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Part I
Biomedical Big Data

Foreword

In the last quarter of 2015, from September 8 to November 27, over 100 biosta-
tisticians, statisticians and mathematicians from 45 different institutions visited the
Centre de Recerca Matemàtica (CRM) in Bellaterra to participate in the Intensive
Research Programme on Statistical Advances for Complex Data. The local orga-
nizers of this research semester were Alejandra Cabaña (Universitat Autònoma de
Barcelona), Malu Calle (Universitat de Vic), Pedro Delicado (Universitat Politèc-
nica de Catalunya), Anna Espinal (Universitat Autonòma de Barcelona), Guadalupe
Gómez (Universitat Politècnica de Catalunya), Rosa Lamarca (Almirall SA), Pere
Puig (Universitat Autonòma de Barcelona), Montserrat Rué (Universitat de Lleida),
and Àlex Sánchez (Universitat de Barcelona). The program brought together sci-
entists, from enthusiastic Ph.D. students to respected senior professors, working in
relevant areas such as Modeling and analysis of biological and biomedical data,
Biostatistical methods for clinical trials and for complex time-to-event data, and
Statistics and Big Data. The very dynamic and productive atmosphere we enjoyed
translated into equally active courses, seminars and a workshop on Biomedical (Big)
Data, held on November 26 and 27, closing the program.

The workshop was a meeting point for the researchers who are members of
BIOSTATNET, a Spanish pioneer network of biostatisticians. BIOSTATNET has
almost two hundred members organized around eight different nodes, led by statisti-
cians from different universities, with own research projects and teaching experience
in biostatistical matters, andworking closely with biomedical researchers. Thework-
shop included five invited talks, a roundtable, eleven contributed oral presentations
and ten posters.

In this volume of the subseries Research Perspectives CRM-Barcelona (published
by Birkhäuser inside the series Trends in Mathematics), we present ten extended
abstracts corresponding to selected talks given by participants in the workshop on
Biomedical (Big) Data. The variety of topics presented bears testimony to the rich
activity that made a success of the workshop, and also of the Intensive Research
Programme. The selected topics include methodological biostatistical and bioinfor-
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matics advances as well as relevant medical applications. Five abstracts contribute
with new procedures and methods for high-dimensional data sets: from integrative
analysis of omics data to statistical models for microbiome data. In three papers
different approaches for the joint model between longitudinal markers and time to
events are themain contribution. Sample size considerations in clinical prediction and
models for under-reported time series count data are other topics addressed among
the authors. As is usual in our field, most of the methodological progress comes
from the hand of relevant scientific questions in the medical and biological field.
Among our abstracts, we find the problems that have arisen in HIV studies where
the evolution of bone mineral density measurements or the characterization of the
microbiome composition of HIV-infected persons is of interest; three papers discuss
applications in cancer studies focusing on the selection of genes in a cancer colon
study, analyzing gene expression in ovarian cancer, or assessing breast cancer risk
from the longitudinal mammographic breast densities. Other clinical studies analyz-
ing autism multiplex families, characterizing brain tissue after ischemic stroke, or
finding the association between post-operative glucose proles and insulin therapy
on patients survival after an orthotopic liver transplantation are part of the problems
addressed from statistical and computational perspectives. We hope that this volume
will give the authors the opportunity to quickly communicate their recent research:
most of the short articles here are brief and preliminary presentations of new results
not yet published in regular research journals.

We would like to express our gratitude to the CRM for hosting and supporting
our research program. Also our warm thanks to the CRM staff, its director, Joaquim
Bruna, and all the secretaries, for providing great facilities and a very pleasant work-
ing environment. Last but not least, thanks are due to all those who attended the talks,
for their interest, enthusiasm and their active participation. The program was also
possible thanks to the generous support of the following research projects from the
Ministerio de Economía y Competitividad (Spain): “Applied Stochastic Processes”,
conducted at Universitat Autònoma de Barcelona (MTM2012-31118), “Advanced
Methods in Survival Analysis: Clinical Trials, Longitudinal Data and Interval Cen-
soring”, conducted at Universitat Politècnica de Catalunya (MTM2012-38067-C02-
01), “Sampling Samples: Relevant Applications of Statistics in Digital Economy and
Society”, conducted at Universitat Politècnica de Catalunya (MTM2013-43992-R),
and the following one from theDepartament d’Economia iConeixement (Catalunya):
“Research Group in Biostatistics and Bioinformatics” at Universitat Politècnica de
Catalunya and Universitat de Barcelona (SGR 464), as well as the Simons Foun-
dation, and the Fundación Española para la Ciencia y la Tecnología (Ministerio de
Economía y Competitividad, Spain).

July 2016
Barcelona, Spain Guadalupe Gómez

Pere Puig
M.Luz Calle



Extreme Observations in Biomedical Data

Concepción Arenas, Itziar Irigoien, Francesc Mestres, Claudio Toma,
and Bru Cormand

Abstract We present a new procedure to detect extreme observations which can be
applied to low or high-dimensional data sets. Continuous features, a known under-
lying distribution or parameter estimations are not required. The procedure offers a
ranking by assigning a value to each observation that reflects its degree of outlying-
ness. A short computation time is needed.

1 Introduction

In current biomedical research, genetic studies are extensively used to identify the
causes of human diseases and they provide insights for the eventual development of
therapeutic strategies. Integration of different types of data sets, such as gene expres-
sion data, genotype data or clinical information is needed to capture information that
may otherwise be lost in separate analyses. Furthermore, it is crucial to be able to
detect extreme observations, since an extreme valuemay indicate an individual with a
wrong diagnosis or presenting particular clinical features or classified in the extreme
spectrum of the disease. Moreover, the usual scenario with current data is the lack of
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information about the underlying distribution. Thus, no parametric extreme observa-
tion detection algorithms for any type of features and for any size/dimensional data
sets are desirable. We present a new procedure to detect extreme observations which
can be applied to low or high-dimensional data sets. Continuous features, a known
underlying distribution or parameter estimations are not required. The procedure
offers, using a short computation time, a ranking by assigning to each observation a
value that reflects its degree of outlyingness. The proposedmethod takes into account
all distances between observations, not only distances between neighbours, in such
a way that the relation of any observation with respect to all the other observations in
the data set and the dispersion of all data are considered. To illustrate our procedure,
we analyzed the data of rare genetic variants from 10 autism multiplex families and
twenty-six high-dimensional class-imbalanced cancer data sets. The results showed
the good performance of the procedure.

2 Methods

The starting point is an n × p data matrix (p can be much larger than the size of the
sample n) where the rows correspond to observations (individuals, samples...) and the
columns correspond to any kind of features to be measured which can be continuous,
binary or multiattribute data (genes, clinical/pathological features,…). Let G be a
group that is represented by a p-random vector Y = (Y1, . . . ,Yp), with values in a
metric space S ⊂ Rp and a probability density f with respect to a suitable measure
λ. Let δ be a distance function between any pair of observations, δi j = δ(yi , y j ).

Definition 1 The geometric variability of G with respect to δ, a general measure of
dispersion of G, is defined by

V (G) = 1

2

∫
S×S

δ2(yi , y j ) f (yi ) f (y j )λ(dyi )λ(dy j );

see [1]. When δ is the Euclidean distance, V (G) = tr(�) with � = cov(Y). The
geometric variability is as a variant of Rao’s diversity coefficient; see [2].

Definition 2 The proximity function of an observation y to G is defined by

φ2(y,G) =
∫
S
δ2(y, y j ) f (y j )λ(dy j ) − V (G);

see [1].

As in applied problems, the probability distribution for Y is usually unknown,
estimators are needed. Given a sample of size n, y1, . . . , yn , natural estimators for
the geometric variability and the proximity function are
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V̂ (G) = 1

2n2
∑
i, j

δ2(yi , y j ),

and

φ̂2(y,G) = 1

n

∑
i

δ2(y, yi ) − V̂ (G),

respectively. See [3] for a review of these concepts, and for applications see [4, 5]
and references therein.

Definition 3 For each observation yi , the depth function I (yi ,G) is defined by

I (yi ,G) =
[
1 + φ2(yi ,G)

V (G)

]−1

; (1)

see [6].

Proposition 4 Function I takes values in [0, 1] and, according to [7], it is a type
C depth function. Furthermore, it verifies the following desirable properties: (i)
maximality at center; (ii) monotonicity relative to the deepest observation; (iii) van-
ishing at infinity; and (iv) depending on the data and the selected distance, it is
affine-invariant.

As I is a depth function, it assigns to any observation a degree of centrality, thus a
small value of I , or equivalently a largevalueofO = 1/I , suggests a possible extreme
observation. Note that, by (1), Ô(yi ,G) = n

∑
j δ

2(yi , y j )/
∑

j,k δ2(y j , yk).

However, with only one observation taking a very large value, Ô already gives
aberrant values. For this reason, we propose the following version for Ô(yi ,G)

where, due to robustness consideration, the mean is replaced by the median.

Definition 5 For each observation yi a new statistic OR(yi ,G) is defined by

OR(yi ,G) = medδ,i

medδ
, (2)

where medδ = median j,k(δ
2
jk) and medδ,i = median j (δ

2
i j ).

Proposition 6 Let S = {y1, . . . , yn} be a sample, and let y0 be an outlier. For a
fixed observation, say y1, the sensitivity curve of OR(y1, S) at point y0, SC(y0) =
OR(y1, S′) − OR(y1, S), where S′ = {y1, . . . , yn, y0}, is bounded, which implies the
robustness of OR.

Proposition 7 Let δ be a distance function such that δ(yi , y j ) → ∞ when yi or y j

takes arbitrarily large values. The breakdown point of OR (the proportion of arbi-
trarily large observations that OR can handle before giving arbitrarily large values)
is n − 1/2 − √

2n2 − 6n + 1/2, with n the sample size. Note that the breakdown
point of OR is always greater than 25%.
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Note that the distribution of OR is not symmetric.

Definition 8 FollowingKimber criterion (see [8]), an observation yi will be consider
as an extreme observation if

OR(yi ) > λ = Q3 + 1.5(Q3 − M), (3)

where Q3 and M are the 3-th quartile and the median of all the OR values.

Our simulation studies show that the procedure is robust in front of masking effect
and it can properly identify most of the outliers when mixed data are analyzed.

3 Application to Data in Autism Multiplex Families

Now consider the following study [9] in which 10 autism multiplex families were
analyzed (nine with two affected sibs and one with three affected sibs). First, in
a clinical study, five features were measured in 21 affected individuals: two were
continuous (age and non-verbal intelligence quotient(NVIQ)), and three were cate-
gorical (gender, language delay and autism spectrum category). Using (3) and the
Gower distance [10], the threshold value was λ = 1.519, and four individuals could
be considered as extreme observations. Three of themweremale (13, 17 and 20years
old) with autism and language delay, and they presented NVIQ values indicative of
mental retardation. The most emblematic extreme value, corresponded to another
man (25years old) also with an autism diagnosis and language delay, and presenting
the smallest NVIQ value. Thus, our method highlighted the four individuals from our
study that had the most severe clinical presentation of the disorder. In a second study,
a genetic analysis was performed in the 21 affected individuals and in their parents.
The full exome sequence (the fraction of the genome that encodes proteins, approx-
imately 3.4 × 107 nucleotide positions from 20,000 genes) of all family members
was determined. We selected those rare genetic variants (infrequent in the general
population) leading to an amino acid change in the encoded protein that were trans-
mitted from one parent to the two (or three) affected sibs. The identified mutations,
an average of 36.3 per family, were ranked according to their predicted damaging
effect using the SIFT and PolyPhen-2 tools. In this case, no extreme observations
were detected. This result is consistent with the fact that this type of mutation may
not have a major role in the aetiology of the disorder (as compared to mutations lead-
ing to truncated proteins, not considered here) in the sample of multiplex families
reported previously in [9].
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4 Application to Gene Expression Data in Cancer

In biomedical studies, an important task is to select informative genes that present
altered expression levels in the diseases under study. Selecting adequate marker
genes should may be useful in classifying new samples. We considered 26 public
microarray cancer data sets (http://bioinformatics.rutgers.edu/Static/Supplements/
CompCancer/datasets.htm), which are high size/dimensional class-unbalanced data
sets. We compared the results of a linear discriminant analysis using the original
set of genes and the extreme genes identified under criterion (3). As an evaluation
criteria, we considered the rate of correct classification obtained by the leave-one-out
method.Using only the extreme genes detected by (3) the rate of correct classification
was, in general, maintained or even improved (see Table1). It is important to note
that the reduction in the number of marker genes facilitates the interpretation of their
biological meaning with regard to the disease.

Table 1 Columns: Cancer data sets; classes (k); samples (n); original genes (p); extreme genes
selected by our criterion (NG); total leave-one-out classification rate, in percentage, using all genes
(CRall ) and using the reduced list of genes (CRsel )
Data set k n p NG CRall C Rsel Data set k n p NG CRall C Rsel

Alizadeh-2000-v1 2 42 1095 118 90.48 92.86 Laiho-2007 2 37 2202 414 81.08 86.49

Alizadeh-2000-v2 3 62 2093 306 98.39 98.39 Lapointe-
2004-v1

3 69 1625 170 81.16 72.46

Armstrong-2002-v1 2 72 1081 193 91.67 98.61 Lapointe-
2004-v2

4 110 2496 249 80.91 70.00

Armstrong-2002-v2 3 72 2194 391 88.89 91.67 Liang-2005 3 37 1411 179 94.59 100.00

Bittner-2000-V1 2 38 2201 279 76.32 84.21 Nutt-2003-v1 4 50 1377 320 72.00 70.00

Bittner-2000-V2 3 38 2201 279 63.16 65.79 Nutt-2003-v2 2 28 1070 173 89.29 100.00

Bredel-2005 3 50 1739 238 84.00 84.00 Nutt-2003-v3 2 22 1152 246 100.00 90.91

Dyrskjot-2003 3 40 1203 217 75.00 82.50 Pomeroy-
2002-v1

2 34 857 126 76.47 79.41

Garber-2001 4 66 4553 391 81.82 83.33 Risinger-2003 4 42 1771 255 71.43 71.43

Golub-1999-v1 2 72 1877 321 88.89 90.28 Shipp-2002-v1 2 77 798 137 85.71 75.32

Golub-1999-v2 3 72 1877 321 84.72 88.89 Tomlins-2006-
v2

4 92 1288 129 83.70 84.78

Gordon-2002 2 181 1626 290 100.00 96.69 West-2001 2 49 1198 180 75.51 75.51

Khan-2001 4 83 1069 165 53.01 65.06 Yeoh-2002-v1 2 248 2526 315 87.90 95.97

Acknowledgements This research was partially supported by Grant 2014 SGR 464 (GRBIO)
from the Departament d’Economia i Coneixement de la Generalitat de Catalunya; by the Basque
Government Research Team Grant (IT313-10) SAIOTEK Project SA- 2013/00397; and by the
University of the Basque Country UPV/EHU (Grant UFI11/45 (BAILab)).
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An Ordinal Joint Model for Breast Cancer

Carmen Armero, Carles Forné, Montserrat Rué, Anabel Forte,
Hector Perpiñán, Guadalupe Gómez and Marisa Baré

Abstract We propose a Bayesian joint model to analyze the association between
longitudinal measurements of an ordinal marker and time to a relevant event. The
longitudinal process is defined in terms of a proportional-odds cumulative logitmodel
and the time-to-event process through a left-truncated Cox proportional hazards
model with information of the longitudinal marker and baseline covariates. Both
longitudinal and survival processes are connected by a common vector of random
effects.
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1 Introduction

Joint modeling of longitudinal and time-to-event data is an increasing area of sta-
tistical research devoted to jointly analyze longitudinal and survival processes. It
enhances longitudinal modeling by allowing for the inclusion of non-ignorable
dropout mechanisms, and survival modeling by the inclusion of internal time-
dependent covariates. Shared-parameter models are joint models connecting the lon-
gitudinal and time-to-event processes by means of common subject-specific random
effects which, in the presence of covariates and parameters, endow both processes
with conditional independence; see [4]. They can quantify both the population and
individual effects of the longitudinal outcomes on the risk of an event, and obtain
individualized dynamic predictions.

When longitudinal outcomes are ordinal, the non-linear nature of the data produce
a complex likelihood function which is difficult to maximize under the frequentist
paradigm. This paper discusses a Bayesian joint model for the association between
longitudinal measures of an ordinal marker and a time-to-event outcome; see [1]
for more details about the model. We propose a proportional-odds cumulative logit
model [3] for the ordinal measurements based on the idea of a continuous latent
variable, and a Cox proportional hazards model with left truncation for the time-to-
event of interest with information of the longitudinal process. Themodel is applied to
estimate the risk of breast cancer in women attending a population-based screening
programwith regard to longitudinal measurements of mammographic breast density.

2 A Bayesian Joint Model for Ordinal Longitudinal
and Left Truncated Survival Data

Let {D1, . . . , DK } be the set of ordinal categories and yi j the category of individual i ,
i = 1, . . . , n, at time ti j , j = 1, . . . , ni . We assume an underlying continuous latent
variable y∗

i j that determines the ordinal category of individual i at time ti j . This latent
variable has no interest per se but it is useful for motivating and interpreting the
longitudinal model. The relationship between yi j and y∗

i j is the following

yi j = Dk ⇔ y∗
i j ∈ (γk−1, γk], k = 1, . . . , K ,

where−∞ = γ0 < γ1 < · · · < γK = ∞ are unknown cutpoints. We choose a logis-
tic distribution for y∗

i j , Lo(mi j , s = 1), with mean mi j and scale parameter s = 1.
The choice of that distribution implies a logit link for the cumulative probabilities as
follows

qi jk = P(yi j > Dk) = P(y∗
i j > γk) = 1

1 + exp(γk − mi j )
. (1)
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Despite s = 1 in the logistic distribution, the model is overparameterized. To
obtain an identifiable model, we arbitrarily introduced a reference point on the latent
scale, in particular γK/2 = 0 if K is even and γ(K−1)/2 = 0 or γ(K+1)/2 = 0 if K
is odd.

We consider a mixed-effects model to describe the subject-specific time trajecto-
ries of the latent variable

y∗
i j = mi j + εi j = x(l)′i j β + z′

i bi + εi j , (2)

where x(l)i j is a vector of covariates associated to individual i at time ti j with regression
coefficients vector β; zi a vector of explanatory variables attached to the random
effects bi for the i-th individual; and εi j an error term for the i-th individual at
time ti j , modeled in terms of the logistic distribution Lo(0, 1). The random effects
b = (b1, . . . , bn)T are conditionally i.i.d. (bi | φ) ∼ f (bi | φ), where f (bi | φ) is
usually taken to be a Multivariate Normal distribution with mean 0 and unknown
covariance matrix.

Let Ti , i = 1, . . . , n, be the observed event time for the i-th subject, obtained
as the minimum between the true failure time, T ∗

i , and the right-censoring time,
Ci , Ti = min(T ∗

i ,Ci ). The event indicator δi = I (T ∗
i ≤ Ci ) takes the value 1 if the

observed time is a true event time, and 0 otherwise. Event times corresponding to
individuals who enter the study at delayed entry times introduce left-truncation. We
define the hazard function of T ∗

i in terms of the left-truncated Cox proportional
hazard model [5]

hi (t) = h0(t | λ) exp{x(s)′i η + αmit }, t > ai , (3)

and zero otherwise, where h0(t | λ) is the baseline risk function with parameters λ;
x(s)i is the vector of baseline covariates with coefficients η; α assesses the effect of
the longitudinal marker of subject i on the event of interest in terms of the latent
variable mean; and ai is the delayed entry time of individual i .

We complete the Bayesian modeling eliciting a prior distribution, π(θ), for all the
unknown parameters and hyperparameters of the model. From a Bayesian perspec-
tive, π(θ, b | D), whereD represents all the data collected from the longitudinal and
the survival processes, is the joint posterior distribution of the parameters, hyperpa-
rameters, and random effects, which can be obtained by hierarchical modeling.

3 Breast Cancer and Mammographic Breast Density

The joint model is applied to the assessment of breast cancer risk in women attend-
ing a population-based screening program including 13760women aged 50–69 years
who participated in the breast cancer early-detection program in the Vallès Occiden-
tal Est area in Catalonia (Spain), between October 1995 and June 1998; see [2].
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Fig. 1 Posterior mean and 95% credible band of the probability associated to each BI-RADS
category with respect to age (left) and posterior distribution of the hazard ratios associated to family
history of breast cancer, prior breast procedures, and both together (right)

The longitudinal ordinal marker is mammographic breast density in the scale BI-
RADS, with a total of 81621 screening exams. The BI-RADS scale is ordinal with
categories {a, b, c, d}, which represent low, medium, high, and very high breast den-
sity. The survival process focuses on time to a breast cancer diagnosis and incorpo-
rates family history of breast cancer (Famhist) and prior breast procedures (Brstproc)
as dychotomous baseline covariates.

The posterior distribution is computed usingMarkovChainMonteCarlo (MCMC)
methods through the JAGS software. In particular, we run three MCMC chains with
100000 iterations, 10000 of which were used for the burn-in period. The chains were
thinned by only storing every 270-th iteration to reduce autocorrelation in the saved
sample. Convergence was assessed through the potential scale reduction factor and
the effective number of independent simulation draws.

Figure1 on the left shows the posterior mean and 95% credible interval of the
posterior distribution associated to each BI-RADS category for a generic woman in
the study. Probabilities associated to category b are always higher than 0.5, and grow
slightly with age. Probabilities for categories a, c, and d are initially very similar,
but categories c and d decrease with age following a similar pattern while category
a increases. The credible intervals indicate high precision in the estimated means.
Relevant hazard ratios (HRs) arise from the combination of covariate categories.
Figure1 on the right shows the posterior distribution of the HRs of a breast cancer
diagnosis for Famhist, Brstproc, and both risk factors, with posterior means 1.864,
1.574, and 2.934, respectively. The marginal effects of each covariate are relevant,
with posterior probabilities 0.998 and 1.000 to HR values greater than 1 for Famhist
and Brstproc, respectively.

