
Chapter 1
Introduction

Abstract Sine-Gordon field as an effective description of a system of coupled pen-
dulums in a constant gravitational field. Sine-Gordon solitons. The electromagnetic
field, gauge potentials and gauge transformations. The Klein–Gordon equation and
its solutions.

By definition, any physical system which has infinitely many degrees of freedom
can be called a field. Systems with a finite number of degrees of freedom are called
particles or sets of particles. The kinematics and dynamics of particles is the subject
of classical and quantum mechanics. In parallel with these theories of particles there
exist classical and quantum theories of fields. In this chapterwe present two important
examples of classical fields: the sine-Gordon effective field and the electromagnetic
field.

Statistical mechanics deals with large ensembles of particles interacting with a
thermal bath. If the particles are replaced by a field or a set of fields, the corresponding
theory is called statistical field theory. This branch of field theory is not presented in
our lecture notes.

1.1 Example A: Sine-Gordon Effective Field

Let us take a rectilinear, horizontal wire with M + N + 1 pendulums hanging from
it at equally spaced points labeled by xi . Here i = −M, . . . , N , where M, N are
natural numbers. The points xi are separated by a constant distance a. The length of
that part of the wire from which the pendulums are hanging is equal to (M + N )a.
Each pendulum has a very light arm of length R, and a point mass m at the free end.
It can swing only in the plane perpendicular to the wire. All pendulums are fastened
to the wire stiffly, hence their swinging twists the wire (accordingly). The wire is
elastic with respect to such twists. Each pendulum has one degree of freedom which
may be represented by the angle φ(xi ) between the vertical direction and the arm of
the pendulum. All pendulums are subject to the constant gravitational force. In the
configuration with the least energy all pendulums point downward and the wire is not
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2 1 Introduction

twisted. We adopt the convention that in this case the angles φ(xi ) are equal to zero.
Because of the presence of the wire φ(xi ) = 0 is not the same as φ(xi ) = 2πk, where
k = ±1,±2, . . .—in the latter case the pendulum points downward but the wire
is twisted, hence there is a non vanishing elastic energy. Therefore, the physically
relevant range of φ(xi ) is from minus to plus infinity.

The equation of motion for each pendulum, except for the first and the last ones,
has the following form

mR2 d
2φ(xi , t)

dt2
= −mgR sin φ(xi , t) + κ

φ(xi − a, t) + φ(xi + a, t) − 2φ(xi , t)

a
,

(1.1)
where κ is a constant which characterizes the elasticity of the wire with respect to
twisting. The l.h.s. of this equation is the rate of change of the angular momentum of
the i-th pendulum. The r.h.s. is the sum of all torques acting on the i-th pendulum:
the first term is related to the gravitational force acting on the mass m, the second
term represents the elastic torque due to the twist of the wire.

The equations of motion for the two outermost pendulums differ from (1.1) in a
rather obvious way. In the following we shall assume that these two pendulums are
kept motionless by some external force in the downward position, that is that

φ(x−M , t) = 0, φ(xN , t) = 2πn, (1.2)

where n is an integer. If we had put φ(x−M) = 2πl with integer l we could stiffly
rotate the wire and all of the pendulums l times by the angle −2π in order to obtain
l = 0. Therefore, the conditions (1.2) are the most general ones in the case of
motionless, downward pointing outermost pendulums. In fact, these two pendulums
can be removed altogether—we may imagine that the ends of the wire are tightly
held in vices.

In order to predict the evolution of the system we have to solve (1.1) assuming
certain initial data for the angles φ(xi , t), i = −M + 1, . . . , N − 1, and for the
corresponding velocities φ̇(xi , t). This is a rather difficult task. Practical tools to be
used here are numerical methods and computers. Numerical computations are useful
if we ask for the solution of the equations of motion for a finite, and not too large,
time interval. If we let the number of pendulums increase, sooner or later we will
be incapable of predicting the evolution of the system except for very short time
intervals, unless we restrict initial data in a special way. One such special case is
in the limit of small oscillations around the least energy configuration, φ(xi ) = 0.
In this case we can linearize the equations of motion (1.1) using the approximation
sin φ ≈ φ. The resulting equations are of the same type as those obtained for a system
of coupled harmonic oscillators, treatments of which can be found in textbooks on
classical mechanics.

It turns out that there is another special case which can be treated analytically.
We call it the field theoretical limit because, as is explained below, we pass to an
auxiliary system with an infinite number of degrees of freedom. Let us introduce a
function φ(x, t), where x is a new real continuous variable (a coordinate along the
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wire). By assumption, this function is at least twice differentiable with respect to
x , and is such that its values at the points x = xi are equal to the angles φ(xi , t)
introduced earlier. Hence, φ(x, t) smoothly interpolates between φ(xi , t) for each i .
Of course, for a given set of the angles one can find infinitely many such functions.
For any such function the following identity holds

φ(xi − a, t) + φ(xi + a, t) − 2φ(xi , t) =
∫ a

0
ds1

∫ 0

−a
ds2

∂2φ(s1 + s2 + x, t)

∂x2

∣∣∣∣
x=xi

.

