded
derivative to the right of the gap;

(ii) The map is non-monotonic.

Both features are a consequence of points where H(t) becomes tangent to one of
the threshold curves. Specifically, the gap, and the nature of the derivatives local to
the gap, are a consequence of a tangency of Hs(t) with the lower threshold or Hw(t)
with the upper threshold. At such tangencies, neighbouring values of T n

0 are mapped
to very different values of T n+1

0 , as shown in Fig. 2b.
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Fig. 2 (a) The two process model can be considered as a map giving a sequence of sleep onset
times T n

0 , T
n+1
0 , . . .; here, a = 0.15, H+

0 = 0.7, H−
0 = 0.4, and χw = χs = 1.25. A typical map

generated by considering all T n
0 ∈ [0, 1] is shown in (c). The discontinuity results from the trajecto-

ries which touch either the upper or lower thresholds at a tangency, as illustrated in (b). (d) Typical
bifurcation diagram for varying χs , where a = 0.15, H+

0 = 0.7, H−
0 = 0.4, and χw = χs

The non-monotonicity occurs as a consequence of tangencies of Hs(t) with the
upper threshold or Hw(t) with the lower threshold. In Fig. 2a we show the conse-
quences of tangencies of Hs(t) with the upper threshold. The tangencies result in
the map having three pre-images rather than one for some values of T n+1

0 . This can
be seen in Fig. 2a, where the two points labelled ‘b’ and the point T n

0 all map to the
same value T n+1

0 .
The presence of gaps and the non-monotonicity result in the map having a rich

dynamical structure (seeGranados–Alsedà–Krupa [4]) and explain the different types
of solutions observed in Daan–Beersma–Borbély [3]. For example, border collisions
leading to period-adding bifurcations can occur; see Fig. 2d. Such bifurcations have
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physiological significance as they represent transitions between different numbers
of sleep episodes in a day, suggestive of the changes in sleep patterns observed
in babies and early childhood. The infinite gradient to the left of the discontinuity
leads to saddle-node bifurcations and the non-monotonicity suggests that a period-
doubling cascade leading to chaos may occur. These details are being investigated
and will be published in future work.

This paper is the first of two papers on the dynamics of sleep. The second focusses
on some more physiological models of sleep-wake regulation.
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Nonsmooth Maps and the Fast-Slow
Dynamics of Sleep-Wake Regulation:
Part II

Anne C. Skeldon, Gianne Derks, and Victoria Booth

Abstract In part I, the Two-Process model for sleep-wake regulation was discussed
and it was shown that it could usefully be represented as a one-dimensional map
with discontinuities. Here, we discuss some recent, more physiological, models of
sleep-wake dynamics. We describe how their fast-slow structure means that one can
expect them to inherit many of the dynamical features of the Two-Process model.

1 Neuronal Models of Sleep-Wake Regulation

Recent experimental findings have led to the idea that sleep-wake regulation occurs
by a ‘flip-flop’ switch between sleep and wake states generated through mutual
inhibition between populations of sleep and wake promoting neurons; see Saper–
Scammell–Lu [9]. This has led to several mathematical models extending the ideas
of the Two-Process (TP) model to a more physiological setting: a recent review on
this topic is given in Booth–Diniz-Behn [1]. These models consider the interactions
between sleep- and wake-promoting neuronal populations that are modulated by the
homeostatic sleep drive and the circadian rhythmof the TPmodel. They are described
by systems of ordinary differential equations of the form

τi
dU
dt

+ U = G(U, H,C(t)), U ∈ Rn, (1)

χ(U)
dH

dt
+ H = GH (U). (2)
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Here, the elements of U represent activity levels of the neuronal populations either
in terms of average firing rate or average membrane potential and, in some cases, the
concentrations of key neurotransmitters. The variable H represents the homeostatic
sleep pressure andC(t) is a periodic circadian external drive. The vector-valued func-
tion G is sigmoidal in the population activity levels. The function GH is sigmoidal
with respect to the action of wake promoting neurons or is taken to be a hard switch
between two threshold functions. The function χ(U) is either constant or takes one
of two values dependent on the activity state of the wake population.