Figure2 shows the posterior mean and 95% credible band for breast cancer-free
survival for four women without cancer at the end of follow-up. Women 942, with
stable very highbreast density, is cancer-free at 68 years old andher predicted disease-
free survival is higher than for women 9672, who has experienced a decrease in breast
density and reaches as well 68 year old being cancer-free. The different density
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Fig. 2 Posterior mean and 95% credible band of the probability of a breast cancer-free diagnosis
for women IDs 942, 5318, 9672 and 17540 without breast cancer at the end of the follow-up

behaviour might be attributed to the presence of prior breast procedures in woman
9672 and absence of them inwoman 942. In general, breast cancer-free survival stays
with high values, above 0.9, though they decrease with age. Furthermore, women
with higher breast density values tend to have lower cancer-free survival and these
probabilities depend in part of the corresponding baseline risk factors.
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Sample Size Impact on the Categorisation
of Continuous Variables in Clinical
Prediction

Irantzu Barrio, Inmaculada Arostegui, and María-Xosé Rodríguez-Álvarez

Abstract Recent advances in information technologies are generating a growth in
the amount of available biomedical data. In this paper, we studied the impact sample
size may have on the categorisation of a continuous predictor variable in a logistic
regression setting. Two different approaches to categorise predictor variables were
compared.

1 Motivation

Recent advances in information technologies are generating a growth in the amount
of available biomedical information and data, what is known as Big Data. This
fact makes that the data available in some biomedical research studies is getting
larger in the last years. The collection and analysis of this data allows improving the
quality and efficiency of health care services and enhance the quality and longevity
of life; see [9]. Furthermore, the development of prediction models to estimate the
risk of developing a particular disease are nowadays relevant in the decision making
process [6], with a significant growth in the number of predictive models developed
in the last years. When developing prediction models to be used in clinical practice,
categorised versions of continuous predictor variables are commonly used by clinical
researchers; see [8]. It is possible that research studies with a big amount of data may
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require or use a categorisation of the continuous predictor variables and hence, we
think it is necessary to evaluate the impact the sample size may have on the selection
of the cut points to categorise the predictor variable.

Recently, two different methodologies have been proposed to categorise a contin-
uous predictor variable in a logistic regression setting; see [3, 7]. The first approach
is based on a graphical display using generalised additive models (GAM, [1]) with
P-spline smoothers to determine the relationship between the continuous predictor
and the outcome. The second approach proposes to select the optimal cut points
based on the maximisation of the area under the ROC curve (AUC) of the logistic
regression model for the categorised variable. When developing a prediction model
to predict the risk of poor evolution of patients with chronic obstructive pulmonary
disease (COPD) in the IRYSS-COPD study [4], we categorised the predictor variable
respiratory rate into three categories using both methods. The same categorisation
proposal was obtained with both methods, being 20 and 24 the cut points. In this
case, the sample size we had was of 1350 patients. However, we wondered whether
same results would be obtained with higher sample sizes. Therefore, this question
motivated the work presented in this paper, where the aim is to study how sample is
related to the location of the cut points to categorise a predictor variable in a logistic
regression setting.

2 Methods

In this section, we briefly describe the two methods considered for the categorisation
of a continuous predictor variable. Let us assume that there is a dichotomous response
variable Y and a continuous predictor variable X which we wish to categorise in a
logistic regression setting.

2.1 Categorisation Proposal Based on GAM with P-Spline
Smoothers

Barrio et al. [3] proposed amethodology to categorise a continuous predictor variable
which consists of creating at least one average-risk category along with high- and
low-risk categories based on a GAM with P-spline smoothers. Let logi t (p) = β0 +
f (X) be the logistic GAM for X , where p = P(Y = 1|X) and f () is the smooth
function of the GAM regression model. The average-risk category is created by
building an interval around the point x0 ∈ X forwhich f (x0) = 0. Let us denote π̂0 =
logi t−1(β0 + f (x0)) = logi t−1(β0) and

(
π̂0in f , π̂0sup

)
its 95% confidence interval.

The average-risk category
(
x0in f , x0sup

)
is obtained as f −1(logi t (π̂0in f ) − β0) = x0in f

and f −1(logi t (π̂0sup ) − β0) = x0sup . Thus, this categorisation proposal considers at
least three categories. In a context in which only two categories are considered,
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Hin–Lau–Rogers–Chang [2] proposed to dichotomise a continuous variable with x0
as the optimal cut point.

2.2 Optimal Categorisation Based on the Maximisation
of the AUC

Given k = 2 the number of cut points set for categorising X in 3 intervals, let us
denote as Xcat the categorised variable taking values from 0 to 2. Barrio–Arostegui–
Rodríguez-Álvarez–Quintana [7] proposed that the vector of 2 cut points v = (x1, x2)
which maximises the AUC of the logistic regression model

P(Y = 1|Xcat ) = logi t−1(β0 + β11{Xcat=1} + β21{Xcat=2})

is thus the vector of the optimal cut points. In general, this method allows to search
for any possible number of cut points, nevertheless in order to compare both method
we will focus on k = 2 number of cut points.

For ease of notation and interpretation we will refer to these two approaches as
the “GAM approach” and the “AUC approach”, respectively.

3 Simulation Study

A simulation study was performed under known theoretical conditions that verify
linear effects in the logistic regression model. We used this setting to evaluate the
performance of the GAM approach and the AUC approach when different sample
sizes were used.

3.1 Scenarios and Set Up

The predictor variable X was simulated from a normal distribution separately in
each of the populations defined by the outcome (Y = 0 and Y = 1). Specifically,
we considered X |(Y = 0) � N (0, 1) and X |(Y = 1) � N (1.5, 1). When the aim
is to maximise the AUC, the theoretical location of cut points to categorise the
predictor variable is known [5], as well as theAUC associatedwith the corresponding
categorical covariate. The simulations were performed for different sample sizes
assuming the same number of individuals in Y = 0 and Y = 1. As far as the number
of cut points is concerned, k = 2 were considered. When using the AUC approach,
we considered the Genetic algorithm to estimate the optimal number of cut points.
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3.2 Results

Figure1 depicts the boxplot of the estimated optimal cut points over 200 simulated
data sets for the different sample sizes, and each of the categorisation approaches
considered. Different results were obtained when the sample size was increased
with the two categorisation proposals considered. The AUC approach identified the
optimal cut points for any sample size considered (see Fig. 1a). Under this scenario
the theoretical cut points were 0.227 and 1.274.

(a) AUC Approach

(b) GAM Approach

Fig. 1 Boxplot of the estimated cut points for k = 2, based on 200 simulated data sets for different
sample sizes (N = 100, N = 500, N = 1000, N = 1500, N = 3000, N = 5000, and N = 10000).
From top to bottom: results obtained with the AUC approach and the GAM approach, respectively.
True cut points are represented with a dashed line which are v2 = (0.227, 1.274) for k = 2, and
v1 = (0.773) for k = 1
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Table 1 Numerical results obtained over 200 simulated data sets when the GAM approach was
used to estimate the cut points. Mean, standard deviation and median for the estimated x0 point
together with the mean and standard deviation for the average-risk category values are reported

Sample size x0 Average-risk category

Low limit Upper limit

mean (sd) median mean (sd) mean (sd)

100 0.751 (0.198) 0.759 0.395 (0.183) 1.099 (0.181)

500 0.760 (0.087) 0.752 0.605 (0.085) 0.915 (0.087)

1000 0.754 (0.050) 0.754 0.645 (0.048) 0.863 (0.054)

1500 0.755 (0.046) 0.755 0.665 (0.046) 0.845 (0.048)

3000 0.749 (0.036) 0.749 0.685 (0.036) 0.813 (0.037)

5000 0.751 (0.026) 0.748 0.701 (0.026) 0.800 (0.027)

10000 0.751 (0.019) 0.751 0.716 (0.019) 0.786 (0.019)

On the other hand, the cut points obtained with the GAM approach differed more
from those theoretical cut points as the sample size was increased (see Fig. 1b). In
fact, for larger sample sizes, the average-risk category obtained converged to the
point x0 for which f (x0) = 0, which turned out to be close to the theoretical cut
point for k = 1, i.e., 0.773. This results can be seen in Table1, where the numerical
results obtained with the GAM approach are shown.

4 Conclusions

To summarise, we have seen that the sample size has an impact on the categorisation
of a continuous predictor variable. For a large sample size, the GAM approach leads
to a very narrow average-risk category which can be interpreted as a unique cut
point, being thus equivalent to the proposal of Hin–Lau–Rogers–Chang [2], this is,
a dichotomisation of the continuous variable. On the other hand, the AUC approach
performs satisfactorily in large sample sizes when looking for two cut points, i.e.,
categorising the predictor variable into three categories. In general, as long as it is
feasible, we recommend the use of the AUC approach. Otherwise, we should take
into account that for large sample sizes the GAM approach does not provide an
optimal categorisation when the goal is to categorise the predictor variable into three
categories.

Acknowledgements This study was supported by the grants IT620-13, MTM2011-28285-C02-
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Integrative Analysis of Transcriptomics
and Proteomics Data for the Characterization
of Brain Tissue After Ischemic Stroke

Ferran Briansó, Teresa García-Berrocoso, Joan Montaner,
and Alex Sánchez-Pla

Abstract Many diseases such as ischemic stroke, have a multigenic origin and are
affected by environmental factors. Integrative omics approaches, targetting the dif-
ferent levels of the omics cascade are particularly appropriate in these cases andmany
multivariate methods have been adapted or developed in recent years to taggle this
approach. In this work Multiple Co-inertia and Regularized Canonical Correlation
with Sparse Partial Least Squares Regression have been applied for an integrative
analysis of transcriptomics and proteomics data for the characterization of brain
tissue after ischemic stroke.

1 Introduction and Objectives

The molecular basis for the genetic risk of ischemic stroke is likely to be multigenic
and influenced by environmental factors; see [11]. For that reason, an integrative,
multi-omics approach can be very useful to gain deeper knowledge of the genetic
components of these injuries.
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Over the past decade, major advance in omics technologies have facilitated a
high-throughput monitoring and understanding of a variety of molecular and organ-
ismal processes. These techniques, and its translational adoption, have been widely
applied to identify biological agents and to characterize biochemical systems, often
focusing on the discovery of therapeutic targets and biomarkers with application to
specific diseases. While many analysis tools target comprehensive analysis of genes
(genomics), mRNA (transcriptomics), or proteins (proteomics), there is still a long
way to go in the field of omics data integration in order to provide a better under-
standing of the biological systems. To address this challenge, several multivariate
statistical techniques have been revised and proposed in the last years: some of them
based on classical dimension reduction, such as Principal Component Analysis, but
others based on more “novel” approaches, such as Regularized Canonical Corre-
lation Analysis (rCCA) and Multiple Co-inertia Analysis (MCIA); [10] is a recent
review of them.

The main objectives of this work are: (i) to perform an integrative analysis of tran-
scriptomics and proteomics data of an study on ischemic stroke, and (ii) to investigate
the possibility of combining two multivariate approaches for omics data integration.

2 Methods

For this study, human brain tissue samples, collected by the Neurovascular Diseases
Laboratory atVall d’HebronResearch Institute, have been processed to obtainmRNA
and protein expression values. Each dataset was first analysed independently using
standard bioinformatics protocols [6]. These analyses allowed to select subsets of
relevant features, for each type of data, to be used in the integrative analysis.

Among all available options, we decided to use two distinct and complementary
approaches: (i)MultipleCo-inertiaAnalysis, implemented inBioconductor packages
made4 [2] and mogsa [8]; and (ii) Regularized Canonical CorrelationAnalysis with
Sparse Partial Least Squares regression (sPLS), provided by mixomics R package
[3].

MCIA [9] is a technique allowing to combine two or more dimension reduction
analyses by searching pairs of axes (one in each analysis) that maximize covariance.
rCCA [7] allows to analyse two groups of variables by forming linear combinations
in each group that maximize the correlation between them. While standard CCA can
not be used where the number of samples is far lower than the number of variables,
rCCA is useful in these cases. PLS [5] is similar to CCA, but it is assumed that one
group of variables depends on the other group and is computed by finding linear
combinations of the variables of each group that maximize the covariance.

MCIA and rCCA were applied to the proteomics and transcriptomics data sets to
find out relations within and between both groups of variables. Finally, the biological
annotations of each feature to the Gene Ontology database [1] have been used,
with the MCIA approach, in order to obtain a better understanding of the biological
differences between infarcted and healthy brain areas under study.
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3 Results

The application of rCCA and sPLS to both datasets allow to visualize the results of
the analysis through clustered image maps and relevance networks (Figs. 1 and 2);
see [4]. These pictures depict relations between genes and proteins that could not
be determined neither from separate multivariate analyses nor from the previously
known gene-protein associations. Four major clusters of gene-protein associations
showing positive and negative co-expressions, coloured in red and blue, respectively,
are shown in Fig. 1. A network resulting from keeping only the most correlated
elements (absolute coefficient value bigger than or equal to 0.85),with red- and green-
coloured edges, for top positive and negative correlations, respectively, is included
in Fig. 2.

MCIA was used through mogsa package in order to measure how experimental
samples are related between them, in terms of the projection of gene and protein com-
ponents within the same bi-dimensional space (Fig. 3). This shows that two samples
have an ambiguous behaviour, being grouped with the other condition from one of
the two, gene or protein, points of view, so having their arrow lines crossing the verti-
cal axis of the scatterplot. In a complementary way, a Circle Correlation Plot (Fig. 4)
allows to identify among genes (light blue), some which are not allocated with any
of the protein clusters (orange). These genes have special interest because, although
they are differentially expressed between ischemic stroke and healthy samples, they

Fig. 1 Clustered image map (heat map of correlation coefficients between genes and proteins)
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Fig. 2 Relevance network of top correlations between genes (circles) and proteins (rectangles)

Fig. 3 Distribution of samples based on their transcriptomic (dot) and proteomic (arrow) informa-
tion for healthy (red) and affected (blue) samples
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Fig. 4 Correlation circle
plot allocating gene and
protein features along the
main components derived
from the integration of both
data sets

Fig. 5 Gene set plots
overimposing biological
information in the form of
Gene Ontology annotations
to genes (left) or proteins
(right) representations

are not directly related with the first gene-protein derived component, that mainly
distinguishes between both experimental conditions.

In addition to that, MCIA allowed the annotation of the genes and proteins
analysed with this method against the gene sets extracted from the Gene Ontol-
ogy data base, which have been used to directly overlap the main enriched biological
gene sets in the plane formed by the corresponding principal components. Figure5
above shows a projection of gene sets on the main components for gene (left) and
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protein (right) datasets. Among the top gene sets found with mogsa functions is
worth to notice two cases, one related with Alzheimer’s disease and other with some
psychiatric disorders, respectively.

4 Conclusions

Two distinct approaches for projection-based multivariate analysis of gene and pro-
tein data have been applied to characterize human brain tissue samples, also including
the annotation to standard biological databases as a method for merging information
in a common space. The first approach (rCCA and sPLS with mixomics) provided
a good visualization of individual relationships between features (shown in Figs. 1
and 2), and could be used for variable selection, but did not allow the addition of
biological information. On the other hand, the other approach (MCIA and Gene Set
Analysis with mogsa) could not perform variable selection, but has shown to be use-
ful for presenting samples, features and its associated biological information (Figs. 3,
4, 5, respectively) in a common projection space. In summary, both approaches have
been able to show aspects of relations between genes and proteins (Figs. 2 and 4) that
could not have been unveiled separately, which is the main goal of integrative analy-
sis. Some aspects were similar but others were not, showing the complementarity
between the approaches.

This study is a first step in a larger collaborative project, onwhichmore omics data
have been collected. The preliminary analysis suggests how to perform the integration
with other omics, and our aim is now tomerge these approaches in awrapper pipeline,
which will be used in order not only to characterize the experimental conditions
with an integrative method, but also to find ways to present the results in a more
“understandable way”, from the point of view of its biomedical and translational
interpretation.
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Applying INAR-Hidden Markov Chains
in the Analysis of Under-Reported Data

Amanda Fernández-Fontelo, Alejandra Cabaña, Pedro Puig,
and David Moriña

Abstract We present a model for under-reported time series count data in which the
underlying process satisfy an INAR(1) structure. Parameters are estimated through
a naïve method based on the theoretical expression of the autocorrelation function
of the underlying process, and also by means of the forward algorithm. The hidden
process is reconstructed using the Viterbi algorithm, and a real data example is
discussed.

1 Introduction

Time series analysis is an old discipline.However, dealingwith count data is relatively
recent. Under-reported phenomena are present in almost any field, but are specially
interestingwhen counts are low such as the number of reported cases of a rare disease;
see [1, 3]. A good real example to show the applicability of the model is the number
of weekly cases of Human papillomavirus (HPV) in Girona from 2010 to 2014,

A. Fernández-Fontelo (B) · A. Cabaña · P. Puig
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
e-mail: amanda@mat.uab.cat

A. Cabaña
e-mail: acabana@mat.uab.cat

P. Puig
e-mail: ppuig@mat.uab.cat

D. Moriña
Unit of Infections and Cancer (UNIC), Cancer Epidemiology Research Program (CERP),
Catalan Institute of Oncology (ICO)-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
e-mail: dmorina@creal.cat

D. Moriña
ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain

D. Moriña
Universitat Pompeu Fabra (UPF), Barcelona, Spain

D. Moriña
CIBER Salud Pública y Epidemiología, Barcelona, Spain

© Springer International Publishing AG 2017
E.A. Ainsbury et al. (eds.), Extended Abstracts Fall 2015,
Trends in Mathematics 7, DOI 10.1007/978-3-319-55639-0_5

29



30 A. Fernández-Fontelo et al.

which is a stationary series. This disease is a very common sexual infection in such
a way that nearly all sexual active people have the infection at some point in their
lives; see [4]. However, the infection disappears on its own in most cases, and only
in some of them becomes a more serious disease. For that reason, it seems sensible
to consider that the HPV can be severely under-reported.

The simplest model for completely observed count series data is an INAR(1) of
the form

Xn = α ◦ Xn−1 + Wn, (1)

where α ∈ (0, 1) is a fixed parameter and the operator ◦ is the binomial thinning
operator, such that α ◦ Xn−1 = ∑Xn−1

i=1 Zi (α), where Zi are i.i.d Bernoulli random
variables with success probability α. Here, Wn is assumed to be Poisson(λ) distrib-
uted. The probabilistic and statistical properties of these models are widely studied;
see [2, 6].

2 The Model

Let Xn be the unobserved process satisfying an INAR(1) as in Eq. (1). Hence, if the
observed process Yn is under-reported, it can be written as

Yn =
{
Xn with probability 1 − ω,
q ◦ Xn with probability ω.

(2)

That is Yn , which is a binomial thinning of the underlying process Xn , coincides
with Xn with probability 1 − ω, implying that the observed count at time n is not
under-reported. It is important to notice that ω is defined as the proportion of times
that Yn does not coincide with Xn , that is, ω is the frequency of the under-reported
phenomenon. Parameter q is the intensity of the under-reportation in the sense that
this phenomenon will be more intense for small values of q. Observe that Yn can be
understood as a hidden Markov chain with an infinite number of states.

Taking into account that Xn follows an INAR(1) process with Poisson innova-
tions, it is easy to see that the marginal distribution of Xn is Poisson(λ/(1 − α)),
and its auto-correlation function is such that ρX (k) = α|k|, as in the classical AR(1)
model. According to (2), the mean of Yn is (1 − ω(1 − q)) λ

(1−α)
, and its variance

λ2

(1−α)2
ω(1 − ω)(1 − q)2 + λ

(1−α)
(1 − ω(1 − q)). In [5] it is shown that the auto-

correlation function of Yn is

ρY (k) = (1 − α)(1 − ω(1 − q))2

(1 − α)(1 − ω(1 − q)) + λ(ω(1 − ω)(1 − q)2)
α|k| = c(α,λ,ω, q)α|k|.

(3)
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2.1 Parameter Estimation

The marginal distribution of Yn is a mixture of two Poisson distributions

Yn ∼ (1 − ω)Poisson(λ/(1 − α)) + ωPoisson(qλ/(1 − α)), (4)

since the marginal distribution of Xn is Poisson(λ/(1 − α)). Accordingly, applying
the EM algorithm to fit Poisson mixture distributions, we obtain estimates for ω,
(λ/(1 − α)) and (qλ/(1 − α)), and using the last two, q is directly obtained. Then,
α can be estimated by using the theoretical expression of the ACF of Yn , that is,
replacing in (3) the parameters ω and q for their estimates, λ for its estimated value
from (λ/(1 − α)), and equalling this ACF to ρ̂1. Once α̂ is obtained,λ is immediately
computed using, for example, (λ/(1 − α)). These estimates can be used as initial
values in the algorithm that maximises the likelihood function of Yn . In addition, it
is important to remark that this naïve method can produce values out of its corre-
sponding domain, but this fact is not unusual since the method of moments has the
same limitation.

The parameters of the model can also be estimated by means of maximum like-
lihood method. In that case, if Yn = (Y1,Y2, . . . ,Yn) is the observed process and
Xn = (X1, X2, . . . , Xn) the underlying process, then the likelihood function of the
model is:

P(Y ) = P(Y1,Y2, . . . ,Yn) =
∑

X

P(X,Y ) =
∑

x

P(Y | X = x)P(X = x). (5)

However, the function (5) is intractable since Yn can be thought of as a hidden
Markov chain with an infinite number of states, and then the problem becomes
computationally unsolvable. The forward algorithm, which is used in the context
of hidden Markov chains, can be an appropriate option in order to compute the
likelihood function of Yn . According to that, we have modified this algorithm to fit
our needs. Straightforward computations lead to the following expression for the
forward probabilities:

αk(Xk) = P(Y1, . . . ,Yk, Xk) = P(Yk |Xk)
∑

Xk−1

P(Xk | Xk−1)αk−1(Xk−1). (6)

Hence, the likelihood function of Yn is computed by P(Y ) = ∑
Xn

αn(Xn),
according to (6) and assuming that α1(X1) = P(Y1, X1) = P(X1)P(Y1 | X1).

The expression (6) is based on the transition and emission probabilities. In our
case, the transition probabilities are defined by means of the probability distribution
of an INAR(1)model as detailed in [5, 7],while the emission probabilities are equal to
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P(Yi = j | Xi = k) =
⎧
⎨

⎩

0 if k < j,
(1 − ω) + ωqk if k = j,
ω
(k
j

)
q j (1 − q)k− j if k ≥ j.