Now comes the crucial assumption: we restrict our considerations to thosemotions of
the pendulums for which there exists an interpolating function φ(x, t) of continuous
variables x and t which satisfies

∫ a

0
ds1

∫ 0

−a
ds2

∂2φ(s1 + s2 + x, t)

∂x2

∣∣∣∣
x=xi

≈ a2
∂2φ(x, t)

∂x2

∣∣∣∣∣
x=xi

(1.3)

for all times t and at all points xi . For example, this is the case when the second
derivative of φ with respect to x is almost constant as x runs through the interval
[xi − a, xi + a], for all times t . With approximation (1.3) the identity written above
can be replaced by the following approximate one

φ(xi − a, t) + φ(xi + a, t) − 2φ(xi , t) ≈ a2
∂2φ(x, t)

∂x2

∣∣∣∣
x=xi

.

Using this formula in (1.1) we obtain

mR2 d
2φ(xi , t)

dt2
≈ −mgR sin φ(xi , t) + κa

∂2φ(x, t)

∂x2

∣∣∣∣
x=xi

. (1.4)

Let us now suppose that our function φ(x, t) obeys the following partial differ-
ential equation,

mR2 ∂2φ(x, t)

∂t2
= −mgR sin φ(x, t) + κa

∂2φ(x, t)

∂x2
, (1.5)

where x ∈ [−Ma, Na], and

φ(−Ma, t) = 0, φ(Na, t) = 2πn, (1.6)

where n is the same integer as in (1.2). Then, it is clear that φ(xi , t), i = −M +
1, . . . , N − 1, obey (1.4). Also the boundary conditions (1.2) are satisfied. Hence, if
condition (1.3) is satisfiedwe obtain an approximate solution of the initial Newtonian
equations (1.1).
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The nonlinear partial differential equation (1.5) is well-known in mathematical
physics by the jocular name ‘sine-Gordon equation’ which alludes to the Klein–
Gordon equation. This latter equation is a cornerstone of relativistic field theory—we
shall discuss it in Sect. 1.3. The sine-Gordon equation can be transformed into its
standard form by dividing by mgR, and by rewriting it with the new, dimensionless
variables

τ =
√

g

R
t, ξ =

√
mgR

κa
x, �(ξ, τ ) = φ(x, t).

The resulting standard form of the sine-Gordon equation reads

∂2�(ξ, τ )

∂τ 2
− ∂2�(ξ, τ )

∂ξ2
+ sin�(ξ, τ ) = 0. (1.7)

There are many mathematical theorems about (1.7) and its solutions. One of them
says that in order to determine a unique solution uniquely, onemust specify the initial
data, that is, onemust fix the values of�(ξ, τ ), and ∂�(ξ, τ )/∂τ for a chosen instant
of the rescaled time τ = τ0 and for all ξ in the interval [ξ−M , ξN ] (which corresponds
to the interval [x−M , xN ]). One must also specify the so-called boundary conditions,
that is the values of � at the boundaries ξ = ξ−M and ξ = ξN of the allowed range
of ξ for all values of τ . In our case their form follows from conditions (1.2),

�(ξ−M , τ ) = 0, �(ξN , τ ) = 2πn. (1.8)

In order to specify the initial datawe have to provide an infinite set of real numbers (to
define the values of �(ξ, τ0), ∂�(ξ, τ )/∂τ |τ=τ0 ) because ξ is a continuous variable.
For this reason the dynamical system defined by the sine-Gordon equation has an
infinite number of degrees of freedom. This system, called the sine-Gordon field,
is mathematically represented by the function �, and the sine-Gordon equation is
its equation of motion. The sine-Gordon field is said to be the effective field for
the system of pendulums described above. Let us emphasize that the sine-Gordon
effective field gives an accurate description of the dynamics of the original system
only if condition (1.3) is satisfied. Such a reduction of the original problem to the
dynamics of an effective field, or to a set of effective fields in other cases, has become
an extremely efficient tool in theoretical investigations of many physical systems
considered in condensed matter physics or particle physics.

