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Preface to the Second Edition

Preparing the new edition we have preferred first of all to improve the existing text.
Expanding it was not our priority because we would like to preserve the compact
size of the book. We have removed a number of misprints and mistakes. Sections
devoted to the Majorana field and to path integral approach to Uð1Þ anomaly have
been revised. There are two new sections: on anticommuting (bi)spinor fields, and
on more advanced supersymmetric models. Several new problems are added.

We would like to thank Thomas Williams for careful reading of the manuscript
and helpful comments, Łukasz Marszałek for pointing out several mistakes, and
Anna Gagatek for the help in preparation of figures.

The picture on the front cover is by courtesy of Dr. Tomasz Romańczukiewicz.
It illustrates scattering of two solitonic objects in 1+1 dimensional space-time.The
horizontal direction represents the time, and the vertical one the one dimensional
space. The two objects are the kink, discussed in Chap. 3, and an oscillon which is a
kind of breather, see Exercise 1.1(c). Before the scattering, the oscillon is at rest
(then its world-line coincides with the horizontal dark dashed line), while the kink
approaches it with a constant velocity (then its world-line coincides with the white
continuous line).

Kraków, Poland Henryk Arodź
Leszek Hadasz
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Preface to the First Edition

This textbook on field theory is based on our lectures which we delivered to
students beginning their specialization in theoretical physics at Jagiellonian
University in Cracow. The lectures were accompanied by problem-solving classes.
The goal was to give a presentation of the basics of field theory.

Field theory plays a fundamental role in many branches of contemporary phy-
sics, from cosmology, to particle physics, and condensed matter physics. Plenty of
successful applications testify to its importance. On the other hand, there still
remain unanswered questions about its foundations. For example, it is not clear
what is the proper mathematical framework for its formulation. Nor do we know
how to exactly solve its equations in the case of interacting fields. This state of field
theory—many successful applications vs. hidden in a mist foundations—makes the
task of preparing an introductory course rather challenging.

Before attending our course, the students had taken theoretical physics courses
on classical mechanics, non relativistic quantum mechanics, classical electrody-
namics, statistical physics, as well as mathematical courses on algebra, calculus,
and differential equations. They also had a general introduction to particle physics.
Concurrently with our lectures, or subsequently, they attended specialized lectures
on advanced quantum mechanics including the relativistic formulation, the standard
model of particle physics, statistical field theory, and the quantum theory of con-
densed matter. Such a curriculum has of course influenced the content of our
lectures. We have entirely omitted applications of field theory, and the emphasis has
been put on basic ideas. Furthermore, because of the limited time available both for
the lectures and for the students, we have not at all attempted to make the course
comprehensive. Our intention has been to offer a slow, step by step introduction to
the main concepts of field theory. The method we have chosen consists of a
carefully detailed explanation of the selected material. We hope that such a text-
book can be useful, and that it is a helpful supplement to the vast amount of existing
literature.

This textbook consists of three parts: classical fields are discussed in Chapters 1 to
5, an introduction to the quantum theory of fields is given in Chapters 6 to 10, and a
selection of relatively modern developments is presented in Chapters 11 to 14.
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We presented most of this material in three semesters using traditional tools: chalk
and a blackboard. At the end of each chapter there are exercises with hints for
solutions. Some are strictly tied up with the lectures, others deal with topics which
were discussed at length only during the problem-solving classes. We have also
included a short Appendix in which we have collected some basic facts about
generalized functions. Interested students can find hundreds of books on field theory.
Our list of literature includes only those books or original papers which are explicitly
mentioned in this text.

Many students commented on parts of our lecture notes. We are very grateful to
them all. We are particularly indebted to P. Balwierz, M. Eckstein, T. Rembiasz and
P. Witaszczyk for providing lists of mistakes and unclear points. Needless to say, the
full responsibility for mistakes and shortcomings still present lies entirely with us.
Errata, very likely necessary in spite of our efforts, will be posted on the web page
http://th-www.if.uj.edu.pl/ztp/Edukacja/index.php belonging to the Department of
Field Theory of the Marian Smoluchowski Institute of Physics, Jagiellonian
University.

Kraków, Poland Henryk Arodź
June 2010 Leszek Hadasz
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Chapter 1
Introduction

Abstract Sine-Gordon field as an effective description of a system of coupled pen-
dulums in a constant gravitational field. Sine-Gordon solitons. The electromagnetic
field, gauge potentials and gauge transformations. The Klein–Gordon equation and
its solutions.

By definition, any physical system which has infinitely many degrees of freedom
can be called a field. Systems with a finite number of degrees of freedom are called
particles or sets of particles. The kinematics and dynamics of particles is the subject
of classical and quantum mechanics. In parallel with these theories of particles there
exist classical and quantum theories of fields. In this chapterwe present two important
examples of classical fields: the sine-Gordon effective field and the electromagnetic
field.

Statistical mechanics deals with large ensembles of particles interacting with a
thermal bath. If the particles are replaced by a field or a set of fields, the corresponding
theory is called statistical field theory. This branch of field theory is not presented in
our lecture notes.

1.1 Example A: Sine-Gordon Effective Field

Let us take a rectilinear, horizontal wire with M + N + 1 pendulums hanging from
it at equally spaced points labeled by xi . Here i = −M, . . . , N , where M, N are
natural numbers. The points xi are separated by a constant distance a. The length of
that part of the wire from which the pendulums are hanging is equal to (M + N )a.
Each pendulum has a very light arm of length R, and a point mass m at the free end.
It can swing only in the plane perpendicular to the wire. All pendulums are fastened
to the wire stiffly, hence their swinging twists the wire (accordingly). The wire is
elastic with respect to such twists. Each pendulum has one degree of freedom which
may be represented by the angle φ(xi ) between the vertical direction and the arm of
the pendulum. All pendulums are subject to the constant gravitational force. In the
configuration with the least energy all pendulums point downward and the wire is not

© Springer International Publishing AG 2017
H. Arodź and L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
Graduate Texts in Physics, DOI 10.1007/978-3-319-55619-2_1
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2 1 Introduction

twisted. We adopt the convention that in this case the angles φ(xi ) are equal to zero.
Because of the presence of the wire φ(xi ) = 0 is not the same as φ(xi ) = 2πk, where
k = ±1,±2, . . .—in the latter case the pendulum points downward but the wire
is twisted, hence there is a non vanishing elastic energy. Therefore, the physically
relevant range of φ(xi ) is from minus to plus infinity.

The equation of motion for each pendulum, except for the first and the last ones,
has the following form

mR2 d
2φ(xi , t)

dt2
= −mgR sin φ(xi , t) + κ

φ(xi − a, t) + φ(xi + a, t) − 2φ(xi , t)

a
,

(1.1)
where κ is a constant which characterizes the elasticity of the wire with respect to
twisting. The l.h.s. of this equation is the rate of change of the angular momentum of
the i-th pendulum. The r.h.s. is the sum of all torques acting on the i-th pendulum:
the first term is related to the gravitational force acting on the mass m, the second
term represents the elastic torque due to the twist of the wire.

The equations of motion for the two outermost pendulums differ from (1.1) in a
rather obvious way. In the following we shall assume that these two pendulums are
kept motionless by some external force in the downward position, that is that

φ(x−M , t) = 0, φ(xN , t) = 2πn, (1.2)

where n is an integer. If we had put φ(x−M) = 2πl with integer l we could stiffly
rotate the wire and all of the pendulums l times by the angle −2π in order to obtain
l = 0. Therefore, the conditions (1.2) are the most general ones in the case of
motionless, downward pointing outermost pendulums. In fact, these two pendulums
can be removed altogether—we may imagine that the ends of the wire are tightly
held in vices.

In order to predict the evolution of the system we have to solve (1.1) assuming
certain initial data for the angles φ(xi , t), i = −M + 1, . . . , N − 1, and for the
corresponding velocities φ̇(xi , t). This is a rather difficult task. Practical tools to be
used here are numerical methods and computers. Numerical computations are useful
if we ask for the solution of the equations of motion for a finite, and not too large,
time interval. If we let the number of pendulums increase, sooner or later we will
be incapable of predicting the evolution of the system except for very short time
intervals, unless we restrict initial data in a special way. One such special case is
in the limit of small oscillations around the least energy configuration, φ(xi ) = 0.
In this case we can linearize the equations of motion (1.1) using the approximation
sin φ ≈ φ. The resulting equations are of the same type as those obtained for a system
of coupled harmonic oscillators, treatments of which can be found in textbooks on
classical mechanics.

It turns out that there is another special case which can be treated analytically.
We call it the field theoretical limit because, as is explained below, we pass to an
auxiliary system with an infinite number of degrees of freedom. Let us introduce a
function φ(x, t), where x is a new real continuous variable (a coordinate along the



1.1 Example A: Sine-Gordon Effective Field 3

wire). By assumption, this function is at least twice differentiable with respect to
x , and is such that its values at the points x = xi are equal to the angles φ(xi , t)
introduced earlier. Hence, φ(x, t) smoothly interpolates between φ(xi , t) for each i .
Of course, for a given set of the angles one can find infinitely many such functions.
For any such function the following identity holds

φ(xi − a, t) + φ(xi + a, t) − 2φ(xi , t) =
∫ a

0
ds1

∫ 0

−a
ds2

∂2φ(s1 + s2 + x, t)

∂x2

∣∣∣∣
x=xi

.

Now comes the crucial assumption: we restrict our considerations to thosemotions of
the pendulums for which there exists an interpolating function φ(x, t) of continuous
variables x and t which satisfies

∫ a

0
ds1

∫ 0

−a
ds2

∂2φ(s1 + s2 + x, t)

∂x2

∣∣∣∣
x=xi

≈ a2
∂2φ(x, t)

∂x2

∣∣∣∣∣
x=xi

(1.3)

for all times t and at all points xi . For example, this is the case when the second
derivative of φ with respect to x is almost constant as x runs through the interval
[xi − a, xi + a], for all times t . With approximation (1.3) the identity written above
can be replaced by the following approximate one

φ(xi − a, t) + φ(xi + a, t) − 2φ(xi , t) ≈ a2
∂2φ(x, t)

∂x2

∣∣∣∣
x=xi

.

Using this formula in (1.1) we obtain

mR2 d
2φ(xi , t)

dt2
≈ −mgR sin φ(xi , t) + κa

∂2φ(x, t)

∂x2

∣∣∣∣
x=xi

. (1.4)

Let us now suppose that our function φ(x, t) obeys the following partial differ-
ential equation,

mR2 ∂2φ(x, t)

∂t2
= −mgR sin φ(x, t) + κa

∂2φ(x, t)

∂x2
, (1.5)

where x ∈ [−Ma, Na], and

φ(−Ma, t) = 0, φ(Na, t) = 2πn, (1.6)

where n is the same integer as in (1.2). Then, it is clear that φ(xi , t), i = −M +
1, . . . , N − 1, obey (1.4). Also the boundary conditions (1.2) are satisfied. Hence, if
condition (1.3) is satisfiedwe obtain an approximate solution of the initial Newtonian
equations (1.1).



4 1 Introduction

The nonlinear partial differential equation (1.5) is well-known in mathematical
physics by the jocular name ‘sine-Gordon equation’ which alludes to the Klein–
Gordon equation. This latter equation is a cornerstone of relativistic field theory—we
shall discuss it in Sect. 1.3. The sine-Gordon equation can be transformed into its
standard form by dividing by mgR, and by rewriting it with the new, dimensionless
variables

τ =
√

g

R
t, ξ =

√
mgR

κa
x, �(ξ, τ ) = φ(x, t).

The resulting standard form of the sine-Gordon equation reads

∂2�(ξ, τ )

∂τ 2
− ∂2�(ξ, τ )

∂ξ2
+ sin�(ξ, τ ) = 0. (1.7)

There are many mathematical theorems about (1.7) and its solutions. One of them
says that in order to determine a unique solution uniquely, onemust specify the initial
data, that is, onemust fix the values of�(ξ, τ ), and ∂�(ξ, τ )/∂τ for a chosen instant
of the rescaled time τ = τ0 and for all ξ in the interval [ξ−M , ξN ] (which corresponds
to the interval [x−M , xN ]). One must also specify the so-called boundary conditions,
that is the values of � at the boundaries ξ = ξ−M and ξ = ξN of the allowed range
of ξ for all values of τ . In our case their form follows from conditions (1.2),

�(ξ−M , τ ) = 0, �(ξN , τ ) = 2πn. (1.8)

In order to specify the initial datawe have to provide an infinite set of real numbers (to
define the values of �(ξ, τ0), ∂�(ξ, τ )/∂τ |τ=τ0 ) because ξ is a continuous variable.
For this reason the dynamical system defined by the sine-Gordon equation has an
infinite number of degrees of freedom. This system, called the sine-Gordon field,
is mathematically represented by the function �, and the sine-Gordon equation is
its equation of motion. The sine-Gordon field is said to be the effective field for
the system of pendulums described above. Let us emphasize that the sine-Gordon
effective field gives an accurate description of the dynamics of the original system
only if condition (1.3) is satisfied. Such a reduction of the original problem to the
dynamics of an effective field, or to a set of effective fields in other cases, has become
an extremely efficient tool in theoretical investigations of many physical systems
considered in condensed matter physics or particle physics.

Let us end this section with a few examples of nontrivial solutions of the sine-
Gordon equation in its standard form (1.7). Let us assume that� does not depend on
the rescaled time τ , that is, that � = �(ξ)—such solutions are referred to as static.
Then, (1.7) reduces to the following ordinary differential equation

�′′(ξ) = sin�(ξ), (1.9)
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where ′ denotes differentiation with respect to ξ. Multiplying this equation by �′ we
obtain

1

2
(�′2)′ = −(cos�)′,

and after integration,
1

2
�

′2 = c0 − cos�, (1.10)

where c0 is a constant. The boundary conditions (1.8) imply that

c0 = 1 + 1

2
�

′2(ξ−M) = 1 + 1

2
�

′2(ξN ). (1.11)

It follows that c0 ≥ 1, and that �′(ξ−M) = ±�′(ξN ).
Let us first consider the case c0 = 1. The square root of (1.10) with c0 = 1 gives

�′ = 2 sin(
�

2
), (1.12)

or

�′ = −2 sin(
�

2
), (1.13)

which can be easily integrated. Apart from the trivial solution � = 0, there exist
nontrivial solutions, denoted below by �+ and �−. Integrating (1.12) and (1.13) we
find that

ln | tan(�
4

)| = ±(ξ − ξ0),

where ξ0 is an arbitrary constant, and the signs + and − correspond to (1.12) and
(1.13), respectively. It follows that

�±(ξ) = ±4 arctan[exp(±(ξ − ξ0))] mod 4π. (1.14)

Formula (1.14) implies that �′±(ξ) �= 0 for all finite ξ, and �′±(ξ) → 0 if ξ → ∞
or ξ → −∞. Therefore, conditions (1.11) can only be satisfied if

ξ−M = −∞, ξN = +∞.

With the help of the identity

arctan(1/x) = π/2 − arctan x,

one can show that formula (1.14) in fact gives two solutionswhich obey the conditions
(1.8):

�±(ξ) = ±4 arctan(exp(ξ − ξ0)). (1.15)
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It is clear that
lim

ξ→+∞
�±(ξ) = ±2π.

Hence, the integer n in (1.8) can be equal to 0 or±1 (n = 0 corresponds to the trivial
solution � = 0).

Let us summarize the case forwhich c0 = 1. Static solutions obeying the boundary
conditions (1.8) exist only if the range of ξ is infinite, from −∞ to +∞, and then
the nontrivial solutions have the form (1.15). The solution �+ is called the soliton,
and �− the antisoliton. ξ0 is called the location of the (anti-)soliton. There are no
static solutions with |n| > 1.

Coming back to our system of pendulums, the solitonic solutions (1.15) are rel-
evant if the condition (1.3) is satisfied. The two integrals on the l.h.s. of condition
(1.3) can be rewritten as integrals of �′′± with respect to the dimensionless variables

ξ1,2 =
√
mgR

κa
x1,2.

Then, the integration limits are given by 0 and ±α, where

α =
√
mgRa

κ
.

We see that condition (1.3) is certainly satisfied if

α → 0,

because in this limit the range of integration shrinks to a point. The value of the
dimensionless parameter α can be made small by, e.g., choosing a wire with large
κ or by putting the pendulums close to each other (small a). Furthermore, note that
ξN = αxN/a, ξ−M = αx−M/a, x−M = −Ma and; xn = Na. It follows that
ξN , ξ−M can tend to ±∞, respectively, in the limit α → 0 only if N , M → ∞.
Thus, the number of pendulums has to be very large.

The case c0 > 1 is a little bit more complicated. Equation (1.10) is equivalent to
the following equations

�′ = ±√
2c0 − 2 cos�, (1.16)

which give the following relations

∫ �(ξ)

0
ds

1√
1 − c−1

0 cos s
= ±√

2c0(ξ − ξ−M). (1.17)

These relations implicitly define the functions �(ξ) which obey (1.9). The integral
on the l.h.s. of (1.17) can be related to an elliptic integral of the first kind (see, e.g.
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[1]), and �(ξ) is then given by the inverse of the elliptic function. The constant c0
is determined from the following equation, obtained by inserting the second of the
boundary conditions (1.8) into formula (1.17):

∫ 2πn

0
ds

1√
1 − c−1

0 cos s
= ±√

2c0 (ξN − ξ−M). (1.18)

Note that now ξ−M and ξN have to be finite, otherwise the r.h.s. of this equation
would be meaningless.

One may also solve (1.16) numerically. These equations are rather simple and can
easily be tackled by computer algebra systems likeMaple© orMathematica©. Equa-
tions (1.16) are considered on the interval (ξ−M , ξN ). They are formally regarded
as evolution equations with ξ playing the role of time. The boundary condition
�(ξ−M) = 0 is now regarded as the initial condition for �(ξ). The constant c0 is
adjusted by trial and error until the calculation gives �(ξN ) ≈ 2πn to the desired
accuracy. For example, choosing ξ−M = −10 and ξN = 10 we have obtained
c0 ≈ 1.00000008 for n = ±1, c0 ≈ 1.0014 for n = ±2, and c0 ≈ 1.0398 for
n = ±3.

These solutions of the sine-Gordon equation with c0 > 1 are pertinent to the
physics of the system of pendulums when the parameter α has a sufficiently small
value, as in the case c0 = 1. For given natural numbers N and M , the values of
ξ−M and ξN are calculated from formulas ξ−M = −αM and ξN = αN . In the limit
α → 0 with ξ−M and ξN kept non vanishing and constant, the number of pendulums
has to increase indefinitely.

1.2 Example B: The Electromagnetic Field

We have just seen an example of an effective field—the sine-Gordon field φ(x, t)—
introduced in order to provide an approximate description of our original physical
system: the set of coupled pendulums. Now we shall see an example from another
class of fields, called fundamental fields. Such fields are regarded as elementary
dynamical systems—according to present day physics there are no experimental
indications that they are effective fields for an underlying system. The fundamental
fields appear in particular in particle physics and cosmology. Later on we shall see
several such fields. Herewe briefly recall the classical electromagnetic field. It should
be stressed that we regard this field as a physical entity, a part of the material world.
Our main goal is to show that the Maxwell equations can be reduced to a set of
uncoupled wave equations.

According to 19th century physics, the electromagnetic field is represented by
two functions 	E(t, 	x), 	B(t, 	x), the electric and magnetic fields respectively. Here 	x
is a position vector in the three dimensional space R3, and t is time. The fields obey
the Maxwell equations of the form (we use the rationalized Gaussian units)
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(a) div 	E = ρ, (c) div 	B = 0,

(b) rot 	B − 1
c

∂ 	E
∂t = 1

c
	j, (d) rot 	E + 1

c
∂ 	B
∂t = 0,

(1.19)

where ρ is the electric charge density, and 	j is the electric current density. ρ and 	j
are functions of t and 	x , and c is the speed of light in the vacuum.

Suppose that there exist fields 	E(t, 	x), 	B(t, 	x) obeyingMaxwell equations (1.19).
Acting with the div operator on (1.19b), then using the identity div(rot) ≡ 0 and
(1.19a), we obtain the following condition on the charge and current density

∂ρ

∂t
+ div 	j = 0. (1.20)

This is a well-known continuity equation. It is equivalent to conservation of electric
charge. From the mathematical viewpoint, it should be regarded as a consistency
condition for the Maxwell equations—if it is not satisfied they do not have any
solutions.

Equation (1.19c) is satisfied by any field 	B of the form

	B = rot 	A, (1.21)

where 	A(t, 	x) is a (sufficiently smooth) function of 	x . Conversely, one can prove
that any field 	B which obeys (1.19c) has the form (1.21). From (1.21) and (1.19d)
follows the identity

rot( 	E + 1

c

∂ 	A
∂t

) = 0.

There is a mathematical theorem (the Poincaré lemma) which says that an identity
of the form rot 	X = 0 implies that the vector function 	X is the gradient of a scalar
function σ, i.e. 	X = ∇σ. Therefore, there exists a function A0 such that

	E + 1

c

∂ 	A
∂t

= −∇A0

(the minus sign is dictated by tradition). Thus,

	E = −1

c

∂ 	A
∂t

− ∇A0. (1.22)

The functions A0 and 	A are called gauge potentials for the electromagnetic field.
Note that the choice of A0 and 	A for a given electric and magnetic fields is not
unique—instead of A0 and 	A one may just as well take

	A′(t, 	x) = 	A(t, 	x) − ∇χ(t, 	x), A′
0(t, 	x) = A0(t, 	x) + 1

c

∂χ(t, 	x)
∂t

, (1.23)
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whereχ(t, 	x) is a sufficiently smooth but otherwise arbitrary function of the indicated
variables. This freedom of choosing the gauge potentials is called the gauge symme-
try. Formulas (1.23) can be regarded as transformations of the gauge potentials, and
are called the gauge transformations. Often they are called local gauge transforma-
tions in order to emphasize the fact that the function χ is space and time dependent.
One should keep in mind the fact that the gauge transformations appear because we
adopt the mathematical description of the electromagnetic field in terms of the poten-
tials. The fields 	E and 	B do not change under these transformations. The potentials
A0, 	A and A′

0,
	A′ from formulas (1.23) describe the same physical situation. The

freedom of performing the gauge transformations means that the potentials form a
larger than necessary set of functions for describing a given physical configuration
of the electromagnetic field. Nevertheless, it turns out that the description in terms
of the potentials is a most economical one, especially in quantum theories of parti-
cles or fields interacting with the electromagnetic field. In fact, it has been commonly
accepted that the best mathematical representation of the electromagnetic field—one
of the basic components of the material world—is given by the gauge potentials A0

and 	A.
Expressing 	E and 	B by the gauge potentials we have explicitly solved (1.19c, d).

Now let us turn to (1.19a, b). First, we use the gauge transformations to adjust the
vector potential 	A in such a way that

div 	A = 0. (1.24)

This condition is known as the Coulomb gauge condition. One can easily check that
for any given 	A one can find a gauge function χ such that 	A′ obeys the Coulomb
condition, provided that div 	A vanishes sufficiently quickly at the spatial infinity. For
that matter, let us note that from a physical viewpoint it is sufficient to consider
electric and magnetic fields which smoothly1 vanish at the spatial infinity. For such
fields there exist potentials A0 and 	A which also smoothly vanish as |	x | → ∞. It
is quite natural to assume that the gauge transformations leave the potentials within
this class. Therefore, we assume that the gauge function χ also smoothly vanishes at
the spatial infinity. We might have assumed that it could approach a non vanishing
constant in that limit. However, such a constant leads to a trivial gauge transformation
because then the derivatives present in formulas (1.23) vanish. For this reason it is
natural to choose this constant equal to zero. Note that now the Coulomb gauge
condition determines the gauge completely. By this we mean that if both 	A and 	A′,
which are related by the local gauge transformation (1.23), obey the Coulomb gauge
condition, then χ = 0, that is the two potentials coincide. This follows from the facts
that if (1.24) is satisfied by 	A and 	A′ thenχ obeys the Laplace equation,�χ = 0, and
the only nonsingular solution of this equation which vanishes at the spatial infinity
is χ = 0.

1Here this means that all derivatives of the fields with respect to the Cartesian coordinates xi also
vanish at the spatial infinity.



10 1 Introduction

The condition that χ vanishes at the spatial infinity is also welcome for another
reason—itmakes a clear distinctionbetween (local) gauge transformations andglobal
transformations.Global transformationswill be introduced inChap.3. They are given
by χ which are constant in time and space. Such transformations can act nontrivially
on fields other than the electromagnetic field. With the definitions we have adopted,
the global transformations are not contained in the set of gauge transformations.

Equations (1.19a, b) are reduced in the Coulomb gauge to the following equations

�A0 = −ρ,
1

c2
∂2 	A
∂t2

− � 	A + 1

c
∇ ∂A0

∂t
= 1

c
	j . (1.25)

The solution of the first equation has the form

A0(t, 	x) = 1

4π

∫
d3x ′ ρ(t, 	x ′

)

|	x − 	x ′ | , (1.26)

provided that ρ vanishes sufficiently quickly at the spatial infinity to ensure that
the integral is convergent. The r.h.s. of formula (1.26) is often denoted by −�−1ρ.
Because the potential A0 is just given by integral (1.26)—there is not any evolution
equation for it to be solved—it is not a dynamical variable. In the final step, formula
(1.26) is used to eliminate A0 from the second of the equations (1.25). We also
eliminate ∂ρ/∂t with the help of continuity equation (1.20). The resulting equation
for 	A can be written in the form

1

c2
∂2 	A
∂t2

− � 	A = 1

c
	jT , (1.27)

where
	jT = 	j − ∇(�−1div 	j), (1.28)

and

�−1div 	j(t, 	x) = − 1

4π

∫
d3x ′ div 	j(t, 	x ′

)

|	x − 	x ′ | .

Of course, we assume that div 	j vanishes sufficiently quickly at the spatial infinity.
	jT is called the transverse part of the external current 	j . The reason for such a name
is that

div 	jT ≡ 0, (1.29)

as it immediately follows from the definition of 	jT . For the same reason, the potential
	Awhich obeys the Coulomb gauge condition is called the transverse vector potential.

http://dx.doi.org/10.1007/978-3-319-55619-2_3
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Note that identity (1.29) is a necessary condition for the existence of the solutions
of (1.27)—applying the div operator to both sides of (1.27) and using the Coulomb
condition we would obtain a contradiction if (1.29) were not true.

To summarize, the set of Maxwell equations (1.19) has been reduced to (1.27)
together with the Coulomb gauge condition (1.24). Equation (1.27) determines the
time evolution of the electromagnetic field. It plays the same role as Newton’s equa-
tion in classical mechanics. From a mathematical viewpoint, equation (1.27) is a set
of three linear, inhomogeneous, partial differential equations: one equation for each
component Ai of the vector potential.2 These equations are decoupled, that is they
can be solved independently from each other. They are called wave equations.

As in the case of the sine-Gordon equation (1.7), in order to uniquely determine
a solution of (1.27) we have to specify the initial data at the time t0:

	A(t0, 	x) = 	f1(	x), ∂ 	A(t, 	x)
∂t

∣∣∣∣∣
t=t0

= 	f2(	x), (1.30)

where 	f1 and 	f2 are given vector fields, vanishing at the spatial infinity. Moreover,
in order to ensure that the Coulomb gauge condition is satisfied at the time t = t0,
we assume that

div 	f1 = 0, div 	f2 = 0. (1.31)

It turns out that conditions (1.31) and equation (1.27) imply that div 	A = 0 for all
times t . The point is that equation (1.27) implies that div 	A obeys the homogeneous
equation

1

c2
∂2div 	A

∂t2
− �(div 	A) = 0.

Due to the assumptions (1.31) the initial data for this equation are homogeneous
ones, that is

div 	A|t=t0 = 0, ∂t div 	A|t=t0 = 0,

where ∂t is a short notation for the partial derivative ∂/∂t . We shall see in the next
section that all this implies that

div 	A = 0

for all times. In consequence, we do not have to worry about the Coulomb gauge con-
dition provided that the initial data (1.30) obey the conditions (1.31)—the Coulomb
gauge condition has been reduced to a constraint on the initial data.

2We adhere to the convention that vectors denoted by the arrow have componentswith upper indices.
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1.3 Solutions of the Klein–Gordon Equation

The considerations of the electromagnetic field have led us to an evolution equation
of the form

� φ = η(t, 	x), (1.32)

where

� ≡ � − 1

c2
∂2

∂t2
,

φ is a function of (t, 	x), and η is an a priori given function, called the source. The
wave equation (1.32) is a particular case of the more general Klein–Gordon equation

� φ − m2φ = η(t, 	x), (1.33)

where m2 is a real, non-negative constant of the dimension cm−2, and φ is a real
or complex function. The Klein–Gordon equation is the basic evolution equation in
relativistic field theory. It also appears in non relativistic settings. For example, sine-
Gordon equation (1.7) reduces to the Klein–Gordon equation with just one spatial
variable ξ if we consider� close to 0, because in this case sin� can be approximated
by �. Therefore, one should be acquainted with solutions of the Klein–Gordon
equation.

Let us introduce concise, four-dimensional relativistic notation:

x = (ct, 	x), k = (k0, 	k), kx = ck0t − 	k 	x, d4x = cd3xdt, d4k = d3kdk0.

Here k0 is a real variable, and 	k is a real 3-dimensional vector called thewavevector. k0
and 	k have the dimension cm−1. ω = ck0 is a frequency. Furthermore, we shall often
use x0 = ct instead of the time variable t and call it time too. This notation reflects the
Lorentz invariant structure of space-time. In particular, the form of kx corresponds
to the diagonal metric tensor of the space-time (ημν) = diag(1,−1,−1,−1), where
diag denotes the diagonal matrix with the listed elements on its diagonal. Note that
kx is dimensionless.

Because the Klein–Gordon equation is linear with respect to φ and has constant
coefficients, we may use the Fourier transform technique for solving it. We denote
by φ̃(k) the Fourier transform of φ(x). It is defined as follows:

φ̃(k) =
∫
d4x eikxφ(x). (1.34)

The inverse Fourier formula has the form

φ(x) = 1

(2π)4

∫
d4k e−ikx φ̃(k). (1.35)
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Analogously,

η̃(k) =
∫
d4x eikxη(x).

TheKlein–Gordon equation is equivalent to the following algebraic (not differential!)
equation for φ̃

(k20 − 	k 2 − m2) φ̃(k) = η̃(k). (1.36)

Its solutions should be sought in a space of generalized functions. An excellent
introduction to the theory of generalized functions with its applications to linear
partial differential equations can be found in, e.g., [2]. Some pertinent facts can be
found in Appendix A.

One can prove that the most general solution of (1.36) has the form

φ̃(k) = “
η̃(k)

k20 − 	k2 − m2
" + C(k0, 	k) δ(k20 − 	k2 − m2), (1.37)

where C(k0, 	k) is an arbitrary smooth function of the indicated variables. The first
term on the r.h.s. denotes a particular solution of the inhomogeneous equation (1.36).
We have put the quotationmarks around it because in fact that termwritten as it stands
is not correct. We explain and solve this problem shortly. The second term on the
r.h.s. gives the general solution of the homogeneous equation

(k20 − 	k 2 − m2) φ̃(k) = 0.

Formula (1.37) is in accordance with the well-known fact that the general solution of
an inhomogeneous linear equation can always be written as the sum of a particular
solution of that equation and of a general solution to the corresponding homogeneous
equation.

The problem with the term in quotation marks is that it is not a generalized
function. In consequence, its Fourier transform, formula (1.35), does not have to
exist, and indeed, it does not exist. One can see this easily by looking at the integral
over k0—there are non integrable singularities of the integrand at k0 = ±ω(	k)/c,
where

ω(	k) = c

√
	k 2 + m2. (1.38)

In order to obtain the correct formula for the solution we first find a generalized
function G̃(k) which obeys the equation

(k20 − 	k 2 − m2) G̃(k) = 1. (1.39)

The corresponding G(x) is calculated from a formula analogous to (1.35). It obeys
the following equation

(� − m2) G(x) = δ(x), (1.40)
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and is called the Green’s function of the Klein–Gordon equation. Knowing G̃(k),
we may replace the “ ” term by the mathematically correct expression

“
η̃(k)

k20 − 	k 2 − m2
” → η̃(k)G̃(k),

provided that η̃ is a smooth function of k0 and 	k.
Important Green’s functions for the Klein–Gordon equation have Fourier trans-

forms of the form

G̃(k) = c2

2ω(	k)
(

1

ck0 − ω(	k) ± i0+
− 1

ck0 + ω(	k) ± i0+

)
. (1.41)

The meaning of the symbol ±i0+ is explained in the Appendix. The choice +i0+ in
both terms of formula (1.41) gives the so called retarded Green’s function

GR(x − y) = c2

(2π)4

∫
d4k

e−ik(x−y)

2ω(	k)
(

1

ck0 − ω(	k) + i0+
− 1

ck0 + ω(	k) + i0+

)
.

(1.42)

The integral over k0 can be performed with the help of contour integration in the
plane of complex k0. The trick consists of completing the line of real k0 to a closed
contour by adding upper (lower) semicircle with the center at k0 = 0 and infinite
radius when x0 − y0 < 0 (x0 − y0 > 0). We obtain

GR(x − y) = −ic

2(2π)3
�(x0 − y0)

∫
d3k

ω(	k)
(
e−ik(x−y) − eik(x−y)

)∣∣∣∣
k0=ω(	k)/c

, (1.43)

where �(x0 − y0) denotes the Heaviside step function.3

The Green’s function GR is used in order to obtain a particular solution of the
inhomogeneous Klein–Gordon equation, denoted below by φη. Namely,

φη(x) =
∫
d4y GR(x − y)η(y). (1.44)

This solution is causal in the classical sense: the values of φη(x0, 	x) at a certain fixed
instant x0 are determined by values of the external source η(y0, 	y) at earlier times,
i.e., y0 ≤ x0. More detailed analysis shows that the contributions come only from
the interior and boundaries of the past light-cone with its tip at the point x , that is,

3�(x) = 1 for x > 1,�(x) = 0 for x < 0. The value of�(0) does not have to be specified because
the step function is used under the integral. Formally, the step function is a generalized function,
and for such functions their values at a given single point are not defined. Therefore, the question,
“what is the value of �(0)?” is meaningless.
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from y such that (x − y)2 ≥ 0 and x0 − y0 ≥ 0. This can be seen from the following
formula, see Appendix 2 in [3],

GR(x) = − 1

2π
�(x0)

[
δ(x2) − �(x2)

m

2
√
x2

J1(m
√
x2)

]
,

where x2 = (x0)2 − 	x 2, and J1 is a Bessel function. Therefore, waves of the field
emitted from a spatially localized source η travel with velocity not greater than
the velocity of light in the vacuum c. Choosing the −i0+ in formula (1.41) we
would obtain the so called advanced Green’s function, which is anti-causal—in this
case φη(x) is determined by values of η(y) in the future light cone, y0 ≥ x0 and
(x−y)2 ≥ 0. In general, the choice ofGreen’s function ismotivated by the underlying
physical problem. On purely mathematical grounds there are infinitely many Green’s
functions. All have the form GR(x) + φ0(x), where φ0(x) is a particular solution of
the homogeneous Klein-Gordon equation.

Now that we have found a particular solution for the inhomogeneous Klein-
Gordon equation, let us turn our attention to finding the general solution of the
homogeneous Klein–Gordon equation. The second term in formula (1.37) gives

φ0(x) = 1

(2π)4

∫
d4k e−ikxC(k0, 	k)δ(k20 − 	k2 − m2). (1.45)

With the help of formula

δ(k20 − 	k2 − m2) = δ(k0 − ω(	k)/c)
2ω(	k)/c + δ(k0 + ω(	k)/c)

2ω(	k)/c ,

φ0 can be written in the form

φ0(x) =
∫

d3k√
2(2π)3ω(	k)

(
a+(	k)e−ikx + a−(	k)eikx

)∣∣∣
k0=ω(	k)/c

, (1.46)

where

a±(	k) = C(±ω(	k),±	k)
(2π)2

√
4πω(	k)

.

The functions a±(	k) are called the momentum space amplitudes of the field φ0. The
part of φ0(x) with a+ (a−) is called the positive (negative) frequency part of the
Klein–Gordon field. If we require that all values of φ(x) are real, we have to restrict
the amplitudes a± by the condition

a∗
+(	k) = a−(	k), (1.47)
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where ∗ denotes the complex conjugation.
Formula (1.46), regarded as a relation between the amplitudes and the field φ0,

can be inverted. It is convenient first to introduce the operator P̂	k(y0),

P̂	k(y
0)φ(y0, 	y) = i

∫
d3y

(
f ∗
	k (y0, 	y)∂φ(y0, 	y)

∂y0
− ∂ f ∗

	k (y0, 	y)
∂y0

φ(y0, 	y)
)

,

(1.48)
where f	k is a normalized plane wave

f	k(y
0, 	y) = e−iky√

2(2π)3ω(	k)
(1.49)

with k0 = ω(	k)/c. Simple calculations show that

P̂	k(y
0) f	k ′(y0, 	y) = δ(	k − 	k ′), P̂	k(y

0) f ∗
	k ′(y

0, 	y) = 0, (1.50)

for any choice of y0. It follows that

P̂	k(y
0)φ0(y

0, 	y) = a+(	k). (1.51)

Note that there is no restriction on the choice of y0 present on the l.h.s. of this formula.
Formulas (1.51) and (1.47) inserted in formula (1.46) give the following identity

φ0(x) =
∫
d3k

(
f	k(x)P̂	k(y

0)φ0(y
0, 	y) + c.c.

)
. (1.52)

Here c.c. stands for the complex conjugate of the preceding term. At this point it is
convenient to define several new generalized functions:

�(+)(x) = − ic

2(2π)3

∫
d3k

ω(	k)e
−ikx

∣∣∣∣
k0=ω(	k)/c

,

�(−)(x) = (�(+)(x))∗, �(x) = �(+)(x) + �(−)(x), (1.53)

called the Pauli–Jordan functions. They obey the homogeneous Klein–Gordon equa-
tion. After simple manipulations, identity (1.52) can be rewritten in the following
form

φ0(x) = −
∫
d3y

[
�(x − y)

∂φ0(y)

∂y0
+ ∂�(x − y)

∂x0
φ0(y)

]
. (1.54)

This very important formula gives an explicit solution to the homogeneous Klein–
Gordon equation in terms of the initial data. We just take y0 = ct0, where t0 is
the time at which φ0(y0, 	y) and ∂φ0(y0, 	y)/∂y0|y0=ct0 are explicitly specified as the
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initial data. In particular, we see from formula (1.54) that vanishing initial data imply
that φ0(x) = 0. This result was used at the end of the previous section.

The explicit formula for the Pauli–Jordan function �(x) has the form (Appendix
2 in [3])

�(x) = − 1

2π
sign(x0)

[
δ(x2) − �(x2)

m

2
√
x2

J1(m
√
x2)

]
,

where
sign(x0) = +1 if x0 > 0, sign(x0) = −1 if x0 < 0.

One can see from this formula that the initial data are propagated in space with the
velocity not greater than c. In particular, if the initial data taken at the time t0 vanish
outside a certain bounded region V in space, then φ0(x) at later times t > t0 certainly
vanishes at all points 	x which cannot be reached by a light signal emitted from V .
Another implication of formula (1.54) is the Huygens principle: the value of φ0 at
the point 	x at the time t is a linear superposition of contributions from all points in
space for which the initial data do not vanish (and which do not lie too far from 	x).
This principle reflects the linearity of the Klein–Gordon equation.

Exercises

1.1 (a) Check that the functions

�+,v(ξ, τ ) = 4 arctan (exp[γ(ξ − vτ )]) ,

�+,+(ξ, τ ) = 4 arctan

(
v sinh(γξ)

cosh(vγτ )

)
, �+,−(ξ, τ ) = 4 arctan

(
sinh(vγτ )

v cosh(γξ)

)
,

where γ = 1/
√
1 − v2 and v is a real parameter such that 0 ≤ |v| < 1, are solu-

tions of the sine-Gordon equation (1.7). Justify their interpretation: �+,v represents
the soliton moving with constant velocity v, �+,+—two solitons, �+,−—soliton +
antisoliton pair.
(b) Comparing the asymptotic forms of solutions at τ → −∞ and τ → +∞ show
that there is a repulsive force between the two solitons, and an attractive one in the
case of the soliton + antisoliton pair.
(c) Check that the substitution v = iu, u-real, in the�+,− solution gives a real-valued
solution of the sine-Gordon equation which is periodic in time. Interpret this solution
as a bound state of the soliton with the antisoliton (called the breather).

Hints: In the cases of �+,+, �+,− consider the limits τ → ±∞. Use the identity

arctan
x − y

1 + xy
= arctan x − arctan y.
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In order to show the presence of the forces, analyze shifts of the position of the
soliton and the antisoliton with respect to the trajectory of the single (anti-)soliton.

1.2 (a) The advanced Green’s function GA for the Klein–Gordon equation is
obtained by choosing −i0+ in both terms in formula (1.41). Obtain formula analo-
gous to (1.43) in this case.
(b) Prove also that GF (x) defined as

GF (x) = 1

(2π)4

∫
d4k

e−ikx

k2 − m2 + i0+
,

where k2 = k20 − 	k 2, is another Green’s function for the Klein–Gordon equation.
GF is related to the free propagator of the scalar field, and it plays an important role
in the quantum theory of such fields. What is the choice of the signs ± in formula
(1.41) in this case?

1.3 Using GR , prove that

	A(t, 	x) = 1

4πc

∫
d3y

	jT (t, 	y)
|	x − 	y| ,

where t = t − |	x − 	y|/c, is a solution of the wave equation (1.27).



Chapter 2
The Euler–Lagrange Equations
and Noether’s Theorem

Abstract The stationary actionprinciple and thegeneral formof theEuler–Lagrange
equations. The notion of symmetry in classical field theory. Noether’s conserved
currents.

2.1 The Euler–Lagrange Equations

We know from classical mechanics that equations of motion for many systems can be
derived from the stationary action principle. This fact is rather mysterious if regarded
on a purely classical level. It turns out that it is actually a simple consequence of
the fact that such classical systems can be regarded as classical limits of quantum
models. We shall see later on in Chap.11 how the classical action appears in the
quantum theory. This situation does not change when we pass to field theory, that is
if the number of degrees of freedom is infinite.

Let us recall some basic facts about the stationary action principle in classical
mechanics. For simplicity, we consider the case of a particle with just one degree of
freedom, that is with a one-dimensional configuration space. Let q be a coordinate
on that space. The trajectory of the particle is given by the function of time q(t). The
action functional is defined on a space of smooth trajectories q(t). By definition, it
has the following form

S[q] =
∫ t ′′

t ′
dt L(q(t), q̇(t); t), (2.1)

where L is called the Lagrange function. All considered trajectories q(t) start from
a point q ′ at the time t ′, and end at a point q ′′ at the time t ′′,

q(t ′) = q ′, q(t ′′) = q ′′. (2.2)
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The stationary action principle says that the actual (physical) trajectory qphys(t) of
the particle obeys the condition

δS[q]
δq(t)

∣∣∣∣
q(t)=qphys (t)

= 0. (2.3)

The object on the l.h.s. of this formula is called the functional, or variational, deriv-
ative of the action functional S with respect to q(t). Such a derivative is defined
as follows. Consider a family of trajectories of the form q(t) + δq(t), where the
trajectory q(t) is fixed, and δq(t) is an arbitrary smooth function of t such that

δq(t ′) = 0 = δq(t ′′). (2.4)

Thus, the trajectory q(t) + δq(t) obeys conditions (2.2). It is also assumed that all
time derivatives of δq(t) obey the conditions (2.4). Next, we consider the difference
S[q + εδq] − S[q], where ε is a real number. The functional derivative δS/δq is
defined by the following formula

lim
ε→0

S[q + εδq] − S[q]
ε

=
∫ t ′′

t ′
dt

δS[q]
δq(t)

δq(t). (2.5)

In the case of the action functional (2.1) with a smooth Lagrange function1 this
definition gives

δS[q]
δq(t)

= ∂L

∂q(t)
− d

dt

(
∂L

∂q̇(t)

)
, (2.6)

and the condition (2.3) acquires thewell-known formof the Euler–Lagrange equation
for qphys(t).

As is known from courses on classical mechanics, this formalism can be easily
generalized to the case of an arbitrary finite number of degrees of freedom, when
instead of the single coordinate q we have a finite number of them, qi (t), i = 1 . . . n.

The Lagrangian formalism does not guarantee that the Euler–Lagrange equations
derived from a given Lagrange function will lead to acceptable equations of motion,
from which one will be able to predict the actual trajectory of the particle. For
example, L = q gives the Euler–Lagrange ‘equation’ of the form 1 = 0. Another
such example: L = q̇ f (q) gives 0 = 0 as the Euler–Lagrange equation for any
smooth function f . In the former example there is no solution, while in the latter
case an arbitrary smooth function2 q(t) is a solution, therefore the equation has
no predictive power. The second example is an extreme case of degenerate Euler–
Lagrange equations.

Another example of problematic Euler–Lagrange equations can appear when the
number of degrees of freedom is greater than 1. In the following, we use the short

1L is regarded as a function of q, q̇ and t .
2This assumption has been made in the derivation of the Euler–Lagrange equation (2.6).
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notation q = (qk) for the full set of coordinates on the configuration space. The
Euler–Lagrange equations can be written in the following form

Hik(q, q̇)q̈k = ∂L

∂qi
− Bik(q, q̇)q̇k − ∂2L

∂q̇ i∂t
, (2.7)

where

Hik = ∂2L

∂q̇ i∂q̇k
, Bik = ∂2L

∂q̇ i∂qk
.

In mathematical theorems about the existence and uniqueness of solutions of a
system of ordinary differential equations, it is usually assumed that the system can
be written in Newtonian form, that is with extracted highest order derivatives,

q̈k = Fk(q, q̇). (2.8)

This is possible if the symmetric matrix Ĥ = (Hik) is nonsingular, detĤ �= 0. In the
opposite case, there exists at least one eigenvector e0 = (ek0) of Ĥ with the eigenvalue
equal to 0,

Hike
k
0 = 0.

Let us multiply both sides of (2.7) by ei0 and sum over i . We obtain the following
condition

ei0

(
∂L

∂qi
− Bik(q, q̇)q̇k − ∂2L

∂q̇ i∂t

)
= 0. (2.9)

The eigenvector e0 is a function of (q, q̇) because Ĥ depends on these variables.
Therefore, condition (2.9) is a relation between qi and q̇k . Notice that its existence
follows from properties of the Lagrange function only. For this reason it is called
a primary Lagrangian constraint. If there were other eigenvectors of Ĥ with zero
eigenvalue we would obtain more of these constraints. The total number of non-
trivial primary constraints cannot be larger than the number of linearly independent
eigenvectors of Ĥ with zero eigenvalues.3 If the matrix Ĥ has K such eigenvectors,
we can extract from the Euler–Lagrange equations (2.7) only n − K accelerations
q̈ i . The existence and uniqueness of the solutions in such a case is not obvious.
These problems are analyzed in a branch of classical mechanics called the theory
of constrained systems. Analogously, there exist constrained field theoretic systems.
We shall see examples of such systems in Chap.4.

As a final remark about the Euler–Lagrange equations in classical mechanics, let
us note that the stationary action principle, which follows from quantum mechanics,
has led to the variational problem in which, by assumption, both ends of the physical
trajectory qphys are fixed. Such a problem is not always equivalent to the initial
value problem, in which we fix the initial position and velocity. For example, if the

3It may happen that some of the relations (2.9) reduce to trivial identities like 0 = 0.

http://dx.doi.org/10.1007/978-3-319-55619-2_4
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configuration space of a particle is a circle, the variational problem has infinitely
many solutions, while the initial value problem has just one.

Field theory is obtained when the number of degrees of freedom increases to
infinity, n → ∞. In this case, however, more popular is a description in terms of
functions of continuous variables. Thus, q(t) is replaced by a set of N functions of
x = (t, �x), denoted in this chapter by ua(x) where a = 1 . . . N . We assume that
(t, �x) ∈ R4. This is sufficient for most applications in the theory of particles or
condensed matter systems, but in cosmology with a strong gravitational field one has
to use more general Riemann spaces with non vanishing curvature instead of R4. A
typical action functional has the following form

S[u] =
∫ t ′′

t ′
dt

∫
R3
d3x L(ua(x), ∂μua(x); x), (2.10)

where ∂μua = ∂ua/∂xμ. L is called the density of the Lagrange function, or the
Lagrangian for short. In most cases it does not contain second or higher order deriva-
tives of the fields ua(x). An explicit dependence on x usually appears when the fields
ua , which are the dynamical variables, interact with certain external fields, which are
represented by explicitly given functions of x . The external fields are fixed a priori;
there is no equation of motion for them to be solved.

The stationary action principle says that the physical fields ua obey the Euler–
Lagrange equations

δS[u]
δua(x)

= 0, (2.11)

where, again, the ends of all trajectories ua(t, �x) of the fields are fixed, that is

ua(t
′, �x) = u′

a(�x), ua(t
′′, �x) = u′′

a(�x). (2.12)

Here u′
a and u

′′
a are a priori given functions of �x . Moreover, boundary conditions for

ua at the spatial infinity have to be specified, that is we assume that

lim
|�x |→∞

ua(t, �x) = u∞
a (t, θ,φ), (2.13)

where u∞
a (t, θ,φ) is an a priori fixed function of time t , and of the spherical angles

θ,φwhich parameterize the sphere of infinite radius. The definition of the functional
derivative in the case of the fields ua essentially coincides with (2.5). In the new
notation, it is written as

lim
ε→0

S[ua(x) + εδua(x)] − S[ua]
ε

=
∫ t ′′

t ′
dt

∫
R3
d3x

δS[ua]
δub(t, �x)δub(t, �x), (2.14)

where the test functions δub(t, �x) vanish together with all their partial derivatives
when t = t ′, t = t ′′, or when |�x | → ∞. Then, the trajectories u + εδu obey the
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conditions (2.12), (2.13). Definition (2.14) applied to the action functional (2.10)
gives

δS[ub]
δua(t, �x) = ∂L

∂ua(t, �x) − dμ

(
∂L

∂(ua,μ(t, �x))
)

. (2.15)

In this formula dμ denotes the total derivative with respect to xμ—the variables xμ

can appear in ∂L
∂(ua,μ(x)) through ua(x) and ua,μ(x) = ∂μua(x), as well as explicitly

(that is through the external fields).
We shall see many examples of Euler–Lagrange equations (2.11) in field theory

in the following chapters. The examples considered in the previous chapter are also
of the Lagrange type:

Lsine−Gordon = 1

2
(∂τ�)2 − 1

2
(∂ξ�)2 + cos� − 1, (2.16)

LMaxwell = −1

4
FμνFμν − 1

c
jμ(x)A

μ(x), (2.17)

where

Fμν = ∂μAν − ∂ν Aμ, j0 = c ρ, ∂0 = 1

c
∂t .

Let us end this section with three short remarks. First, various Lagrangians can
give identical Euler–Lagrange equations. For example,

L′ = L + dμF
μ(ua(x), x) (2.18)

gives the same Euler-Lagrange equations as L.
Second, we have assumed in the field theory case that the Lagrangian L depends

on ua(x) and ∂μua(x) taken at the same space-time point x . Lagrangians of this type
are called local.

Third, one can generalize the formalism presented above to include Lagrangians
which contain partial derivatives of ua of the second or higher order. In fact, almost
no changes are needed—only the r.h.s. of formula (2.15) should be changed appro-
priately. It is not difficult to compute it. Lagrangian L can also contain derivatives of
higher order than any fixed natural number. In such a case the Lagrangian is usually
regarded as a nonlocal one. The point is, that the Taylor series relates the field with
shifted arguments to derivatives of all orders of the field with unshifted arguments,
namely

ua(x + x0) = ua(x) + xμ
0 ∂μua(x) + 1

2
xμ
0 x

ν
0∂μ∂νua(x) + · · · .

For example, a nonlocal Lagrangian containing the term ua(x)ua(x + x0) with con-
stant non vanishing x0 can be written as a sum of local terms with derivatives of all
orders.
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2.2 Noether’s Theorem

Noether’s theorem states that invariance of a field theoretical model under a continu-
ous group of transformationsG implies the existence of integrals of motion. Integrals
of motion are functionals of the fields and their derivatives which are constant in time
provided that the fields obey the corresponding equations of motion.

The transformations forming the continuous group G can act both on space-time
points x and on the fields ua . The space-time points are represented by their Cartesian
coordinates, x = (xμ), and the space-time metric in these coordinates is given by
the diagonal matrix η = diag(1,−1 − 1 − 1). The fields are represented by the
functions ua(x) of the coordinates. Elements of G are denoted by ( f (ω), F(ω)),
where ω = (ω1,ω2, . . . ωs) = (ωα)α=1,2,...s is a set of continuous, real parameters
(often called coordinates) on the group, s is called the dimension of the group G. In
fact, for our purposes it is enough to consider only a certain vicinity of the unit element
of the group (the identity transformation). For this reason we do not have to specify
the range of values of the parameters ωα. However, we adopt the usual convention
that ω = 0 corresponds to the identity transformation which does not change x
and ua . Furthermore, we assume that f (ω) and F(ω) depend on the parameters ωα

smoothly, that is that x ′ and u′
a(x

′) given by formulas (2.19), (2.20) below, are smooth
functions of ωα in certain vicinity of ω = 0.

In the present chapter we assume that the parameters ω do not depend on the
space-time coordinates xμ. Such transformations are called global,4 to distinguish
them from local symmetry transformations for which ω = ω(x). We have already
seen an example of local symmetry: the gauge transformations of the potentials
Aμ(x) discussed in the previous chapter.

The transformations f and F act on x and ua(x), respectively, as follows:

x → x ′ = f (x;ω), (2.19)

ua(x) → u′
a(x

′) = Fa(ub(x);ω). (2.20)

As elements of the group, these transformations are invertible. Hence, the functions
ub(x) can be expressed by the functions u′

a(x
′), and x by x ′.

In the calculations presented below we need an infinitesimal form of these trans-
formations

x ′ = x + ωαξα(x) + . . . , (2.21)

u′
a(x) = ua(x) + ωαDαua(x) + . . . , (2.22)

where

ξα(x) = ∂ f (x;ω)

∂ωα

∣∣∣∣
ω=0

, (2.23)

4Nevertheless, up to formula (2.30) below, we do not make use of the assumption that the transfor-
mations are global. Only the derivation of Noether’s identity (2.31) from formula (2.30) depends
on this assumption.
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Dαua(x) = ∂Fa(u(x);ω)

∂ωα

∣∣∣∣
ω=0

− ξμ
α(x)

∂ua(x)

∂xμ
. (2.24)

The dots denote terms of second or higher order in ωα. Formula (2.21) is obtained by
taking the Taylor expansion of the r.h.s. of formula (2.19) with respect to ωα around
ω = 0. It is consistent with the condition x ′(ω = 0) = x . Formula (2.22) follows
from the Taylor expansion of both sides of formula (2.20)—on the l.h.s. of it, formula
(2.21) for x ′ is used. The four-vectors ξα(x) = (ξμ

α(x)), where α = 1 . . . s, are called
Killing four-vectors. Dαub(x) is called the Lie derivative of ub in the direction ξα at
the point x .

Let us now specify what we mean by invariance of the field theoretic model with
LagrangianL(ua(x), ∂μua(x); x) under transformations (2.19), (2.20). By S�[u]we
denote the action functional calculated for the fields ua on the whole space R3 in the
time interval [t ′, t ′′]:

S�[u] =
∫

�

d4x L(ua(x), ∂μua(x); x),

where
� = {(ct, �x) : t ∈ [t ′, t ′′], �x ∈ R3}.

Transformation (2.19) acting on � gives a new region �′:

�′ = f (�;ω).

The action functional calculated for the new functions u′
a(x

′) in the new region �′
has the form

S�′ [u′] =
∫

�′
d4x ′ L(u′

a(x
′),

∂u′
a(x

′)
∂x ′μ ; x ′).

We say that the transformation ( f, F) is a symmetry transformation of our model if

S�′ [u′] = S�[u] +
∫

∂�

dSμ K μ(u; x;ω), (2.25)

for all choices of t ′ and t ′′. In condition (2.25) x ′ and u′
a are related to x and ua by

transformations (2.19), (2.20), and ∂� denotes the three-dimensional boundary of
the four-dimensional region �.

The last term on the r.h.s. of formula (2.25), called the surface term, has the form
of surface integral; ∂� is regarded here as a three-dimensional surface embedded in
the four-dimensional space-time.5 With the help of Stokes’ theorem the surface term
can also be written as the four-dimensional volume integral

5∂� is called surface in the space-time because its dimension, equal to 3, differs from the dimension
of the space-time by 1.
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∫
∂�

dSμK
μ(u; x;ω) =

∫
�

d4x
dK ρ

dxρ
,

where d/dxρ denotes the total derivative.
Note that condition (2.25) is a relation between the action functionals computed

for arbitrary functions ua(x), even those which do not obey the Euler–Lagrange
equations. In field theoretical jargon, one says that (2.25) is an ‘off-shell’ condition.
‘On-shell’ would mean that the fields ua(x) were solutions of the Euler–Lagrange
equations.