(7)

2.2 Reconstruction of the Underlying Process

In order to reconstruct the underlying process Xn , we apply the Viterbi algorithm [8].
Given the observed process Y1:n = (Y1,Y2, . . . ,Yn) and the hidden process X1:n =
(X1, X2, . . . , Xn), the aim of the algorithm is to maximise P(X1:n,Y1:n). That is,
let P(X1:n|Y1:n) be the likelihood function of Yn , then it is enough to maximise
P(X1:n,Y1:n), since P(Y1:n) does not depend on the underlying process. Finally, the
reconstructed chain is obtained by using X∗ = argmaxX P(X1:n,Y1:n).

2.3 Model Selection and Goodness of Fit

Model selection is based on both the statistical significance of the model parameters
and also some criteria of parsimony such as the Akaike information criterion (AIC).
Model validation is performed using the mid-normal-pseudo-residuals based on the
normal-pseudo-residuals-segments according to the discreteness of the variables.
That is, if the model is valid, the mid-normal-pseudo-residuals might be similar to
white noise; see [9].

3 Example of Application

The data set ranges from 0 to 6 cases per week, with a mean and a median of 1
case per week and a variance of 1.61.A slight overdispersion is present, which is
consistent since a mixture of Poisson distributions is always overdispersed. Figure1
shows the behaviour of the series during the period of study, and it is immediate to
see that the series has no pattern of trend and/or seasonality.

The naïve method described in Sect. 2 can be used to evaluate whether the series
can actually be under-reported in two different ways. Firstly, the observed process
Yn can be modelled by means of a Poisson distribution or a mixture of two Pois-
son distributions, and then both models can be compared using the AIC. Here, the
mixture of two Poisson distributions seems to fit the phenomenon better since the
AIC of this mixture is smaller (783.843) than the AIC of the Poisson distribution
(787.075), indicating that the observed process can be under-reported. On the other
hand, we can evaluate whether Yn is under-reported by fitting the following model:
log(ρk) = log(c(α,λ,ω, q)) + k log(α) and studying whether its intercept is statis-
tically significant (under-reported). In our case the intercept is statistically significant
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Fig. 1 The observed process Yn and the most probable reconstructed chain Xn

Table 1 MLE (and standard errors) of the model

Parameter MLE s.e.

α̂ 0.517 0.227

λ̂ 1.623 0.616

ω̂ 0.922 0.073

q̂ 0.326 0.085

(p-value = 0.002) leading to an under-reported observed process. Table1 shows the
maximum likelihood estimators of the parameters. Finally, the unobserved process
is reconstructed as shown in Fig. 1 and the model is validated (residuals are similar
to white noise).

HPV in Girona seems to be severely under-reported since the frequency (ω) of the
phenomenon is in (0.78, 1.00), and the intensity (q) in (0.153, 0.487). It is interesting
to remark that all the observed zeroes are under-reported.
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Joint Modelling for Flexible Multivariate
Longitudinal and Survival Data: Application
in Orthotopic Liver Transplantation

Ipek Guler, Christel Faes, Carmen Cadarso-Suárez, and Francisco Gude

Abstract Orthotopic liver transplantation (OLT) is the established treatment for
end-stage liver disease and acute fulminant hepatic failure. The clinical interest lies
on the association between post-operative glucose profiles, daily therapy with insulin
and the risk of death. We propose a two-staged model based approach for flexible
modelling of multivariate longitudinal and survival data to study these associations.

1 Introduction

Orthotopic liver transplantation (OLT) data includes patients who underwent OLT
in the Hospital Clínico Universitario de Santiago, between July 1994 and July 2011.
Alterations in glucose metabolism are common among patients undergoing surgery,
and are associatedwith increased risk ofmortality andmorbidity. Tomaintain glucose
levels within the range of normality, implementation of different protocols have
been developed, but such strict control does not necessarily entail a decrease in
mortality. The interest is to study the association between post-operative glucose
profiles, daily therapy with insulin and the risk of death. For this aim, it is important
to use appropriate statistical tools to study this association when the daily insulin
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therapy and glucose measurements are highly correlated to each other. In addition,
both glucose and insulin measurements have non-linear profiles over time.

An appropriate approach should be a joint modelling of longitudinal and survival
data maximizing the joint likelihood of both longitudinal and survival processes.
Thesemodels based on conditional distributionswhere a shared random effect under-
lines both longitudinal and survival process; see Wulfsohn–Tsiatis [8]. However,
these approaches are difficult to implement when the number of longitudinal bio-
markers is large and their profiles are non-linear. Due to the computational complex-
ity, it is hard to evaluate the joint likelihood in these situations.

Fieuws–Verbeke [3] and Fieuws–Verbeke–Molenberghs [4] have proposed an
approach for the multivariate longitudinal processes in which all the possible pairs
of longitudinal data are separately modelled and then combined in a final step. We
use the latter approach to fit a flexible multivariate longitudinal model using spline
smoothing for longitudinal profiles; Ruppert–Wand–Carroll [6]. Furthermore, we
use the true unobserved value of longitudinal biomarkers to incorporate them into
the survival process as a second stage.

2 Orthotopic Liver Transplantation Data

A total of 644 patients were available for this study. The participants were followed
up until the primary event (death) happens. Median follow-up was 5.6years (range:
[0.1, 17.5]). Patients were classified as patients with known diabetes and the study
includes only those patients without diabetes who received insulin during their first

Fig. 1 Subject specific trends of glucose and insulin measurements with corresponding overall
trends using a natural cubic spline smoothing



Joint Modelling for Flexible Multivariate Longitudinal … 37

post-operative week. The variability of subject specific profiles of both glucose and
insulin measurements can be observed in Fig. 1a. Figure1b represents the overall
profiles using a natural cubic spline smoothing; see Boor [2].

3 Two-Stage Model Based Proposal

The main idea of this two-stage model based proposal is coming from the initial
approaches of simple longitudinal and time-to-event data (see Tsiatis–DeGruttola–
Wulfsohn [7], among others) where the likelihood calculation is divided into two
stages, separately for the single longitudinal outcome and survival process. Extend-
ing this idea, we can use the pairwise modeling approach to study the multivariate
longitudinal data introduced by Fieuws–Verbeke [3] in the first stage. This approach
is taking into account the correlation structure of the longitudinal biomarkers, assum-
ing amultivariate normal distribution for randomeffects. To obtain flexibility, a spline
smoothing for longitudinal profiles can be used; see Ruppert–Wand–Carroll [6]. Fur-
thermore, the predictions of this model are incorporated into the survival model in
Stage 2. This model proposal is composed by two stages: (1) a flexible multivariate
longitudinal model; and (2) a proportional hazard regression to study the survival.

3.1 Stage 1: Flexible Multivariate Longitudinal Data

In the first stage of the model proposal, we introduce a flexible multivariate longi-
tudinal model. Let Yi, j,k be the k-th longitudinal biomarker for subject i at time j ,
being i = 1, . . . , N . We have

log(Yi, j,k) = log(β0,k + fi, j,k(time) + u0,i,k + εi, j,k),

where k is the number of longitudinal biomarkers for glucose and insulin measure-
ments (in our application, k = 2), u0,i,k is a random intercept effect, fi,k(t ime) is the
smooth function of time with truncated spline basis, which is represented as a linear
mixed model (see Ruppert–Wand–Carroll [6]), and finally εi, j,k is the error term. The
function is

fi,k(time) = β0,k + β1,k ∗ time + β2,k ∗ time2 + β3,k ∗ time3 +
L∑

i=1

Uk(xi − κl )
3+,

where β0,k, . . . ,β3,k represent the fixed effects of the linear mixed model representa-
tion of the smoothing term, andUk represents the random part of this representation
with (xi − κl)+ quadratic spline basis with knots κ1, . . . ,κl . The degree of trun-
cated power basis is equal to 3 in this case, which represents cubic splines. In the
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pairwise fitting approach, the log likelihood of the following formwill be maximized
separately:

N∑

i=1

l pi (θp),

where p = 1, . . . , P with P = m(m − 1)/2 indicating the total number of possible
pairs (in this case we have only one pair), and let θ then be the stacked vector
combining all pair-specific parameter vectors θp. Estimates for the elements in θ are
obtained by maximizing each of the P likelihood separately; see Fieuws–Verbeke [3]
and Fieuws–Verbeke–Molenberghs [4].

Inference for θ

Although in the pairwise approach each likelihood is maximized separately, the
approach fits within the pseudo-likelihood framework. Indeed, fitting all possible
pairwise models is equivalent to maximizing a pseudo-likelihood function of the
form

pl(θ) = l(Y1,Y2/θ1,2) + l(Y1,Y3/θ1,3) + l(Y2,Y3/θ2,3).

The asymptotic multivariate normal distribution for θ is given by

√
N (θ − θ) ≈ MV (0, J−1K J−1),

where J is a block-diagonal matrix with diagonal blocks Jp,p, and where K is a sym-
metric matrix containing blocks Kp,q . In the final step, estimates for the parameters
can be calculated by taking averages over all pairs.

3.2 Stage 2: Survival Model

In the second stage, we introduce the following Coxmodel, including the unobserved
values of glucose and insulin measurements obtained estimated in stage 1:

hi (t) = h0(t) exp(agei (t)γ1 + genderi (t)γ2 + α1mi1(t) + α2mi2(t)),

where h0(t) is the baseline hazard function. Therefore, α1 and α2 represent the coef-
ficient of association between the longitudinal markers and patients’ survival. And
mi,1(t) and mi,2(t) are the true unobserved values of glucose and insulin measure-
ments at time t , respectively, mi,k(t) = log(β0,k + fi, j,k(t ime) + u0,i,k).
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Table 1 Results of the survival model in stage 2

Survival model

Coef (Std.Error) p-value HR (95% CI)

Fixed effects Women (γ1) 0.20 (0.06) < 0.01 1.22 (1.09 −
1.38)

Age (yr) (γ1) 0.02 (0.002) < 0.01 1.02 (1.02 −
1.02)

Association log(Glucose) (α1) See Fig. 1b < 0.01 See Fig. 1b

log(Insulin) (α2) See Fig. 1b < 0.01 See Fig. 1b

logLik −12923

4 Conclusions

In patientswithout diabeteswho underwent liver transplantation, glycemic levels dis-
play a marked rise at 24–48h, and then subsequently declined (all within the context
of insulin being administered via continuous perfusion). This behaviour could reflect
glycemic response to stress; see Fig. 1b. Blood glucose profiles were observed to be
statistically associated with long-term mortality among patients without diabetes
(p < 0.01), despite insulin being administered via continuous perfusion to maintain
glycemia figures between normative ranges. Due to having non-linear trends for lon-
gitudinal biomarkers, the interpretation of the coefficients of association (α1 and α2)
becomes compromised. Thus, the overall glucose and insulin profiles are shown in
Fig. 1b.

Our proposed two-stage based model allows flexibility on both longitudinal and
survival models and avoid computational problems in case of having large number
of longitudinal biomarkers or non-linear profiles. The limitation of this proposed
model could be the unignorable informative censoring on the longitudinal model
cause of drop-out process. A regression calibration approach can be used to account
for informative drop-out in the longitudinal part as Albert–Shih [1] presented in
their approach. However, in some cases, for external longitudinal measurements,
the informative censoring can be ignored; see Murawska–Rizopoulos–Lesare [5]
(Table1).
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A Multi-state Model for the Progression
to Osteopenia and Osteoporosis Among
HIV-Infected Patients

Klaus Langohr, Nuria Pérez-Álvarez, Eugenia Negredo, Anna Bonjoch,
Montserrat Rué, Ronald Geskus, and Guadalupe Gómez

Abstract Wemodel the evolution of bonemineral density measurements in a cohort
of HIV-infected persons by DXA scans. We define the minimum T-score (MTS)
from the DXA measures at four different sites and propose a disease progression
model for the transitions between three different health states: normal, osteopenia,
and osteoporosis. A linear mixed model for the MTS is fitted, the estimated ages
at osteopenia and osteoporosis onset are imputed, and the transition probabilities
between the states are estimated.

1 Motivation

Bone mineral density (BMD) measurements are used to determine bone health
and can help identifying subjects at risk of fracture. The most widely recognized
BMD scan, which measures bone density at hip and spine, is called dual-energy
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x-ray absorptiometry (DXA). The DXA measures are compared to the BMD of a
healthy 30-years-old adult of the same gender and converted into T-scores: T-scores
above −1 are considered normal, values between −1 and −2.5 indicate low bone
mass (osteopenia), and values below −2.5 indicate osteoporosis. Even though no
bone density test is 100% accurate, the BMD test is an important predictor for the
risk of a fracture; see [1].

The main goal of this study is to determine the evolution of BMD in a cohort
of nearly 1300 HIV-infected persons with a total of 3610 DXA scans as a function
of gender and age. In particular, we are interested in estimating the transition prob-
abilities from normal BMD to osteopenia and osteoporosis. The clinical relevance
of building a model for such purpose is to guide the clinical practice by acting on
the risk factors in these patients at higher risk of progression, and the rationalization
of DXA scans measurements. This study follows previous analyses, on a subset of
these data, where the focus was the estimation of the distribution of the time from
normal to osteopenia and from osteopenia to osteoporosis; see [4].

2 Multi-state Model

Wepropose the use of a disease progressionmodel as shown inFig. 1,which considers
three different health states defined by the minimum T-score (MTS) from the DXA
measures at four different sites in the femur and the lumbar region: normal BMD
(MTS ≥ −1), osteopenia (−1 > MTS ≥ −2.5), and osteoporosis (MTS < −2.5).
This model assumes that BMD can only deteriorate because this is the natural evo-
lution of BMD over time, i.e., that T-scores are monotonically decreasing.

2.1 Notation

We denote by {X (a), a ∈ A} the multi-state process of the disease progression
model of interest with finite state space S = {0, 1, 2} = {Normal, Osteopenia,
Osteoporosis}. Therein, a refers to the patient’s age at eachDXA scan, X (a) = s ∈ S
to the patient’s state at age a, and A = [18,∞) to the set of possible ages. In addition,
let Ha− be the process history over [0, a) which includes, among other variables of
interest, gender, risk group, and antiretroviral treatments.

Osteopenia OsteoporosisNormal BMD

Fig. 1 Scheme of the disease progression model for bone mineral density
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The model can be characterized by the transition probabilities (1) or the transition
intensities (2):

Phj (a, b;Ha−) = P(X (b) = j |X (a) = h;Ha−) = Phj (a, b) (for short), (1)

αh j (a) = lim
�a↓0

Phj (a, a + �a;Ha−)

�a
, (2)

where 18 ≤ a < b and h, j ∈ S = {0, 1, 2}.
The corresponding transitionprobabilitymatrix of thedisease progressionmodel is

P(a, b) =
⎛
⎝
P00(a, b) P01(a, b) P02(a, b)

0 P11(a, b) P12(a, b)
0 0 1

⎞
⎠ , (3)

where the 0 cells indicate that no transition is possible between the corresponding
two states, and P22(a, b) = 1 because osteoporosis is an absorbing state.

We assume that the Markov property holds, that is, that the process after age
a depends only on the state occupied at a. In addition, we assume a piecewise
constant intensity model: αh j (a) = αm

hj for θm−1 < a ≤ θm , m = 1, . . . , M , where
the θm provides an age partition. That is, disease progression is assumed to remain
constant within and to vary between the age intervals.

2.2 Estimation Method

In order to fit the multi-state model, a follow-up of the patients is needed. In an ideal
case, the exact transition times would be known. Here, however, progression times
to osteopenia and osteoporosis are either right or interval-censored since osteopenia
and osteoporosis onset cannot be determined exactly. A possible approach would be
to fit the multi-state model using these interval-censored data.

A different approach we present herein consists of the following: (i) we use a
longitudinal mixed model to fit the minimum T-scores (MTS) as a function of age
and gender and to predict the MTS at each DXA scan; (ii) we estimate, for each
patient, the times where the MTS are equal to −1 and −2.5; and (iii) we fit a disease
progression model with the transition probability matrix (3) based on the imputed
exact transition times:

(i) Denote by Y (a) the true MTS pattern at age a of a given patient, and by Yi j
the observed j-th MTS for patient i . A linear mixed model considering random
intercept and slope for variable age is fitted as follows:

Yi j = β0 + bi0 + (β1 + bi1) · Agei j + β2 · Genderi + εi j , (4)
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where i = 1, . . . , 1293, j = 1, . . . , ni , the random effects bi are assumed
N (0, D), and the random error εi is N (0, �i ). The R package lme4 from [2]
used to fit this model provides parameter estimates β̂0, β̂1, and β̂2 as well as
predicted values b̂i0 and b̂i1 for each patient.

(ii) Denoting by Ŷi j the fitted MTS values for each patient, we consider patients
with Ŷi1 ≥ −1 and Ŷi,ni < −1, and for these we obtain by interpolation, fol-
lowing (4), the age at which the patient would have crossed the −1 boundary.
Analogously, we proceed for osteoporosis and the −2.5 boundary.

(iii) The disease progression model based on (3) is fitted using both the estimated
and the right-censored transition times of the patients with at least two DXA
scans. To fit the model, we used the R package msm from [3], which provides
maximum likelihood estimates of the transition probabilities Phj (a, b).

3 Results

3.1 Descriptive Analysis

The complete data set included a total of 3610 DXA scans from 1293 patients per-
formed between 1999 and 2014. The mean (median; range) number of DXA scans
per patient was 2.8 (2; 1 − 17); 55.2% (n = 714) of the patients had two or more
DXA scans, for whom the mean (median; range) number of DXA scans per patient
was 4.2 (3; 2 − 17). 73.7% of the patients were males and the mean age was 42.8
(42.3; 20.1 − 77.6) years at the first DXA scan. Among those patients with at least
twoDXA scans, 73.1%weremales andmean agewas 42.1 (41.5; 21.1 − 77.6) years.

3.2 Estimated Transition Probabilities

The fit of the linear mixed model (4), which was based on the data of all 1293
patients, provided the following parameter estimates: β̂0 = −0.548 (s.e.: 0.122);
β̂1 = −0.016 (0.002); β̂2 = −0.333 (0.065). The negative signs of β̂1 and β̂2 indi-
cate, respectively, that MTS decrease with age and that MTS are lower for men.

Next, the disease progression model was fitted using the data of the 714 patients
with follow-up data. For the age partition, we chose θ1 = 40, and θ2 = 50 years.
Figure2 shows the estimated transition probabilities fromnormal BMD to osteopenia
starting at different ages. For instance, the probability that a 40 years old man with
normal BMD has osteopenia after 5 years is 0.12, that is, P̂01(40, 45;Male) = 0.12.
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Fig. 2 Estimated transition probabilities from normal BMD to osteopenia among male (left) and
female (right) HIV-infected persons

4 Discussion

The single imputation of the time to osteopenia and osteoporosis is certainly a limita-
tion of this study.We plan to work with amultiple imputationmodel that will account
for the randomness of the intercept and slope in the linear mixed model. The present
approach is to be compared to a genuine method where the interval-censored nature
of the data is taken into consideration. In addition, we plan to assess the impact of
some specific antiretroviral treatments on bone loss by adding this new variable into
the disease progression model. Finally, the data suggested a potential bidirectional
disease progression model since the estimated slope of 28.4% of the patients was
positive. This new model would take into account the potential recovery of bone loss
due to the action of therapies and is in mind for future research.
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Statistical Challenges for Human
Microbiome Analysis

Javier Rivera-Pinto, Carla Estany, Roger Paredes, M.Luz Calle,
Marc Noguera-Julián and the MetaHIV-Pheno Study Group

Abstract DNA sequencing technologies have revolutionized microbiome studies.
In this work we analyze microbiome data from an HIV study focused on the char-
acterization of microbiome composition in HIV-1 infected patients. A 155 cohort of
HIV infected and non-infected individuals is analyzed to characterize dietary and gut
microbiome association in this group of patients. A penalized Dirichlet Multinomial
regression model has been considered. The assumed underlying Dirichlet distrib-
ution in this modelization provides additional flexibility to the multinomial model
which results in a better fit of the typically overdispersed microbiome data.

1 Introduction

Until recently, the composition and properties of the humanmicrobiomewere largely
unknown, since the study was limited to in vitro cultivation of some specificmicroor-
ganisms. Currently, high-throughput DNA sequencing technologies have revolution-
ized this field, allowing the study of the genomes of all microorganisms of a given
environment. Metagenomics is the massive study of the genomes of the microorgan-
isms and represents a breakthrough in the study of the relationship between the human
microbiome and our health. The data from these studies provide valuable information
about the composition and functional properties of microbial communities.

However, microbiome data analysis poses important statistical challenges. After
DNA sequencing data analysis, microbiome data consists of a count matrix repre-
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senting the number of sequences corresponding to a specific bacterial taxa for each
individual. Statistical techniques assuming the normal distribution are usually not
appropriate. Instead, specific distributions for count data are required. An additional
important feature of microbiome data is zero inflation (a large proportion of zero
counts corresponding to taxa that are only present in some subjects) and the overdis-
persion in the rest of values. Since the total number of counts is not equal for every
subject, there is the possibility of working with compositional data by dividing each
count by the total number of counts giving the proportion that each taxa represents
for each individual. In this case, appropriate methods for compositional data analysis
are required.

In this work we analyze microbiome data from an HIV study focused on the char-
acterization of microbiome composition along the different inflammatory profiles in
healthy individuals and HIV-1 infected patients. HIV-linked chronic inflammation
is associated with metabolic disorders, cardiovascular disease, immune senescence,
premature aging and other inflammatory diseases. The role of the intestinal micro-
biome in these inflammatory processes has shown to be relevant. Interestingly, HIV
infection clinical course, evenwhen treated, is accompanied by an increase in gut per-
meability, bacterial translocation and low-level chronic inflammation. However, the
precise effects of HIV-1 and related factor on the human gut microbiome are not well
understood. It has been shown that diet has an important effect on gut microbiome
composition; see [2, 6]. Therefore, it was important to characterize dietary-gutmicro-
biome associations in this cohort. Available information was obtained from IrsiCaixa
retrovirology laboratory, where microbiome and dietary information was collected
from healthy and HIV infected patients showing different immune and inflammatory
profiles and clinical outcomes.