Let us end this section with a few examples of nontrivial solutions of the sine-
Gordon equation in its standard form (1.7). Let us assume that� does not depend on
the rescaled time τ , that is, that � = �(ξ)—such solutions are referred to as static.
Then, (1.7) reduces to the following ordinary differential equation

�′′(ξ) = sin�(ξ), (1.9)
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where ′ denotes differentiation with respect to ξ. Multiplying this equation by �′ we
obtain

1

2
(�′2)′ = −(cos�)′,

and after integration,
1

2
�

′2 = c0 − cos�, (1.10)

where c0 is a constant. The boundary conditions (1.8) imply that

c0 = 1 + 1

2
�

′2(ξ−M) = 1 + 1

2
�

′2(ξN ). (1.11)

It follows that c0 ≥ 1, and that �′(ξ−M) = ±�′(ξN ).
Let us first consider the case c0 = 1. The square root of (1.10) with c0 = 1 gives

�′ = 2 sin(
�

2
), (1.12)

or

�′ = −2 sin(
�

2
), (1.13)

which can be easily integrated. Apart from the trivial solution � = 0, there exist
nontrivial solutions, denoted below by �+ and �−. Integrating (1.12) and (1.13) we
find that

ln | tan(�
4

)| = ±(ξ − ξ0),

where ξ0 is an arbitrary constant, and the signs + and − correspond to (1.12) and
(1.13), respectively. It follows that

�±(ξ) = ±4 arctan[exp(±(ξ − ξ0))] mod 4π. (1.14)

Formula (1.14) implies that �′±(ξ) �= 0 for all finite ξ, and �′±(ξ) → 0 if ξ → ∞
or ξ → −∞. Therefore, conditions (1.11) can only be satisfied if

ξ−M = −∞, ξN = +∞.

With the help of the identity

arctan(1/x) = π/2 − arctan x,

one can show that formula (1.14) in fact gives two solutionswhich obey the conditions
(1.8):

�±(ξ) = ±4 arctan(exp(ξ − ξ0)). (1.15)
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It is clear that
lim

ξ→+∞
�±(ξ) = ±2π.

Hence, the integer n in (1.8) can be equal to 0 or±1 (n = 0 corresponds to the trivial
solution � = 0).

Let us summarize the case forwhich c0 = 1. Static solutions obeying the boundary
conditions (1.8) exist only if the range of ξ is infinite, from −∞ to +∞, and then
the nontrivial solutions have the form (1.15). The solution �+ is called the soliton,
and �− the antisoliton. ξ0 is called the location of the (anti-)soliton. There are no
static solutions with |n| > 1.

Coming back to our system of pendulums, the solitonic solutions (1.15) are rel-
evant if the condition (1.3) is satisfied. The two integrals on the l.h.s. of condition
(1.3) can be rewritten as integrals of �′′± with respect to the dimensionless variables

ξ1,2 =
√
mgR

κa
x1,2.

Then, the integration limits are given by 0 and ±α, where

α =
√
mgRa

κ
.

We see that condition (1.3) is certainly satisfied if

α → 0,

because in this limit the range of integration shrinks to a point. The value of the
dimensionless parameter α can be made small by, e.g., choosing a wire with large
κ or by putting the pendulums close to each other (small a). Furthermore, note that
ξN = αxN/a, ξ−M = αx−M/a, x−M = −Ma and; xn = Na. It follows that
ξN , ξ−M can tend to ±∞, respectively, in the limit α → 0 only if N , M → ∞.
Thus, the number of pendulums has to be very large.

The case c0 > 1 is a little bit more complicated. Equation (1.10) is equivalent to
the following equations

�′ = ±√
2c0 − 2 cos�, (1.16)

which give the following relations

∫ �(ξ)

0
ds

1√
1 − c−1

0 cos s
= ±√

2c0(ξ − ξ−M). (1.17)

These relations implicitly define the functions �(ξ) which obey (1.9). The integral
on the l.h.s. of (1.17) can be related to an elliptic integral of the first kind (see, e.g.
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[1]), and �(ξ) is then given by the inverse of the elliptic function. The constant c0
is determined from the following equation, obtained by inserting the second of the
boundary conditions (1.8) into formula (1.17):

∫ 2πn

0
ds

1√
1 − c−1

0 cos s
= ±√

2c0 (ξN − ξ−M). (1.18)

Note that now ξ−M and ξN have to be finite, otherwise the r.h.s. of this equation
would be meaningless.

One may also solve (1.16) numerically. These equations are rather simple and can
easily be tackled by computer algebra systems likeMaple© orMathematica©. Equa-
tions (1.16) are considered on the interval (ξ−M , ξN ). They are formally regarded
as evolution equations with ξ playing the role of time. The boundary condition
�(ξ−M) = 0 is now regarded as the initial condition for �(ξ). The constant c0 is
adjusted by trial and error until the calculation gives �(ξN ) ≈ 2πn to the desired
accuracy. For example, choosing ξ−M = −10 and ξN = 10 we have obtained
c0 ≈ 1.00000008 for n = ±1, c0 ≈ 1.0014 for n = ±2, and c0 ≈ 1.0398 for
n = ±3.

These solutions of the sine-Gordon equation with c0 > 1 are pertinent to the
physics of the system of pendulums when the parameter α has a sufficiently small
value, as in the case c0 = 1. For given natural numbers N and M , the values of
ξ−M and ξN are calculated from formulas ξ−M = −αM and ξN = αN . In the limit
α → 0 with ξ−M and ξN kept non vanishing and constant, the number of pendulums
has to increase indefinitely.