Postulate (2.25) might seem quite strange. As in the case of the stationary action
principle, its origin lies in quantum mechanics. In particular, the surface term can be
related to a change of phase factor of state vectors. Nevertheless, one can show also
on purely classical grounds, that the postulate (2.25) correctly captures the idea of a
symmetry of themodel.6 One expects that in such amodel, symmetry transformations
acting on physically admissible fields give physically admissible fields. Which fields
are physically admissible? By assumption, they are those fieldswhich are solutions to
the pertinent Euler–Lagrange equations. Therefore, it is important to check whether
the symmetry transformations applied to a solution of the Euler–Lagrange equations
give a solution to the same equations. Below we show that indeed, this is the case.

Let us compute the functional derivative δ/δua(x) of both sides of condition
(2.25). The surface term has a vanishing derivative because the test functions used
in the definition (2.14) vanish on ∂�. The derivative of S�[u] also vanishes because
we now consider the fields ua(x) which obey the Euler–Lagrange equations (2.11).
The r.h.s. is regarded as a composite functional of ua , and in order to compute its
functional derivative we use a chain rule analogous to the one well known from
calculus. Hence, if ua(x) are solutions of the Euler–Lagrange equations,

δS�[u]
δub(y)

=
∫

�

d4x
δS�′ [u′]
δu′

a(x
′)

∣∣∣∣
u′(x ′)=F(u(x);ω)

δFa(u(x);ω)

δub(y)
= 0. (2.26)

Let us introduce the new notation

δFa(u(x);ω)

δub(y)
≡ δF

δu
(a, x; b, y).

Its purpose is to mark the fact that this functional derivative can be regarded as an
integral kernel of a certain linear operator δF/δu. For transformations (2.20) this
operator is nonsingular, that is there exists a linear operator (δF/δu)−1 such that

∫
�

d4y
δFa(u(x);ω)

δub(y)
(
δF

δu
)−1(b, y; c, z) = δacδ(x − z),

6One should not confuse a symmetry of a model with a symmetry of a concrete physical state. For
example, a model which is invariant under rotations can predict the existence of physical states
which are not invariant under rotations.
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where the first δ on the r.h.s. is Kronecker delta, while the second one is the four-
dimensional Dirac delta. Therefore, (2.26) implies that

δS�′ [u′]
δu′

a(x
′)

∣∣∣∣
u′(x ′)=F(u(x);ω)

= 0,

but this means that u′
a(x

′) obeys the Euler–Lagrange equations in the region �′.
As the next step in our analysis of the invariance condition (2.25) we derive the

so called Noether’s identity. The l.h.s. of this identity gives an explicit formula for
the integrals of motion. The main part of the derivation is just a calculation of the
first two terms of the Taylor expansion of the l.h.s. of condition (2.25) with respect
to ωα. The change of the integration variable from x ′ to x gives

d4x ′ = Jd4x,

where J is the Jacobian corresponding to transformation (2.19), that is

J = det

[
∂x ′μ

∂xν

]
.

Using formula (2.21) we may write

J = 1 + ∂δxμ

∂xμ
+ · · · , (2.27)

where
δxμ = ωαξμ

α(x). (2.28)

Here and in the subsequent calculations, the multi-dots denote terms of the second or
higher order in ωα. The Taylor expansion of L(u′

a(x
′), ∂u′

a(x
′)

∂x ′μ ; x ′) has the following
form:

L(u′
b(x

′),
∂u′

b(x
′)

∂x ′μ ; x ′) = L(ub(x),
∂ub(x)

∂xμ
; x) + ∂L

∂xλ
δxλ

+ ∂L
∂ua(x)

(
u′
a(x

′) − ua(x)
) + ∂L

∂(ua,ν(x))

(
∂u′

a(x
′)

∂x ′ν − ∂ua(x)

∂xν

)
+ · · · . (2.29)

Next, we use formulas (2.21), (2.22):

u′
a(x

′) − ua(x) = δua(x) + ∂ua(x)

∂xλ
δxλ + · · · ,

where
δua(x) = ωαDαua(x),
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and

∂u′
a(x

′)
∂x ′ν −∂ua(x)

∂xν
= ∂xμ

∂x ′ν
∂u′

a(x
′)

∂xμ
− ∂ua(x)

∂xν

= ∂

∂xν

(
u′
a(x

′) − ua(x)
) − ∂(δxμ)

∂xν

∂ua(x)

∂xμ
+ · · ·

= ∂

∂xν

(
δua(x)

)
+ ∂2ua(x)

∂xν∂xλ
δxλ + · · · .

Therefore,

JL
(
u′
a(x

′),
∂u′

a(x
′)

∂x ′μ ; x ′
)

= L (
ua(x), ∂μua(x); x

) + ∂δxμ

∂xμ
L (

ua(x), ∂μua(x); x
)

+ ∂L
∂xν

δxν + ∂L
∂ua(x)

∂ua(x)

∂xλ
δxλ + ∂L

∂(ua,ν(x))

∂2ua(x)

∂xν∂xλ
δxλ

+ ∂L
∂ua(x)

δua(x) + ∂L
∂(ua,ν(x))

∂

∂xν
δua(x) + · · ·

= L (
ua(x), ∂μua(x); x

) + d
(
δxμL (

ua(x), ∂μua(x); x
))

dxμ

+
[

∂L
∂ua(x)

− d

dxν

(
∂L

∂(ua,ν(x))

)]
δua + d

dxν

(
∂L

∂(ua,ν(x))
δua

)
+ · · · .

This last expression is used in S�′ [u′] on the l.h.s. of condition (2.25). On the r.h.s.
of that condition we have L (

ua(x), ∂μua(x); x
)
and K μ(ua; x;ω). Notice that

K μ(ua; x;ω = 0) = 0,

because ω = 0 corresponds to the trivial transformation u′
a(x

′) = ua(x) and x ′ = x .
Therefore,

K μ(ua; x;ω) = ωαK μ
α(ua; x) + · · · .

Now it is clear that condition (2.25) can be written in the following form

∫
�

d4x
d

dxν

(
K ν

αωα − Lδxν − ∂L
∂(ua,ν(x))

δua

)

=
∫

�

d4x δua(x)

[
∂L

∂ua(x)
− d

dxν

(
∂L

∂(ua,ν(x))

)]
+ · · · . (2.30)

Because the parameters ωα vary continuously in an interval around ω = 0, we may
take the derivativewith respect toωα of both sides of (2.30) and putω = 0 afterwards.
In this way we obtain Noether’s identity
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∫
�

d4x
d jνα
dxν

=
∫

�

d4x Dαua(x)

[
∂L

∂ua(x)
− d

dxν

(
∂L

∂(ua,ν(x))

)]
, (2.31)

where the current density jνα is defined as follows

jνα = K ν
α(ua; x) − Lξν

α − ∂L
∂(ua,ν(x))

Dαua(x). (2.32)

The fact that this identity exists is known as Noether’s theorem.
Noether’s identity (2.31) reduces to a conservation law when the fields ua obey

the Euler–Lagrange equations—then the r.h.s. of the identity vanishes, and therefore

∫ t ′′

t ′
dt

∫
R3
d3x

(
d j0α
dt

+ d jkα
dxk

)
= 0. (2.33)

With the help of Gauss’s theorem, the second term on the l.h.s. of formula (2.33)
can be written as integral over a sphere of radius increasing to infinity. Therefore,
if the spatial components j kα of the current density vanish sufficiently quickly when
|�x | → ∞, this term gives a vanishing contribution. The integral with respect to time
is trivial. The result can be written in the form

Qα(t ′′) = Qα(t ′), (2.34)

where

Qα(t) =
∫
R3
d3x j0α(t, �x). (2.35)

Because t ′ and t ′′ are arbitrary, this means that the ‘charges’ Qα, α = 1, . . . , s, are
constant in time if the fields ua obey the pertinent Euler–Lagrange equations.

One often postulates an invariance condition stronger than (2.25), obtained by
omitting the integrals. In this sense, it is the local version of condition (2.25). It has
the following form

J (x)L
(
u′
a(x

′),
∂u′

a(x
′)

∂x ′μ ; x ′
)

= L
(
ua(x),

∂ua(x)

∂xμ
; x

)
+ dK μ

dxμ
. (2.36)

This condition leads to the continuity equation

d jνα
dxν

= 0, (2.37)

where jνα are still given by formula (2.32). Equation (2.37) is the local version of
the conservation law (2.34) of the charges Qα. The derivation of (2.37) from the
condition (2.36) is essentially the same as in the case of global condition (2.25) and
global conservation law (2.34).
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Exercises

2.1 Let S[φ] denotes a functional which assigns (real or complex) numbers to the
functions φ defined on RD. The functional derivative δS[φ]

δφ(x) is a generalized function
defined as follows

lim
ε→0

S[φ + ε f ] − S[φ]
ε

=
∫
RD

dDx
δS[φ]
δφ(x)

f (x),

for arbitrary test function f ∈ S(RD) (see the Appendix). Calculate δS[φ]
δφ(x) for:

(a) S[φ] = φ(x0) with fixed x0,

(b) S[φ] = d pφ(x)
dx p

∣∣∣
x=x0

,

(c) S[φ] = ∫
RD

dD y h(y)φ(y), where h(y) is a fixed function of y,

(d) S[φ] = exp
{
1
2

∫
RD

dD y
∫
RD

dDz φ(y)G(y, z)φ(z)
}
.

2.2 During its propagation in space-time, a structureless, relativistic string sweeps
a world-sheet Xμ(t, s) (a two-dimensional generalization of the world line of a
particle). Here t is time, and s ∈ [0, 2π] is a parameter along the string. We consider
only the closed string for which Xμ(t, 0) = Xμ(t, 2π) at all t . We also assume that
the vector Ẋμ ≡ ∂t Xμ(t, s) is time-like and X ′μ ≡ ∂s Xμ(t, s) is space-like. For the
simplest string, the so called Nambu–Goto string, the pertinent action is proportional
to the area of the world-sheet,

SNG = γ

∫ t2

t1

dt
∫ 2π

0
ds

√(
ẊμX ′

μ

)2 − (
Ẋμ Ẋμ

) (
X ′μX ′

μ

)
,

with the dimensional constant γ.

(a) Rewrite this action in terms of the determinant of the induced world-sheet metric
gab, which can be read off from the identity

dXμ(t, x)dXμ(t, s) = gab(s, t)dσadσb, σ0 = t, σ1 = s.

(b) Let gab denote the inverse of the induced metric, gabgbc = δac , and let
g ≡ det(gab). Using a well-known formula for the determinant check that the
variation of g that corresponds to a variation of the induced metric can be written in
the form

δg = ggabδgab.

Show that the equation of motion of the closed Nambu–Goto string can be written
as the Laplace equation for Xμ(s, t):

�g X
μ(s, t) = 0, �g(. . .) = 1√−g

∂a
(√−ggab∂b(. . .)

)
.
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2.3 Check the invariance of SNG under the infinitesimal space-time translations
δXμ = ωμ and rotations δXμ = ωμνXν, ωμν + ωνμ = 0, where ωμ and ωμν

are constants. Show that the corresponding conserved quantities—the total energy-
momentum and angular momentum of the closed Nambu–Goto string—have the
form

Pμ = γ

∫ 2π

0
ds

√−gg0a∂a X
μ,

Mμν = γ

2

∫ 2π

0
ds

√−gg0a
[
Xμ∂a X

ν − Xν∂a X
μ
]
,

respectively.

2.4 The transformation rule for a scalar field � under the dilatation xμ → x ′μ =
eσxμ reads:

�′(x ′) = e−σd��(x), (2.38)

where d� is the so called canonical scaling dimension of the field �, i.e. dim(�)

= cm−d�. The action functional for a free massless scalar field, propagating in D-
dimensional space-time, has the form

S[�] = 1

2

∫
dDx ∂μ�∂μ�.

(a) In the system of units where � = 1 the action should be dimensionless. Find the
value d� which follows from this requirement.
(b) Prove that the action of the massless free field � is invariant under the dilatation
(2.38). Is the Lagrangian invariant as well?
(c) Find the form of the relevant conserved current.

2.5 Consider the action functional for an interacting massless scalar field in D-
dimensional space-time,

S[�] =
∫
dDx

(
1
2∂μ�∂μ� − λ�n

)
, (2.39)

where n ≥ 3 is an integer and λ is a (coupling) constant. For which values of D and
n does the action (2.39) possess a dilatational invariance? What is the dimension of
λ in these cases?

2.6 Consider the Lagrangian

LU = tr
(
∂μU

†∂μU
)

with U (x) being a unitary, N × N matrix.
(a) Check that it is invariant under the transformations
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U (x) → A†U (x)B, (2.40)

where A and B are arbitrary constant, N × N unitary matrices with unit determinant
(i.e. A, B ∈ SU(N )).
(b) For A and B close to the unit N × N matrix IN we may write

A = exp

⎧⎨
⎩i

N 2−1∑
a=1

εaT
a

⎫⎬
⎭ , B = exp

⎧⎨
⎩i

N 2−1∑
a=1

ηaT
a

⎫⎬
⎭

where εa andηa are real, infinitesimal parameters (playing the role of theω parameters
used in the derivation of Noether’s current) and T a are linearly independent over R,

Hermitian, traceless, N × N matrices.
Find the expressions for the conserved charges that exist thanks to this symmetry.



Chapter 3
Scalar Fields

Abstract The Lorentz and Poincaré groups. The equation of motion and energy-
momentum tensor for a real scalar field. Domainwalls in amodel with spontaneously
broken Z2 symmetry. The complex scalar field withU (1) symmetry and theMexican
hat potential. The Goldstone mode of the field. Global vortex and winding number.

In this and the next two chapterswe review themain types of classical fields appearing
in particle physics.Webeginwith a presentation of severalmodelswhich involve only
scalar fields. InChap.4wediscuss vector fields, and inChap.5 spinor fields. Themain
feature all of thesefields have in common is the simplicity of their transformation laws
under Poincaré transformations of Minkowski space-time. For this reason, they are
called the relativistic fields. Moreover, Poincaré transformations are symmetries of
their corresponding action functionals in the sense described in the previous chapter.
Therefore, we first discuss the Lorentz and Poincaré groups.

3.1 The Lorentz and Poincaré groups

Let us endow Minkowski space-time M with a Cartesian coordinate system (xμ),
in which the metric on M has the diagonal form η = diag(1,−1,−1,−1). Matrix
elements of η are denoted as ημν , where μ, ν = 0, 1, 2, 3. The inverse matrix η−1

coincides with η, but by convention its matrix elements have upper indices. Hence,
ημν are matrix elements of η−1. Minkowski space-time has a very simple structure.
In particular, it can be covered by one Cartesian coordinate system, and then its
points can be identified with the set of four coordinates xμ, x = (xμ). Poincaré
transformations of M have the form

x ′μ = Lμ
νx

ν + aμ, (3.1)

where Lμ
ν and a

μ do not depend on xν and are real. By definition, they preserve the
form of the metric η, that is

© Springer International Publishing AG 2017
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∂x ′μ

∂xρ

∂x ′ν

∂xλ
ημν = ηρλ. (3.2)

For comparison, the transformation of a general second rank covariant tensor field
aμν(x) has the form

∂x ′μ

∂xρ

∂x ′ν

∂xλ
a′

μν(x
′) = aρλ(x).

Because η is constant on M in the Cartesian coordinates, the arguments x and x ′
may be omitted. It is clear that (3.2) actually means that η′ = η. This shows that
(3.2) is indeed an invariance condition. The partial derivatives in (3.2) can easily be
calculated, and the condition is equivalently written as

Lμ
ρL

ν
λημν = ηρλ. (3.3)

Transformations of the form

x ′μ = Lμ
νx

ν (3.4)

with Lμ
ν obeying condition (3.3) are called general Lorentz transformations. They

form a subset of Poincaré transformations, obtained by setting aμ = 0. One may
associate with the Lorentz transformation a four by four matrix L̂ with real elements
Lμ

ν ,

L̂ = (
Lμ

ν

)
.

Here the first indexμ enumerates rows and the second index ν columns of thismatrix.
The same convention holds also for the metric tensor η = (ημν): the first index (μ)
enumerates rows and the second index (ν) columns. Condition (3.3) can be written
in the matrix form

L̂T η L̂ = η, (3.5)

where T denotes the transposed matrix, i.e., (L̂T )μν = Lν
μ. It follows from (3.5) that

(detL̂)2 = 1,

hence the Lorentz transformations are represented by nonsingular matrices with
determinant equal to +1 or −1. Another consequence of the matrix condition (3.5)
is the following formula for the inverse of the Lorentz matrix

L̂−1 = η−1 L̂T η.
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For matrix elements,

(L̂−1)μν = ημλ(L̂T )λρηρν = ημλLρ
ληρν = L μ

ν ,

where we have used the standard conventions about raising and lowering indices by
the metric tensor and its inverse.

Condition (3.5) implies that the four by four unit matrix I4, the inverse matrix
L̂−1, and the matrix product L̂1 L̂2, are all Lorentz transformations if L̂, L̂1, L̂2 are.
Therefore, the set of all Lorentz transformations forms a matrix group, called the
general Lorentz group. It can be regarded as a subset of the 16 dimensional space
of all four by four real matrices, determined by conditions (3.3) or (3.5), which
are constraints on the 16 elements of a general four by four real matrix. There are
10 independent constraints because the matrix on the l.h.s. of condition (3.5) is
automatically symmetric, hence elements lying above its diagonal are identical with
the ones placed symmetrically below the diagonal. The 10 constraints allow us to
express 10 of the matrix elements by the remaining 6. Therefore, the general Lorentz
group is six dimensional.

The general Lorentz group regarded as a set is not connected. We have seen that
we can have either detL̂ = +1 or detL̂ = −1. Moreover, condition (3.3) considered
for μ = ν = 0 can be written in the form

(L0
0)

2 = 1 + Li
0L

i
0,

which shows that either L0
0 ≥ 1 or L0

0 ≤ −1. It turns out that the general Lorentz
group has four connected components (maximal connected subsets) which differ by
the signs of detL̂ and L0

0. Only one of them, namely that which is characterized by

detL̂ = +1, L0
0 ≥ 1, (3.6)

is also a group; a subgroup of the general Lorentz group. It is called the proper
orthochronous Lorentz group, or Lorentz group for short, and is denoted by L↑

+. This
is the only connected component of the general Lorentz group which contains the
unit matrix. The other connected components can be obtained by taking products of
matrices from L↑

+ with one of the three matrices

T = diag(−1, 1, 1, 1), P = diag(1,−1 − 1 − 1), T P.

Lorentz transformations corresponding to matrices T , P and T P change direction of
time, give spatial reflection �x → −�x , or both, respectively. Definitions of relativistic
fields given below refer only to the Lorentz group L↑

+. The transformations T , P and
T P are usually included at a later stage. In our lecture notes we shall not discuss
them.



36 3 Scalar Fields

By definition, the Poincaré groupP consists of transformations (3.1) such that L̂ ∈
L↑

+. Elements of P are denoted as (L̂, a), where a = (aμ). The group multiplication
in P follows from the superposition of two transformations (3.1):

(L̂2, a2)(L̂1, a1) = (L̂2 L̂1, L̂2a1 + a2). (3.7)

The unit element has the form (I4, 0), where I4 denotes four by four unit matrix.
Furthermore, (L̂, a)−1 = (L̂−1,−L̂−1a). The Poincaré group is ten dimensional.

The Poincaré group has many subgroups. One of them consists of all transforma-
tions of the form (L̂, 0). It is isomorphic to the Lorentz group L↑

+. Another subgroup
is isomorphic to the group of all translations inMinkowski space-time denoted by T4.
That subgroup consists of all transformations of the form (I4, a). Each element of the
Poincaré group can be uniquely written as the product of a Lorentz transformation
and a translation,

(L̂, a) = (I4, a)(L̂, 0).

Moreover, using the multiplication rule (3.7) one can check that

(L̂, 0)(I4, a)(L̂, 0)−1 = (I4, L̂a).

The last two properties together with the multiplication rule (3.7) are summarized in
the statement that the Poincaré group is a semidirect product of the group T4 of all
translations in Minkowski space-time and of the Lorentz group L↑

+.1
The translations in Minkowski space-time have the form

x ′μ = xμ + aμ.

It is clear that a parametrization of the translations which is convenient for applica-
tions of Noether’s theorem is provided by aμ themselves. The Cartesian components
of the corresponding Killing vectors have the form

ξμ
α = ∂x ′μ

∂aα

∣∣∣∣
a=0

= δμ
α, (3.8)

where α = 0, 1, 2, 3.
Finding a suitable parametrization of the Lorentz group is more cumbersome.

We use the mathematical theorem which says that with the help of the exponential
mapping one can parameterize a vicinity of the unit matrix by certain matrices from
a neighborhood of the zero matrix. In the case of the Lorentz group, this means that
for each L̂ from such a vicinity of the unit matrix I4 there exists just one real matrix
ε̂ such that

L̂ = exp ε̂. (3.9)

1In the case of a direct product, the multiplication rule would have the form (L̂1, a1)(L̂2, a2) =
(L̂1 L̂2, a1 + a2).
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It is clear that L̂ = I4 is obtained for ε̂ = 0. Let us write condition (3.5) in the
following form

η−1 L̂T η = L̂−1.

By inserting formula (3.9) we obtain the condition

η−1ε̂T η = −ε̂, (3.10)

which in fact says that the matrix ηε̂ is antisymmetric. With our conventions for
indices, we have ε̂ = (εμ

ν) and ηε̂ = (εμν), and therefore,

εμν = −ενμ.

In consequence,

ε0i = εi 0, εi k = −εki , ε
0
0 = ε11 = ε22 = ε33 = 0. (3.11)

Note that ε̂ is not antisymmetric. As parameters on the Lorentz group in a neigh-
borhood of the unit matrix we take εμν with μ < ν, that is those elements of the
matrix ε̂η̂−1 which lie above its diagonal. This last matrix is antisymmetric. The
corresponding Killing vectors are calculated from the formula

ξ
μ
αβ = ∂x ′μ

∂εαβ

∣
∣∣∣
ε=0

,

where x ′μ = Lμ
νx

ν and α < β. Because

x ′μ = (L̂ η̂−1)μν(η̂x)ν ≡ Lμνxν,

and
∂Lμν

∂εαβ

∣
∣∣∣
ε=0

= δμ
αδν

β − δ
μ
βδν

α,

we obtain
ξ

μ
αβ = (δμ

αηβν − δ
μ
βηαν)x

ν . (3.12)

Let us recall that we regard the Poincaré transformations as transformations of
points in Minkowski space-time. Therefore, xμ and x ′μ are coordinates of two points
with respect to a single, fixed Cartesian reference frame in the space-time. The
parameters ε12, ε13, ε23 correspond to transformations which do not change x0, that
is to spatial rotations. For example, when all εαβ except ε12 are equal to zero and ε12

is infinitesimally small, we obtain an infinitesimal rotation around the x3 axis by the
angle ε12:

x ′0 = x0, x ′3 = x3, x ′1 = x1 − ε12x2, x ′2 = x2 + ε12x3,
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where all terms with second and higher powers of ε12 have been neglected. The
parameters ε01, ε02, ε03 give the so called Lorentz boosts. This name is justified by
the fact that boosts transform a particle at rest into a particle moving with non zero
velocity. For example, if only ε01 is not equal to zero, then for ε01 infinitesimally
small,

x ′0 = x0 − ε01x1, x ′1 = x1 − ε01x0, x ′2 = x2, x ′3 = x3,

where again we have kept only the terms constant or linear in ε01. These formulas
imply that this boost, acting on a particle which is at rest at the point �x0 and which
has the world-line x(t) = (ct, �x0), gives a particle moving with the infinitesimal
velocity −ε01 along the x1 axis in the negative direction.

Formulas (3.8) and (3.12) are used in this and the next chapters, where we apply
Noether’s theorem to relativistic fields. We adopt the stronger, local form (2.36) of
the invariance condition. Note that in the case of the Poincaré transformations (3.1)
the Jacobian J = detL̂ is equal to +1 because L̂ ∈ L↑

+.

3.2 The Real Scalar Field

The configuration space of the relativistic real scalar field is a space of real functions
φ(�x) on R3, and trajectories of the field are described by real functions φ(x), x =
(ct, �x), on Minkowski space-time. By definition, the scalar field φ has the following
transformation law under the Poincaré transformations

φ′(x ′) = φ(x), (3.13)

where
x ′μ = Lμ

νx
ν + aμ, L̂ ∈ L↑

+.

This definition implies that

φ′(x) = φ(L̂−1(x − a)). (3.14)

Comparing (3.13) with the general formula (2.20) we see that in the present case F
is trivial, F(φ(x);ω) = φ(x). As the parameters ω we choose aμ and εμν introduced
in the last section. Therefore, the first term in definition (2.24) of the Lie derivative
vanishes, and

Dφ(x) = −ξρ(x)
∂φ(x)

∂xρ
,

where as the Killing vector ξ we now take ξα or ξαβ given by formulas (3.8) and
(3.12), respectively.

http://dx.doi.org/10.1007/978-3-319-55619-2_2
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The invariance condition in the local form, with vanishing surface term and in
absence of external fields, has the form

L
(

φ′(x ′),
∂φ′(x ′)
∂x ′ν

)
= L

(
φ(x),

∂φ(x)

∂xν

)
. (3.15)

Using formula (3.13) we find that

∂φ′(x ′)
∂x ′ν = ∂xρ

∂x ′ν
∂φ(x)

∂xρ
= L ρ

ν

∂φ(x)

∂xρ

(recall that L ρ
ν = (L̂−1)ρν). Therefore, condition (3.15) acquires the form

L
(

φ(x), L ρ
ν

∂φ(x)

∂xρ

)
= L

(
φ(x),

∂φ(x)

∂xν

)
.

It is clear that this condition does not impose any restriction on the dependence of
the Lagrangian on the field φ, and that the derivatives ∂νφ can appear only in Lorentz
invariant combinations.

In almost all applications of the real scalar field, the pertinent Lagrangian has the
form

L = 1

2
ημν∂μφ(x)∂νφ(x) − 1

2
m2φ2 − V (φ(x)), (3.16)

where m2 is a real constant, and V (φ) is a simple function of φ—a polynomial in
most cases—called the interaction potential2 of the field φ. Also, non-polynomial
V (φ) are considered, e.g., exponential, logarithmic or trigonometric functions. The
Euler–Lagrange equation corresponding to Lagrangian (3.16) has the form

∂μ∂
μφ(x) + m2φ(x) + V ′(φ(x)) = 0, (3.17)

where V ′ = dV/dφ. Simple calculation shows that V (φ) = c2φ2 + c1φ + c0 leads
to the Euler–Lagrange equation of the Klein–Gordon type, namely

∂μ∂
μφ(x) + (m2 + 2c2)φ(x) = −c1,

which can be reduced to the homogeneous Klein–Gordon equation by a constant
shift of the field φ when m2 + 2c2 
= 0, or by −c1xμxμ/8 if m2 + 2c2 = 0.

The first really new Euler–Lagrange equation, with a term quadratic in φ, is
obtained when V (φ) = λφ3 with constant λ. In mathematical terminology, it is a
nonlinear partial differential evolution equation of hyperbolic type. At present, there
are no methods which would allow us to construct a general solution for such equa-

2 The term ‘potential’ is reserved for the sum m2φ2/2 + V (φ).
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tions. Particular examples of solutions can be obtainedwith the help of approximation
methods, which include numerical calculations performed by computers. Sometimes
one can find analytic solutions, especially when one is interested in particularly sym-
metric ones. In general, nonlinear partial differential equations of the hyperbolic type
can lead to quite complicated and surprising time evolution of the field. Coming back
to our Euler–Lagrange equation, it turns out that the above introduced cubic V (φ) is
not quite satisfactory, because, as we show in the next paragraph, the corresponding
energy is not bounded from below. This fact does not mean that some mathematical
inconsistency is present. The point is that all physical objects in Nature discovered
until now seem to have energy bounded from below. In consequence, models in
which the energy is not bounded from below are regarded as less interesting.

The energy and momentum of the field are identified with the integrals of motion
obtained fromNoether’s theorem applied to time and space translations, respectively.
We already know the Killing vectors for the translations and the Lie derivatives of
the scalar field. The surface term in formula (2.32) is absent. Simple calculations
give the currents corresponding to the four independent translations,

jμα = −Lδμ
α + ∂μφ(x)∂αφ(x). (3.18)

Often one introduces the so called energy-momentum tensor T μ
ν . It is defined by the

following formula
jμα = T μ

νξ
ν
α. (3.19)

Thus,
T μ

ν = ∂μφ(x)∂νφ(x) − Lδμ
ν = jμν . (3.20)

The continuity equations dμ jμα = 0 imply that

∂νT
ν
α = 0.

The total energy E and momentum Pi of the field are defined as

E =
∫

R3
d3x j00 , Pi = −

∫

R3
d3x j0i . (3.21)

The minus sign in the formula for Pi is due to the metric tensor ημν used here to
raise the index i . Using formulas (3.16) and (3.18) we obtain

j00 = 1

2
∂0φ∂0φ + 1

2
∂iφ∂iφ + 1

2
m2φ2 + λφ3, (3.22)

and
j0i = ∂0φ ∂iφ. (3.23)

http://dx.doi.org/10.1007/978-3-319-55619-2_2
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Note that non-vanishingmomentum is possible only when the field varies in time and
space. Moreover, the momentum does not depend on the potential m2φ2/2 + V (φ).

Because φ(x) can take arbitrary real values, the cubic term λφ3 in j00 can also
have arbitrary values, from minus to plus infinity. Arbitrarily large positive values of
energy are regarded as physically acceptable, but at the same time one does expect
that values of energy should be bounded from below. Therefore, themodel with cubic
interaction potential is used mainly as a relatively simple example of a field theory
with interactions, convenient for illustrating methods of field theory. Also note that
the Klein–Gordon model (V (φ) = 0) would have the energy unbounded from below
ifm2 < 0. Precisely for this reason, we have assumed in the Klein–Gordon equation
(1.33) that m2 ≥ 0.

Much more interesting is the model with quartic interaction energy

V (φ) = λ

4!φ
4(x), (3.24)

whereλ > 0 in order to ensure that the corresponding total energy E is bounded from
below, and the factor 1/4! is included for later convenience. Now the Euler–Lagrange
equation (3.17) has the form

∂μ∂
μφ(x) + m2φ(x) + λ

3!φ
3(x) = 0. (3.25)

The total energy E is given by the following formula

E =
∫

R3
d3x

(
1

2
∂0φ∂0φ + 1

2
∂iφ∂iφ + 1

2
m2φ2 + λ

4!φ
4

)
. (3.26)

Due to the presence of the positive quartic term, the energy is bounded from below
also for negative m2.

It turns out that physical predictions of the model crucially depend on the sign of
m2. Let us first consider the case m2 ≥ 0. It is obvious that the minimum value of
the total energy E = 0 is obtained for φ(x) = 0. This trivial trajectory of the field is
called the classical ground state3 of the field. If the field is close to the ground state,
then wemay neglect the interaction term λφ3/3! in (3.25), and we obtain the familiar
Klein–Gordon equation. Thefieldswhich are close to the ground state forma so called
ground state sector in the space of solutions of the Euler–Lagrange equations. Fields
from this sector can be written as superpositions of the plane waves f�k introduced
in Sect. 1.3 with the amplitudes a±(�k) which are approximately constant in time as
long as the interaction term is small.

The model (3.24) withm2 < 0 is a little bit more intricate. It exhibits spontaneous
symmetry breaking, and it has sectors characterized by a topological charge. First,
let us notice that the Lagrangian can be rewritten in the form

3Often another term is used, namely the classical vacuum.

http://dx.doi.org/10.1007/978-3-319-55619-2_1
http://dx.doi.org/10.1007/978-3-319-55619-2_1
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U( )
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Fig. 3.1 The shape of the potential U (φ) given by formula (3.27)

L = 1

2
∂μφ(x)∂μφ(x) −U (φ) + 3m4

2λ
,

where

U (φ) = λ

4!
(

φ2 − 6|m2|
λ

)2

(3.27)

(|m2| denotes the modulus of m2). Furthermore, we omit the last term in L because
it does not contribute to the Euler-Lagrange equation and gives a trivial constant in
T 0

0. The energy density T 0
0 calculated from the new Lagrangian has the form

T 0
0 = 1

2
∂0φ(x)∂0φ(x) + 1

2
∂iφ(x)∂iφ(x) +U (φ). (3.28)

We see that it is bounded from below by 0. It reaches itsminimumvalue 0 for constant
φ = ±φ+, where

φ+ =
√
6|m2|

λ
, (3.29)

see Fig. 3.1.
Thus, there are two classical ground states ±φ+. They are transformed into each

other by the transformation S

S : φ(x) → Sφ(x) = −φ(x).

Actually, this transformation is a symmetry of the model: the Lagrangian does not
change its form if we write it as a function of Sφ. It follows that Sφ(x) is a solution of
the Euler–Lagrange equation together with φ(x). The fact that the classical ground
states of the model are not invariant under such a symmetry transformation is called
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the spontaneous symmetry breaking (SSB). In the case m2 > 0 the symmetry S is
also present, but the ground state φ = 0 is invariant under it.

Examples of the spontaneous symmetry breaking are already ubiquitous in clas-
sical mechanics. For example, consider a point particle with a one dimensional con-
figuration space and with the energy mq̇2/2 + V (q), where V (q) = a(q2 − b2)2,
and a and b are positive constants. There are two classical ground states q = ±b
with the same energy (equal to zero), and neither of them is invariant under the sym-
metry transformation q → −q. The quantum mechanical counterpart of this model
has the Hamiltonian Ĥ = p̂2/(2m) + V (q̂), where p̂, q̂ are momentum and posi-
tion operators, respectively. It turns out that this quantum Hamiltonian has a single
ground state (with the energy >0)—the degeneracy of the ground state is absent. The
corresponding wave function ψ(q) is a symmetric function of q, hence it is invariant
under the symmetry transformation.

This lack of SSB in the quantum case can be explained with the help of Heisen-
berg’s uncertainty relation. If the quantum particle is confined to a finite segment of
the q-axis with length �q, then it can not have any fixed value of momentum p—all
momenta from a band of width �p ≈ �/�q are present. Because we look for the
least energy state, we assume that this band contains the momenta with modulus
from 0 up to �p—a shift of the band towards higher momenta would give higher
expectation values of the kinetic energy p̂2/(2m). Thus, we may estimate that the
expectation value of the kinetic energy is not larger than (�p)2/(2m). It is clear
that this contribution is minimized when in the ground state the particle occupies
as large an interval �q as possible. The only limitation is that the particle should
avoid the regions where the potential V has large values, otherwise the gain in the
kinetic energy would be overwhelmed by an increase of the expectation value of
the potential energy. This means that the values of the ground state wave function
should be as close to zero as possible in such regions. Therefore, we expect that the
normalized ground state wave function does not vanish close to the two minima of
the potential V (q), while in all other regions it is close to zero. Then �q is as large
as possible, and the expectation value of the potential energy is small. The quantum
particle adjusts its wave function globally in space taking into account all minima of
the potential. Not surprisingly, there exists just one state that has the least energy.

In the heuristic reasoning presented above, we have been concerned directly with
energy eigenfunctions. The complementary view is obtained by inspecting the time
evolution of a wave packet which initially is localized around one of the minima of
the potential, say q = −b. Even if the initial wave function vanishes in the region
q ≥ 0 at the initial instant t = 0, due to quantum tunneling through the potential
barrier which separates the twominima of V (q) it will not vanish in that region when
t > 0. Actually, it turns out that the wave packet oscillates between the two minima.
If we switch on a ‘cooling procedure’, that is if we gradually take away some energy
from the particle, it will finally reach the ground state with the corresponding wave
function evenly distributed around each of the two minima.

Similar results are obtained for systems with an arbitrary finite number of degrees
of freedom, for instance, for several particles. Of course, the probability that all
particles will tunnel decreases with the number of particles. For example, in the case
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of N mutually noninteracting, distinct particles the total probability is equal to the
product p1 p2 . . . pN , where pi is the probability of tunneling for the i-th particle,
i = 1, 2 . . . , N . Of course pi < 1, so it follows that in the field theoretical limit,
when the number of degrees of freedom is infinite, the total tunneling probability
vanishes. In particular, the ‘wave function’ of our scalar field φ will stay close to one
of the vacuum fields φ+ or −φ+ forever if it is localized around it at a certain initial
time. Therefore, we expect that the degeneracy of the ground state can be present
also in a quantum version of our model (3.27). The spontaneous symmetry breaking
in field theory does not have to disappear when we pass to a quantum version of the
classical model as it did in the case of passing from classical mechanics to quantum
mechanics.

Let us now have a look at small perturbations of the classical ground states. For
concreteness, we consider perturbations of φ+, that is the fields of the form

φ(x) = φ+ + ε(x), (3.30)

where ε(x) is small in comparison with φ+. Substituting formula (3.30) into (3.25)
(in whichm2 = −|m2| < 0), expanding with respect to ε and keeping only the terms
linear in ε we again obtain the Klein–Gordon equation, namely

(∂μ∂
μ + 2|m2|) ε(x) = 0. (3.31)

We see that ε(x) has an effective mass coefficient m2
eff = 2|m2| which is positive. In

consequence, ε(x) can be written as a superposition of the normalized plane waves
f�k(x) with the frequencies k0 = ±ω(�k)/c, where

ω(�k) = c
√

�k 2 + m2
eff

is positive. Small perturbations around the other ground state φ− have the same
effective mass coefficient.

Analogous expansion around φ = 0 leads to the following equation

(∂μ∂
μ − |m2|)ε(x) = 0.

It also has the plane wave solutions f�k(x), but now

ω(�k) = c
√

�k 2 − |m2|.

We see that the modes with the wave vectors �k such that �k 2 < |m2| have imaginary
frequencies. They do not oscillate in time, but monotonically increase if Im k0 < 0
or decreases if Im k0 > 0. The increasing amplitude means that after some time,
ε(x) is no longer a small correction to φ+ and one has to include the terms quadratic
and cubic in ε(x). Therefore, the linear approximation around φ = 0 is of limited
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use. One says that the constant field φ = 0 is unstable with respect to the small
oscillations, as opposed to the constant fields ±φ+. It is clear that difference in the
behavior of the small perturbations is due to the fact that the field potentialU (φ) has
minima at ±φ+, while at φ = 0 it has a local maximum.

The presence of SSB is a special property that can have rather interesting conse-
quences. Related to the presence of the two ground states in the model (3.27) is the
existence of a particular class of static solutions of the field equation (3.25). These
solutions, called planar domain walls, smoothly interpolate between the two ground
states in the following sense. Let us choose a plane in R3 space. Without any loss of
generality it can be the x3 = 0 plane. Then, the coordinates x1 and x2 parameterize
the plane, and x3 varies in the direction perpendicular to the plane. Let us assume
that the field φ is constant in each plane parallel to the x3 = 0 plane, i.e., that φ can
depend only on x3: φ = φ(x3). Planar domain walls are solutions which merge with
the two ground states when x3 → ±∞, that is, by definition, they obey the following
boundary conditions

lim
x3→−∞

φ(x3) = −φ+, lim
x3→+∞

φ(x3) = φ+. (3.32)

Whenφdepends only on x3, (3.25) is reduced to the following ordinary differential
equation

∂2
3φ + |m2|φ − λ

3!φ
3 = 0. (3.33)

Multiplying it by 2∂3φ, and integrating we obtain the equation

(∂3φ)2 + |m2|φ2 − 2λ

4! φ4 = const. (3.34)

The boundary conditions (3.32) determine the integration constant

const = |m2|φ2
+ − 2λ

4! φ4
+ = 3|m2|2

λ
.

Equation (3.34) can be written in the form

1

2
(∂3φ)2 −U (φ) = 0. (3.35)

It is easy to check that

φd(x
3) = φ+ tanh

√|m2|(x3 − x30)√
2

(3.36)

obeys (3.35) and the boundary conditions (3.32). In the solution (3.36), x30 is another
integration constant. Its value is arbitrary. Physically, it gives the position of the
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Fig. 3.2 The plot of the function φd (x3)

domain wall along the x3-axis, and its change corresponds to a translation of the
domain wall parallel to the (x1, x2)-plane. Note that φd(x3) vanishes at x3 = x30 , and
the potential energy U (φd(x3)) has the largest value there. For large positive x3

φd(x
3) ∼= φ+ − 2φ+ exp(−

√
2|m2|(x3 − x30)),

and for large negative x3

φd(x
3) ∼= −φ+ + 2φ+ exp(

√
2|m2|(x3 − x30)).

Thus, for |x3−x30 | � l0, where l0 = 1/
√
2|m2|, the domainwall solutions practically

merge with the classical ground states. The constant l0 is equal to the inverse of the
effective mass coefficientmeff . It essentially gives the thickness of the planar domain
walls. The function φd(x3) is plotted in Fig. 3.2.

The energy density for the domain wall is given by

T 0
0 = 1

2
(∂3φd)

2 +U (φd) = 3m4

λ cosh4(
√|m2|(x3 − x30)/

√
2)

.

It has maximal value at x3 = x30 , and it exponentially approaches 0 when x
3 → ±∞,

see Fig. 3.3. Recall that φd vanishes precisely at x3 = x30 . Existence of at least one
zero is implied by the boundary conditions (3.32) because φ(x3) is by assumption a
continuous function of x3.

The total energy of the domain wall is of course infinite, because of the integration
over x1 and x2. The energy density per unit area, denoted below by σ, is finite and
constant along the domain wall. It is given by the integral
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x3
0

x3

T x( )30
0

Fig. 3.3 The energy density across the domain wall

σ =
∫
dx3 T 0

0 = 3m3
eff

2λ

∫ +∞

−∞
ds

cosh4 s
= 2m3

eff

λ
. (3.37)

Note that σ becomes infinite when the coupling constant λ decreases to zero. Such
singularity at λ = 0 means that the domain wall cannot be obtained as a perturbative
expansion in positive powers of λ. In this sense, the presence of the domain walls is
a non perturbative phenomenon.

Because of their infinite energy, strictly planar infinite domain walls are not phys-
ically possible. Nevertheless, they are quite useful in the theoretical analysis of other
domain walls which have finite energy. There exist closed domain walls, e.g., spher-
ical ones, which have finite total energy. The corresponding solutions of (3.25) are
not static—φ depends also on time. Such solutions approach ±φ+ in the directions
perpendicular to the domain wall, but the domain wall shrinks or expands. The total
potential energy is approximately equal toσS, where S denotes the area of the domain
wall, regarded (approximately) as an infinitely thin surface. The total energy also con-
tains a finite kinetic energy which does not vanish because of the time dependence
of φ. If, at a given point of the domain wall, its curvature is not very large, one may
expect that the solution will not be very different from φd(x3) around that point,
except that now x3 is replaced by a coordinate perpendicular to the domain wall.
Another class of finite energy domain walls appears in condensed matter physics.
They just end on the boundaries of the material in which they are created. If the bulk
of the material is sufficiently large, the surface effects can be neglected, and again,
our infinite planar domain wall can be quite a reasonable first approximation.

Let us investigate small perturbations of the planar domain wall. Substituting
φ(x) = φd(x3) + ε(x) into (3.25) and neglecting terms which are quadratic or cubic
in ε we obtain the following linear equation for ε(x)

∂μ∂
με − |m2|ε + λ

2
φ2
d(x

3)ε = 0. (3.38)
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The coefficients in this equation do not depend on x0, x1, x2. Therefore, we may
factorize the dependence on these variables. It is convenient to take exponentials as
the basis functions, other solutions can be written as linear combinations of them.
Thus, we consider ε(x) of the form

ε(x) = exp(−ik0x
0) exp(ik1x

1 + ik2x
2)ψ(x3).

It is understood that in fact we take the real or imaginary part of this expression
because ε(x) should have real values. Equation (3.38) is reduced to the following
equation for ψ(x3)

k20ψ = [(k1)2 + (k2)
2]ψ − ∂2

3ψ + |m2|(3 tanh2 x3

2l0
− 1)ψ, (3.39)

where we have put x30 = 0 for simplicity. Suppose that we know the solutions of the
auxiliary eigenvalue problem

− 1

2
∂2
3ψ + |m2|

2
(3 tanh2

x3

2l0
− 1)ψ = κψ, (3.40)

where κ is the eigenvalue and ψ the eigenfunction. Then,

k20 = (k1)
2 + (k2)

2 + 2κ.

It is clear that if there exists a negative eigenvalue κ then we can have k20 < 0 if k21
and k22 are sufficiently small. This would imply that exponentially growingmodes are
present. In physical realizations of the domain wall, we can never exactly construct
the one given by φd—small perturbations are always present. If there is a growing
mode having finite energy per unit square it will significantlymodify the domain wall
or even destroy it. Therefore, it is important to check the sign of the eigenvalues κ.

When looking for eigenvalues it is important to specify which eigenfunctions we
allow. In our case, relevant eigenfunctions are those which can give the perturbations
ε(x) with finite energy per unit area. Thus, apart from ψ vanishing when x3 → ±∞,
we also admit eigenfunctions which become plane waves in these limits because one
can construct from them wave packets with finite energy.

It turns out that there exists just one eigenfunction with κ = 0, called the trans-
lational zero mode, and all other eigenfunctions have strictly positive eigenvalues
(κ > 0). The existence of the zero mode is related to the translational invariance
of the model, which is responsible for the presence of the arbitrary constant x30 in
the domain wall solution (3.36). This solution inserted on the l.h.s. of (3.33) gives
an identity. Let us differentiate both sides of this identity with respect to x30 and put
x30 = 0 afterwards. The resulting identity has the form (3.40) with the eigenfunction
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ψ0(x
3) = ∂ψd(x3 − x30)

∂x30

∣∣∣∣
x30=0

= −∂ψd(x3)

∂x3
=

√
3

4λ

m2
eff

cosh2(meff x
3/2)

, (3.41)

and κ = 0. The zero mode ψ0(x3) does not vanish for any finite x3. There is a theo-
rem, discussed in textbooks on quantum mechanics, which says that the eigenvalue
corresponding to such non vanishing eigenfunction is the smallest one. Therefore,
all other eigenvalues κ are positive.4 In conclusion, the planar domain wall is stable
with respect to the small perturbations.

The perturbation of the planar domain wall given by ε(x) = aψ0(x3), where a
is a small number, is time independent. It results in the uniform, parallel shift of the
domain wall along the x3-axis,

φd(x
3) + aψ0(x

3) ∼= φd(x
3 + a).

The perturbations with (k1)2 + (k2)2 > 0 give waves traveling along the planar
domain wall.

3.3 The Complex Scalar Field

The complex scalar field is mathematically represented by a function φ(x), x ∈ M,

which can have complex values. Similarly as in the case of real scalar field, we
require that under the Poincaré transformations x ′ = L̂x + a

φ′(x ′) = φ(x). (3.42)

A typical Lagrangian for the complex scalar field has the form

L = ∂μφ
∗(x)∂μφ(x) − m2φ∗(x)φ(x) − V (φ∗(x)φ(x)), (3.43)

where ∗ denotes the complex conjugation. Equivalently, onemay replace the complex
scalar field by two real scalar fields φ1(x) and φ2(x),

φ(x) = 1√
2
(φ1(x) + iφ2(x)).

Lagrangian (3.43) is equal to

L = 1

2
∂μφ1∂

μφ1 + 1

2
∂μφ2∂

μφ2 − 1

2
m2φ2

1 − 1

2
m2φ2

2 − V

(
φ2
1 + φ2

2

2

)
.

4Actually, the eigenvalue problem (3.40) is explicitly solved in textbooks on quantummechanics. It
turns out that apart from the zero mode there is one bound state with 0 < κ < |m2| and a continuum
of eigenfunctions with κ ≥ |m2|.
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This form of the Lagrangian suggests a generalization to the so called O(N )

models. Let �φ denote a multiplet of N real scalar fields

�φ(x) =

⎛

⎜⎜⎜
⎝

φ1(x)
φ2(x)

...

φN (x)

⎞

⎟⎟⎟
⎠

,

and �φ 2 = ∑N
i=1 φiφi . The Lagrangian of the O(N ) model has the form

L = 1

2
∂μ

�φ∂μ �φ − 1

2
m2 �φ 2 − V

( �φ 2
)

.

It has a global O(N ) symmetry which consists of transformations

�φ′(x) = O �φ(x),

where O denotes an arbitrary N × N real matrix which obeys the condition
OTO = IN , OT denotes the transposed matrix, IN is the N by N unit matrix.
Such matrices form the orthogonal matrix group O(N ). The O(N ) models play an
important role in applications of field theory. They also provide a testing ground for
certain mathematical techniques developed in field theory.

Lagrangian (3.43) is invariant under the Poincaré transformations. Moreover, it
also possesses a U (1) global symmetry. The U (1) group consists of all complex
numbers z such that |z| = 1, or equivalently, of all phase factors exp(iα). The U (1)
transformations of the complex scalar field have the form

φ′(x) = exp(iqα)φ(x), (3.44)

where q is an integer different from 0. For a non integer q the transformation (3.44)
would be multi-valued. Of course, α does not depend on x , as expected for the global
transformations. Note that the space-time points x are not transformed. In such cases
one says that the symmetry is an internal one.

Let us calculate the conserved current jν corresponding to the U (1) symmetry
using the formalism developed in Chap.2. As the parameter on the group in a vicinity
of the unit element we may take α. The Lie derivative of the field φ has the form

Dφ(x) = iqφ(x). (3.45)

Lagrangian (3.43) contains also the complex conjugate field φ∗. Its transformation
law is obtained by taking the complex conjugate of formula (3.44), and

Dφ∗(x) = −iqφ∗(x). (3.46)

http://dx.doi.org/10.1007/978-3-319-55619-2_2
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Fig. 3.4 The potential U (|φ|) given by formula (3.49)

The formula for the conserved current follows from the general formula (2.32). In
the present case K = 0, ξ = 0, and as the fields ua we take φ and φ∗. Alternatively,
we could take the real fields φ1,φ2. Simple calculation gives

jν = iq
(
∂νφφ∗ − φ∂νφ

∗) . (3.47)

The corresponding conserved charge Q is given by the integral

Q =
∫

R3
d3x j0.

Note that Q vanishes if the imaginary part of φ is equal to zero, or if φ is constant in
time.

The choice V (φ∗φ) = 0 in Lagrangian (3.43) gives the free complex scalar field
model. In this case the Euler–Lagrange equations are linear in φ. They coincide with
the familiar Klein–Gordon equation for the real and imaginary parts of φ.

Another important particular choice of the interaction potentialU gives the Gold-
stone model. In this case

L = ∂μφ
∗∂μφ −U, (3.48)

where

U = λ

4!
(

φ∗(x)φ(x) − 12|m2|
λ

)2

(3.49)

(V = U − m2φ∗φ with m2 < 0). The potential U regarded as a function of |φ| is
shown in Fig. 3.4. Often it is called the ‘Mexican hat’ potential. This name refers to
the characteristic shape of the surface obtained by plottingU over the plane (φ1,φ2).

http://dx.doi.org/10.1007/978-3-319-55619-2_2
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Calculation of the term proportional toφ∗φ shows thatm2 = −|m2| is negative. In
fact, theGoldstonemodel is the complex field analogue of themodel (3.27) discussed
in the previous section.

Let us find the classical ground states in this model, that is the fields for which the
energy density T 0

0 acquires its minimal value. The energy density for the field φwith
Lagrangian (3.48) is easily obtained from the general formulas given in Chap. 2. It
has the following form

T 0
0 = ∂0φ

∗∂0φ + ∂iφ
∗∂iφ + λ

4!
(

φ∗(x)φ(x) − 12|m2|
λ

)2

. (3.50)

It is clear that the least energy density is obtained for any constant φ such that

φ∗φ = a2, (3.51)

where

a =
√
12|m2|

λ
. (3.52)

The set of all classical ground states is called the vacuum manifold. We denote it by
V . In the model discussed in the previous section it consists of just two points ±φ+.
In the Goldstone model, the vacuum manifold is defined by condition (3.51), hence
it consists of all constant fields of the form

φ = a exp(iβ), (3.53)

where β ∈ [0, 2π). It can be regarded as a circle of radius a. There is no classical
ground state which would be invariant under the U (1) transformations (3.44)—
these transformations move the classical ground states along the vacuum manifold.
Thus, we see that the Goldstone model exhibits spontaneous breaking of the U (1)
symmetry.

Let us compare the present example of SSBwith the one discussed in the previous
section. The main difference is thatU (1) is a continuous group, while the symmetry
S together with the identity I : φ(x) → φ(x) form the two element discrete group
Z2, Z2 = {S, I }. This difference has profound physical consequences. In particular,
it turns out that the real fields φ1 and φ2 are not well suited to describe the physical
contents of the model, analogously as, for instance, Cartesian coordinates are not the
best choice when considering a problem which has only axial symmetry. A much
better parametrization of the complex field φ of the Goldstone model is provided by
two real fields χ(x) and �(x) introduced as follows:

φ(x) = (a + χ(x)) ei�(x), (3.54)

where a is given by formula (3.52) and� ∈ [0, 2π). Thus,χ = 0 and� = const = β
corresponds to the classical ground state a exp(iβ). This parametrization of the field

http://dx.doi.org/10.1007/978-3-319-55619-2_2
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space by χ and � is mathematically correct provided that χ 
= −a. Let us assume
for now that this is the case. In order to derive the equations of motion for χ and
� one could use the Euler–Lagrange equation for the original field φ and formula
(3.54). However, more enlightening is another way: we use the field transformation
(3.54) directly in Lagrangian (3.48). This gives

L(χ,�) = ∂μχ ∂μχ + (a + χ)2 ∂μ� ∂μ� − λ

4!χ
2(2a + χ)2. (3.55)

This Lagrangian is used to generate the Euler–Lagrange equations for the fields χ
and �. The resulting equations are equivalent to the ones obtained by substituting
formula (3.54) into the Euler–Lagrange equation for φ. This follows from a general
property of the stationary action principle, namely that nonsingular transformations
of the fields in the action functional lead to equivalent Euler–Lagrange equations.

Let us prove this property. The transformation of the fields has the form ua =
Fa(vb), where (vb) is the set of new fields. By definition, the action functional for
the new fields has the form

S̃[vb] = S[ua]|ua=Fa(vb) .

The functional derivatives of S̃ and S are related by the following formula

δ S̃[v]
δva(x)

=
∫
d4y

δS[u]
δub(y)

Kba(y, x), (3.56)

where

Kba(y, x) = δFb(vc(y))

δva(x)
.

The assumption that the field transformation is nonsingular means that there exists
(K−1)ac(x, z) such that

∫
d4x Kba(y, x) (K−1)ac(x, z) = δbcδ(y − z).

Therefore, ∫
d4x

δ S̃[v]
δva(x)

(K−1)ac(x, z) = δS[u]
δuc(z)

. (3.57)

Relations (3.56) and (3.57) imply the equivalence of the Euler–Lagrange equations
obtained from S and S̃,

δS[u]
δua(x)

= 0 ⇔ δ S̃[v]
δva(x)

= 0.
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In the case of a singular transformation, it could happen that the r.h.s. of formula
(3.56) vanishes, and then δ S̃/δva = 0, even if δS[u]/δub(x) 
= 0.

Lagrangian (3.55) does not contain any potential for the � field. It is invariant
with respect to translations of values of this field of the form �(x) → �(x) + �0,
where �0 is an arbitrary real constant. The � field is called the Goldstone field or
Goldstone mode. The Euler–Lagrange equation for it has the form

∂μ

(
(a + χ)2 ∂μ�(x)

) = 0. (3.58)

If χ is close to its ground state value 0 we may neglect χ in Lagrangian (3.55) and in
(3.58). This is the so called London approximation, named after F. London and H.
London who used an analogous approximation in their theory of superconductors. In
this case (3.58) acquires the form of wave equation: the Klein–Gordon equation with
m2 = 0. Note also that when χ = 0, i.e. when only the Goldstone field is present,
the field φ = a exp(i�) does not leave the vacuum manifold V . The energy density
(3.50) is reduced to

T 0
0(�) = a2 (∂0� ∂0� + ∂i� ∂i�).

Note that it only contains terms with derivatives—this is a characteristic feature of
Goldstone fields, seen also in other models.

Now let us have a look at the χ field. Assuming that its values are small in
comparison with a, and keeping in Lagrangian (3.55) only the terms quadratic in χ
and �, we obtain the so called free part of the Lagrangian,

L0 = ∂μχ∂μχ − 2|m2|χ2 + a2∂μ�∂μ�. (3.59)

It is clear that the Euler–Lagrange equations generated from L0 have the form of
separate Klein–Gordon equations for � and χ, with mass coefficients equal to 0 and
2|m2|, respectively. Note another peculiarity of the Goldstone field �: Lagrangian
(3.55) is already quadratic in �, hence we do not need any assumption that � is
small.

We have seen in the previous section that the presence of a nontrivial vacuum
manifold results in the presence of the domain walls, which are surface-like extended
objects. Non triviality of the vacuum manifold in the Goldstone model suggests the
existence of extended objects which are line-like. They are called vortices.