First results of this project have been published in Noguera-Julián et al. [4].

2 Methods

Microbiome information was derived from 16s gene next generation sequencing
from fecal samples of 155 subjects. Each one of them fulfilled both a nutrient and
food portion independent diet questionnaires whose information was standardized
(see Willet–Howe–Kushi [5]) to have total energy intake into account and apply the
analysis over energy-relative information and not over raw data which could lead to
erroneous conclusions. The standardization was made taking the residuals of a linear
regression over total energy intake as new variable values.

The analysis of dietary-gut microbiome associations involves multivariate multi-
ple regression between twomatrices:X, of size n × p, andY, of size n × q. MatrixX
contains dietary information for p different nutrient andY themicrobiome abundance
(count data) for q bacterial taxa, being n the total number of individuals.
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The previously proposed penalizedDirichlet-Multinomial (DM) regressionmodel
(see [3]) was used to analyze the associations. This regression model addresses the
overdispersion present in microbiome data by considering the DM distribution, with
density function

fDM(y1, y2, . . . , yq; γ) =
(
y+
y

)
�(y+ + 1)�(y+)

�(y+ + γ+)

q∏
j=1

�(y j + γ j )

�(γ j )�(y j + 1)
, (1)

where (y1, . . . , yq) represents the counts for each genus, y+ = ∑q
j=1 y j , γ =

(γ1, . . . , γq) are parameters associated with the mean and variance of each genus,
and γ+ = ∑q

j=1 γ j is controling the degree of overdispersion, with a larger value
indicating less overdispersion. In this modelization, the counts of the different taxa
are assumed to follow a Dirichlet Multinomial distribution (see [1, 3]), which cor-
responds to a multinomial distribution

fM(y1, y2, . . . , yq ,π) =
(
y+
y

) q∏
j=1

π
y j
j , (2)

with random underlying probability vectors following a Dirichlet distribution

fD(π1,π2, . . . ,πq; γ) = �(γ+)
q∏
j=1

�(γ j )

q∏
j=1

π
γ j−1
j , (3)

where π = (π1, . . . ,πq) are the probabilities for a certain count to belong to the
corresponding genus (

∑q
i=1 πi = 1).

Penalizedmaximum likelihood estimation jointly performsmodel fitting and vari-
able selection. As a result, the algorithm returns a matrix C of size p × q, where ci j
represents the association between the i-th nutrient and the j-th genus. The penal-
ization used in DM-regression assings zeroes to some coefficients selecting only the
strongest associations.

3 Results

DM-regression provides the strongest associations between nutritional and genus
composition information as a first step for deeper analysis. In the analyzed cohort,
both Prevotella and Bacteroides are the genus with the strongest associations with
nutrition parameters but in an inverse way. Prevotella is positively linked specially
with water and iron and negatively associated with saturated fat. In the other hand,
Bacteroides is negatively associated with water and iron (Fig. 1).
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Fig. 1 Results with DM-regression model after penalization both for Nutrients (left) and Portions
(right). Red lines represent positive relationship, while blues negative associations

4 Conclusions

DM-regression model allows to link two multivariate data matrices, one of them a
count matrix. In this analysis those matrices where composed by genus counts after
16s rRNA sequencing and by the nutritional information of the individuals. DM
distribution over the counts, has the overdispersion into account and links better with
the nature of the data. In the other hand, the penalization included in the regression
model selects only the strongest associations between genus and nutrients, allowing
to the user to get more interpretable results.
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Integrative Analysis to Select Genes
Regulated by Methylation in a Cancer
Colon Study

Alex Sánchez-Pla, M. Carme Ruíz de Villa, Francesc Carmona,
Sarah Bazzoco, and Diego Arango del Corro

Abstract Methylation is a regulatory mechanism known to be associated with
tumour initiation and progression. Finding genes regulated by methylation is a first
step to develop therapies that target these genes, for instance to inhibit tumor devel-
opment. This study addresses this problem by comparing two methods, one based
on mutual information, and a new one based on clustering the coefficients of fitted
curves. The methods are tested on a Cancer Colon study and the biological analysis
of the resulting lists suggests that at least some of the genes selected are indeed genes
regulated by methylation, opening the door to an automatic mining method.

1 Introduction and Objectives

Methylation of CpG dinucleotides in the promoter of genes involved in the onco-
genic process has been shown to be a key process contributing to tumor initiation
and/or progression; see Sadikovic–Al-Romaih–Squire–Zielenska [5]. Finding genes
regulated by methylation can lead to a better understanding of such processes and
also be a guide to finding new drug targets.

This study originates in a work aiming at the identification of biomarkers for
chemotherapy sensitivity in colorectal cancer (CRC). A panel of 50 cell lines derived
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from colorectal tumors characterized by increasing sensitivity to several chemother-
apy drugs was analyzed using different high-throughput data generation methods.
Finding genes regulated by methylation was one of the approaches adopted in the
search of candidate genes for new therapies.

In cancer–related genes it is relatively common to observe a decrease in gene
expression associated with hypermethylation. Indeed, methylation is often described
as a binary on-off signal (see Liu–Ji–Qiu [4]) that is, when methylation is “off” the
gene can express normally and its expression will be intermediate or high, whereas
when methylation is “on”, the expression of the gene will be repressed and its values
will tend to be low.

As a consequence of this high-methylation/low-expression and low-methylation/
high-expression relation plots depicting methylation and expression will show L–
shape patterns so the strategy adopted will be to mine such plots and select those that
have such a shape.

The main objectives of this work are: (i) to select an appropriate method for
scatterplot clustering that can be used to mine a multiple high-throughput dataset
formed by expression and methylation data and extract the desired patterns, (ii) to
test the methods selected on a colon cancer dataset formed by a panel of cell lines
derived from colorectal tumors.

2 Methods for L-Pattern Selection

There have been published several methods to relate methylation and expression val-
ues. These range from simple correlation analysis (see Wagner–Busche–Ge–Kwan–
Pastinen–Blanchette [6]) to more sophisticated approaches such as the one proposed
by Liu and Qiu [3]. However, in spite of a certain agreement that the two magnitudes
are negatively correlated, there is no generally accepted approach to select genes
regulated by methylation. This work intends to be one more step into this direction.

2.1 Gene Selection Based on Conditional Mutual
Information

When studying methylation, we are faced with two main questions: (i) which genes
exhibit an L-shape, and (ii) what is the optimal threshold for binarizing methylation
data for each L-shape gene.

Liu–Qiu [3] suggests to determine whether methylation and expression of a gene
exhibit an L-shape by computing the conditional Mutual Information (MI) for dif-
ferent choices of the threshold adopted to binarize the methylation data.
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If we consider the continuous valued methylation and expression data as two
random variables X and Y , and denote a nominal threshold as t , the conditional MI
can be written as a weighted sum of MIs on the two sides of the threshold:

cM I (t) = I (X,Y |X > t)P(X > t) + I (X,Y |X ≤ t)P(X ≤ t).

For an L-shape gene, as t moves from 0 to 1, cM I (t) first decreases and then
increases, and its value approaches zero when t coincides with the reflection point.

The ratio r = min{cM I (t)}/cM I (0) for an L-shape gene is small, and the
optimal threshold for dichotomizing the methylation data of this gene is t∗ =
argmin{cM I (t)}.

To estimate the MI terms we use a kernel-based estimator, which constructs a
joint probability distribution by applying a Gaussian kernel to each data point:

I (X,Y ) = 1

M

M∑

i=1

log
M

∑M
j=1 e

− 1
2h2

((xi−x j )
2+(yi−y j )2)

∑M
j=1 e

− 1
2h2

(xi−x j )2
∑M

j=1 e
− 1

2h2
(yi−y j )2

,

where h is a tuning parameter for the kernel width and empirically set h = 0.3.

2.2 Gene Selection Based on Spline Regression

The above approach is appealing but previous studies suggest that it works best when
the number of samples is very big —perhaps hundreds or even thousand samples.
This is a common sample size when working for example with TCGA samples [7],
but not for individual experiments. As an alternative, we suggest to fit a curve to each
scatterplot, that is to the relation between expression and methylation for each gene,
and then cluster these lines and keep those clusters that can be associated with an
L-pattern.

The relation between expression and methylation is weak and non-linear, so a
reasonable option for modelling this type of data is splines regression a form of
non-parametric regression that automatically models non-linearities; see Hastie–
Tibshirani–Friedman [2]. Splines are continuous functions formed by connecting
linear segments. The points where the segments connect are called the knots of the
spline. A particularly efficient form of splines regression is B-splines [2], where the
splines are Bmp p-th order polynomial of degree p − 1 with finite support over the
interval and 0 everywhere else.

With this representation we have applied the following algorithm to select genes
regulated by methylation:

(i) prefilter genes to be fitted, for instance select those having a significantly neg-
ative Spearman correlation coefficient;

(ii) fit a cubic regression spline to each gene and extract the spline coefficients;
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(iii) use coefficients to compute a distance matrix based on a “1-correlation” dis-
tance;

(iv) perform hierarchichal clustering on this distance matrix;
(v) select clusters that visually adapt to an L–shape.

3 Results and Application: Selecting L-Shaped Genes
from a Genome-Wide Analysis of Colorectal Cancer

We have applied the methods described above to the experimental data obtained
from an ongoing CRC study; see Bazzocco–Alazzouzi–Ruiz de Villa–Sánchez-Pla–
Mariadason–Arango [1]. The data analyzed consisted of expression and methylation
values obtained respectively fromAffymetrix (hgu133plus2 expressionmicroarrays)
and Illumina (256Kmethylation arrays). Expression andmethylation data do not have
a one to one correspondence so they were preprocessed separately, using standard
approaches for these types of data, and then aggregated on a gene basis so they could
be matched. This process yield two 30 (samples) × 11746 (genes) arrays.

3.1 Results Using the Conditional Mutual Information
Approach

The data were processed using the algorithm for finding the optimal binarization
threshold described above, and geneswithL-shapewere selected using a combination
of three criteria:

(i) genes had “small” ratio between conditional mutual and overall mutual infor-
mation; this was set to r = cM I/MI < 0.25;

(ii) the minimum value of overall mutual information was at least 0.1, that is,
cMI(0) > 0.1;

(iii) the median expression on the left side of the optimal threshold t∗ had to be
higher than median expression on the right side.

Applying the above criteria yield a total of 641 genes that could be considered to
have a L-shape.

3.2 Results Using Splines Regression to Select Genes

Splines regression cannot be applied to all the genes so a prefiltering step was used,
and only genes showing a significant negative Spearman correlation were modelled
to avoid an excess of noise that would negatively afect clustering later. A heuristic
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filter was also applied to guarantee non L-shape removal. Overall, this led to keep
191 genes for which splines were fitted and clustered into 5 clusters. The first two,
majoritary, clusters included 162 genes that could be considered to have a L-shape.

There were a total of 98 genes in common selected by the two methods.

4 Discussion and Conclusions

This study can still be considered preliminary but a certain number of consistent
results can be highlighted:

(i) cMI based gene selection provides an intuitive approach for selecting L–shaped
patterns, although it can yield a certain number of “false positives”. Themethod,
however, works well with big (hundreds) samples which makes it less reliable
for normal-size (dozens) datasets.

(ii) Clustering based on the results of Splines regression is also useful in detecting
L–shaped patterns. While it selects a smaller number of genes than cMI, it is
not so dependent from sample size.

(iii) Biological interpretation is still ongoing but the results are consistent with the
hypothesis that is, genes known to be regulated by methylation have been found
with both methods.
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Topological Pathway Enrichment Analysis
of Gene Expression in High Grade Serous
Ovarian Cancer Reveals Tumor-Stoma
Cross-Talk

Oana A. Zeleznik, Gerhard G. Thallinger, John Platig,
and Aedín C. Culhane

Abstract Identifying the biological pathways that are significantly regulated in a
given condition is a fundamental step to understanding biological phenomena. Exist-
ing pathway approaches were designed for the analysis of a single dataset and are not
optimized for simultaneous analysis of multiple data sources. Increasing availability
of multiple omics datasets obtained on the same sample allows for a more complete
understanding of pathway behavior in human diseases. We propose a pathway analy-
sis approach in which we integrate multiple molecular datasets using multivariate
analysis and apply dynamical importance to extract topology-based pathway scores.

1 Introduction

Traditional single dataset gene set or pathway analysis often reduces the pathway
network to a simple flat list of genes, ignoring biological knowledge of pathway
topology, protein complexes, and functional non-equivalence of genes. While there
are methods considering the rank of genes in a gene list, many weight genes equally
and use variations of Fisher’s Exact Test to calculate enrichment of genes in a path-
way; see Khatri–Sirota–Butte [4]. A few network topology-based approaches have
emerged, but these are computationally intensive, limiting in their application, and
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may not outperform simple gene lists approaches; see Bayerlová–Jung–Kramer–
Klemm–Bleckmann–Beißbarth [1].

We present an integrative, network-based and pathway-centric gene set enrich-
ment (GSE) approach which we call Integrative Pathway Enrichment Analysis
(IPEA). It combines features (genes, proteins,metabolites, etc.) frommultiplemolec-
ular datasets using a multivariate latent variable analysis (Multiple Co-Inertia Analy-
sis, [5]) and correlates them with their importance scores from each biological path-
way in the Reactome database [3]. The topological importance of features in a path-
way is quantified by the dynamical importance score; see Restrepo–Ott–Hunt [7].We
apply this analysis to discover pathways regulated in tumor and stroma samples [6]
from high grade serous ovarian cancer.

2 Methods

IPEA is structured in three steps. First, we integrate features from multiple datasets
using a latent variable approach called Multiple Co-Inertia Analysis (MCIA); see
Meng–Kuster–Culhane–Moghaddas-Gholami [5].MCIA reduces the features of two
or more omics datasets into the same lower dimension while maximizing the squared
covariance between the eigenvectors of the initial datasets and the newco-inertia axes.

Second, features are scored based on their contribution to the information flow
within pathways in the network. We reward highly linked hubs and bottleneck nodes
which may have few connections but bridge different clusters within a network;
see Restrepo–Ott–Hunt [7]. The information flow scores of genes in a pathway are
defined here by their dynamical importance (DI) which was shown to well charac-
terize the importance of nodes in a network. The dynamical importance I of node
k, denoted Ik , is defined as the change (�) in the largest eigenvalue λ of the corre-
sponding network adjacency matrix upon removal of node k, i.e., Ik ≡ �k/λ.

Finally, pathway enrichment scores are calculated by the Spearman correlation
between the information flow scores of each feature in each pathway and the loadings
of each feature on each principal component (PC) of the integrative MCIA analysis.
Enrichment scores were calculated separately for the negative and for the positive
side of each PC resulting in up- and down-regulated pathways.

3 Results

IPEA was applied to gene expression profiles of 20184 genes in paired microdis-
sected tumor (n = 38) and stroma (n = 38) samples from high-grade serous ovarian
cancer [6] to discover features important in tumor-stroma cross-talk.

First, the gene expression profileswere integrated usingMCIA to extract covariant
features among the datasets. Inspection of the space spanned by the first two MCIA
PCs, which explained 27% of the total variance, revealed samples which had similar
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tumor and stroma gene expression profiles, while other samples had discordant tumor
and stroma profiles. The stroma profiles (standard deviation of 0.42 on PC1 and
0.34 on PC2; mean equal to zero on both PCs) varied more than the tumor profiles
(standard deviation of 0.24 on PC1 and 0.28 on PC2; mean equal to zero on both
PCs). In general we observedmore diversity in stromal tissue, possibly due to greater
heterogeneity of infiltrating cells.

Next, the scores of the tumor and stroma genes on the first MCIA axis were
correlated with the corresponding dynamical importance scores from Reactome.
The enriched pathways are displayed in Fig. 1 as a double bipartite-like graph: one
can distinguish between tumor and stroma but also between up- and down-regulated
pathways/genes. To facilitate the interpretation of the result, only enriched pathways
which include genes with MCIA scores higher than the 75% quantile are shown.

Additionally, clinically actionable genes (drug targets) are displayed as triangles
on the network ofMCIA selected genes and enriched pathways. Clinically actionable
genes were extracted from the TARGET1 (tumor alterations relevant for genomics-
driven therapy) database of genes that,when somatically altered in cancer, are directly
linked to a clinical action in that they might be predictive of response or resistance to
therapy. Four actionable target geneswere present in the resulting network: CTNNB1
(catenin beta 1), ERBB4 (erb-b2 receptor tyrosine kinase 4), SMAD4 (SMAD family
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Fig. 1 Enriched pathways and corresponding genes resulting from IPEA computed from the first
MCIA axis of the tumor and stroma datasets. Genes/pathways that are active in tumor are displayed
as blue ellipses while genes/pathways that are active in stroma are displayed as red ellipses. Gray
ellipses represent genes/pathways that are active in tumor and stroma. Each enriched pathway is
represented by an ellipse which is linked to the genes belonging to it by dashed lines. Solid lines
link genes that belong to the same pathway. Notably, there are no edges linking tumor up to tumor
down nor stroma down to tumor up

1TARGET version 3.0 was downloaded from https://www.broadinstitute.org/cancer/cga/target.

https://www.broadinstitute.org/cancer/cga/target
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member 4) and PIK3CB (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit beta).

The network discovered by IPEA analysis shows that DNA repair pathways are
highly regulated in ovarian tumors. We observed up-regulation of Formation of tran-
scription coupled NER (TC-NER) repair complex,Dual incision reaction in TC-NER
and the down-regulation of the Fanconi Anemia pathway in tumors. Regulation of
DNA repair in tumors was associated (Fig. 1) with increased regulation of immune
response pathways in tumor and in stroma: up-regulation of Inflammasomes and
ZBP1 (DAI) mediated induction of type I IFNs in tumor, up-regulation of Interleukin-
1 signaling and down-regulation of TCR signaling in stroma samples.

4 Discussion

We present a method for integrative pathway analysis of multiple molecular datasets.
The result of IPEA is a network highlighting enriched pathways and activated genes.

An advantage of IPEA over traditional GSE approaches is its ability to account for
the topology in biological pathway networks.We apply it to knownpathway networks
from Reactome, but the network topology could be experimentally or computational
determined also. While we use MCIA as a multivariate latent variable analysis step
of IPEA, any other multivariate analysis method (multiple factor analysis, etc.) may
be used. MCIA was chosen due to its ability to capture covariant features between
the datasets. Indeed, IPEA could potentially be adapted to any list of features that are
ranked, e.g., differentially expressed genes or proteins. This makes IPEA versatile
and suitable for a wide range of applications.

We apply IPEA to study ovarian cancer, a leading cause of cancer death in women
world-wide. Most women are diagnosed with advanced stage disease and conse-
quently have a poor probability of survival after five years. The poor outcome is
attributed to the complex nature of this disease. It had been difficult to define molec-
ular subtypes of high grade serous ovarian cancer; see [2, 8, 9]. One possible reason
may be the role played not only by the tumor itself but by the tumor microenviron-
ment, the stroma. Only a few gene expression studies microdissect tumor tissue. The
proportion of stroma varies considerably both within and between studies, introduc-
ing new variance which may prevent a rigorous phenotype characterization.

We applied IPEA to the gene expression profiles of microdissected tumor and
stroma to discover pathway cross-talk between tumor and its microenvironment.
Therefore in this case study, we display results as a double bipartite-like graph.
We showed up- and down-regulated pathways (DNA repair pathways, immune path-
ways) in high grade serous ovarian cancer tumor and stroma. Actionable target genes
superimposed on the resulting network identified actionable genes in both tumor and
stroma, providing further support that investigation of stroma gene expression and the
cross-talk between tumor and stroma is needed in ovarian cancer. The new pathways
together with the target genes have to be further investigated and may characterize
new targets in ovarian cancer.
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5 Conclusion

We introduced IPEA, a new topology-based pathway analysis approach, and applied
it to investigate the complex cross-talk between biological pathways in tumor and
the tumor microenvironment of high grade serous ovarian cancer.
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Part II
Statistics for Low Dose

Radiation Research

Foreword

Uncertainties, both quantitative and conceptual in nature, have been identified as key
to addressing the remaining research questions in EU low dose radiation research.
From October 26 to 28 2015, EU FP7 DoReMi project collaborators from the
UK Public Health England and the Spanish Centre for Research in Environmen-
tal Epidemiology (CREAL), together with colleagues from Universitat Autònoma
de Barcelona (UAB) and Durham University (DU), organized a workshop to bring
together researchers from the low dose radiation fields and invited expert mathe-
maticians and statisticians with an interest in applied uncertainty analysis. The key
topics of theLD-RadStats:Workshop for statisticians interested in contributing toEU
low dose radiation research meeting were radiation biology and biomarkers of dose
and effect, epidemiological elucidation of health risks at low doses, and modelling
including the dose response relationship. The overall aims of the workshop were to
work towards ensuring that state-of-the-art mathematical and statistical techniques
are fully exploited within EU low dose radiation research.

In this special issue of Research Perspectives CRM Barcelona subseries of the
Birkhuser’s series Trends inMathematics, we present eleven extended abstracts from
theworkshop, representing an overview ofmathematical and statistical analysis tech-
niques currently in use across the radiation research disciplines or which may help to
take the research forward. Representatives from the field of radiation biology present
models for consideration of traditional chromosomal biodosimetry, gene expression
or generalmulti-level omics data analysis.Appropriatemodel definition and selection
are recurring themes here. The complex task of appropriately characterizing uncer-
tainties for epidemiological risk analyses is addressed through mechanistic analysis
of lung cancer mortality and through provision of a new R package to integrate ERR
modelling. A case study of modelling plaque overlap in radiation induced atheroscle-
rosis further demonstrates the need for a very good mechanistic understanding to
support modelling, and a general summary of analytic and stochastic approaches
processes details some tools for modelling radiation induced carcinogenesis.
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Before the closing of the workshop, the attendees separated into three breakout
groups to discuss the way forward. In conclusion, it was decided that uncertainty
analysis does require greater representation in EU radiation research, and that this
can be achieved by all attendees ensuring that the issues continue to be highlighted
during projects and in the wider field. The attendees agreed to create an informal net-
work of individuals interested in uncertainty analysis in low dose radiation research,
LDRadStatsNet. And it is hoped that this will also prove beneficial to these aims. The
organizers also hope presentation of these extended abstracts here will further stim-
ulate discussion and collaboration within the field and we look forward to working
with all our colleagues on these exciting topics.