1.2 Example B: The Electromagnetic Field

We have just seen an example of an effective field—the sine-Gordon field φ(x, t)—
introduced in order to provide an approximate description of our original physical
system: the set of coupled pendulums. Now we shall see an example from another
class of fields, called fundamental fields. Such fields are regarded as elementary
dynamical systems—according to present day physics there are no experimental
indications that they are effective fields for an underlying system. The fundamental
fields appear in particular in particle physics and cosmology. Later on we shall see
several such fields. Herewe briefly recall the classical electromagnetic field. It should
be stressed that we regard this field as a physical entity, a part of the material world.
Our main goal is to show that the Maxwell equations can be reduced to a set of
uncoupled wave equations.

According to 19th century physics, the electromagnetic field is represented by
two functions 	E(t, 	x), 	B(t, 	x), the electric and magnetic fields respectively. Here 	x
is a position vector in the three dimensional space R3, and t is time. The fields obey
the Maxwell equations of the form (we use the rationalized Gaussian units)
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(a) div 	E = ρ, (c) div 	B = 0,

(b) rot 	B − 1
c

∂ 	E
∂t = 1

c
	j, (d) rot 	E + 1

c
∂ 	B
∂t = 0,

(1.19)

where ρ is the electric charge density, and 	j is the electric current density. ρ and 	j
are functions of t and 	x , and c is the speed of light in the vacuum.

Suppose that there exist fields 	E(t, 	x), 	B(t, 	x) obeyingMaxwell equations (1.19).
Acting with the div operator on (1.19b), then using the identity div(rot) ≡ 0 and
(1.19a), we obtain the following condition on the charge and current density

∂ρ

∂t
+ div 	j = 0. (1.20)

This is a well-known continuity equation. It is equivalent to conservation of electric
charge. From the mathematical viewpoint, it should be regarded as a consistency
condition for the Maxwell equations—if it is not satisfied they do not have any
solutions.

Equation (1.19c) is satisfied by any field 	B of the form

	B = rot 	A, (1.21)

where 	A(t, 	x) is a (sufficiently smooth) function of 	x . Conversely, one can prove
that any field 	B which obeys (1.19c) has the form (1.21). From (1.21) and (1.19d)
follows the identity

rot( 	E + 1

c

∂ 	A
∂t

) = 0.

There is a mathematical theorem (the Poincaré lemma) which says that an identity
of the form rot 	X = 0 implies that the vector function 	X is the gradient of a scalar
function σ, i.e. 	X = ∇σ. Therefore, there exists a function A0 such that

	E + 1

c

∂ 	A
∂t

= −∇A0

(the minus sign is dictated by tradition). Thus,

	E = −1

c

∂ 	A
∂t

− ∇A0. (1.22)

The functions A0 and 	A are called gauge potentials for the electromagnetic field.
Note that the choice of A0 and 	A for a given electric and magnetic fields is not
unique—instead of A0 and 	A one may just as well take

	A′(t, 	x) = 	A(t, 	x) − ∇χ(t, 	x), A′
0(t, 	x) = A0(t, 	x) + 1

c

∂χ(t, 	x)
∂t

, (1.23)
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whereχ(t, 	x) is a sufficiently smooth but otherwise arbitrary function of the indicated
variables. This freedom of choosing the gauge potentials is called the gauge symme-
try. Formulas (1.23) can be regarded as transformations of the gauge potentials, and
are called the gauge transformations. Often they are called local gauge transforma-
tions in order to emphasize the fact that the function χ is space and time dependent.
One should keep in mind the fact that the gauge transformations appear because we
adopt the mathematical description of the electromagnetic field in terms of the poten-
tials. The fields 	E and 	B do not change under these transformations. The potentials
A0, 	A and A′

0,
	A′ from formulas (1.23) describe the same physical situation. The

freedom of performing the gauge transformations means that the potentials form a
larger than necessary set of functions for describing a given physical configuration
of the electromagnetic field. Nevertheless, it turns out that the description in terms
of the potentials is a most economical one, especially in quantum theories of parti-
cles or fields interacting with the electromagnetic field. In fact, it has been commonly
accepted that the best mathematical representation of the electromagnetic field—one
of the basic components of the material world—is given by the gauge potentials A0

and 	A.
Expressing 	E and 	B by the gauge potentials we have explicitly solved (1.19c, d).