Two examples of models of this type are the Phillips and Robinson model (PR
model) [6], and the Booth and Diniz-Behnmodel (BDBmodel) [3, 5]. The PRmodel
includes two neuronal populations, one promoting sleep and one promoting wake.
The BDB model distinguishes three neuronal groups, one for wake, one for rapid
eye movement (REM) sleep and one for non-REM (nREM) sleep.

An essential common feature in these neuronal models is that, since τi is much
smaller than both χ(U) and the period of C(t), there is a separation of time scales
between the neuronal dynamics and the dynamics of the homeostatic and circadian
rhythms. Hence, there is a slow manifold U0(H,C) that, to lowest order, is given by

U0 = G(U0, H,C). (3)

In the simplest setting, considering sleep as consisting of one state (nREM), the
sigmoidal assumptions mean that Eq. (3) has one or three solutions parameterized
by H and C . Consequently, the slow manifold takes the form of a folded surface
with saddle-node bifurcations characterizing the position of the folds, as shown in
Figs. 1a, b for the PR and the BDB models respectively; see [4, 10]. In these figures,
in the fast dynamics, the ‘upper’ wake state and the ‘lower’ sleep states are stable,
while the intermediate steady-states are unstable.

The slow dynamics of the homeostat H given by Eq. (2) result in H increasing
(during wake) and decreasing (during sleep). Together with the periodic oscillation
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Fig. 1 (a) The slow manifold of the PR model along with a typical trajectory (the trajectory has
been offset from the slow manifold for clarity); (b) the slow manifold and a trajectory for the BDB
model; (c) the trajectory shown in (a) re-plotted in the (H,C)-plane: the saddle-node bifurcations
where switching between wake and sleep occur are represented by the thick black diagonal lines
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of the circadianC this leads to relaxation oscillations between wake and sleep states,
shown by the blue curves in Figs. 1a and b. In the PR model, Fig. 1a, the dynamics
of H and C are combined in a single ‘sleep’ drive parameter, Dv = H(t) − C(t).
In the BDB model, H and C are represented as separate inputs to the neuronal
populations, resulting in the slow manifold being most apparent as a function of
H , with C modulating the position of the slow manifold a function of time. An
alternative illustration of these dynamics is to depict the slow manifold as a function
of the two slow parameters, H and C , as shown in Fig. 1c, where the slow manifold
of the PR model has been projected onto the (H,C)-plane.

2 Discussion

Although the neuronal models and the TP model are formulated in different ways,
they share many common features: in Phillips–Robinson [7], it is shown how solu-
tions of the PR model can be plotted in the form of the TP model, and in Skeldon–
Dijk–Derks [10], it is shown that the slow dynamics of the PR model and the TP
model can be formally identified in the limit that the soft switching functions in
the PR model are replaced by hard switches. Consequently, essentially the same
kind of patterns of sleep and wake can be expected in the PR model as are seen in
the TP model. Furthermore, many of the different behaviours seen in simulations
of the PR model, such as those explaining different mammalian sleep patterns in
Phillips–Robinson–Kedziora–Abeysuriya [8], can then be understood as resulting
from border collision bifurcations.

The common underlying structure described in Eqs. (1) and (2), suggests that not
only the PR model but other neuronal models can be related to the TP model and
to one-dimensional maps with discontinuities. This is indeed the case for the BDB
model, in its simplest setting, as shown in Fig. 2. The sleep-wake switching behaviour
of the BDBmodel can be plotted in the same spirit as the TPmodel; see Fig. 2a. Here,
H(t) switches between sleep and wake states and the position of the upper and lower
saddle-node bifurcation points of the slow manifold are modulated by the circadian
oscillation. The switch between sleep and wake states does not occur exactly when
the trajectory reaches a threshold curve, as in the TP model, due to slow passage
effects around the saddle-node points.