Finally, wewould like to express our thanks to DoReMi and the Centre de Recerca
Matemàtica CRM-Barcelona for funding the workshop, and say a huge thank you to
our colleagues at CREAL for helping to organize and host this extremely productive
meeting.

July 2016
Didcot, England Elizabeth Ainsbury
Barcelona, Spain Elisabeth Cardis
Barcelona, Spain Pere Puig
Durham, England Jochen Einbeck



Biological Dosimetry, Statistical Challenges:
Biological Dosimetry After High-Dose
Exposures to Ionizing Radiation

Joan Francesc Barquinero and Pere Puig

Abstract A statistical model to deal with low and high-dose exposures is presented.
The model is based on a weighted Poisson distribution which allows to explain the
underdispersion observed in the empirical data. A Gompertz type calibration curve
is also introduced.

When a radiological accident occurs, it is very important to estimate the dose of
ionizing radiation (IR) received to guide medical care. If physical measurements are
not available or it is suspected that dosimeters have not been used correctly, bio-
logical dosimetry methods are necessary for a precise dose-assessment. Within the
different methodologies, the most widely used is to score dicentric chromosomes
in metaphases of peripheral blood lymphocytes. This method accurately estimates
doses in cases of acute and recent exposures; see [1]. Currently, the majority of dose-
effect curves for dicentric chromosomes include doses from 0 to 5Gy. For this dose
range and for low LET radiation types, such as X and gamma rays, the dose-effect
relationship fitswell to a linear-quadraticmodel. Additionally afterwhole body expo-
sure from 0 to 5Gy the distribution of dicentrics among cells agrees with the Poisson
distribution, allowing the detection of partial body exposures when deviations of the
Poisson are detected; see [3, 10].

Some accidents have demonstrated the need to evaluate exposures to high doses
and if they are whole or partial body exposures; see [4, 11, 12]. Not only because
they occur but also for the improvements reached in medical care after IR over-
exposures [2], and the development of acute radiation syndrome mitigators [6, 9].
However, the dicentric based biodosimetry is not suitable for doses of IR higher
than 5Gy, because the number of cells able to reach metaphase decreases dramat-
ically when the dose increases. After a high dose exposure heavily damaged cells,
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show a delay or even the impossibility of progressing through the G2/M cell cycle
checkpoint to reach mitosis; see [1]. A way to overcome this problem is inhibiting
this checkpoint using a caffeine treatment; see [7, 9]. Here, we show the analysis of
dicentric chromosomes after irradiating at doses from 0 to 25Gy.

As expected, a clear increase in the frequency of dicentrics was observed as the
dose increased (Table1). The agreement of dicentrics cell distribution with Poisson,
tested by the normalized unit U of the dispersion index, was not rejected for six of
the ten doses evaluated. However, in all cases U values were negative and, for 3, 5,
7 and 10Gy, U values were significantly underdispersed.

Another observed result was that the frequency of dicentrics tend to saturate at
highest doses. At higher doses, fewer cells with an elevated number of dicentrics
were observed. This is mainly due by the limited number of chromosomes, which in
human lymphocytes is 46. The theoretical maximum of possible dicentrics are 23. In
addition, from 5 G to 25Gy, the number of cells without dicentrics was lower than
expected from the Poisson distribution, this last phenomena probably due to a major
misrejoining probability at higher doses. The saturation and the low number of cells
without dicentrics would contribute to the observed underdispersion.

Anewcount probability functionhas been considered tomodel our underdispersed
count data, having the form

P(k; b,λ) = 1 + bk2

1 + b(λ + λ2)

λke−λ

k! , k = 0, 1, 2, . . . (1)

This is a specificweighted Poisson distributionwith aweight equal tow(k) = 1 +
bk2, representing the sighting mechanism. The domain of the parameters is b ≥ 0,
λ > 0, and for b = 0 this is just the Poisson probability function. It is immediate
to verify that changing the values of the parameters b,λ, the dispersion index can
take values slightly greater than 1 or values lower than 1. Therefore, the probability
distribution described in (1) is useful tomodel count data presenting underdispersion,
like that observed in our empirical distributions.

Taken into account that in biological dosimetry dose-effect calibration curves for
dicentric chromosomes are linear or linear-quadratic models, the challenge was to
consider parameter λ in (1) to be dependent of the dose d, using a Gompertz type
curve of the form, λ(d) = β0e−β1e−β2d , where β0,β1,β2 are suitable parameters to
be estimated from the data. Moreover, parameter b in (1) must also be considered
depending of the dose, and following a simple linear relationship, b(d) = β3d, where
β3 is another parameter. Our Gompertz type curve is very flexible, having a sigmoid
profile very suitable to fit our empirical data.

The maximum likelihood method has been used to estimate the four parameters
of the model. The details and an R program to fit he data can be found in [8]. This
model can be also applied to partial body irradiation problems, as it is described in [8].
Gomperz type model can be also used under the Poisson assumption (in (1)), leading
to a three parameter model. To fit the data in this situation, the RADIR package is a
Bayesian-based suitable tool that can be downloaded fromCRAN repository; see [5].
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Heterogeneous Correlation of Multi-level
Omics Data for the Consideration
of Inter-tumoural Heterogeneity

Herbert Braselmann

Abstract In integrative radiation systems biology, relationships between variables
generated from different molecular levels are investigated. Two approaches to detect
correlations in subsets of bivariate continuous data are discussed. The approaches
are based on two-component finite Gaussian mixture models and on parametric
bootstrap of the null-hypothesis to generate a reference distribution of the likelihood
ratio statistic.

1 Introduction

1.1 Radiobiological Background

There is good evidence that exposure to low doses of ionizing radiation increases
cancer risk [1]. One topic in the research field of radiocarcinogenesis is the identi-
fication of genetic biomarkers in tumors of radiation exposed cohorts which can be
used in epidemiological risk modelling. Among the primary radiation damages in
cells of organic tissue occur chromosomal translocations, mutations or DNA copy
number alterations which can be transcribed to the RNA and affect the expression
of proteins. In order to corroborate the identification of candidate biomarkers, the
discipline of integrative radiation systems biology investigates causal relationships
between different molecular levels; see [11]. For e.g., the molecular transcriptome
(mRNA) and miRNA levels in tumor cells are measured by expression microarrays
which, after data preprocessing and normalization, yield to continuously distrib-
uted random variables. Relationships between variables are statistically assessed by
correlation tests. It is experimentally known that miRNAs are involved in downregu-
lation of gene expression; see [4]. This is reflected by inverse relationships between
paired expression data frommiRNA and their target genes; see [9]. An overexpressed
miRNA in cells of a potentially radiation exposed tumor should correspond to a low

H. Braselmann (B)
Research Unit Radiation Cytogenetics, German Research Center for Environmental Health,
Neuherberg, Germany
e-mail: braselm@helmholtz-muenchen.de

© Springer International Publishing AG 2017
E.A. Ainsbury et al. (eds.), Extended Abstracts Fall 2015,
Trends in Mathematics 7, DOI 10.1007/978-3-319-55639-0_12

71



72 H. Braselmann

expression value of its target gene. Correlation analysis between miRNA and mRNA
for a candidate gene works then as a procedure for target validation.

1.2 Heterogeneous Gene Expression

Genes are possibly expressed in only a part of the cases or expressed at different levels
among the cases in a statistical sample of tumors of a defined type. This decreases
the power of standard two-sample comparison tests for differential gene expression
as well as of correlation tests. Heterogeneity in random variables can mathematically
be described by mixture models of suitable distributions. Van Wieringen et al. [12]
proposed a nonparametric two-component mixture model for univariate testing of
partial differential expression. In that model, the distribution H in the test group
(here, exposed group) is thought as a mixture of a distribution F in the control group
with subpopulation size 1 − τ and a shifted distribution G ≤ F with subpopulation
size τ . A suitable weighted distance function (for e.g., L2-distance) between the
functions (1 − θ)F and H is then minimized for θ, which serves as a test statistic.
The population parameter θ was inspired by the theory on the estimation of mixing
proportions using minimum distance estimators; see [10]. The test is implemented
as a permutation test, replacing F and H by its empirical cumulative distributions.

The correlation or association between two continuous and heterogeneous mole-
cular biological variables x and y could, in principle, be reduced to the univariate
partial differential expression test when one of the two variables is taken as fixed
and dichotomized, for e.g., by the median. However, it would be desirable to use
perhaps more powerful bivariate correlation tests such as Pearson or Spearman. A
distribution-shift model as in the univariate case does not hold here. As a first step
following that line, it will be necessary to divide the data in the x-y-plane into at
least two clusters, one in which the data shows correlation or covariance, and no
correlation or opposite directed correlation in the other. In this presentation some
possible strategies will be discussed without giving final solutions or mathematical
proofs.

2 Normal Mixture Models

As a first approach, we consider bivariate normal mixture models to cluster data in
the x1-x2-plane. These kind of models are fitted with help of the EM (Expectation
Maximization) algorithm of Dempster-Laird-Rubin [2]. The number of components
and shape parameters in the these models is often optimized with the BIC (Bayesian
Information Criterion). However, for an inferential test, a null-hypohtesis H0 and
an alternative hypothesis H1 with fixed parameter sets have to be formulated. In
the simplest case with one against two normal components and centered x , i.e.,
E(x) = 0, we set H0 to be
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f0(x, θ) = N (0, �)

and H1 to be
f1(x, θ) = (1 − π)N (μ1, �1) + πN (μ2, �2),

where x ∈ R
2, N (μi , �i ) is the bivariate Gaussian density with mean value μi and

variance-covariance matrix �i , i = 1, 2, π ∈ [0, 1], and (1 − π)μ1 + πμ2 = 0. As
a test quantity, the likelihood ratio statistic λ between the two models seems to be
adequate. It was applied in [8] as a formal test for clustering of microarray expression
data. However, as noted from the authors “the situation is not straightforward since
regularity conditions do not hold for the asymptotic null distribution of −2 log(λ) to
be chi-squared”. Therefore, McLachlan [7] proposed parametric bootstrap sampling
under the null model to build a computerized reference distribution of the likelihood
ratio. In Feng and McCulloch [3] it is demonstated that the true parameters of the
alternative model lay in the boundary of the parameter space, and H0 corresponds
to a nonidentifiable subset. For the univariate case, the authors could show that the
maximum likelihood estimator satisfies an extended consistency condition and that
“test sizes and coverage probabilities of bootstrap methods match the nominal levels
well in simulation studies, when the null hypothesis is true”. An example is shown
in Fig. 1, left side.

3 Regression Clustering

Clusterwise regression, also called latent class regression, is a special case in the
framework of finite mixture models introduced in Leisch [6]. For linear regres-
sion analysis, we consider (x, y) ∈ R

2, where y is taken as the dependent variable.
Hypotheses corresponding to (1) and (2) become

H0 : f0(y|x, θ) = N (β0 + β1x,σ
2)

and

H1 : f1(y|x, θ) = (1 − π)N (β10 + β11x,σ
2
1) + πN (β20 + β21x,σ

2
2),

where N here represents the univariate Gaussian density, symbols βi j are the regres-
sion line coefficients, σ2

i are the variances, and π ∈ [0, 1] is the mixing proportion.
Using the likelihood ratio statistic together with its bootstrapped distribution as a
test quantity, similar limitations as with the bivariate Gaussian mixture will occur.
An example is shown in Fig. 1, right side.
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Fig. 1 miRNA-mRNA expression data from “The Cancer Genom Atlas” (TCGA), 495 cases. Left
Gaussian mixed model. Right Regression clustering. p < 0.0001 from likelihood ratio bootstrap
distribution for both approaches

4 Conclusion

So far, parametric model clustering is a useful method for descriptive and visual
detection of heterogenous correlation of continuous variables of molecular biolog-
ical data. Also, statistically significant clusters can be detected by parametric boot-
strapping of the likelihood ratio statistic as proposed by McLachlan [7]. As a next
step it remains to assess the significance of the covariance parameters of the bivari-
ate normal distributed clusters or of the slope parameters in the regression clusters.
Methods in Jamshidian and Jennrich [5] try to calculate standard errors for the EM
estimates and could possibly be adapted for the presented kind of data. One of these
methods uses Fisher scores and the information matrix. Publicly available data sets,
for e.g., The Cancer Genome Atlas (TCGA) generated by the TCGA Research Net-
work: http://cancergenome.nih.gov, provide a source to investigate the applicability
to omics data.
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Overview of Topics Related to Model
Selection for Regression

Riccardo De Bin

Abstract We review some strategies proposed in the literature to combine clinical
and omics data in a prediction model. We show how these strategies can be per-
formed by using two well-known statistical methods, lasso and boosting, through an
application to a biomedical study with a time-to-event outcome.

1 Introduction

The goal of a prediction model is to provide a function useful to predict a specific
disease outcome. In recent years, a lot of attention has been devoted to taking advan-
tage of the information contained in high-dimensional data (omics data), for example
copy-number alterations or gene-expressions. Nonetheless, in the medical practice
several low-dimensional predictors are often available, which generally have a pre-
dictive value well validated in the literature. Models which integrate clinical and
omics information have been investigated in the recent years and recent compara-
tive studies show that they often outperform those models based only on clinical or
only on omics data. The studies Boulesteix–Sauerbrei [4] and De Bin–Sauerbrei–
Boulesteix [6] discuss possible strategies to combine these two kinds of data in a
prediction model. The main challenge in deriving a good combined prediction model
lies in the need of fully exploiting both data sources. Clinical data, in particular, are
low-dimensional, and the information contained in them risks getting lost among the
large number of high-dimensional omics predictors; see Binder–Schumacher [2].
Here, we review the results of De Bin–Sauerbrei–Boulesteix [6] through an applica-
tion to a biomedical study with a time-to-event outcome [1].
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2 Strategies for Combining Low and High Dimensional
Data

The integration of clinical and omics predictors in the same model may be difficult.
The different dimensionalities of the data (we usually have a few clinical predictors,
and numerous omics predictors) make this process complicated. Here we review
three strategies considered in De Bin–Sauerbrei–Boulesteix [6].

2.1 Naive Strategy

The easiest way to integrate clinical and omics predictors in the same model con-
sists in simply merging the two sources of data. This procedure does not require
any particular care, as the clinical and omics predictors are used as they would
come from the same source. However, this procedure is quite dangerous, as the
clinical predictors may “get lost” among the large number of omics predictors; see
Binder–Schumacher [2]. As a result, the final model may not sufficiently exploit the
information provided by the clinical data.

2.2 Clinical Offset Strategy

A possible way to force clinical predictors to enter in the model is to first fit a
preliminary model on the clinical data only, and then use the omics information to
explain the response variability not already explained by the preliminary (clinical)
model. In other words, the residuals of the preliminary model are regressed on the
omics predictors. From a practical point of view, it is sufficient to add the linear
predictor of the preliminary model as an offset in the model fitted on the omics
data. This two-step procedure completely exploits the clinical information, while
the omics part is only complementary. An important drawback is that clinical and
omics predictors are used in two separate steps, making it difficult to treat possible
interactions between the two sources of data.

2.3 Favouring Strategy

This approach integrates both previous strategies in a compromise. The idea is to
favour the clinical predictors in order to assure (or make more probable) their inclu-
sion in the final model, without letting omics predictors be confined to a secondary
role. The difference in dimensionality between the two sources of data is compensated
by giving more importance to the clinical information. For example, in a penalized
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regression approach the clinical datamay be favoured by simply excluding them from
the penalty term. This way, the variable selection aspect of a penalized regression
involves only the omics part. As all data are used simultaneously, the interactions
between clinical and omics predictors can be modelled.

3 Statistical Methods

The three aforementioned strategies can be easily performed using classical statisti-
cal methods; see Bin–Sauerbrei–Boulesteix [6]. Here, we consider two well-known
statistical/machine learning techniques, namely lasso [11] and boosting [7].

3.1 Lasso

The lasso is a famous penalized regression method which handles high-dimensional
data. Lasso applies a L1 norm based penalty to the usual regression, with the double
goal of forcing several regression coefficients to be 0 and shrink the rest toward 0.
The former aspect is important to obtain a sparse model, i.e., a model including only
few predictors. In the context of high-dimensional data, several predictors have no (or
too weak) effect on the outcome, and they should be excluded from the final model.
The shrinkage property, instead, improves the model prediction ability, decreasing
the variance (at the cost of a small increase of the bias) of the regression coefficients
estimators. Lasso relies on one important tuning parameter, usually denoted with λ,
which regulates the amount of penalty applied to each predictor. The implementa-
tion of the favouring strategy may simply consist of setting λ = 0 for the clinical
predictors.

3.2 Boosting

In addition to lasso,we also use boosting as a statisticalmethod.Boosting is a stepwise
procedure that can handle high-dimensional data as well. The idea of boosting is to
build a model by improving, at each step, themodel’s ability to explain the variability
of the outcome.The goodness of themodel ismeasured through a loss function,which
is problem-specific. Let us consider the regression case. Starting from a model with
0 coefficients, the boosting applies a weak estimator, for example a penalized least
square estimator, to provide a slightly (depending on the amount of the penalty)
better estimate of the regression coefficients. In a following step, the weak estimator
is applied to the residuals of the model, obtaining a small improvement in terms of
goodness of fit (for linear regression, usually the sum of the residuals). In the case
of high-dimensional data, only one regression coefficient is updated at each step.
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The procedure continues until a specific number of iterations (boosting steps) is
reached. This tuning parameter is really important and controls both the amount of
shrinkage and themodel sparsity. For a discussion on boosting in the survival analysis
context, see De Bin [5].

3.3 Tuning Parameters

Both lasso and boosting rely on tuning parameters. We compute their value using a
20-time repeated 10-folds cross-validation, which consists of averaging the cross-
validation results obtained with 20 separate fold-splits; see Seibold–Bernau–
Boulesteix–De Bin [9].

4 Data

In our analysis we considered data from a study by Bauer et al. [1] on patients with
head and neck squamous cell carcinoma. The study investigates the patient response
to a radiotherapy treatment in terms of time to local relapse (time-to-event). For
each patient, the copy number alterations in chromosomes (omics data) and some
clinical predictors (age, anaemia status, operating stage, tumour size, grading and
lymph node metastasis) have also been collected. Preliminary analyses, including
data quality control, lead to a dataset with 108 observations (patients), 6 clinical and
300 genomic predictors. The effective sample size (number of events) is 49.Wework
under the proportional hazards assumption.

4.1 Split in Training and Test Data

In order to evaluate the three strategies here considered, we need a test set. Since this
is not available in the original study, we create it by splitting the available data into
two sets. The first, with 2/3 of the observations, is used as the training set, in which
the prediction models are fitted; the latter as the test set, in which we evaluate the
prediction performance of themodels. Please note that training and test sets are totally
independent (no overlapping observations). The patients are assigned randomly to
one set, but we consider censored and uncensored observations separately, in order
to ensure that enough events are present in both training and test sets. In order to
obtain a result that does not depend on a specific data split, we repeat our analysis
1000 times, each time using a different partition. We stress the importance of this
repetition-based procedure to obtain reliable results.
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Table 1 Average integrated Brier score (IBS) computed up to 2years using different strat-
egy/statistical method combinations

Strategy Naive Clinical offset Favoring

Statistical method Null model Lasso Boosting Lasso Boosting Lasso Boosting

Average IBS 0.196 0.185 0.183 0.162 0.161 0.162 0.160

5 Evaluation

To evaluate the performances of the models resulting from the implementation of
lasso and boosting within the three strategies, we contrast their prediction errors.
Dealing with time-to-event data, we use as a measure of error the integrated Brier
score [8],which captures both calibration (similarity between the actual and predicted
outcomes) and discrimination (ability to predict the survival times of the observations
in the right order), [10]. Calibration and discrimination are the two most important
aspects of a good prediction model in the case of survival data.

6 Results

Table1 reports the average prediction errors computed for the models obtained by
implementing lasso and boostingwithin the naive, clinical offset and favouring strate-
gies. The average is taken over the 1000 replications (i.e., different training/test sets
splits) considered in our analysis. Excluding the null model, i.e., the model without
predictor, here reported as a reference, in this example we obtain the worst per-
formances for the statistical methods implemented within the naive strategy. The
clinical offset and favouring strategies outperform the naive strategy, resulting in
similar performances for both lasso and boosting. This behaviour has been noted in
several studies (see, for example, [2, 3, 6]) and it is likely caused by the inability of
the statistical methods to fully exploit the clinical information when implemented
within the naive strategy. In this example, indeed, most of the models obtained by
following the naive strategy include only one clinical variable (operating stage). The
information provided by age, tumor size and number of affected nodes, for example,
is not exploited.

Note that, in this specific example, the best performance is obtained with the
favouring strategy/boosting combination.Obviously, this result highly depends on the
particular characteristics of the data and cannot be generalized. The results reported in
Table1must be understood as illustrative. In particular, in this example the validation
set contains only 15 events (and the models are trained on a sample with only 30
events), definitely not a sufficient number to draw any general conclusion.
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Understanding Plaque Overlap Is Essential
for Modelling Radiation Induced
Atherosclerosis

Fieke Dekkers, Astrid Kloosterman, Teun van Dillen,
Maud Briels, and Arjan van Dijk

Abstract Until recently, it was assumed that only relatively high doses of ionizing
radiation could cause cardiovascular disease. In the last few years, several studies
have challenged this assumption. Epidemiological studies remain inconclusive about
the relevance in cardiovascular effects of exposure to ionising radiation in day-to-day
situations.We present a preliminary version of amechanisticmodel for atherogenesis
and show that, in order to interpret the role of radiation in atherogenesis, it is essential
to understand how plaques may overlap.