In the real scalar field model (3.27) the vacuum manifold consists of two points
±φ+. Let us assume that there are two points �x1 and �x2 in the space, such that
φ(t0, �x1) = φ+ and φ(t0, �x2) = −φ+ at a certain time t0. Let us try to extend the
field to the entire three-dimensional space. We take a certain small vicinity of �x1
and assume that φ(t0, �x) = φ+ for all �x within that vicinity. Similarly, we take
a certain small vicinity of �x2 and assume that φ(t0, �x) = −φ+ in it. Gradually
increasing the two regions, we finally arrive at the stage where they fill the whole
space and touch each other at a certain surface. The field φ is not continuous at that
surface. In order to remove the discontinuity, let us replace this surface by a layer
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of finite thickness, and choose φ(t0, �x) such that it smoothly interpolates between
±φ+ across the layer. The resulting field configuration φ(t0, �x), now defined on the
whole space, is taken as initial data for the field equation (3.25). We also have to
specify the time derivative of φ in order to have the complete set of initial data. We
do not impose any special restrictions on this part of the initial data, we may take,
for example, ∂tφ(t, �x)|t=t0 = 0. In this manner we have constructed a domain wall,
which in general is curved. The solution of the field equation corresponding to such
initial data has a nontrivial dependence on time. Note that the function φ(t0, �x) has
to vanish on a surface lying somewhere inside the border layer, because it changes
sign across it. On that surface the potential energy U (φ) has a local maximum. The
planar domain wall discussed in the previous section is distinguished by the fact that
it is static. The solution presented there shows that the field φ of the static domain
wall reaches the ground state values asymptotically, and only at the spatial infinity
in the directions perpendicular to the wall. Finally, let us stress that the existence
of the domain wall is the consequence of the choice of the values of the function
φ(t0, �x) at the points �x1, �x2, and of its continuity, irrespectively of the form of the
Euler–Lagrange equation.

In the case of the Goldstone model the vacuum manifold is the circle given by
formula (3.53). Therefore, in analogy with the case of domain walls, we choose a
circle C of radius R0 in the space, parameterized by the angle θ ∈ [0, 2π), and we
assume that at different points of this circle the scalar field takes different values
from the vacuum manifold. The simplest choice is φ(t0, �y) = a exp(iθ) for �y ∈ C .
Actually, there also exist other possibilities which we will discuss later. Now, let us
try to define a smooth field φv(t0, �x) on the whole space. It is a more complicated
task than in the case of the domain wall because φ is not constant on the circle.
First, let us extend the circle C to an infinite cylinder C × R1 by adding at each
point �y ∈ C a straight-line perpendicular to the plane of the circle. On each such
straight-line φv is a constant, equal to φ(t0, �y). Next, we expand the cylinder to the
whole space. In this step, each point of the cylinder is translated along half of the
straight-line perpendicular to the cylinder. We assume that φv(t0, �x) is constant on
each such half-line. In this manner we have uniquely assigned a value to φv at each
point of the space, except for the symmetry axis of the cylinder C × R1, where φv

is not continuous—approaching this axis from various directions perpendicular to
it, we obtain different values of φv . To remove this discontinuity we choose, inside
the initial cylinder C × R1, a cylindrical volume Uε around the symmetry axis, and
allow the field φv to depart from the vacuum manifold within it.

Mathematical arguments based on the homotopy theory show that a smooth func-
tion φv(t0, �x) can be obtained only if φv vanishes somewhere in Uε. To see this,
suppose to the contrary, that φv does not vanish inside the cylinder C × R1. Then,
the modulus of φv also does not vanish, and the phase factor φv/|φv| is well-defined.
It is a continuous function of �x because by assumption φv is a continuous function.
Phase factors can be regarded as points of the unit circle S1 = {z : |z| = 1} in the
complex plane. Now, consider

f (ε, θ) = φv(t0, �x)/|φv(t0, �x)|
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with points �x restricted to a circle Cε, which is co-planar and concentric with C and
has the radius ε < R0. Each circle Cε is parameterized by the same angle θ which
parameterizes the circle C . Because | f (ε, θ)| = 1, it is clear that f (ε, θ) with fixed ε
is a continuous mapping from Cε to the circle S1. Moreover, the definition of f (ε, θ)
implies that it is a continuous function of ε, too. For ε = 0 f (ε, θ) is constant because
the circle Cε=0 is just a point, the center of the circle C . For ε = R0 we obtain the
initial circle C , and f (R0, θ) = exp(iθ). Thus, we have constructed a continuous
deformation of the constant mapping f (0, θ) into f (R0, θ). But this contradicts a
theorem from the homotopy theory which says that such deformations do not exist.
Therefore, the assumption that φv 
= 0 must be false. Because the presence of the
zeros of φ is implied by homotopy theory, a branch of algebraic topology, they are
called the topological zeros.

The nonexistence of continuous deformations of the constant mapping into the
exponential mapping exp(iθ) can be described in terms of the so called winding
number W [ f ], which characterizes any smooth mapping f (θ) from C to S1. The
winding number is defined as follows

W [ f ] = 1

2πi

∫ 2π

0
dθ

1

f

d f

dθ
, (3.60)

where | f (θ)| = 1. Let � f (θ) denote the phase of f , f (θ) = exp(i� f (θ)). Formula
(3.60) can be written in the form

W [ f ] = 1

2π

∫ 2π

0
dθ

d� f

dθ
= �� f

2π
,

where �� f is the total change of the phase � f during one pass along the circle C ,
�� f = � f (2π) − � f (0). Here by definition

� f (2π) = lim
θ→2π−

� f (θ).

Because f (θ) is continuous on the circle C , we have f (2π) = f (0) and � f (2π) =
�(0) + 2πn, where n is an integer. Therefore, W [ f ] = n is an integer.

Thewinding number is constant under continuous deformations of themapping f .
In general, such a deformation f → g is represented by a function h(σ, θ) which is
continuous inσ, differentiable in θ, and such that h(0, θ) = f (θ) and h(1, θ) = g(θ).
Here σ ∈ [0, 1] and θ parameterizes the circle C as before. Moreover, we demand
that h has values in the unit circle S1, i.e., that |h(σ, θ)| = 1 for all σ and θ. Let
us consider W [h] obtained by inserting h on the r.h.s. of the formula (3.60). It is
clear that the integral gives a continuous function of σ with integer values. Such a
function has to be constant, henceW [ f ] = W [g]. For the constant mapping f (0, θ)
the winding number is equal to zero. On the other hand, for f (R0, θ) = exp(iθ)
formula (3.60) gives W [ f (R0, θ)] = +1. Therefore, these two mappings cannot be
continuously deformed into each other.
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From the mathematical arguments presented above we know that φv has to vanish
at least at one point in each transverse cross section of the infinite cylinder C × R1.
Note that at such points the potential energyU (φv) has a local maximum. Therefore,
one may expect that the presence of several zeros of φv in these cross sections would
increase the energy of the field. For this reason we assume that there is just one zero
of φv in each transverse section of the cylinder. Let us choose one such cross section,
e.g., the one with the circle C . The zero of φv in this cross section is enclosed by
the circles Cε of the arbitrarily small radius ε. Let us pick one such circle Cε and
shift it continuously through all planes parallel to the circle C in such a way that it
does not pass through the zeros of φv . The winding number is constant during such
translation. Because ε can be arbitrarily small, we see that the zeros have to form a
continuous infinite line in the space.

Already at this point it is clear that such a field configuration has infinite total
energy. The contribution to the potential energy from each finite segment of that
line is proportional to its length. Analogously, as in the case of domain walls, this
does not diminish the physical relevance of the vortices. Vortices akin to the ones
discussed here are experimentally observed in superfluid 4He.

Let us summarize our considerations. The field φv has the values a exp(iθ) on the
cylinder C × R1 and outside of it. Inside the cylinder, the field smoothly reaches the
value zero on a continuous line extending to infinity in both directions. Such a field
φv is taken as a part of the initial data for the field equation

∂μ∂
μφ + λ

12

(
|φ|2 − 12|m2|

λ

)
φ = 0, (3.61)

which follows from Lagrangian (3.48). The remaining part of the initial data fixes
∂tφ at the initial time t0. There are no special restrictions on its choice. Such field
φ(t0, �x) characterized by the unit winding number is called the infinite vortex. The
field equation determines its time evolution. One may also construct initial data for
which the line of zeros is closed. Such closed vortices have finite length, and finite
total energy. Their time evolution can be rather nontrivial.

As in the case of domain walls, one may ask about a static vortex. To find it, we
proceed analogously as in the case of the domain walls. We assume that the field has
a special form φsv , frequently called the static vortex Ansatz, which is characterized
by a high symmetry as explained below, and has a winding number equal to +1. In
cylindrical coordinates (θ, ρ, z) on the R3 space

φsv = aF(ρ)eiθ, (3.62)

where F is an unknown function of the cylindrical radius ρ. The presence of the
topological zero is ensured by the assumption

F(0) = 0. (3.63)
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Thus, the z-axis coincides with the line of the topological zeros. The field φsv should
approach the vacuum manifold at least when ρ → ∞. Therefore, we also assume
that

lim
ρ→∞ F(ρ) = 1 (3.64)

(this does not exclude the possibility that F(ρ) = 1 for finite ρ). Formula (3.62)
implies that φsv is homogeneous along the z-axis. Moreover, φsv is axially sym-
metric in the generalized sense that the effect of rotation around the z-axis can be
compensated by a globalU (1) transformation. Indeed, after a rotation by θ0 we have
φ′
sv(θ, ρ) = exp(−iθ0)φsv(θ, ρ), and subsequent U (1) symmetry transformation

φ′
sv(θ, ρ) → exp(iθ0)φ′

sv(θ, ρ) restores the initial field φsv(θ, ρ).
For a field of the form (3.62) equation (3.61) is reduced to

F̃ ′′ + F̃ ′

s
− F̃

s2
+ F̃ − F̃3 = 0, (3.65)

where s = √|m2|ρ is the dimensionless variable replacing ρ, F̃(s) = F(ρ), and ′

denotes d/ds. Of course, F̃ also obeys conditions (3.63) and (3.64). Unfortunately,
an exact analytic form of the solution F of (3.65) is not known. Assuming that F̃(s)
can be expanded in powers of s for small s, and solving (3.65) order by order in s
we find that

F̃(s) ∼= c1s + c3s
3 + · · · ,

where c3 = −c1/8. For large s, more natural is an expansion in powers of 1/s, which
gives

F̃(s) ∼= 1 − 1

2s2
+ · · · .

An approximate solution of (3.65) obeying conditions (3.63) and (3.64) can easily
be found with the help of numerical methods. It has the form shown in Fig. 3.5. In
particular, we find that c1 ≈ 0.583.

Note that for small values of ρ

φsv(θ, ρ) = c1a|m|(x + iy) + . . . ,

where x and y are the Cartesian coordinates in the plane perpendicular to the line of
the topological zeros of φsv (the z axis). The dots denote terms of cubic and higher
order in x and y, and i is the imaginary unit. Thus, first order derivatives of φsv with
respect to x or y taken at x = y = 0 do not vanish. In this sense, the topological
zero of φsv is of the first order.

We already know that the infinitely long vortex has infinite total energy. It also
turns out that the energy per unit length is infinite. This energy is given by the integral
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Fig. 3.5 The plot of the function F̃(s)

∫
dxdy T 0

0 = 2π
∫ ∞

0
dρ ρ

[
a2(∂ρF)2 + a2

F2

ρ2
+ V (F2)

]
.

The factor 2π comes from integration over the angle θ. Because F ∼= 1 for large
s, the term F2/ρ2 gives a divergent contribution to the integral over ρ. Note that
this term comes from the gradient energy ∂iφ

∗∂iφ. The energy density T 0
0 of the

rectilinear vortex described above has its maximal value on the line of topological
zeros. In physical situations, the vortex is created within a vessel of a finite size. It
ends on the walls of the vessel, or forms a loop inside of it. In all such cases the total
energy is finite.

So far we have considered the simplest vortex which has a winding number equal
to +1. Taking the exponential exp(−iθ) instead of exp(iθ), we obtain the so called
anti-vortex which has a winding number equal to −1 and the same function F(ρ) as
the vortex. Furthermore, one can also take exp(inθ) with integer n, |n| > 1. Such
fields have winding numbers equal to n. The field equation (3.61) does not have
static solutions of this type, except for very special cases. Physically, the reason is
that the vortices, in general, interact with each other. Static multi-vortex solutions
exist when (3.61) is modified by adding new terms corresponding to certain external
forces acting on the vortices.

The presence of a vortex in the initial data has significant consequences for the time
evolution of the complex scalar field. The total winding number is constant in time,
because the field is a continuous function of time. For this reason, thewinding number
is called the topological charge. It is an integral of motion of a non-Noether type,
because its existence is not related to some continuous global symmetry. The space of
all fieldsφ is divided into so called topological sectors—each sector contains all fields
which have the same winding number. Note that in the sectors with non vanishing
winding number, decomposition (3.54) of the field φ into the Goldstone field � and
the massive real field χ is not correct because of the presence of topological zeros.
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Vortices can also appear in the topologically trivial sector, that is the one with the
total winding number equal to 0. Here one can have vortices (n > 0) and antivortices
(n < 0) in equal numbers, or finite (anti-)vortex loops, which can disappear by
shrinking to a point. In this process the line of zeros gradually shrinks to a point and
disappears. Nevertheless, such a closed vortex can live quite a long time. Vortices can
annihilate with antivortices. All these processes are very interesting from a physical
point of view.

Exercises

3.1 We know from Chap.1 that the sine-Gordon equation (1.7)

(
∂2

τ − ∂2
ξ

)
�(ξ, τ ) + sin�(ξ, τ ) = 0 (3.66)

possesses a static solution of the form

�+(ξ) = 4 arctan eξ .

(a) Let�(ξ, τ ) = �+(ξ)+εχ(ξ, τ ).By inserting thisAnsatz into (3.66), and keeping
only the terms constant and linear in ε, find the approximated equation satisfied by
χ(ξ, τ ).

(b) We shall look for the solution of the equation obtained in point (a) with the form

χ(ξ, τ ) = eiωτψ(ξ).

Prove that (
− d2

dξ2
+U1(ξ)

)
ψ(ξ) = ω2ψ(ξ). (3.67)

with

U1(ξ) = cos�+(ξ) = 1 − 2

cosh2 ξ
.

(c) Show that

ψ0(ξ) = ∂ξ�+(ξ) = 2

cosh ξ

is a solution of (3.67) withω = 0.How is this result—the existence of a zeromode of
(3.67)—related to the fact that �+(ξ − ξ0) is a solution of the sine-Gordon equation
for any constant ξ0? Calculate (up to the terms of the order ε2) the energy of the field
�+(ξ) + εφ0(ξ). Is the result surprising?

http://dx.doi.org/10.1007/978-3-319-55619-2_1
http://dx.doi.org/10.1007/978-3-319-55619-2_1
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(d) A solution of (3.67), which does not diverge for |ξ| → ∞, can be either worked
out by transforming this equation into the hypergeometric equation, or can be found
in textbooks on quantum mechanics. It is of the form

ψk(ξ) = Ak f1(k, ξ) + Bk f2(k, ξ), k ∈ R+,

where Ak and Bk are constants, ω = √
k2 + 1, and

f1(k, ξ) = N1 (tanh ξ cos kξ − k sin kξ) ,

f2(k, ξ) = N2 (tanh ξ sin kξ + k cos kξ) .

The normalization constants Nα, α = 1, 2, are chosen such that

∫ ∞

−∞
dξ fα(k, ξ) fβ(k ′, ξ) = δαβδ(k − k ′).

Using these functions, write down the general form of the perturbation χ(ξ, τ ), and
show by a direct calculation that its contribution to the energy is (apart from the
contribution from the zero mode ψ0(ξ)) strictly positive. What does this mean for
the stability of the perturbed sine-Gordon soliton?

3.2 Let û(x) be a smooth, matrix valued field in Minkowski space-time M , with
values from the SU (N ) group. Thus, û = û(x) ∈ SU(N ), x ∈ M . Prove that for the
current

jμ = 1

24π2
εμνρλtr

(
û†∂ν û û

†∂ρû û
†∂λû

)
,

the continuity equation ∂μ jμ = 0 holds. Next, check that the ‘charge’

B = 1

24π2

∫

R3
d3x εi jk tr

(
û†∂i û û

†∂ j û û
†∂k û

)
,

is conserved.
Note that here we do not assume that the field û(x) obeys any Euler–Lagrange

equation, and that we do not invoke Noether’s theorem. Such conservation laws are
called topological ones.

3.3 An effective Lagrangian, describing interacting pion fields πa(t, �x), a =
1, 2, 3, can be written with the help of the matrix field û(x), with values from the
group SU(2), which we shall parameterize as

û(x) = exp

{
− i

Fπ
πaσa

}
, (the sum over a is understood),

where σ1 = (
0 1
1 0

)
, σ2 = (0−i

i 0

)
, σ3 = (

1 0
0 −1

)
, are the Pauli matrices, and Fπ is a

constant (called the pion decay constant). The effective Lagrangian has the form



62 3 Scalar Fields

L = F2
π

4
tr

(
∂μû

†∂μû
) + 1

4
m2F2

π tr
(
û† + û − 2

)
,

where m denotes the pion rest mass. Derive the Euler–Lagrange equations for the
fields πa(x), and the formula for the energy which follows from L.

3.4 Let us choose a specific form of the pion fields,

πa(x) = Fπn
a P(r), (3.68)

where r = √
xi xi is the radial coordinate in the spherical coordinate system, and na

denotes the radial unit vector.
(a) Calculate, for the fields given by (3.68), the form of the charge B defined in
Exercise 3.2.
(b) By inserting the Ansatz (3.68) into the Euler–Lagrange equations derived in the
Problem 3.3 find the equation satisfied by P(r).

3.5 Let the theory under consideration be specified by the Lagrangian

L = 1

2
∂μ

�φ∂μ �φ −U
( �φ(t, �x)

)
,

where �φ(t, �x) = {φi (t, �x), i = 1, . . . , N } is a set of N scalar fields in the D + 1
dimensional space-time (with D spatial dimensions).

Prove Derrick’s theorem which states that for D > 1 there are no static, finite
energy solutions to the Euler–Lagrange equations that follow from L.

Hints: 1. Show that the equations of motion satisfied by a static configuration can be
derived by minimizing the energy.
2.Write the total energy as a sumof kinetic andpotential energy, and analyze how they
behave under the variation of �φ(�x) induced by the scaling of the spatial coordinates

�x → λ�x, i.e. for δ �φ(�x) = �φ
(
(1 + δλ)�x

)
− �φ(�x) with arbitrary infinitesimal δλ.

Show that for D > 1 the energy has no stationary points under this specific variation
of the fields, and thus no finite energy, static solution exists.



Chapter 4
Vector Fields

Abstract The U (1) gauge group. The parallel transport and gauge covariant deriv-
atives. The Abelian gauge field and the minimal coupling prescription. The SU (N )

gauge group. The non-Abelian gauge field. The Yang–Mills equation. The gauge
invariant energy-momentum tensor. The Higgs mechanism. The massive vector field
(the Proca field).

A real or complex relativistic vector field Wμ(x) has, by definition, the following
transformation law under Poincaré transformations1

W ′
μ(x

′) = L ν
μ Wν(x), (4.1)

where x ′ = L̂x + a, L̂ ∈ L↑
+. The most important classes of vector fields are

related to gauge transformations and gauge invariance (known also as local symmetry
groups or gauge symmetries). The set of electromagnetic potentials Aμ introduced
in Chap.1 is the simplest example of a vector field of this kind. In this case the
gauge transformations are related to the U (1) group introduced in Chap.3, formula
(3.44). This group is Abelian and the corresponding vector field is generally called
the Abelian gauge field. Another example is the non-Abelian gauge field, which
is a matrix-valued vector field related to the SU (N ), N ≥ 2, group. Yet another
kind of vector field—the Proca field—appears when a continuous global symmetry
is spontaneously broken in the presence of a gauge field. When introducing all of
these fields we will pay attention to the related mathematical aspects, but only to the
minimal level needed for a clear formulation of the theory.

In this and subsequent chapters we use so called natural units. They are obtained
by attaching the constants c and � to the fields, or parameters or variables, in such a
way that they disappear from all formulas in which they are present as coefficients.
Often one says that in these units c = � = 1, but this could be misleading—we
remove these constants of Nature from the formulas by an appropriate redefinition
of the fields and other quantities present in these formulas.

1There can be a caveat to this transformation law, see formula (4.43) and the remark preceding it.
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4.1 The Abelian Gauge Field

In this section we explain how the postulate of invariance under local U (1) trans-
formations can be satisfied by the introduction of a vector field: the Abelian gauge
field. In Chap.3 we introduced the Lagrangian

L0 = ∂μφ
∗∂μφ − m2φ∗φ (4.2)

for the free complex scalar field φ. As we already know, this Lagrangian is invariant
under the following linear transformations

φ′(x) = eiqαφ(x), (4.3)

where q is a fixed integer (different from 0 in order to avoid the trivial case), and
α ∈ [0, 2π). Because the factor eiqα does not depend on x, these transformations
are called global.

The U (1) group is the set of all phase factors z = exp(iα),α ∈ [0, 2π)

with the group multiplication given by the ordinary multiplication of complex
numbers. This group is Abelian. Formula (4.3), which involves the phase factors
zq = exp(iqα),α ∈ [0, 2π), says that the field φ transforms under a representation
of the U (1) group. By definition, this means that the mapping

R : z → zq

has the following properties:

(a) it is continuous with respect to z ∈ U (1),
(b) it preserves the product, that is

R(z1z2) = R(z1)R(z2)

for all z1, z2 ∈ U (1),

(c) R(1) = 1.

Condition (c) is not trivial—recall that 1q is multi-valued for non-integer q. Let
us show that conditions (a–c) imply that q has to be an integer. Applying R to both
sides of the identity

1 = lim
ε→0+ ei(2π−ε),

and using the condition of continuity we have

R(1) = R

(
lim

ε→0+ ei(2π−ε)

)
= lim

ε→0+ R
(
ei(2π−ε)

) = lim
ε→0+ ei2πqe−iεq = ei2πq .

http://dx.doi.org/10.1007/978-3-319-55619-2_3
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Because R(1) = 1, we obtain the condition exp(i2πq) = 1 which is satisfied only
by integer q.

The theory of gaugefields is based on gauge transformations and gauge invariance.
The gauge transformations form an infinite dimensional group, generally called the
gauge group. In the present case, the pertinent gauge group is a subgroup of the
continuous direct product of copies of the U (1) groups, and it is called the local
U (1) group. Let us recall that the direct product G1×G2 of two groups G1 andG2 is
the set of all pairs (g1, g2), where g1 ∈ G1 and g2 ∈ G2, with the groupmultiplication
defined by

(g1, g2)(g
′
1, g

′
2) = (g1g

′
1, g2g

′
2).

The pair (g1, g2) can be regarded as a mapping F defined on the two-element set
{1, 2}, and such that F(i) ∈ Gi for i = 1, 2. The set of all such mappings can be
identified with the set G1 ×G2. Now, let us take a continuous index x with values in
Minkowski space-time M . By definition, the continuous direct product

∏
x∈M U (1)

is the set of mappings z(x) defined on M and such that z(x) ∈ U (1) for each
x ∈ M . The set of all such mappings is very large. It turns out that in field theoretic
applications, it is sufficient to consider the subgroup of

∏
x∈M U (1) consisting of all

mappings z(x) which are smooth functions of x and such that

z(x) → 1 when |�x | → ∞. (4.4)

Only this subgroup, denoted asU (1)loc, is called the localU (1) group. The elements
of U (1)loc can be written in the exponential form

z(x) = exp(iχ(x)), (4.5)

where χ(x) is a smooth function of x . Moreover, we demand that χ and all its
derivatives with respect to xμ vanish at the spatial infinity, i.e., when |�x | → ∞. One
reason for the restriction toU (1)loc is that we want to exclude those transformations,
which can change the asymptotic (that is at |�x | → ∞) behavior of the derivatives of
the field, and in consequence transform the scalar field configurations having finite
total energy and momentum into ones with infinite energy or momentum. Another
justification for the assumption that χ vanishes at the spatial infinity comes from
quantum theory. It turns out that for a particular subset of such transformations,
namely those with χ constant in time, there exists a simple implementation in the
quantum theory of the field φ. A related example is given in Sect. 14.1, see formula
(14.26).

By assumption, the local U (1) transformations of the field φ have the form

φ′(x) = eiqχ(x)φ(x), (4.6)

where χ(x) is the function introduced in formula (4.5). The non vanishing integer q
has the same value as in formula (4.3)—in this sense both (4.3) and (4.6) involve the
same representation of the U (1) group.

http://dx.doi.org/10.1007/978-3-319-55619-2_14
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Note thatχ(x) = constant 
= 0 is not allowed by the definition of the gauge group.
Therefore, the global U (1) group is not a subgroup of the local one. However, the
U (1)loc contains elements, which in a sense approximate the elements of the global
U (1). Such elements have the function χ(x) constant in a compact region � in M ,
χ(x) = α for x ∈ �. By enlarging that region, we can have a function χ, which is
constant on an arbitrarily large compact subset of M . Of course, we may combine
the local and global U (1) transformations—in this way we obtain transformations
of the form

φ′(x) = eiq(α+χ(x))φ(x)

with arbitrary constant α ∈ [0, 2π) and χ vanishing when |�x | → ∞.

Lagrangian (4.2) is not invariant under theU (1)loc group because the gauge trans-
formations change the form of the term with derivatives:

∂μφ
′∗(x)∂μφ′(x) = (

∂μφ
∗(x) − iq∂μχ(x) φ∗(x)

)
(∂μφ(x) + iq∂μχ(x) φ(x)) .

In order to make the Lagrangian invariant we first define a covariant derivative. The
reason is that in the case of gauge transformations, the notion of derivative is not
well represented by the ordinary partial derivative, which just compares values of
the field at neighboring points,

∂μφ(x) = lim
ε→0

φ(xν + δν
με) − φ(xν)

ε
.

The problem lies in the difference present in the numerator on the r.h.s. of this
formula: a meaningful difference should commute with the gauge transformations
(4.6), while the one present in the numerator does not. The solution to this problem
is well-known in mathematics: one should introduce a connection and the related
covariant derivative. In the case of the localU (1) group, the connection is represented
by a vector field Aμ(x) which has the following transformation law under the local
U (1) transformations

A′
μ(x) = Aμ(x) − ∂μχ(x). (4.7)

The covariant derivatives with respect to xμ have the form

Dμ(A)φ(x) = ∂μφ(x) + iq Aμ(x)φ(x), (4.8)

Dμ(A)φ∗(x) = ∂μφ
∗(x) − iq Aμ(x)φ

∗(x).

They commute with the gauge transformations, for example,

Dμ(A
′)φ′(x) = exp(iqχ(x)) Dμ(A)φ(x).

In physical literature, the connection Aμ is called the Abelian gauge field.
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The connection can be used to define the parallel transport of the field φ along
a directed path C in Minkowski space-time, M . Let x0 be the starting point and y0
the end point of the path C , φ0 = φ(x0) is the value of the field φ at the point x0.
By definition, the parallel transport of φ0 to the point y0 along the path C yields the
complex number W [y0, x0;C; A]φ0, where

W [y0, x0;C; A] = exp

(
−iq

∫
C
dxμAμ

)
. (4.9)

Note that |W [y0, x0;C; A]| = 1, henceW [y0, x0;C; A] ∈ U (1). When the line C is
smoothly parameterized by σ ∈ [0, 1] with x(0) = x and x(1) = y, the line integral
can be written as the integral over σ,

∫
C
dxμAμ =

∫ 1

0
dσ

dxμ

dσ
Aμ(x(σ)).

The parallel transport commutes with the gauge transformations in the following
sense

W [y0, x0;C; A′] φ′(x0) = exp(iqχ(y0)) W [y0, x0;C; A] φ(x0), (4.10)

where φ′, A′
μ are given by formulas (4.6), (4.7). On the l.h.s. of formula (4.10), we

first perform the gauge transformation and next the parallel transport, while on the
r.h.s. the order of these operations is reversed. As the meaningful difference of values
of φ at different points x and y one can take, for instance,

φ(y) − W [y, x;C; A]φ(x).

According to this formula, we first parallel transport φ(x) to the point y, and then
compare it with φ(y). Note that such a difference depends on the directed path
C connecting x with y. Let us take yμ = xμ + εδμ

ν , and the rectilinear segment
connecting y with x (directed from y to x) as the path C . Then

Dν(A)φ(x) = lim
ε→0

W [x, y;C; A]φ(y) − φ(x)

ε
(4.11)

(Exercise 4.1).
In order to obtain a Lagrangian which is invariant with respect to the gauge

transformations, it suffices to replace the ordinary partial derivatives in Lagrangian
L0 by the covariant ones,

L1 = Dμ(A)φ∗Dμ(A)φ − m2φ∗φ. (4.12)
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This simple recipe is called ‘the minimal coupling prescription’. Lagrangian L1

contains two fields: Aμ and φ.
Because L1 does not contain derivatives of Aμ, the Euler–Lagrange equation for

Aμ has the form

0 = ∂L1

∂Aμ
= iqφ ∂μφ∗ − iqφ∗ ∂μφ + 2q2φ∗φAμ.

This equation implies that Aμ(x) remains undetermined at points x such that φ(x) =
0, and

Aμ = i

2q

(
∂μφ

φ
− ∂μφ

∗

φ∗

)

if φ(x) 
= 0. Thus, the model defined by Lagrangian L1 is acceptable only if we
add the assumption that φ(x) 
= 0 on the whole Minkowski space-time. Then, the
gauge field is expressed by the scalar field. This is an example of the so called
composite gauge field: it has the right behavior with respect to Poincaré andU (1)loc
gauge transformations, but it is not an independent field when the Euler–Lagrange
equations are taken into account. Quite interesting models of this kind are obtained if
the single complex scalar field φ is replaced by a multiplet �φ of n > 1 complex scalar
fields φ1,φ2, . . . ,φn which belong to the same representation of theU (1) group and
obey the condition �φ∗ �φ = 1, which excludes �φ = 0. Then, the Lagrangian has the
form (4.12) with φ and φ∗ replaced by �φ and �φ∗. Note that due to the condition
�φ∗ �φ = 1, one field out of the 2n real scalar fields Reφ1, Imφ1,Reφ2, Imφ2, . . . can
be expressed by the remaining ones, so we have 2n−1 independent real scalar fields.
These models are called the CPn−1 models.

Another gauge invariant model is obtained by adding to the Lagrangian L1 a
certain LagrangianLA(Aμ, ∂ν Aμ) for the Aμ field. Of course,LA should be invariant
under the localU (1) transformations.We also assume that theLagrangianLA is local.
Let us take a gauge transformation (4.7) with χ(x) of the form

χ(x) = −aμx
μg(x),

where g(x) is a smooth function such that g(x) = 1 in a vicinity of certain point x0 in
M and g(x) = 0 far away from it, aμ are arbitrary real constants. Formula (4.7) gives
A′

μ(x0) = Aμ(x0) + aμ. Because x0 can be any point in M , we see that the gauge
invariance ofLA is possible only if this Lagrangian does not depend on Aμ.Moreover,
the dependence on the derivatives has to be restricted. Let us consider the symmetric
part of the tensor ∂ν Aμ, that is (∂ν Aμ + ∂μAν)/2. The gauge transformations with
χ(x) = −aμνxμxνg(x)/4,where aμν are arbitrary real constants such that aμν = aνμ,
change the symmetric part at the point x0 by aμν . On the other hand, the antisymmetric
part of the tensor ∂ν Aμ, or equivalently,

Fμν = ∂μAν − ∂ν Aμ, (4.13)
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is invariant under all gauge transformations. Therefore, the requirement of gauge
invariance implies that LA can be a function of Fμν only.

Because LA should also be a Lorentz invariant, it has to be a function of the
invariants

I1 = FμνF
μν, I2 = εμνλρF

μνFλρ,

where εμνλρ is the totally antisymmetric symbol, ε0123 = +1. I2 is not invariant
under the reflections T and P introduced in Sect. 3.1. Therefore, if we add I2 to the
Lagrangian, the resultingmodel will not be invariant with respect to these reflections.
It turns out that in physical applications of the four-dimensional Abelian gauge field,
the I2 term is not needed.

The Lagrangian which gives the Euler–Lagrange equations for Aμ of the Klein–
Gordon type has the form

LA = − 1

4e2
FμνF

μν, (4.14)

where e2 is an arbitrary positive constant. In natural units (‘� = 1 = c’) the action
functional is dimensionless, Aμ(x) has the dimension cm−1 as implied by formulas
(4.7), (4.8), therefore e2 is dimensionless.2 The minus sign in formula (4.14) is
present, because then the corresponding energy density is non-negative, see formula
(4.49) below.

To summarize, the requirement of invariance with respect to localU (1) symmetry
is satisfied when the initial Lagrangian (4.2) is extended by including the Abelian
gauge field Aμ(x). When this field is a dynamical field which is independent of φ,
the simplest gauge invariant Lagrangian has the form

L = Dμ(A)φ∗ Dμ(A)φ − m2φ∗φ − 1

4e2
FμνF

μν . (4.15)

Instead of the Aμ field, we could use the equivalent field Bμ(x) = Aμ(x)/e. After
rewriting the Lagrangian L with the use of the field Bμ, the constant e would appear
only in the covariant derivatives,

Dμ(B)φ = ∂μφ + ieqBμ(x)φ(x).

From Lagrangian (4.15) (with the field Aμ) we obtain the following Euler–
Lagrange equations:

∂νF
νμ = jμ, (4.16)

where
jμ = qe2

(
iφ∗∂μφ − iφ∂μφ∗ − 2q Aμφ∗φ

)
, (4.17)

2This is true only in the case of four-dimensional space-time. In D-dimensional space-time the
volume elementdDx in the action functional does not cancel the dimension of I1, and in consequence
e2 has the dimension equal to cmD−4.

http://dx.doi.org/10.1007/978-3-319-55619-2_3


70 4 Vector Fields

and
Dμ(A)Dμ(A) φ + m2φ = 0. (4.18)

Equation (4.16) has the form of theMaxwell equation with current density jμ. There-
fore, the electromagnetic field can be regarded as an example of theU (1) gauge field.
The model with Lagrangian (4.15) is known by the name ‘scalar electrodynamics’,
which emphasizes the fact that the current jμ is constructed from the scalar field.

The presence of gauge invariance is a signal that the model is formulated in terms
of fields, some components of which are redundant. The redundant components
are not needed to describe physical phenomena—their only role is to simplify the
mathematical formulation of the model. Observables, that is quantities which are
at least in principle measurable, do not depend on them. Therefore, as far as the
observables are concerned, the redundant components can have arbitrary values.
The gauge transformations change the redundant components, and do not change the
physically relevant ones.

In the case of theU (1) gauge field Aμ(x), the redundant component can be found
explicitly. We assume that each function Aμ(x) and its derivatives vanish sufficiently
quickly in the limit |�x | → ∞. The redundant component is related to the longitudinal
part, �AL , of the vector potential �A, defined as follows

�AL = ∇ψ,

where
ψ = �−1(div �A(x)).

Here �−1 denotes a Green’s function of the 3-dimensional Laplace operator �,
see formula (1.28). Gauge transformations (4.7) imply that �A′ = �A + ∇χ (because
�A = (Ai ) = (−Ai )), hence

ψ′(x) = �−1(div �A′(x)) = ψ(x) + χ(x).

Therefore, the redundant component is given precisely by ψ. Let us introduce the
transverse part, �AT , of the vector potential �A and the longitudinal part, �EL , of the
electric field �E :

�AT = �A − �AL , �EL = −∇A0 − ∂0 �AL .

Both �AT and �EL are gauge invariant because

�A′
L = �AL + ∇χ.

The gauge field Aμ can be decomposed into the gauge invariant (physical) part and
the part containing only ψ (the so called gauge part):

�A = �AT + ∇ψ, A0 = −�−1div �EL − ∂0ψ.

http://dx.doi.org/10.1007/978-3-319-55619-2_1
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As we can see, explicit separation of the physical and the redundant components of
the Abelian gauge field is possible. However, one should add that in most cases such
separation only complicates calculations because the formula defining ψ is rather
complicated and, moreover, it is not Lorentz covariant. In the case of non-Abelian
gauge fields, discussed in the next section, such explicit extraction of the gauge
component of the field is not possible.

The Abelian gauge field is an example of those constrained systems mentioned
in Chap.2. Equation (4.16) can be written in the following form

⎛
⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∂2

0

(
A0

�A
)

= �
(
A0

�A
)

+
(

∂0∇ �A + j0

−∇(∂0A0 + ∇ �A) + �j
)

.

The matrix on the l.h.s. is singular. The corresponding constraint is obtained by
multiplying both sides of this equation by the four-vector (1, 0, 0, 0). It has the form

�A0 + ∂0∇ �A + j0 = 0.

Note that it coincides with the μ = 0 component of (4.16) (the Gauss law of elec-
trodynamics).

4.2 Non-Abelian Gauge Fields

Let us consider the following generalization of Lagrangian (4.2)

L0 = ∂μ
�φ †∂μ �φ − m2 �φ † �φ, (4.19)

where �φ is a multiplet of N complex scalar fields, † denotes Hermitian conjugation.
This Lagrangian is invariant under global U (N ) transformations

�φ′(x) = u �φ(x),

where u ∈ U (N ), U (N ) denotes the group of all unitary N by N matrices. Thus,
u†u = IN and |det u| = 1, where IN is the N by N unit matrix.

The U (N ) group contains a subgroup isomorphic to the U (1) group. It consists
of all matrices of the form exp(iα)IN , α ∈ [0, 2π). Determinants of these matrices
are equal to exp(i Nα). Because the U (1) gauge group was already considered in
connection with the Abelian gauge field, we would like to exclude this subgroup
of U (N ). Therefore we consider the SU (N ) group, which is a subgroup of U (N ),
formedby all unitarymatriceswhich have determinant equal to +1. The SU (N ) group
also contains matrices which belong to the U (1) subgroup, namely matrices of the

http://dx.doi.org/10.1007/978-3-319-55619-2_2
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form exp(i2πk/N )IN , where k = 0, 1, . . . , N − 1. These matrices form a discrete
subgroup of U (1), denoted by ZN and called the center of the SU (N ) group.

Let us note that there is no gauge field in Minkowski space-time associated with
a local version of the ZN group alone. The point is that the corresponding gauge
transformations, and the functions χ(x) in (4.5), cannot be continuous functions
of x ∈ M unless the transformation is the trivial one (multiplication of �φ by 1).
Therefore, formula (4.7) cannot be applied here—it contains derivatives of the dis-
continuous function χ(x). The ZN gauge field is feasible if continuous space-time
is replaced by a discrete set of points, e.g., an infinite lattice.

The SU (N ) gauge transformations of the multiplet of scalar fields have the form

�φ ′
(x) = ω(x) �φ(x), (4.20)

where ω(x) ∈ SU (N ) for all x from M . In analogy to the case of the U (1)loc
group, we require that the matrix elements of ω(x) be smooth functions on M , and
that ω(x) → IN when |�x | → ∞. All such mappings ω(x) form the local SU (N )

group, denoted by SU (N )loc. Lagrangian (4.19) is not invariant under such local
transformations, and the cure is the same as before—the ordinary derivatives should
be replaced by covariant ones. According to the mathematical theory of connections,
in the present case, the covariant derivative has the form

Dμ(A) �φ(x) = ∂μ
�φ + i Âμ(x) �φ, (4.21)

where the connection, or the non-Abelian gauge field, Âμ(x) for all μ = 0, 1, 2, 3
and x ∈ M belongs to the Lie algebra of the SU (N ) group. This algebra consists of
all N by N , Hermitian and traceless matrices:

Â†
μ(x) = Âμ(x), tr Âμ(x) = 0. (4.22)

Furthermore, the connection has the following transformation law under the SU (N )

gauge transformations

Â′
μ(x) = ωx Âμ(x) ω−1

x + i∂μωx ω−1
x , (4.23)

where we have introduced the short notation

ωx ≡ ω(x).

The form of transformation law (4.23) is such that

Dμ(A
′) �φ ′

(x) = ωx Dμ(A) �φ(x).

This formula justifies the name ‘covariant derivative’ for Dμ(A).
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Formula (4.11), which relates the covariant derivative to parallel transport, holds
also in the case of the non-Abelian covariant derivative (4.21) if the phase factor
W [x, y;C; A] is replaced by the unitary matrix

Ŵ [x, y;C; Â] = P exp

(
−i

∫
C
dxμ Âμ

)
.

The symbol P means that the exponential is path-ordered. Such an exponential is a
rather complicated object. In order to compute it, one first has to solve the differential
equation

i
dŴ [σ; Â]

dσ
= ẋμ(σ) Âμ(x(σ)) Ŵ [σ; Â],

with the initial condition
Ŵ [0; Â] = IN .

Here σ is the parameter along the path C , introduced below formula (4.9). The path
ordered exponential is given by Ŵ [1; Â]:

P exp

(
−i

∫
C
dxμ Âμ

)
= Ŵ [1; Â].

The calculations are nontrivial because the matrices ẋμ(σ) Âμ(x(σ)) with different
values of σ generally do not commute. In the Abelian case, this problem does not
appear and the path ordered exponential coincides with the ordinary one.

Transformation law (4.23) preserves the Hermiticity and tracelessness of Âμ(x).
Hermiticity of the first term on the r.h.s. of formula (4.23) is obvious. The Hermitian
conjugation of the second term gives −iωx ∂μω

−1
x . Using the formula

∂μ(ω
−1
x ) = −ω−1

x ∂μωx ω−1
x ,

which follows from the identity

0 = ∂μ IN = ∂μ

(
ωx ω−1

x

) = ωx ∂μ(ω
−1
x ) + ∂μωx ω−1

x ,

we recover the i∂μωx ω−1
x term. Therefore, Â′

μ(x) is a Hermitian matrix too. Now

let us compute tr Â′
μ(x):

tr Â′
μ(x) = tr Âμ(x) + i tr

(
∂μωx ω−1

x

) = tr Âμ(x),

because
tr

(
∂μωx ω−1

x

) = 0. (4.24)
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This last formula follows from the fact that

1 = det(ωx+ε)det(ω
−1
x ) = det

(
ωx+ε ω−1

x

) = det
(
I + εμ∂μωx ω−1

x + . . .
)

= 1 + εμ tr
(
∂μωx ω−1

x

) + . . . ,

where the dots denote terms with second and higher powers of εμ. Differentiating
with respect to εμ and substituting ε = 0 gives formula (4.24). Thus, tr Âμ(x) is
invariant under the gauge transformations (4.23).

The conditions (4.22) define an N 2−1 dimensional subset of the N by N complex
matrices which is called the Lie algebra of the SU (N ) group. It is a linear space
over real numbers (and not over complex numbers, because linear combinations
with complex coefficients do not preserve Hermiticity of matrices). Let (T̂a), a =
1, 2, . . . , N 2−1, be a basis in this subspace. Thematrices T̂a are of courseHermitian
and traceless. For simplicity, we use only an orthogonal basis, that is such that

tr(T̂a T̂b) = 1

2
δab. (4.25)

The matrix commutator [T̂a, T̂b] is anti-Hermitian and traceless. Multiplying it by
−i we obtain an element of the Lie algebra, and therefore it can be written as a linear
combination of the matrices T̂a with real coefficients. Hence,

− i[T̂a, T̂b] = fabcT̂c, (4.26)

where fabc are real numbers, called the structure constants of the Lie algebra
in the chosen basis. The Jacobi identity for matrix commutators, [[Ta, Tb], Tc] +
[[Tc, Ta], Tb] + [[Tb, Tc], Ta] = 0, implies the Jacobi identity for the structure con-
stants,

fabd fdce + fcad fdbe + fbcd fdae = 0.

It turns out that condition (4.25) implies that the structure constants are antisymmetric
in all three indices (Exercise 4.2).

The gauge field Âμ(x) can be expanded in the basis (T̂a),

Âμ(x) = T̂a A
a
μ(x), (4.27)

where the vector fields Aa
μ(x) have real values, and a = 1, . . . , N 2 − 1. Thus, the

number of these fields is equal to N 2−1.Wemay equivalently use thematrix notation
Âμ, or the multiplet notation Aa

μ(x).
In physical applications such as in the theory of electro-weak interactions (the

Glashow–Salam–Weinberg model, N = 2), or in the theory of strong interactions of
quarks (quantum chromodynamics, N = 3), the non-Abelian gauge field appears as
the dynamical field, not reducible to other fields. In the first step in the construction of
the gauge invariant Lagrangian for this field, we find the non-Abelian counterpart of
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the field strength tensor Fμν . In the Abelian case it is given by formula (4.13), but Fμν

in that form, generalized by merely replacing the Abelian gauge field by Âμ, has a
rather complicated transformation law under the non-Abelian gauge transformations
(4.23). The correct non-Abelianfield strength tensor F̂μν with a simple transformation
law is obtained by calculating the commutator of the covariant derivatives:

Dμ(A)Dν(A) �φ(x) − Dν(A)Dμ(A) �φ(x) = i F̂μν(A)(x) �φ(x), (4.28)

where
F̂μν(A)(x) = ∂μ Âν(x) − ∂ν Âμ(x) + i[ Âμ(x), Âν(x)]. (4.29)

The gauge transformation of F̂μν follows directly from this definition,

F̂μν(A
′)(x) = ωx F̂μν(A)(x)ω−1

x , (4.30)

where Â′
μ is given by formula (4.23). F̂μν is antisymmetric in indices μ ν, and it has

values in the Lie algebra of the SU (N ) group. Its expansion in the basis T̂a has the
form

F̂μν(x) = T̂a F
a
μν(x), (4.31)

where
Fa

μν(x) = ∂μA
a
ν(x) − ∂ν A

a
μ(x) − fabc A

b
μ(x)A

c
ν(x). (4.32)

This last formula is obtained by substituting formula (4.27) into definition (4.29),
and using (4.26). By analogy with the Abelian case,

Ê i = F̂0i , B̂k = −1

2
εi jk F̂i j

are called the non-Abelian electric and magnetic fields, respectively. Their physical
significance is not so profound as in the Abelian case because they are not invari-
ant with respect to gauge transformations, and only gauge-invariant quantities are
accepted as observables.

As the Lagrangian for the non-Abelian gauge field Âμ we take

L = − 1

2g2
tr(F̂μν F̂

μν) = − 1

4g2
Fa

μνF
aμν, (4.33)

where g is a dimensionless positive constant. ThisLagrangian is invariantwith respect
to gauge transformations, Poincaré transformations, and P, T reflections.

As in the Abelian case, we may rescale the field

Âμ = g B̂μ.
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Then

B̂ ′
μ(x) = ωx B̂μ(x) ω−1

x + i

g
∂μωx ω−1

x ,

and
F̂μν(A) = g F̂μν(B),

where
F̂μν(B) = ∂μ B̂ν − ∂ν B̂μ + ig[B̂μ, B̂ν].

Because such a rescaling is a nonsingular transformation of the field, the formulations
using Âμ or B̂μ are equivalent.

The Euler–Lagrange equation for the non-Abelian gauge field has the form

∂L
∂Aa

μ

− ∂ν

(
∂L

∂(Aa
μ,ν)

)
= 0,

where L is given by formula (4.33), and Aa
μ,ν = ∂ν Aa

μ. Because

∂L
∂Aa

μ

= 1

g2
fabc A

b
ν Fcμν,

∂L
∂(∂ν Aa

μ)
= − 1

g2
Faνμ,

we obtain the following equation

∂νF
aνμ − fabc A

b
νF

cνμ = 0, (4.34)

which is known as theYang–Mills equation. Comparing it with (4.16) for the Abelian
gauge field (with jμ = 0), the main difference is the presence of several terms with
the structure constants fabc—all are nonlinear with respect to Aa

μ. If these terms were
absent ( fabc = 0) we would obtain N 2 − 1 linear equations of the form (4.16) with
jμ = 0, and Aa

μ could be regarded as a set of N 2 − 1 independent copies of the
Abelian gauge field. Because of the presence of these nonlinear terms, the Yang-
Mills equation is rather difficult to solve. Only very few explicit analytic solutions
of it are known.

The Yang–Mills equation can be rewritten in the form

∂ν

(
∂ν Aaμ − ∂μAaν

) = j aμ
YM , (4.35)

where
j aμ
YM = fabc

[
∂ν(A

bν Acμ) + Ab
νF

cνμ
]
.

Taking ∂μ on both sides of (4.35) we obtain the continuity equation

∂μ j
aμ
YM = 0.
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The l.h.s. of (4.35) has the same form as the l.h.s. of (4.16), but the conserved current
j aμ
YM is constructed only from the non-Abelian gauge field. Therefore, we may say
that the non-Abelian gauge field is charged. The charge density is given by the μ = 0
component of the conserved current j aμ

YM . Of course, this charge is the non-Abelian
one, not related at all to the electric charge.

The Yang–Mills equation can also be written in matrix form. Multiplying both
sides of (4.34) by T̂a , and using formula (4.26) in order to eliminate fabc, we obtain

∂ν F̂
νμ + i

[
Âν, F̂

νμ
]

= 0. (4.36)

Each term with a fixed value of ν on the l.h.s. of this equation is a particular case of a
covariant derivative of the field-strength tensor, in general defined by the following
formula

Dρ(A)F̂μν = ∂ρ F̂
μν + i

[
Âρ, F̂

μν
]
. (4.37)

Simple calculation shows that

Dρ(A
′)F̂ ′μν(x) = ωx Dρ(A)F̂μν(x) ω−1

x ,

where Â′
μ, F̂ ′μν are given by formulas (4.23), (4.30), respectively. In the component

notation,
(Dρ(A)F̂μν)a = ∂ρF

aμν − fabc A
b
ρF

cμν .

Notice that so far we have introduced two covariant derivatives, see formulas
(4.21) and (4.37). They have different forms because they act on objects which
transform in different ways under the SU (N ) gauge transformations, cf. formulas
(4.20), (4.30). For that matter, these transformation laws define two representations
of the SU (N ) group, namely the fundamental representation in the case of (4.20),
and the adjoint one in the case of (4.30). Instead of the multiplet of N scalar fields
transforming under the fundamental representation according to formula (4.20), one
may consider other multiplets �� which transform under an arbitrary (nontrivial)
representation R of the SU (N ) group. Then, the transformation law and the covariant
derivative have the form

�� ′
(x) = R̂(ω(x)) ��(x) (4.38)

Dμ(A) ��(x) = ∂μ �� + i Aa
μ(x)R̂a ��(x), (4.39)

where R̂a are counterparts of the matrices T̂a . They are called generators of the
representation R̂. Specifically, R̂a can be obtained from the following formula

R̂a = −i
∂ R̂(exp(iεa T̂a))

∂εa

∣∣∣∣∣�ε=0

.
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One can prove that the commutator of the generators R̂a contains the same structure
constants as are present in formula (4.26),

[R̂a, R̂b] = i fabc R̂c. (4.40)

Needless to say, the multiplet of real vector fields Aa
μ present in the covariant deriv-

ative (4.39) is the non-Abelian gauge field discussed earlier in this section.
The Yang–Mills equation (4.34) corresponds to (1.19a, b) of Chap.1 (with

ρ = 0, �j = 0). The remaining equations (1.19c, d) also have their non-Abelian
counterpart, namely

Dμ F̂νρ + Dρ F̂μν + Dν F̂ρμ = 0. (4.41)

Inserting here the definition (4.29) of the field-strength tensor, and using the Jacobi
identity for commutators of matrices, we find that (4.41) is just an identity. It is
called the Bianchi identity. There is an interesting theorem which says that if some
Ĥμν(x) has values in the Lie algebra of the SU (N ) group, is antisymmetric in μ, ν,

and obeys the Bianchi identity with arbitrary Âμ, then it coincides with F̂μν up to
multiplication by a real constant.

The energy-momentum tensor for the non-Abelian gauge field follows from Noe-
ther’s formula (2.32). As far as translations in space-time are concerned, the vector
field behaves like a set of independent scalar fields, see formula (4.1) with L̂ = I4.
Therefore

DαA
a
μ(x) = −∂αA

a
μ(x).

Of course, K ν
α = 0, ξν

α = δν
α, and the fields ua now coincide with Aa

μ. The general
formula (2.32) gives

T μ
ν = 1

g2
∂ν A

a
ρ Faρμ − δμ

νL, (4.42)

where L has the form (4.33). The first term on the r.h.s. of formula (4.42) can be
written in the form 2tr (∂ν Âρ F̂ρμ)/g2 which shows that it is not invariant with respect
to the SU (N ) gauge transformations. This means that T 0

0 and T 0
i computed from

formula (4.42) cannot be accepted as energy and momentum densities, respectively,
because such important characteristics of the gauge field should belong to the set of
observables. There is a simple way to find an improved energy-momentum tensor
T

μ

ν which is conserved and gauge invariant [4]. The trick is based on the observation,
that thanks to gauge invariance, it is possible to modify the transformation law (4.1)
by combining a certain gauge transformationwith the Poincaré transformation. Then,
formula (4.1) is replaced by a more general transformation law of the form

Â′
μ(x

′) = L ν
μ

(
ωx Âν(x) ω−1

x + i∂νωx ω−1
x

)
. (4.43)

Furthermore, ωx is adjusted in order to give a suitably modified Lie derivative Dα.

http://dx.doi.org/10.1007/978-3-319-55619-2_1
http://dx.doi.org/10.1007/978-3-319-55619-2_1
http://dx.doi.org/10.1007/978-3-319-55619-2_2
http://dx.doi.org/10.1007/978-3-319-55619-2_2
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For the present goal of computing the conserved gauge invariant energy-
momentum tensor, it is sufficient to consider infinitesimal transformations. Then,

ωx = IN + i X̂(x) + . . . , (4.44)

where X̂ is Hermitian and traceless in order to ensure that ωx ∈ SU (N ). The
dots stand for terms with higher powers of X̂ . Formula (4.44) follows from the
exponential parametrization of the SU (N ) group in a vicinity of the unit matrix,
ωx = exp(i X̂(x)). Inserting formula (4.44) on the r.h.s. of (4.23) we obtain the
infinitesimal form of the gauge transformations of Âμ

Â′
μ(x) = Âμ(x) + i[X̂ , Âμ] − ∂μ X̂ + . . . . (4.45)

Now, let us consider infinitesimal translations in the α direction. The corresponding
Killing vector is ξμ

α = δμ
α. For these translations we choose X̂α(x) = Âα(x). Then

the calculation of the Lie derivative in the case of transformation law (4.43) gives

Dα Âμ = F̂μα(x). (4.46)

Now Noether’s formula (2.32) gives the improved energy-momentum tensor

T
μ

ν = − 1

g2
Fa

νρ Faμρ − δμ
νL, (4.47)

or in the matrix form

T
μ

ν = − 2

g2
tr(F̂νρ F̂μρ) − δμ

νL. (4.48)

From formula (4.48) we immediately see that indeed, T
μ

ν is gauge invariant. In
particular, the gauge invariant energy density of the non-Abelian gauge field has the
form

T
0
0 = 1

2g2

(
Fa
0k F

a
0k + 1

2
Fa
ik F

a
ik

)
. (4.49)

It is clear that T
0
0 is non negative.

Formula (4.47) for the improved energy-momentum tensor can also be used for
the Abelian gauge field: we just put fabc = 0, and assume that the index a has only
one value so that this index can be omitted. In this case the matrix notation for the
field Aμ is of course superfluous, and the matrix ωx should be replaced by the phase
factor z(x) = exp(iχ(x)).

The theory of non-Abelian gauge fields is very intricate and beautiful. Combining
rather elegant mathematical formalism with highly nontrivial physics, it belongs to
the most interesting branches of modern theoretical physics. We shall return to it in
Chap.12.

http://dx.doi.org/10.1007/978-3-319-55619-2_2
http://dx.doi.org/10.1007/978-3-319-55619-2_12
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4.3 The Higgs Mechanism and a Massive Vector Field

Lagrangians (4.14) and (4.33) do not contain any dimensional parameters (in the
natural units). This fact is often rephrased as the statement that the gauge fields are
massless, but this is not quite correct. First, there does not exist any notion of the
mass of a field—one canmeaningfully talk only about the mass of a particle obtained
after quantization of the field in a Fock space. In the case of the Abelian gauge
field, such particles have the physical properties of photons, in particular they are
massless, that is their four-momentum is light-like, see Chap. 6. Thus, in this case the
term ‘massless’ is, to some extent, justified. In the case of non-Abelian gauge fields
quantization is rather nontrivial, and properties of the quantum version of these fields
are still under investigation. Apparently, there exist several versions of the quantum
theory of non-Abelian gauge fields, in the literature they are called ‘phases’. The one
which seems to describe the observed strong interactions of quarks inside hadrons,
does not actually containmassless particles corresponding to the gauge field. Instead,
it predicts the existence of massive particles called glueballs, which correspond to
some composite fields built from the non-Abelian gauge field Âμ. Therefore, in this
case the term ‘massless’ is not appropriate.

In the case of the so called massive vector field, the corresponding Lagrangian
contains a parameter with the dimension of mass (cm−1 in natural units). It turns
out that the quantum theory of these fields leads to particles with non vanishing rest
mass.

Perhaps the most natural way to introduce the massive vector fields is through the
so called Higgsmechanism.We shall only present the Abelian version of it within the
framework of scalar electrodynamics with Lagrangian (4.15) modified in the scalar
field sector: the mass term −m2φ∗φ is replaced by the potential (3.49). Thus, the
total Lagrangian now has the form

L = Dμφ
∗Dμφ − λ

4!
(

φ∗φ − 12|m2|
λ

)2

− 1

4e2
FμνF

μν, (4.50)

where the covariant derivatives are given by formulas (4.8). This version of scalar
electrodynamics is known as the Abelian Higgs model, and the scalar field φ is called
the Higgs field.