A one-dimensional map for successive sleep onset times can be computed for the
BDB model (see Fig. 2b), where sleep onset timing is now specified relative to the
phase of the circadian oscillation. This map is constructed by initialising the BDB
model at a phase of the circadian cycle�n

0 at time t = tn0 , withC = C(tn0 ) and H(tn0 )

such that (H(tn0 ),C(tn0 )) and the firing rate and neurotransmitter variables U are set
at their values at the upper saddle-node point in Fig. 1b. The system is then evolved
through one sleep-wake cycle until an upper saddle-node point is reached again at
time t = tn+1

0 and circadian phase �n+1
0 . The map consists of all points �n+1

0 mod
1 such that �n

0 ∈ [0, 1]. As in the TP model map, this map has gaps with infinite
derivatives to the left of the gap and bounded derivatives to the right of the gap.
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Fig. 2 (a) Sleep-wake switching in the BDB model: the homeostatic sleep drive H(t) varies
between threshold curves determined by the circadian modulation of the H values of the upper and
lower saddle-node bifurcation points of the slow manifold (Fig. 1b); circadian phases of sleep onset
times labeled for reference (colours match trajectory curves); (b) one-dimensional map of circadian
phases of sleep onset �n+1 as a function of the previous sleep onset phase �n computed from the
BDB model when REM sleep is suppressed

These gaps occur due to model trajectories becoming tangent to the boundary curves
defined by the saddle-node points of the slowmanifold, as illustrated in terms of H(t)
in the lower panel of Fig. 2a. This reduction to a one-dimensional map is strongly
suggestive that, like the PR model, border collisions are critical in understanding
some of the dynamics of the BDB model.

Whereas the PR model only considers two neuronal populations and describes
the two states of wake and sleep, the BDB model includes three neuronal groups
and the three states of wake, nREM sleep and REM sleep. Humans normally oscil-
late between nREM and REM sleep during a typical night’s sleep, with the longest
interval of nREM sleep occurring at the beginning of sleep. By changing one of the
parameters, the BDB model can capture the periodic switching between nREM and
REM sleep. This transition occurs as a result of the steady-state of the lower branch
of the slow manifold losing stability to be replaced by a stable periodic solution.
The number of REM episodes during one night can be tuned, with Figs. 1b and 2
illustrating the particular case where there are no REM episodes. In the more compli-
cated dynamical regimes, where oscillations between REM and nREM sleep exist,
the model can still be reduced to a one-dimensional map, but each additional REM
episode results in an additional discontinuity in the map. This intriguing structure is
currently under investigation in Booth–Xique–Diniz-Behn [2].

There remain many unanswered questions and interesting dynamics to explore
but a few points are clear. Sleep-wake regulation models are interesting and biolog-
ically relevant examples of systems. Recognising their non-smooth nature is impor-
tant both in gaining an in-depth understanding of their dynamical behaviour and in
understanding the extent to which different models have different dynamics.
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Comments for the Continuation Method
by A.F. Filippov for Discontinuous Systems,
Part I

Vadim I. Utkin

Abstract The conventional existence-uniqueness theorems are not applicable for
differential equations with right hand sides as discontinuous state functions. This is
the case for the systems with discontinuous controls and sliding modes, when state
trajectories belong to discontinuity surfaces. Many authors offered their methods of
deriving sliding mode equations, or solution continuations on the discontinuity sur-
faces. Due to uncertainties of right hand sides, the proposed methods led to different
solutions. Thesemethods are compared, the reasons of ambiguity are discussed in the
paper. It is assumed that any solution is under the umbrella of the method proposed
by A.F. Filippov.

1 Introduction

The systems with control actions as discontinuous state functions are under discus-
sion. Relay systems and variable structure systems belong to this class. Relay systems
were employed actively at the first stage of the control theory history, because of their
ease of implementation, and to help control reach its full potential. Voltage control
of a DC generator, already described in the paper Kulebakin [3] from 1932, may
serve as an example; see Fig. 1, top. Any comments are hardly needed for a modern
reader. The principle operation mode, called “vibrational” in these papers, is nothing
but sliding mode in the modern terminology. The term “sliding mode” can be found
in the paper Nikolski [5] from 1934 about ship course control; see Fig. 1, bottom.
The theoretical methods of analysis and design were summarized in the monographs
Flugge-Lotz [2] and Tsypkin [6], published in theUSA andUSSR, respectively. Slid-
ing modes on a switching line for relay control were studied in these monographs.
The state plane of the system