1 Radiation Induced Atherosclerosis

Atherosclerosis is a chronic inflammatory disease in which lipid-laden plaques form
in arteries. If large, these plaques can influence the blood flow. A second possible
health effect is that plaquesmay rupture, releasing the plaque’s content into the artery,
with heart attack or stroke as potential consequences. Patients who undergo radio-
therapy as treatment for head-and-neck cancer are known to be at an increased risk
of developing atherosclerosis in their carotid arteries. These patients are exposed
to high doses of radiation and until recently, it was assumed that the much lower
doses people are exposed to on a day-to-day basis would not lead to cardiovascu-
lar effects. In this respect, cardiovascular disease was thought to differ from can-
cer, which for radiation protection purposes is assumed to be a possible health
effect of exposure to radiation at any dose, no matter how small. Recently, the
existence of a high threshold for the induction of cardiovascular effects was chal-
lenged by studies such as Shimizu–Kodama–Nishi–Kasagi–Suyama–Soda–Grant–
Sugiyama–Sakata–Moriwaki–Hayashi–Konda–Shore [3]. However, epidemiologi-
cal studies remain inconclusive about the relevance on cardiovascular effects of

The original version of this chapter was revised: For detailed information please see Erratum.
The erratum to this chapter is available at 10.1007/978-3-319-55639-0_14

F. Dekkers (B) · A. Kloosterman · T. van Dillen ·M. Briels · A. van Dijk
National Institute for Public Health and the Environment (RIVM), Utrecht, The Netherlands
e-mail: Fieke.dekkers@rivm.nl

© Springer International Publishing AG 2017
E.A. Ainsbury et al. (eds.), Extended Abstracts Fall 2015,
Trends in Mathematics 7, DOI 10.1007/978-3-319-55639-0_14

83



84 F. Dekkers et al.

exposure to ionising radiation at low doses, with risk estimates ranging over
orders of magnitude. We present a preliminary version of a mechanistic model for
atherogenesis that can be used to test hypotheses on the role of radiation in plaque
formation. Particular focus is on the relevance of plaque overlap.

1.1 Plaque Initiation and Early Plaque Growth

We assume that atherosclerosis is an inflammatory process in which cholesterol and
macrophages are key players. It is a multistage disease, starting off with an initiating
event that causes the layer of cells that lines the vessel wall to become permeable
for low density lipoproteins (“bad cholesterol”). This sets off an immune response,
leading to an influxofmonocytes.Once in thevessel, low-density lipoproteins oxidize
to form oxidized low-density lipoproteins (oxLDL), andmonocytes differentiate into
macrophages that proceed to phagocyte oxLDL. This leads to the development of
foam cells, macrophages laden with lipids. The process then escalates, eventually
resulting in the development of plaques.

Mice do not normally develop plaques, but genetically modified ApO E-/-mice
lack an enzyme that plays a role in the cholesterol metabolism, making them vul-
nerable to atherosclerosis. We have developed a model for murine radiation induced
atherosclerosis (manuscript in progress), and have validated the model by fitting it to
experimental results; see Hoving–Heeneman–Gijbels–te Poele–Russell–Daemen–
Stewart [1].

In our model we assume that, in the absence of radiation, a Poisson process
describes plaque initiation. We assume that exposure to ionizing radiation leads to
a temporary increase in the rate of initiation, persisting for about two weeks. This
is consistent with the observation in Tribble–Barcellos-Hoff–Chu–Gong [4] that
ApOE-/- mice on a fat free diet do not develop plaques, but they do if exposed to
ionizing radiation and switched to a normal diet within eight days after exposure.

For subsequent plaque growth, we follow the ODE model developed in
Ougrinovskaia–Thompson–Myerscough [2]. This is a model for spontaneous plaque
growth. It cannot be ruled out that chronic ionizing radiation affects plaque growth,
but for the acute exposures considered here, this is unlikely to be significant: the
duration of the experiment was approximately one year, and even if an effect of
plaque growth persists for some time after exposure, plaque growth rates during this
time would have to be implausibly high to produce an observable effect.

Figure1 gives a typical plaque volumegrowth curve: plaques initially grow slowly,
but the rate of growth increases rapidly. Obviously, this model can only describe the
early phases of plaque growth.

Spatial effects have not been included in the model. It should be noted that this
implies that the optimal values of the model’s parameters can differ between arter-
ies: for example, in the mouse’s descending thoracic aorta, plaque development is
markedly different from the aortic arch, where blood flow is much more turbulent,
resulting in more or larger plaques.
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Fig. 1 Typical plaque volume growth

1.2 Plaque Overlap

It follows from the assumptions made in the model that both, with and without
radiation, the model predicts a distribution without large gaps. A typical example is
given in Fig. 2, right. Results from an experiment in which mice were exposed to low
doses of ionizing radiation (data courtesy of Anna Saran, ENEA) are illustrated on
the left.
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Fig. 2 Observed (left) and predicted (right, 500 simulations) distribution of plaque sizes. The large
number of small plaques in the model prediction reflects the initial slow growth of plaques. Note
that in the observed plaque areas, the largest plaque is almost twice the size of the next largest
plaque
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At first sight, the predictions may appear to be irreconcilably different from the
observations. However, the observed distribution of plaque sizes suggests that some
of the larger plaques may actually consist of two plaques that have started to overlap.
In the experiment, plaques are identified by colouring with a dye that stains fatty
material. Thus, overlapping plaques cannot easily be identified.

We have tested the assumption that plaque coalescence influences the observed
distribution of plaque sizeswith a very simpleMonteCarlo simulation,where plaques
were created uniformly over a rectangular artery following the distribution over time
of initiations found with the original model. Subsequently, these plaques are allowed
to grow, following the original growth curve. If two plaques overlap, we describe
them as a single plaque.

The model for plaque initiation and growth combined with this simple model
for plaque coalescence results in a distribution of plaque sizes that is in qualita-
tive agreement with that observed in experiments (Fig. 2), leading to the conclusion
that understanding plaque coalescence is essential for a better understanding of the
influence of radiation on atherosclerosis: if plaque overlap is ignored, the number
of plaques counted in experiments will be an underestimate for the true number of
plaques, and plaque sizes measured may be an overestimate for the actual sizes of
individual plaques. Therefore, simply counting plaques in an experiment will lead to
an underestimate of the risk associated with exposure to ionizing radiation. It cannot
be ruled out that in extreme cases a straightforward counting procedure would lead
to the conclusion that ionizing radiation has a beneficial effect, whereas a model
taking into account plaque overlap would indicate the opposite. Thus, our simple
overlap model illustrates the statement that mechanistic modelling can contribute to
improved risk estimates (Fig. 3).

Fig. 3 Plaque overlap in a small section of an artery, cut open at the top/bottom to produce a
rectangular section. Plaques are created with uniform distribution over the section. Subsequently,
plaques develop following the growth rate illustrated in Fig. 1. If overlap occurs, plaques are joined
to form a single plaque: the plaques at the top and bottom both consist of plaques that have coalesced
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On the Use of Random Effect Models
for Radiation Biodosimetry

Jochen Einbeck, Elizabeth Ainsbury, Stephen Barnard, Maria Oliveira,
Grainne Manning, Pere Puig, and Christophe Badie

Abstract The application of random effect models to different radiation biomark-
ers, including cytogenetic, protein-based, and gene-expression based biomarkers, is
discussed. Explicit case studies are provided for the latter two scenarios, in which
random effect models appear especially attractive as they can cope well with the
large inter-individual variation which is typical for these biomarkers.

1 Introduction

After some radiation accident or incident, the triage of individuals requires rapid
and reliable procedures to determine the contracted radiation dose. Biomarkers esti-
mate the dose through radiation-induced changes within cells of the human body.

J. Einbeck (B) · M. Oliveira
Department of Mathematical Sciences, Durham University, Durham DH13LE, UK
e-mail: jochen.einbeck@durham.ac.uk

E. Ainsbury · S. Barnard · G. Manning · C. Badie
Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton,
Didcot, Oxon OX11 0RQ, UK
e-mail: Liz.Ainsbury@phe.gov.uk

S. Barnard
e-mail: Stephen.barnard@phe.gov.uk

G. Manning
e-mail: Grainne.Manning@phe.gov.uk

C. Badie
e-mail: Christophe.Badie@phe.gov.uk

M. Oliveira
Department of Statistics and Operations Research, University of Santiago de Compostela,
15782 Santiago de Compostela, Spain
e-mail: maria.oliveira@usc.es

P. Puig
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès,
08193 Barcelona, Spain
e-mail: ppuig@mat.uab.cat

© Springer International Publishing AG 2017
E.A. Ainsbury et al. (eds.), Extended Abstracts Fall 2015,
Trends in Mathematics 7, DOI 10.1007/978-3-319-55639-0_15

89



90 J. Einbeck et al.

Cytogenetic biomarkers, which count chromosome aberrations in blood lympho-
cytes, have formed the gold standard for at least three decades, largely due to the
fact that they feature very little inter-individual variation. Other biomarkers, based
on protein phosphorylation or gene expressions, have been developed more recently.
While these can be obtained quicker and at much lower cost, they come with large
inter-individual variation, which needs to be properly addressed in the modelling
stage, since any variation unaccounted in this stage would lead to an incorrect uncer-
tainty quantification of the succeeding dose estimate. Sections2 and 3 give two case
studies which report the results of random effect modelling for a particular pro-
tein biomarker (γ-H2AX) and a biomarker based on gene expressions. Section4
gives some thoughts on random effect models for cytogenetic biomarkers such as
dicentrics.

2 Protein Biomarkers

Protein-based biomarkers such as γ-H2AX make use of relatively new technol-
ogy, compared to cytogenetic biomarkers. Radiation-induced double strand breaks
(DSBs) lead to a ‘phosphorylation’ of the H2AX protein. This cellular response is
manifested for analysis as fluorescent dots (γ-H2AX foci), which need to be counted
within cells, typically using immunofluorescence microscopy or flow cytometers.
While this technique is quicker, cheaper, and less invasive than the dicentric approach,
the phosphorylation is only visible up to approximately 24h after radiation expo-
sure. Anonymised data from 36 donors are available for analysis, with measurements
at irradiation levels of 0, 0.5, and 4Gy. The data, which comprise 57 observations
in total, feature several peculiarities requiring a careful modelling approach:

(i) The 0.5Gy data were collected 24h and the 4Gy data 30min after exposure,
which requires ‘dose’ to be modelled as a factor.

(ii) For some observations, the γ-H2AX foci were counted manually but an auto-
mated scoring method was used for others. Hence, we have considered the
inclusion of an indicator variable to capture the type of scoring methodology
used, which, however, turned out to be insignificant.

(iii) The design is far from balanced: there are 15 measurements for dose zero, 26
measurements for dose 0.5Gy, and 16 measurements for 4Gy. For 17 individu-
als, there is only one measurement, for another 17 there are two measurements,
and for two individuals there are three measurements.

We fitted to these data a Poisson regression model with log-link, and a linear
predictor consisting of an intercept and the factor for dose (entering in form of two
indicator variables for the 0.5 and 4Gy categories). Additionally, a donor-specific
random effect was added to the linear predictor, for which we considered a Gaussian
distribution (in this case the model was fitted using function glmer of R package
lme4), and an unspecified distribution (which can be estimated using Nonparametric
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Table 1 Summary results of models fitted to H2AX data. The value p gives the number of parame-
ters used; df = 57 − p is the degrees of freedom for error. The deviance (Dev) is obtained from the
disparity (−2 log L) after subtracting the disparity corresponding to the saturated log-likelihood.
The abbreviation r.e. denotes ‘random effect’ and k gives the number of mass points used for the
nonparametric maximum likelihood estimation

Model Linear
predictor

p df −2 log L Dev

(1) Intercept only 1 56 8360.5 7984.9

(2) (1)+ dose 3 54 565.9 190.3

(3) (2)+ r.e.
(Gauss)

4 53 517.1 141.5

(4) (2)+ r.e.
(k = 3)

7 50 508.0 132.4

(5) (2)+ r.e.
(k = 4)

9 48 506.3 130.7

Maximum Likelihood, using function allvc of R package npmlreg). Summarized
results of a detailed analysis are provided in Table1. One clearly sees the improve-
ments at each model refinement stage. Obviously, dose acts as a very useful predictor
(and the dose indicators are in fact highly significant, with p-values < 10−10; not
displayed here). Model (2) indicates a relatively strong overdispersion, with a rule-
of-thumb estimation of the dispersion via Dev/df = 190.3/54 = 3.52 > 1. Part of this
overdispersion is explained by the inter-individual variation, with the deviance drop-
ping by ca 50 points after the inclusion of the random effect. There is some weaker
evidence that a nonparametric random effect distribution should be employed, with
a further improvement of up to 10 deviance points, investing 5 additional degrees of
freedom.

3 Biomarkers Based on Gene Expressions

Currently, there is no established technique which would allow fast (< 24h) dose
assessment with samples that have been taken at least 24h after the radiation incident.
Following radiation exposure, many genes see their expression modified at the tran-
scriptional level andmodifications of the copy number ofmRNAs can bemeasured in
a very sensitive way by qPCR (quantitative polymerase-chain-reaction) technology.
Here, two genes up-regulated through the ATM/CHEK2/P53 pathway, CCNG1 and
CDKN1A (p21), were studied. Gene expression measurements (positive continuous
data) were obtained from peripheral blood samples from 32 healthy human donors,
at three dose levels (0, 2, and 4Gy), with three replicates for each donor and dose
level. After irradiation the samples were placed in an incubator at 37◦ for 24h.

For this tentative analysis, we use the measured expressions without standardiza-
tion by housekeeping genes. Also here, the design is not complete, with the 2Gy
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Table 2 Summary results of models fitted to qPCR data. The number p denotes the number
of parameters estimated (including the Gamma shape parameter), −2 log L denotes the model
disparity, and BIC the Bayesian Information Criterion −2 log L + p log 456 (low values of either
indicate well-fitting models)

Model Linear predictor p −2 log L BIC

(1) Intercept only 2 3132.1 3144.3

(2) (1) + gene type 3 3009.3 3027.7

(3) (2) + dose 4 2651.1 2675.6

(4) (3) + r.e. (Gauss) 5 2617.0 2647.6

(5) (3) + dose2 5 2480.0 2510.6

(6) (5) + r.e. (Gauss) 6 2443.4 2480.1

measurements missing for 20 of the individuals. Hence, the total number of observa-
tions is 20 × 2 × 2 × 3 + 12 × 2 × 3 × 3 = 456.Given the nature of the expressions
(positive, continuous) we decide for a Gamma regression model with log-link. There
are two possible routes to proceed with the modelling. Firstly, one could consider
a model with the 456 expression values forming the response vector, but including
an indicator for the gene type. Since there is no need to model dose as a factor for
these data, it can be included as a continuous predictor, in linear or quadratic (or
possibly more sophisticated) form. The results of a similar analysis as in Sect. 2 are
provided in Table2. We do not report deviances (since there is no need to assess
‘overdispersion’ for a Gamma model), but instead the BIC model selection criterion.

It is again seen that the dose variable is highly informative. Given the inclusion
of dose, there is justification for the inclusion of both a random effect term (on the
level of the donors) and a quadratic dose term, with the evidence for the latter being
stronger. Both the linear and the quadratic dose term are again highly significant
with p-values of less than 10−10. Proceeding towards a nonparametric random effect
distribution did not give further improvement so, the corresponding results are not
reported.

There is a second, possibly more appealing view on the data, in which one may
consider the expressions for the two gene types as a bivariate response. Under such
a model, each of the two model equations would use the same parametric form but
with separately estimated parameters. The two equations would be linked through
the response variance specification (equivalently, the person-specific random effect)
which then would lead to reduced parameter standard errors. This could be highly
beneficial for dose estimation problems, as the reduced standard errors will lead to
reduced model-based uncertainty, and, hence, more precise dose estimates. Unfor-
tunately, even though its foundations have been laid conceptually, this model is
quite poorly supported by statistical software so far, apart from a SAS procedure
which allows for multivariate Gaussian response models with Gaussian random
effects. Further practically focused research activity in this direction appears hence
desirable.
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4 Cytogenetic Biomarkers

Cytogenetic biomarkers—such as dicentrics, centric rings or micronuclei—feature
little inter-individual variation, suggesting that there is no strong need to address
individual-specific variation through random effect terms. However, this simple con-
clusion has recently been disputed; see Mano–Suto [1]. The authors of this reference
provided a fully Bayesian approach to dose estimation from multi-individual data
(using Poisson response with log-link, a quadratic dose model, and random effects
for all three regression parameters), and demonstrated that the credible intervals
obtained using their method are more appropriate in terms of coverage probability
than the standard method. It would be interesting to see an application of (an exten-
sion/adaptation of) their method to protein or expression-based biomarkers, where
the benefits of this approach could possibly be much larger.

Random effect models may also appear attractive from another perspective: usu-
ally, several blood samples are irradiated with different doses, and then the number of
cytogenetic aberrations within a number of cells are counted for each sample. Hence,
one may reasonably assume that there does exist within-blood sample correlation,
which could be modelled by a random effect term operating on the blood sample
level. Suchmodels have been discussed in detail in the supplementarymaterial of ref-
erence [2], available at http://onlinelibrary.wiley.com/doi/10.1002/bimj.201400233/
suppinfo.

5 Conclusion

For both H2AX and qPCR biomarkers, our model fitting exercise has confirmed (i)
the existence of very strong dose effects, and (ii) the need for the inclusion of a
donor-specific random effect. A well fitting model is essential for the succeeding
dose estimation, which involves an inverse regression step which is non-trivial under
the presence of a random effect, since it requires integration over the latter. This
step can be done quite naturally within a fully Bayesian framework (though possi-
bly computationally burdensome) or via an empirical Bayes-like strategy under a
frequentist approach. In either case, the integration step will naturally incur a loss
of precision of the dose estimate; or in other words, inclusion of the random effects
increase the size of credible/confidence intervals; a fact which has also been noted
by Mano–Suto [1]. Hence, it still would feel desirable to reduce the inter-individual
variation as far as possible before any modelling takes place, for instance, by calibra-
tion via appropriate housekeeping genes which mirror the inter-individual variation
but are not radiation-responsive. Increasing the accuracy of models to assess dose
and uncertainty will form a valuable contribution to the field of radiation dosimetry.
Suchwork has the potential to lead to further advances in the wider field of biomarker
development, for instance, panels of transcriptional and other biomarkers of radiation
exposure and/or effect which would be applicable to specific individuals or groups of

http://onlinelibrary.wiley.com/doi/10.1002/bimj.201400233/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/bimj.201400233/suppinfo
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individuals in different exposure scenarios. A great deal of work remains to be done,
but EU and worldwide radiation emergency preparedness and health protection will
greatly benefit as a result of such developments.
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Modelling of the Radiation Carcinogenesis:
The Analytic and Stochastic Approaches

Krzysztof W. Fornalski, Ludwik Dobrzyński, and Joanna Reszczyńska

Abstract The paper summarizes the analytic and stochastic approaches to radiation
induced carcinogenesis among generic cells population.Many important effectswere
taken into consideration, like chromosomal aberrations induction, bystander effect,
adaptive response effect, etc. The results can be simulated in analytical or Monte
Carlo forms that show, e.g., a general probability function for a single cell’s cancer
transformation.

1 Introduction

The radiation carcinogenesis process of single cell or cell colony can be described
by many deterministic and stochastic models. All such models can be easily imple-
mented as computational algorithms for Monte Carlo or analytical simulations. The
main scope of the presented paper is to demonstrate two approaches: analytic (deter-
ministic) and stochastic ones, in the generic modelling/description of radiation car-
cinogenesis process at cells’ level.

2 Stochastic Approach

The stochastic modelling based on theMonte Carlo method with probability tree was
introduced in previous papers; see [7, 9]. The tree contains several input parameters,
such as the probability distributions of many biophysical effects. It can be easily
modified and new branches can be added according to either newly acquired knowl-
edge or focusing on one detailed mechanism in a cell. In the following, elementary
biophysics used in the model will be described.
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The model contains several input parameters which create probability functions
(PFs) used in the Monte Carlo modelling in the probability tree. The potential users
of the model can use their own values of parameters and forms of PFs, according
to their best knowledge of cell’s biophysics. This is what makes the model rather
flexible.

In general, every PF is a differentiable continuous function which saturates to a
constant value. Thus, the simplest example is a quasi-linear function which can be
used, e.g., instead of the classical linear relationship [12, 18]:

P(ξ) = 1 − e−const·ξ . (1)

For low values of ξ (e.g., the dose) Eq. (1) is quasi-linear and tends asymptotically
to 1 at large doses.

Another example is a sigmoidal relationship (stretched-exponential):

P(ξ) = 1 − e−aξn , (2)

which can be assumed as a basis for carcinogenic mutations accumulation process,
e.g., in Knudson hypothesis [11, 13], where it has been shown that, four to seven
rate-limiting stochastic events are required for neoplastic transformation of the cell.
Based on this assumption, one can model the probability of such process using the
sigmoidal formula as presented, e.g., in Eq. (2) (many other forms of sigmoidal curve
do exist).

The process of creation of a cancer cell can be described in many ways, including
physical models. They can stem from theories of nucleation and growth [3, 4], of
catastrophe [21], or self-organised criticality [19]. The common idea underlying these
theories is the cumulative impact of some environmental stressors (here: radiation)
on complex adaptive systems that may result in a rapid non-linear response when
the stress exceeds some critical value. In the context of the theory of nucleation
and growth [3, 4], the cancer creation can be treated as a rapid non-linear growth
appearing around the nucleus, see Eq. (2). However, a more general form of Eq. (2)
is a scaled sigmoid function with additional scaling factor τ :

P(ξ) = (1 − τ )(1 − e−aξn ) + τ . (3)

This form of sigmoid can well describe functions which start from a non-zero point,
e.g., P(0) = τ . It may also be possible that, if a threshold for an effect exists at a
certain ξ0, the ξ in the exponent could be replaced by ξ − ξ0. Some processes, taking
place in a cell, like the possibility of repair, can be described by inverted sigmoid
function, describing the rapid decrease of repair process efficiency after reaching
some age (or another value of interest):

P(ξ) = δe−aξn . (4)
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2.1 Adaptive Response Effect

Many effects (including repair and non-targeted ones), can be inserted into themodel.
In order to model a positive (beneficial) effect of irradiation, one has to describe first
the PF of the adaptive response effect, see [12]. Such a probability should be given
by a PF exhibiting a maximum value at low doses with the strongest effect appearing
after some period of time, [5]. The probability distribution of adaptive response
should thus be dependent both on the dose (D) received by single cell, and time (t).