The vacuum manifold in the Abelian Higgs model is given by the conditions

|φ| =
√
12|m2|

λ
, Fμν = 0, Dμφ = 0, (4.51)

which are obtained by minimizing the gauge-invariant energy density T 0
0 obtained

from Lagrangian (4.50) and Noether’s formula, with the translational Lie derivative
improved in the manner described at the end of the previous section. The general
solution of (4.51) has the form

http://dx.doi.org/10.1007/978-3-319-55619-2_6
http://dx.doi.org/10.1007/978-3-319-55619-2_3
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φ0 = a exp(iqβ(x)), A0
μ = −∂μβ(x), (4.52)

where β(x) is an arbitrary smooth function of x and a = √
12|m2|/λ. It is clear

that β(x) and β(x) + 2πk/q, where k is an integer, give the same vacuum fields.
Solution (4.52) contains fields which are gauge equivalent and therefore describe the
same physical situation. Nevertheless, gauge transformations (4.6) are not sufficient
to completely remove the phase factor exp(iqβ(x)) because the elements of the
local U (1) group have to be equal to 1 in the limit |�x | → ∞. In particular, β =
constant 
= 0 cannot be removed by the gauge transformations. Thus, in spite of
the gauge symmetry we have an infinite number of classical ground states of the
form (4.52), including the ones with constant phases β ∈ [0, 2π/q) and A0

μ = 0.
Nontrivial globalU (1) symmetry transformations change one such ground state into
another. Thus, the Abelian Higgs model exhibits spontaneous breaking of the global
U (1) symmetry. In this respect, it is similar to the Goldstone model of Chap.3.

The reasoning which lead to vortices in the Goldstone model, Sect. 3.3, can also
be repeated in the present case—vortices also exist in the Abelian Higgs model.
A single static vortex can be described as a narrow, rectilinear flux of magnetic
field surrounded by an axially symmetric current of the U (1) charge carried by
the scalar field. It turns out that such vortices have finite energy per unit length, in
contradistinction to the vortices of the Goldstone model.

The Higgs mechanism works in the sector of the configuration space of the scalar
fieldwhich is defined by the conditionφ(x) 
= 0 for all x ∈ M . The vacuummanifold
belongs to this sector, while the vortices do not because of ‘topological zeros’ which
are of the same origin as in the case of the vortices discussed in Chap.3. Thus, we
now consider only the functions φ(x) which do not vanish on the whole Minkowski
space-time M . Such φ(x) can be uniquely decomposed into modulus and phase,

φ(x) = (a + H(x)) ei�(x), (4.53)

cf. formula (3.54). Here H(x) is a real scalar field such that H > −a. The field
transformation (Reφ, Imφ) → (H,�) is nonsingular in the considered sector of
the configuration space of the scalar field. Let us insert parametrization (4.53) into
Lagrangian (4.50). We obtain

L = ∂μH∂μH + q2(a + H)2WμW
μ (4.54)

− λ

4! (2a + H)2H 2 − 1

4e2
Zμν Z

μν,

where

Wμ = Aμ + 1

q
∂μ�, Zμν = ∂μWν − ∂νWμ. (4.55)

We see that the � field has completely disappeared from Lagrangian (4.54). In fact,
the new form (4.54) of Lagrangian (4.50) is more transparent where the physical
contents of the Abelian Higgs model in the sector without vortices is concerned. The

http://dx.doi.org/10.1007/978-3-319-55619-2_3
http://dx.doi.org/10.1007/978-3-319-55619-2_3
http://dx.doi.org/10.1007/978-3-319-55619-2_3
http://dx.doi.org/10.1007/978-3-319-55619-2_3
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point is that the Euler–Lagrange equations, as well as observables like the energy-
momentum tensor, explicitly contain the H andWμ fields which are gauge invariant,
while � and Aμ are hidden inside Wμ.

The Euler–Lagrange equations derived from Lagrangian (4.54) have the form

∂μ∂
μH + 2|m2|H = −λa

4
H 2 − λ

12
H 3 + q2(a + H) WμW

μ, (4.56)

∂μZ
μν + 2q2e2a2W ν = −2q2e2 (2a + H) H W ν . (4.57)

In the limit of weak fields, we may neglect all terms on the r.h.s.’s of these
equations. Then the field H obeys the Klein–Gordon equation with positive mass
m2

H = 2|m2|, while (4.57) is reduced to the so called Proca equation:

∂μZ
μν + m2

WW ν = 0, (4.58)

where m2
W = 2q2e2a2 > 0. Note that acting with ∂ν on both sides of (4.58) we

obtain the constraint
∂νW

ν = 0. (4.59)

The vector field which obeys the Proca equation with m2
W > 0 is called the Proca

field. The quantum theory of this field leads to particles which have positive mass
mW and spin equal to one.

The name ‘Higgs mechanism’ refers to the previously described procedure of hid-
ing the originalU (1) gauge field Aμ(x) and the would-be Goldstone field �(x), and
forming the physically relevant massive vector field Wμ. The presence of covariant
derivatives in the initial Lagrangian (4.50) is one of the prerequisites for this mecha-
nism to work. The non-Abelian version of the Higgs mechanism is a key ingredient
of the Glashow–Salam–Weinberg model of electroweak interactions.

Exercises

4.1 Check formula (4.11).

Hint: Parameterize the segment C as follows

x(σ) = x + (1 − σ) ε e(ν),

where e(ν) is the unit 4-vector in the direction ν, eμ
(ν) = δμ

ν , and write the numerator
in formula (4.11) in the form

W [x, y;C; A] φ(y) − φ(x) = iqεAν(x) + ε∂νφ(x) + O(ε2).
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4.2 Prove that condition (4.25) implies that the structure constants fabc are anti-
symmetric in all indices.

Hints: Definition (4.26) implies that

fabc = − fbac.

In order to show that also fabc = − facb multiply both sides of (4.26) by T̂c and take
the trace in order to obtain the formula

tr
(
[T̂a, T̂b]T̂c

)
= i

2
fabc.

Next show that the l.h.s. of this formula is equal to tr
(
T̂c T̂a T̂b − T̂a T̂cT̂b

)
, and

therefore to − i
2 facb.

4.3 Prove that

Ŵ [x, y;C; Â′] = ω(y) Ŵ [x, y;C; Â] ω−1(x),

where Â′ is given by formula (4.23).

Hint: Find the relation between Ŵ [σ; Â] and the solution of the equation

i
dŴ [σ; Â′]

dσ
= ẋμ(σ) Â′

μ(x(σ)) Ŵ [σ; Â′],

with the initial condition
Ŵ [σ = 0; Â′] = IN .

4.4 Assuming the transformation law (4.23) for Âμ prove that

Dμ(A) �� ′
(x) = R̂(ω(x)) Dμ(A) ��(x).

Hints: 1. In the case of representation R the non-Abelian version of formula (4.11)
has the form

Dν(A) ��(x) = lim
ε→0

R̂(Ŵ [x, y;C; Â]) ��(y) − ��(x)

ε
.
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2. Use the formula proved in Exercise 4.3.

4.5 ∗ F̂μν = 1
2ε

μναβ F̂αβ is called the dual tensor of the non-Abelian field strength

tensor F̂μν . Prove that
tr

(
∗ F̂μν F̂μν

)
= ∂μK

μ,

where

K μ = εμναβ tr

(
F̂να Âβ − 2i

3
Âν Âα Âβ

)
.

Hint: In order to facilitate the calculations, consider separately the terms with two,
three and four Â′s.

4.5 The Georgi–Glashow model describes a three component real scalar field φa,

a = 1, 2, 3, interacting with a non-Abelian gauge field Aa
μ of the SU (2) type. It has

the following Lagrangian

L = −1

4
Fa

μνF
aμν + 1

2

(
Dμφ

)a
(Dμφ)

a − λ

4

(
φaφa − μ2

)2
,

where
(
Dμφ

)a = ∂μφ
a − εabc Ab

μφ
c, Fa

μν = ∂μAa
ν −∂ν Aa

μ − εabc Ab
μA

c
ν . Assume that

Aa
0 = 0, Aa

i = εaikn
k P(r) − 1

r
, φa = −na

H(r)

r
,

where the indices a, i, and k take values 1, 2, and 3, r = √
xkxk is the radial

coordinate, and na = xa

r is the radial unit vector. Find the equations for P(r) and
H(r) which follow from the Euler–Lagrange equations.
Answer:

r2H ′′ + λ

g2
(
H 2 − μ2g2r2

)
H = 2HP2,

r2P ′′ + PH 2 = P(P2 − 1),

where ′ denotes the derivative d/dr .

4.6 The Lagrangian for a complex Proca field has the form

L = −1

2
Z∗

μν Z
μν − m2W ∗

μW
μ,



Exercises 85

where Zμν = ∂μWν − ∂νWμ, and m2 > 0. Find the formula for the energy density
T00 of this field. Prove that the total energy E = ∫

d3x T00 is non negative if Wμ

obeys the corresponding Euler–Lagrange equation.

Hints: The fieldWν has the transformation law (4.1). The energy density is obtained
with the help of the formalism of Chap.2:

T00 = ∂0W
∗
i ∂0Wi + 1

2
Z∗
ik Zik + m2W ∗

i Wi − ∂iW
∗
0 ∂iW0 − m2W ∗

0 W0.

The problem lies in the negative contribution of the W0 component. The Euler–
Lagrange equation has the Proca form (4.58), hence ∂μW μ = 0 and in consequence

∂μ∂
μ Wν + m2Wν = 0.

In order to prove that E ≥ 0 first show that

E =
∫

d3x

[
1

2
Z∗
ik Zik + m2W ∗

i Wi + Z∗
0i Z0i − ∂iW

∗
0 ∂iW0

+∂0W
∗
i ∂iW0 + ∂iW

∗
0 ∂0Wi − ∂iW

∗
0 ∂iW0 − m2W ∗

0 W0
]
.

Next, by applying integration by parts (assume that all components of the field vanish
sufficiently fast when �x → ∞), the Proca equation, and the condition ∂μW μ = 0,
prove that

E =
∫

d3x

[
1

2
Z∗
ik Zik + m2W ∗

i Wi + Z∗
0i Z0i + m2W ∗

0 W0

]
≥ 0.

http://dx.doi.org/10.1007/978-3-319-55619-2_2


Chapter 5
Relativistic Spinor Fields

Abstract The Dirac equation. The transformation law of a relativistic bispinor. The
SL(2,C) and Spin(4) groups. The free classical Dirac field. TheWeyl spinor fields.
The U (1) × U (1) symmetry of the massless Dirac field. The Majorana field. The
Grassmann versions of the classical (bi-)spinor fields.

5.1 The Dirac Equation, Spin(4) and SL(2,C) Groups

Discovery of the relativisticwave equation for spin 1/2 particles (electrons) by P.A.M.
Dirac in 1928 is regarded as one of the most outstanding achievements of theoretical
physics in the 20th century. Apart from the well-known physical consequences, it has
revealed a new class of relativistic wave equations, and subsequently, new relativistic
fields with intricate mathematical properties. In this section we recall the main facts
about the Dirac equation. The classical Dirac field, as well as certain related fields,
are introduced in the next sections.

The Dirac equation is the basic equation of relativistic quantum mechanics for a
single spin one-half particle. It governs the time evolution of thewave function of such
a particle,1 replacing in this role the non-relativistic, time-dependent Schroedinger
equation. Therefore, in this section we consider the quantum mechanics of a single
particle, which has a finite number of degrees of freedom, and not a field theory.

The wave function of a single Dirac particle has the form of a column of four
complex numbers, ψ(x) = (ψα(x)), α = 1, 2, 3, 4. It is called the Dirac bispinor.
In the absence of interactions with the Dirac particle, it obeys the Dirac equation

iγμ∂μψ − mψ = 0. (5.1)

The 4 by 4 matrices γμ satisfy the Dirac relations

{γμ, γν} = 2ημν I4, (5.2)

1Often called the Dirac particle.
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88 5 Relativistic Spinor Fields

where {A, B} = AB + BA (the anticommutator of matrices), ημν is the metric
in Minkowski space-time in Cartesian coordinates, and I4 denotes the 4 by 4 unit
matrix. The first question about the Dirac relations is whether there exist matrices
which obey it. Dirac showed that one may take, for example,

γ0 = γ0
D ≡

(
σ0 0
0 −σ0

)
, γi = γi

D =
(

0 σi

−σi 0

)
, (5.3)

whereσ0 is the 2 by 2 unit matrix, andσi , i = 1, 2, 3, are the Pauli matrices.Matrices
(5.3) are called the Dirac representation of the γμ matrices. There exists a mathe-
matical theorem which says that all γμ matrices can be obtained from an arbitrary
particular representation by a similarity transformation. Therefore, any other set of
Dirac matrices γμ can be obtained from γ

μ
D ,

γμ = A−1γ
μ
D A, (5.4)

where A is a nonsingular 4 by 4 matrix (detA �= 0) [5]. Solutions of Dirac equation
(5.1) with the various choices of γμ matrices are of course related, namely

ψ(x) = A−1ψD(x), (5.5)

where ψD is a solution of (5.1) with γμ matrices in the Dirac representation.
Before we conclude that the quantummechanical models with the various choices

of γμ matrices are equivalent, we also have to check whether the scalar product of
Dirac bispinors is independent of the choice of representation. Such a scalar product
has the form

〈ψ1|ψ2〉 =
∫
d3x ψ1γ

0ψ2, (5.6)

where ψ1, ψ2 are Dirac bispinors, and

ψ(x) = ψ†(x)A†Aγ0. (5.7)

Here † denotes the matrix Hermitian conjugation of the bispinor regarded as a one-
column, complex matrix. The scalar product (5.6) can be written in the form

〈ψ1|ψ2〉 =
∫
d3x ψ†

1 A
†Aψ2 =

∫
d3x ψ†

1Dψ2D (5.8)

fromwhichwe see that its value does not depend on the choice of representation of γμ

matrices. Therefore, the quantum mechanical models based on the Dirac equation
(5.1) and scalar product (5.6) are indeed equivalent. Note that formula (5.8) also
shows that the scalar product is positive definite.

The Dirac equation (5.1) is invariant under Poincaré transformations x ′ = L̂x+a.
The transformation law of theDirac bispinor under such transformations has the form
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ψ′(x ′) = S(L̂)ψ(x), (5.9)

or equivalently
ψ′(x) = S(L̂)ψ(L̂−1(x − a)), (5.10)

where S(L̂) is a nonsingular 4 by 4 matrix which obeys the following condition

S−1(L̂)γμS(L̂) = Lμ
νγ

ν . (5.11)

By definition, the invariance of (5.1) means that if ψ(x) obeys that equation, then
so does ψ′(x). We check that indeed this is the case by inserting ψ′(x) in (5.1) and
using condition (5.11) together with the relation

∂ψ′(x)
∂xμ

= S(L̂)(L̂−1)λμ

∂ψ(y)

∂yλ
,

where yλ = (L̂−1)λν(x
ν − aν).

The existence of the matrix S(L̂) for an arbitrary Lorentz transformation follows
from the quoted theorem about the equivalence of all representations of γμ matrices.
Let us denote the r.h.s. of condition (5.11) by γ′μ. Because

{γ′μ, γ′ν} = Lμ
ρL

ν
σ{γρ, γσ} = 2Lμ

ρL
ν
σηρσ I4 = 2ημν I4,

the matrices γ′μ obey the Dirac relations (5.2). Here we have used the relation

η−1 = L̂η−1 L̂T ,

which is obtained by taking the matrix inverse of both sides of condition (3.5) in
which L̂ is replaced by L̂−1 (which is a Lorentz matrix as well). Therefore, γ′μ are
related to the γμ matrices by a similarity transformation of the form (5.4) with S(L̂)

playing the role of the matrix A.
Condition (5.11) determines the matrix S(L̂) up to multiplication by a number

which can depend on L̂ . In order to prove this assertion, let us suppose that two
matrices S1(L̂) and S2(L̂) obey condition (5.11) with the same Lorentz matrix L̂ .
Then

S−1
1 (L̂)γμS1(L̂) = S−1

2 (L̂)γμS2(L̂)

and
S1(L̂)S−1

2 (L̂)γμ = γμS1(L̂)S−1
2 (L̂)

for μ = 0, 1, 2, 3. Next, we use a lemma which says that any nonsingular matrix
which commutes with all γμ matrices has the form c0 I4, where c0 is a complex
number different from 0. Therefore,

http://dx.doi.org/10.1007/978-3-319-55619-2_3
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S1(L̂) S−1
2 (L̂) = c0(L̂)I4, S1(L̂) = c0(L̂) S2(L̂).

The lemma used above can be proved first in the Dirac representation simply by
explicit calculation, that is by writing down the four commutativity conditions and
solving them for the matrix elements of S1(L̂)D S−1

2 (L̂)D . Next we transform the
S(L̂)D matrices to the original representation with the help of formula

S(L̂)D = AS(L̂)A−1, (5.12)

which follows from (5.5) and (5.9).
The arbitrary multiplicative constant c0 in each matrix S(L̂) can be used to adjust

the determinant of this matrix. We choose it in such a way that the matrix S(L̂) has
unit determinant,

det S(L̂) = 1. (5.13)

This condition still leaves the freedom of multiplying S(L̂) by −1, or ±i because
(−1)4 = (±i)4 = 1. In the next paragraph we eliminate ±i from this list.

In the considerations presented above we have not yet used the fact that Lμ
ν in

condition (5.11) are real. In order to derive the consequences of this for S(L̂), we
use the so calledMajorana representation of Dirac matrices, in which all of the Dirac
matrices have imaginary elements. For example, we may take

γ0
M = i

(
0 −σ1

σ1 0

)
, γ1

M = i

(
σ0 0
0 −σ0

)
, (5.14)

γ2
M =

(
0 −σ2

σ2 0

)
, γ3

M = i

(
0 σ0

σ0 0

)
.

In this representation the r.h.s. of condition (5.11) is imaginary. Thus, the S(L̂)M
matrices transform imaginary matrices γ

μ
M into imaginary matrices. It turns out that

there exist matrices S(L̂)M which are real. They are crucial for the relativistic invari-
ance of the theory of the Majorana field discussed in Sect. 5.4. Therefore, it is natural
to add one more restriction on the matrices S(L̂) in the original representation: they
should become real when transformed to the Majorana representation. Due to this
reality condition it is not possible to multiply S(L̂) by ±i .

To summarize, condition (5.11) strengthened by assumption (5.13) and the real-
ity condition, determine the matrix S(L̂) in the Majorana representation up to an
overall sign factor. Next, we may pass to the other representations by a similarity
transformation analogous to (5.12). It is easy to see from (5.11) that the similarity
transformation of S(L̂) can have exactly the same form as the transformation of the
Dirac matrices γμ.

Condition (5.11) applied twice gives

S−1(L̂1)S
−1(L̂)γμS(L̂)S(L̂1) = Lμ

νS
−1(L̂1)γ

νS(L̂1) = (L̂ L̂1)
μ
ργ

ρ.
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This formula implies that

S(L̂)S(L̂1) = c0 S(L̂ L̂1), (5.15)

where c0 = ±1.
The notation S(L̂) suggests that we consider a function of L̂ . Actually, there is a

subtlety which should be discussed. The point is that for a given L̂ there exist two
matrices S(L̂) satisfying condition (5.11). They differ only by their sign. It turns out
that this ambiguity can be removed by a more restrictive definition of S(L̂), only
at the price that S(L̂) would not be a continuous function of L̂ , but we shall not
discuss this mathematical point in detail. Let us only mention that the sign ambiguity
is related to the fact that the L↑

+ group, regarded as a topological space, is not simply
connected (that is, there exist closed paths (loops) in it, which cannot be contracted
to a point without leaving the group on some intermediate stages of the contraction).
The situation is analogous to the problem of removing the ambiguity of sign in

√
z,

where z is a complex number. We have the choice: either
√
z is not continuous along

a cut in the complex plane or it is double valued.We assume that S(L̂) is a continuous
function of L̂ , therefore it has to be double valued. We may write (5.15) in the form

S(L̂1)S(L̂2) = S(L̂1 L̂2), (5.16)

but it is understood that S(L̂) is double valued. Also S(I4) = I4 in the same sense,
that is actually S(I4) = ±I4. Strictly speaking, the matrices S(L̂) do not form a
representation of the L↑

+ group, because for a representation the mapping L̂ → S(L̂)

has to be single valued.
It remains to compute thematrices S(L̂) obeying (5.11), (5.13) and (5.16).We first

find an explicit formula for these matrices, which is valid in the vicinity of the trivial
Lorentz matrix L̂ = I4 in which the exponential parametrization (3.9) is defined.
Because the L↑

+ group is connected, every element L̂ of it can be obtained as a product
of elements L̂1, L̂2, . . . , L̂n from that vicinity, L̂ = L̂1 L̂2 . . . L̂n . Therefore, with the
help of formula (5.16) we obtain S(L̂) = S(L̂1)S(L̂2) . . . S(L̂n). In spite of the fact
that L̂ can be written as such a product in many ways, S(L̂) is determined uniquely,
except for the factor c0 = ±1. The reason is that such an S(L̂) obeys condition (5.11)
with fixed Lμ

ν , it has a unit determinant and it is real in the Majorana representation.
Therefore, the above reasoningwhich proves that c0 = ±1 also applies to thismatrix.

The formula for S(L̂) has the form

S(L̂) = ± exp

(
1

8
ωμν[γμ, γν]

)
. (5.17)

Here [, ] denotes the commutator of the matrices, and ωμν = ημσω
σ
ν . The matrix

ω̂ = (ωμ
ν) is related to L̂ through the exponential parametrization,

L̂ = exp ω̂.

http://dx.doi.org/10.1007/978-3-319-55619-2_3
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S(L̂) given by formula (5.17) is real in the Majorana representation. In order to
check its determinant, we use the formula det(exp â) = exp(tr â) which is valid for
any matrix â. The determinant is equal to 1, because the trace of the commutator of
matrices vanishes. Condition (5.11) can be checked in the following way. First, we
introduce auxiliary matrices

X (τ ) = ± exp

(
1

8
ωμν[γμ, γν]τ

)
,

�ρ(τ ) = X (τ )−1γρX (τ ),

where τ is a real parameter. In particular,

X (1) = S(L̂), �ρ(0) = γρ. (5.18)

Let us compute d�ρ(τ )/dτ ,

d�ρ(τ )

dτ
= −1

4
ωμνX (τ )−1(γμγνγρ − γργμγν)X (τ ).

Applying the Dirac relation (5.2) to the r.h.s. of this formula we obtain

d�ρ(τ )

dτ
= ωρ

ν�
ν(τ )

(see Exercise 5.1). Solution of this equation consistent with the second condition
(5.18) has the form

�ρ(τ ) = (
exp(τ ω̂)

)ρ

ν
γν .

Putting τ = 1 we obtain relation (5.11).
Matrices of the form (5.17) and their products form a group called Spin(4). When

constructing this group we have used the Dirac matrices in a fixed representation.
However, the Spin(4) groups obtained for various choices of representation are
related by similarity transformations of the form (5.12), hence all these groups are
isomorphic to each other. It turns out that the Spin(4) group is isomorphic to the
SL(2,C) group, which consists of all 2 × 2 complex matrices with the unit deter-
minant. This isomorphism is seen directly when we construct the Spin(4) group in
the so called spinor representation of the Dirac matrices, where

γ0 =
(

0 σ0

σ0 0

)
, γk =

(
0 −σk

σk 0

)
. (5.19)

Simple calculation then gives
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1

8
ωμν[γμ, γν] =

(
M̂ 0
0 −M̂†

)
,

where

M̂ = 1

2
ω0kσk − i

4
εiksωikσs .

Here εiks is the three dimensional totally antisymmetric symbol, ε123 = +1. In
consequence,

S(L̂) =
(

� 0
0 (�†)−1

)
, (5.20)

where
� = ± exp M̂ . (5.21)

Furthermore, det� = 1 because trM̂ = 0. One can show that the set of all matrices
� given by formula (5.21) together with their inverses and their products coincides
with the group of all 2 × 2 complex matrices with unit determinant, denoted by
SL(2,C). It is the smallest connected group containing all such products.

Condition (5.11) in the spinor representation (5.19) written for S(L̂) of the form
(5.20) is equivalent to the following two relations

�†σ̃μ� = Lμ
νσ̃

ν, �−1σμ(�†)−1 = Lμ
νσ

ν, (5.22)

where (σμ) = (σ0,−σk), (σ̃μ) = (σ0,σk), and k = 1, 2, and 3. The two relations
(5.22) are equivalent to each other. With the help of the identity

Tr(σ̃μσ̃ν) = 2δμν,

the first of relations (5.22) gives

Lμ
ν = 1

2
Tr(�†σ̃μ�σ̃ν). (5.23)

Formulas (5.22) and (5.23) relate the Lorentz matrix L̂ = (Lμ
ν) to the SL(2,C)

matrix�. Using (5.22) and (5.23) one can prove that the matrix (Lμ
ν) obtained from

formula (5.23) belongs to L↑
+ for any � ∈ SL(2,C).

In the quantummechanical context, apart from the invariance of theDirac equation
under Poincaré transformations, one also has to check that the scalar product (5.6) is
invariant. Only then may one say that the quantum mechanics of the Dirac particle
is Poincaré invariant. It turns out that the scalar product is indeed invariant, but we
skip the proof.
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5.2 The Dirac Field

All spinor fields have a rather peculiar property: continuous rotations around a certain
fixed axis in the space by an angle which increases from 0 to 2π do not reproduce the
initial field when the rotation angle becomes equal to 2π. The initial field is obtained
for the angle equal to 4π. For example, let us take

ω̂ = φ

⎛
⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Then,
L̂(φ) = exp ω̂ =

⎛
⎜⎜⎝
1 0 0 0
0 cosφ − sin φ 0
0 sin φ cosφ 0
0 0 0 1

⎞
⎟⎟⎠ ,

and in the spinor representation of the Dirac matrices

M̂ = i

2
φ σ3, �(φ) = exp M̂ = cos

φ

2
σ0 + i sin

φ

2
σ3.

It is clear that L̂(φ) represents a rotation by angle φ around the third axis. For φ = 0
we obtain � = σ0. Taking the sign + in formula (5.21) we have S(φ = 0) = I4.
Let us now increase φ in a continuous manner to 2π. Then, �(φ) → −σ0, and in
consequence S(2π) = −I4. Increasing φ further, we obtain S = I4 for φ = 4π.
The formulas for L̂(φ) and �(φ) used above have been obtained by writing the
exponential function as the series, exp x = ∑∞

l=0 x
l/ l!, and noticing that

ω̂2l = φ2l(−1)l

⎛
⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ , (σ3)

2l = σ0,

where l = 0, 1, 2, . . .. Furthermore, the odd powers ω̂2l+1 can be calculated by
writing them as the product

ω̂ω̂2l = φ2l+1(−1)l

⎛
⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ .

An analogous trick is used in order to calculate (σ3)
2l+1. Finally, we recognize the

series expansions for the sine and cosine functions.
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The classical Dirac field is represented by ψ(x) = (ψα), where α = 1, 2, 3, 4
and ψα are complex numbers. By definition, under the Poincaré transformations
x ′ = L̂x + a

ψ′(x ′) = S(L̂)ψ(x),

as in the previous section. The important difference is that nowψ(x) is not interpreted
as a wave function with the probabilistic interpretation. In particular, there is no need
to introduce a scalar product. The Dirac equation (5.1) is obtained as the Euler–
Lagrange equation for the following Lagrangian

L = i

2
(ψγμ∂μψ − ∂μψγμψ) − mψψ. (5.24)

As the independent dynamical variables we may take Reψα, Imψα or, equivalently,
ψα,ψα. In the followingdiscussionweuse the latter choice. Then theEuler–Lagrange
equation corresponding to ψ has the form (5.1), while functional derivatives with
respect to ψα, α = 1, 2, 3, 4, give

i∂μψγμ + mψ = 0. (5.25)

When we relate ψ with ψ using formula (5.7), this last equation becomes equivalent
to the Dirac equation (5.1). In order to check this, we notice that formulas (5.3) and
(5.4) imply that

(γ0)† = A†Aγ0(A†A)−1, (γi )† = −A†Aγi (A†A)−1. (5.26)

Taking the Hermitian conjugate of the Dirac equation (5.1), eliminating (γμ)† with
the help of the formulas given above, multiplying the resulting equation by A†Aγ0,
and finally anti-commuting γ0 with γi , we obtain equation (5.25).

Lagrangian (5.24) has real values, and it is invariant with respect to Poincaré
transformations. In order to check this latter property, it is convenient to first derive
the transformation law of the field ψ. Formulas (5.7) and (5.9) give

ψ′(x ′) = ψ(x)†(S(L̂))†A†Aγ0.

Next, using formulas (5.17) and (5.26) on the r.h.s. of this formula we obtain

ψ′(x ′) = ψ(x)S−1(L̂). (5.27)

The invariance of the Lagrangian follows from (5.9), (5.27) and (5.11).
Lagrangian (5.24) is also invariant with respect to globalU (1) transformations of

the form
ψ′(x) = exp(iα)ψ(x), ψ′(x) = exp(−iα)ψ(x), (5.28)

where α ∈ [0, 2π). Noether’s theorem applied to this internal continuous symmetry
gives the conserved current
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jμ(x) = ψ(x)γμψ(x). (5.29)

A model with local U (1) symmetry can be obtained from Lagrangian (5.24) by
replacing the ordinary derivatives with covariant ones, as described in the previous
chapter.

The energy-momentum tensor for the Dirac field can be calculated from the fol-
lowing formula

T μ
ν = −Lδμ

ν − ∂L
∂(ψα

,μ)
Dνψ

α − ∂L
∂(ψα,μ)

Dνψα, (5.30)

where the Lie derivatives have the form

Dνψ
α = −∂νψ

α, Dνψα = −∂νψα.

These formulas follow fromNoether’s theorem applied to the translational symmetry
of the Dirac Lagrangian (5.24). In particular, the energy density of the Dirac field is
equal to

T 0
0 = −1

2
i(ψγk∂kψ − ∂kψγkψ) + mψψ. (5.31)

It is not bounded from below. Hence, the classical Dirac field model is not acceptable
fromaphysical viewpoint. It turns out that the remedy consists in quantizing theDirac
field, see the next chapter. The same is also true for the Weyl and Majorana fields
discussed below.

5.3 The Weyl Fields

The Dirac field can be decomposed into two so called Weyl fields. This decomposi-
tion is Lorentz invariant. It yields an interesting new perspective on the Dirac field.
Definition of the Weyl fields involves the γ5 matrix introduced as follows

γ5 = i

4!εμνλσγμγνγλγσ, (5.32)

where εμνλσ is the four dimensional antisymmetric symbol, ε0123 = +1. Because
Dirac matrices with different index values anticommute,

γ5 = iγ0γ1γ2γ3. (5.33)

This formula is useful when checking that

γ5γ
μ + γμγ5 = 0, (γ5)

2 = I4. (5.34)
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Theγ5 matrix isHermitian in theDirac representation, aswell as in all representations
of the Dirac matrices which are unitarily equivalent to the Dirac representation, i.e.,
when the matrix A in formula (5.4) is unitary. Finally, as follows from formulas
(5.26),

(γ5)
† = A†Aγ5(A

†A)−1. (5.35)

Let us introduce two matrices

P± = 1

2
(I4 ± γ5). (5.36)

They have the following properties

P+ + P− = I4, (P±)2 = P±, P+P− = 0 = P−P+. (5.37)

The Weyl fields ψR and ψL are defined as follows

ψR(x) = P+ψ(x), ψL(x) = P−ψ(x), (5.38)

where ψ is the Dirac field. ψR and ψL are eigenvectors of γ5, namely

γ5ψR(x) = ψR(x), γ5ψL(x) = −ψL(x). (5.39)

It is clear that
ψ(x) = ψR(x) + ψL(x). (5.40)

The letters R or L stand for ‘right-handed’ or ‘left-handed’, respectively. These
traditional names for the Weyl fields refer to the helicity of the particles which
appear in the quantum versions of models with these fields.

The decomposition (5.40) of the Dirac field intoWeyl fields is interesting because
it is preserved under Poincaré transformations (5.9). If we decompose ψ′(x ′),

ψ′(x ′) = ψ′
R(x ′) + ψ′

L(x
′), ψ′

R,L(x) = P±ψ′(x),

then
ψ′

R(x ′) = S(L̂)ψR(x), ψ′
L(x

′) = S(L̂)ψL(x). (5.41)

These formulas are a consequence of the fact that the matrices S(L̂) and γ5 commute,

S(L̂)γ5 = γ5S(L̂). (5.42)

This very important property of the γ5 matrix follows from its definition (5.32) and
relation (5.11),
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S−1(L̂)γ5S(L̂) = i

4!εμνλσL
μ
δL

ν
κL

λ
αL

σ
βγδγκγαγβ

= i

4! det L̂ εδκαβ γδγκγαγβ = γ5

because det L̂ = 1 for Lorentz matrices from the L↑
+ group. Thus, γ5 is invariant

under such Lorentz transformations. Because of transformation laws (5.41), theWeyl
fields can be regarded as independent relativistic spinor fields.

Let us write Lagrangian (5.24) for the Dirac field as a function of the Weyl
fields. From now on we use a representation for γμ that is unitarily equivalent to the
Dirac representation, henceγ5 isHermitian. TheMajorana and spinor representations
belong to this class. The Dirac field is eliminated with the help of formula (5.40),
while for the conjugate Dirac field ψ we first use the following formulas

(ψR) = ψP−, (ψL) = ψP+,

next P+P− = 0, P+γμP+ = 0, and other similar formulas. It turns out that

L = 1

2
i[(ψR)γμ∂μψR−∂μ(ψR)γμψR] + 1

2
i[(ψL)γ

μ∂μψL − ∂μ(ψL)γ
μψL ]

− m(ψL)ψR − m(ψR)ψL . (5.43)

The Dirac equation (5.1) is split as follows

iγμ∂μψR − mψL = 0, iγμ∂μψL − mψR = 0. (5.44)

The conserved current (5.29) is a sum of two separate terms for ψR and ψL ,

jμ = (ψR)γμψR + (ψL)γ
μψL . (5.45)

The two terms in (5.45) have identical form because theU (1) transformations (5.28)
act on ψR and ψL in exactly the same manner. We see from formula (5.43) and
equations (5.44) that the parameter m can be regarded as a measure of the coupling
of the ψR and ψL fields in the Dirac Lagrangian (5.24). In the case of m = 0 the
Lagrangian is split into two separate parts, each one being relativistically invariant.

The form (5.43) of the Lagrangian for the Dirac field reveals that in the case of
m = 0 the U (1) symmetry (5.28) is enlarged to U (1)R ×U (1)L symmetry, defined
by the following transformation laws:

U (1)R : ψ′
R(x) = eiωψR(x), ψ′

R(x) = e−iωψR(x), ψ′
L(x) = ψL(x), (5.46)

U (1)L : ψ′
L(x) = eiδψL(x), ψ′

L(x) = e−iδψL(x), ψ′
R(x) = ψR(x), (5.47)
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where ω and δ are two independent, real, continuous parameters. Let us replace these
parameters by α and β such that

ω = α + β, δ = α − β.

It is clear that for β = 0 we obtain the familiar U (1) symmetry (5.28) which exists
also when m �= 0. On the other hand, for α = 0 we have a new U (1) symmetry,
called the chiral symmetry. The chiral transformation of the Dirac field has the form

ψ′(x) = eiβψR(x) + e−iβψL(x)

= eiγ5βψR(x) + eiγ5βψL(x) = exp(iγ5β) ψ(x), (5.48)

and for the conjugate Dirac field

ψ
′
(x) ≡ ψ′(x) = ψ(x) exp(iγ5β). (5.49)

Noether’s theorem applied to the chiral transformations gives a conserved current of
the form

jμ5 = ψRγμψR − ψLγ
μψL = ψγμγ5ψ. (5.50)

Simple calculation with the use of the Dirac equation (5.1) and its conjugate (5.25)
shows that

∂μ j
μ
5 = 2imψγ5ψ.

Thus, the current jμ5 is conserved when m = 0.
Note that there is the possibility of a new spinor field theory involving just one of

Weyl fields, let it be ψR , with the Lagrangian

LR = i

2
[(ψR)γμ∂μψR − ∂μ(ψR)γμψR], (5.51)

and with the constraint
γ5ψR = ψR, (5.52)

see (5.39). This model is relativistically invariant. It contains half degrees of freedom
of the Dirac field. Of course, there also exists the model with ψR replaced by ψL .

Constraint (5.52) can be explicitly solved. For example, in the spinor representa-
tion (5.19) of the Dirac matrices,

γ5 =
(

σ0 0
0 −σ0

)
, (5.53)

and conditions (5.39) give
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ψR =
(

ξ
0

)
, ψL =

(
0
ζ

)
, (5.54)

where ξ and ζ are arbitrary two-component complex spinors, often called Weyl
spinors. The Dirac field ψ can be written as

ψ(x) =
(

ξ(x)
ζ(x)

)
.

For this reason, the Dirac field is called a bispinor field. Lagrangian LR expressed
by the spinor ξ has the form

LR = i

2
(ξ†σ̃μ∂μξ − ∂μξ

†σ̃μξ). (5.55)

There is a problem with a mass term for the ξ field. The term ξ†ξ is not Lorentz
invariant. Lorentz invariant expression ξT ε̂ξ, see below, simply vanishes because the
matrix ε̂ is antisymmetric.

Models with only one Weyl field ψR or ψL are not invariant under the spatial
reflection. The spatial reflection P acts on the Dirac field in the same manner as on
the bispinor wave function in the quantum mechanics of the Dirac particle, namely

Pψ(x0, �x) = eiηγ0ψ(x0,−�x),

where the constant factor exp(iη) is called the intrinsic parity of the field. This
definition implies that

P ψR = (Pψ)L , P ψL = (Pψ)R .

Hence, the operator P intertwines the spaces of the right- and left-handed fields,
while for the invariance we need an operator that acts within one such space. The
Dirac field model with Lagrangian (5.24) is invariant under the spatial reflection.

Formulas (5.20) and (5.24) give the Poincaré transformations of Weyl spinors:

ξ′(x ′) = �ξ(x), ζ ′(x ′) = (�†)−1ζ(x). (5.56)

There exist old conventions about the indices of Weyl spinors, namely

ξ = (ξα), ζ = (ζα̇), ξ∗ = (ξα̇), ζ∗ = (ζα),

where ∗ denotes complex conjugation, and α, α̇ = 1, 2. These are accompanied by
conventions for the indices of the SL(2,C) matrices:

� = (�α
β), (�†)−1 = (((�†)−1)

β̇
α̇ ), �∗ = (�α̇

β̇
), (�T )−1 = (((�T )−1) β

α ).
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For example, the transformation law of the ζ∗ spinor is written in the form

ζ ′∗
α (x ′) = ((�T )−1) β

α ζ∗
β(x).

The transformation laws of the spinors ξ, ζ, ξ∗, and ζ∗ are not independent. The
reason is that for any matrix � ∈ SL(2,C) the following identity is true

(�T )−1 = ε̂�ε̂−1, (5.57)

where

ε̂ = iσ2 =
(

0 1
−1 0

)
.

A simple way to check this identity consists in explicit computation of the both
sides, and taking into account the fact that det� = 1. Matrix elements of ε̂ are
denoted as εαβ , while matrix elements of ε̂−1 as εαβ . Note that ξαξα = 0, and
ξαξ′α = −ξ′

αξα because εαβεβσ = δσ
α. Due to identity (5.57) the spinor ε̂−1ζ∗ has

the same transformation law as the spinor ξ in the first formula (5.56). Therefore,
it should have an upper index without a dot. Complex conjugation adds or removes
the dot, ε̂ lowers the spinor index and ε̂−1 rises it. For instance, if ζ = (ζα̇) then
ζ∗ = (ζα), or if ξ = (ξα) then ξα = εαβξβ .

Let us end this section by remarking that the γ5 matrix exists only when the space-
time under consideration has an even dimension. This is a consequence of a theorem
about the size of Dirac matrices [5] which says that in d-dimensional space-time γμ

matrices are quadratic with the number of columns and rows equal to 2[d/2], where
[d/2] denotes the integer part of d/2. For example, when d = 2 we may take as
Dirac matrices

γ0 = σ1, γ1 = σ2.

The γ5 matrix should obey relations (5.34) by definition. The explicit formula (5.32)
is valid only when d = 4. Let us assume that d is odd, and let us suppose that γ5
obeying (5.34) exists. Then, the set of d + 1 matrices

γ0, γ1, . . . , γd−1, iγ5

satisfies all of the requirements for Dirac matrices in (d+1)-dimensional space-time.
Their size is equal to 2[d/2] = 2(d−1)/2. On the other hand, the theorem quoted above
says that Dirac matrices have the size 2[(d+1)/2] = 2(d+1)/2, which is larger by a factor
of 2. This contradiction shows that γ5 cannot exist. In consequence, the Weyl fields
can also only be defined in an even dimensional space-time.
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5.4 The Majorana Field

The fact that thematrices S(L̂) are real in theMajorana representation (5.14), suggests
that there exists a relativistic, real bispinor field ψ = (ψα), α = 1, 2, 3, 4, with real
components ψα. The Poincaré transformations of such bispinors,

ψ′(x ′) = S(L̂)ψ(x) (5.58)

give bispinors ψ′ which also have real components. Moreover, the Dirac equation in
the Majorana representation,

iγμ
M∂μψ(x) − mψ(x) = 0, (5.59)

contains matrices iγμ
M which have real elements. Therefore this equation is compati-

ble with the assumption that ψ is real. The real field ψ which has transformation law
(5.58) and obeys (5.59) is called the Majorana field. It contains half of the degrees
of freedom of the Dirac field. Note that the U (1) transformations (5.28) cannot be
defined for the Majorana field because they would violate the condition that the
field has real values. For the same reason it is not possible to introduce the local
U (1) gauge symmetry which would determine coupling of the Majorana field to
the Abelian gauge field. In particular, the Majorana field cannot be coupled to the
electromagnetic field in the minimal way, that is by replacing ordinary derivatives
with the covariant ones.

On the other hand, the current ψγ
μ
Mψ still exists and is conserved, but it should

not be interpreted as the current of electric charge. Actually, the presence of this
conserved current might seem a paradox, because there is a theorem, known as the
inverse Noether theorem, which says that in such a case there exists a corresponding
continuous symmetry. However, among the assumptions of that theorem is the very
existence of a Lagrangian. All field equations considered in previous sections were
of the Lagrange type, that is they could be obtained as Euler–Lagrange equations
from certain Lagrangians. So, what is the Lagrangian for the Majorana field? A
straightforward attempt to obtain the Lagrangian, just by taking theDirac Lagrangian
(5.24) in the Majorana representation and assuming that ψ is real, fails because it
gives L = 0 (Exercise 5.2a). Trying a more general and systematic approach, let us
assume that the Lagrangian has the following form

L1(ψ, ∂μψ) = Aαβψαψβ + Bμ
αβψα∂μψ

β,

where Aαβ and Bμ
αβ are real constants. In the matrix notation,

L1(ψ, ∂μψ) = ψT Âψ + ψT B̂μ∂μψ,

where Â = (Aαβ) and B̂μ = (Bμ
αβ). The antisymmetric part of the matrix Â

gives a vanishing contribution, hence we may assume that this matrix is symmetric.
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Moreover, the symmetric parts B̂μ
s of the matrices B̂μ may be omitted because

they lead to a term which is the total divergence ∂μ(ψ
T B̂μ

Sψ). Thus, ÂT = Â and
(B̂μ)T = −B̂μ without any loss in generality. The Euler–Lagrange equation obtained
from this Lagrangian has the form

B̂μ∂μψ + Âψ = 0,

where we have omitted the overall factor 2. We expect that the Lagrangian L1 is
invariant with respect to the Poincaré transformations (5.58). It turns out that the
term ψT Âψ is invariant only if Â = 0 (Exercise 5.2b). This fact implies that the
Lagrangian in the above assumed form can exist only in the massless case, m = 0
in (5.59).

In the next step, we compare equation B̂μ∂μψ = 0 with γ
μ
M∂μψ = 0. These

two equations should have identical sets of solutions. The trivial choice B̂μ = iγμ
M

is wrong, because only γ0
M is antisymmetric. The Dirac equation can be written in

the Schroedinger form i∂0ψ = −iγ0
Mγi

M∂iψ. The Euler-Lagrange equation can be
written in this form provided that the matrix B̂0 is nonsingular. Then, we may write it
in the form i∂0ψ = −i(B̂0)−1 B̂i∂iψ. The two ‘Hamiltonians’ should coincide, hence
(B̂0)−1 B̂i = γ0

Mγi
M , and B̂

i = B̂0γ0
Mγi

M . The conditions (B̂i )T = −B̂i together with
(B̂0)T = −B̂0 give the following conditions for the B̂0 matrix

γ0
Mγi

M B̂0 = B̂0γ0
Mγi

M ,

where i = 1, 2 and 3. They are satisfied only by B̂0 = c0iγ5M , see Exercise 5.2c.
Here c0 is an arbitrary real constant, and the factor i is present because the matrix B̂0

should be real. In consequence, B̂i = c0iγ5Mγ0
Mγi

M . The matrix γ5M has the form

γ5M = iγ0
Mγ1

Mγ2
Mγ3

M = i

(
0 σ3

−σ3 0

)
.

Note that γ5M is antisymmetric, and γ2
5M = I4.

Our Lagrangian can be written in the following form

L1 == −iψMγ5Mγ
μ
M∂μψM ,

where we have put c0 = 1, and ψM = ψT
Mγ0

M . It is clear that this Lagrangian is
invariant with respect to the Poincaré transformations which, by assumption, involve
the proper, ortochronous Lorentz transformations (the space and time reflections are
excluded). Moreover, it is invariant also with respect to the chiral transformations of
the form (5.48) and (5.49) in which we now have γ5M . The matrix exp(iγ5Mβ) is real
and orthogonal. The conserved Noether current that follows from this symmetry is
equal to ψγ

μ
Mψ. In the Sect. 5.3, the chiral symmetry gave the current (5.50) which

contains the γ5 matrix. In the present case γ5M is absent in the current because there
is another matrix γ5M coming from the Lagrangian L1, and γ2

5M = I4.
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TheMajorana field can be introduced in another way, often preferred in the litera-
ture. We present it working with the Dirac equation (5.1) in the Dirac representation
(5.3). Let us define the charge conjugate Dirac field ψc:

ψc(x) = iγ2
Dψ∗(x), (5.60)

where ∗ denotes complex conjugation and ψ(x) is the Dirac field. The name ‘charge
conjugate’ reflects the fact that if ψ(x) obeys the Dirac equation with an external
electromagnetic field Aμ(x),

iγμ
D(∂μ + iq Aμ(x))ψ(x) − mψ(x) = 0,

then ψc(x) obeys the equation

iγμ
D(∂μ − iq Aμ(x))ψc(x) − mψc(x) = 0.

The change of sign of the coupling to the external electromagnetic field is interpreted
as the change of sign of the electric charge carried by the field. Let us impose on the
Dirac field the following condition

ψc(x) = ψ(x),

called the Majorana condition. This condition is invariant under Poincaré transfor-
mations because in the Dirac representation

γ2
DS

∗
D(L̂) = SD(L̂)γ2

D.

Note that the Majorana condition breaks the U (1) symmetry (5.28) of the Dirac
Lagrangian. The Majorana condition is satisfied by a bispinor of the form

ψM(x) =
(

ξ(x)
−iσ2ξ

∗(x)

)
,

where ξ(x) can be an arbitrary two-component complex spinor. Such a bispinor
ψM is invariant under the charge conjugation. It is called the Majorana field in the
Dirac representation. The real valued Majorana field (ψα) introduced above in the
Majorana representation can be identified with Re ξ and Im ξ.

5.5 Anticommuting (Bi)Spinor Fields

The Dirac, Weyl and Majorana fields are defined by their relativistic transformation
laws, and by their time evolution equations or, if available, their Lagrangians. The
existence of aLagrangian is a desired feature, in particular because it helps to quantize
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the field by applying a canonical quantization method or a path integral approach.
Furthermore, one can easily write conserved currents using the Noether theorem.
The main advantage of the anticommuting (or Grassmann) versions of the Weyl and
Majorana fields is that one can easily write Lagrangians for them also in the massive
case. Furthermore, the anticommuting versions of the (bi)spinor fields, including the
Dirac field, appear in path integrals for these fields, see Sect. 11.3. In the cases where
both versions of the spinor field have Lagrangians, one may choose between them.
Because the classical spinor fields mainly serve as a starting point for a construction
of quantum fields, and do not have direct physical applications as opposed to, e.g.,
electromagnetic field, the choice is mainly a matter of convenience.2 The classical
Grassmann field theory should be regarded as an auxiliary theoretical construction
which acquires physical meaning only when embedded into a quantum field theory.

Let us start from the Majorana field. In the anticommuting version, ψα(x) are
anticommuting, that is

{ψα(x),ψβ(y)} = 0 (5.61)

for all α,β = 1, 2, 3, 4, and for all x, y ∈ M . Here {A, B} = AB + BA. Thus,
ψα(x) are not real numbers as in the previous section. Nevertheless, one can formu-
late consistent rules for operating with such ‘variables’. The mathematical structure
which is relevant here is called a Grassmann algebra, and ψα(x) are called its gener-
ating elements. Because their number is infinite, the algebra is infinite dimensional.
The whole algebra is obtained by first, taking all formal products of the generating
elements, and next, by including all formal linear combinations of such products.
Because x is a continuous variable, such linear combinations generally have the
form of sums over discrete bispinor indices α,β, . . . , and integrals over x, y, z, . . ..
Various products can be related to each other only by applying the rule (5.61). For
example, ψα(x)ψβ(y) is not reducible to a linear combination of the generating ele-
ments, except for α = β, x = y when that product is equal to 0 according to (5.61).
In the case of the Majorana field we have an infinite number of generating elements.
Let us note that in the case of a finite number of generating elements one can con-
struct only a finite number of independent products, because all powers of a single
generating element vanish. For example, exp(ψα(x)) = 1 + ψα(x) exactly!

One can also define a derivative with respect to the generating element ψα(x). It
is denoted as

δ

δψα(x)
, (5.62)

and is called the Grassmann derivative. In the first step we just define that

δa

δψα(x)
= 0,

δψβ(y)

δψα(x)
= δβ

αδ(y − x), (5.63)

2Let us stress again that one should not confuse the field with a wave function of a single quantum
particle. For example, originally theDirac bispinorwas introduced as awave function of a relativistic
electron, not a field, and in the quantum mechanical context it has a probabilistic interpretation. No
such interpretation is assumed for the Dirac field.

http://dx.doi.org/10.1007/978-3-319-55619-2_11
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where a is a number. Now, let F be an element of the Grassmann algebra. It can be
written as a linear combination of the generating elements and their products. By
definition, the derivative acts on F linearly, that is term by term in that linear com-
bination. Also as a part of the definition, the derivative acts on products of numbers
and/or generating elements according to the Leibniz rule, with the modification that
the symbol (5.62) of the Grassmann derivative anticommutes with the generating
elements, and with other Grassmann derivatives. For example, let us take

F = a + b(y)ψβ(y) +
∫
d4xd4y c(x, y)ψβ(x)ψγ(y),

where a, b(y) and c(x, y) have complex values. Then

δF

δψα(z)
= b(y)δ(y − z)δβ

α +
∫
d4y c(z, y)δβ

αψγ(y) −
∫
d4x c(x, z)δγ

αψβ(x).

Another ingredient in the theory of the anticommuting Majorana field is a conju-
gation, denoted by ∗. By definition, this operation has the following properties

(AB)∗ = B∗A∗, (aA)∗ = a∗A∗, (A∗)∗ = A,

where a is a complex number, a∗ denotes its complex conjugate, and A, B are
elements of the Grassmann algebra. The assumption in the previous section that the
Majorana field has real components is replaced in the Grassmann version by the
assumption that

(ψα(x))∗ = ψα(x), (5.64)

i.e., the components are selfconjugate.3

Now we are prepared to formulate the Grassmann version of the Majorana field.
We take the action in the form

S =
∫
d4x L, (5.65)

with the following Lagrangian

L = i

2
(ψγ

μ
M∂μψ − ∂μψγ

μ
Mψ) − mψψ, (5.66)

where ψα = ψβ(γ0
M)βα. L has the same form as the Dirac Lagrangian (5.24), but

now ψ is the anticommuting real Majorana field. Lagrangian (5.66) does not vanish
precisely because ψα(x) do not commute. It is ‘real’ in the sense that L∗ = L.
When checking this it is helpful first to notice that the products γ0

Mγ
μ
M are symmetric

matrices. The Grassmann version of the stationary action principle has the form

3Nevertheless we will call them ‘real’, unless there is a risk of confusion.
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δS

δψα(x)
= 0, (5.67)

where S is regarded as an element of the Grassmann algebra. It gives the Majorana
equation (5.59) for the anticommuting field ψα(x),

iγμ
M∂μψ(x) − mψ(x) = 0.

This equation should be regarded as a restriction on the generating elementsψα(x) of
the initial Grassmann algebra. Before solving it, in principle one should first define
the Dirac operator iγμ

M∂μ − mI in the Grassmann algebra—it is not clear what is
meant by the derivatives ∂μ of the Grassmann elements. We adopt a pragmatical
attitude: ψα(x) are written in the form of a Fourier transform, so that the xμ variables
appear in ordinary exponential functions. Then the general solution of the Majorana
equation can be written in the form

ψα(x) =
∫

d3k
∑

λ=1,2

∑
ε=±

[
e−εiω(�k)x0+i �k �xψ(ε)α

λ (�k)cλ
ε (�k) (5.68)

+ eεiω(�k)x0−i �k �x (ψ(ε)α
λ (�k))∗(cλ

ε (�k))∗
]
,

where ω(�k) =
√
m2 + �k2, and ψ(ε)α

λ (�k) are the four independent solutions of the
homogeneous matrix equation

(
ε ω(�k)γ0

M − kiγi
M

)
ψ(ε)

λ (�k) − mψ(ε)
λ (�k) = 0. (5.69)

The cλ
ε (�k) present in (5.68) are independent generating elements of a certain Grass-

mann algebra, which is a subalgebra of the original algebra generated by all ψα(x).
The Grassmann elements ψα(x) given by formula (5.68) are not independent, nev-
ertheless they still anticommute as in (5.61).

The Lagrangian (5.66) for the anticommuting Majorana field does not have the
U (1) symmetry becausemultiplication by a phase factor can violate the reality condi-
tion (5.64). Nevertheless, the current jμ = ψγ

μ
Mψ = ψα(γ0

Mγ
μ
M)αβψβ , which corre-

sponds to this symmetry in the case of theDirac Lagrangian (5.24), is conserved—the
Majorana equation implies that ∂μ jμ = 0. The explanation of this puzzle is simple:
the would-be current jμ is always equal to zero because ψα and ψβ anticommute
with each other and the matrices γ0

Mγ
μ
M are symmetric.

The Grassmann version of the Weyl spinor field ξ(x) = (ξα(x)), α = 1, 2,
allows for a Lorentz invariant mass term, which is not possible in the c-number
version with Lagrangian (5.55). In this case the full set of independent generating
elements consists of ξα(x) and ξ∗α̇(x). The conjugation is defined as follows:

(aξα(x))∗ = a∗ξ∗α̇(x), (aξ∗α̇(x))∗ = a∗ξα(x),
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where a is a complex number, and a∗ is its complex conjugation. The Lagrangian
has the form

L = i

2

(
ξ∗α̇σ̃

μ
α̇β∂μξ

β − ∂μξ
∗α̇σ̃

μ
α̇βξβ

)
+ m

2

(
ξαεαβξβ − ξ∗α̇εαβξ∗β̇

)
.

This Lagrangian is ‘real’ in the sense that it is invariant under conjugation, i.e.,
L∗ = L. Of course L is not a number, it is just an element of the Grassmann algebra.
The mass term does not vanish because

ξαξβ = −ξβξα, ξ∗α̇ξ∗β̇ = −ξ∗β̇ξ∗α̇.

The Grassmann version of the Dirac bispinor field in Minkowski space-time is
presented at the beginning of Sect. 6.2, and a Euclidean version of it in Sect. 14.2.

Exercises

5.1 Check that
ωμν(γ

μγνγρ − γργμγν) = −4ωρ
σγσ,

where ωμν = −ωνμ.
Hint: Use the Dirac relations (5.2) and notice that ωμνη

μν = 0.

5.2 (a) Check that the matrices αi
M = γ0

Mγi
M are symmetric. Next, prove that the

Dirac Lagrangian (5.24) with γμ = γ
μ
M vanishes if all components of the bispinor ψ

are real numbers.
(b) Check that the term ψT Âψ, where Â �= 0 and ÂT = Â, is not invariant with
respect to transformations of the form (5.58).
Hints: The invariance requires that ST (L̂) ÂS(L̂) = Â for all L̂ ∈ L↑

+. Show that this
condition is equivalent to

( Âγ
μ
Mγν

M)T = − Âγ
μ
Mγν

M ,

where μ �= ν, μ, ν = 0, 1, 2 and 3. Next, consider these conditions taking, for
instance, μ = 1, ν = 3; μ = 0, ν = 1 and μ = 0, ν = 2. Show that they are satisfied
only by Â = 0.
(c) Show that the conditions

γ0
Mγi

M B̂0 = B̂0γ0
Mγi

M ,

where i = 1, 2 and 3, are satisfied only by B̂0 = c0iγ5M .
Hint: First compute the three matrices γ0

Mγi
M . Write B̂0 in the block form

http://dx.doi.org/10.1007/978-3-319-55619-2_6
http://dx.doi.org/10.1007/978-3-319-55619-2_14
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B̂0 =
(

a b
−bT c

)
,

where a, b, c are real, 2 by 2 matrices, aT = −a, cT = −c.

5.3 Show, by acting on the Dirac equation (5.1) with the operator iγμ∂μ +mI4, that
every component of the Dirac spinor satisfies the Klein–Gordon equation.