ẍ = u (1)

with relay control

V.I. Utkin (B)
The Ohio State University, Columbus, OH, USA
e-mail: utkin@ece.osu.edu

© Springer International Publishing AG 2017
A. Colombo et al. (eds.), Extended Abstracts Spring 2016,
Trends in Mathematics 8, DOI 10.1007/978-3-319-55642-0_32

177



178 V.I. Utkin

Fig. 1 Examples of sliding mode control

u = −u0 sign(s), s = cx + ẋ, u0, c > 0. (2)

The state vector (x, ẋ) reaches the line s = 0 after a finite time interval and then
cannot leave it. This motion is called a sliding mode. The equation of switching line
cx + ẋ = 0 is used as the motion equation. Its solution depends on the switching
line equation and does not depend on properties of the plant to be controlled.

The property of invariance was utilized actively in the 1960’s in variable structure
systems, when the system behavior was studied in the space of an output variable
and its time derivatives. In contrast to relay systems, the amplitude of the control
signal u0 depended on the state vector. All these facts are well-known for a long
time, and mentioned in this paper to explain why development of new mathematical
methods is needed for this class of systems. Formally the mathematical problem of
describing sliding modes for the simplest second order systems (1) and (2) remains
open. Indeed, a Lipshitz constant does not exist for discontinuous systems, and as a
result the conventional uniqueness-existence theorems are not applicable. The above
offered solution x(t) = x0e−ct to equation cx + ẋ = 0 looks doubtful: if this function
is the solution, then it should turn the equation into an identity, but it is not clear what
the function sign(s)= sign(0) is equal to.

A.F. Filippov offered a new method [1] of solution continuation on discontinuity
surface for the systems with discontinuous right hand sides

ẋ =
{
f +(x, t) if s(x) > 0,
f −(x, t) if s(x) < 0,

x, f +, f − ∈ R
n, s ∈ R. (3)
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Fig. 2 Filippov method

For now, we confine ourselves to the simplified formulation of Filippov’s method;
see Fig. 2.

An equation ẋ = fsm , with a vector field fsm , describes a sliding mode on the sur-
face s(x) = 0, found from the convex hull of vectors f + and f −, which is a straight
line connecting the ends of these vectors (Fig. 2), given by fsm = μ f + + (1 − μ) f −
for 0 ≥ μ ≥ 1. The vector fsm lies in the intersection of the straight line with the
tangential plane to the surface s(x) = 0, and the coefficient μ is found from equation
[∇(s)]T fsm = 0. Actually, the method by Filippov postulates the sliding mode equa-
tion, but other methods of solution continuation on the discontinuity surface were
offered in a set of publications. These methods are discussed and compared in this
short paper.

2 Problem Statement

The motion of a finite-dimensional system with vector control is governed by the
equation

ẋ = f (x, t, u), x, f ∈ R
n, u ∈ R

m . (4)

Similarly to the simple examples in the introduction, each component of the control
is assumed to be a discontinuous state function

ui =
{
u+
i (x, t) if si (x) > 0,

u−
i (x, t) if si (x) < 0,

i = 1, . . . ,m. (5)

Scalar functions si (x) are continuous-differentiable and any solution of (4) for any of
the functions u±

i (x .t) exists and is unique. Sliding modes in (4) and (5) can occur at
each of the surfaces si (x) = 0 and, on their intersection, s(x) = 0, sT = (s1, . . . , sm);
see Fig. 3. The set of problems of interest are then: how tofind slidingmode equations,
whether they are unique, and if not, how to substantiate a choice of motion equations
for real processes.