Now let us turn to (1.19a, b). First, we use the gauge transformations to adjust the
vector potential 	A in such a way that

div 	A = 0. (1.24)

This condition is known as the Coulomb gauge condition. One can easily check that
for any given 	A one can find a gauge function χ such that 	A′ obeys the Coulomb
condition, provided that div 	A vanishes sufficiently quickly at the spatial infinity. For
that matter, let us note that from a physical viewpoint it is sufficient to consider
electric and magnetic fields which smoothly1 vanish at the spatial infinity. For such
fields there exist potentials A0 and 	A which also smoothly vanish as |	x | → ∞. It
is quite natural to assume that the gauge transformations leave the potentials within
this class. Therefore, we assume that the gauge function χ also smoothly vanishes at
the spatial infinity. We might have assumed that it could approach a non vanishing
constant in that limit. However, such a constant leads to a trivial gauge transformation
because then the derivatives present in formulas (1.23) vanish. For this reason it is
natural to choose this constant equal to zero. Note that now the Coulomb gauge
condition determines the gauge completely. By this we mean that if both 	A and 	A′,
which are related by the local gauge transformation (1.23), obey the Coulomb gauge
condition, then χ = 0, that is the two potentials coincide. This follows from the facts
that if (1.24) is satisfied by 	A and 	A′ thenχ obeys the Laplace equation,�χ = 0, and
the only nonsingular solution of this equation which vanishes at the spatial infinity
is χ = 0.

1Here this means that all derivatives of the fields with respect to the Cartesian coordinates xi also
vanish at the spatial infinity.
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The condition that χ vanishes at the spatial infinity is also welcome for another
reason—itmakes a clear distinctionbetween (local) gauge transformations andglobal
transformations.Global transformationswill be introduced inChap.3. They are given
by χ which are constant in time and space. Such transformations can act nontrivially
on fields other than the electromagnetic field. With the definitions we have adopted,
the global transformations are not contained in the set of gauge transformations.

Equations (1.19a, b) are reduced in the Coulomb gauge to the following equations

�A0 = −ρ,
1

c2
∂2 	A
∂t2

− � 	A + 1

c
∇ ∂A0

∂t
= 1

c
	j . (1.25)

The solution of the first equation has the form

A0(t, 	x) = 1

4π

∫
d3x ′ ρ(t, 	x ′

)

|	x − 	x ′ | , (1.26)

provided that ρ vanishes sufficiently quickly at the spatial infinity to ensure that
the integral is convergent. The r.h.s. of formula (1.26) is often denoted by −�−1ρ.
Because the potential A0 is just given by integral (1.26)—there is not any evolution
equation for it to be solved—it is not a dynamical variable. In the final step, formula
(1.26) is used to eliminate A0 from the second of the equations (1.25). We also
eliminate ∂ρ/∂t with the help of continuity equation (1.20). The resulting equation
for 	A can be written in the form

1

c2
∂2 	A
∂t2

− � 	A = 1

c
	jT , (1.27)

where
	jT = 	j − ∇(�−1div 	j), (1.28)

and

�−1div 	j(t, 	x) = − 1

4π

∫
d3x ′ div 	j(t, 	x ′

)

|	x − 	x ′ | .

Of course, we assume that div 	j vanishes sufficiently quickly at the spatial infinity.
	jT is called the transverse part of the external current 	j . The reason for such a name
is that

div 	jT ≡ 0, (1.29)

as it immediately follows from the definition of 	jT . For the same reason, the potential
	Awhich obeys the Coulomb gauge condition is called the transverse vector potential.

http://dx.doi.org/10.1007/978-3-319-55619-2_3
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Note that identity (1.29) is a necessary condition for the existence of the solutions
of (1.27)—applying the div operator to both sides of (1.27) and using the Coulomb
condition we would obtain a contradiction if (1.29) were not true.

To summarize, the set of Maxwell equations (1.19) has been reduced to (1.27)
together with the Coulomb gauge condition (1.24). Equation (1.27) determines the
time evolution of the electromagnetic field. It plays the same role as Newton’s equa-
tion in classical mechanics. From a mathematical viewpoint, equation (1.27) is a set
of three linear, inhomogeneous, partial differential equations: one equation for each
component Ai of the vector potential.2 These equations are decoupled, that is they
can be solved independently from each other. They are called wave equations.

As in the case of the sine-Gordon equation (1.7), in order to uniquely determine
a solution of (1.27) we have to specify the initial data at the time t0:

	A(t0, 	x) = 	f1(	x), ∂ 	A(t, 	x)
∂t

∣∣∣∣∣
t=t0

= 	f2(	x), (1.30)

where 	f1 and 	f2 are given vector fields, vanishing at the spatial infinity. Moreover,
in order to ensure that the Coulomb gauge condition is satisfied at the time t = t0,
we assume that

div 	f1 = 0, div 	f2 = 0. (1.31)

It turns out that conditions (1.31) and equation (1.27) imply that div 	A = 0 for all
times t . The point is that equation (1.27) implies that div 	A obeys the homogeneous
equation

1

c2
∂2div 	A

∂t2
− �(div 	A) = 0.