5.4 Prove that the matrices
{
� J

} = {I4, γμ, γ5, γ
μγ5,σ

μν} , where σμν =
i
2 [γ

μ, γν] , form a basis in the vector space (over the complex number field) of
4 × 4 matrices.
Hint: Check that tr (� J�K ) does not vanish if and only if J = K and use this to
prove that for λi ∈ C:

16∑
J=1

λJ�
J = 0 ⇒ λJ = 0, J = 1, . . . , 16.

5.5 Let ψ(±)α
λ (�k), λ = 1, 2, denote linearly independent solutions of the Dirac

equation in the momentum space:

(
ε ω(�k)γ0

αβ − kiγi
αβ − m

)
ψ

(ε)β
λ (�k) = 0,

where ω(�k) =
√
m2 + �k2. Denote

uα
λ(�k) = ψ(+)α

λ (�k), vα
λ (�k) = ψ(−)α

λ (−�k).

Prove the following identities:

(
ω(�k)γ0 − kiγi − m

)
uλ(�k) = 0,

(
ω(�k)γ0 − kiγi + m

)
vλ(�k) = 0.

5.6 For the Dirac bispinors normalized as

uλ(�k)†uσ(�k) = ω(�k)
m

δλσ, vλ(�k)†vσ(�k) = ω(�k)
m

δλσ

(m > 0), demonstrate the identities

ūλ(�k)uσ(�k) = δλσ, v̄λ(�k)vσ(�k) = −δλσ,
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and

2∑
λ=1

uα
λ(�k) ūβ

λ(�k) =
(

/k + mI4
2m

)αβ

,

2∑
λ=1

vα
λ (�k) v̄

β
λ (�k) =

(
/k − mI4

2m

)αβ

,

where /k = ω(�k)γ0 − kiγi .
Hint: In order to check the last two formulas notice that the u1(�k), u2(�k), v1(�k), v2(�k)
form a basis in the vector space of Dirac bispinors. Decompose an arbitrary bispinor
in this basis and, using this decomposition, check that the actions of both sides of
the identities on such an arbitrary bispinor coincide.

5.7 Derive the Gordon identities

ūλ( �p)γμuσ(�q) = 1

2m
ūλ( �p) [

(p + q)μ + iσμν(p − q)ν
]
uσ(�q),

and

ūλ( �p)γμγ5uσ(�q) = 1

2m
ūλ( �p) [

(p − q)μγ5 + iσμν(p + q)νγ5
]
uσ(�q).

What would the analogous identities for the bispinors vλ(�k) look like?

5.8 Check that ψ̄(x)ψ(x) and ψ̄(x)γ5ψ(x) are scalars under thePoincaré transforma-
tions (with L ∈ L↑

+), while ψ̄(x)γμψ(x) and ψ̄(x)γ5γμψ(x) behave like four-vectors.
Remark: ψ̄(x)ψ(x) and ψ̄(x)γ5ψ(x), and similarly ψ̄(x)γμψ(x) and ψ̄(x)γ5
γμψ(x) behave differently under the reflection �x → −�x, but the reflection does
not belong to L↑

+. Had we study it we would have discovered that ψ̄(x)γ5ψ(x) is in
fact a pseudoscalar and ψ̄(x)γ5γμψ(x) a pseudovector (like, for instance, a vector
product of three dimensional vectors).



Chapter 6
The Quantum Theory of Free Fields

Abstract The canonical quantization of the free, real scalar field. Difficulties with
the Schroedinger representation. Inequivalent representations of the canonical com-
mutation relations. The Fock representation. Basic quantum observables: the total
energy and momentum of the field. A description of quantum states in terms of par-
ticles. The field operator as a generalized function. The classical Dirac field as a
system with constraints. The Faddeev–Jackiw method and quantization of the free
Dirac field. The Dirac vacuum and the appearance of a free, relativistic, spin 1/2
particle and its antiparticle. Extraction of the physical degrees of freedom of the free
electromagnetic field. The canonical quantization of the electromagnetic field and
the appearance of a free, massless particle (the photon).

Quantum field theory, that is the quantum theory of systems with an infinite number
of degrees of freedom, provides an explanation of rather nontrivial phenomena,
including the very fact that the world seems to be built of well-defined quantum
particles with intrinsic characteristics like spin, electric charge, and so forth. Also,
the fact that particles come in a great number of perfectly identical copies, is explained
if we assume that in nature there physically exist certain quantum fields. These fields
are the basic physical constituents of the material world whereas the particles are
secondary.

Quantum field theory still has some unsolved problems. Among them is the ques-
tion of how to find an appropriate Hilbert space in which one can have a probabilistic
interpretation of the theory, in terms of objects directly accessible to the methods
of experimental physics (various ‘particles’ in most cases). This is a very difficult
problem, especially when interactions are present, as opposed to the case of quantum
mechanics, where there is no doubt what the pertinent Hilbert space is.

In this chapter we describe three main types of free quantum fields. By definition,
‘the free quantum field’ means that the evolution equation for the field operator in
the Heisenberg picture is linear. The free quantum fields are very well understood
from both physical and mathematical viewpoints.

© Springer International Publishing AG 2017
H. Arodź and L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
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6.1 The Real Scalar Field

The configuration space of the classical real scalar field consists of smooth, real
functions φ(�x) of the vector �x ∈ R3. Field trajectories in this space are represented
by the functions φ = φ(t, �x) of the time t and �x . The Lagrangian of this field has
the form1

L = 1

2

(
∂0φ ∂0φ − ∂iφ ∂iφ − m2φ2

)
. (6.1)

It is a function ofφ(t, �x) and ∂0φ(t, �x), which are regarded as independent arguments
of L because there is no relation between them at a given time t . We assume that
m2 > 0. An example of a quantum field with m = 0 is discussed in Sect. 6.3.

The canonical momentum for the field φ is defined as follows

π(t, �x) = ∂L
∂(∂0φ(t, �x)) . (6.2)

This formula corresponds to p = ∂L/∂q̇ known from classical mechanics. In
our case

π(t, �x) = ∂0φ(t, �x). (6.3)

Note that the canonical momentum differs from the density T 0i of the conserved
momentum,

T 0i = −∂iφ ∂0φ.

In classical mechanics of a free particle the two momenta coincide.
There is no derivation of quantum theory from the classical one. The reason is

that the quantum theory is much more general. Actually, it is the classical theory
which is derived from the quantum theory as an approximation that is valid only
if certain conditions are satisfied. The historical fact that certain classical theories
were discovered a long time before the quantum theories, can, to some extent, be
explained by the lack of sufficiently precise experimental equipment which could
have allowed physicists in the past to observe microscopic phenomena. Another
reason is that the majority of phenomena that we can directly perceive with our
senses, can be understood in terms of classical physics with a satisfactory accuracy.
Thus, the quantum theory is postulated, not derived. Nevertheless, there exist several
so called methods of quantization. In fact, they should be regarded merely as certain
heuristic rules for how to arrive at (hopefully) consistent quantum theories. Such rules
work in certain cases, while in others they have to be modified or even abandoned.

In this chapter we use the most popular method of quantization called the canon-
ical quantization. It is a straightforward generalization of the method applied when
passing from classical to quantum mechanics. Thus, we assume that there exist Her-
mitian field operators φ̂(�x) and Hermitian canonical momentum operators π̂(�x),

1c = � = 1, x0 = t .
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which obey the following commutation relations: for all �x and �y ∈ R3

[φ̂(�x), φ̂(�y)] = 0, [π̂(�x), π̂(�y)] = 0, [φ̂(�x), π̂(�y)] = iδ(�x − �y)I, (6.4)

where I denotes the identity operator. The field and canonical momentum operators
here are considered in the Schroedinger picture. In the natural units [φ̂] = cm−1 and
[π̂] = cm−2. The Hermiticity of the field and of the canonical momentum operators
is the quantum counterpart of the fact that the classical φ(�x) and π(�x) are real.

We also have to postulate the form of the operators which correspond to observ-
ables. We use the heuristic principle of correspondence, which says that the depen-
dence of the quantum observables on the field and canonical momentum operators
should resemble the dependence of the corresponding classical observables on the
classical field φ and on the classical canonical momentum π. Because the classical
energy is given by the formula

E = 1

2

∫
d3x (π2 + ∂iφ ∂iφ + m2φ2),

we postulate that the quantum Hamiltonian in the Schroedinger picture has the form

Ĥ = 1

2

∫
d3x

(
π̂2 + ∂i φ̂ ∂i φ̂ + m2φ̂2

)
. (6.5)

Similarly, the momentum operator is postulated as

P̂ i = −1

2

∫
d3x

(
π̂ ∂i φ̂ + ∂i φ̂ π̂

)
, (6.6)

where we have taken the Hermitian part of the product of noncommuting operators.
In quantummechanics, the assumptions made above would be sufficient to define

the quantum model, and we could pass to the calculations of the spectrum of the
Hamiltonian, evolution of wave packets, and so forth. In quantum field theory much
more is needed. The point is that the postulates listed above specify only the alge-
braic structure of the quantum model. In the case of the quantum mechanics, the
analogous algebraic structure (i.e. the commutation relations between the position
and momentum operators) together with a formula for the Hamiltonian is essentially
sufficient to determine the full quantum model. There is a theorem by J. von Neu-
mann which says that there is just one realization of such commutation relations in a
Hilbert space up to unitary equivalence.2 For example, in the one dimensional case
it is sufficient to take the well-known L2(R1) space with p̂ = −i∂/∂q and q̂ = q·,
where the notation q· means that q̂ψ(q) = qψ(q). Here q is a Cartesian coordinate
on R1. This is the Schroedinger representation of the quantum mechanics.

2The theorem actually speaks about the realizations of the so called Weyl relations, which are
closely related to the canonical commutation relations, but not equivalent to them. Nevertheless our
slightly imprecise description of the theorem captures its meaning.
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In the case of field theory there is a problemwith finding aHilbert space realization
of the algebraic structure. It can be solved in several models, including the ones
presented in this chapter, but in many others it is an open question. In fact, the
algebraic structure postulated in (6.4) in conjunction with formulas (6.5), (6.6) leads
to two problems. To see them, let us try the straightforward generalization of the
Schroedinger representation

π̂(�x) = −i
δ

δφ(�x) , φ̂(�x) = φ(�x)·, (6.7)

where the dot after φ(�x) means multiplication of numbers. These operators are sup-
posed to act on complex functionals �[φ], which are counterparts of the wave func-
tions ψ(q) from quantum mechanics. The configuration space of the real scalar field
consists of functions φ(�x), and the functional�[φ] is just a complex function on this
space, in full analogy with the quantum mechanical wave function ψ(q). In order to
mark functionals clearly, we use a square bracket around the argument.

The first problem appears whenwe try to define a scalar product of the functionals.
We need a scalar product because otherwise we would not be able to use the standard
probabilistic interpretation of the quantum theory. A formula written by analogywith
the scalar product in the space L2(R), namely

〈�1|�2〉 =
∫ ∏

�x∈R3

dφ(�x) �∗
1 [φ]�2[φ], (6.8)

does not have any operational meaning because of the undefined infinite product,
and therefore it is useless for calculating probabilities of quantum processes. It turns
out that a solution to this problem exists, but it is not straightforward.

The second problem has a more technical character, nevertheless it has to be
dealt with. It turns out that Hamiltonian (6.5) and momentum operator (6.6) are not
properly defined. As we know, the first functional derivative is a generalized function
defined as follows:

lim
ε→0

�[φ + ε f ] − �[φ]
ε

=
∫

d3x
δ�[φ]
δφ(�x) f (�x),

for arbitrary test functions f (�x) from the space S(R3). Let us now consider the
action of the square of the operator π̂(�x) on a functional �[φ]. Because the func-
tional derivative δ�[φ]/δφ(�x) is a generalized function of the variable �x , it can
not be regarded as a functional of φ. The reason is that in order to be a func-
tional, it should have a well-defined numerical value, whereas a generalized func-
tion of �x does not necessarily have any definite numerical value at a given �x , see
the Appendix. Hence, second and higher order functional derivatives require a spe-
cial definition—it is not correct to regard them as functional derivatives of the first
functional derivative of �[φ]. The definition is recursive. The n-th (n ≥ 1) func-
tional derivative δn�[φ]/δφ(�x1)δφ(�x2) . . . δφ(�xn) is, by definition, a generalized
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function of �x1, . . . , �xn , hence it is a functional on the space of smooth functions
f (�x1, �x2, . . . , �xn) which vanish at infinity. It turns out that it is sufficient to consider
functions of the form f (�x1, �x2, . . . , �xn) = f1(�x1) f2(�x2) · · · fn(�xn), where the func-
tions fi (�xi ) are test functions from S(R3). The n-th functional derivative acts on such
a function f , giving a number �(n)[ f,φ], which in physics literature is often written
as the integral

�(n)[ f,φ] =
∫ n∏

i=1

d3xi
δn�[φ]

δφ(�x1)δφ(�x2) . . . δφ(�xn) f1(�x1) f2(�x2) · · · fn(�xn).

Now, �(n)[ f,φ] for any fixed f may be regarded as a functional of φ(�x), and we
may calculate the first functional derivative of this functional with respect to φ(�x).
The (n + 1)-st functional derivative of �[φ] is defined by the formula

∫
d3xn+1

δ�(n)[ f,φ]
δφ(�xn+1)

fn+1(�xn+1) (6.9)

=
∫

d3xn+1

n∏

i=1

d3xi
δn+1�[φ]

δφ(�xn+1)δφ(�x1)δφ(�x2) . . . δφ(�xn)
n+1∏

i=1

fi (�xi ).

It is a generalized function of the (n + 1) vectors �x1, �x2, . . . , �xn+1.
The trouble with the π̂2 operator in Hamiltonian (6.5) is that it contains a second

functional derivative in which �x1 = �x2 = �x , that is
δ2�[φ]

δφ(�x1)δφ(�x2)
∣∣∣∣�x1=�x2=�x

.

In general, such an object does not have mathematical meaning. In particular, it does
not have to be a generalized function of �x . For example, let us consider the functional
�1[φ] = ∫

d3x φ2(�x). Then,
δ�1[φ]
δφ(�x1) = 2φ(�x1),

and

δ2�1[φ]
δφ(�x1)δφ(�x2) = 2δ(�x1 − �x2).

It is clear that the substitution �x1 = �x2 = �x gives the meaningless result δ(0). The
product π̂φ̂ present in the momentum operator also leads to a mathematically unde-
fined term. Let us calculate
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π̂(�x1)φ̂(�x2)�1[φ]
= −i

δ

δφ(�x1) (φ(�x2)�1[φ]) = −iδ(�x1 − �x2)�1[φ] − iφ(�x2) δ

δφ(�x1)�1[φ].

It is clear that the first term on the r.h.s. becomes meaningless if we put �x1 = �x2 = �x .
Thus, the straightforward Schroedinger representation is not good in quantum field
theory.

The solution to these two problems: finding the Hilbert space and constructing
physically relevant operators in it, is quite intricate. The very fact that it exists is far
from trivial. Before presenting the details, let us first sketch the underlying idea. First,
we assume that the correct Hamiltonian differs from the one given by formula (6.5)
by a term of the form c0 I , where c0 is a number and I is the identity operator. There
is a formulation of quantum dynamics which is insensitive to this difference: the
Heisenberg picture. If ÔS is an operator in the Schroedinger picture, its counterpart
in the Heisenberg picture is defined by the formula

ÔH (t) = ei Ĥ tÔSe
−i Ĥ t , (6.10)

provided that the Hamiltonian Ĥ does not depend on time. The terms c0 I cancel
each other on the r.h.s. of this formula. Therefore time evolution of operators in the
Heisenberg picture is correct in spite of the fact that Hamiltonian (6.5) is wrong.
Also the Heisenberg evolution equation derived with the use of this Hamiltonian,

dÔH (t)

dt
= i[Ĥ , ÔH (t)] +

(
dÔS

dt

)

H

(t), (6.11)

has the correct form. In the second term on the r.h.s. of this formula we first calculate
the time derivative in the Schroedinger picture and next we transform the obtained
operator to the Heisenberg picture as in formula (6.10). One may ask whether it is
possible to obtain a concrete form of such an evolution equation when the Hamil-
tonian is not defined yet, because formula (6.5) is meaningless. The answer is that
we will only use the algebraic operator relations in the form of commutators, and for
such limited purposes Hamiltonian (6.5) is as good as the correct one. Thus, our first
step in the construction of the quantum model is just the choice of the Heisenberg
picture.

In the next step we find a general solution of the evolution equations in the Heisen-
berg picture. In this way we restrict the set of operators to be constructed in the as yet
unknown Hilbert space to the subset which is relevant from a physical viewpoint. It
turns out that for operators from this subset one can provide explicit realizations in
Hilbert spaces.Wewill also find the correct form of observables like the Hamiltonian
and the total momentum of the field, but they will be defined only for the physically
relevant fields and in the chosen Hilbert space, not on the abstract level of algebraic
relations (6.4), (6.5), (6.6). It turns out that in such a restricted framework, the cor-
rectly defined observables differ from the symbolic expressions like (6.5), (6.6) by
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terms of the form c0 I , as assumed. We shall also see that in the case of field theory
there are infinitely many unitarily inequivalent choices of Hilbert spaces.

Because all observables are built from the field and its canonical momentum, it is
sufficient to consider theHeisenberg evolution equations only for these twooperators.
Both operators do not depend on time in the Schroedinger picture. The fact that
the field and the canonical momentum operators are considered in the Heisenberg
picture is denoted simply by adding the time argument t . The evolution equations
have the form

∂φ̂(t, �x)
∂t

= i[Ĥ , φ̂(t, �x)] = π̂(t, �x), (6.12)

∂π̂(t, �x)
∂t

= i[Ĥ , π̂(t, �x)] = −m2φ̂(t, �x) + �φ̂(t, �x). (6.13)

Here we follow the tradition that the time derivatives of the field and its canonical
momentum operators in the Heisenberg picture are denoted as partial derivatives.
� denotes the Laplacian with respect to �x . In order to obtain the r.h.s.’s of these
equations we have used the canonical commutation relations (6.4), and the fact that
the Hamiltonian commutes with the exponentials exp(±i Ĥ t). We have also applied
the formula [AB,C] = A[B,C] + [A,C]B. For example,

i[Ĥ , π̂(t, �x)]

= eit Ĥ
i

2

∫
d3y

(
∂φ̂(�y)
∂yi

∂

∂yi
[φ̂(�y), π̂(�x)] + (

∂

∂yi
[φ̂(�y), π̂(�x)])∂φ̂(�y)

∂yi

)

e−i t Ĥ

+ im2

2
eit Ĥ

∫
d3y

(
φ̂(�y) [φ̂(�y), π̂(�x)] + [φ(�y), π̂(�x)] φ̂(�y)

)
e−i t Ĥ

= eit Ĥ
i

2

∫
d3y

(
∂φ̂(�y)
∂yi

∂

∂yi
iδ(�y − �x) + (

∂

∂yi
iδ(�y − �x))∂φ̂(�y)

∂yi

)

e−i t Ĥ

+ im2

2
eit Ĥ

∫
d3y φ̂(�y)2iδ(�y − �x)e−i t Ĥ = �φ̂(t, �x) − m2φ̂(t, �x).

Eliminating π̂ in (6.13) with the help of (6.12) we obtain the Klein–Gordon equation

∂2φ̂(t, �x)
∂t2

− �φ̂(t, �x) + m2φ̂(t, �x) = 0 (6.14)

for the field operator φ̂(t, �x) in the Heisenberg picture.
The general solution of (6.14) can be found in the same manner as in Chap.1. It

has the following form

φ̂(t, �x) =
∫

d3k
(
e−ikx ã(�k) + eikx b̃(�k)

)
, (6.15)

http://dx.doi.org/10.1007/978-3-319-55619-2_1
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where

kx = ω(�k)t − �k�x, ω(�k) =
√

�k2 + m2,

and
b̃(�k) = ã†(�k)

because of the Hermiticity of the field operator. For a later convenience we rescale
the ã operators,

ã(�k) = â(�k)
√
2(2π)3ω(�k)

.

Thus,

φ̂(t, �x) =
∫

d3k
√
2(2π)3ω(�k)

(
e−ikx â(�k) + h.c.

)
, (6.16)

where h.c. stands for the Hermitian conjugate of the preceding term.
Solution (6.16) contains an arbitrary, operator valued function â(�k),where �k ∈ R3.

Next, we require that φ̂(t, �x) together with the canonical conjugate momentum given
by formula (6.12) obey the canonical commutation relations (6.4). It turns out that
those relations are satisfied provided that

[â(�k), â(�k′)] = 0, [â†(�k), â†(�k′)] = 0, [â(�k), â†(�k′)] = δ(�k − �k′)I. (6.17)

These conditions are a kind of (‘canonical’) constraint on the operators â(�k). Their
derivation is rather simple. Using the operators P̂�k(t) introduced in Sect. 1.3 we may
extract the operators â(�k),

â(�k) = P̂�k(t)φ̂(t, �x). (6.18)

Thus,

â(�k) = i
∫

d3x
[
f ∗
�k (t, �x)π̂(t, �x) − ∂0 f

∗
�k (t, �x)φ̂(t, �x)

]
, (6.19)

where the time t can be chosen arbitrarily. Formula (6.19) and itsHermitian conjugate
are inserted on the l.h.s.’s of the commutation relations (6.17). Next we use the
canonical commutation relations (6.4) transformed to the Heisenberg picture:

[φ̂(t, �x), φ̂(t, �y)] = 0, [π̂(t, �x), π̂(t, �y)] = 0,

[φ̂(t, �x), π̂(t, �y)] = iδ(�x − �y)I. (6.20)

Note that the operators in each commutator are taken at the same time t . For this
reason, relations (6.20) are called the equal time canonical commutation relations.

http://dx.doi.org/10.1007/978-3-319-55619-2_1
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With the help of formula (6.16) and relations (6.17) we can compute the com-
mutators of the field and the canonical momentum operators at arbitrary times. For
example,

[φ̂(x), φ̂(y)] = i�(x − y)I, (6.21)

where �(x − y) is the Pauli–Jordan function introduced in Sect. 1.3. For brevity, we
use here the four-dimensional notation x = (x0, �x). Of course, for x0 = y0 formula
(6.21) reduces to the first of the equal time commutation relations (6.20). Taking
derivatives of both sides of (6.21) with respect to x0 or y0 we obtain commutation
relations of the types [φ̂(x), π̂(y)], and [π̂(x), π̂(y)]. The formula quoted at the
end of Sect. 1.3 shows that the Pauli–Jordan function vanishes when (x − y)2 < 0.
Therefore, all of these commutators vanish if x is spatially separated from y. When
a field and its canonical momentum in the Heisenberg picture have this property, the
field is called the local quantum field. Our scalar field is an example of such a field.

The total energy and the total momentum of the quantum scalar field have the
form of integrals over the whole space R3, see formulas (6.5), (6.6). If these integrals
are replaced by integrals over a compact subset V of R3 (without changing the
integrands) we obtain so called local observables. For example, instead of Ĥ we take

ĤV = 1

2

∫

V

d3x
(
π̂2 + ∂i φ̂∂i φ̂ + m2φ̂2

)
.

In the case of the local quantum field, such local observables commute with each
other if the corresponding sets V do not intersect.

The physically relevant quantum field is given by solution (6.16) of the Heisen-
berg evolution equations, with the restriction that the operators â and â† obey the
commutation relations (6.17). It is clear that in order to solve the problem of the
existence of a Hilbert space realization, it is sufficient to find such a realization of the
operators â and â†. Let us first remove the mathematical complications introduced
by the fact that the vector variable �k is continuous. For example, due to the pres-
ence of the Dirac delta on the r.h.s. of the third relation (6.17), â(�k) is a generalized
function of �k, and therefore it does not have any definite value for a given �k. In most
cases this is not important because â and â† appear in integrals over the wave vector
�k, but here it would hamper our considerations. We introduce an infinite, discrete
set of operators âi and â†i , i = 1, 2, . . ., which are related to â(�k) and â†(�k) by the
following (invertible) formulas:

âi =
∫

d3k hi (�k)â(�k), â†i =
∫

d3k h∗
i (

�k)â†(�k), (6.22)

or

â(�k) =
∞∑

i=1

h∗
i (

�k)âi , â†(�k) =
∞∑

i=1

hi (�k)â†i . (6.23)

http://dx.doi.org/10.1007/978-3-319-55619-2_1
http://dx.doi.org/10.1007/978-3-319-55619-2_1
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The functions hi (�k), i = 1, 2, . . ., form a complete, orthonormal set, that is

∫
d3k h∗

i (
�k)h j (�k) = δi j ,

∞∑

i=1

h∗
i (

�k)hi (�k′) = δ(�k − �k′). (6.24)

The precise form of these functions is not needed here. The operators âi and â
†
j obey

the following commutation relations

[âi , â j ] = 0, [â†i , â†j ] = 0, [âi , â†j ] = δi j I, (6.25)

which are equivalent to (6.17).
Let us now consider the infinite tensor product of L2(R1) spaces,

H∞ =
∞⊗

i=1

L2(R1).

In a slightly imprecise description of this space, its elements have the form of linear
combinations of a finite number of formal infinite products

f1(ξ1) f2(ξ2) . . . , (6.26)

where fi (ξi ) are elements of the L2(R1) space. Such products of functions with
different arguments are formal because we do not care about their convergence—we
are not interested in their numerical value. Except for convergence, such products
have all the properties of products with a finite number of factors.Without any loss of
generalitywemay assume that all fi appearing in the formal products are normalized,
that is

∫
dξ f ∗

i (ξ) fi (ξ) = 1. (6.27)

We need the following auxiliary operators in the Hilbert space L2(R1) of functions
f (ξ) of one real variable ξ ∈ R1

α̂(ξ) = 1√
2
(ξ + d

dξ
), α̂†(ξ) = 1√

2
(ξ − d

dξ
). (6.28)

These operators satisfy the following commutation relation

[α̂(ξ), α̂†(ξ)] = I.

Operators âi and â
†
i have a realization in the space H∞, namely we may take

âi = α̂(ξi ), â†i = α̂†(ξi ). (6.29)
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Thus, the space H∞ is large enough to allow for the realizations of all operators
âi , â†i , i = 1, 2, . . .. Note that there also exist other realizations. For example,
instead of α̂, α̂† we may use α̂ + cI, α̂† + c∗ I , where c is a complex number.

It remains to introduce a scalar product such that â†i is Hermitian conjugate to âi .
A natural definition for the scalar product 〈h|h′〉 of the two formal products

h =
∞∏

i=1

fi (ξi ), h′ =
∞∏

j=1

f ′
j (ξ j )

has the form

〈h|h′〉 =
∞∏

i=1

〈 fi | f ′
i 〉L2 , (6.30)

where

〈 fi | f ′
i 〉L2 =

∫

R1

dξ f ∗
i (ξ) f ′

i (ξ)

is the scalar product in L2(R1). The infinite product in (6.30) should be convergent—
the scalar product has to have a definite numerical value because it gives the prob-
ability amplitude in quantum theory. In order to ensure convergence, we assume
that all formal products (6.26) are constructed from the same normalized function
f0(ξ) except for a finite number of factors. This is just the simplest solution, but
we will not discuss here other possibilities. Thus, in the product

∏∞
i=1 fi (ξi ) we

have fi (ξi ) = f0(ξi ) for all i ≥ N , where N is a natural number (which depends on
the product). Let us denote by H f0 the subset of H∞ consisting of all such formal
products and of their linear combinations. Because 〈 f0| f0〉L2 = 1, the product in
(6.30) contains only a finite number of factors which may differ from 1, hence it
has a definite numerical value. Assuming that the scalar product is anti-linear in its
left argument3 and linear in its right argument, we can compute the scalar product
of any two arbitrary elements of H f0 . The standard mathematical procedure of the
completion of H f0 with respect to the norm provided by the scalar product yields a
Hilbert space which we denote also by H f0 .

It is clear that the operators âi and â†i , as well as the finite order polynomials
constructed from them, act within H f0 . Therefore, this space is sufficient for the
Hilbert space realization of our quantum field φ̂. Note that there are infinitely many
subspaces of H∞ of the described type. They differ from each other by the choice
of f0 ∈ L2(R1). It turns out that this freedom of choice of the subspace allows for
various realizations of the quantum field φ̂ which are truly inequivalent—they lead
to different physical predictions.

3That is 〈c1h1 + c2h2|h〉 = c∗
1〈h1|h〉 + c∗

2〈h2|h〉, where c1, c2 are complex numbers.
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After solving the Heisenberg evolution equations (6.12), (6.13), and seeing that
the operators âi and â†i have realizations in the Hilbert spaces constructed above,
we are prepared to define observables. Let us begin from the Hamiltonian. Using
the formula π̂ = ∂0φ̂ and inserting solution (6.16) for φ̂ in formula (6.5) we obtain
(Exercise6.2)

Ĥ = 1

2

∫
d3k ω(�k)

(
â(�k)â†(�k) + â†(�k)â(�k)

)
. (6.31)

Next, we write Ĥ in the form

Ĥ = 1

2

∫
d3kd3k′ δ(�k − �k′)

√
ω(�k)

√
ω(�k′)

(
â(�k′)â†(�k) + â†(�k)â(�k′)

)
,

and use the second formula (6.24) (the completeness relation) to eliminate the Dirac
delta. Introducing the notation

gi (�k) =
√

ω(�k) hi (�k), â[gi ] =
∫

d3k gi (�k)â(�k),

we finally obtain

Ĥ = 1

2

∞∑

i=1

(
â[gi ](â[gi ])† + (â[gi ])†â[gi ]

)
. (6.32)

We know from the discussion given at the beginning of this section that Ĥ given by
formula (6.5) is not properly defined. Formula (6.32) is not equivalent to (6.5) because
we have substituted the solution of the Klein–Gordon equation for φ̂. Nevertheless,
the problem is still present. Namely, it turns out that Ĥ given by formula (6.32)
has an infinite expectation value in any normalized state |ψ〉. Let us show this. The
operators â[gi ] and (â[gi ])† obey the following commutation relations

[
â[gi ], (â[gi ])†

] = ci I, (6.33)

where

ci =
∫

d3k ω(�k)|hi (�k)|2.

Relations (6.33) follow from the definition of these operators and from the third
relation (6.17). We assume that the functions hi (�k) vanish in the limit |�k| → ∞
sufficiently quickly to ensure convergence of the integral giving ci . These integrals
are bounded from below by a positive number, namely

ci ≥ |m| > 0,
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because the functions hi are normalized to 1, and ω(�k) ≥ |m| > 0 (remember that
we have assumed m2 > 0). Furthermore,

∞∑

i=1

â[gi ](â[gi ])† =
∞∑

i=1

(
(â[gi ])†â[gi ] + ci I

)
,

as follows from relation (6.33). Because the operators (â[gi ])†â[gi ] are positive
definite,4 the expectation value of each term in the sum on the r.h.s. is bounded
from below by |m|〈ψ|ψ〉, and the whole sum is divergent. Hence, operator (6.31)
has an infinite expectation value in any state |ψ〉 �= 0. Obviously, such an operator
cannot be accepted as the Hamiltonian of a physical system. Note that the infinity
appears because the sum in formula (6.32) involves an infinite number of terms. It is
a consequence of the fact that the field has an infinite number of degrees of freedom.

In viewof the argument given above, it is clear that the term â[gi ](â[gi ])† should be
removed from the Hamiltonian. This should not be done in an arbitrary way because
we could loose the correspondence with the classical theory from which we have
started, and we would also have to recalculate the Heisenberg evolution equations
(6.12) and (6.13), their solution (6.16) and so on. The best approach consists in
a ‘soft’ modification of the Hamiltonian, such that the new Hamiltonian gives the
same Heisenberg evolution equations as before. Such modifications exist. Using
commutation relation (6.33) we may write

Ĥ =
∞∑

i=1

(â[gi ])†â[gi ] + 1

2

∞∑

i=1

ci I.

The last term on the r.h.s. is infinite. However, we can simply drop it because it is
proportional to the identity operator and therefore it does not matter when computing
commutators. Thus, we postulate that the quantum Hamiltonian for the real scalar
field has the form

Ĥ =
∞∑

i=1

(â[gi ])†â[gi ] =
∫

d3k ω(�k)â†(�k)â(�k). (6.34)

The procedure applied above, that is the application of the commutation relation
with the term proportional to the identity operator omitted, in order to remove the
operators â(�k)â†(�k), is called the normal ordering. In the normally ordered operator,
all operators â†(�k) stand to the left of all operators â(�k). Such operators are denoted
by two colons, i.e. : Ĥ :. At this stage, one can also replace ∑∞

i=1 ci by a real number
2E0. The resultingHamiltonian differs from (6.34) only by the term E0 I , which gives
only a trivial shift of the whole spectrum of the Hamiltonian. However, we shall see

4Operator Â is positive definite if its expectation value 〈ψ| Â|ψ〉 in an arbitrary state |ψ〉 �= 0 is
positive.
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in Chap.10, that in the case of the Fock realization, described below, postulates of
relativistic invariance imply that we have to put E0 = 0.

The Fock realization is distinguished by the fact that the corresponding Hilbert
space H f0 , called the Fock space and denoted by HF , contains a normalized state
|0〉, called the vacuum state, such that for all �k ∈ R3

â(�k)|0〉 = 0. (6.35)

Condition (6.35) is equivalent to
âi |0〉 = 0 (6.36)

where i = 1, 2, . . ., with âi defined by formulas (6.22). In the realization (6.29)
condition (6.36) is equivalent to the following equations

(ξi + d

dξi
) f0(ξi ) = 0,

which have the following normalized solution

f0(ξi ) = (π)−1/4 exp(−1

2
ξ2i ).

Therefore the vacuum state has the form

|0〉 =
∞∏

i=1

f0(ξi ). (6.37)

Let us remind ourselves that on the r.h.s. of this formula, we have a formal product
of functions—it does not have any numerical value. On the other hand, the scalar
product 〈0|0〉 has a definite numerical value—definition (6.30) gives

〈0|0〉 = 1. (6.38)

Let us introduce the infinite ladder of states in the Fock space

|0〉, |�k〉, . . . |�k1 �k2 . . . �kn〉, . . . , (6.39)

where

|�k1 �k2 . . . �kn〉 = 1√
n! â

†(�k1)â†(�k2) . . . â†(�kn)|0〉. (6.40)

The scalar products of these states can be computed with the help of commutation
relations (6.17) and condition (6.35)—we do not have to use the concrete realization
in the space HF . For example,

http://dx.doi.org/10.1007/978-3-319-55619-2_10
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〈�k1|�k2〉 = 〈0|â(�k1)â†(�k2)|0〉 = 〈0|â†(�k2)â(�k1)|0〉 + δ(�k1 − �k2)〈0|0〉 = δ(�k1 − �k2),

because â(�k1)|0〉= 0.Asimilar calculationwithmultiple uses of relations (6.17) gives

〈�k1 �k2 . . . �kn|�k′
1

�k′
2 . . . �k′

n〉 (6.41)

= 1

n!
∑

permutations

δ(�k1 − �k′
i1)δ(

�k2 − �k′
i2) . . . δ(�kn − �k′

in ),

where (i1, i2, . . . , in) is a permutation of the set (1, 2, . . . , n). The sum is over all
such permutations. It arises, because the state |�k1 �k2 . . . �kn〉 does not depend on the
order of the wave vectors �k1, �k2, . . . , �kn , as follows from the fact that the operators
â†(�k) present in definition (6.40) commute with each other. Furthermore,

〈�k1 �k2 . . . �kn|�k′
1

�k′
2 . . . �k′

m〉 = 0 (6.42)

if n �= m. By definition, the set of states (6.39) is a basis for the Fock space. Thus,
any state |ψ〉 fromHF can be written in the form

|ψ〉 = ψ0|0〉 +
∫

d3k ψ1(�k)|�k〉 + · · · (6.43)

+
∫

d3k1 . . . d3kn ψn(�k1, �k2, . . . , �kn)|�k1 �k2 . . . �kn〉 + · · · .

Here ψ0 is a complex number, the probability amplitude for finding the vacuum state
|0〉 in |ψ〉. By assumption, the functions ψn(�k1, . . . , �kn) are symmetric in �k1, . . . , �kn .
Note that this is not a restriction on the states |ψ〉 from HF . The point is that in any
case, only symmetric parts of these functions contribute to the r.h.s. of formula (6.43)
because |�k1 . . . �kn〉 are symmetric in �k1, . . . , �kn . The physical interpretation of the
functions ψn is given below. Simple calculation in which we use (6.41), (6.42) yields
the following formula for the norm of the state |ψ〉

||ψ||2 = 〈ψ|ψ〉 = |ψ0|2 +
∫

d3k |ψ1(�k)|2 + · · · (6.44)

+
∫

d3k1d
3k2 . . . d3kn |ψn(�k1, �k2, . . . , �kn)|2 + · · · .

The Fock spaceHF consists of all vectors |ψ〉 of the form (6.43), such that the r.h.s.
of formula (6.44) is finite. From a physical viewpoint, vectors from HF represent
states of the quantum field, in a complete analogy with states of a particle in quantum
mechanics. Using the Fock space we can construct a perfect quantum field model
which has a beautiful interpretation in terms of relativistic, non-interacting quantum
particles.
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At this point the construction of the quantum theory of the real scalar field is almost
finished. It remains only to introduce operators representing other basic observables
of the real scalar field, apart from the energy represented by Hamiltonian (6.34). We
find them by following the same steps as in the case of the Hamiltonian. Inserting
solution (6.16) into formula (6.6) for the total momentum of the field we obtain

P̂ i = 1

2

∫
d3k ki

(
â(�k)â†(�k) + â†(�k)â(�k)

)
.

Normal ordering gives the operator of the total momentum of the field

P̂ i =
∫

d3k ki â†(�k)â(�k). (6.45)

There are six more observables for the scalar field which follow from Noether’s
theorem. They correspond to Lorentz transformations, which are also symmetries of
the classical model (6.1), similarly as the space and time translations led to the total
energy and momentum integrals of motion. In the classical model, such integrals of
motion have the form

Mμν =
∫

d3x (T 0μxν − T 0νxμ), (6.46)

where T μν = ∂μφ∂νφ − ημνL are the components of the symmetric
energy-momentum tensor. Repeating the usual steps, that is: replacing φ and π by
the operators φ̂ and π̂, inserting solution (6.16), and applying the normal ordering,
we obtain six Hermitian operators

M̂rs = − i

2

∫
d3k

(

kr ∂â†(�k)

∂ks
â(�k) − kr â†(�k)

∂â(�k)

∂ks

−ks ∂â
†(�k)

∂kr
â(�k) + ks â†(�k)

∂â(�k)

∂kr

)

, (6.47)

M̂0r = − i

2

∫
d3k ω(�k)

(
∂â†(�k)

∂kr
â(�k) − â†(�k)

∂â(�k)

∂kr

)

− i

2

∫
d3k

kr

ω(�k)
â†(�k)â(�k),

(6.48)

where r, s = 1, 2, 3, and M̂rs = −M̂sr . The operators M̂rs represent the three com-
ponents of the total angular momentum of the field. The operators M̂0r give the
quantum counterpart of the initial position of the center-of-energy of the field. To see
this, notice that formula (6.46) in the case μ = 0, ν = r can be written in the form

M0r =
∫

d3x xr T 00 − Pr x0.
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The position �X = (Xr ) of the center-of-energy of the field is defined as follows

∫
d3x xr T 00 = EXr ,

where E = ∫
d3x T 00 is the total energy of the field. Therefore

EXr = M0r + Pr x0.

This formula says that the center-of-energy moves in space with the constant veloc-
ity �P/E along a straight line that passes through the point which has Cartesian
coordinates equal to M0r/E .

In the quantum theory of the free real scalar field we have just constructed, one
can compute the spectrum of the Hamiltonian and of the total momentum. It turns
out that the elements of the basis (6.39) are eigenstates of the Hamiltonian, and of
the total momentum of the field. In order to prove this fact, it is convenient to use
the following formulas

[Ĥ , â†(�k)] = ω(�k)â†(�k), [P̂ i , â†(�k)] = ki â†(�k), (6.49)

which are obtained directly from definitions (6.34), (6.45), and commutation rela-
tions (6.17). Let us compute Ĥ |�k1 �k2 . . . �kn〉. We insert formula (6.40) and commute
operator Ĥ with the operators â†(�k) using (6.49) until it reaches the state |0〉. Each
such commutation yields a term proportional to ω(�ki ). The last term, in which Ĥ
acts directly on |0〉, vanishes because

Ĥ |0〉 = 0, (6.50)

as follows from condition (6.36). Therefore

Ĥ |�k1 �k2 . . . �kn〉 =
(

n∑

i=1

ω(�ki )
)

|�k1 �k2 . . . �kn〉. (6.51)

A similar calculation gives

P̂ i |0〉 = 0, P̂ i |�k1 �k2 . . . �kn〉 =
⎛

⎝
n∑

j=1

ki
j

⎞

⎠ |�k1 �k2 . . . �kn〉. (6.52)

Because the states (6.39) form a basis in the Fock space, they form the complete set
of eigenstates of both Ĥ and P̂ i . Of course, these operators commute with each other

[Ĥ , P̂ i ] = 0, [P̂ i , P̂k] = 0. (6.53)
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Formulas (6.53) become obvious when we notice that

[â†(�k)â(�k), â†(�k′)â(�k′)] = 0

for arbitrary �k and �k′, as can be checked by direct calculation with the use of com-
mutation relations (6.17).

Formulas (6.51), (6.52) yield plenty of information about the properties of the
quantum model. First, the quantum field in the vacuum state |0〉 has zero energy and
momentum. In consequence, the operator

U (b0, �b) = exp(−ib0 Ĥ + ibk P̂k), (6.54)

which represents translations in time (x0 → x0 + b0) and space (�x → �x + �b), see
Chap.10, leaves the vacuum state unchanged,

U (b0, �b)|0〉 = |0〉. (6.55)

The quantum field in the state |�k〉 has total momentum equal to �k and energy equal

to ω(�k) =
√
m2 + �k2. Moreover, the Schroedinger equation in the Fock space

i
∂|t〉
∂t

= Ĥ |t〉 (6.56)

(� = 1), for the states of the form

|t〉1 =
∫

d3k ψ1(t, �k)|�k〉

is reduced to the equation

i
∂ψ1(t, �k)

∂t
=

√
m2 + �k2 ψ1(t, �k), (6.57)

which in turn coincides with the Schroedinger equation in the momentum represen-
tation for a free relativistic particle with rest mass equal to m. Therefore, the states
|ψ〉1 can be regarded as quantum states of a relativistic particle with rest massm. For
this reason they are called one-particle states, and they form the so called one-particle
sector of the Fock space. Note that this particle has positive energy. The problem of
states with negative energy, which is present in the relativistic quantum mechanics
of a single particle based on the Klein–Gordon equation, does not appear here.

The total momentum of the quantum field in the states |�k1 �k2 . . . �kn〉 with n ≥ 2
is equal to

∑n
i=1

�ki , and the total energy to
∑n

i=1 ω(�ki ). Therefore these states, as
well as their ‘linear combinations’

http://dx.doi.org/10.1007/978-3-319-55619-2_10
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|t〉n =
∫

d3k1d
3k2 . . . d3kn ψn(�k1, �k2, . . . , �kn, t) |�k1 �k2 . . . �kn〉,

can be regarded as states of n noninteracting identical relativistic particles with
rest mass m. The particles are identical because the n-particle wave function in the
momentum representation ψ(�k1, �k2, . . . , �kn, t) is symmetric with respect to permu-
tations of �k1, �k2, . . . , �kn . They do not interactwith each other because the total energy
is equal to the sum of kinetic energies ω(�ki ) of the particles—there is no interaction
energy. We see from formula (6.43) that the Fock space is decomposed into sectors
with fixed numbers of identical, relativistic, noninteracting particles. The fact that
the states of the field can be described in terms of quantum particles, is called the
particle interpretation of the quantum theory of the free real scalar field. Of course,
the Fock space also contains states which are linear combinations of states with var-
ious numbers of particles. Such states do not have any concrete number of particles,
one may only ask about the probability of finding a chosen number of particles.

The operators â†(�k) and â(�k) are called (particle) creation and annihilation oper-
ators, respectively. Because

â†(�k)|�k1 �k2 . . . �kn〉 = √
n + 1|�k �k1 �k2 . . . �kn〉, (6.58)

the creation operator transforms a state from the n-particle sector into a state in the
sector with n + 1 particles. The annihilation operator ‘moves’ states in the opposite
direction, namely

â(�k)|�k1 �k2 . . . �kn〉 = 1√
n

[
δ(�k1 − �k)|�k2 �k3 . . . �kn〉 (6.59)

+ δ(�k2 − �k)|�k1 �k3 . . . �kn〉 + · · · + δ(�kn − �k)|�k1 �k2 . . . �kn−1〉
]
.

Formula (6.51) does not depend on the form of ω(�k). Therefore it is valid also for
ω(�k) = 1,

N̂ |�k1 �k2 . . . �kn〉 = n|�k1 �k2 . . . �kn〉,

where

N̂ =
∫

d3k â†(�k)â(�k). (6.60)

For the obvious reason, the operator N̂ is called the particle number operator. It
commuteswith theHamiltonian andwith the totalmomentumoperator. Therefore the
translation operatorU (a0, �a), defined by formula (6.54), does not change the number
of particles. In particular, this number is constant in time becauseU (a0, �a = 0) is the
time evolution operator (whereas U (a0 = 0, �a) represents the space translation by
the vector �a). This feature of the quantum field is related to the absence of interaction
between particles. In general, interactions in relativistic quantum field theories can
create or destroy particles.
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The operator U (b0, �b) can be used in order to shift the argument of the field
operator,

U−1(b0, �b) φ̂(x0, �x) U (b0, �b) = φ̂(x0 + b0, �x + �b). (6.61)

Here φ̂ has the form (6.16), therefore this formula is equivalent to

U−1(b0, �b) â(�k) U (b0, �b) = e−ib0ω(�k)+i �b�k â(�k). (6.62)

Probably the easiest way to directly check formula (6.62) is to apply both sides of it
to each basis state (6.39) in the Fock space, next using formula (6.59) and the fact
that the basis states are eigenstates of Ĥ and P̂ i .

Let us note that the quantum field operator φ̂(x), given by formula (6.16), should
not be regarded as an operator valued function of x ∈ M . Rather, it is a generalized
function of x . This means that φ̂(x) is not an operator in the Fock space for any fixed
x . A well-defined operator is obtained when we ‘smear’ the field with a test function
h(x) of the class S(R4)

φ̂[h] =
∫

d4x h(x) φ̂(x). (6.63)

To illustrate this point, let us compute the norm of the state φ̂[h]|ψ〉. It should be
finite if this state belongs toHF . The square of the norm is equal to

〈ψ|(φ̂[h])2|ψ〉

(for simplicity we have assumed that the test function has real values). The operator
(φ̂[h])2 can be split into four terms containing â†â†, â†â, ââ, ââ†, respectively.
Using commutation relations (6.17) we can transform the last term into the sum of
a term containing â†â and of the term

∫
d3kd3k′

2(2π)3
√

ω(�k)ω(�k′)

∫
d4xd4x ′ h(x)h(x ′)eikx−ik′x ′

δ(�k − �k′)〈ψ|I |ψ〉

=
∫

d3k

2(2π)3ω(�k)

∫
d4xd4x ′ h(x)h(x ′)eik(x−x ′).

This expression is finite because the Fourier transform

h̃(k) = 1

(2π)2

∫
d4x e−ikxh(x)

of the test function h(x) is also of the class S(R4) (in the variable k ∈ R4). On the
other hand, if we try to replace the test function by the Dirac delta, h(x) → δ(x − x0)
and φ̂[h] → φ̂(x0), then we obtain the integral

∫
d3k

2(2π)3ω(�k)
which is divergent. It

turns out that the remaining three types of terms (â†â†, â†â, ââ) can also give finite
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contributions when h(x) is replaced by δ(x − x0). This can be seen by expanding the
state |ψ〉 as in (6.43) and using formulas (6.58), (6.59). Then it becomes clear that
there exist normalized states |ψ〉 ∈ HF such that the expression obtained in this way
is finite. We conclude that φ̂[h]|ψ〉 belongs to HF at least for some |ψ〉 ∈ HF , and
that φ̂(x)|ψ〉 does not belong toHF for any x ∈ M and any |ψ〉 �= 0 fromHF . Thus,
φ̂(x) cannot be regarded as an operator in the Fock space,5 as opposed to the smeared
field operator φ̂[h]. For this reason powers of φ̂(x), e.g. φ̂2(x), are meaningless, in
general. Such powers are present in formula (6.5), so it is not a surprise that the final
form (6.34) of the Hamiltonian is not equal to (6.5).

6.2 The Dirac Field

We know from Sect. 5.4 that there exist two versions of the classical Dirac field:
with either complex or Grassmann values. Both are not satisfactory from a physical
viewpoint, and both can be used as a starting point for constructing the quantum
theory of that field. It turns out that the resulting quantum theory of theDiracfield does
not have any flaws. It can be regarded as one of the most remarkable achievements
of theoretical physics.

We choose the classical anticommuting Dirac field because then the way to the
quantum theory is shorter. The Lagrangian has the usual form (5.24) also for this
version of the classical Dirac field,

L = i

2

(
ψγμ∂μψ − ∂μψγμψ

)
− mψψ, (6.64)

whereψ = (ψα), ψ = (ψα), α = 1, 2, 3, 4, andwe take thematricesγμ in theDirac
representation (5.3). In matrix notation, ψ is a column, while ψ is a row. Let us stress
thatψα, ψα are independent generating elements of a complexGrassmann algebra—

there is no relation of the form ψ = ψ†γ0 (which holds for the complex Dirac field).
In this algebra we define conjugation6

(ψα)∗ = ψβ(γ0)βα, (ψα)∗ = (γ0)αβψβ . (6.65)

This conjugation is antilinear, that is (c1φ + c2χ)∗ = c∗
1φ

∗ + c∗
2χ

∗, where c1 and
c2 are complex numbers, c∗

i is the complex conjugate of ci , and φ,χ are arbitrary
elements of the Grassmann algebra. Moreover, (φχ)∗ = χ∗φ∗. Lagrangian (6.64) is
‘real’ in the sense that L∗ = L, see Exercise6.5.

5Nevertheless, we will use the traditional term ‘field operator’ for φ̂(x).
6Notice the order: the conjugation is introduced in the algebra, hence it is secondary to it. It is not
correct to interpret (6.65) as constraints between the generating elements. Formulas (6.65) say that,
e.g., the element conjugate to ψα is by definition equal to ψβ(γ0)βα, but not that ψα is equivalent

to ψβ(γ0)βα.

http://dx.doi.org/10.1007/978-3-319-55619-2_5
http://dx.doi.org/10.1007/978-3-319-55619-2_5
http://dx.doi.org/10.1007/978-3-319-55619-2_5
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The Euler-Lagrange equations have the general form

δS

δψα(x)
= 0,

δS

δψα(x)
= 0,

where

S =
∫
d4x L.

In the present case we obtain

iγμ∂μψ − mψ = 0, i∂μψγμ + mψ = 0. (6.66)

The conjugation (6.65) interchanges these equations.
We shall again apply the canonical quantizationmethod. In the case of Grassmann

valued fields we postulate fundamental relations of the kind (6.4) with the commu-
tators replaced by anticommutators. It turns out that such a heuristic rule yields,
after a number of steps, a consistent quantum theory. Unfortunately, there are several
problems which were absent in the case of the scalar field. First, the usual definition
of canonical momenta leads to the presence of constraints. Namely,

πα = ∂L
∂(∂0ψα)

= − i

2
ψβ(γ0)βα, πα = ∂L

∂(∂0ψα)
= − i

2
(γ0)αβψβ . (6.67)

The minus sign in the first formula appears because ∂0ψ
α is the second factor in

the product iψγ0∂0ψ. Relations (6.67) show that the canonical variables are not
independent. Such relations cannot be carried over to the quantum theory because
they contradict the canonical anticommutation relations. For example, the canonical
anticommutation relations

{ψ̂α(�x), π̂β(�y)} = iδα
β δ(�x − �y)I, {ψ̂α(�x), ψ̂β(�y)} = 0.

are not compatible with the operator counterpart of the first constraint (6.67), which

is obtained just by replacing πα and ψβ by the operators π̂α and ψ̂β , respectively.
Inserting this constraint into the first canonical anticommutation relation and using
the second one we obtain the contradiction (0 = I ). Therefore, in the presence of the
constraints, the quantization has to be done in a more refined way. One possibility
is to use a generalization of the canonical formalism which applies to systems with
constraints and which was invented by Dirac, see, e.g., [6]. However, in the present
case one may apply an approach proposed by Faddeev and Jackiw [7]. It gives the
same result as the former approach but it is a bit simpler.
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The approach by Faddeev and Jackiw is based on the fact that the two actions

S =
t2∫

t1

dt
∫
d3x L,

S′ = S +
t2∫

t1

dt
∫
d3x

∂ f (ψ,ψ)

∂t
,

or, equivalently, the two Lagrangians

L, L′ = L + ∂ f (ψ,ψ)

∂t
,

give equivalent quantum theories, see Sect. 11.1 . Here f (ψ,ψ) can be an arbitrary
differentiable function of ψ and ψ.

Let us write Lagrangian (6.64) in the form

L = iψγ0∂0ψ − i

2
∂0(ψγ0ψ) + i

2

(
ψγi∂iψ − ∂iψγiψ

)
− mψψ. (6.68)

According to the remark above, we may abandon the second term on the r.h.s. of this
formula. The new Lagrangian has the form

L′ = iψγ0∂0ψ + i

2

(
ψγi∂iψ − ∂iψγiψ

)
− mψψ.

This Lagrangian gives the following canonical momentum conjugate to ψα

π′
α(t, �x) = ∂L′

∂(∂0ψα(t, �x)) = −iψβ(t, �x)(γ0)βα (6.69)

(the minus sign is correct!).
Lagrangian L′ can be written in the form

L′ = ∂0ψ
απ′

α − T 0
0, (6.70)

where

T 0
0 = i

2

(
∂iψγiψ − ψγi∂iψ

)
+ mψψ (6.71)

coincides with the density of the energy obtained from Noether’s theorem applied to
the Lagrangian L′.

Now comes the crucial observation: formula (6.70) has the form of the relation
between Lagrangian and Hamiltonian, well-known from the canonical formalism

http://dx.doi.org/10.1007/978-3-319-55619-2_11
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in classical mechanics. This tells us that ψβ(t, �x) is not a configurational variable!
Instead, it is directly related to the canonical momentum conjugate to ψα, as shown
by formula (6.69). Nowwe guess that the right way to construct the quantum version
of the model is to postulate the following equal-time anticommutation relations

{ψ̂α(t, �x), ψ̂β(t, �y)} = 0, {ψ̂α(t, �x), ψ̂β(t, �y)} = 0, (6.72)

{ψ̂β(t, �x), ψ̂α(t, �y)} = (γ0)αβδ(�x − �y)I, (6.73)

where ψ̂α and ψ̂β are Heisenberg picture operators corresponding to the classical
Grassmann fields ψα and ψβ . The last anticommutation relation follows from the
canonical anticommutation relation7

{π̂′
β(t, �x), ψ̂α(t, �y)} = −iδα

β δ(�x − �y)I.

The obvious candidate for the quantum Hamiltonian of the Dirac field is the operator

Ĥ =
∫
d3x T 0

0,

where T 0
0 has the form (6.71) with the classical fields ψ,ψ replaced by the corre-

sponding operators. Thus,

Ĥ = i

2

∫
d3x

(
∂i ψ̂γi ψ̂ − ψ̂γi∂i ψ̂

)
+ m

∫
d3x ψ̂ψ̂. (6.74)

Similarly as in the case of the scalar field, this Hamiltonian is understood merely
as a formal expression which hopefully gives correct commutators. It turns out that
indeed, it gives the correct commutators because it differs from the correct Hamil-
tonian by a multiple of the identity operator.

Let us repeat the steps which we know from our considerations of the scalar field.
We start from the Heisenberg evolution equations

∂ψ̂α(t, �x)
∂t

= i[Ĥ , ψ̂α(t, �x)], ∂ψ̂α(t, �x)
∂t

= i[Ĥ , ψ̂α(t, �x)]. (6.75)

The commutators present in these equations can be reduced to the basic anticommu-
tators (6.72), (6.73) with the help of the identity

[AB,C] = A{B,C} − {A,C}B. (6.76)

7The canonical commutation relation (6.4) can be written in the form [π̂(t, �x), φ̂(t, �y)] = −iδ(�x −
�y)I . We replace [,] by {,} precisely in this version.
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Multiplication of (6.75) by iγ0, and computation of the commutators gives the Dirac

equations for the operators ψ̂α and ψ̂β ,

iγμ∂μψ̂ − mψ̂ = 0, (6.77)

i∂μψ̂γμ + mψ̂ = 0. (6.78)

The general solution of (6.77) has the form

ψ̂(t, �x) =
∫

d3 p

(2π)3/2

∑

s=±1/2

[
v(+)
s ( �p)â(+)

s ( �p)ei( �p�x−ωt) + v(−)
s ( �p)â(−)

s ( �p)ei( �p�x+ωt)
]
,

(6.79)

where
ω( �p ) =

√
m2 + �p 2,

and â±
s ( �p ) are certain operators.