180 V.I. Utkin

Fig. 3 Multidimensional sliding mode

3 Systems with Scalar Control

From the first view, system (4) and (5) with a scalar control u ∈ R is equivalent to
system (3), studied by Filippov, with f + = f (x, t, u+), f − = f (x, t, u−). How-
ever, dependence of the right hand side on the control gave birth to many methods
of deriving sliding mode equations, dictated by natural engineering arguments. For
example, relay control was replaced by a linear relation ks with k tending to infin-
ity [6], since the input of the relay s is close to zero (the trajectory belongs to the
surface s(x) = 0), while the output takes finite values. It was suggested towrite down
the solution in convolution form for linear systems, and to find a continuous control
such that s(t) = 0; seeNeimark [4]. Anothermethodwas based on the replacement of
discontinuous control by a continuous one such that s(t) = 0; see Utkin [7]. These
methods happened to result in different sliding motion equations and rather vivid
discussions on what method was correct.

We start with the example which served as a reason for doubts in the correctness
of Flippov’s method,

ẋ = Ax + bu1 + du2, u1 = −M1 sign(s), u2 = −M2 sign(s). (6)

Both components of control undergo discontinuities on the same plane s(x) =
cx = 0 (A, b, d, M1, M2, c are constants). From the first view, the unique slid-
ing equation can be derived by Flippov’s method with f + = Ax − bM1 − dM2,
f − = Ax + bM1 + dM2. Let the control u2 be implemented as a relay function
with small hysteresis, and M1 � M2, then a sliding mode can be enforced for any
value of u2 = M2 or u2 = −M2. Sliding mode equations can be derived following
Flippov’smethod for f + = Ax − bM1 + du2, f − = Ax + bM1 + du2. The control
u2 can take one of two possible values depending on initial conditions. This non-
uniqueness was the reason of doubts. But these doubts can be easily eliminated if we
use the exact recommendation of Filippov (in contrast to the simplified formulation
in the introduction):

ẋ = fsm, fsm(x, t) ∈ lim
ε→0

conv f (x + δx, t, u + δx))\N ,
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Fig. 4 Non-unique sliding
mode equations

where conv f (x + δx, t, u) means a minimal convex hull, corresponding to all
values of control in the vicinity ||δx || < ε, and the symbol \N means that a set
of zero measure can be excluded from this vicinity (or points of the discontinuity
surface where the control is not defined). There are four possible vectors in the right
hand side of the above example, corresponding to different combinations of u1 and
u2. The minimal convex hull of the four vectors is the polygon depicted in Fig. 4,
and its intersection with the tangential plane defines the set of all possible right hand
sides in the sliding mode equations. This set includes two different motion equations
in the above example, when control u2 could take one of two possible values.

Filippov’s method has a very simple interpretation in the time domain. Let the
right hand side of (4) take one of k possible values f1, . . . , fk in the vicinity of some
point in the state space, and let the time interval�t consist of k subsets�t1, . . . , �tk ,
�t = ∑k

i=1 �ti with values of right hand sides f1, . . . , fk correspondingly. Then

ẋ = lim
�t0

→ 1

�t

k∑
i=1

fi�ti = �k
i=1μi fi , μi = �ti

�t
, μi ≥ 0,

k∑
i=1

μi = 1.

The right hand side is nothing but the convex hull of f1, . . . , fk .
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Comments for the Continuation Method
by A.F. Filippov for Discontinuous Systems,
Part II

Vadim I. Utkin

Abstract In the second part of this article, solution methods for scalar or vector
control are considered.

1 Systems with Scalar Control (Continued)

As we can see in Part I of this paper, Filippov’s method, offered as a postulate,
represents a rather evident fact: if the velocity vector can take several values in a
vicinity of some point in the state space then, due to switching, the right hand side of
the equations ofmotion is their minimal convex hull and no othermotions can appear.
In this context it is interesting to compare Filippov’s method with other approaches
to describing sliding modes. The next example from the 1970s demonstrated the
necessity of such comparison,

ẋ1 = 0.3x2 + ux1, ẋ2 = −0.7x1 + 4u3x1, u = − sign(x1s), s = x1 + x2.

It is easy to show that functions s and ṡ have opposite sign in the vicinity of the
switching line s = 0, and sliding mode occurs on it. Two implementation versions
of control were used for simulation: relay element with hysteresis, and a limiter (a
high gain amplifier with bounded output); see Fig. 1.