Due to the assumptions (1.31) the initial data for this equation are homogeneous
ones, that is

div 	A|t=t0 = 0, ∂t div 	A|t=t0 = 0,

where ∂t is a short notation for the partial derivative ∂/∂t . We shall see in the next
section that all this implies that

div 	A = 0

for all times. In consequence, we do not have to worry about the Coulomb gauge con-
dition provided that the initial data (1.30) obey the conditions (1.31)—the Coulomb
gauge condition has been reduced to a constraint on the initial data.

2We adhere to the convention that vectors denoted by the arrow have componentswith upper indices.



12 1 Introduction

1.3 Solutions of the Klein–Gordon Equation

The considerations of the electromagnetic field have led us to an evolution equation
of the form

� φ = η(t, 	x), (1.32)

where

� ≡ � − 1

c2
∂2

∂t2
,

φ is a function of (t, 	x), and η is an a priori given function, called the source. The
wave equation (1.32) is a particular case of the more general Klein–Gordon equation

� φ − m2φ = η(t, 	x), (1.33)

where m2 is a real, non-negative constant of the dimension cm−2, and φ is a real
or complex function. The Klein–Gordon equation is the basic evolution equation in
relativistic field theory. It also appears in non relativistic settings. For example, sine-
Gordon equation (1.7) reduces to the Klein–Gordon equation with just one spatial
variable ξ if we consider� close to 0, because in this case sin� can be approximated
by �. Therefore, one should be acquainted with solutions of the Klein–Gordon
equation.

Let us introduce concise, four-dimensional relativistic notation:

x = (ct, 	x), k = (k0, 	k), kx = ck0t − 	k 	x, d4x = cd3xdt, d4k = d3kdk0.

Here k0 is a real variable, and 	k is a real 3-dimensional vector called thewavevector. k0
and 	k have the dimension cm−1. ω = ck0 is a frequency. Furthermore, we shall often
use x0 = ct instead of the time variable t and call it time too. This notation reflects the
Lorentz invariant structure of space-time. In particular, the form of kx corresponds
to the diagonal metric tensor of the space-time (ημν) = diag(1,−1,−1,−1), where
diag denotes the diagonal matrix with the listed elements on its diagonal. Note that
kx is dimensionless.

Because the Klein–Gordon equation is linear with respect to φ and has constant
coefficients, we may use the Fourier transform technique for solving it. We denote
by φ̃(k) the Fourier transform of φ(x). It is defined as follows:

φ̃(k) =
∫
d4x eikxφ(x). (1.34)

The inverse Fourier formula has the form

φ(x) = 1

(2π)4

∫
d4k e−ikx φ̃(k). (1.35)
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Analogously,

η̃(k) =
∫
d4x eikxη(x).

TheKlein–Gordon equation is equivalent to the following algebraic (not differential!)
equation for φ̃

(k20 − 	k 2 − m2) φ̃(k) = η̃(k). (1.36)

Its solutions should be sought in a space of generalized functions. An excellent
introduction to the theory of generalized functions with its applications to linear
partial differential equations can be found in, e.g., [2]. Some pertinent facts can be
found in Appendix A.

One can prove that the most general solution of (1.36) has the form

φ̃(k) = “
η̃(k)

k20 − 	k2 − m2
" + C(k0, 	k) δ(k20 − 	k2 − m2), (1.37)

where C(k0, 	k) is an arbitrary smooth function of the indicated variables. The first
term on the r.h.s. denotes a particular solution of the inhomogeneous equation (1.36).
We have put the quotationmarks around it because in fact that termwritten as it stands
is not correct. We explain and solve this problem shortly. The second term on the
r.h.s. gives the general solution of the homogeneous equation

(k20 − 	k 2 − m2) φ̃(k) = 0.

Formula (1.37) is in accordance with the well-known fact that the general solution of
an inhomogeneous linear equation can always be written as the sum of a particular
solution of that equation and of a general solution to the corresponding homogeneous
equation.

The problem with the term in quotation marks is that it is not a generalized
function. In consequence, its Fourier transform, formula (1.35), does not have to
exist, and indeed, it does not exist. One can see this easily by looking at the integral
over k0—there are non integrable singularities of the integrand at k0 = ±ω(	k)/c,
where

ω(	k) = c

√
	k 2 + m2. (1.38)

In order to obtain the correct formula for the solution we first find a generalized
function G̃(k) which obeys the equation

(k20 − 	k 2 − m2) G̃(k) = 1. (1.39)

The corresponding G(x) is calculated from a formula analogous to (1.35). It obeys
the following equation

(� − m2) G(x) = δ(x), (1.40)
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and is called the Green’s function of the Klein–Gordon equation. Knowing G̃(k),
we may replace the “ ” term by the mathematically correct expression

“
η̃(k)

k20 − 	k 2 − m2
” → η̃(k)G̃(k),

provided that η̃ is a smooth function of k0 and 	k.
Important Green’s functions for the Klein–Gordon equation have Fourier trans-

forms of the form

G̃(k) = c2

2ω(	k)
(

1

ck0 − ω(	k) ± i0+
− 1

ck0 + ω(	k) ± i0+

)
. (1.41)

The meaning of the symbol ±i0+ is explained in the Appendix. The choice +i0+ in
both terms of formula (1.41) gives the so called retarded Green’s function

GR(x − y) = c2

(2π)4

∫
d4k

e−ik(x−y)

2ω(	k)
(

1

ck0 − ω(	k) + i0+
− 1

ck0 + ω(	k) + i0+

)
.