For each fixed wave vector �p ∈ R3, the four bispinors v±
s ( �p) form a basis for the

space of bispinors. The components of them are complex numbers, not Grassmann
elements. By definition, the basis bispinors obey the following algebraic equations

(±ω( �p)γ0 − γi pi
)
v(±)
s ( �p ) = mv(±)

s ( �p ),

which are equivalent to eigenequation for a matrix Hamiltonian HD( �p ) of the Dirac
particle with the fixed momentum �p,

HD( �p )v(±)
s ( �p ) = ±ω( �p )v(±)

s ( �p ),

where

HD( �p ) =
(
mσ0 �p �σ
�p �σ −mσ0

)

in the Dirac representation (5.3). In order to specify the basis bispinors uniquely
(up to a normalization) we also demand that

�3( �p)v(±)
s ( �p) = s v(±)

s ( �p),

where s = ±1/2, and the matrix �3( �p) is the operator of the third component of
spin in the relativistic quantum mechanics of the Dirac particle. Its form depends
on the momentum �p of the particle. Formula for all three components of the spin
operator reads

�i ( �p) = 1

2ω( �p )

(
mσi + pi �p �σ

m+ω( �p )
iεikl pkσl

−iεikl pkσl mσi + pi �p �σ
m+ω( �p )

)

,

http://dx.doi.org/10.1007/978-3-319-55619-2_5
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where �p�σ = p jσ j , and i, j, k, l = 1, 2, 3. The matrices �i ( �p ) commute with
HD( �p ), and [� j ( �p ),�k( �p )] = iε jkl�l( �p ). The matrices HD( �p ), �3( �p ) form
the complete set of commuting Hermitian matrices for the particle.

Thebasis bispinors obey the followingorthogonality andnormalization conditions

(vε
r ( �p))†vε′

s ( �p) = δrsδεε′, (6.80)

where the indices ε and ε′ have the values + and −. Here v† = (v∗)T , ∗ denotes
complex conjugation, T denotes matrix transposition.

Equation (6.78) can be transformed into (6.77) by Hermitian conjugation and
multiplication by γ0. Therefore, the general solution of (6.78) can be expressed by
the general solution (6.79), namely

ψ̂(t, �x) = ψ̂†(t, �x)γ0. (6.81)

Here † denotes the Hermitian conjugation of the field operator in a certain Hilbert
space, yet to be defined. Note that due to the Dirac equations (6.77), (6.78), the two

initially independent Dirac fields ψ̂(x) and ψ̂(x) have become related by formula
(6.81). In a field theoretical jargon one says that these fields are independent ‘off-
shell’, and equivalent to each other ‘on-shell’.

Using the inverse Fourier transform and relations (6.80) we express the operators
â(±)
s ( �p) by the Dirac field

â(±)
s ( �p) = 1

(2π)3/2
e±iωt ((v(±)

s ( �p))†)α
∫

d3x e−i �p�x ψ̂α(t, �x). (6.82)

Because of (6.72), (6.73), these operators obey the following algebraic relations

{â(ε)
s ( �p), â(ε′)

s ′ ( �p ′)} = 0, {â(ε)
s ( �p), (â(ε′)

s ′ ( �p ′))†} = δss ′δεε′δ( �p − �p ′)I, (6.83)

where again ε, ε′ = +,−. The relation involving two operators â† is obtained from
the first of relations (6.83) by Hermitian conjugation.

Similarly as in the case of the scalar field, we would like to see Hilbert space
realizations of the operators â(ε)

s . The construction of such realizations is analogous
to the one presented in the previous section. We take an orthonormal and complete
set of functions hi ( �p, ε, s) of the continuous variable �p and of discrete variables ε, s,

∑

ε=±,s=±1/2

∫
d3 p hi ( �p, ε, s)h j ( �p, ε, s) = δi j , (6.84)

∞∑

i=1

h∗
i ( �p, ε, s)hi ( �p ′, ε′, s ′) = δss ′δεε′δ( �p − �p ′).
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and define

âi =
∑

ε,s

∫
d3 p hi ( �p, ε, s) â(ε)

s ( �p), â†i =
∑

ε,s

∫
d3 p h∗

i ( �p, ε, s)(â(ε)
s ( �p))†,

(6.85)
where i = 1, 2, . . . . The inverse formulas have the form

â(ε)
s ( �p) =

∞∑

i=1

h∗
i ( �p, ε, s)âi , (â(ε)

s ( �p))† =
∞∑

i=1

hi ( �p, ε, s)â†i . (6.86)

It is clear that it suffices to find realizations of the operators âi and â
†
i . These operators

obey the following anticommutation relations obtained from (6.83)

{âi , â†j } = δi j I, (6.87)

{âi , â j } = 0, {â†i , â†j } = 0.

We again consider an infinite dimensional linear space H∞ spanned by formal,
infinite products of functions

g1(x1)g2(x2) . . . ,

but in the present case, the functions gi (xi ) are the first order polynomials in xi ,

gi (xi ) = ci xi + di ,

where xi are Grassmann elements which anticommute with each other, and ci , di are
complex numbers. Thus, x2i = 0, and xi x j = −x j xi . Let us introduce operators β̂x ,
and β̂†

x acting in the two-dimensional complex space of the first order polynomials
c1x + c2, where x is a Grassmann element:

β̂x (c1x + c2) = c1, β̂†
x (c1x + c2) = c2x .

Equivalently, we may write that

β̂x = d

dx
, β̂†

x = x ·,

where the dot means that the operator acts as multiplication by x . For example,
x(c1x + c2) = c2x because x2 = 0. The operators β̂x and β̂†

x obey the following
anticommutation relation

{β̂x , β̂
†
x } = I.

In the basis formed by the two monomials, namely x and 1, these operators are
represented by the matrices
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β̂x ↔
(
0 0
1 0

)
, β̂†

x ↔
(
0 1
0 0

)
.

The operators âi and â
†
j have the following realization in the space H∞:

âi = β̂xi , â†i = β̂†
xi . (6.88)

Note that β̂†
x (cx) = 0. In consequence, there exist normalizable states |ψ〉 inH∞

such that â†i |ψ〉 = 0. Such states do not exist in the Fock space of the scalar field.
The space H∞ is very large. Our operators can be realized in its subspace H

spanned by formal products which differ only by a finite number of factors. We
assume that in all these basis formal products, for sufficiently large i we have by
assumption gi (xi ) = g∞(xi ), where g∞(x) is a fixed first order polynomial, the same
for all elements ofH. Similarly as in the case of scalar field, we will not discuss here
other possibilities. We also assume that

〈g∞|g∞〉 = 1.

The scalar product in such space is defined as follows

〈g1g2 · . . . |g′
1g

′
2 · . . .〉 =

∞∏

i=1

〈gi |g′
i 〉, (6.89)

where for gi = ci xi + di and g′
i = c′

i xi + d ′
i

〈gi |g′
i 〉 = c∗

i c
′
i + d∗

i d
′
i .

Strictly speaking, the linear spaceHwith the scalar product introduced above should
be called the pre-Hilbert space. To obtain the Hilbert space, we have to complete it
with respect to the norm given by the scalar product using a standard mathematical
procedure.

In the second step towards the quantum theory of the Dirac field we construct
basic observables. They are represented by operators in H. The obvious candidate

for the quantum Hamiltonian has the form (6.74) with ψ̂ and ψ̂ given by formulas
(6.79), (6.81). Because these fields obey the Dirac equations (6.77), (6.78) we may
write the Hamiltonian in the form

Ĥ = i

2

∫
d3x

(
ψ̂†∂t ψ̂ − ∂t ψ̂

†ψ̂
)

,

and

Ĥ =
∑

s=±1/2

∫
d3 p ω( �p) (

(â(+)
s ( �p))†â(+)

s ( �p) − (â(−)
s ( �p))†â(−)

s ( �p)) , (6.90)
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where in the last step we have used formula (6.79). Notice that Hamiltonian (6.90)

is already normally ordered. This is due to the fact that in formula (6.74) the field ψ̂

always stands to the left of the field ψ̂. At this point we could repeat the construction
of the Fock space as in the previous Section. The vacuum state |0〉 would be defined
by the conditions

â(±)
s ( �p)|0〉 = 0,

and the complete set of basis states would be generated from it by the operators
(â(±)

s ( �p))† as in formula (6.40). However, considerations analogous to the ones pre-
sented at the end of previous Section show that the contribution to the eigenvalues of
the Hamiltonian, associated with the operator (â(−)

s ( �p))†, is equal to−ω( �p), hence it
is negative. Therefore Hamiltonian (6.90) cannot be accepted because its eigenvalues
extend from −∞ to +∞. Such systems have not been found in nature, hence the
quantum Dirac field with Hamiltonian (6.90) is unphysical.

There exists a slightmodificationofHamiltonian (6.90)which solves this problem.
Using the anticommutation relation (6.83), and dropping the term proportional to the
identity operator I we obtain the following operator

ĤD =
∑

s=±1/2

∫
d3 p ω( �p) (

(â(+)
s ( �p))†â(+)

s ( �p) + â(−)
s ( �p)(â(−)

s ( �p))†) , (6.91)

It has non-negative expectation values because

〈ψ|(â(+)
s ( �p))†â(+)

s ( �p)|ψ〉 = ||â(+)
s ( �p)|ψ〉||2 ≥ 0,

and
〈ψ|â(−)

s ( �p)(â(−)
s ( �p))†|ψ〉 = ||(â(−)

s ( �p))†|ψ〉||2 ≥ 0.

Here || · || denotes the norm defined by the scalar product. Notice that the argument
presented in previous section, that one should avoid operators of the form ââ†, is
based on commutation relation (6.33)—it does not work here. Moreover, ĤD and Ĥ
give the same Heisenberg evolution equations because they differ only by a multiple
of the identity operator. Therefore, ĤD is a good candidate for the Hamiltonian of
the quantum Dirac field, provided that we can find a Hilbert space in which this
Hamiltonian has finite eigenvalues. It turns out that such a Hilbert space exists, as
shown below.

Let us define the Dirac vacuum state |0〉D . By definition, it is a normalized state
that obeys the following conditions

â(+)
s ( �p)|0〉D = 0, (â(−)

s ( �p))†|0〉D = 0 (6.92)

for all s = ±1/2 and for all �p ∈ R3. Such a state can be found in the space H∞,
because this space contains vectors such that â†i |ψ〉 = 0, as pointed out below formula
(6.88). It is clear that
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ĤD|0〉D = 0. (6.93)

The Dirac vacuum state is sometimes called the Dirac sea. The reason is that one
may heuristically write

|0〉D = “

⎛

⎝
∏

s=±1/2

∏

�p∈R3

(â(−)
s ( �p))†

⎞

⎠ ”|0〉.

Then, the second condition (6.92) is satisfied because relations (6.83) imply that
the square of each operator (â(−)

s ( �p))† vanishes. In view of this “formula” the Dirac
vacuummay be regarded as the state in which all negative energy states are occupied,
hence the sea of negative energy particles. Because the infinite product over �p ∈ R3

is not defined, that “formula” cannot serve as the definition of the Dirac vacuum.
The basis states in the Fock space of the quantum Dirac field, analogous to the

ones given by formulas (6.39), (6.40) for the quantum scalar field, are defined as
follows

|(+) �p1s1, �p2s2, . . . , �pMsM ; (−)�q1r1, �q2r2, . . . , �qNrN 〉 (6.94)

= 1√
M !N ! â

(−)
−rN (−�qN ) . . . â(−)

−r1(−�q1)(â(+)
sM ( �pM))† . . . (â(+)

s1 ( �p1))†|0〉D,

where ri , s j = ±1/2 and M, N = 0, 1, 2, . . .. It is understood that M = 0 or N = 0
means that operators (â(+)

s j ( �p j ))
† or â(−)

ri (−�qi ), respectively, are absent. The reason
for using â(−)

−s (−�q) and not â(−)
s (�q) is that the states (6.94) are eigenstates of the

operator of the total momentum of the quantum Dirac field, with eigenvalues equal
to the sum of the wave vectors �pn and �qi , as discussed below. For a similar reason, we
take as the spin indices −ri instead of ri because then the states are eigenstates of an
operator of the total spinwith corresponding eigenvalues equal to

∑N
n=0 rn + ∑M

i=0 si .
It turns out that the states (6.94) are the eigenstates of the Hamiltonian,

ĤD|(+) �p1s1, . . . , �pMsM ; (−)�q1r1, . . . , �qNrN 〉

=
⎛

⎝
N∑

i=0

ω(�qi ) +
M∑

j=0

ω( �p j )

⎞

⎠ |(+) �p1s1, . . . , �pMsM ; (−)�q1r1, . . . , �qNrN 〉,

(6.95)

where ω(�k) =
√
m2 + �k2. The derivation of this formula is essentially identical as

in the case of the quantum scalar field, formula (6.51). Instead of the first formula
(6.49) we now have

[ĤD, (â(+)
s ( �p))†] = ω( �p)(â(+)

s ( �p))†, [ĤD, â(−)
s (�q)] = ω(�q)â(−)

s (�q). (6.96)
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The commutators on the r.h.s.’s of formulas (6.96) have been calculated with the help
of identity (6.76). We have also used the basic anticommutation relations (6.83).

It turns out that the states (6.94) are also eigenstates of the total momentum of the
Dirac field. Starting from Noether’s theorem applied to the spatial translations, and
using formulas (6.79), (6.81) we obtain the following operator

P̂ i =
∑

s=±1/2

∫
d3 p pi

[
(â(+)

s ( �p))†â(+)
s ( �p) + (â(−)

s ( �p))†â(−)
s ( �p)] ,

where i = 1, 2, 3. Next, we apply the same modification as we did for the Hamil-
tonian: we anticommute the operators in the second term and drop the generated term
proportional to the identity operator. Furthermore, in the second term on the r.h.s.
we change the integration variable �p → − �p and the summation index s → −s. The
resulting operator has the form

P̂ i
D =

∑

s=±1/2

∫
d3 p pi

(
(â(+)

s ( �p))†â(+)
s ( �p) + â(−)

−s (− �p)(â(−)
−s (− �p))†

)
. (6.97)

It is adopted as the operator of the total momentum of the quantum Dirac field.
Calculations similar to the case of the Hamiltonian show that

P̂k
D|(+) �p1s1, . . . , �pMsM ; (−)�q1r1, . . . , �qNrN 〉 =

=
⎛

⎝
N∑

n=1

qk
n +

M∑

j=1

pk
i

⎞

⎠ |(+) �p1s1, . . . , �pMsM ; (−)�q1r1, . . . , �qNrN 〉. (6.98)

Notice that the vectors �qn enter the eigenvalues of P̂k
D with a plus sign, precisely

because we have − �p in the second term in formula (6.97).
We have seen that the sectors ‘+’ and ‘−’ give identical contributions to the

eigenvalues of the observables ĤD and P̂k
D . In fact, this is also true for the remaining

six observables M̂μν related to Poincaré symmetry.8 However, these two sectors do
differ when we take into account the internal U (1) symmetry of the Lagrangians L
or L′. This global symmetry group acts on the classical Grassmannian fields ψ and
ψ as follows

ψ′(x) = eiαψ(x), ψ′(x) = e−iαψ(x).

8It turns out that eigenstates of M̂μν are not given by the basis states (6.94), but by certain integrals
over the wave vectors �p, �q and linear combinations over the indices si , ri . Nevertheless, the sectors
‘+’, ‘−’ give identical contributions to the eigenvectors and to the corresponding eigenvalues.
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The corresponding total conserved charge has the form

Q = e
∫

d3x ψγ0ψ,

where e is a constant. This expression suggests that in the quantum theory, charge is
represented by the following operator

Q̂ = e
∫

d3x ψ̂γ0ψ̂ = e
∫

d3xψ̂†(t, �x)ψ̂(t, �x)

= e
∑

s

∫
d3 p

(
(â(+)

s ( �p))†â(+)
s ( �p) + (â(−)

s ( �p))†â(−)
s ( �p)) .

One can easily check that this operator commutes with ĤD , hence its eigenvalues and
expectation values are constant in time. Nevertheless, this operator is not satisfactory
because it has an infinite expectation value in the Dirac vacuum |0〉D . Therefore, we
perform the by now standard manipulation, consisting in anticommuting the two
operators (â(−)

s ( �p))†, â(−)
s ( �p) and dropping the term proportional to the identity

operator (such an operation does not have an effect on commutation relations with
any other operators). In this way we obtain the correct total U (1) charge operator

Q̂D = e
∑

s

∫
d3 p

(
(â(+)

s ( �p))†â(+)
s ( �p) − â(−)

−s (− �p)(â(−)
−s (− �p))†

)
(6.99)

In the second term on the r.h.s. we have changed the summation index s → −s and
the integration variable �p → − �p in order to have the same operators as in formula
(6.94). The operator Q̂D has a form analogous to those of the Hamiltonian and the
total momentum operators. It is clear that the basis states (6.94) are its eigenstates
with the eigenvalues equal to

Q = e(M − N ). (6.100)

Thus, the ‘−’ and ‘+’ states have U (1) charges of the opposite sign.
The Fock space of the quantum Dirac field is spanned by the basis states (6.94).

States from this space have all the properties of quantum states of non-interacting
particles of rest massm and spin 1/2. Moreover, there are two species of the particles
which differ by the value of theirU (1) charge, which can be equal to +e or −e. One
of the species is called the particle, the other one its antiparticle.9 Thus, the operators

âs( �p) = â(+)
s ( �p), â†s ( �p) = (â(+)

s ( �p))† (6.101)

9Let us note that strictly speaking it is not correct to identify them with the real world electron and
positron. Such identification would be correct if we could switch off the electromagnetic, weak and
gravitational interactions. Nevertheless, the electrons and positrons can approximately be described
by the above constructed quantum theory when the interactions are negligibly small.
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are the particle annihilation and creation operators, while

d̂s( �p) = (â(−)
−s (− �p))†, d̂†

s ( �p) = â(−)
−s (− �p) (6.102)

are the antiparticle annihilation and creation operators, respectively. The field oper-
ator (6.79) can now be written in the form

ψ̂(t, �x) =
∫

d3 p

(2π)3/2

∑

s=±1/2

[
v(+)
s ( �p)âs( �p)ei( �p�x−ωt) + v

(−)
−s (− �p)d̂†

s ( �p)ei(ωt− �p�x)
]
.

(6.103)

It has the following commutation relation with the total charge operator Q̂D

[Q̂D, ψ̂(t, �x)] = −e ψ̂(t, �x). (6.104)

Using this relation, one can easily prove that the state ψ̂|φ〉 has a total U (1) charge
which is by e smaller than the U (1) charge of the state |φ〉.

Multiparticle wave functions in the momentum representation are defined by
expanding a general state vector from the Fock space into the basis vectors (6.94).
For example, states describing two particles and two antiparticles have the form

|φ〉(2,2) =
∑

s1,s2

∑

r1,r2

∫
d3 p1d

3 p2d
3q1d

3q2 φ(2,2)( �p1s1, �p2s2; �q1r1, �q2r2)

|(+) �p1s1, �p2s2; (−)�q1r1, �q2r2〉.

Because the operators â(−) (or (â(+))†) in the definition (6.94) anticommute, we
may assume without loss of generality that the wave function is antisymmetric with
respect to the arguments �q1r1 and �q2r2 (or �p1s1 and �p2s2).

On the other hand, the behavior of the wave function under an interchange of
whole groups of variables, for example

(�q1r1, �q2r2) ↔ ( �p1s1, �p2s2),

is not fixed. Such operations are related to the so called charge conjugation, which
is represented by the transformation

â(−)
−r (−�q) ↔ (â(+)

r (�q))†, (â(−)
−r (−�q))† ↔ â(+)

r (�q). (6.105)

It commutes with the Hamiltonian ĤD , hence it is a symmetry of the quantum the-
ory. Formula (6.105) determines the transformation of the basis states (6.94). The
corresponding transformations of general states are defined by writing the states as
linear combinations of the basis states. In general, the charge conjugation symmetry
does not imply any particular symmetry of a concrete wave function.
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Finally, let us have a look at the single particle and antiparticle sectors in the Fock
space. The pertinent state vectors have the form

|φ〉(±)
1 =

∑

s

∫
d3 pφ(±)

1 ( �ps)|(±) �ps〉, (6.106)

where φ(±)
1 ( �ps) is the single particle (antiparticle) wave function in the momentum

representation. The index s describes the spin degrees of freedom of the particle.
Time evolution of a single state is governed by the Schroedinger equation

i∂t |φ(t)〉(±)
1 = ĤD|φ(t)〉(±)

1 . (6.107)

Using formulas (6.91), (6.105), and anticommutation relation (6.83), we obtain the
Schroedinger equation for the single particle or antiparticle wave functions

i∂tφ
(±)
1 (t, �ps) = ω( �p)φ(±)

1 (t, �ps). (6.108)

Thus both particle and antiparticle have positive energies equal toω( �p). The problem
of unbounded from below, negative energies of the Dirac particle, present in rela-
tivistic quantum mechanics, is absent here. One may say, that in a sense the negative
energy states have been transformed into positive energy states of the antiparticle.

6.3 The Electromagnetic Field

The following construction of the quantum theory of the free electromagnetic field is
based on the results of Sects. 1.2 and 4.1. It is very similar to the quantum theory of
the real scalar field presented in Sect. 6.1. Therefore we shall discuss only the main
points.

We consider the free electromagnetic field without any external sources. Its
Lagrangian has the form

L = −1

4
FμνF

μν, (6.109)

where Fμν = ∂μAν − ∂ν Aμ. Moreover, we use the Coulomb gauge condition, that
is

A0 = 0, ∇ �A = 0. (6.110)

These conditions eliminate spurious degrees of freedom which do not contribute to
the physically relevant quantities, like the electric or magnetic fields. On the other
hand, they are not Lorentz invariant. It is important to realize that this fact does
not necessarily destroy the Lorentz invariance of the theory of the electromagnetic
field. This is because the gauge conditions do not influence the physical degrees of

http://dx.doi.org/10.1007/978-3-319-55619-2_1
http://dx.doi.org/10.1007/978-3-319-55619-2_4
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freedom. In fact, it turns out that the Lorentz invariance is not broken, but it is no
longer explicit. We shall not discuss this rather complicated issue here.

The condition ∇ �A = 0 can be explicitly solved. Let us write �A in the form of the
Fourier transform

�A(t, �x) = 1

(2π)3/2

3∑

α=1

∫
d3k �eα(�k)aα(t, �k)ei

�k�x , (6.111)

where �eα(�k) are fixed real vectors, called polarization vectors. They are normalized
as follows

�eα(�k)�eβ(�k) = δαβ . (6.112)

We assume that �k �= 0, and we take

�e3 =
�k

|�k| . (6.113)

We shall see that photons with �k → 0 give a vanishing contribution to the total
energy and momentum of the electromagnetic field. For this reason the assumption
that �k �= 0, or equivalently that aα(t, �k = 0) = 0, is consistent with the physics of
the electromagnetic field. We also assume that

�eα(−�k) = �eα(�k) for α = 1, 2. (6.114)

The complex number aα(t, �k) is called the amplitude of the mode (�k,α) of the
electromagnetic field. The fact that �A is real is equivalent to the conditions

a∗
α(t,−�k) = aα(t, �k) (6.115)

for α = 1, 2, and a∗
3(t,−�k) = −a3(t, �k), where * denotes the complex conjugation.

From ∇ �A = 0 we obtain the condition

�k�eα(�k)aα(t, �k) = 0 (6.116)

This condition is automatically satisfied10 for �k = 0, and it implies, for �k �= 0, that

a3(t, �k) = 0. (6.117)

Thus, the space of vector potentials �A that is compatible with the Coulomb gauge
condition is parameterized by theFourier amplitudesa1,2(t, �k)which obey conditions
(6.115).

10We assume that the vector potential �A vanishes at the spatial infinity sufficiently quickly to ensure
finiteness of the integral

∫
d3x �A(t, �x). Then �eα(�k)aα(t, �k) is finite at �k = 0.
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Let us express the Lagrange function L , defined as

L =
∫

d3xL,

by the Fourier amplitudes introduced above. Because A0(t, �x) = 0, the Lagrangian
has the form

L = 1

2
∂0A

i∂0A
i − 1

4
FikF

ik. (6.118)

Inserting here formula (6.111) and using conditions (6.112), (6.115) we obtain11

L = 1

2

2∑

α=1

2∑

i=1

∫
d3k

[
ȧiα(t, �k)ȧiα(t, �k) − �k2aiα(t, �k)aiα(t, �k)

]
. (6.119)

Here we have split aα(t, �k) into real and imaginary parts

aα(t, �k) = a1α(t, �k) + ia2α(t, �k).

Conditions (6.115) imply that the Fourier amplitudes are not independent,

a1α(t, �k) = a1α(t,−�k), a2α(t, �k) = −a2α(t,−�k). (6.120)

In order to write the Lagrangian in terms of independent Fourier amplitudes, let us
restrict the wave vectors �k = (k1, k2, k3) to W , where W is the subset of R3 such
that k3 ≥ 0. Thus, as the independent dynamical variables, traditionally called the
modes of the electromagnetic field, we take a1,2α (t, �k) where �k ∈ W and α = 1, 2.
Strictly speaking, we still have some double counting of the modes with k3 = 0,
but these modes actually do not contribute to L because the plane k3 = 0 has zero
volume in R3.

The Lagrange function written in terms of the independent Fourier amplitudes
has the from

L =
2∑

α=1

2∑

i=1

∫

W

d3k
[
ȧiα(t, �k)ȧiα(t, �k) − �k2aiα(t, �k)aiα(t, �k)

]
. (6.121)

The canonical momenta associated with aiα(t, �k), where �k ∈ W , are given by the
functional derivatives

πα
i (t, �k) = δL

δȧiα(t, �k)
= 2ȧiα(t, �k).

11Let us remember that we use the convention that the arrow denotes vectors with upper indices.
Thus, �A = (Ai ) and Fik = −∂i Ak + ∂kAi .
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The classical Hamiltonian corresponding to L has the form

H =
2∑

α=1

2∑

i=1

∫

W

d3k

[
1

4
πα
i (t, �k)πα

i (t, �k) + �k2aiα(t, �k)aiα(t, �k)

]
. (6.122)

This form of the theory of the classical electromagnetic field is a convenient starting
point for constructing the corresponding quantum model. The questions of Hilbert
space, the choice of realization of operators, etc., are settled in full analogy with
the case of the real scalar field. Therefore we shall omit detailed discussion of these
points.

We postulate the equal-time canonical commutation relations

[
π̂α
i (t, �k), â j

β(t, �k′)
]

= −iδαβδi jδ(�k − �k′)I,
[
π̂α
i (t, �k), π̂

β
j (t, �k′)

]
= 0,

[
âiα(t, �k), â j

β(t, �k′)
]

= 0, (6.123)

where �k ∈ W , and the quantum Hamiltonian (to be changed into the normal ordered
one later on)

Ĥ =
2∑

α=1

2∑

i=1

∫

W

d3k

[
1

4
π̂α
i (t, �k)π̂α

i (t, �k) + �k2 âiα(t, �k)âiα(t, �k)

]
.

By assumption, the operators âiα and π̂α
i are Hermitian. The Heisenberg evolution

equations have the form

˙̂aiα(t, �k) = 1

2
π̂α
i (t, �k), ˙̂πα

i (t, �k) = −2�k2 âiα(t, �k). (6.124)

Thus, the operators âiα obey the following equation

¨̂aiα(t, �k) = −�k2âiα(t, �k). (6.125)

Its general Hermitian solution has the form

âiα(t, �k) = 1
√
2|�k|

[
ei |�k|t (d̂ i

α(�k))† + e−i |�k|t d̂ i
α(�k)

]
. (6.126)

The factor 1/
√
2|�k| has been introduced for later convenience. Let us introduce the

following operators

âα(�k) = d̂1
α(�k) + i d̂2

α(�k), â†α(�k) = (d̂1
α(�k))† − i(d̂2

α(�k))†,
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âα(−�k) = d̂1
α(�k) − i d̂2

α(�k), â†α(−�k) = (d̂1
α(�k))† + i(d̂2

α(�k))†,

where �k ∈ W . The canonical commutation relations (6.123) are equivalent to

[(d̂ i
α(�k))†, d̂ j

β(�k′)] = −1

2
δi jδαβδ(�k − �k′), [d̂ i

α(�k), d̂ j
β(�k′)] = 0,

where �k ∈ W . Simple calculation gives

[âα(�k), â†β(�k′)] = δαβδ(�k − �k′), [âα(�k), âβ(�k′)] = 0 (6.127)

for all �k ∈ R3. These commutators are essentially the same as in the case of the scalar
field, except for the index α. The field operator can now be written in the form

�̂A(t, �x) =
2∑

α=1

∫

R3

d3k
√
2(2π)3|�k|

�eα(�k)
[
e−i |�k|t+i �k�x âα(�k) + h.c.

]
, (6.128)

where h.c. stands for the Hermitian conjugation of the preceding term.
The Hamiltonian expressed by the operators âα and â†α has the form

Ĥ = 1

2

2∑

α=1

∫

R3

d3k |�k| (â†αâα + âαâ
†
α

)
.

At this point we can recognize the same mathematical structures as in the case of
the real scalar field. Therefore we repeat the steps from there. The Hamiltonian is
changed to the normally ordered one,

Ĥ =
2∑

α=1

∫

R3

d3k |�k| â†α(�k)âα(�k), (6.129)

and the Hilbert space is spanned by the basis states

|0〉, |�kα〉 = â†α(�k)|0〉, . . . . (6.130)

The vacuum state |0〉 is defined by the condition

âα(�k)|0〉 = 0 (6.131)

for all �k ∈ R3 and α = 1, 2. We see that the states of this quantum field can be
regarded as states of particles, called photons, with the two polarizations correspond-
ing to α = 1, 2. These polarizations are called transverse because the corresponding
polarization vectors �eα(�k) are perpendicular to �k. The single particle basis state |�kα〉
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is an eigenstate of the Hamiltonian (6.129), with energy equal to |�k| which coin-
cides with the energy of a free relativistic particle with vanishing rest mass. Thus,
photons are massless. They do not interact with each other, because all multiparticle
eigenstates of the Hamiltonian have eigenvalues equal to the sum of the energies
of the participating photons. The single photon wave function in the momentum
representation φ1

α(t, �k) obeys the Schroedinger equation

i∂tφ
1
α(t, �k) = |�k| φ1

α(t, �k),

which follows from the general Schroedinger equation

i∂t |φ〉 = Ĥ |φ〉,

if we restrict |φ〉 to the single photon sector, where

|φ〉 =
2∑

α=1

∫
d3k φ1

α(t, �k)|�kα〉.

The operators â†α(�k) commute with each other. Therefore the n-photon basis
states |�k1α1, �k2α2, . . . , �knαn〉, as well as the corresponding n-photon wave func-
tion φn(�k1α1, �k2α2, . . . , �knαn〉, is symmetric with respect to permutations of the
variables �kiαi , �k jα j . Thus, the free photons are massless bosons.

Exercises

6.1 We have shown in the text that relations (6.17) follow from the canonical com-
mutation relations (6.20). Prove also that the converse is true: (6.20) follows from
(6.17).

6.2 Show that Hamiltonian (6.5) can be written in the form (6.31) if φ̂ is given by
solution (6.16).
Hints: 1. Obtain φ̂(�x) and π̂(�x) in the Schroedinger picture by putting t = 0 in the
pertinent formulas in the Heisenberg picture.
2. Use the integrals

∫
d3x ei(

�k±�k′)�x = (2π)3δ(�k ± �k′),
∫

d3k ki â(�k)â(−�k) = 0.

6.3 Prove that the operators

L̂k = 1

2
εkrs M̂

rs,
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where M̂rs are given by formula (6.47), obey the commutation relations

[L̂k, L̂s] = iεksp L̂
p,

characteristic for quantum angular momentum.

6.4 Find the wave functional �0[φ] for the vacuum state |0〉 ∈ HF of the free real
scalar field.
Hints: 1. Use formula (6.19) with t = 0 and (6.7) in order to find the Schroedinger
representation of the operators â(�k ).
2. Find a Gaussian type functional that obeys the equation â(�k )�0[φ] = 0, where
�k ∈ R3.

6.5 Check that Lagrangian (6.64) and the current jμ = ψγμψ are real, that is that
L∗ = L and ( jμ)∗ = jμ.
Hint: Matrices γμ in the Dirac representation have the following property

γμ = γ0(γμ)†γ0.

6.6 Using relation (6.104) prove that the state ψ̂|φ〉 has total U (1) charge equal to
Q − e if the state |φ〉 has charge Q.

6.7 The canonical momentum conjugate to Ai is given by the following formula
πi = ∂L/∂(∂0Ai ) = ∂0Ai , where L is given by (6.118). Using (6.128) obtain the
equal time commutation relation

[ Âi (t, �x), π̂ j (t, �y)] = i

(
δi j − ∂i∂ j

�

)
δ(�x − �y).

Check that the non-canonical form of the r.h.s. is consistent with the Coulomb gauge
condition.
Hint: Use the Fourier representation of the Dirac delta. For example,�−1δ(�x − �y) =
−(2π)−3

∫
d3k |�k|−2 exp(i �k(�x − �y)).



Chapter 7
Perturbative Expansion in the φ4

4 Model

Abstract Problems with an exact construction of the quantum φ4
4 model. The inter-

action picture. The Gell-Mann–Low formula for Greeen’s functions. The generat-
ing functional for Green’s functions. The exponential Wick formula. The Feynman
free propagator. Regularized Feynman diagrams in four-momentum space. Normal
ordered interactions. Cancelation of vacuum bubbles.

We have seen three examples of quantum fields. On the one hand they are extremely
important because they show the main features of quantum fields, for example, the
appearance of quantum particles. On the other hand, we have obtained only noninter-
acting particles, and this fact obviously reduces the relevance of the discussed fields
for a description of physical phenomena. It is necessary to find quantum field theories
(in the literature, rather modestly called ‘models’) which give interacting particles.
Unfortunately, it turns out that this is not an easy task. The level of completeness of
the analysis of the quantum fields presented in the previous chapter remains as yet an
unreachable ideal in the case of models with interactions. Generally speaking, one
is forced either to consider very special models, often of little physical relevance, or
to resort to a perturbative expansion. This latter possibility is widely used in most
applications of quantum field theory. It is neither simple nor satisfactory from a the-
oretical viewpoint: it leads to rather cumbersome calculations, and the perturbative
series has rather bad convergence properties. Nevertheless, the perturbative approach
is a very popular and important tool with many spectacular applications in particle
physics and statistical mechanics.

In this chapter we present a derivation of the standard perturbative expansion in
powers of interaction. On the basis of a set of assumptions we shall obtain concrete,
sensible, approximate formulas forGreen’s functions. The rules for constructing such
perturbative formulas are quite precise. The main ideas of the perturbative expansion
are presented here in the example of the φ4

4 model, that is a real scalar field φ in the
four-dimensional space-time with a self interaction term of the form φ4. We have
chosen this relatively simplemodel in order to get rid of “kinematical” complications
which appear when there are several fields or several coupling constants.
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4 Model

7.1 The Gell-Mann–Low Formula

We consider a relatively simple model, which, on the classical level is defined by the
Lagrangian

L = 1

2
∂μφ ∂μφ − m2

0

2
φ2 − λ0

4! φ4. (7.1)

Here m2
0 and λ0 are finite, positive constants. In principle, they can be determined

experimentally, by measuring certain physical quantities which are calculable in the
model and therefore depend on these constants.

Let us first try the same steps as in the case of the free fields. The energy corre-
sponding to (7.1) is given by the formula

E =
∫

d3x

(
1

2
∂0φ ∂0φ + 1

2
∂iφ ∂iφ + m2

0

2
φ2 + λ0

4! φ4

)
. (7.2)

The canonical momentum conjugate to φ is defined, as always, as

π(t, �x) ≡ ∂L
∂φ,0(t, �x) . (7.3)

In the present case it is equal to

π(t, �x) = ∂0φ(t, �x). (7.4)

With the same motivation as for the free real scalar field (Sect. 6.1), we introduce the
Hermitian operators φ̂(t, �x) and π̂(t, �x) in the Heisenberg picture, and postulate the
equal-time canonical commutation relations

[
φ̂(t, �x), π̂(t, �y)

]
= iδ(�x − �y)I,[

φ̂(t, �x), φ̂(t, �y)
]

= 0 = [
π̂(t, �x), π̂(t, �y)] , (7.5)

as well as the quantum Hamiltonian

Ĥ =
∫

d3x

[
1

2
π̂2(t, �x) + 1

2
∂i φ̂(t, �x)∂i φ̂(t, �x) + m2

0

2
φ̂2(t, �x) + λ0

4! φ̂4(t, �x)
]

.

(7.6)

The Heisenberg evolution equation1

∂tÔ(t) = i
[
Ĥ , Ô(t)

]
(7.7)

1We assume here that the considered operators do not depend on time in the Schroedinger picture.

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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gives
∂t φ̂(t, �x) = i[Ĥ , φ̂(t, �x)], ∂t π̂(t, �x) = i[Ĥ , π̂(t, �x)]. (7.8)

Because the Hamiltonian is constant in time, the time t on the r.h.s. of formula (7.6)
can be chosen arbitrarily. Therefore, we can compute the commutators on the r.h.s.
of (7.8) using the equal time commutators (7.5). We obtain

∂t φ̂(t, �x) = π̂(t, �x),

and

∂t π̂(t, �x) = �φ̂(t, �x) − m2
0φ̂(t, �x) − λ0

3! φ̂3(t, �x),

where � denotes the three-dimensional Laplacian. It follows from these equations
that the operator φ̂(t, �x) obeys the equation

(∂2
t − � + m2

0)φ̂(t, �x) + λ0

3! φ̂3(t, �x) = 0. (7.9)

Notice that this equation has the same form as the classical equation (3.25), except
that instead of the classical field φ(t, �x) there is the field operator φ̂(t, �x).

We have seen in Sect. 6.1 that in the case of the free scalar field it was necessary
to replace the ‘naive’ Hamiltonian (6.5) by the correct one (6.34). Nevertheless,
Hamiltonian (6.5) gave the correct evolution equation (6.14). One should expect that
also in the present case the ‘naive’ Hamiltonian (7.6), as well as evolution equation
(7.9), do not have a mathematical meaning. The reason is that they involve products
of the type

φ̂(x1) . . . φ̂(xn)|x1=...=xn=x ,

where n = 2, 3, 4. Here we have used the four-dimensional notation xi = (ti , �xi ).
If φ̂(x) is a generalized function of x , as suggested by the example of the free
quantum scalar field, such products are not defined in general. Yet another difficulty
is the nonlinearity of (7.9)—because of it, we would not be able to find its general
solution, even if we managed to define the φ̂3(x) term.

Because we do not know how to define and solve the Heisenberg evolution equa-
tion (7.9), we may try to use the interaction picture in which time evolution is split
between states and operators in such a way that the operators evolve as in the free
field model. Let us quote the main formulas—their derivations can be found in text-
books on quantum mechanics. The Hamiltonian Ĥ does not depend on time, hence
it has the same form in both the Schroedinger and Heisenberg pictures. Let us split it
into the free part Ĥ0S and the interaction part V̂S , both taken here in the Schroedinger
picture marked by the subscript S:

Ĥ = Ĥ0S + V̂S,

http://dx.doi.org/10.1007/978-3-319-55619-2_3
http://dx.doi.org/10.1007/978-3-319-55619-2_6
http://dx.doi.org/10.1007/978-3-319-55619-2_6
http://dx.doi.org/10.1007/978-3-319-55619-2_6
http://dx.doi.org/10.1007/978-3-319-55619-2_6
http://dx.doi.org/10.1007/978-3-319-55619-2_6
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where

Ĥ0S = 1

2

∫
d3x

[
π̂2(�x) + ∂i φ̂(�x)∂i φ̂(�x) + m2

0φ̂
2(�x)

]
, V̂S = λ0

4!
∫

d3x φ̂4(�x).

Similarly as in the case of free fields, the question of the powers of the field operator
will be addressed later. In general, these operators separately depend on time in the
Heisenberg picture, while Ĥ = Ĥ0(t) + V̂ (t) is constant. For brevity, theHeisenberg
picture is denoted just by the presence of the time argument.

Time evolution of states in the interaction picture is given by the unitary operator
UI (t, t0),

|t〉I = UI (t, t0)|t0〉I ,

where
UI (t, t0) = ei Ĥ0S t e−i Ĥ(t−t0)e−i Ĥ0S t0 . (7.10)

Operator ÔS from the Schroedinger picture is represented in the interaction picture
by the operator

ÔI (t) = ei Ĥ0S tÔSe
−i Ĥ0S t , (7.11)

and in the Heisenberg picture by

Ô(t) = ei Ĥ tÔSe
−i Ĥ t . (7.12)

Comparing the last two formulas we obtain the relation

ÔI (t) = UI (t, 0)Ô(t)UI (0, t). (7.13)

The operator UI (t, t0) can also be written in the Dyson form

UI (t, t0) = T exp(−i
∫ t

t0

dt ′ V̂I (t
′)). (7.14)

The r.h.s. of this formula is understood as the series

T exp(−i
∫ t

t0

dt ′ V̂I (t
′)) = I +

∞∑
n=1

(−i)n

n! T

(∫ t

t0

dt ′ V̂I (t
′)
)n

,

where T denotes the chronological, or time ordering. It is defined as follows:

T

(∫ t

t0

dt ′ V̂I (t
′)
)n

=
∫ t

t0

dt1 . . .

∫ t

t0

dtnT
(
V̂I (t1)V̂I (t2) . . . V̂I (tn)

)
,
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where

T
(
V̂I (t1)V̂I (t2) . . . V̂I (tn)

)

=
∑
P

�(ti1 − ti2)�(ti2 − ti3) . . . �(tin−1 − tin )V̂I (ti1)V̂I (ti2) . . . V̂I (tin ).

The sum is over the set of all permutations (t1, t2, . . . , tn) → (ti1 , ti2 , . . . , tin ), and �

denotes the step function.
The operator ÔI (t) obeys the following evolution equation

dÔI (t)

dt
= i[Ĥ0S, ÔI (t)],

obtained from definition (7.11) by differentiation with respect to time. In particular,

dφ̂I (t, �x)
dt

= ieit Ĥ0S [Ĥ0S, φ̂S(�x)]e−i t Ĥ0S = π̂I (t, �x),

and

dπ̂I (t, �x)
dt

= ieit Ĥ0S [Ĥ0S, π̂S(�x)]e−i t Ĥ0S = �φ̂I (t, �x) − m2
0φ̂I (t, �x).

These two equations imply that φ̂I (t, �x) obeys the following equation

(
∂2

∂t2
− � + m2

0

)
φ̂I (t, �x) = 0. (7.15)

It coincides with the operator Klein–Gordon equation, known from Chap.6. As
shown there, its general solution has the form

φ̂I (t, �x) =
∫

d3k√
2(2π)3ω(�k)

(
e−ikx âI (�k) + h.c.

)
, (7.16)

where k0 = ω(�k).
Canonical commutation relations do not change their form under similarity trans-

formations, hence φ̂I (t, �x) and π̂I (t, �x) have equal-time commutation relations of
the form (7.5). Similarly as in the case of the free scalar field, one can show that
âI (�k) and â†I (�k ′) have the following commutation relations

[
âI (�k), â†I (�k ′)

]
= δ(�k − �k ′)I,

[
âI (�k), âI (�k ′)

]
= 0. (7.17)

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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The form of solution (7.16), as well as commutation relations (7.17), are the same as
in the case of the free scalar field. Therefore, it is quite natural to consider the Fock
space with the basis

|0I 〉, â†I (�k)|0I 〉,
1√
2
â†I (�k)â†I (�k ′)|0I 〉, . . . , (7.18)

where the state |0I 〉 is defined by the condition

âI (�k)|0I 〉 = 0

for all �k ∈ R3.

In the next step, we insert into the Hamiltonian Ĥ0I the solution (7.16) for φ̂I , and
dφ̂I /dt for π̂I . Then, theHamiltonian is expressed by the ‘creation’ and ‘annihilation’
operators â†I (�k) and âI (�k). In order to obtain a well-defined operator Ĥ0I in the Fock
space we apply the normal ordering : :, as discussed in the previous chapter.

The problem with the definition of the interaction operator V̂I is more severe. It
is not to be solved merely by normal ordering—a more drastic modification of the
interaction, in the literature called a regularization, is needed in order to convert it
into awell-defined operator in the Fock space spanned by the basis vectors (7.18).We
shall denote such a regularized interaction by V̂Ig in the interaction picture, and by
V̂Sg in the Schroedinger picture (in order to obtain the Schroedinger picture operator
it is sufficient to put t = 0 in the interaction or Heisenberg picture operators). The
problem is generated by the integral

∫
d3x over the infinite space. It turns out that

the normal ordered monomial : φ̂4
I (t = 0, �x) : is a generalized function of �x , see,

e.g., Chapt. 8, Sect. 4.A in [8]. Therefore, it may be integrated with a test function
g(�x), and

V̂Sg = λ0

4!
∫
d3x g(�x) : φ̂4

I (t = 0, �x) :

is a well-defined operator, while λ0
∫
d3x : φ̂4

I (t = 0, �x) : /4! is not because the
constant function equal to 1 is not a test function. For Hermiticity of V̂Sg the function
g(�x) has to be real-valued (Exercise 7.1).

We do not want to ascribe to the regularizing function g(�x) any physical meaning.
Therefore, we should remove it by taking the limit

g(�x) → 1.

There is a hope that such a limit, called the removal of the regularization, can be
considered in a mathematically rigorous manner, at least on the level of the measur-
able quantities, like scattering cross-sections or energies of bound states, and that
the results obtained in that limit do not contradict the basic physical requirements,
such as the unitarity of the time evolution in the quantum theory or Poincaré invari-
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ance. Particularly difficult is the problem of recovering Poincaré invariance, because
the presence of the fixed test function g(�x) almost surely breaks that invariance, and
therefore it has to reappear ‘fromnowhere’ in that limit.A concrete realization of such
a programme in the case of interacting fields in four-dimensional space-time does
not yet exist. Anyway, in the following considerations we shall use the regularized
interaction Hamiltonian in order to avoid mathematically meaningless formulas.

Note that the states (7.18) are not eigenstates of the full regularized Hamiltonian
Ĥ =: Ĥ0S : + V̂Sg . Therefore, there is little hope that they will become the eigen-
states after the regularization is removed. This casts a shadow on the physical mean-
ing of these states. In particular, they can hardly be regarded as particle states with
definite numbers of particles, and �k is not equal to the momentum of any particle.
Needless to say, the exact eigenvalues and eigenstates of the Hamiltonian Ĥ are not
known.

To summarize, an explicit construction of the quantum φ4
4 model is beyond our

reach. This model is not exceptional in this respect. In fact, we do not know the
explicit construction of any physically important model with (self)coupled quantum
fields defined in four-dimensional space-time.2 On the other hand, one can construct
so called perturbative quantum field theories which are well-defined at every finite
order of an expansion with respect to a pertinent interaction Hamiltonian. It turns
out that such surrogate quantum field theories can yield predictions which agree
with experimental data amazingly well. Principles applied in the construction of the
perturbative quantum field theories turn out to be very fruitful. There is no doubt that
perturbative expansion is the indispensable tool for applications of quantum field
theory. On the other hand, many physically interesting quantities cannot be reliably
calculated within the perturbative approach.

We will not present the full perturbative φ4
4 model. We shall concentrate on the so

called Green’s functions, often also called the correlation functions,
G(n)(x1, x2, . . . , xn), where n is a natural number and xi , i = 1, 2, . . . , n, are points
in Minkowski space-time. The Green’s functions are defined as the vacuum expecta-
tion value of time ordered products of the quantum fields in the Heisenberg picture,

G(n)(x1, x2, . . . , xn) = 〈0|T
(
φ̂(x1)φ̂(x2) · · · φ̂(xn)

)
|0〉. (7.19)

Here T denotes the time ordering, and |0〉 is the vacuum state in the model, that is
the normalized eigenstate of Ĥ with the lowest eigenvalue E0—we assume that such
an eigenvalue exists. By shifting the Hamiltonian, Ĥ → Ĥ − E0 I, the eigenvalue is
shifted to 0. Then, the vector |0〉 does not depend on time because i∂t |0〉 = Ĥ |0〉 = 0.
From now on we assume that

Ĥ |0〉 = 0.

2In the case of fields defined in two- or three-dimensional space-time the situation is a little bit
better.
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The Green’s functions play a very important role in applications of quantum field
theory, in particular in calculations of scattering amplitudes of particles. On the
mathematical side, Green’s functions are generalized functions of n independent
four-vectors xi . Therefore, in general it does not make sense to ask for the value
of such a function at fixed values of all xi , see the Appendix. Also, one cannot
construct a well-defined generalized function of a smaller number of variables, say
x2, x3, . . . , xn , just by putting, for example, x1 = x2. The resulting object is not,
in general, a generalized function of x2, x3, . . . , xn . This is analogous to putting
x = y in the product δ(x)δ(y)—the resulting object (δ(x))2 is not a generalized
function of x .

The Gell-Mann–Low formula gives G(n) in terms of the interaction picture field
φ̂I and the state |0I 〉. In the first step in the derivation of this formula we express
φ̂ by φ̂I and perform the time ordering. Let (i1, i2, . . . , in) be the permutation of
(1, 2, . . . , n) such that x0i1 ≥ x0i2 ≥ . . . ≥ x0in . Then,

G(n)(x1, x2, . . . , xn) = 〈0|φ̂(xi1) . . . φ̂(xin )|0〉.

Next, we apply the following formulas, which are obtained from (7.13):

φ̂(xk) = U−1
I (x0k , 0)φ̂I (xk)UI (x

0
k , 0),

and
UI (x

0
j , 0)U

−1
I (x0k , 0) = UI (x

0
j , x

0
k ).

The result has the form

G(n)(x1, x2, . . . , xn) = (7.20)

〈0|U−1
I (x0i1 , 0)φ̂I (xi1)UI (x

0
i1 , x

0
i2)φ̂I (xi2) . . . φ̂I (xin )UI (x

0
in , 0)|0〉.

In the second step we eliminate the vacuum state |0〉 in favor of |0I 〉. The reason is
that we know how the operator φ̂I acts on |0I 〉,while the state |0〉 is in fact completely
unknown. First, we prove the formula

lim
t→±∞〈ψ|ei Ĥ t |χ〉 = 〈ψ|0〉〈0|χ〉, (7.21)

where |ψ〉 and |χ〉 are vectors from the Hilbert space of the model.
We assume that we have the following completeness relation

|0〉〈0| +
∫ ∞

E1

dE
∑
a

|E, a〉〈a, E | = I,

where E denotes the eigenvalues of the Hamiltonian, E1 > 0 is the lowest energy
eigenvalue above the vacuum energy E0 = 0. The index a denotes a set of other
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quantum numbers (which are eigenvalues of observables commuting with the Hamil-
tonian). Let us insert this completeness relation on the l.h.s. of formula (7.21). We
obtain

lim
t→±∞〈ψ|ei Ĥ t |χ〉 = 〈ψ|0〉〈0|χ〉 + lim

t→±∞

∫ ∞

E1

dE eiEt f (E),

where
f (E) =

∑
a

〈ψ|E, a〉〈a, E |χ〉.

The completeness relation implies that

∫ ∞

E1

dE f (E) = 〈ψ|χ〉 − 〈ψ|0〉〈0|χ〉 < ∞,

hence the function f (E) is integrable. Here we use the fact that the states |ψ〉 and
|χ〉 have finite scalar products with any vector belonging to the Hilbert space.

The integral ∫ ∞

E1

dE eiEt f (E)

vanishes in the limits t → ±∞ under certain assumptions about f (E). The proof is
based on theorems about the asymptotic behavior of Fourier transforms, but we shall
not go into the mathematical details of it. Roughly, the integral vanishes because the
integrand is the product of f (E) with functions of E , namely cos(Et) and sin(Et),
which oscillate very quickly in the limit t → ±∞. In the end, the integral is a sum
of positive and negative contributions which in that limit cancel each other out.

Formula (7.21) implies that

lim
T→+∞〈ψ|UI (0,−T )|0I 〉 = lim

T→+∞〈ψ|e−i Ĥ T |0I 〉 = 〈ψ|0〉〈0|0I 〉.

Here we have used the fact that Ĥ0|0I 〉 = 0. Let us choose3

〈ψ| = 〈0|T
(
φ̂(x1) . . . φ̂(xn)

)
.

We obtain

G(n)(x1, x2, . . . , xn) = lim
T ′→+∞

〈0|T (
φ̂(x1) . . . φ̂(xn)

)
UI (0,−T ′)|0I 〉

〈0|0I 〉 . (7.22)

3Here we are simplifying things a little bit. In order to be sure that the state |ψ〉 belongs to the

Hilbert space one should integrate T
(
φ̂(x1) . . . φ̂(xn)

)
with a test function h(x1, x2, . . . , xn). We

are assuming that such a ‘technical’ step is done implicitly.
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Similarly,

lim
T "→+∞ 〈0I |UI (T ", 0)|χ〉 = lim

T "→+∞ 〈0I |e−i Ĥ T "|χ〉 = 〈0I |0〉〈0|χ〉.

Taking

|χ〉 = T
(
φ̂(x1) . . . φ̂(xn)

)
UI (0,−T ′)|0I 〉

〈0|0I 〉 ,

we obtain the following formula

G(n)(x1, x2, . . . , xn) = lim
T ′,T "→+∞

〈0I |UI (T ", 0)T
(
φ̂(x1) . . . φ̂(xn)

)
UI (0,−T ′)|0I 〉

〈0I |0〉〈0|0I 〉 .

(7.23)

We have seen in the derivation of formula (7.20) that

T
(
φ̂(x1) . . . φ̂(xn)

)

= U−1
I (x0i1 , 0)φ̂I (xi1)UI (x

0
i1 , x

0
i2)φ̂I (xi2) . . . .φ̂I (xin )UI (x

0
in , 0).

Therefore, the numerator on the r.h.s. of formula (7.23) contains the time ordered
product of operators which can be written as

T
(
φ̂I (x1) . . . φ̂I (xn)UI (∞,−∞)

)
.

The denominator in formula (7.23) is equal to 〈0I |UI (∞,−∞)|0I 〉, as follows from
formulas (7.10) and (7.21). Thus, we have derived the following remarkable formula,
first obtained by Gell-Mann and Low in 1954,

G(n)(x1, x2, . . . , xn) = 〈0I |T
(
φ̂I (x1) . . . φ̂I (xn)UI (∞,−∞)

)|0I 〉
〈0I |UI (∞,−∞)|0I 〉 , (7.24)

where

UI (∞,−∞) = T exp

(
−i

∫ +∞

−∞
dt V̂Ig(t)

)

= T exp

(
−i

λ0

4!
∫

d4x g(�x) : φ̂4
I (t, �x) :

)
.

Formula (7.24) is the starting point for the construction of the perturbative expansion
for the Green’s functions.

The employed regularization involves only the space coordinates �x . It turns out
that the integral over the infinite time interval also needs regularization. Therefore,
specifically for the purpose of the perturbative approachwewill use amore symmetric
regularization. The point is, that in the context of the perturbative calculations of the
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Green’s functions, it suffices to regularize the expression for UI (∞,−∞) because
we shall need only the Gell-Mann–Low formula. The new, symmetric regularization
utilizes a real-valued test function g(x1, x2, x3, x4) which is symmetric with respect
to permutations of the four-dimensional variables x j , j = 1, 2, 3, 4.Each x j denotes
a point in Minkowski space-time. As always with test functions, it is also assumed
that this function is smooth and that it vanishes quickly (e.g., exponentially) when
one or more coordinates xμ

i → ∞. The symmetrically regularizedUI (∞,−∞) has
the form

UI (∞,−∞) = T exp
(
−i V̂Ig[φ̂I ]

)
, (7.25)

where now

V̂Ig[φ̂I ] = λ0

4!
∫ 4∏

i=1

d4xi g(x1, x2, x3, x4)φ̂I (x1)φ̂I (x2)φ̂I (x3)φ̂I (x4). (7.26)

With this regularization we do not need to introduce the normal ordering. Notice
that the operator V̂Ig is Hermitian, because the function g is real and symmetric with
respect to permutations of the four-vectors xi .

7.2 The Generating Functional for Green’s Functions

The generating functional Z [ j] for the Green’s functions is defined as follows:

Z [ j] = 〈0|T exp

(
i
∫

d4x j (x)φ̂(x)

)
|0〉, (7.27)

where j (x) is a real valued, smooth function, which vanishes quickly at infinity
(again a test function), sometimes called the external source. Equivalently, we may
also write

Z [ j] = 1 +
∞∑
n=1

i n

n!
∫

d4x1 . . . d4xn j (x1) . . . j (xn) G
(n)(x1, x2, . . . , xn). (7.28)

This last formula is obtained from the definition (7.27) by writing the exponential
function as a series and using the definition (7.19) ofG(n). Let us use the Gell-Mann–
Low formula (7.24) in each term of the sum in (7.28) and reintroduce the exponential
function. In this way we obtain yet another formula for Z [ j]:

Z [ j] =
〈0I |T

(
exp

(
i
∫
d4x j (x)φ̂I (x)

)
UI (∞,−∞)

)
|0I 〉

〈0I |UI (∞,−∞)|0I 〉 . (7.29)
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It is clear from formula (7.28) that

G(n)(x1, . . . , xn) = (−i)n
δn Z [ j]

δ j (x1) . . . δ j (xn)

∣∣∣∣
j=0

. (7.30)

In the φ4
4 model the regularized evolution operatorUI is given by formulas (7.25),

(7.26). The numerator in formula (7.29), from now on denoted by ZI [ j], can be
written in the form

ZI [ j] = exp

(
−iVIg

[
−i

δ

δ j

])
Z0[ j], (7.31)

where

Z0[ j] = 〈0I |T exp(i
∫
d4x j (x)φ̂I (x))|0I 〉, (7.32)

and

VIg

[
−i

δ

δ j

]
= λ0

4!
∫ 4∏

i=1

d4xi g(x1, x2, x3, x4)
δ4

δ j (x1) . . . δ j (x4)
. (7.33)

Here we have used the fact that each derivative δ/δ j (x) gives i φ̂I (x) inside the
T-ordered product. The denominator in (7.29) is equal to ZI [ j = 0].