The results of simulations seemed strange to us, at least at that time: motion
in sliding mode proved to be stable in one case and unstable in the second case;
see Fig. 2.

This effect was observed as the parameter a tended to zero. The sliding mode for
relay with hysteresis was governed by the equation resulting from Filippov’s method.
The system with the limiter exhibited the sliding mode predicted by the so-called
“Equivalent Control Method”; see Utkin [3]. The method implies the replacement
of a discontinuous control by a continuous one ueq , such that the time derivative
ṡ = (∇(s))T f (x, t, ueq) is equal to zero identically. As can be seen from Fig. 3, left,
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Fig. 1 Implementation of discontinuous control

Fig. 2 State trajectories

Fig. 3 Right-hand sides of sliding mode equations

the right hand parts of equations for these two methods, f f ili ppov and f (x, ueq), do
not coincide.

Note that replacement of discontinuous control by a linear control with high gain,
offered in Tsypkin [2], and replacement of it by a limiter in our example do coincide.
Vectors ffilippov and f (x, ueq) in our example were located in opposite directions;
see Fig. 3, right. This explains why one of the motions was stable and the other
unstable.

The result seems a contradiction. However, it can be eliminated again if themotion
equations are obtained following the exact recommendation of Filippov. For the first
case, of relaywith hysteresis, the control can take two values only, u+ and u−, and the
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Fig. 4 Set of sliding mode
equations in system with
scalar control

convex hull is the straight line connecting the ends of vectors f + and f −; see Fig. 4.
The sliding mode equation is defined by the vector f f ili ppov in the tangential plane.
The case with a limiter control can take all values u− ≥ u ≥ u+, and the right hand
side can be any vector on the arc connecting vectors f + and f −; see Fig. 4. The
convex hull for this case is the dashed sector. Its intersection with the tangential
plane refines the set of all possible speed vectors {cc f f ili ppov}, or all possible sliding
mode equations. The set includes both the motion resulting from the simplified form
of Filippov method given in the introduction of Part I, and the motion defined by
equivalent control method.

It makes sense to explain why a set of zero measure should be excluded in the
solution continuation method (Part I, equation (6)). The speed vector (or control) on
the discontinuity surface s = 0 can be found in the system context only. Attempts to
assign it beyond this as a rule lead to contradiction. For example in the mechanical
system

mẍ = Ff r − F(t),

Coulomb friction Ff r = −F0 sign(ẋ)undergoes discontinuities on the surface ẋ = 0,
and a slidingmode occurs on this surface if F0 > |F(t)|. It is evident that F0 > |F(t)|
and this time function does not coincidewith an arbitrary assigned (beyond the system
context) value of Ff r on the switching surface.

The solution continuationmethod byFilippov enables all possible speed vectors to
be obtained if all values of control in the vicinity ||δx || < ε are known. The suggested
method in Aizerman–Pyatnitskii [1] takes into account all values of control from a
convex hull of their real values. The method can lead to a wider set, including values
of speed vectors which can never appear (for example, if the control can take two
values only).
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2 Systems with Vector Control

Filippov’s method is applicable to systems with vector control as well, when sliding
modes occur in an intersection of several discontinuity surfaces; see Fig. 3 in Part
I. First, the minimal convex hull of all possible speed vectors in the vicinity of the
manifold s(x) = 0 should be found. The intersection of the set with the tangential
manifold to s(x) = 0 defines all possiblemotions in the slidingmode.Wewill confine
ourselves to one example only to demonstrate that, from the first view, contradiction
between different methods of deriving sliding mode equations can be eliminated
easily by “correct” application of Filippov’s method.

The first two equations in the third order system

ẋ1 = u1, u1 = − sign(x1),
ẋ2 = u2, u2 = − sign(x2),
ẋ3 = u1u2,

(1)

are independent, and sliding mode exists in each of them with x1 = 0, x2 = 0. The
function x1(t) is shown in Fig. 5.