(1.42)

The integral over k0 can be performed with the help of contour integration in the
plane of complex k0. The trick consists of completing the line of real k0 to a closed
contour by adding upper (lower) semicircle with the center at k0 = 0 and infinite
radius when x0 − y0 < 0 (x0 − y0 > 0). We obtain

GR(x − y) = −ic

2(2π)3
�(x0 − y0)

∫
d3k

ω(	k)
(
e−ik(x−y) − eik(x−y)

)∣∣∣∣
k0=ω(	k)/c

, (1.43)

where �(x0 − y0) denotes the Heaviside step function.3

The Green’s function GR is used in order to obtain a particular solution of the
inhomogeneous Klein–Gordon equation, denoted below by φη. Namely,

φη(x) =
∫
d4y GR(x − y)η(y). (1.44)

This solution is causal in the classical sense: the values of φη(x0, 	x) at a certain fixed
instant x0 are determined by values of the external source η(y0, 	y) at earlier times,
i.e., y0 ≤ x0. More detailed analysis shows that the contributions come only from
the interior and boundaries of the past light-cone with its tip at the point x , that is,

3�(x) = 1 for x > 1,�(x) = 0 for x < 0. The value of�(0) does not have to be specified because
the step function is used under the integral. Formally, the step function is a generalized function,
and for such functions their values at a given single point are not defined. Therefore, the question,
“what is the value of �(0)?” is meaningless.
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from y such that (x − y)2 ≥ 0 and x0 − y0 ≥ 0. This can be seen from the following
formula, see Appendix 2 in [3],

GR(x) = − 1

2π
�(x0)

[
δ(x2) − �(x2)

m

2
√
x2

J1(m
√
x2)

]
,

where x2 = (x0)2 − 	x 2, and J1 is a Bessel function. Therefore, waves of the field
emitted from a spatially localized source η travel with velocity not greater than
the velocity of light in the vacuum c. Choosing the −i0+ in formula (1.41) we
would obtain the so called advanced Green’s function, which is anti-causal—in this
case φη(x) is determined by values of η(y) in the future light cone, y0 ≥ x0 and
(x−y)2 ≥ 0. In general, the choice ofGreen’s function ismotivated by the underlying
physical problem. On purely mathematical grounds there are infinitely many Green’s
functions. All have the form GR(x) + φ0(x), where φ0(x) is a particular solution of
the homogeneous Klein-Gordon equation.

Now that we have found a particular solution for the inhomogeneous Klein-
Gordon equation, let us turn our attention to finding the general solution of the
homogeneous Klein–Gordon equation. The second term in formula (1.37) gives

φ0(x) = 1

(2π)4

∫
d4k e−ikxC(k0, 	k)δ(k20 − 	k2 − m2). (1.45)

With the help of formula

δ(k20 − 	k2 − m2) = δ(k0 − ω(	k)/c)
2ω(	k)/c + δ(k0 + ω(	k)/c)

2ω(	k)/c ,

φ0 can be written in the form

φ0(x) =
∫

d3k√
2(2π)3ω(	k)

(
a+(	k)e−ikx + a−(	k)eikx

)∣∣∣
k0=ω(	k)/c

, (1.46)

where

a±(	k) = C(±ω(	k),±	k)
(2π)2

√
4πω(	k)

.

The functions a±(	k) are called the momentum space amplitudes of the field φ0. The
part of φ0(x) with a+ (a−) is called the positive (negative) frequency part of the
Klein–Gordon field. If we require that all values of φ(x) are real, we have to restrict
the amplitudes a± by the condition

a∗
+(	k) = a−(	k), (1.47)
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where ∗ denotes the complex conjugation.
Formula (1.46), regarded as a relation between the amplitudes and the field φ0,

can be inverted. It is convenient first to introduce the operator P̂	k(y0),

P̂	k(y
0)φ(y0, 	y) = i

∫
d3y

(
f ∗
	k (y0, 	y)∂φ(y0, 	y)

∂y0
− ∂ f ∗

	k (y0, 	y)
∂y0

φ(y0, 	y)
)

,

(1.48)
where f	k is a normalized plane wave

f	k(y
0, 	y) = e−iky√

2(2π)3ω(	k)
(1.49)

with k0 = ω(	k)/c. Simple calculations show that

P̂	k(y
0) f	k ′(y0, 	y) = δ(	k − 	k ′), P̂	k(y

0) f ∗
	k ′(y

0, 	y) = 0, (1.50)

for any choice of y0. It follows that

P̂	k(y
0)φ0(y

0, 	y) = a+(	k). (1.51)

Note that there is no restriction on the choice of y0 present on the l.h.s. of this formula.
Formulas (1.51) and (1.47) inserted in formula (1.46) give the following identity

φ0(x) =
∫
d3k

(
f	k(x)P̂	k(y

0)φ0(y
0, 	y) + c.c.