The functional Z0[ j] can be explicitly calculated. The most helpful formula in
this task is Wick’s formula, which has the form

T exp

(
i
∫
d4x j (x)φ̂I (x)

)
= (7.34)

exp

(
−1

2

∫
d4xd4x ′ j (x)�F (x − x ′) j (x ′)

)
: exp

(
i
∫

d4x j (x)φ̂I (x)

)
:,

where

�F (x − x ′) = 1

(2π)4

∫
d4 p e−i p(x−x ′) i

p2 − m2
0 + i0+

. (7.35)

Because the expectation value of the normal ordered exponential function on the
r.h.s. of formula (7.34) in the state |0I 〉 is equal to 1, we immediately obtain

Z0[ j] = exp

(
−1

2

∫
d4xd4x ′ j (x)�F (x − x ′) j (x ′)

)
. (7.36)
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The (generalized) function �F is called the Feynman, or the causal, free propagator.
By taking the derivatives δ2/δ j (x)δ j (x ′) of both sides of the Wick formula and
putting j = 0 we find that

�F (x − x ′) = 〈0I |T
(
φ̂I (x)φ̂I (x

′)
)

|0I 〉. (7.37)

It follows from this formula that�F is the 2-point Green’s function of the free scalar
field.

In order to prove Wick’s formula (7.34), we use the technique of the auxiliary
differential equation. Let us introduce the operator

Ŵ (t) = T exp

(
i
∫ t

−∞
dx

′0
∫
d3x ′ j (x ′)φ̂I (x

′)
)

,

where x ′ = (x
′0, �x ′

). The l.h.s. of theWick formula is equal to Ŵ (+∞). The operator
Ŵ (t) obeys the following differential equation

− i
dŴ (t)

dt
=

∫
d3x j (t, �x)φ̂I (t, �x)Ŵ (t), (7.38)

and the condition

lim
t→−∞ Ŵ (t) = I.

Equation (7.38) can be written in the form

−i
dŴ (t)

dt
=

(
Â(t) + Â†(t)

)
Ŵ (t),

where

Â†(t) =
∫

d3x j (t, �x)φ̂(−)
I (t, �x), Â(t) =

∫
d3x j (t, �x)φ̂(+)

I (t, �x).

Here

φ̂(+)
I (t, �x) =

∫
d3k√

2(2π)3ω(�k)
e−ikx âI (�k)

is the positive frequency part of the field φ̂I . The negative frequency part is given by
φ̂(−)
I (t, �x) = (φ̂(+)

I (t, �x))†. The operators Â†(t) with different values of t commute
with each other. This fact is crucial for checking that another operator X̂(t), defined
by the formula
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X̂(t) = α̂(t)Ŵ (t),

where

α̂(t) = exp

(
−i

∫ t

−∞
dt ′ Â†(t ′)

)
,

obeys the following equation

− i
d X̂(t)

dt
= α̂(t) Â(t)α̂−1(t) X̂(t). (7.39)

The operators Â†(t ′) and Â(t) have a special property: their commutator is propor-
tional to the identity operator,

[ Â†(t ′), Â(t ′′)] = i
∫

d3x ′d3x ′′ j (t ′, �x ′) j (t ′′, �x ′′) �(−)(t ′ − t ′′, �x ′ − �x ′′)I,

(7.40)
where

�(−)(x ′ − x ′′) = i

2(2π)3

∫
d3 p

ω( �p)e
i(x ′−x ′′)p.

The r.h.s. of (7.39) can be simplified with the help of the following formula, which
is valid for operators B̂ and Ĉ

eĈ B̂e−Ĉ = B̂ + [Ĉ, B̂] + 1

2! [Ĉ, [Ĉ, B̂]] + 1

3! [Ĉ, [Ĉ, [Ĉ, B̂]]] + . . . . (7.41)

In order to prove (7.41), let us consider B̂(s) = exp(sĈ)B̂ exp(−sĈ), where s is a
real parameter. Of course, B̂(0) = B̂, and B̂(1) coincides with the l.h.s. of formula
(7.41). It is obvious that

d B̂(s)

ds
= [Ĉ, B̂(s)], d2 B̂(s)

ds2
= [Ĉ, [Ĉ, B̂(s)]], etc. (7.42)

On the other hand, the Taylor expansion of B̂(s) around s = 0 has the form

B̂(s) = B̂(0) + s B̂ ′(0) + s2

2! B̂
′′(0) + . . . .

Formula (7.41) follows from this expansion when we replace the derivatives B̂(k)(0)
by the commutators in accordance with formulas (7.42), and put s = 1.

In our case B̂ = Â(t) and Ĉ = −i
∫ t
−∞ dt ′ Â†(t ′).Because of the special property

mentioned above, only the first two terms on the r.h.s. of formula (7.41) do not vanish.
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Therefore,

− i
d X̂(t)

dt
=

(
Â(t) − i

∫ t

−∞
dt ′ [ Â†(t ′), Â(t)]

)
X̂(t), (7.43)

where the commutator on the r.h.s. is given by formula (7.40). Equation (7.43) has
the following solution

X̂(t) = exp

(
i
∫ t

−∞
dt ′ Â(t ′)

)
exp

(∫ t

−∞
dt ′′

∫ t ′′

−∞
dt ′ [ Â†(t ′), Â(t ′′)]

)
,

which obeys the condition limt→−∞ X̂(t) = I . Now we can compute Ŵ (t) from the
formula Ŵ (t) = α̂−1(t)X̂(t). In particular, in the limit t → +∞

Ŵ (∞) = exp

(
i
∫

d4x j (x)φ̂(−)
I (x)

)
exp

(
i
∫

d4x ′ j (x ′)φ̂(+)
I (x ′)

)

exp

[
i
∫

d4x ′d4x ′′ �(t ′′ − t ′) j (x ′) j (x ′′)�(−)(x ′ − x ′′)
]

, (7.44)

where x ′ = (t ′, �x ′), x ′′ = (t ′′, �x ′′).
The product of the first two exponentials on the r.h.s. of this formula, is just the

normal ordered exponent that is present on the r.h.s. of the Wick formula:

exp

(
i
∫

d4x j (x)φ̂(−)
I (x)

)
exp

(
i
∫

d4x ′ j (x ′)φ̂(+)
I (x ′)

)

= : exp
(
i
∫

d4x j (x)φ̂I (x)

)
: . (7.45)

Therefore, it remains to show that

− 1

2

∫
d4x ′

∫
d4x ′′ j (x ′) j (x ′′)�F (x ′ − x ′′) =

i
∫

d4x ′d4x ′′ �(t ′′ − t ′) j (x ′) j (x ′′)�(−)(x ′ − x ′′). (7.46)

Let us start from formula (7.35) for �F in which d4 p = d3 p dp0, and x − x ′ is
replaced by x ′ − x ′′. The integral over p0 can be calculated with the help of contour
integration in the plane of complex p0. First, we replace i0+ by iε, where ε > 0—the
original expression is recovered in the limit ε → 0+ which we shall take at the very

end of the calculation. The integrand has simple poles at p0± = ±
√
m2

0 + �p 2 − iε.

The real line (Im p0 = 0) is completed to a closed contour by including the upper
half-circle at infinity if (x ′ − x ′′)0 < 0, or the lower half-circle if (x ′ − x ′′)0 > 0. In
each case only one pole contributes to the integral. We obtain
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�F (x ′ − x ′′)

=
∫

d3 p

2(2π)3ω( �p)
[
�((x ′ − x ′′)0)e−i p(x ′−x ′′) + �((x ′′ − x ′)0)eip(x

′−x ′′)
]
,

(7.47)

where now in the exponentials p0 = ω( �p). In the second term we have changed the
integration variable �p → − �p. The r.h.s. of formula (7.47) can be rewritten with the
�(−) function introduced in Sect. 1.3, namely

�F (x ′ − x ′′) = −i
[
�(t ′ − t ′′)�(−)(x ′′ − x ′) + �(t ′′ − t ′)�(−)(x ′ − x ′′)

]
(7.48)

(t ′ = x
′0, t ′′ = x

′′0). Formula (7.46) is obtained bymultiplying both sides of formula
(7.48) by j (x ′) j (x ′′), integrating over d4x ′, d4x ′′, and changing the integration vari-
ables, x ′ → x ′′, x ′′ → x ′, in the first term on the r.h.s. This completes the derivation
of Wick formula (7.34).

7.3 Feynman Diagrams in Momentum Space

We shall consider the Fourier transform of the n-point Green’s function,

G̃(n)(k1, k2, . . . , kn) =
(2π)−2n

∫
d4x1 . . . d4xn e

i(k1x1+...+kn xn) G(n)(x1, x2, . . . , xn). (7.49)

Comparison with formula (7.30) for G(n) suggests that it would be useful to compute
the Fourier transform of the functional derivative δ/δ j (x). This can be done as
follows. The Fourier transform of the external source j (x) is defined by the formula

j̃(q) = 1

(2π)2

∫
d4y e−iqy j (y)

(note the minus sign in the exponent). Therefore,

δ j̃(q)

δ j (x)
= e−iqx

(2π)2
.

The inverse Fourier transform of the external source has the form

j (x) = 1

(2π)2

∫
d4k eikx j̃(k).

http://dx.doi.org/10.1007/978-3-319-55619-2_1
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A functional F[ j] with j (x) expressed by j̃(k) becomes a functional F̃[ j̃]:

F[ j] = F̃[ j̃].

Therefore,

1

(2π)2

∫
d4x eikx

δF[ j]
δ j (x)

= 1

(2π)2

∫
d4x eikx

∫
d4q

δ j̃(q)

δ j (x)

δ F̃[ j̃]
δ j̃(q)

= 1

(2π)4

∫
d4x eikx

∫
d4q e−iqx δ F̃[ j̃]

δ j̃(q)
=

∫
d4q δ(q − k)

δ F̃[ j̃]
δ j̃(q)

= δ F̃[ j̃]
δ j̃(k)

.

The inverse Fourier transform gives

δF[ j]
δ j (x)

= 1

(2π)2

∫
d4k e−ikx δ F̃[ j̃]

δ j̃(k)
.

Perturbative computations of the Green’s functions could be based on formulas
(7.29), (7.30) in which

Z [ j] = ZI [ j]
ZI [0] , (7.50)

where ZI [ j] is given by formula (7.31) and ZI [0] = ZI [ j = 0]. However, it turns
out that it is more convenient to use another, equivalent, formula. First, we pass to
the Fourier transforms. Then,

G̃(n)(k1, k2, . . . , kn) = (−i)n
1

Z̃ I [0]
δn Z̃ I [ j̃]

δ j̃(k1) . . . δ j̃(kn)

∣∣∣∣∣
j̃=0

. (7.51)

The functional Z̃ I [ j̃] is given by the formula ZI [ j] = Z̃ I [ j̃]. Formula (7.31), written
in terms of the Fourier transforms has the form

Z̃ I [ j̃] = exp

(
−i ṼIg

[
−i

δ

δ j̃

])
Z̃0[ j̃], (7.52)

where

ṼIg

[
−i

δ

δ j̃

]
= VIg

[
−i

δ

δ j

]

= λ0

4!
∫
d4q1 . . . d4q4 g̃(q1, q2, q3, q4)

δ4

δ j̃(q1) . . . δ j̃(q4)
, (7.53)
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and

Z̃0[ j̃] = Z0[ j] = exp

[
− i

2

∫
d4k1d

4k2 δ(k1 + k2)
j̃(k1) j̃(k2)

k21 − m2
0 + i0+

]
. (7.54)

Formula (7.53) contains the Fourier transform of the regularizing function g,

g̃(q1, q2, q3, q4) = 1

(2π)8

∫
d4x1 . . . d4x4 e

−iq1x1...−iq4x4g(x1, x2, x3, x4).

Note that g̃(q1, . . . , q4) is symmetric with respect to permutations of q1, . . . , q4. The
unregularized interaction

V̂I = λ0

4!
∫

d4x φ̂4
I (x)

is obtained when

g(x1, x2, x3, x4) =
∫

d4x δ(x1 − x)δ(x2 − x)δ(x3 − x)δ(x4 − x),

or equivalently

g̃(q1, q2, q3, q4) = 1

(2π)4
δ(q1 + q2 + q3 + q4). (7.55)

Of course, such a g is not allowed here because the integral of a product of δ’s is
not a test function. The return to the unregularized interaction will be possible when
we modify our perturbative model in a special way. The procedure for this is called
renormalization. It is described in the next chapter.

In the next step toward the perturbative expansion, we replace the variational
derivatives −iδ/δ j̃ by β̃, and j̃ by −iδ/δβ̃, where β̃(q) is a new test function [10].
This is done with the help of the following trick

δn Z̃ I [ j̃]
δ j̃(k1) . . . δ j̃(kn)

∣∣∣∣∣
j̃=0

= δn Z̃ I [ j̃]
δ j̃(k1) . . . δ j̃(kn)

∣∣∣∣∣
j̃=0

ei
∫
d4qβ̃(q) j̃(q)

∣∣∣
β̃=0

=
(
Z̃0[−i

δ

δβ̃
] δn

δ j̃(k1) . . . δ j̃(kn)
exp

(
−i ṼIg[−i

δ

δ j̃
]
)
ei

∫
d4qβ̃(q) j̃(q)

)∣∣∣∣
j̃=0=β̃

= i n
(
Z̃0[−i

δ

δβ̃
]
(
β̃(k1) . . . β̃(kn) exp(−i ṼIg[β̃])

))∣∣∣∣
β̃=0

,

where

ṼIg[β̃] = λ0

4!
∫

d4q1 . . . d4q4 g̃(q1, q2, q3, q4)β̃(q1)β̃(q2)β̃(q3)β̃(q4), (7.56)
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and

Z̃0

[
−i

δ

δβ̃

]
= exp

(
1

2

∫
d4 p1d

4 p2 δ(p1 + p2)
δ

δβ̃(p1)
�F (p1)

δ

δβ̃(p2)

)

= exp

(
1

2

∫
d4 p

δ

δβ̃(p)
�F (p)

δ

δβ̃(−p)

)
, (7.57)

with

�F (p) = i

p2 − m2
0 + i0+

. (7.58)

�F (p) is called the free or Feynman propagator of the real scalar field in four-
momentum space. Thus, finally

G̃(n)(k1, k2, . . . , kn) = Z̃ (n)
I

Z̃ (0)
I

, (7.59)

where

Z̃ (n)
I =

(
Z̃0

[
−i

δ

δβ̃

] (
β̃(k1) . . . β̃(kn) exp(−i ṼIg[β̃])

))∣∣∣∣
β̃=0

. (7.60)

In the case n = 0 the factors β̃(ki ) are absent.
Note that formulas (7.59), (7.60) imply that

G̃(n) = 0 (7.61)

for any odd n.
The N -th order perturbative approximation for G̃(n) with even n is obtained by

truncating the series

exp(−i ṼIg[β̃]) =
∞∑
l=0

(−i)l

l! Ṽ l
Ig[β̃] (7.62)

to the first N + 1 terms. It is clear that the perturbative computation of G̃(n) involves
the following three steps. First, evaluation of the indicated functional derivatives.
Next, computation of the integrals over the four-momenta. Finally, removal of the
regularization. The latter step will be discussed in the next chapter. Now we shall
show how one can facilitate the differentiation using a graphical notation, the famous
Feynman diagrams.

We begin by defining a graphical representation of the terms that are present
in formula (7.60) for Z̃ (n)

I . The factors β̃(k1), . . . , β̃(kn) are represented by small
crosses
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×
k1

×
k2

. . . ×
kn (7.63)

They are called the external vertices, and ki the external four-momenta. The func-
tional ṼIg[β̃] is called the internal vertex, and it is depicted as

�� ��
����
�

(7.64)

The small crosses at the ends of the lines denote the factors β̃(q).The lines emanating
from the vertex dot are sometimes called ‘legs’.

The exponent in Z̃0[−i δ

δβ̃
], formula (7.57), is depicted as a dumb-bell

� � = 1

2

∫
d4 p

δ

δβ̃(p)
�F (p)

δ

δβ̃(−p)
. (7.65)

The circles denote the functional derivatives δ/δβ̃. Thus, formula (7.57) can be
presented as

Z̃0

[
−i

δ

δβ̃

]
=

∞∑
k=0

1

k! (
� �)k . (7.66)

Non vanishing contributions to Z̃ (n)
I appear only if the number of derivatives

exactly matches the number of factors β̃, which is equal to n + 4l in the l-th order.
The l-th order means that we consider contributions which come from the (l + 1)-
th term in the series (7.62) (the term with l = 0 is the first term). Therefore, k =
2l + n/2 dumb-bells are needed. Now let us consider the differentiation in more
detail. According to the Leibniz rule each derivative δ/δβ̃ acts on each factor β̃, and

δβ̃(q)

δβ̃(p)
= δ(q − p).

Pictorially, the differentiation removes the circles from the dumb-bells and the crosses
from the external or internal vertices. The lines from the dumb-bells either connect
two vertices or form a loop at one internal vertex, see, e.g., Figs. 7.1 and 7.2. The
remaining expressions

∫
d4 p �F (p) from the dumb-bells (7.65) we associate with

the lines.
The factor 1/2 can actually be omitted for the following reason. Let us consider

the two derivatives from one dumb-bell. Acting on a certain pair of β̃’s, say the
product β̃(q)β̃(k), they give
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1

2

∫
d4 p δ(q − p)δ(k + p)�F (p) + 1

2

∫
d4 p δ(q + p)δ(k − p)�F (p)

=
∫

d4 p δ(q − p)δ(k + p)�F (p),

because in the second term we may change the integration variable p → −p, and
�F (p) = �F (−p). Graphically,

� �

(×q × k) = q � � k,

where

q � � k =
∫

d4 p δ(q + p)δ(k − p)�F (p). (7.67)

The line is called ‘external’ if it is attached to at least one external vertex, or
‘internal’ if both its ends are attached to one or two internal vertices. If β̃(q) (or β̃(k))
comes from one of the internal vertices, the corresponding Dirac delta from (7.67)
‘eats’ the integral over q (or k) present in ṼIg, see formula (7.56). In consequence,
all integrals over q1, . . . , q4 from ṼIg disappear, and therefore each internal vertex
only contributes a factor

−iλ0

4! g̃(p1, p2, p3, p4),

where pi denote the four-momenta from the lines attached to the internal vertex with
their signs chosen in accordance with the following rule: the four-momentum p from
a line enters the two functions g̃ in the two vertices adjacent to that line with opposite
signs: +p in one vertex and −p in the other. Because of invariance of the dumb-bell
with respect to the change p → −p, it does not matter in which of the two vertices
we take +p.

If β̃ comes from one of the external vertices, the Dirac delta produced by its
differentiation is utilized in order to remove the integral d4 p present in (7.67). Thus,
if the line (7.67) is attached to one or two external vertices there is no integral coming
from it. In the case of two external vertices, the contribution has the form

k1
� � k2 = δ(k1 + k2)�F (k1). (7.68)

Also, note that we have in total (2l + n/2)! contributions obtained by permuting
the dumb-bells—the Leibniz rule yields all these terms. Such contributions are equal
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12 k k k k1 2 1 2

Fig. 7.1 The first order contributions to Z̃ (2)
I . The numerical coefficients in front of graphs (12 and

3 in this example) are called the combinatorial factors

to each other, therefore it is sufficient to take one of them and multiply it by the
factor (2l + n/2)!. This factor exactly cancels the factor 1/(2l + n/2)!which appears
because we pick only the k = (2l + n/2)-th power of the dumb-bell. All other terms
in (7.66) give vanishing contributions, either because they have too many or too
few derivatives. Therefore, we can forget about the factor 1/(2l + n/2)! and about
permuting the dumb-bells.

The factor 1/ l! present in formula (7.62) has to be included as a prefactor in front
of each perturbative contribution in the l-th order.

Let us have a look at the perturbative contributions to Z̃ (2)
I . All of them have

two external vertices (7.63). In the zeroth order the only non vanishing contribution
comes from the k = 1 term in (7.66), and it is given by formula (7.68). In the first
order (l = 1) we have one internal vertex (7.64) and three dumb-bells. The resulting
contribution has the form presented in Fig. 7.1 (Exercise 7.3).

The closed lines present in Fig. 7.1 appear when a single dumb-bell ‘eats’ two
crosses from one internal vertex. The second term in Fig. 7.1 is the product of terms
corresponding to the two subdiagrams: the one given by formula (7.67), and the other
given by the two circles. This latter one has the form

�

�	


�

�	


�

= −iλ0

4!
∫

d4 p d4q g̃(p,−p, q,−q)�F (p)�F (q). (7.69)

Note that the expression on the r.h.s. would become meaningless if g̃ was replaced
with the Dirac delta (7.35). Apart from the factor δ(0), the square of the divergent
integral

∫
d4 p�F (p), would be present. This integral is an example of the so called

ultraviolet divergences (UV), to be discussed in the next chapter.
In the second order, we have two internal vertices (l = 2), and five dumb-bells—

we have to compute the tenth order functional derivative of the product of ten β̃’s.
The corresponding Feynman diagrams have the form presented in Fig. 7.2.

In order to obtain the second order contribution to Z̃ (2)
I , this result has to be

multiplied by 1/2!.
It is clear that the number of diagrams rapidly increases with the order l. A certain

reduction of this number occurs when we use the normal ordered interaction : ṼIg :
instead of ṼIg . Let us compute the derivatives (−i)4δ4/δ j (x1) . . . δ j (x4) of both
sides of Wick’s formula (7.34) and put j = 0 afterwards. We obtain
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k k1 2

k k1 2

k k1 2

k k1 2

k k1 2

k k1 2 k k1 2

Fig. 7.2 The graphs giving the second order contributions to Z̃ (2)
I . The factor 1/2! is not included

T
(
φ̂I (x1) . . . φ̂I (x4)

)
=: φ̂I (x1) . . . φ̂I (x4) : +�F (x1 − x2) : φ̂I (x3)φ̂I (x4) :

+ �F (x1 − x3) : φ̂I (x2)φ̂I (x4) : + . . . + �F (x3 − x4) : φ̂I (x1)φ̂I (x2) :
+ [�F (x1 − x2)�F (x3 − x4) + �F (x1 − x3)�F (x2 − x4)

+ �F (x1 − x4)�F (x2 − x3)] I. (7.70)

Analogously, for i = j

T
(
φ̂I (xi )φ̂I (x j )

)
=: φ̂I (xi )φ̂I (x j ) : +�F (xi − x j )I. (7.71)

It follows from these formulas that

: φ̂I (x1) . . . φ̂I (x4) := T
(
φ̂I (x1) . . . φ̂I (x4)

)
− �F (x1 − x2)T

(
φ̂I (x3)φ̂I (x4)

)

− �F (x1 − x3)T
(
φ̂I (x2)φ̂I (x4)

)
− . . . − �F (x3 − x4)T

(
φ̂I (x1)φ̂I (x2)

)

+ [�F (x1 − x2)�F (x3 − x4) + �F (x1 − x3)�F (x2 − x4)

+ �F (x1 − x4)�F (x2 − x3)] I. (7.72)

Therefore, the modification

T
(
φ̂I (x1) . . . φ̂I (x4)

)
→: φ̂I (x1) . . . φ̂I (x4) :
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is represented on the level of the generating functional Z [ j] by

δ4

δ j (x1) . . . δ j (x4)
→ δ4

δ j (x1) . . . δ j (x4)
+ �F (x1 − x2)

δ2

δ j (x3)δ j (x4)

+ �F (x1 − x3)
δ2

δ j (x2)δ j (x4)
+ . . . + �F (x3 − x4)

δ2

δ j (x1)δ j (x2)

+ �F (x1 − x2)�F (x3 − x4) + �F (x1 − x3)�F (x2 − x4)

+ �F (x1 − x4)�F (x2 − x3). (7.73)

After introducing the β̃’s we finally obtain

: ṼIg[β̃] := λ0

4!
[∫

d4q1 . . . d4q4 g̃(q1, . . . , q4)β̃(q1) . . . β̃(q4)

− 6
∫

d4 p
∫

d4q1d
4q2 �F (p)g̃(p,−p, q1, q2)β̃(q1)β̃(q2)

+3
∫

d4 pd4q �F (p)�F (q)g̃(p,−p, q,−q)

]
.

(7.74)

The third term on the r.h.s. of this formula does not depend on β̃. Therefore, it cancels
out in the quotient Z̃ (n)

I /Z̃ (0)
0 , and we may omit it. The change to the normal ordered

interaction ṼIg →: ṼIg : is graphically presented in Fig. 7.3.
Thus, in the case of the normal ordered interaction we have two internal vertices,

namely

�
�

�
�

�
�

�
�

� and × �

��

� ×
(7.75)

which appear in the combination shown in Fig. 7.3. Due to the presence of the 2-
leg internal vertex, we now have new Feynman diagrams, in addition to the former
ones with the 4-leg internal vertex. It turns out that the new diagrams exactly cancel
all diagrams which have one or more internal lines starting and ending at the same
internal vertex. To summarize, in the case of the normal ordered interaction, again
only the vertices (7.63), (7.64) are used to construct the diagrams, but there is the

+

+

+

+

+

+

+

+

Fig. 7.3 The change to the normal ordered interaction
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additional rule that each internal line connects two different 4-leg vertices. It is clear
that the net number of Feynman diagrams which have to be taken into account is
significantly smaller in the case of the normal ordered interaction. From now on we
use the normal ordered interaction unless explicitly stated otherwise.

Another simplification is due to the denominator Z̃ (0)
I in formula (7.59): it turns

out that it cancels all the so called ‘vacuum bubbles’ in the perturbative expansion
of the numerator Z̃ (n)

I . By vacuum bubbles we mean (sub)diagrams which do not
contain any external vertices. Examples can be seen in the first two lines of Fig. 7.2.
The first graph in the second line of Fig. 7.2 contains a vacuum bubble which is
present also when we take the normal ordering of the interaction. Let us consider a
graph � with n external and l internal vertices which does not contain any vacuum
bubbles among its subdiagrams. Such a graph is a contribution of the l-th order to
Z̃ (n)
I , that is, a contribution to

(
(−i)l

l!(2l + n
2 )!

(
� �

)2l+ n
2

[
β̃(k1) . . . β̃(kn)

(
: ṼIg[β̃] :

)l
])∣∣∣∣

β̃=0

.

In the orders l + m, where m > 0, the graph � will appear as a subgraph of the
larger graphs. Let us consider only such graphs in which � is multiplied by vacuum
bubbles. These larger graphs are contributions to

(
(−i)l+m

(
� �

)2l+2m+ n
2

(l + m)!(2l + 2m + n
2 )!

[
β̃(k1) . . . β̃(kn)

(
: ṼIg[β̃] :

)l+m
])∣∣∣∣∣

β̃=0

. (7.76)

In order to form the subgraph�,wehave to pick 2l + n/2dumb-bells from the full set,
which contains 2l + 2m + n/2 of them. This gives (2l + 2m + n/2)!/(2m)!(2l +
n/2)! possibilities. Similarly, we have to choose l internal vertices for the subgraph
� out of l + m vertices—there are (l + m)!/ l!m! possibilities. Therefore, that part
of the expression (7.76) which contains � as a subgraph is equal to

�
1

(2m)!
((

� �
)2m (−i)m

m! (: ṼIg :)m
)∣∣∣∣

β̃=0

. (7.77)

Next, notice that

(
1

(2m)!
(

� �
)2m (−i)m

m! (: ṼIg :)m
)∣∣∣∣

β̃=0

=
(
Z̃0[−i

δ

δβ̃
] (−i)m

m! (: ṼIg :)m
)∣∣∣∣

β̃=0
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because the powers of the dumb-bell other than 2m give vanishing contributions.
Thus, the sum of all contributions of order l + m to Z̃ (n)

I such that they contain the
subgraph � multiplied by vacuum bubbles is equal to

�

(
Z̃0[−i

δ

δβ̃
] (−i)m

m! (: ṼIg :)m
)∣∣∣∣

β̃=0

. (7.78)

Finally, we sum such contributions from all orders l + m, where l is fixed and m =
1, 2, . . .. We also add the initial graph � without any accompanying vacuum bubbles
by including the m = 0 term in the sum. The result is equal to

� Z̃ (0)
I . (7.79)

The factor Z̃ (0)
I cancelswith the denominator in formula (7.59). Thus, we have proven

that when computing the perturbative contributions to G̃(n) from formula (7.59), we
may abandon the denominator Z̃ (0)

I , as well as the vacuum bubbles in the expansion
of the numerator Z̃ (n)

I .

Perturbative contributions of the l-th order to the four-point Green’s function
G̃(4)(k1, k2, k3, k4) involve four external vertices (7.63), l internal vertices (7.64),
and 2l + 2 dumb-bells. In the zeroth order we have the Feynman diagrams presented
in Fig. 7.4. Analytically, this contribution has the form (Exercise 7.4)

δ(k1 + k2)δ(k3 + k4)�F (k1)�F (k3) + δ(k1 + k3)δ(k2 + k4)�F (k1)�F (k2)

+ δ(k1 + k4)δ(k2 + k3)�F (k1)�F (k2). (7.80)

In thefirst order there is just onediagram, seeFig. 7.5. The corresponding contribution
to G̃(4) is equal to

− iλ0g̃(k1, k2, k3, k4)
4∏
j=1

�F (k j ). (7.81)

The diagrammatic representation of the second order contribution to G̃(4) is shown
in Fig. 7.6.

All of the second order contributions presented in Figs. 7.2, 7.6 would contain
divergent integrals if g̃ were replaced with the Dirac delta (7.55).

Fig. 7.4 The zeroth order
contributions to G̃(4)

k k k k k k3 4 2 4 2 3

k k k k k k1 2 1 3 1 4
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k k

k k

2 3

1 4

4!

Fig. 7.5 Thefirst order contributions to G̃(4). The second graph is eliminated by the normal ordering
prescription

k k k k k k2 3 3 2 4 3

k k k k k k1 4 1 4 1 2

k k k k k k1 2 1 3 1 4

k k k k k k2 3 2 4 3 4

k k k k k k3 4 2 4 3 2

k k k k k k1 4 1 3 1 2

(4!)
2 ( )+ +

+ + +192 (

+ + + )

Fig. 7.6 The graphs giving the second order contributions to G̃(4). The factor 1/2! is not included

Exercises

7.1 Check that the operator V̂Sg = λ0
4!

∫
d3x g(�x) : φ̂4

I (t = 0, �x) : is Hermitian.
Here g(�x) is a real-valued test function.
Hint: Write φ̂I (x) in the form φ̂I (x) = φ̂(+)

I (x) + φ̂(−)
I (x), where φ̂(+)

I (x) contains
the âI part of φ̂.

7.2 Find a general formula for the function f (E) introduced in Sect. 7.1 in the case
of the free, real scalar field discussed in Chap. 6. Here

|ψ〉 = ψ0|0〉 + ∑∞
n=1

∫
d3k1 . . . d3kn ψn(�k1, . . . , �kn) |�k1, . . . , �kn〉,

|χ〉 = χ0|0〉 + ∑∞
n=1

∫
d3k1 . . . d3kn χn(�k1, . . . , �kn) |�k1, . . . , �kn〉,

As an example, compute f (E) in the case

ψn = χn = δn1ψ1(�k1),

where ψ1(�k) = exp(−a�k 2), a > 0 is a constant.

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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Answer:

f (E) =
∞∑
n=1

∫
d3k1 . . . d3kn δ(E −

n∑
i=1

ω(�ki )) ψ∗
n(

�k1, . . . , �kn)χn(�k1, . . . , �kn),

where ω(�k) =
√
m2

0 + �k 2.

In the example, this formula gives

f (E) = 4π �(E − m0) E
√
E2 − m2

0 exp
(−2a(E2 − m2

0)
)
,

where � is the step function.

7.3 Check the combinatorial coefficients shown in front of the diagrams in Figs. 7.1
and 7.2.

7.4 Check that the zeroth and first order contributions to G̃(4) in the considered
model are indeed given by formulas (7.80), (7.81).

7.5 Consider the real scalar field φ̂I with a regularized interaction of the form

V̂ (3)
Ig = λ0

3!
∫

d4x1d
4x2d

4x3 g(x1, x2, x3) : φ̂I (x1)φ̂I (x2)φ̂I (x3) :,

where g(x1, x2, x3) is a real-valued, symmetric test function, andλ0 = 0 is a coupling
constant.
(a) Construct Feynman diagrams in this model.
(b) Find all diagrams contributing to G̃(3) in the third order and their combinatorial
coefficients.

7.6 In quantum spinor electrodynamics (QED for short), defined by the Lagrangian

L = −1

4
FμνF

μν + ψ̄(iγμ∂μ − m0)ψ − e0ψ̄γμAμψ

the generating functional for the Green’s functions has the form

ZQED[η, η̄, J ] =
〈0|T exp

(
i
∫
d4x

(
Jμ(x) Âμ(x) + η̄α(x)ψ̂α(x) + ˆ̄ψα(x)ηα(x)

))
|0〉.

Here Âμ(x) and ψ̂α(x), ˆ̄ψα(x) are the electromagnetic and Dirac field operators in
the Heisenberg picture. The Green’s functions are the vacuum expectation values
of time ordered products of these field operators. Jμ(x) is a classical, commuting
source function, while η̄α(x), ηα(x) are independent, anticommuting (Grassmann)
elements.
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(a) Express the Green’s functions through functional derivatives of Z [η, η̄, J ];
remember, that similarly as Grassmann elements the Grassmann functional deriva-
tives anticommute, for instance

{
δ

δηα(x)
,

δ

δηβ(y)

}
=

{
δ

δηα(x)
,

δ

δη̄β(y)

}
= 0.

(b) Repeating the steps which led to (7.29), derive the Gell-Mann–Low formula

ZQED[η, η̄, J ] =
〈0I |T exp

(
i
∫
d4x

(
Jμ ÂIμ + η̄αψ̂Iα + ˆ̄ψIαηα

))
UI (∞,−∞)|0I 〉

〈0I |UI (∞,−∞)|0I 〉 ,

where

U (∞,−∞)

= T exp

(
−ie0

∫
d4x ˆ̄ψI (x)γ

μ ÂIμ(x)ψ̂I (x)

)
≡ T exp

(
−i V̂ QED

I [ψ, ψ̄, A]
)

.

7.7 Derive the Wick formula for the spinor fields

T exp

(
i
∫
d4x

(
η̄(x)ψ̂(x) + ˆ̄ψ(x)η(x)

))

= exp

(
−

∫
d4x

∫
d4x ′ η̄(x)SF (x − x ′)η(x ′)

)

: exp
(
i
∫
d4x

(
η̄(x)ψ̂(x) + ˆ̄ψ(x)η(x)

))
:

where

SF (x − x ′) = i
∫

d4k

(2π)4
e−ik(x ′−x ′′) /k + m0

k2 − m2
0 + i0+

= 〈0I |T
(
ψ̂I (x)

ˆ̄ψI (x
′)
)

|0I 〉.

7.8 Prove that

T exp

(
i
∫
d4x Jμ(x) ÂIμ(x)

)

= exp

(
−1

2

∫
d4x

∫
d4x ′ Jμ(x)DF (x − x ′)μν J

ν(x ′)
)

: exp(
(
i
∫
d4x Jμ(x) ÂIμ(x)

)
:
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where

DF (x − x ′)μν = −iημν

∫
d4k

(2π)4

e−ik(x ′−x ′′)

k2 + i0+
= 〈0I |T

(
ÂIμ(x) ÂIν(x

′)
)

|0I 〉.

7.9 The numerator appearing in the Gell-Mann–Low formula in QED,

ZQED

I [η, η̄, J ] ≡ 〈0I |T exp

(
i
∫
d4x

(
Jμ ÂIμ + η̄ψ̂I + ˆ̄ψIη

))
UI (∞,−∞)|0I 〉,

can be rewritten as

ZQED

I [η, η̄, J ] = exp

(
−i V̂ QED

[
1

i

δ

δη̄
,−1

i

δ

δη
,
1

i

δ

δJ

])
ZQED

0 [η, η̄, J ],

where

ZQED

0 [η, η̄, J ]
= 〈0I |T exp

(
i
∫
d4x

(
Jμ(x) ÂIμ(x) + η̄(x)ψ̂I (x) + ˆ̄ψI (x)η(x)

))
|0I 〉,

and

V QED

[
1

i

δ

δη̄
,−1

i

δ

δη
,
1

i

δ

δJ

]
= ie0

∫
d4x

δ

δη̄(x)
γμ δ

δη(x)

δ

δJμ(x)
.

Using the results of problems 7.7 and 7.8 derive the formula for the momentum space
Green’s functions in QED, analogous to formula (7.60).

7.10 Find (without calculating the involved integrals over the internal momenta)
the perturbative expression for the QED Green’s function

G̃QED

2 (p) =
∫
d4x ei p(x−y)〈0|T (

ψ(x)ψ̄(y)
) |0〉

up to the terms of the order e40.

7.11 Discuss what simplification occurs (i.e., which Feynman diagrams are absent)
when we replace the interaction V̂ QED

I [ψ, ψ̄, A] with its normal ordered form.



Chapter 8
Renormalization

Abstract General description of ultraviolet divergences in the φ4
4 model. Loop and

one-particle irreducible (1PI) diagrams. The superficial degree of divergence. Renor-
malization of the one-loop contribution to the four-point Green’s function (the sunset
diagram). The BPHZ subtraction scheme. Lorentz invariant renormalization of the
two-point Green’s function. The renormalization constants Z1, Z3, δm2 and the mul-
tiplicative renormalization.

The perturbative contributions to the Green’s functions, discussed in the preceding
chapter, contain the regularizing function g or its Fourier transform g̃. Its presence is
necessary in order to obtain mathematically meaningful formulas. This is generally
true not only for the :φ4

4: model, but also for other models of quantum field theory.
Apart from mathematical correctness, one would also like to have a physical moti-
vation for the presence and the form of such a function. In some cases this can be
provided, and in these cases the regularizing function has a concrete form, and it is
called a formfactor. It has a definite physical interpretation. Usually it encodes the
fact that the considered quantum particles are not point-like when, for example, they
are bound states of more fundamental objects, like nucleons which are bound states
of quarks and gluons.

Much more difficult is the case when such a physical justification is not available.
This happens when the corresponding quantum particles seem to be truly elemen-
tary objects, like, for example, the fundamental particles of the Standard Model—so
far, there is no compelling experimental evidence for the existence of some internal
structure of quarks, leptons, or gauge vector bosons. In this case the regularizing
function should be removed from the theory. The problem is that this cannot be
done in a straightforward manner because then we would get mathematically mean-
ingless expressions. The procedure which allows for the removal of the regularizing
function g is called renormalization. Renormalization of the perturbative expansion is
certainly among the most intricate constructions in theoretical physics. Its main parts
were known by 1955, but important contributions were also made around 1970 in
connection with the Standard Model.

© Springer International Publishing AG 2017
H. Arodź and L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
Graduate Texts in Physics, DOI 10.1007/978-3-319-55619-2_8
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In this chapter, we outline renormalization in the example of the :φ4
4 : model. In

Sect. 8.1 we carry out a reconnaissance into the problem of ultraviolet (UV) diver-
gences, which would appear if g̃ was replaced by the Dirac delta (7.55). In the
subsequent sections these divergences are analyzed in more detail, and finally the
problem is solved by adding to the initial interaction so called counterterms.

8.1 Ultraviolet Divergences

We have seen in the preceding chapter that the perturbative contribution to a Green’s
function, represented by a given graph �, contains integrals over the four-momenta
associated with the internal lines of the graph. The integrand essentially has the form
of a product of the propagators �F and of the g̃ functions.1 Let us suppose for a
while that we substitute for g̃ in the integrand its limiting form (7.55). It is clear that
due to the presence of Dirac deltas, a certain number of the integrals can be trivially
calculated. Let us eliminate in this manner as many integrations as possible. It can
happen that no integrals are left. The corresponding graphs are called tree graphs.
Examples are given in Fig. 8.1.

Graphs where some integrals remain present after using all the Dirac deltas are
called loop graphs. By definition, the number of independent loops L in the graph
� is equal to the number of the remaining four-dimensional integrals over the four-
momenta, and the four-momenta, over which we still have to integrate are called the
loopmomenta. Thus, only the graphs with L �= 0 can have the UV divergences—that
is the integrals over the loop four-momenta which become divergent when we extend
the integration range2 to the infinite one. The presence of the UV divergences is of
course a consequence of the fact that without the regularizing function g̃ the model
is mathematically incorrect.

Fig. 8.1 Examples of tree graphs in the :φ4 : model

1In the rather general discussion below, we neglect numerical factors which are present in the
perturbative contributions, because they are not important in the qualitative analysis of the UV
divergences.
2Let us recall that in calculus, the integrals of the type

∫ +∞
−∞ are defined as the limit of

∫ M2
M1

when
M1 → −∞, M2 → +∞.

http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
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Fig. 8.2 Example of a non
planar graph. The horizontal
line is continuous in spite of
the drawing—it just runs
behind the vertical one. This
graph has 3 independent
loops

It is clear that the calculation of the number of independent loops L can be done
separately for each connected component of the graph �. Here we use the term
‘connected’ in the sense known from topology for subsets of R3. Each connected
component is a diagram in its own right, disconnected from the remaining part of the
graph �. The perturbative contribution corresponding to � is equal to the product of
the contributions from all of its connected subgraphs. Therefore, from now on we
consider only connected graphs.

An explanation is in order as to why we have referred to the topology of figures in
R3, while so far all graphs have been drawn in the plane R2. There exist graphs which
are better presented as figures in the space R3. If drawn in the plane theywould contain
superfluous crossings which are not internal vertices (7.64). The graph is called non
planar if it is not possible to draw it in the plane without superfluous crossings of
lines, under the assumptions that all its lines are continuous and all external lines
extend to the infinity.3 A simple example is given in Fig. 8.2.

Let us consider a connected graph � with l internal vertices. We assume that the
graph is nontrivial, that is that l > 0. It turns out that the Dirac deltas can always be
combined to produce at least one delta which does not contain any four-momentum
associated with an internal line: that is δ(

∑n
i=1 ki ), where ki are the external four-

momenta for the graph. The perturbative contribution of each connected graph � is
proportional to such δ. In order to show this, let us pick an internal vertex A of �—it
will serve as the starting point for the following procedure. In the first step we choose
one internal line, let us denote it as I1, attached to that vertex. The four-momentum
associated with it is denoted as p. The line I1 ends at another internal vertex B. Both
vertices have their δ’s. The four-momentum p appears in both of them, with opposite
signs. Thus, we have a product of the form

δ(

3∑

i=1

qAi + p)δ(
3∑

j=1

qBj − p),

where qAi and qBj are the four-momenta associated with the other three lines ema-
nating from A and B, respectively. One of the δ’s is used to perform the integral∫
d4 p related to the internal line I1, and to eliminate p from the other δ yielding

δ(
∑3

j=1 qAj +∑3
j=1 qBj ).Wemay imagine that the two vertices are dragged to each

other along the line I1 andmerged, thus producing a six-leg ‘vertex’ AB proportional

3If this assumption is abandoned the graphs can be drawn in the plane, see Exercise 8.1.

http://dx.doi.org/10.1007/978-3-319-55619-2_7
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to δ(
∑3

j=1 qAj + ∑3
j=1 qBj ). In the second step, we pick another internal vertex C

connected to AB by at least one internal line, and we repeat the reasoning from step
1, thus obtaining an effective ‘vertex’ ABC with 8 legs. We continue this proce-
dure until all l internal vertices of � are merged into one ‘vertex’ which has 2l + 2
legs. The lines emanating from such an effective ‘vertex’ can form loops of the type
shown in Fig. 7.1—to this kind of ‘vertex’ the normal ordering prescription does not
apply of course—and there are n lines that end at the external vertices. Therefore,
the resulting final δ will be just δ(

∑n
i=1 ki ) because the two ends of any line forming

the loop introduce the zero four-momentum, q − q = 0.
The number of loops in the final effective ‘vertex’ is equal to (2l + 2 − n)/2

because only the n external lines are not looped. This number is equal to the number
of independent loops L in the graph �, hence

L = l + 1 − n

2
.

On the other hand, counting the ends of the n external and I internal lines of the
graph � we obtain the following relation

n + 2I = 4l. (8.1)

Note that it implies that n is even. Elimination of n with the help of the latter formula
gives

L = I − l + 1. (8.2)

This formula has a simple heuristic justification: each internal line brings in one four-
dimensional integral d4 p, and each internal vertex one δ. One can combine these δ’s
to produce one that contains only the external momenta, and the remaining l − 1 δ’s
can be used to eliminate integrals. After doing this, the number of remaining four
dimensional integrations is equal to I − l + 1.

When investigating the UV divergences one may focus on the so called one-
particle irreducible (1PI) graphs. By definition, such a graph is connected and, more-
over, it is not possible to split it into disconnected parts by cutting one internal line.
Furthermore, the Feynman propagators �F are removed from all the external lines.
This latter property is marked by removing the dots from the ends of the external
lines. Examples of such graphs are given in Fig. 8.3, while Fig. 8.4 shows graphs
which are not of the 1PI type.

We may restrict considerations of the UV divergences to the 1PI graphs for the
following reasons. First, the external lines of graphs do not introduce any integrations.
Moreover, the same is true for each internal line which is the only link between two

Fig. 8.3 Examples of 1PI
graphs

http://dx.doi.org/10.1007/978-3-319-55619-2_7


8.1 Ultraviolet Divergences 185

Fig. 8.4 Examples of
one-particle reducible graphs

Fig. 8.5 The boxes denote
subgraphs of the one particle
reducible graph �

k kj j 1+

k kj j–1 +2

k k2 –1n

k k1 n

p

parts of a non-1PI graph � (cutting it would break the graph into disconnected parts).
The four-momentum p associated with this line appears in two δ’s:

δ(

j∑

i=1

ki − p) δ(

n∑

i= j+1

ki + p) = δ(

j∑

i=1

ki − p) δ(

n∑

i=1

ki ),

see Fig. 8.5. The first δ on the r.h.s. of this formula eliminates the integral
∫
d p

associated with the internal line.
Let us have a look at the L four-momentum integrals (in a certain 1PI graph �)

which are left after using all Dirac δ’s (we still imagine that g̃ is replaced by the Dirac
δ according to (7.55)). If all components of the loop four-momenta pi , i = 1, . . . L ,

are restricted to an interval [−M, M] there are no UV divergences.4 Let us introduce
a 4L-component vector w: its first four components are equal to p1, the next four
to p2, and so on. The integration measure

∏L
i=1 d

4 pi can be written as d4Lw. The
restrictions −M ≤ pμ

i ≤ M mean that we integrate over the hypercube of size 2M
with its center located at the origin in the 4L-dimensional space R4L of vectors w.

As far as the limit M → ∞ is concerned, we may replace the hypercube by the
4L-dimensional ball of radius M in that space. In spherical coordinates on the R4L

space
d4Lw = w4L−1 dw d�,

where d� is the solid angle element in that space and w denotes the modulus of w,
0 ≤ w ≤ M . The integral over the solid angle does not generate any UV divergences
by definition—the range of integration over each spherical angle is finite. On the
other hand, for large w the integrand behaves like

4The integrals may still be divergent for specific values of the external momenta, because the
denominators of some propagators can be equal to zero. In order to avoid such divergences, we may
replace i0+ in the denominators by iε, where ε > 0. The limit ε → 0+ is taken after we perform
the integrations over loop momenta. G̃(n)(k1, k2, . . . , kn) is not a smooth function of the external
momenta—rather, it is a generalized function of them. Singularities of these functions usually have
certain physical meaning. We shall not discuss them because their presence does not jeopardize the
existence of the perturbative contributions.

http://dx.doi.org/10.1007/978-3-319-55619-2_7
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Fig. 8.6 The example of 1PI graph � such that ω(�) = −4 < 0, while ω(γ) = 0 for its 1PI
subgraph γ shown inside the box

w4L−1w−2I ,

where the second factor comes from the propagators of the I internal lines of �. Let
us introduce the superficial degree of divergence ω(�). It is defined for a 1PI graph
� with L independent loops and I internal lines by the formula

ω(�) = 4L − 2I. (8.3)

It is clear that the integral overw is divergent in the limitM → ∞whenω(�) ≥ 0. In
particular, in the case ω(�) = 0 we have a logarithmic divergence.5 Using formulas
(8.1), (8.2) we obtain

ω(�) = 4 − n. (8.4)

Thus, in our model the superficial degree of divergence is nonnegative only for 1PI
graphs with 2 or 4 external lines.

It turns out thatω(�) < 0 does notmean that the integral is necessarily convergent.
The point is that in the reasoning presented above, we have assumed that the loop
four-momenta pi become infinite in the synchronized manner implied by the limit
w → ∞. Actually, we expect that the loop integrals are finite, independently of
the way the infinite four-momenta limit is taken. In particular, we may repeat the
reasoning presented above for each 1PI subgraph γ of �. If ω(γ) ≥ 0 for one or
more such subgraphs we again encounter a UV divergence. An example of such a
subgraph is presented in Fig. 8.6. One can prove that the 1PI graph � does not have
any UV divergences if the superficial degrees of divergence of it and of all its 1PI
subgraphs are negative.

To summarize, our preliminary analysis has shown that in the :φ4
4: model it suffices

to remove the UV divergences from 2- and 4-point 1PI graphs with loops. Such
graphs directly appear in the perturbative contributions to G(2) and G(4), and also as
subgraphs of graphs with 6 or more external lines. The limit

g̃(q1, q2, q3, q4) → 1

(2π)4
δ(q1 + q2 + q3 + q4) (8.5)

5In some rather special cases the integral can be finite even if ω ≥ 0, because the integral over the
solid angle � can vanish. We shall not consider such exceptions.
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will exist if we replace all such potentially UV divergent parts by certain UV con-
vergent terms. The model :φ4

4: belongs to the class of so called perturbatively renor-
malizable field theories. A model is perturbatively renormalizable if the number of
external lines n in superficially divergent graphs (1PI graphs with ω(�) ≥ 0) is
bounded from above by a finite number n0—in the case of the :φ4

4: model n0 = 4. In
certain models ω(�) ≥ 0 only for a finite number of graphs. Such models are called
superrenormalizable. Of course, the :φ4

4: model is not superrenormalizable.
In nonrenormalizable models the number of external lines in superficially diver-

gent graphs is not bounded from above. We shall see by the end of Sect. 8.4, that
the renormalized perturbative expansion in such models contains an arbitrarily large
number of constants, whose values are not predicted by the theory—they have to
be determined experimentally. It is believed that such models have little predictive
power, and therefore they are not popular.

One should note here that Einstein’s theory of gravity is nonrenormalizable when
quantized in a straightforward, canonical manner. This is one of several obstacles in
obtaining a quantum theory of the gravitational field. For that matter, it is not at all
obvious that Einstein’s theory of gravity should be quantized—it can happen that it
is merely an effective theory, that is, an approximate description of effects which in
fact are described much better by another, perhaps more general theory which has a
satisfactory quantum version. Many theorists are investigating so called superstring
models with precisely that goal in mind. At the moment such a deeper theory has
not been established, mainly because as yet there are no experimental data to test
various proposals.

The (non)renormalizability of a model has a certain connection with the dimen-
sionality of pertinent coupling constants. This can be clearly seen in the example of
:φ4

d : models, where d is the dimension of space-time. The action functional has the
form

S =
∫

ddx

(
1

2
∂μφ∂μφ − 1

2
m2

0φ
2 − λ0

4! φ4

)

. (8.6)

In the units c = 1 = � the action S is dimensionless by assumption, [S] = cm0.
Let us take d = 3. Then, [φ] = cm−1/2 and [λ0] = cm−1. In the l-th order of
the perturbative expansion, the graphs are proportional to λl

0 and this constant has
the dimension cm−l . In order to have the dimension of the contribution of the whole
graph equal to the dimension of G̃(n) = cm5n/2, negative powers of three-momentum
are needed because [p] = cm−1. This suggests better and better convergence of the
integrals over the three-momenta as l increases, and therefore superrenormalizability
of the model. Indeed, the superficial degree of divergence is equal to

ω = 3L − 2I = 3 − l − n

2

(we have used formulas (8.1), (8.2) and the fact that this space-time has three dimen-
sions). It is clear that there is only one case in which we have ω ≥ 0: n = 2, l = 2:
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it is the second graph in Fig. 8.3. Note that this graph can appear as a divergent sub-
graph in other 1PI graphs with ω < 0. Therefore the total number of UV divergent
graphs is infinite. The case n = 2, l = 1 is excluded by the normal ordering. The
:φ4

3: model is superrenormalizable.
Let us now take d = 4. Then [λ0] = cm0, and the analogous reasoning suggests

that the appearance of UV divergences is not related to the order l of the perturbative
expansion, apart from the trivial condition l > 1. Indeed, we already know that
ω = 4 − n.

Adding still one space-time dimension, d = 5, gives [λ0] = cm1. In this case we
need positive powers of five-momenta in order to have the right dimension of the
perturbative contributions (now [φ] = cm−3/2 and [G̃(n)] = cm7n/2). This suggests
that UV divergent graphs will appear for any n if l is large enough. Indeed, the
formula for the superficial degree of divergence

ω = 5L − 2I = 5 + l − 3

2
n,

shows that ω ≥ 0 for an arbitrarily large number of external lines n, if we take
sufficiently large order of the perturbative expansion. Hence, the model :φ4

5: is non-
renormalizable. In general, increasing the dimensionality of space-time worsens the
situation as far as the UV divergences are concerned. Satisfactory models from the
perturbative point of view are still possible, but they require very special sets of fields,
as well as Lagrangians with symmetries which lead to mutual cancelations of the
UV divergent contributions. Examples of such cancelations are given in Chap.13,
where we discuss so called supersymmetric models.

8.2 An Example

The goal of renormalization is to define the limit (8.5) term by term in the perturbative
expansion. We already know that this cannot be done in a straightforward manner
just by replacing g̃ by the r.h.s. of formula (8.5), because then we would get UV
divergent integrals over some loop four-momenta. Below we consider in detail the
graph presented in Fig. 8.7. Using this graph, we introduce the main ingredient of
renormalization, which is called the subtractions.

Fig. 8.7 The 1PI graph A1
renormalized in this section

k k2 3p

k k1 4q

http://dx.doi.org/10.1007/978-3-319-55619-2_13
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We will use the following one-parameter family of regularizing functions

g̃(q1, q2, q3, q4) = 1

(2π)4
δ(q1 + q2 + q3 + q4)

4∏

i=1

(
m2

0 − M2

q2
i − M2 + iε

) N
2

, (8.7)

where N is a natural number and ε > 0. We shall take the limit ε → 0+ later, when
there will be no risk of vanishing denominators. This choice of g̃ is called the Pauli–
Villars (P–V) regularization. The limit (8.5) corresponds to M → ∞. It should be
noted that the function g̃ given by (8.7) does not belong to the space S(R4) of test
functions. Rather, it is a generalized function. Nevertheless, it vanishes sufficiently
quickly when qi → ∞, so that the loop integrals are finite, see below. This function
g̃ has the advantage that it is invariant with respect to Lorentz transformations of the
four-momenta. Moreover, it has a simple algebraic form which harmonizes with the
form of the free propagator �F (q).

Because each internal vertex has four legs enumerated by the four-momenta qi ,
we may ascribe the P–V factors

(
m2

0 − M2

q2
i − M2 + iε

)N/2

to the legs. Therefore, one may formulate the P-V regularization in an equivalent
way, by saying that the internal vertex has the form as if the limit M → ∞ was
already taken, that is

�
�

��
�

�
� = λ0

4!(2π)4
δ(q1 + q2 + q3 + q4),

(8.8)

but the free propagators �F , formula (7.58), associated with each internal line are
replaced by the P–V regularized propagator �P−V ,

�F (p) → �P−V (p) = i

p2 − m2
0 + iε

(
m2

0 − M2

p2 − M2 + iε

)N

(8.9)

(each internal line has two P–V factors coming from the two legs of the adjacent
internal vertices). Actually, this latter formulation of the P–V regularization is the
original one. Note that�P−V with N = 1 may also be written in the following forms

�P−V (p) = i

p2 − m2
0 + iε

− i

p2 − M2 + iε
= −i

∫ M2

m2
0

dλ

(p2 − λ + iε)2
. (8.10)

Formula (8.7), and the substitution (8.9), imply that the factors [(m2
0−M2)/(q2

i −
M2 + iε)]N/2 appear also on the external lines of graphs. Because such lines do not
play any role as far as the UV divergences are concerned, we may take the limit

http://dx.doi.org/10.1007/978-3-319-55619-2_7
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M → ∞ for each external line right now. Therefore, the external lines do not
introduce any factors in the P–V regularized 1PI graphs (�F ’s have already been
removed).

The Pauli–Villars regularization is sufficient for rendering all 1PI graphs UV
finite: the superficial degree of divergence of P–V regularized 1PI graphs is negative.
Computation of ω for such a graph, denoted by �reg, differs from the one presented
in the preceding section only on one point: now the contribution of each internal line
behaves like (p2)−N−1. Therefore,

ω(�reg) = 4L − 2(N + 1)I = 4 − 4l + 2I (1 − N ).