Both equivalent controls are equal to zero and their substitution into the third
equation means x3 = const . However, in a real system, for example if both controls
are implemented by a relay with hysteresis � (see Fig. 6), the average value of the
product of the periodic functions u1 and u2 (see Fig. 7) is different from zero and can
take any value from the interval [1,−1], depending on phase shift ψ .

Fig. 5 Ideal sliding mode

Fig. 6 System with hysteresis
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Fig. 7 Two components of
control

Fig. 8 Set of sliding mode
equations in system with
vector control

The high frequency component in the solution to the third equation is filtered out
with � tending to zero, and x3 is the solution to

ẋ3 = A, −1 ≤ A ≤ 1, x3 �= const, (2)

for a non-zero constant, as stated before. The same result follows from Filippov’s
method; see Fig. 8. Four possible state speed vectors correspond to four combinations
of two control functions. Their convex hull is a tetrahedron, and its intersection with
x1 = x2 = 0, or the x3 axis on the interval [−1, 1], defines the set of sliding mode
equations.

3 Conclusion

The simple interpretation of Filippov’s method, that coefficients of a convex hull are
relative times of a finite or infinite numbers of continuous subsystems in the vicinity
of a discontinuity manifold, enables us to state that any method of deriving sliding
mode equations is in the framework of this method.

From the practical point of view it is important to answer the question of what
the sliding mode equation is for this or that specific system. Generally speaking,
equations beyond discontinuity surfaces do not let us find the equations of motion
in these surfaces unambiguously. It can be done for affine systems only, if m × m
matrix ∂s

∂x B in
ẋ = f (x, t) + B(x, t)u, B ∈ R

n×m
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is nonsingular; see Utkin [3]. Otherwise, including our examples, we managed to
derive the set of possible sliding mode equations based on Filippov’s method. What
is the slidingmode equation in a given real system? It depends on the implementation
method, initial conditions, and the type of singularity of the matrix ∂s

∂x B.
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Challenges from System Dynamics
to Complexity and Piecewise-Deterministic
Markov Processes: Market Modeling

Johnny Valencia and Gerard Olivar

Abstract This short paper proposes a general economics model for the supply and
demand of a commodity in a domestic market, when investments are required for
supporting it. Starting from System Dynamics, we recover a well-known model.
Then, we improve the mathematical equations in order to be precise at the simulation
level.

1 Introduction

The model is shown as a system of piecewise-smooth differential equations. Piece-
wise smooth and hybrid dynamical systems have been increasingly used in Engineer-
ing and Applied Sciences. More recently, these systems appeared also in Economics
and Social Science, mainly in Sustainability Development, Bioeconomics and new
knowledge areas. Theoretical work mainly deals with the problem of one surface
dividing the state space into two different regions since, usually, a more compli-
cated problem can be locally reduced to this situation. When two switching surfaces
are taken into account, also the generic case is considered, where surfaces intersect
transversally. Papers where more surfaces are considered do not abound in the liter-
ature since the number of different regions increases exponentially and the analysis
becomes quite cumbersome. However, many applications lie on this multi-surface
situation and one must mostly rely on the numerics, as in this paper.

Several nonsmooth bifurcations have been reported in the literature by the authors.
They are the fingerprint of an intrinsic complex system. When several markets
are connected, complex networks (in the dynamics and structure) naturally appear.
Finally, stochasticity is introduced in the system in order to model the risk aver-
sion of investment agents. This is done through Markov chains. This combination of
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deterministic paths and stochasticity leads to the so-called Piecewise-Deterministic
Markov Processes. Depending on the risk behavior, simulations show several deci-
sion patterns.