)
. (1.52)

Here c.c. stands for the complex conjugate of the preceding term. At this point it is
convenient to define several new generalized functions:

�(+)(x) = − ic

2(2π)3

∫
d3k

ω(	k)e
−ikx

∣∣∣∣
k0=ω(	k)/c

,

�(−)(x) = (�(+)(x))∗, �(x) = �(+)(x) + �(−)(x), (1.53)

called the Pauli–Jordan functions. They obey the homogeneous Klein–Gordon equa-
tion. After simple manipulations, identity (1.52) can be rewritten in the following
form

φ0(x) = −
∫
d3y

[
�(x − y)

∂φ0(y)

∂y0
+ ∂�(x − y)

∂x0
φ0(y)

]
. (1.54)

This very important formula gives an explicit solution to the homogeneous Klein–
Gordon equation in terms of the initial data. We just take y0 = ct0, where t0 is
the time at which φ0(y0, 	y) and ∂φ0(y0, 	y)/∂y0|y0=ct0 are explicitly specified as the
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initial data. In particular, we see from formula (1.54) that vanishing initial data imply
that φ0(x) = 0. This result was used at the end of the previous section.

The explicit formula for the Pauli–Jordan function �(x) has the form (Appendix
2 in [3])

�(x) = − 1

2π
sign(x0)

[
δ(x2) − �(x2)

m

2
√
x2

J1(m
√
x2)

]
,

where
sign(x0) = +1 if x0 > 0, sign(x0) = −1 if x0 < 0.

One can see from this formula that the initial data are propagated in space with the
velocity not greater than c. In particular, if the initial data taken at the time t0 vanish
outside a certain bounded region V in space, then φ0(x) at later times t > t0 certainly
vanishes at all points 	x which cannot be reached by a light signal emitted from V .
Another implication of formula (1.54) is the Huygens principle: the value of φ0 at
the point 	x at the time t is a linear superposition of contributions from all points in
space for which the initial data do not vanish (and which do not lie too far from 	x).
This principle reflects the linearity of the Klein–Gordon equation.

Exercises

1.1 (a) Check that the functions

�+,v(ξ, τ ) = 4 arctan (exp[γ(ξ − vτ )]) ,

�+,+(ξ, τ ) = 4 arctan

(
v sinh(γξ)

cosh(vγτ )

)
, �+,−(ξ, τ ) = 4 arctan

(
sinh(vγτ )

v cosh(γξ)

)
,

where γ = 1/
√
1 − v2 and v is a real parameter such that 0 ≤ |v| < 1, are solu-

tions of the sine-Gordon equation (1.7). Justify their interpretation: �+,v represents
the soliton moving with constant velocity v, �+,+—two solitons, �+,−—soliton +
antisoliton pair.
(b) Comparing the asymptotic forms of solutions at τ → −∞ and τ → +∞ show
that there is a repulsive force between the two solitons, and an attractive one in the
case of the soliton + antisoliton pair.
(c) Check that the substitution v = iu, u-real, in the�+,− solution gives a real-valued
solution of the sine-Gordon equation which is periodic in time. Interpret this solution
as a bound state of the soliton with the antisoliton (called the breather).

Hints: In the cases of �+,+, �+,− consider the limits τ → ±∞. Use the identity

arctan
x − y

1 + xy
= arctan x − arctan y.
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In order to show the presence of the forces, analyze shifts of the position of the
soliton and the antisoliton with respect to the trajectory of the single (anti-)soliton.

1.2 (a) The advanced Green’s function GA for the Klein–Gordon equation is
obtained by choosing −i0+ in both terms in formula (1.41). Obtain formula analo-
gous to (1.43) in this case.
(b) Prove also that GF (x) defined as

GF (x) = 1

(2π)4

∫
d4k

e−ikx

k2 − m2 + i0+
,

where k2 = k20 − 	k 2, is another Green’s function for the Klein–Gordon equation.
GF is related to the free propagator of the scalar field, and it plays an important role
in the quantum theory of such fields. What is the choice of the signs ± in formula
(1.41) in this case?

1.3 Using GR , prove that

	A(t, 	x) = 1

4πc

∫
d3y

	jT (t, 	y)
|	x − 	y| ,

where t = t − |	x − 	y|/c, is a solution of the wave equation (1.27).
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