The dose and time ingredients of adaptive response can be approximated by the
following distributions, respectively:

p(D) = α1D
νe−α2D, (5)

p(t) = α4t
δe−α3t . (6)

The time t is measured after the irradiation (with the exposure D) took place. Both
leading multipliers, α1 and α4 are just proportionality constants. The choice of expo-
nents ν and δ is also somewhat arbitrary, but they should not be less than 1 to create
the adaptive-hunchbacked shape of both curves.

Assuming, for simplicity, that the time evolution of the adaptive response is dose-
independent, compilation of Eqs. (5) and (6) gives the time and dose dependent
distribution [7]:

p(D, t) = cDν tδe−α2D−α3t , (7)

where c is a normalization constant. In the following it will be assumed, again for
simplicity reasons, that ν = δ = 2. This choice is absolutely arbitrary and accepted
here just for qualitative description.

It should be noted that Eq. (7) describes the adaptive response from a single
irradiation only. In a real situation, one can find different values of D during cell’s
lifetime, T , where t ∈ [0, T ]. After some modifications, one can find more general
and continuous form of adaptive response PF [7]:

PAR = c
∫ T

t=0
Ḋ2(t)(T − t)2e−α2 Ḋ(t)−α3(T−t)dt, (8)

where Ḋ(t) corresponds to the dose rate distribution function. For constant dose-rate,
Ḋ(t) = const, the solution is simpler and only age (T ) dependent. It is of interest to
see how Eq. (8) can disclose a spectacular effect of a priming dose. This is clearly
demonstrated in Fig. 1, which displays the Monte Carlo simulation of the effect: the
initial low dose may create the adaptive response and protect the cell from an adverse
effect of a higher dose.
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Fig. 1 The exemplary
solution of Eq. (8) and
simulation of the priming
dose of 0.3 UAD (unit of
absorbed dose) [7]

2.2 Bystander Effect

The bystander effect [12] can appear with the PF dependent on dose, ξ = D. A
suggestion for its functional shape, similar to Eq. (1) but with an additional scaling
parameter, was given by [14]:

P(ξ) = β1(1 − e−β2ξ). (9)

However, in a realistic situation, the cells are spatially arranged in a two or three
dimensional matrix, which—in the simulations—requires careful accounting for a
distance (r ) from the irradiated cell. It seems natural that the probability of bystander
effect must decrease with the distance, which can be well described by the Poisson
distribution connected with a single hit [10, 16]:

PB(r) = c1
e−λλr

r ! ≡ 1

r ! , (10)

where the last equality simplifies the previous expression by assuming λ = 1 and
normalization to P(r = 0) = 1. Using similar reasoning like in the case of Eq. (7),
one can postulate the distance and dose (D) dependent probability distribution of
bystander effect as [7]:

PB(D, r) = β1

r ! (1 − e−β2D). (11)

The approach presented in this section may provide clues for modeling of the
impact of low doses on hypothetical cells with the use of theMonte Carlo techniques.
The main conclusion is that the colony of cells can be treated as a physical complex
system when even linear inputs will give a non-linear response, e.g., the shifted
sigmoidal shape with a threshold for cancer cells induction; see [7, 9]. A prospective
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user of the model can add new branches to the probability tree and/or can select a
completely different set of the input probabilities.

3 Analytic Approach

The first step in a proper analytic approach to radiation carcinogenesis process is to
use popular PF for post-irradiation chromosomal aberration frequency [2, 20]:

p(D) ∝
R∑

i=1

βi D
i , (12)

where D denotes the dose, βi ’s are parameters of the curve, and R type of radiation.
At high doses of several grays and more, neither linearity (R = 1) nor parabolicity
(R = 2) can be preserved [15], since Eq. (12) yields diverging values of probability at
high doses. In more general versions the probability does not tend to infinity, but the
results of low and medium dose calculations are qualitatively the same. Therefore,
one can use a more general form of Eq. (12) as presented in Eq. (1):

p(D) ∝ 1 − e− ∑R
i=1 βi Di

. (13)

One has to note, however, that the frequency of post-irradiation chromosomal aberra-
tions is not constant but rather decreases with time. The decrease can be described as:

p(t) ∝ e−λt , (14)

where t denotes the time and λ is a parameter correlated with natural chromosomal
aberrations removal mechanisms; see [2].

Finally, one can find the joint form of chromosomal aberration creation in a single
cell, as a time and dose dependent probability function:

p(D, t) ∝
(
1 − e− ∑R

i=1 βi Di
) (

1 + be−λt
)
, (15)

where b is a constant connected with the number of aberrations created at t = 0.
To have a complete view, one needs to add some beneficial response formula,

which can take the form of the formerly proposed adaptive response PF after a single
hit, see Eq. (7). Finally, the joint form of both types of responses, detrimental Eq. (15)
and beneficial Eq. (7), can be described as

p(D, t)PCT ∝
[
1 − e− ∑R

i=1 βi Di
]
(1 + be−λt ) − cD2t2e−α2D−α3t , (16)
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which can result in a hormetic-like saturated shape of the irradiation effects of a
single cell [8]. This approach is fully consistent with Dual Response Model [6].

The symbol PCT in Eq. (16) can be treated as a PF of a radiation-induced single
cell cancer transformation.

4 Discussion

The process of radiation carcinogenesis over time and dose can be described in
many ways, both stochastic and deterministic ones. By reviewing various mathemat-
ical approaches to the problem, one can appreciate that the detailed description of
the cancer incidence due to dose and time is very complicated, described by many
parameters, and certainly far from linear.

The authors are fully aware of the fact that the detailed modeling of dynamics
of the cancer cell formation and development of such cells in a colony is quite
impossible because of the variety of cancer types and their specific properties [1,
17]. Nevertheless, at least the main characteristics of the cancer development as
dependent on dose and time should be caught in relatively simple calculations. In
particular, the role of adaptive response and bystander effects is well elucidated in
the presented calculations carried out so far.
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Bayesian Solutions to Biodosimetry Count
Data Problems and Supporting Software

Manuel Higueras and Elizabeth A. Ainsbury

Abstract Recently developed Bayesian models for the estimation of the absorbed
ionising radiation dose in whole and partial body homogenous exposures are intro-
duced. Thewhole body exposuremodels canmanage with overdispersed frequencies
of chromosomal aberrations. Poisson models have been implemented in the R pack-
age radir.

1 Introduction

Ionising radiation induced damage at human cellular level (e.g., dicentrics and
micronuclei) is typically modelled by Poisson regression. The absorbed dose esti-
mation is an inverse problem, the number of chromosomal aberrations per cell is
modelled as a function of the absorbed dose but not vice versa. The current fre-
quentist methodology does not provide an accurate measure of the uncertainty of the
absorbed dose estimation.

2 Bayesian Approach

A Bayesian approach is highly applicable to ionising radiation dosimetry data. It
allows cytogenetic experts to consider prior knowledge surrounding an overexposure
scenario. This approach implies an accurate measure of the uncertainty of dose
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estimates. The calibrative density is the solution of the Bayesian inverse regression
problem,

P(D|y) ∝ P(D)

∫
L(y|�)P(�|D)d�. (1)

The calibrative dose density is the product of the prior dose density by the posterior
predictive distribution as function of the absorbed dose D. More details about the
calibrative dose density and a review of Bayesian methods in biodosimetry can be
found in Ainsbury–Vinnikov–Puig–Higueras–Maznyk–Lloyd–Rothkamm [1].

3 Whole Body Homogeneous Exposure

In Higueras–Puig–Ainsbury–Rothkamm [3], new Bayesian models which manage
with equidispersed and overdispersed frequencies of chromosomal aberrations are
introduced.

3.1 Poisson Responses

Assuming Poisson responses, the posterior distribution of the population mean of
the yield of chromosomal aberrations is approximated to a normal, by asymptotic
normality of the posterior distribution for large samples and the delta-method, i.e.,

μ|D ∼ N
(
f(D, β̂),∇ · �̂ · ∇T

)
, (2)

where f(D, β) is the dose-response curve, �̂ is the variance-covariance matrix of β̂,
and ∇ is the gradient of f(D, β) with respect to β. The calibrating density results in

P(D|Y ) ∝ P(D)P(XD = s), (3)

where XD isHermite distributed. Ifμ|D is approximated by a gamma, XD isNegative
Binomial distributed.

This methodology provides a closed solution of the calibrative dose density
independently of the dose-response curve: linear, linear-quadratic, Gompertz-type,
among others.
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3.2 Software: radir

A new R package called radir is available in the CRAN repository, to perform
dose estimations for the Poisson in Sect. 3.1. It calculates the calibrative dose den-
sity for given: expression of the dose-response curve, hyper-parameters set, estimate
of the parameter set, variance-covariance matrix of the estimation, total number of
cells of the irradiated sample, number of chromosomal aberrations, prior distribu-
tion of the chromosomal aberration mean, prior distribution of the absorbed dose,
and parameters of the distribution of the dose prior. For more details, see Moriña–
Higueras–Puig–Ainsbury–Rothkamm [5].

3.3 Compound-Poisson Responses

Assuming that the yield of chromosomal aberrations follows a compound-Poisson
distribution, e.g., Negative Binomial, Neyman A, or Hermite; the joint posterior of
the population mean and the dispersion index is defined as follows,

μ, δ|D ∼ N2

(
(f(D, β̂), δ̂),∇ · �̂ · ∇T

)
. (4)

The calibrative density can be defined directly and calculated by numerical inte-
gration. This is not computationally intensive, because the integral is always bivariate,
over the absorbed dose D and the dispersion index δ.

Fixing δ by its maximum likelihood estimation, δ̂, the model is reduced and the
mean prior is applied like in the Poisson models in Sect. 3.1. The resulting calibrative
density is in terms of a compound-Hermite probability mass function, in case of a
normal approximation; or a compound-NegativeBinomial probabilitymass function,
in case of a gamma approximation.

4 Homogeneous Partial Body Exposure

The zero-inflated Poisson models in Higueras–Puig–Ainsbury–Vinnikov–
Rothkamm [4] are the Bayesian alternative for partial body exposure irradiation.

To decide if an irradiated sample of blood cells comes from a partial body expo-
sure, the Bayarri–Berger–Datta [2] Bayes factor is proposed to contrast the zero-
inflated Poisson against the Poisson assumptions:

BF = n0!
(n + 1)!

n0∑
j=0

(n − j)!
(n0 − j)! (1 − j/n)−(s+1/2), (5)
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where n, n0 and s are, respectively, the sample size and frequency of zeros, and the
sum of the total number of chromosomal aberrations.

Once the ZIP assumption is supported, the frequency of aberrations per cell is
zero-inflated distributed,

Z ∼ ZIP

(
μ,

1 − F

Fe−D/d0 − F + 1

)
, (6)

where F is the fraction of the body irradiated, and d0 is the lethal dose.Analogously to
Higueras–Puig–Ainsbury–Vinnikov–Rothkamm [3], the mean prior is approximated
by a gamma distribution,

μ|D ∼ Gamma

(
f(D, β̂)2

∇ · �̂ · ∇T
,

f(D, β̂)

∇ · �̂ · ∇T

)
. (7)

An application of Bayes’ theorem shows the expression of the likelihood of D, F ,
and d0 for the given test data,

L(y|D, F, d0) ∝ (Fe−D/d0 − F + 1)−n
n0∑
j=1

(
n0
j

)
Fn− j (1 − F) j

(n − j)s
P(X j = s|D),

(8)
where X j is a randomvariableNegativeBinomial distributionwithmeanandvariance
depending on j and D.

Considering D, F , and d0 as independent random variables, their prior distribu-
tions are defined

D ∼ Gamma

(
D̂2

σ̂ 2
D̂

,
D̂

σ̂ 2
D̂

)
, F ∼ U(0, 1), d0 ∼ U(2.7, 3.5). (9)

And, applying again the Bayes’ theorem, the joint posterior density

P(D, F, d0|y) = L(y|D, F, d0)P(D, F, d0)∫
L(y|D, F, d0)P(D, F, d0)dDdFdd0

(10)

has a non-tractable form. The acceptance-rejection sampling is used to simulate the
posterior distribution.

5 Conclusions

Novel solutions for statistical analysis of cytogenetic biological dosimetry data
have been developed. These new models are in the Bayesian framework, have
been applied in practical cytogenetic dose estimation (seeHigueras–Puig–Ainsbury–
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Rothkamm [3], Higueras–Puig–Ainsbury–Vinnikov–Rothkamm [4], and Moriña–
Higueras–Puig–Ainsbury–Rothkamm [5]), and some of them have been imple-
mented in the R statistical software for biodosimetry laboratory researchers. These
new solutions lead to more accurate quantification of statistical uncertainty asso-
ciated with cytogenetic dose estimates. The techniques described have now been
implemented into the UK’s commercial biodosimetry service. This work provides a
framework for further improvements in retrospective dose estimation to support EU
emergency preparedness and response.
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Empirical Assessment of Gene Expression
Biomarkers for Radiation Exposure

Adetayo Kasim, Nolen Joy Perualila, and Ziv Shkedy

Abstract This paper discusses the relevance of surrogate marker validation method
for empirical assessment of gene expression biomarkers for radiation exposure.

1 Introduction

Several studies have investigated the use of gene expression biomarkers for bio-
dosimetry, in order to overcome the limitations of established ionizing radiation bio-
markers such as dicentric scores; see, for example, Lu–Hsu–Lai–Tsai–Chuang [2].
Although gene expression biomarkers may be used in a timely and less tedious man-
ner, it is difficult to establish direct links between these biomarkers and health. This
is partly due to the multiple layers of systems between stimuli and changes inmRNA
transcriptions. This paper examines how a well-established method for surrogate
marker validation in drug development can be used to evaluate gene expression bio-
markers as surrogates for established radiation biomarkers. Our aim is to identify
genes that are correlated with dicentric scores and that can be used in a predictive
model to classify samples according to their radiation dose. Assuming an in-vitro
setting where both dicentric scores and gene expression data are available, the goal is
to evaluate whether gene expression biomarker (X ) is a good surrogate of dicentric
scores (Y ) given radiation dose (Z ). The modelling framework is described in Fig. 1.

Depending on the nature of the three-way associations in Fig. 1, gene expression
biomarkers can be grouped into four types described in Table1. Gene expression
biomarkers in groups (a) and (b) are correlated with dicentric scores, and can be
used to classify samples according to their radiation dose. More importantly, the
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Gene Expression

Dicentric Scores

Radiation Dose ρ

α

β

Fig. 1 Three-way associations between gene expression biomarker (X ), dicentric scores (Y ) and
radiation dose (Z )

Table 1 A hypothetical setting showing types of gene expression biomakers based on association
with dicentric scores and radiation dose

ρ j �= 0 ρ j = 0

β �= 0 & α j �= 0 gene expression (X)

di
ce

nt
ric

 s
co

re
s 

(Y
)

(a) X and Y are correlated and the
gene expression can be used to
classify samples according to
radiation dose (Z )

gene expression (X)

di
ce

nt
ric

 s
co

re
s 

(Y
)

(b) X and Y are conditionally
independent given radiation dose (Z )
and the gene expression can also be
used to classify samples according to
radiation dose (Z )

β �= 0 & α j = 0 gene expression (X)

di
ce

nt
ric

 s
co

re
s 

(Y
)

(c) X and Y are correlated, but the
gene expression is not predictive of
radiation dose (Z )

gene expression (X)

di
ce

nt
ric

 s
co

re
s 

(Y
)

(d) X and Y are uncorrelated and the
gene expression is not predictive of
radiation dose (Z )

correlation with dicentric scores in group (b) is induced solely by radiation exposure.
A good gene expression biomarker with link to chromosomal anomalies due to
radiation exposure will be of either type (a) or (b). In both scenarios, gene expression
can be used to classify samples according to their radiation dose. Gene expression
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in group (c) cannot predict radiation dose and those in group (d) are not correlated
with dicentric scores.

2 Method

Assume that both the gene expression data X and Dicentric scores Y are normally
distributed. For simplicity, let Z denote high and low radiation dose. The simul-
taneous joint modelling of gene expression biomarker (for simplicity we dropped
indices for both samples and genes), dicentric scores and radiation exposure can be
formulated as

(
X
Y

)
∼ N

[(
μX + αZ
μY + βZ

)
, �

]
, (1)

where the error terms have a joint zero-mean normal distribution with a structured
covariance matrix

� =
(

σ11 σ12

σ21 σ22

)
. (2)

Parametersα andβ represent themean differences between high and low radiation
dose for gene expression biomarker and dicentric score, respectively. The intercepts
areμX andμY . Thus, the association between gene expression biomarker and dicen-
tric scores can be obtained using adjusted association (see Buyse–Molenberghs [1]),
a coefficient that is derived from the covariance matrix �:

ρ = σ12√
σ11σ22

. (3)

This quantifies the correlation between gene expression biomarker and dicentric
scores after accounting for radiation exposure.

3 Case Study from Drug Discovery

This case study (EGFR project) focuses on inhibition of the epidermal growth
factor receptor, which has been identified in many human epithelial cancers, col-
orectal, breast, pancreatic, non-small cell lung and brain cancer. Thirty-five com-
pounds with a macrocycle structure were profiled in order to identify compounds
with similar biological effects as the current EGFR inhibitors, gene expression pro-
files (X ) are available for 3595 genes. Moreover, a total of 138 unique profiles of
chemical substructures (Z ) were identified for this compound set. EGFR inhibi-
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Fig. 2 Top 5 genes with strong association with EGFR inhibition through pIC50 and that discrim-
inates between chemical substructures. The first row shows the three-way associations between
gene expression, pIC50 and a chemical substructure. The second row represents adjusted associ-
ation between pIC50 and gene expression after removing the effect of the chemical substructure

tion was quantified based on pIC50 (Y ). Note that in this specific case study we
have multiple genes and multiple chemical structures, but the analysis was done
per gene per chemical structure. Figure2 shows the expression data of the top 5
genes that were associated with EFGR inhibition through pIC50 and that were also
discriminatory between the chemical substructure. Annotating chemical substruc-
tures (fingerprints) in terms of toxicity and safety has the potential to reduce failure
rates in drug trials; seeVerbist–Klambauer–Vervoort–Talloen–QSTAR-Consortium–
Shkedy–Thas–Bender–Goehlmann–Hochreiter [3].

4 Discussion

Validation of transcriptional and translational biomarkers of exposure needs more
than just an empirical assessment based on statistical methodology. However, the
methods discussed in this paper can help to focus on gene expression biomarkers
with high chances of success in external validation studies by relying on the strength
of cytogenetic biomarkers. The method has been discussed in an in-vitro setting,
but there are other approaches of data integration that can be used to integrate dif-
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ferent sources of data in radiation research including demographic, socio-economic,
clinical and epidemiological data. The method can be used on any type of data after
minor adaptation to reflect distributional assumptions. We hope that this paper will
contribute to on-going scientific discussion on identifying and validating transcrip-
tional and translational biomarkers for radiation exposure.

Acknowledgements We thank Janssen Pharmaceutica NV, Beerse, Belgium and the QSTAR Con-
sortium for the case study in drug development.
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Poisson-Weighted Estimation by Discrete
Kernel with Application to Radiation
Biodosimetry

Célestin C. Kokonendji, Nabil Zougab, and Tristan Senga-Kiessé

Abstract Reminding the framework of discrete smoothing using discrete associ-
ated kernel methods, binomial kernel with local Bayesian bandwidth selection is
presented, for estimating a probability mass function under a Poisson-weighted
assumption (Senga-Kiessé et al. Comput Stat 31:189–206, 2016, [11]). Model diag-
nostics are evoked between three approaches: parametric, nonparametric and semi-
parametric. Finally, some applications are done on real count datasets of low and
high radiation doses in biodosimetry, as alternatives to the parametric approaches
in Pujol et al. (PLoS ONE 9(12):e114137, 2014, [9]).

1 Introduction and Motivations

It is known that low-dose radiation may cause heart disease and stroke. However,
the mechanisms for such effects are unclear. Note that the activity administered must
be such that the resulting radiation dose is as low as reasonably achievable bearing
in mind the need to obtain the intended diagnostic result; e.g., Magnetic Resonance
Imaging.

Thus, for modelling, the authors in [9] used a parametric Poisson-weighted
distribution which could be a good representation of any count data distribution
(e.g., [3, 4]). But the real problem is to choose the Poisson-weighted function. Here
is how it is written
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f (x) := P(X = x) = p(x;λ)ω(x; θ) =: fλ,ω(x), x ∈ {0, 1, 2, . . .} =: N, (1)

where x �→ p(x;λ) := e−λλx/x ! is the probability mass function (pmf) of the Pois-
son distribution with mean parameter λ > 0, and ω := ω(· ; θ) describes the para-
metric mechanism which is considered to be unknown (for the moment) with θ ∈ R.
This ω could represent the repairing process of the chromosomes in the cell after a
dose of radiation. Since parametric model means that its form is known but not the
parameter values, the authors of [9] proposed the following quadratic polynomial
function

x �→ ω(x; θ) = 1 + θx2, ∀x ∈ N. (2)

In principle, a choice of such parametric model (1) and (2) needs a good knowledge
of the subject to be treated. The expected forms of any parametric model are always
regular.

An alternative approach is to consider a nonparametric method for estimating the
pmf x �→ f (x) of (1). It requires any particular form; that is it is more free and more
flexible for data. Hence, we can say “let talk the data”. For instance, let us consider
the discrete kernel method which is an evolution of the histogram for discrete data
(e.g., [5, 7, 8] for pmf) defined as follows. Let X1, . . . , Xn be an n-sample of iid
unknown pmf f on T ⊆ N, then a discrete associated kernel estimator of f is

˜fn(x) = 1

n

n
∑

i=1

Kx,h(Xi ), x ∈ T ⊆ N (⊂ R
d); (3)

h > 0 is the smoothing parameter (or bandwidth) such that h = h(n) → 0 as
n → ∞; Kx,h(·) is the discrete associated kernel function (or discrete smoother),
intrinsically connected to the target x and h, and which is the pmf of a discrete
random variable Zx,h on Sx such that, for all x ∈ T: Sx ⊇ {x}, lim

h→0
E(Zx,h) =

x, lim
h→0

Var(Zx,h) = 0 or in [0, 1). This definition is extended tomultivariate and also

to the classical continuous (symmetric) cases. Depending on the support T (⊆ Z) of
f to be estimated, some examples of discrete (i.e. count or categorial) are given in
Table1.