2 Modeling

2.1 Basic Model

The system of equations is as follows: the installed generation capacity is x1, the
generation capacity under construction is x2, and the power demand is x3. The system
of differential equations is ⎧

⎪⎨

⎪⎩

ẋ1 = −r x1 + qx2
ẋ2 = −qx2 + B

ẋ3 = k Ax3

(seeDyner [1] for how themodel is stated andparameter values).Here, B ≡ B(x1, x3)
is given by the following non-smooth function

B(Dinv) =
⎧
⎨

⎩

0 if Dinv ≤ 0
500 if 0 < Dinv ≤ 0.1

2500 if 0.1 < Dinv,

associated to the capacity building, where A ≡ A(P) is the effect of price on demand
and is calculated as

A(P) =
{
1 if P = 0
(

Pgen
P

)ε

if P �= 0,

where P is the last price generation average, and the generation price Pgen ≡
Pgen(MR) has a nonlinear expression

Pgen(MR) = a

1 + eMR
+ b,

with reserve margin MR ≡ MR(x1, x3), investment decision Dinv , and return over
investment ROI , where

MR(x1, x3) =
{

ω if x1 ≤ x3,
x1−x3
x3

+ ω if x1 > x3,

Dinv = max (0, ROI ) ,
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ROI = Pgen − Cv + I

C f v
.

The reserve margin is a measure of system security. Hence, we include a parameter
ω that takes into account a threshold (i.e., below this value, the system must invest
and ensure minimum supply to avoid power outages).

A manuscript showing nonlinear and nonsmooth dynamics in this model have
been submitted. Several non-smooth bifurcations appear leading to chaotic transitory
behaviour; see Valencia–Olivar–Franco–Dyner [2].

2.2 Interconnection Model

If several countries are interconnected, as it is the case for example, in Panama,
Venezuela, Colombia, and Peru, then we have a coupled system involving countries
which generate energy for the other ones. For example, if we assume that a certain
country (C1) is producing part of the energy for a certain country (C2) then wewould
have the following equations: for (C1)

⎧
⎪⎨

⎪⎩

ẋ1 = −r1x1 + q1x2
ẋ2 = −q1x2 + B1

ẋ3 = k1A1(x3 + θ2y3),

and for (C2) ⎧
⎪⎨

⎪⎩

ẏ1 = −r2y1 + q2y2
ẏ2 = −q2y2 + B2

ẏ3 = k2A2(1 − θ2)y3,

being θ2y3 the amount of demand in country (C2) which is produced in and sent from
country (C1).

In the case of several countries, this can easily be generalized in a natural way to

ẋ3 = k1A1(x3 + θ2y3 + θ3z3 + θ4w3).

2.3 Multiple-Investments Model

Another interesting situation occurs when different energy investments are consid-
ered. For example, assume there are N investors Ii , i = 1, . . . , N , each one investing
B1
i forHydro Power Stations and investing B

2
i for Photovoltaic Power Stations. Then,
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for the Hydro market, we will have

⎧
⎨

⎩

ẋ1 = −r1x1 + q1x2,
ẋ2 = −q1x2 + ∑N

i=1 B
1
i ,

ẋ3 = k1A1x3,

and, for the Photovoltaic market,

⎧
⎨

⎩

ẏ1 = −r2y1 + q2y2,
ẏ2 = −q2y2 + ∑N

i=1 B
2
i ,

ẏ3 = k2A1y3,

with different returns ROI 1 and ROI 2.

3 Non-Deterministic Model: PDMC

Finally, we consider the case when a decision on changing (or not) the investments,
not only depends on the ROI but on a certain risk aversion of the investor. Thus we
assume that, with probability 0 < p ≤ 1 the investor changes the investment when
this is suggested by the ROI (for p = 1, we have the deterministic case studied
before).

Then we have a Markov chain among the different investment states and the
system has a deterministic part produced by the ODEs and a non-deterministic part
produced by the decision rules (a Markov chain). This is called a PDMC (Piecewise-
Deterministic Markov Chain). The matrix of probability transitions is

P =

⎛

⎜
⎜
⎝

1 − p p 0 0
0 1 − p 0 p
p 0 1 − p 0
0 0 p 1 − p

⎞

⎟
⎟
⎠ .

Several values for p lead to qualitatively different patterns.

4 Conclusion

Different models for electricity energy markets have been shown, starting from a
well-known model in the literature; see Dyner [1]. Depending on several situations
(country interconnection, investment diversification) systems of ODEs are coupled.
Also, if risk aversion is introduced, non-deterministic models are obtained. Namely,
the so-called Piecewise-Deterministic Markov Chains (PDMC).
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