Table 1 Some discrete associated kernels; see [5]

Discrete kernel Kx,h(u) Sx

Dirac δx (u), h := 0 N

DiracDU (1 − h)δx (u) + h/(c − 1)(1 − δx (u)) {0, 1, . . . , c − 1}
DiracDUextZ (1 − h)δx (u) + h|u−x |(1 − h)/2(1 − δx (u)) Z

Discrete triangular [(a + 1)h − |u − x |h]/P(a, h), a ∈ N {x, x ± 1, . . . , x ± a}
Binomial Bin(x + 1; (x + h)/(x + 1))(u) {0, 1, . . . , x + 1}
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Note that the DiracDU kernel is appropriated for categorial data and the binomial
one is for count data having small and moderate sample sizes (as for all discrete
kernels, except the Dirac one). See [5, 8] for further details and properties such
as the criterion of “mean integrated squared error (MISE)” and normalization of
estimated pmf by binomial and discrete triangular kernels. The discrete associated
kernel Kx,h(·) works as a stochastic distance around the target x with a dispersion
(or scale) parameter h. The choice of h given a dataset is crucial to avoid over- and
under-smoothing. Several techniques of selection of h can be found in the literature:
the well-known one is the cross-validation, but we have recently developed some
Bayesian approaches; see [11–13].

Finally, a compromise between parametric (1) and nonparametric models is to
consider the semiparametric model having the Poisson-weighted function (2) with-
out any specific form; see, e.g., [6] using cross-validation method for selecting the
bandwidth. In practice, the semiparametric model eliminates some noises in the data
analysis. For improving the parametric model (1) with (2) of [9], the semiparamet-
ric model seems to be the most interesting and appropriated approach by using our
recent development in [11] with Bayesian estimation of bandwidth (instead of the
cross-validation in [10]). Thus, the next section is devoted to the methodology with
applications to the datasets of [9]. The last section gives some concluding remarks.

2 Methodology and Results

Let us assume that the pmf f of (1) is here written as

f (·) = p(·;λ)ω(·) =: fλ,ω(·) on T ⊆ N,

where p(·;λ) is the parametric Poisson model and ω(·) the nonparametric Poisson-
weighted function. From [6], the corresponding semiparametric Poisson-weighted
estimation of f by discrete associated kernel is given by

̂fn,h(x) = p(x;̂λn) × 1

n

n
∑

i=1

Kx,h(Xi )

p(Xi ;̂λn)
= 1

n

n
∑

i=1

p(x;̂λn)

p(Xi ;̂λn)
Kx,h(Xi ), x ∈ T.

(4)
Indeed, the estimated parameter ̂λn of λ is obtained by the maximum likelihood
method aŝλn = (X1 + · · · + Xn)/n; it converges to the true value λ0 of the Poisson
part satisfying λ0 = argminλ

∑

x f (x) log[ f (x)/p(x;λ)] from Kullback–Leibler
distance. The discrete associated kernel Kx,h(·) is the binomial kernel function:

Bx,h(Xi ) = (x + 1)!
Xi !(x + 1 − Xi )!

(

x + h

x + 1

)Xi
(

1 − h

x + 1

)x+1−Xi

,
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with Xi ≤ x + 1. From [13] we will select the bandwidth h ∈ [0, 1] by the Bayesian
local approach defined as follows:

˜hB�(x) ∝
∫

h>0
h π(h) ˜fn,h(x) dh, x ∈ T,

where ˜fn,h(x) is given in (3). Consider the (conjugate) beta prior density of h:

π(h) = (B(α,β))−1hα−1(1 − h)β−1, h ∈ [0, 1],

where α,β > 0 and B(·, ·) is the Beta function. Then, for all x ∈ N, one has exactly

˜hB�(x) =
∑n

i=1

∑Xi
k=0

xk

(x+1−Xi )!k!(Xi−k)!B(Xi + α − k + 1, x + β + 1 − Xi )
∑n

i=1

∑Xi
k=0

xk
(x+1−Xi )!k!(Xi−k)!B(Xi + α − k, x + β + 1 − Xi )

,

with Xi ≤ x + 1. Now, it is necessary to normalize (globally or adaptively) the
estimated pmf ̂fn,h=˜hB�(x) before the sequel. For instance, the practical performance of
the estimator (4) is measured through ISE0( ̂fn,h) = ∑

x∈T{ ̂fn,h(x) − f0(x)}2, where
f0 is the empirical (or naive) estimator of f . Finally, from (4)we investigate themodel
diagnostics for checking the adequacy of themodel by examining a plot of x �→ ω̂(x)
or Z(x) := log ω̂(x) = log[ ̂fn,h(x)/p(x;̂λn)] with a pointwise confidence band of
±1.96; that is to see whether or not ω(x) = 1 is reasonable (e.g., < 5% for pure
nonparametric, in [5%, 95%] for semiparametric, and >95% for full parametric
p(·;̂λn) models).

Table2 presents a summary of the numerical results of the semiparametric
Poisson-weighted estimation of datasets in [9] through binomial kernel, and using
Bayesian local to select bandwidth. The dispersion index [2] which is the ratio of
sample variance by the sample mean (<1) shows the underdispersion for all the
datasets. This departure with respect to the classical Poisson distribution points out
the use of other models like (1) and (4). The corresponding model diagnostics con-
firm that the semiparametric Poisson-weighted models are more appropriated than
the parametric ones. This fact can be seen through the ISE0 values which could be
unappropriated for parametric model.

Table 2 Semiparametric analysis of datasets from [9]

Dose (in Gy) 25 20 15 10 7 5 3 1 0.5

Dispersion index 0.94 0.83 0.81 0.41 0.67 0.62 0.82 0.98 0.96

Semiparam. ISE010−3 4.59 2.27 9.59 3.02 2.60 7.91 1.37 0.0096 0.12

Parametric ISE010−3 12.65 5.30 11.98 25.15 7.84 26.24 2.79 0.0093 0.10

Diagnostic (%) 94.4 94.1 93.8 81.8 81.8 90.0 71.4 80.0 75.0
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Now, if we consider the corresponding nine graphical representations of the esti-
mated Poisson-weighted functions x �→ ω̂(x) = ̂fn,h(x)/p(x;̂λn) then it is clear
that there exist some differences with the parametric Poisson-weighted function (2)
of [9]. In fact, the forms of x �→ ω̂(x) are not regular. One can observe some mix-
tures of three, two or only one quadratic polynomial functions with high negative
coefficient. Thismeans that the parametric Poisson-weighted function (2) is not com-
pletely unsuitable; however, the new approach is more adequate, taking into account
the reality of datasets.

3 Concluding Remarks

Directed by the Poisson distribution, we have estimated the count weighted func-
tions for modelling mechanisms of high-low-dose radiation in biodosimetry. The
semiparametric approach using the discrete kernel with Bayesian local estimation
for bandwidth improves suitably the regular parametric model (1) and (2) of [9],
and eliminates some noises if we have used the purely nonparametric estimator (3).
However, an interpretation of the estimated Poisson-weighted functions needs to be
found in the way of a birth-death process or process in queuing theory because of the
underdispersion of datasets. More generally, the discrete nonparametric and semi-
parametric approaches can be used for real datasets in regression models; see, for
example, [1] for cross-validation technique and also [11] with the Bayesian selection
of bandwidth.

Acknowledgements Thefirst authorwould like to thankPere Puig andAmandaFernández-Fontelo
for numerous discussions on this subject based on the two papers [9, 11].
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R Implementation of the Excess Relative
Rate Model: Applications to Radiation
Epidemiology

David Moriña and Elisabeth Cardis

Abstract In many radiation environmental and occupational contexts, the excess
relative rate (ERR) of disease is modelled related to the exposure in an additive fash-
ion, in contrast to the usual exponential rate model. Most of the available software
packages are restricted to models of the log-linear form, with the exception of Epi-
cure, a commercial software package commonly used for fitting linear relative rate
models. Recently, some macros allowing the fitting of the ERR have been developed
for SAS. However, to the best of our knowledge, no methods have been developed
yet for the widely used R software. In this paper, we introduce the package linERR,
which aims to allow the user to fit linear rate models within the framework of the R
programming language.

1 Introduction

Usual approaches to the analysis of cohort and case control data often follow from
risk-set sampling designs, where at each failure time a new risk set is defined, includ-
ing the index case and all the controls that were at risk at that time. That kind of sam-
pling designs are usually related to the Cox proportional hazards model, available in
most standard statistical packages but limited to log-linear models, except Epicure
(see [2]) which is of the form

log(φ(z, β)) = β1z1 + · · · + βkzk, (1)
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where z is a vector of explanatory variables and φ is the rate ratio. This implies
exponential dose-response trends and multiplicative interactions, which may not be
the best exposure-response representation in some cases, such as radiation expo-
sures. One model of particular interest, especially in radiation environmental and
occupational epidemiology, is the ERR model

φ(z, α, β, dose) = g(z, β)(1+ α f (dose)). (2)

The ERR model represents the excess relative rate per unit of exposure and z =
z1, . . . , zk are covariates. Estimation of a dose-response trend under a linear relative
rate model implies that, for every 1-unit increase in the exposure metric, the rate of
disease increases (or decreases) in an additive fashion. The modification of the effect
of exposure in linear relative rate models by a study covariate m can be assessed by
including a log-linear subterm for the linear exposure effect [3, 7], implying a model
of the form

φ(z, α, β, dose) = eβ0+β1z1+···+βkzk (1+ α f (dose)). (3)

In general, the likelihood contribution of each risk set can be written as

L(β1, . . . , βk, α) = φcase(z1, . . . , zk, β1, . . . , βk, α, dose)

φwhole risk set(z1, . . . , zk, β1, . . . , βk, α, dose)
. (4)

Recently, some papers appeared describing how to fit general relative risk models
using SAS in the context of logistic and Poisson regression [5, 6] and also in the Cox
regression framework [1]. Despite its biological interpretation advantages, the ERR
model has worse statistical properties than the standard Cox model. In particular,
parameter estimates may be inaccurate if the number of events is not large, but a
large number of events will involve large computational time. It is possible that
parameter estimates fall under the lower boundary of the feasible region −1/zmax ,
where zmax is the maximum cumulated value for variable z, and in such cases no
estimate of the standard error can be obtained.

2 The Package linERR

The package has been designed to integrate the ERR model within a more complete
and flexible freely available statistical package like R; see [4]. Results are presented
in a very similar way to that of Epicure. The likelihood function (4) has been written
in C to improve computing times. It can handle a broad class of relative risk models
mixing linear and log-linear terms as introduced in (3). It also handles lagged times,
when it is convenient to exclude the exposure in a time period before registration of
the outcome of interest. The main function is fit.linERR(), which needs the following
input parameters:
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(i) formula: An object of class formula (or one that can be coerced to that class),
i.e., a symbolic description of the model to be fitted. The response must be a
survival object as returned by the Surv() function, and the log-linear and linear
terms are separated by the character “|”. Strata are defined using the strata()
function. See Sect. 3 for more details.

(ii) beta: Starting values for parameter estimates. Its default value is NULL.
(iii) data: Data frame containing the cohort.
(iv) ages: Age at each exposure.
(v) lag: Lag to be applied (its default value is zero).

Profile likelihood based confidence intervals can be computed by means of func-
tion ERRci(), with the following parameters:

(i) object: An object of class fit.linERR.
(ii) prob: Level of confidence (its default value is 0.95).

The profile log-likelihood function can be plotted with the usual method plot
applied to an object returned by fit.linERR, with an option to highlight the profile
likelihood confidence intervals. The function plot uses the following arguments:

(i) object: An object of class fit.linERR.
(ii) lower: Lower value of the parameter.
(iii) upper: Upper value of the parameter.
(iv) ci: Highlight the profile likelihood confidence interval (its default value is

NULL).

3 Examples

Three cohorts with 10000 subjects and a different number of cases, and an ERR
model was fitted in R using the code

> fit.linERR(Surv(entryage, exitage, leu)˜1|dose1+dose2+dose3+dose4+dose5+dose6+
+ dose7+dose8+dose9+dose10+dose11+dose12+dose13+dose14+dose15+dose16+
+ dose17+dose18+dose19+dose20+dose21+dose22+dose23+dose24+dose25+dose26+
+ dose27+dose28+dose29+dose30+dose31+dose32, beta=NULL, data=ex1,
+ ages=ex1[, 7:38])

The same model was fitted in Epicure and the obtained estimates, standard errors
and computing times are shown in Table1.

A cohort consisting of 150000 subjects was generated, and a linear excess relative
risk model including three covariates and different strata was fitted using the code

> fit.linERR(Surv(entryage, exitage, leu)˜ds+ds2+ds3 | dose1+dose2+dose3+dose4+
+ dose5+dose6+dose7+dose8+dose9+dose10+dose11+dose12+dose13+dose14+
+ dose15+dose16+dose17+dose18+dose19+dose20+dose21+dose22+dose23+
+ dose24+dose25+dose26+dose27+dose28+dose29+dose30+dose31+dose32+
+ strata(sid), beta=NULL, data=ex2, ages=ex2[, 9:40])
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Table 1 Results from Epicure and R

Cases β β̂ (Epicure) β̂ (R) Computing time
(Epicure)

Computing time
(R)

Cohort 1 13 0.04 0.07213
(0.1714)

0.07140
(0.1374)

11.64 2.26

Cohort 2 19 0.1 0.3745
(0.8677)

0.3795
(0.8165)

27.34 3.97

Cohort 3 14 0 −0.0242
(NA)

−0.0242
(NA)

10.47 0.4

Table 2 Results from Epicure and R

Cases β β̂

(Epicure)
β̂ (R) Computing time

(Epicure)
Computing time
(R)

Cohort 1 84 0.1 0.1084
(0.09263)

0.1077
(0.0866)

176.8 123.74

Again, the same model was fitted in Epicure and the obtained estimates, standard
errors and computing times are shown in Table2.

We can see that, in all the considered cases, computing time using the linERR pack-
age is less than in Epicure. The standard errors are slightly different due to different
maximization algorithms. The maximum likelihood estimates can be obtained by

> summary(fit.ex2)
...
Parameter Summary Table:

Estimate Std. Error Test Stat. p-value
dose 0.107639724 0.086605628 1.2428722 2.139149e-01
ex2$ds 4.351506257 0.281627035 15.4513087 7.392707e-54
ex2$ds2 0.048913212 0.245572769 0.1991801 8.421219e-01
ex2$ds3 -0.002126584 0.008645213 -0.2459840 8.056946e-01

AIC: 1291.527
Deviance: 1283.527
Informative risk sets: 84

The 95% profile likelihood-based confidence interval can be computed with the
command

> ERRci(fit.ex2)
lower 2.5% upper 97.5%
0.01352891 0.72524683
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Fig. 1 Profile log-likelihood
function

while the command

> plot(fit.ex2, 0, 1, 0.95)

produces the plot represented in Fig. 1.

Acknowledgements We would like to thank Patrycja Gradowska and Michael Hauptmann from
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Uncertainty Considerations Following
a Mechanistic Analysis of Lung Cancer
Mortality

Ignacio Zaballa and Markus Eidemüller

Abstract Lung cancer mortality after radon exposure in the Wismut cohort was
analysed with the two-stage clonal expansion (TSCE) model. Careful examination
of the results of this study suggests that model misspecification and individual error
in radon exposure estimates may be leading to large uncertainties in the estimation
of risk.

1 Introduction

Exposure to radon and its progeny has been recognized as a cause of lung cancer for
many decades; see [1]. The workers of the Wismut company were exposed to high
concentrations of radon and its progeny chiefly working underground or in uranium
ore processing facilities. Radon-222 results from the natural decay of uranium-238,
and emanates from the soil,water and buildingmaterials, becoming trapped in homes.
Understanding how radon acts on the development of lung cancer is therefore a
general population health concern.

In the present work, lung cancer mortality among the Wismut workers has been
analysed using the TSCEmodel of carcinogenesis. We have considered 58695 males
and a total of 2996 lung cancer deaths. The average exposure is about 280 WLM
(∼1.7Sv for 5.9mSv/WLM; see [11]) and considerably larger than typical residential
levels, but extrapolations of the risk to the low dose regime have been found useful
before; see [1].
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Fig. 1 Sketch of the processes leading into a malignant tumor in the TSCE model

2 The TSCE Model

In the TSCE model a healthy stem cell undergoes two irreversible steps and clonal
expansion during the intermediate stage before it develops a tumor; see [5, 6]. Thus,
the model distinguishes three distinctive processes on a cell’s pathway to cancer:
initiation with rate ν, clonal expansion with rate γ, and transformation with rate
μ; see Fig. 1. The effective clonal expansion is given by γ = α − β − μ, where
α and β represent the division and inactivation rate of initiated cells. To analyse
epidemiological data the parameter estimates σ j in the hazard function h(t;σ j )

for a definite model are obtained by maximizing the total likelihood. The exposure
response of radon on the different steps is carefully evaluated.

A varying clonal expansion γ with radon and silica exposure describes best the
data in the TSCE model. The combined effect of both exposures is additive, γ =
γb(1 + fr + fs), with γb being the baseline rate. The radon response is a non-linear
function of the exposure rate dr ,

fr (dr ) = r1
(
1 − e−r2dr /r1

)
, (1)

where γbr1 gives the saturation level for large exposure rates, and γbr2 the linear slope
for small exposure rates. The resulting silica response is linear above the exposure rate
dc � 1mg/m3 · yr, which corresponds to an exposure of 0.02mg/m3 during a 40h
working week. This is of the same order of magnitude as the NIOSH recommended
limit for respirable silica of 0.05mg/m3; see [7].

The model parameters resulting from this analysis, which are thoroughly exam-
ined in [13], are consistent with other occupational alpha-particle studies. The sat-
uration of the clonal expansion may be related to the inverse exposure-rate effect;
see Fig. 2. According to Brenner [2], this effect could be the consequence of wasted
dose due to multiple track traversals.
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3 Sources of Uncertainty in the Current Study

Exposure measurements of radon and its decay products were performed regularly
after 1966 for the Wismut cohort. Before that date exposure rates were highest, and
only retrospective and partial measurements were carried out. It is possible then
that either systematic as well as random errors are present in the individual exposure
estimates. These errors could have an effect on the risk estimation and in its temporal
variation with age, exposure rate, and other time variables; see [1].

Wismut Miners were also exposed to other carcinogenic agents: external γ radi-
ation, long-lived radionuclides, arsenic, fine dust and silica. Previous studies of this
cohort have found that only exposure to silica dust confounds the lung cancer risk;
see [9]. Silica dust exposure has been taken into account in our analysis for a more
precise estimation of the risk by radon exposure.

Another important source of uncertainty is the lack of complete smoking infor-
mation. Nevertheless, comparison to other studies of uranium miners with available
smoking information suggests that the baseline values obtained in our analysis for the
clonal expansion,γb = 0.16 yr−1, already contain the smoking contribution; see [13].
These results agree very well with case control studies of European miners cohorts,
which found that adjustment to smoking does not vary appreciably the radon expo-
sure risk; see [4, 8]. The high percentage of workers that smoked has been proposed
to explain this observation.

Below, we consider the model specification as a source of uncertainty in more
detail. Other possible sources of uncertainty that we do not consider here are: errors
assigning the underlying cause of death, uncertainty in the background exposures,
and demographic factors.

4 Conclusions and Open Questions

Webelieve that analyses usingmechanistic models have a number of advantages over
the standard descriptivemodelsmore often used in epidemiological studies. Standard
descriptivemethods require several parameters to describe the complex temporal risk
patterns. In the case of the Wismut cohort, at least 3 covariates modifying the radon
exposure have been found; see [12]. The effect of these covariates depends on the
precision of the exposure measurements, which are themselves subject to possible
large errors. Contrary to the descriptive methods, effect modification is built-in in
the dynamics of the TSCE model avoiding this pitfall. Besides the radon response is
described by only two parameters in the model [13], in contrast with the at least four
needed in descriptive methods. Having a smaller number of parameters describing
the exposure response results in tighter error margins in the parameters and risk
estimates.

As shown in Fig. 2, the ERR and TSCE models risk predictions differ more pro-
nouncedly at young attained ages and low exposure rates. Away from themean cancer
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Fig. 2 Radon ERR versus attained age for different exposure scenarios. In the left panel the red
curves correspond to the ERR model, while blue ones to the TSCE model. The blue and red lines
in the right panel represent the 4 and 8 years duration for the TSCE model. The descriptive ERR
model used here, which is similar to the one used in [12], can be found in [13]. Error bars are 1σ
and are based on the uncertainty of the parameters and their correlations.

age, about 64 yrs, one is inclined to assume that age extrapolation in a model based
on a dynamical process is more reliable than in a purely descriptive model; see [1].
The exposure rate is defined in the ERR model as an average over the total expo-
sure duration; see [12]. In the TSCE model, annual exposure rates are incorporated
in a natural way in the time dependent covariates. This difference may account, at
least partially, for the larger discrepancy in the risk estimates in the low exposure
regime, although the correlation between the effect modifiers in the ERR model and
the precision of the radon exposure measurements could play a part too.

The TSCE model is one of the simplest mechanistic models describing the mul-
tistage nature of cancer development in terms of stochastic processes. Although it is
not clear whether it may be capturing all the relevant aspects in tumor pathogenesis,
it is apparent that it reproduces the inverse exposure rate effect and the risk decay
with age observed in different uranium miners cohorts; see Fig. 2. More information
on lung cancer sub-types as well as on likely values of typical mutation and clonal
growth rates from biological measurements would allow to establish and develop
more specific models.

Regardless of the model used in the analysis, the relevance of the individual
exposure estimation errors in the accurate evaluation of the exposure response and
risk estimation cannot be overlooked. In fact, subsets ofminers cohorts corresponding
to lower exposure rates and uncertainty levels in the exposure estimates have been
analysed, and yield substantially larger radon risks; see [3, 10]. The price to pay in
this approach is the loss of statistical power and therefore larger confidence level
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intervals in the estimations. To have a more accurate exposure response on the whole
range of exposure regimes, it may be necessary to have a consistent method to gauge
more precisely the effect of error in the individual exposure estimates.
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