It is negative for all l > 1, even if we take the lowest possible N = 1. When l = 1
we would have to take a larger N , e.g., N = 2, but luckily the perturbative expansion
does not contain any 1PI graphs with l = 1 because of the normal ordering. It
turns out that expressions which require the P–V regularization with N = 2 appear
when applying the BPHZ subtraction scheme to the 2-point Green’s function, see
Sect. 8.4. In the following considerations, we use the regularization with N = 1
unless explicitly stated otherwise.

The regularized formula represented by the graph A1 has the form6

A1(k
2; M) = − λ2

0

(4!)2(2π)8

∫
d4 p

∫ M2

m2
0

dλ1

∫ M2

m2
0

dλ2
1

(p2 − λ1 + iε)2[(k + p)2 − λ2 + iε]2 ,

where k = k1 + k2. Next, we use the identity

1

a2b2
=

∫ 1

0
dz

6z(1 − z)

[a(1 − z) + bz]4 ,

which is obtained from the simpler identity

1

ab
=

∫ 1

0

dz

[a(1 − z) + bz]2

by differentiation with respect to a and b. The latter identity can easily be checked
by elementary calculation of the integral over z. Thus,

6We denote the graph and the formula corresponding to it by the same letter. The presence of P–V
regularization is marked by adding the argument M .
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A1(k
2; M) = − λ2

0

(4!)2(2π)8

∫
d4 p

∫ M2

m2
0

dλ1

∫ M2

m2
0

dλ2

∫ 1

0
dz

6z(1 − z)

[(p2 − λ1 + iε)(1 − z) + ((k + p)2 − λ2 + iε)z]4 . (8.11)

Let us shift the integration variable p:

p = p′ − kz, d4 p = d4 p′.

The reason for this shift is that the denominator in formula (8.11) depends on p′ only
through p

′2,
[. . .] = p

′2 + k2z(1 − z) − λ1(1 − z) − λ2z + iε. (8.12)

The expression (8.12) vanishes when

p′
0 = ±

√
( �p ′

)2 + λ1(1 − z) + λ2z − k2z(1 − z) − iε.

At these points (in the complex p′
0 plane) the integrand in the formula (8.11) has

poles. Because λ1,2 ≥ m2
0, ε > 0, and z ∈ [0, 1], when

k2 ∈ (−∞, 4m2
0) (8.13)

the poles lie close to the real axis, see Fig. 8.8. In this case the integral over p′
0 along

the contour presented in Fig. 8.8 vanishes. The integrals along the two arcs of the
circle vanish when the radius of the circle increases to infinity. Therefore, the integral
along the real axis is equal to the integral along the imaginary axis. The integration
over imaginary p′

0 is equivalent to the integration over real variable p4, introduced
by the formula

p′
0 = i p4,

Fig. 8.8 The integration
contour in the complex p′

0
plane. The position of the
poles is marked by the small
crosses

'

0

0

×

×
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p4 ∈ (−∞,+∞), and

dp′
0d

3 p′ = idp4d
3 p′, p

′2 = −p24 − �p ′2.

Therefore,

A1(k
2; M) = − i

λ2
0

(4!)2(2π)8

∫
dp4

∫
d3 p

∫ M2

m2
0

dλ1

∫ M2

m2
0

dλ2

∫ 1

0
dz

6z(1 − z)

[−p24 − �p 2 + k2z(1 − z) − λ1(1 − z) − λ2z + iε]4 , (8.14)

where we have omitted ′ in the integration variable �p. The transition from formula
(8.11) to (8.14) is called the Wick rotation.

The integration variables �p and p4 together form a Euclidean four-momentum
pE = ( �p, p4), d4 pE = dp4d3 p. The integrand in (8.14) depends only on p2E =
p24 + �p 2. Therefore, we introduce the four-dimensional spherical angles�1,�2,�3:

pE = |pE |

⎛

⎜
⎜
⎝

sin�1 sin�2 sin�3

sin�1 sin�2 cos�3

sin�1 cos�2

cos�1

⎞

⎟
⎟
⎠ ,

where 0 ≤ �1,�2 ≤ π and 0 ≤ �3 < 2π. Then,

d4 pE = |pE |3d|pE |d�,

where the four-dimensional solid angle element has the form

d� = sin2 �1 sin�2d�1d�2d�3.

The full solid angle is equal to 2π2, that is

∫
d� = 2π2.

Therefore,

A1(k
2; M) = − 2iπ2 λ2

0

(4!)2(2π)8

∫ ∞

0
d|pE |

∫ M2

m2
0

dλ1

∫ M2

m2
0

dλ2

∫ 1

0
dz

6z(1 − z) |pE |3
[|pE |2 − k2z(1 − z) + λ1(1 − z) + λ2z − iε]4 . (8.15)
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Because of assumption (8.13) the real part of the expression in the bracket in the
denominator does not vanish. Therefore, we may now take the limit ε → 0+. The
integrals over |pE |, λ1 andλ2 are elementary.Wefinally obtain the following formula

A1(k
2; M) = iπ2 λ2

0

(4!)2(2π)8

∫ 1

0
dz

(

ln
M2 − k2z(1 − z)

M2(1 − z) + m2
0z − k2z(1 − z)

− ln
M2z + m2

0(1 − z) − k2z(1 − z)

m2
0 − k2z(1 − z)

)

.

In the limit M → ∞

A1(k
2; M) = −2iπ2 λ2

0

(4!)2(2π)8
ln

M

m0
+ (terms finite in the limit M → ∞).

The logarithmic divergence in the limit M → ∞ is the expected one, because the
superficial degree of divergence of graph A1 is equal to 0.

The divergent term does not depend on k2. Therefore, the difference

A1(k
2; M) − A1((

(0)
k )2; M),

where
(0)
k is a fixed four-vector, also remains finitewhenwe remove the regularization.

The renormalized contribution of graph A1 is defined as follows

Aren
1 (k2)

d f= lim
M→∞

(

A1(k
2; M) − A1((

(0)
k )2; M)

)

. (8.16)

Note that this definition trivially implies that

Aren
1 (

(0)
k
2

) ≡ 0. (8.17)

This identity is called the renormalization condition.

The four-vector
(0)
k is called the subtraction point. In the :φ4

4: model the subtraction

point is usually given in terms of four four-vectors
(0)
ki , i = 1, 2, 3, 4, such that

4∑

i=1

(0)
ki = 0, (

(0)
ki )

2 = −μ2,
(0)
ki

(0)
k j = 1

3
μ2 for i �= j, (8.18)

where μ is a positive parameter with the dimension of mass. This choice for
(0)
ki is

called the symmetric subtraction point. For an example of it, see Exercise 8.3. In
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the case of graph A1 we have k = k1 + k2, therefore we take
(0)
k = (0)

k1 + (0)
k 2. In

consequence,

(
(0)
k )2 = −4

3
μ2.

It follows from definition (8.16) that

Aren
1 (k2) = iπ2 λ2

0

(4!)2(2π)8

∫ 1

0
dz ln

m2
0 − k2z(1 − z)

m2
0 + 4

3μ
2z(1 − z)

. (8.19)

Let us recall that this formula is obtained under assumption (8.13).We do not present
a calculation of A1 in the case this assumption is not satisfied.

Formula (8.19) for the renormalized contribution of graph A1 takes a particularly
simple form when m2

0 = 0 :

Aren
1 (k2)

∣
∣
m2

0=0 = iπ2 λ2
0

(4!)2(2π)8
ln

(

− 3k2

4μ2

)

.

In this case, the restriction (8.13) has the form k2 < 0.
The subtraction of A1(− 4

3μ
2; M) can equivalently be regarded as an ad hoc mod-

ification of the interaction by adding to it a new term, called a counterterm. It is
chosen in such a way, that the difference

A1(k
2; M) − A1(−4

3
μ2; M)

appears automatically when calculating the full second order contribution to G̃(4).

The second order contribution in the original model, i.e. without the counterterm, is
presented in Fig. 7.6. In order to implement the subtraction we introduce a second
internal vertex with four legs, c.f. the vertex (7.64), with a suitably adjusted coeffi-
cient. In Fig. 7.6 there are three graphs of the form A1, which differ from each other
only by the external momenta. We need a counterterm for each of them. Because the
subtraction is done at the symmetric point, the subtracted terms are identical. There-
fore, it is sufficient to add a coefficient of 3 in front of the counterterm for graph A1.
It is convenient to introduce a constant C1 such that

A1(−4

3
μ2; M) = −i

λ2
0

(4!)2(2π)8
C1. (8.20)

In the limit M → ∞
C1

∼= 2π2 ln
M

m0
.

In order to implement the subtractions, it suffices to replace ṼIg[β̃] given by formula
(7.56) by ṼIg[β̃] + δ1ṼIg[β̃], where

http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
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δ1ṼIg[β̃] = λ2
0C1

16(2π)4

∫
d4q1d

4q2d
4q3d

4q4 g̃(q1, q2, q3, q4)β̃(q1)β̃(q2)β̃(q3)β̃(q4).

(8.21)

Here δ1ṼIg[β̃] is the total counterterm for the three graphs from the first line
of Fig. 7.6. Note that such a modification of the interaction is equivalent to changing
the coupling constant

λ0 → λ0 + 3C1

32π4
λ2
0. (8.22)

In the second order of the perturbative expansion, we also have the second graph
from Fig. 8.3. This graph has two independent loops which share one internal line.
In this case the subtractions are more complicated. We shall apply the general BPHZ
prescription which is described in the next section.

8.3 BPHZ Subtractions

Let � be a 1PI graph in the regularized :φ4
4: model with n external four-momenta

k1, k2, . . . , kn. The analytical expression corresponding to it has the form

A� = δ(

n∑

i=1

ki )
∫

d4 p1 . . . d4 pL I�(p1, . . . , pL; k1, . . . , kn−1; M),

where L is the number of independent loops in the graph. A� is finite due to the
presence of the regularization, but the existence of the limit M → ∞ requires the
subtractions. The integrand I� is the product of the Pauli–Villars regularized propa-
gators �P−V , and of numerical factors. The four-momentum kn has been eliminated
from it because kn = −∑n−1

i=1 ki .
The graph � can have subgraphs: parts which are graphs of the :φ4

4: model in their
own right. The subgraphs are denoted by γ, γ ⊂ �. Subgraph γ is called a proper
one if γ �= �, and the proper subgraph γ ⊂ � is called a renormalization part of � if
it is 1PI and ω(γ) ≥ 0. Two renormalization parts γ1 and γ2 of � are disconnected,
γ1 ∩ γ2 = ∅, if they do not have any common vertices.

The BPHZ subtractions are defined in terms of Taylor expansions with respect to
the external momenta. Let f (k1, . . . , kn−1) be a function of the external momenta
k1, . . . , kn−1, which is smooth in a vicinity of certain fixed four-momenta
(0)
k1, . . . ,

(0)
kn−1. It is convenient to use the following notation

Tω f (k1, . . . , kn−1)
d f= f (

(0)
k1, . . . ,

(0)
kn−1) +

(

ki − (0)
ki

)μi ∂ f

∂kμi
i

∣
∣
∣
∣
k j=

(0)
k j

+ . . .

+ 1

ω!
(

ki1 − (0)
ki1

)μi1

. . .

(

kiω − (0)
kiω

)μiω ∂ω f

∂k
μi1
i1

∂k
μi2
i2

. . . ∂kμiω
iω

∣
∣
∣
∣
∣
k j=

(0)
k j

,

http://dx.doi.org/10.1007/978-3-319-55619-2_7
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where ω is a nonnegative integer. Thus, Tω f denotes the first ω + 1 terms of the

Taylor series for f around
(0)
ki , i = 1, . . . , n − 1. In the case ω = 0 it is just

f (
(0)
k1, . . . ,

(0)
kn−1). In the considerations below n = 2 or n = 4, because in the model

:φ4
4: all 1PI graphs with n > 4 external lines have ω(�) < 0. The Taylor expansions

are made around the four-momenta from the symmetric point (8.18).
According to the prescription worked out by N.N. Bogoljubov and O.S. Parasiuk,

with later contributions byK.Hepp andW.Zimmermann (hence the acronymBPHZ),
the subtractions should be done in the following manner. The integrand I� should be
replaced by R� which is defined as follows

R� =
{
I i.s.� if ω(�) < 0,
I i.s.� − Tω(�) I i.s.� if ω(�) ≥ 0,

(8.23)

where

I i.s.� = I� +
∑

{γ1...γS :γi∩γk=∅}
I�/{γ1...γS}

S∏

i=1

(−Tω(γi ) I
i.s.
γi

)
. (8.24)

The sum in the last formula is over all families of disconnected renormalization parts
of the graph �. One such family is denoted by {γ1 . . . γS : γi ∩ γk = ∅}. The symbol
I�/{γ1...γS} denotes that part of the integrand I� which does not belong to any of the
subgraphs γ1 . . . γS from the given family. The superscript i.s. stands for ‘internal
subtractions’. The internal subtractions are defined recursively, by application of
formula (8.24) to γi . The graph � does not require internal subtractions only if it
does not contain any renormalization part. If ω(�) ≥ 0, such a 1PI graph � is called
primitively divergent.

The renormalized contribution of the graph � is defined as follows

Aren
� = δ(

n∑

i=1

ki ) lim
M→∞

∫
d4 p1 . . . d4 pL R�(p1, . . . , pL; k1, . . . , kn−1; M).

(8.25)

The main theorem about BPHZ subtractions says that the limit M → ∞ exists,
and that Aren

� is a generalized function of the external four-momenta. Moreover, the
limit M → ∞ commutes with the integrals, that is it can already be taken in the
whole integrand R� before the integration. Therefore, in principle, the regularization
is not necessary inasmuch as we only consider Feynman diagrams with subtractions.
However, investigation of Aren

� without a regularization is much harder, because only
the convergence of the integral of R� is guaranteed, and not of the integrals of the
separate contributions to R� , given by the terms in the sums present in formulas
(8.23), (8.24). For this reason, it is convenient to introduce the regularization and to
take the limit M → ∞ after the integration over the loop four-momenta. Such an
auxiliary regularization is often referred to as the intermediate one.

The fact that the subtractions improve the convergence of the integrals over loop
four-momenta has a simple intuitive explanation. All the terms in the Taylor expan-
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sion of I� have the same dimensionality. Therefore, the positive dimension intro-
duced by the powers of the external momenta standing in front of the derivatives
has to be compensated for by the negative dimension of the derivatives. This means
that the terms with derivatives of sufficiently high order necessarily have a negative
superficial degree of divergence. Therefore, one may expect that the integrals over
the loop four-momenta will remain finite in the limit M → ∞, except for the first
ω(�) + 1 terms of the Taylor expansion. These terms are specifically removed by
the subtractions.7

Note that formulas (8.23), (8.24), (8.25) can be applied directly to an arbitrary
1PI graph �, in any order of the perturbative expansion. We do not need to consider
graphs from the lower orders except for the renormalization parts of �.

In a particular case where ω(�) < 0 and all renormalization parts γi of � are
disconnected and primitively divergent, the BPHZ prescription is reduced to inde-
pendent subtractions for each γi . For example, if � has only two renormalization
parts γ1 and γ2,which are disconnected, then we have three families of disconnected
renormalization parts {γ1}, {γ2}, {γ1, γ2}, and in consequence

R� = I� − I�/γ1 (Tω(γ1) Iγ1) − I�/γ2 (Tω(γ2) Iγ2) + I�/{γ1,γ2}(Tω(γ1) Iγ1)(Tω(γ2) Iγ2)

= I�/{γ1,γ2}(Iγ1 − Tω(γ1) Iγ1)(Iγ2 − Tω(γ2) Iγ2).

See also Exercise 8.4.
It can happen that all the renormalization parts are nested, that is they form the

ordered sequence of subgraphs γ1 ⊃ γ2 ⊃ . . . ⊃ γS. Then, we have just S one-
element families of disconnected renormalization parts, but now the internal subtrac-
tions are needed. The BPHZ prescription gives the nested sequence of subtractions.
For example, let ω(�) < 0 and S = 2. Then,

R� = I� − I�/γ1Tω(γ1) I
i.s.
γ1

− I�/γ2Tω(γ2) Iγ2 ,

where
I i.s.γ1

= Iγ1 − Iγ1/γ2Tω(γ2) Iγ2 .

Using the identities
I� = I�/γ1 Iγ1 , I�/γ2 = I�/γ1 Iγ1/γ2

we find that
R� = I�/γ1

(
I i.s.γ1

− Tω(γ1) I
i.s.
γ1

)
.

In the next section we consider the graph shown in Fig. 8.9. In that case, the
renormalization parts are neither disconnected or nested—they overlap—and it is not
obvious what is the correct way of making the subtractions. One of the advantages
of the BPHZ prescription is that it can be easily applied in such less obvious cases.

7One may remove more terms than necessary. Such an operation is called an oversubtraction.
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q p–

p
k k1 2

k q1 –

Fig. 8.9 The first nontrivial 1PI graph contributing to G̃(2). Its 1PI part, obtained by removing �F
from the external lines, is denoted as A2. The meaning of the small arrows is explained in the text

8.4 Renormalization of the 2-Point Green’s Function

In the second order of the perturbative expansion for G̃(2) we have the 1PI graph A2

presented in Fig. 8.9. When ascribing the four-momenta to the lines of this graph
we have taken into account the fact that in the limit (8.5), or even before taking
that limit if we use the Pauli–Villars regularization (8.7), the four-momenta are not
independent due to the Dirac deltas at the internal vertices. Moreover, we have put
arrows on the lines in order to indicate at which end of the line the four-momentum
ascribed to the line is taken with a plus sign: the rule is that it is the end the arrow
points to. At the other end of the line it is taken with a minus sign. One may imagine
that the four-momentum flows along the line, from a source at one end to a sink at
the other end—the four-momentum flowing into the sink is counted with the plus
sign. In the model :φ4

4: we can put an arrow on a given line as we wish because �F

and d4 p are not sensitive to the change p → −p.
The nonrenormalized, Pauli–Villars regularized contribution to G̃(2)(k1, k2; M),

corresponding to this graph, has the form

96�F (k1)�F (k2)δ(k1 + k2)A2,

where

A2 =
∫

d4 pd4q IA2(p, q; k1; M),

and

IA2(p, q; k1; M) =
(

λ0

4!(2π)4

)2

�P−V (q − p)�P−V (p)�P−V (k1 − q).

The external lines are not regularized.
The graph A2 has two independent loops. We expect that it is quadratically diver-

gent in the limit M → ∞ because ω(A2) = 2. The BPHZ prescription can remove
the UV divergences from the graph, but it turns out that it violates Lorentz invari-
ance. Therefore, we shall modify the prescription in such a way that the renormalized
perturbative contributions to G̃(2) will be manifestly Lorentz invariant.
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Fig. 8.10 The three
renormalization parts of the
graph A2

γ γ γ1 2 3

The graph A2 contains three renormalization parts γi , i = 1, 2, 3, shown in
Fig. 8.10. In the limit M → ∞ they are logarithmically divergent, ω(γi ) = 0. We
can form three families of disconnected renormalization parts, each family has just
one element: {γ1}, {γ2}, {γ3}. According to formula (8.24)

I i.s.A2
= IA2 − �P−V (q − p)T0 Iγ1 − �P−V (k1 − q)T0 Iγ2 − �P−V (p)T0 Iγ3 . (8.26)

As the external four-momenta for subgraph γ1 we may take k1 ≡ p1 and −(q −
p) ≡ p2 (the four-momenta flowing into the internal vertex on the l.h.s. of the graph).
Therefore,

Iγ1 =
(

λ0

4!(2π)4

)2

�P−V (p1 − q) �P−V (p2 + q),

and

T0 Iγ1 =
(

λ0

4!(2π)4

)2

�P−V (
(0)
k1 − q) �P−V (

(0)
k2 + q),

where
(0)
ki are the four-momenta of the symmetric subtraction point (8.18). For sub-

graph γ2, we may take as the external four-momenta k1 ≡ p1, q − k1 ≡ p2, hence

T0 Iγ2 =
(

λ0

4!(2π)4

)2

�P−V (
(0)
k1 + (0)

k2 − p) �P−V (p).

In the case of γ3 the external four-momenta are k1 ≡ p1,−p ≡ p2, and

T0 Iγ3 =
(

λ0

4!(2π)4

)2

�P−V (
(0)
k1 − q) �P−V (

(0)
k2 + q).

The renormalized contribution of graph A2 is given by the formulas

Aren
2 = lim

M→∞

∫
d4 pd4q RA2(p, q; k1; M), (8.27)

where
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RA2(p, q; k1; M) =

I i.s.A2
(p, q; k1; M) − I i.s.A2

(p, q; (0)
k1; M) − (k1 − (0)

k1)
μ

∂ I i.s.A2
(p, q; k1; M)

∂kμ
1

∣
∣
∣
∣
∣
k1=

(0)
k1

− 1

2
(k1 − (0)

k1)
μ(k1 − (0)

k1)
ν

∂2 I i.s.A2
(p, q; k1; M)

∂kμ
1 ∂kν

1

∣
∣
∣
∣
∣
k1=

(0)
k1

. (8.28)

Inspection of integral (8.27) shows that it can be calculated term by term if we use
the Pauli–Villars regularization with N = 2. One can also check that

�i.s
A2

d f=
∫

d4 pd4q I i.s.A2
(p, q; k1; M)

depends on the Lorentz scalar k21 when k21 < 0, and also on
(0)
k1

(0)
k2 = μ2/3 and

(
(0)
k1)2 = (

(0)
k 2)

2 = −μ2. When k21 ≥ 0, a dependence on sign(k01) may also appear,
because the sign of k01 is Lorentz invariant for time- and light-like k1.

The subtracted terms in formula (8.28) explicitly contain the fixed four-vector
(0)
k1.

One may worry that this is not compatible with the Lorentz invariance. The point
is that, as we shall see in Chap.10, if the model is Lorentz invariant then G̃(k1)
introduced by the formula

G̃(2)(k1, k2) = δ(k1 + k2)G̃(k1), (8.29)

has the property
G̃(Lk1) = G̃(k1) (8.30)

for arbitrary proper, orthochronous Lorentz transformations (L ∈ L↑
+). In the per-

turbative expansion, this property should hold separately for the total contribution
in each order (that is for the sum of the contributions from all graphs in the given
order). Graph A2 is the only second order graph contributing to G̃(2). Therefore, it
should give a Lorentz invariant expression. It turns out that this is not the case. Let
us assume that k21 < 0. Then, �i.s

A2
depends only on k21 , and

∂�i.s
A2

(k21; M;μ)

∂kμ
1

∣
∣
∣
∣
∣
k1=

(0)
k1

= 2
(0)
k1μ

∂�i.s
A2

(k21; M;μ)

∂(k21)

∣
∣
∣
∣
∣
k21=−μ2

,

∂2�i.s
A2

(k21; M;μ)

∂kμ
1 ∂kν

1

∣
∣
∣
∣
∣
k1=

(0)
k1

=

2ημν

∂�i.s
A2

(k21; M;μ)

∂(k21)

∣
∣
∣
∣
∣
k21=−μ2

+ 4
(0)
k1μ

(0)
k 1ν

∂2�i.s
A2

(k21; M;μ)

∂(k21)∂(k21)

∣
∣
∣
∣
∣
k21=−μ2

,

http://dx.doi.org/10.1007/978-3-319-55619-2_10
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where ημν are components of the Minkowski metric tensor. Therefore,

∫
d4 pd4q RA2 (p, q; k1; M) = �i.s

A2
(k21; M;μ) − �i.s

A2
(−μ2; M;μ)

−(k21 + μ2)
∂�i.s

A2
(k21; M; μ)

∂(k21)

∣
∣
∣
∣
∣
k21=−μ2

− 2(k1
(0)
k 1 + μ2)2

∂2�i.s
A2

(k21; M;μ)

∂(k21)∂(k21)

∣
∣
∣
∣
∣
k21=−μ2

.

The last term is not compatiblewith Lorentz invariance because in general (Lk1)
(0)
k1 �=

k1
(0)
k1.
Fortunately, the harmful term may be omitted, because it is not necessary for

the removal of the UV divergences. One can easily see that by taking a particular

subtraction point, namely such that μ2 = 0 and
(0)
k1 = 0. Then that term simply

vanishes, so the UV divergences are removed despite its absence. One can also give
another argument. The two derivatives with respect to k21 lower the dimension by 4,
hence that term has a superficial degree of divergence equal to −2. Therefore, it is
finite in the limit M → ∞, and in consequence it is irrelevant for the removal of
UV divergences.

In order to preserve the Lorentz invariance we have to modify the subtraction
procedure for the 2-point Green’s function: after introducing the intermediate regu-
larization we first compute �i.s

A2
(k21; M;μ), and next we subtract the first two terms

of the Taylor series with respect to k21 at k
2
1 = −μ2,

�ren
A2

(k21;μ) = lim
M→∞

(
�i.s

A2
(k21; M;μ)

−�i.s
A2

(−μ2; M;μ) − (k21 + μ2)
∂�i.s

A2
(k21; M;μ)

∂(k21)

∣
∣
∣
∣
∣
k21=−μ2

)
. (8.31)

Note that such �ren
A2

(k21;μ) obeys the following identities (the renormalization con-
ditions)

�ren
A2

(−μ2;μ) = 0,
∂�ren

A2
(k21;μ)

∂(k21)

∣
∣
∣
∣
∣
k21=−μ2

= 0. (8.32)

Similarly as in the case of graph A1, the subtractions (8.31) can be interpreted as
the result of adding to the interaction ṼIg[β̃] the counterterm

δ2ṼIg[β̃] = λ2
0

12(2π)8

∫
d4q1d

4q2 δ(q1 + q2)β̃(q1)β̃(q2)
[
B1 + B2(q

2
1 + μ2)

]
,

(8.33)
where
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B1 = �i.s
A2

(−μ2; M;μ), B2 = ∂�i.s
A2

(k21; M;μ)

∂(k21)

∣
∣
∣
∣
∣
k21=−μ2

.

This corresponds to adding the term

δ2S = − λ2
0

12(2π)8

∫
d4x

[
(B1 + B2μ

2)φ2(x) + B2∂μφ(x)∂μφ(x)
]

(8.34)

to the action functional (8.6). The internal subtractions are implemented by the coun-
terterm (8.21).

The counterterms δ1ṼIg and δ2ṼIg remove all UV divergences in the order λ2. In
the next order the divergences reappear, and new counterterms have to be included.
They also have the general form (8.21), (8.33), because there are no other types of
divergent graphs than the ones already considered: quadratically divergent 1PI graphs
with 2 legs and logarithmically divergent 1PI graphswith 4 legs. The constantsC1, B1

and B2 will have new values. Thus, in spite of the ad hoc modifications (the inclusion
of the counterterms), the action functional preserves its original form (8.6).Generally,
the action functional in perturbatively renormalizable models may change its form,
but after a finite number of such changes it reaches its stable form, in which only
coefficients are changed when we go to still higher orders.

Note that as far as the removal of the UV divergences is concerned, the constants
B1, B2 and C1 may be changed by adding to them finite constants b1, b2 and c1 of
appropriate dimensionality which are independent of M . Then, the renormalization
conditions change their form, e.g., instead of (8.32) we have

�ren
A2

(−μ2;μ) = −b1,
∂�ren

A2
(k21;μ)

∂(k21)

∣
∣
∣
∣
∣
k21=−μ2

= −b2.

The new�ren
A2

(k21;μ) differs from the one given by formula (8.31) by the term−b1 −
(k21 + μ2)b2. Such freedom in the concrete form of subtracted terms implies that
actually the renormalized perturbative expansion contains arbitrary finite constants.
Their number is equal to the number of renormalization conditions, and is finite in
renormalizable models. On the other hand, in nonrenormalizable models the number
of such constants increases indefinitely with the increasing order of the perturbative
expansion—this fact greatly diminishes the predictive power of these models.
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8.5 The Multiplicative Renormalization

We have seen how to renormalize separate graphs. Now we will look at the effect of
renormalization on the whole Green’s functions, which are given by an infinite series
of graphs.8 The theory is regularized in order to avoid mathematically meaningless
expressions that correspond to the 1PI graphs with loops. We use the version of the
Pauli–Villars regularization with N = 2, described at the beginning of Sect. 8.2.
The existence of the limit M → ∞ is secured by adding the counterterms to the
interaction ṼIg[β̃] given by formula (7.56). Their general form reads

δṼIg = δ1ṼIg + δ2ṼIg,

where

δ1ṼIg = (Z1 − 1)
λ0

4!
∫ 4∏

i=1

d4qi g̃(q1, q2, q3, q4) β̃(q1)β̃(q2)β̃(q3)β̃(q4), (8.35)

and

δ2ṼIg = 1

2

∫
d4q1d

4q2 δ(q1 + q2)β̃(q1)β̃(q2)
[
(1 − Z3)(q

2
1 − m2

0) + δm2Z3
]
.

(8.36)
The constants Z1, Z3 and δm2 are adjusted order by order in the perturbative expan-
sion. Because these constants are divergent in the limit M → ∞, they are called
infinite renormalization constants.

For example, a comparison with the results of Sects. 8.2, 8.4 for the graphs A1

and A2 gives

Z1 = 1 + 3λ0C1

2(2π)4
, Z3 = 1 − λ2

0B2

6(2π)8
, δm2 = λ2

0B1 + λ2
0(m

2
0 + μ2)B2

6(2π)8
,

where we have neglected all terms which give higher than second powers of λ0 in
the perturbative expansion for the Green’s functions.

Let us denote by G̃(n)
s (p1, p2, . . . , pn;λ0,m2

0,μ, M) the Fourier transform of the
n-point Green’s function, calculated by means of the regularized perturbative series
with the BPHZ subtractions. Here the subscript s refers to the subtractions, M to
the Pauli–Villars regularization with N = 2, and μ to the subtraction point. The

8 This series is likely not convergent. Typically, one expects that perturbative expansions in quantum
field theory yield a so called asymptotic series which form a special class of divergent series. In
most applications of the perturbative expansions, the series is either cut to a finite sum of graphs
(then the problem of convergence disappears), or it is restricted to an infinite subclass of graphs
which are distinguished by their particularly simple analytical contributions (and then sometimes
one can compute the sum).

http://dx.doi.org/10.1007/978-3-319-55619-2_7
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subtractions are implemented by the counterterms (8.35), (8.36). The limit M → ∞
of this function exists, and it is called the renormalized Green’s function,

G̃(n)
ren(p1, p2, . . . , pn;λ0,m

2
0,μ) ≡ lim

M→∞ G̃(n)
s (p1, p2, . . . , pn;λ0,m

2
0,μ, M).

(8.37)
There exists a certain, very important relation between G̃(n)

s (pi ;λ0,m2
0,μ, M), and

the corresponding regularized Green’s function without any subtractions denoted by
G̃(n)(p1, p2, . . . , pn;λ0,m2

0, M). The relation has the following form

G̃(n)
s (p1, p2, . . . , pn;λ0,m

2
0,μ, M) = Z

− n
2

3 G̃(n)(p1, p2, . . . , pn;λb,m
2
b, M),

(8.38)
where

λb = λ0Z1Z
−2
3 , m2

b = m2
0 + δm2. (8.39)

Relation (8.38) shows that the subtractions are equivalent to a shift of the mass
parameter m2

0 → m2
b, and to a rescaling of the Green’s function by the factor Z−n/2

3
and of the coupling constant λ0 by the factor Z1/Z2

3 . It is often called the formula of
multiplicative renormalization. The constants λb, m2

b are called the bare coupling
constant and the bare mass parameter, respectively.

In order to prove relation (8.38), we just calculate the effects of the counterterms
δ1ṼIg and δ2ṼIg on a graph � constructed in the regularized model without the
counterterms. Let us start with δ1ṼIg.The graphs are generated from formulas (7.59),
(7.60), but now ṼIg is replaced by

ṼIg + δ1ṼIg = λ0Z1

4!
∫ 4∏

i=1

d4qi g̃(q1, q2, q3, q4) β̃(q1)β̃(q2)β̃(q3)β̃(q4).

Therefore, the net effect of the counterterm δ1ṼIg is that λ0 is replaced by λ0Z1 in
all internal vertices.

The counterterm δ2ṼIg contributes to the functional Z̃
(n)
I the factor

exp(−i
∫

d4x δ2VI [β̃]) =

exp

(
i

2

∫
d4q1d

4q2
[
(Z3 − 1)(q2

1 − m2
0) − δm2Z3

]
δ(q1 + q2)β̃(q1)β̃(q2)

)

.

It yields a new internal vertex with two legs and the factor f0 ≡ i(Z3 − 1)(q2
1 −

m2
0) − iδm2Z3 associated with it.9 With the new internal vertex available, each line

of a given graph� can be ‘decorated’ by putting the new vertex on it arbitrarily many
times. We consider here graphs for Green’s functions that contain external vertices

9The factor 1/2 is canceled by the combinatorial factor 2, which appears because the vertex can be
connected to two lines in two ways.

http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
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as well as propagators �F on the external lines. Any two neighbouring vertices are
connected by a line which represents �F , and the four-leg internal vertices (7.64)
contain the regularizing function (8.7). Summing all graphs obtained from � by
decorating all its lines with the new internal vertex, we effectively obtain the graph
� again, but each line of it now represents the whole sum

�F (p) + �F (p) f0�F (p) + �F (p)( f0�F (p))2 + . . .

= �F (p)
1

1 − f0�F (p)
= 1

Z3

i

p2 − (m2
0 + δm2) + i0+

.

Thus, the inclusion of the counterterm δ2ṼIg is equivalent to multiplying each line
by 1/Z3 and shifting the mass parameter m2

0 by δm2.

In the last step in the derivation of formula (8.38), we collect the factors 1/Z3

from all lines of the graph: this gives an overall factor (1/Z3)
I+n . Formula (8.1)

implies that I + n = 2l + n/2. Hence, the overall factor can be written in the form
(Z−2

3 )l Z−n/2
3 ,which shows that wemay ascribe the factor Z−2

3 to each internal vertex
(there are l of them), and Z−1/2

3 to each external vertex. In other words, the factor
1/Z3 on each line of the graph is written as (1/

√
Z3)

2 and each 1/
√
Z3 is moved to

the internal or external vertices adjacent to the line. In this way 1/Z3 disappears from
all lines. The net result of the inclusion of the counterterms is that each internal vertex
(7.64) is multiplied by Z1Z

−2
3 , the mass parameter m2

0 is replaced by m
2
0 + δm2, and

the graph is multiplied by Z−n/2
3 . This holds for each graph � in the perturbative

expansion for G̃(n)(p1, p2, . . . , pn;λ0,m2
0, M).

One particle irreducible (1PI) Green’s functions �̃(n), often also called proper
vertices, are obtained from the perturbative expansion for G̃(n) by throwing away
all graphs that are not 1PI and removing the propagators �F from the external
lines. Calculation of the effects of the inclusion of the counterterms differs only
slightly from the one presented above. Because the external lines are absent now,
we miss the factors 1/

√
Z3 needed for obtaining λb for the internal vertices adjacent

to the external lines. We introduce these factors by multiplying the graph by 1 =
(
√
Z3/

√
Z3)

n. Therefore, in the present case we have a factor
√
Z3 for each external

vertex instead of 1/
√
Z3 obtained in the case of Green’s functions. Thus, the formula

for the proper vertices analogous to (8.38) has the form

�̃(n)
s (p1, p2, . . . , pn;λ0,m

2
0,μ, M) = Z

n
2
3 �̃(n)(p1, p2, . . . , pn;λb,m

2
b, M).

(8.40)
In the limit M → ∞ the l.h.s. of this formula gives the renormalized 1PI Green’s
function,

�̃(n)
ren(p1, p2, . . . , pn;λ0,m

2
0,μ) ≡ lim

M→∞ �̃(n)
s (p1, p2, . . . , pn;λ0,m

2
0,μ, M).

(8.41)
Formulas (8.38), (8.40) lose mathematical meaning in the limit M → ∞ because

then Z3,λb, and m2
b are divergent. Of course, these divergences cancel each other

http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
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γ γ1 2

Fig. 8.11 The graph �

and produce a finite limit—the renormalizedGreen’s functions or the proper vertices,
respectively—but the renormalized functions do not have the forms given on the
r.h.s.’s of formulas (8.38), (8.40) with meaningful constants Z3,λb and m2

b.

Exercises

8.1 Show that a graph equivalent to the one presented in Fig. 8.2 can be drawn on a
plane (without the intersections of lines) if the external lines have a finite length.

8.2 Check the renormalizability of the models λ0 : φn
d :, where n > 2 is a natural

number and d ≥ 2 is the dimension of space-time, by computing:
(a) the dimension of the coupling constant λ0,
(b) the superficial degree of divergence.

8.3 Construct an explicit example of the symmetric subtraction point.
Hint. Assume that

(0)
k1 = (0, 0, 0,μ),

(0)
k2 = (0, 0,α,β),

(0)
k3 = (0, x, y, z),

and choose α,β, x, y, z in order to obey conditions (8.18). Check that
(0)
k4 = −(0)

k1 −
(0)
k2 − (0)

k3 obeys these conditions automatically.

8.4 Graph � has the form presented in Fig. 8.11. The dashed boxes mark its renor-
malization parts γ1 and γ2. They are not disconnected. Prove that

R� = (
λ0

4!(2π)4
)−1 Rγ1Rγ2 .
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8.5 Prove that the superficial degree of divergence of the QED graph � in four-
dimensional space-time with np external photon lines and ne external fermion (elec-
tron or positron) lines is equal to

ω(�) = 4 − 3

2
ne − np.

What would the formula for ω(�) look like had we considered QED in D-dimensio-
nal space-time?
The rules for Feynman diagrams in QED can be found in, e.g., [5, 9, 11].

8.6 Derive the general form of Feynman’s parametric representation:

n∏

i=1

1

Aαi
i

= �(α)
∏n

i=1 �(αi )

∫ 1

0

n∏

i=1

dxi δ

(

1 −
n∑

i=1

xi

) ∏n
i=1 x

αi−1
i[∑n

i=1 xi Ai
]α ,

where α =
n∑

i=1
αi .

8.7 Prove the formula:

∫
dDk

(k2 + 2k · Q − M2 + i0+)n
= i(−1)nπ

D
2
�(n − D

2 )

�(n)
(Q2 + M2)

D
2 −n,

where for all D−vectors the scalar product is a · b = a0b0 − �a · �b.
Hint.Deform the contour of integrationover k0 onto the imaginary axis in the complex
k0 plane and perform the resulting integral by rewriting it in the spherical coordi-
nates of D-dimensional Euclidean space. The value of the integral over the angular
variables can be obtained by comparing the results of calculating the D-dimensional
Gaussian integral

ID =
∞∫

−∞

D∏

k=1

dxk e
− ∑D

k=1(xk )
2

in Cartesian and spherical coordinates; the integral over the radial direction can be
performed with the help of an integral representation of the Euler beta function and
its relation to the gamma function.

8.8 Graph (a) in Fig. 8.12 represents the one-loop, momentum space contribution
to the electron self-energy.
(a) Write down its integral representation and denote it by −i(2π)4�1(/p,m0).
(b) In 4-dimensional space-time the integral appearing in−i(2π)4�1(/p,m0) is diver-
gent, with a superficial degree of divergence equal to 1 (compare with Problem 8.5).
Regularize it by assuming that the number of space-time dimensions D is sufficiently
small and then evaluate it using Feynman’s parametric representation to combine the
denominators and using the formula derived in the problem 8.7.
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Fig. 8.12 One-loop
contributions to the
two-point, 1PI, QED Green’s
functions

μ μν ν

(a) (b)

Hint. Since the index μ of the Dirac matrices takes D values in D-dimensional
space-time, we have the following useful formulae

γμγ
μ = DI4, γμ/pγ

μ = (2 − D)/p

(derive them).
Answer:

�1(/p,m0) = e20
8π2+ε

�(ε)

∫ 1

0
dx

(
(2−ε)m0−(1−ε)(1−x)/p

) (
xm2

0 − x(1 − x)p2
)−ε

where D = 4 − 2ε.
(c) The divergence of �1(/p,m0) in four-dimensional space-time reveals itself as
a pole of the gamma function for ε → 0. To obtain the renormalized one-loop
contribution to the electron self-energy apply the subtraction procedure (with the
subtraction point p = 0), i.e. calculate

�ren
1 (/p,m0) = lim

ε→0

(

�1(/p,m0) − �1(0,m0) − pμ ∂�1(/p,m0)

∂ pμ

∣
∣
∣
p=0

)

.

(d) Prove that the one-loop corrected, renormalized electron propagator is given by
the formula

SF(/p,m0) = i

(2π)4

(
/p − m0 − �ren

1 (/p,m0) + i0+
)−1 + O (

e40
)
.

8.9 Denote by �μν(p) = −i(2π)4
(
pμ pν − p2ημν

)
π1(p2) the 1PI contribution to

the photon propagator (the so called vacuum polarization tensor) specified by graph
(b) in Fig. 8.12.
(a) Calculate it using the same strategy as in Exercise 8.8.
Hint. Check that in D-dimensional space-time

D
∫
dDk kμkν f (k

2) = ημν

∫
dDk k2 f (k2)

where f (k2) is some function and, using the result of Exercise 8.7, derive the formula
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∫
dDk

2kμkν − ημνk2
(
k2 − m2

0 + x(1 − x)p2
)2 = −iπ2−εημν�(ε)

(
m2

0 − x(1 − x)p2
)1−ε

.

Answer:

π1(p
2) = − e20

2π2+ε
�(ε)

∫ 1

0
dx x(1 − x)

(
m2

0 − x(1 − x)p2
)−ε

.

(b)Compute the renormalized, one-loop contribution to the photon propagator choos-

ing the subtraction point at
(0)
p with (

(0)
p )2 = −μ2.

Answer:

πren
1 (p2) = e20

2π2

∫ 1

0
dx x(1 − x) log

m2
0 − x(1 − x)p2

m2
0 + x(1 − x)μ2

.

(c) Choose the free photon propagator in the so called transverse form

Dμν
0 (p) = i

(2π)4

(

−ημν + pμ pν

p2 + i0+

)
1

p2 + i0+
.

Prove that the one-loop corrected, renormalized photon propagator is given by the
formula

Dμν
1 (p) = i

(2π)4

(

−ημν + pμ pν

p2 + i0+

)
1

(1 − πren
1 (p2))(p2 + i0+)

+ O (
e40

)
.

8.10 Start with the QED Lagrangian with the physical quantities (field operators ψ
and Aμ, electron mass m0 and electric charge e0) replaced by the “bare” quantities
ψb, Ab μ,mb and eb :

Lb = −1

4
Fμν
b Fb μν + ψb

[
iγμ

(
∂μ + ieb A

μ
b

) − mb
]
ψb.

Relate the bare and physical (renormalized) quantities through the renormalization
constants

ψ = Z−1/2
2 ψb, Aμ = Z−1/2

3 Aμ
b , e0 = Z1/2

3 eb, m0 = mb + �m.

The fact that the electromagnetic field renormalization constant is equal to the inverse
of the electric charge renormalization constant is a peculiarity of QED related to the
gauge invariance of this theory.
(a) Determine the form of

δL = Lb − L
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where L is of the same form as Lb, with the bare quantities replaced by the physical
ones, i.e.:

L = −1

4
FμνFμν + ψb

[
iγμ (∂μ + ie0A

μ) − m0
]
ψ.

(b) Treating −δL as an additional contribution to the interaction Hamiltonian (the
counterterms) derive the form of the additional Feynman diagram vertices which
appear thanks to its presence.
(c) Calculate the values of Z2, Z3 and �m which result in the contribution to the
electron and photon propagators equivalent to the subtractions applied in Exercises
8.8 and 8.9.

Answer:

Z2 = 1 − e20
8π2+ε

(1 − ε)�(ε)

∫ 1

0
dx (1 − x)

(
x2m2

0

)−ε
,

�m = m0
e20

8π2+ε
�(ε)

∫ 1

0
dx

(
1 + (1 − ε)x

) (
x2m2

0

)−ε
,

Z3 = 1 − e20
2π2+ε

�(ε)

1∫

0

dx x(1 − x)
(
m2

0 + x(1 − x)μ2
)−ε

.



Chapter 9
The Renormalization Group

Abstract The relation between the subtracted Green’s functions with different
choices of subtraction point in the φ4

4 model. The running coupling constant. Func-
tional equations of the renormalization group. Differential renormalization group
equations of the Gell-Mann–Low and the Callan–Symanzik type. The β function.
Reliability of the perturbative approximations. The phenomenon of dimensional
transmutation in renormalized quantum field theory.

The precise form of the perturbatively calculated and renormalized contributions to
the Green’s functions depends on the adopted scheme of subtractions. In particular,
with the subtraction at the symmetric point (8.18) the dependence on the parame-
ter μ appears. The choice of the subtraction point is not dictated by any concrete
physical phenomena. On the contrary, the motivation for introducing it has been
purely mathematical: the subtractions secure the existence of the limit M → ∞ (the
removal of the regularization), and the mathematical formalism itself does not point
to any specific value of μ. Therefore, it is desirable to investigate the dependence
of the renormalized Green’s functions on μ in more detail. Another arbitrariness,
also present in the renormalized perturbative expansion, has the form of the finite
constants which can be included in the BPHZ subtractions, as discussed at the end
of Sect. 8.4—it should be controlled too.

9.1 Renormalization Group Equations

Renormalization group equations for the renormalized Green’s functions (in the
:φ4

4: model) follow essentially from formula (8.38). That formula implies a relation
between the Green’s functions G̃(n)

s , obtained with two choices, μ and μ′, of the
symmetric subtraction point, because on the r.h.s. there is the Green’s function in it
without any subtractions. Simple calculation shows that

G̃(n)
s (p1, p2, . . . , pn;λ0,m

2
0,μ, M) =

z
n
2
3 G̃

(n)
s (p1, p2, . . . , pn;λ0z

−1
1 z23,m

2
0 − �m2,μ′, M), (9.1)

© Springer International Publishing AG 2017
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where

z3 = Z ′
3

Z3
, z1 = Z ′

1

Z1
, �m2 = δm ′2 − δm2.

In this chapter we regard p1, . . . , pn, λ0 > 0, m2
0 > 0, μ2 > 0, M2 > 0 as variables.

Taking the limitM → ∞ on both sides of formula (9.1), we obtain a relation between
the renormalized Green’s functions with two choices for the subtraction point. Below
we prove that the constants z1, z3, �m2 remain finite in that limit. Their asymptotic
values (at M → ∞) depend on μ, μ′, m2

0,λ0.
The constants z1 and z3 are dimensionless. Therefore, they may be regarded as

functions of the following three independent dimensionless variables: μ′/μ,m2
0/μ

2,

λ0 :
z1 = z1(

μ′

μ
,
m2

0

μ2
,λ0), z3 = z3(

μ′

μ
,
m2

0

μ2
,λ0).

The asymptotic value of �m2 is written in the form

�m2 = m2
0

[
1 − μ

′2

μ2
m(

μ′

μ
,
m2

0

μ2
,λ0)

]
, (9.2)

wherem is a dimensionless function of the indicated variables. Let us also introduce
the running coupling constant (often called the effective coupling constant)

λ(
μ′

μ
,
m2

0

μ2
,λ0)

d f= λ0z
−1
1 z23. (9.3)

Of course, for μ′ = μ the two subtraction points and the corresponding counterterms
coincide, hence z1 = 1, z3 = 1, m = 1 and λ = λ0.

The relation between the renormalized Green’s functions that follows from (9.1)
in the limit M → ∞ can be written in the form

G̃(n)
ren(p1, p2, . . . , pn;λ0,m

2
0,μ) = z

n
2
3 (

μ′

μ
,
m2

0

μ2
,λ0)

G̃(n)
ren(p1, p2, . . . , pn; λ(

μ′

μ
,
m2

0

μ2
,λ0), m2

0
μ

′2

μ2
m(

μ′

μ
,
m2

0

μ2
,λ0), μ′). (9.4)

Thus, if the change of the subtraction point μ → μ′ is accompanied by the substitu-
tions

λ0 → λ′ = λ(
μ′

μ
,
m2

0

μ2
,λ0), m2

0 → m
′2 = m2

0
μ

′2

μ2
m(

μ′

μ
,
m2

0

μ2
,λ0), (9.5)

and bymultiplication by zn/2
3 , we recover G̃(n)

ren(p1, p2, . . . , pn;λ0,m2
0,μ). Formulas

(9.5) can be regarded as a one-parameter family of transformations parameterized by
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t ≡ μ′/μ. This parameter has values in the infinite interval (0,∞), and t = 1 gives
the identity transformation. One may consider the pair (λ0,m2

0) as coordinates on
a plane. Then transformations (9.5), considered for a continuous range of t around
t = 1, give the curve

(λ(t,
m2

0

μ2
,λ0), m2

0t
2m(t,

m2
0

μ2
,λ0))

in that plane. Such a curve is called the renormalization group trajectory (or r.g.
flow) passing through the point (λ0,m2

0). The family of transformations (9.4) and
(9.5) parameterized but t ∈ (0,∞) is called the renormalization group.

The formula for the proper vertices analogous to (9.4) has the form

�̃(n)
ren(p1, p2, . . . , pn;λ0,m

2
0,μ)

= z
− n

2
3 �̃(n)

ren(p1, p2, . . . , pn; λ(
μ′

μ
,
m2

0

μ2
,λ0), m2

0
μ

′2

μ2
m(

μ′

μ
,
m2

0

μ2
,λ0), μ′). (9.6)

This formula follows, in the limit M → ∞, from a relation between the proper
vertices analogous to (9.1).

Note that formulas (9.4) and (9.6) may easily be generalized to cases where the
two subtraction schemes differ by much more than merely the concrete values of μ.
The renormalization constants Z1, Z3, δm2 and Z ′

1, Z
′
3, δm

2′
, which are divergent

in the limit M → ∞ may correspond to any two renormalization schemes that can
differ by the choice of regularization, as well as by the method of subtracting the
divergent terms. Still, we define z1 = Z ′

1/Z1, etc., as above, and obtain formulas
that relate the renormalized Green’s functions calculated in the two renormalization
schemes.

Formulas (9.4) and (9.6) provide a convenient starting point for the calculation
of z1, z3 and �m2, or equivalently z3,λ and m. We shall use the continuity of the
renormalized 1PI Feynman graphs contributing to �̃(2)

ren and �̃(4)
ren with respect to the

parameter μ′, see below. The perturbative contributions are generalized functions
of the external momenta, and therefore they can be singular at some momenta. For
example, Aren

1 (k2) given by formula (8.19) is singular at k2 = 0 in the case m2
0 = 0.

However, one can prove1 that the renormalized contributions to G̃(n)
ren(p1, . . . , pn),

after dropping the δ(
∑n

i=1 pi ) factor and eliminating pn (because pn = −∑n−1
i=1 pi ),

become smooth functions of the external four-momenta p1, . . . , pn−1 in the space-
like domain defined by the inequalities p2i < 0, pi pk < 0,where i, k = 1, . . . n−1.
In fact, this is the reason why the four-momenta of the symmetric subtraction point
are space-like.

Let us consider formula (9.6) with n = 4 and pi =(0)
p i (μ

′), where
(0)
p i (μ

′) are the
four-momenta from the symmetric point (8.18) with μ replaced by μ′. Due to the
subtractions, the contributions of all the graphs with one or more loops to

1The proof can be found in, e.g., [8].

http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
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Fig. 9.1 The graph
representing the first order
contribution to �̃(4)

�̃(4)
ren(

(0)
p 1 (μ′), . . . ,

(0)
p 4 (μ′); λ(

μ′

μ
,
m2

0

μ2
,λ0), m2

0
μ

′2

μ2
m(

μ′

μ
,
m2

0

μ2
,λ0), μ′),

vanish, c.f. the renormalization condition (8.17). The only nonvanishing contribution,
equal to−iλ/(2π)4, comes from the tree graph shown in Fig. 9.1. Therefore, just for
these particular external four-momenta, relation (9.6) can be written in the form

�̃4(
(0)
p 1 (μ′),

(0)
p 2 (μ′),

(0)
p 3 (μ′);λ0,m

2
0,μ) = −i

λ(
μ′
μ
,
m2

0
μ2 ,λ)

(2π)4z23
= − iλ0

(2π)4z1
, (9.7)

where �̃4 is defined by the formula

�̃(4)
ren(p1, p2, p3, p4;λ0,m

2
0,μ) = δ(

4∑
i=1

pi ) �̃4(p1, p2, p3;λ0,m
2
0,μ).

The l.h.s. of formula (9.7) is a nontrivial sum of 1PI graphs unless μ′ = μ. In the
latter case it is equal to −iλ0/(2π)4 �= 0. Also, because of continuity with respect to
μ′, it does not vanish for μ′ �= μ, at least when μ′ is sufficiently close to μ. Therefore,
formula (9.7) implies that for such μ′

z1 �= 0, z1 < ∞.

The functions z3 and m can be determined from formula (9.4), in which we put

n = 2 and pi =(0)
p i (μ′). The Green’s function on the r.h.s. is given by the zeroth

order contribution. Therefore formula (9.4) can be written in the form

G̃(−μ
′2;λ0,m

2
0,μ) = − iμ2z3

μ′2
(
μ2 + m2

0 m(
μ′
μ
,
m2

0
μ2 ,λ0)

) , (9.8)

where the function G̃ is defined by (8.29) and is represented by a nontrivial sum
of graphs. The r.h.s. is given by the tree graph (7.68). Contributions from all other
graphs vanish due to the subtractions, c.f. the renormalization conditions (8.32).
The subtractions for the 1PI graphs with two external lines contain two terms, see
formula (8.31). The presence of the term with the derivative implies the second
renormalization condition (8.32), which leads to the formula

http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
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G̃ ′(−μ
′2;λ0,m

2
0,μ) = − iμ4z3

μ′4
(
μ2 + m2

0 m(
μ′
μ
,
m2

0
μ2 ,λ0)

)2 , (9.9)

where

G̃ ′(−μ
′2;λ0,m

2
0,μ) = ∂G̃(p2;λ0,m2

0,μ)

∂(p2)

∣∣∣∣∣
p2=−μ′2

.

The notation in (9.8) and (9.9) takes into account the fact that G̃(p) is actually a
function of p2 when the four-momentum p1 is space-like. This function of p2 is
denoted by G̃(p2). Relations (9.8) and (9.9) give

z3(
μ′

μ
,
m2

0

μ2
,λ0) = i G̃2

G̃ ′ , m(
μ′

μ
,
m2

0

μ2
,λ0) = μ2

m2
0

(
G̃

μ′2G̃ ′ − 1

)
, (9.10)

where for brevity we have omitted the arguments of G̃ and G̃ ′. We conclude that z3
and m are finite, at least for μ′ sufficiently close to μ.

Apart from proving the finiteness of z1, z3 andm, formulas (9.7) and (9.10) show
also that these functions are uniquely determined by the renormalized Green’s func-
tions. Thus, we may say that formula (9.4) determines λ, z3 and m uniquely at least
for μ′ close enough to μ. This fact is crucial for the derivation of the renormalization
group equations presented below.

In the first step we derive a set of functional equations for λ, z3 andm. Let us add
a third subtraction point μ′′. Formula (9.4) relates the corresponding renormalized
Green’s functions

G̃(n)
ren(pi ;λ0,m

2
0,μ)

= z
n
2
3 (

μ′′

μ
,
m2

0

μ2
,λ0) G̃

(n)
ren(pi ;λ(

μ′′

μ
,
m2

0

μ2
,λ0),m

2
0
μ

′′2

μ2
m(

μ′′

μ
,
m2

0

μ2
,λ0),μ

′′). (9.11)

On the other hand,

G̃(n)
ren(pi ;λ′,m

′2,μ′)

= z
n
2
3 (

μ′′

μ′ ,
m

′2

μ′2 ,λ′) G̃(n)
ren(pi ;λ(

μ′′

μ′ ,
m

′2

μ′2 ,λ′),m
′2 μ

′′2

μ′2 m(
μ′′

μ′ ,
m

′2

μ′2 ,λ′),μ′′),

(9.12)

where λ′ and m ′2 are defined in formulas (9.5). Inserting formula (9.12) on the r.h.s.
of (9.4), we obtain the relation
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G̃(n)
ren(pi ;λ0,m

2
0,μ) = z

n
2
3 (

μ′

μ
,
m2

0

μ2
,λ0) z

n
2
3 (

μ′′

μ′ ,
m

′2

μ′2 ,λ′)

G̃(n)
ren(pi ;λ(

μ′′

μ′ ,
m

′2

μ′2 ,λ′),m
′2 μ

′′2

μ′2 m(
μ′′

μ′ ,
m

′2

μ′2 ,λ′),μ′′). (9.13)

Because of the above mentioned uniqueness of λ, z3 and m, and by comparing
relations (9.11) and (9.13),we conclude thatλ, z3 andm obey the following functional
equations2

λ(
μ′′

μ
,
m2

0

μ2
,λ0) = λ

(
μ′′

μ′ ,
m2

0

μ2
m(

μ′

μ
,
m2

0

μ2
,λ0),λ(

μ′

μ
,
m2

0

μ2
,λ0)

)
, (9.14)

m(
μ′′

μ
,
m2

0

μ2
,λ0) = m(

μ′

μ
,
m2

0

μ2
,λ0) m

(
μ′′

μ′ ,
m2

0

μ2
m(

μ′

μ
,
m2

0

μ2
,λ0),λ(

μ′

μ
,
m2

0

μ2
,λ0)

)
,

(9.15)
and

z3(
μ′′

μ
,
m2

0

μ2
,λ0) = z3(

μ′

μ
,
m2

0

μ2
,λ0) z3

(
μ′′

μ′ ,
m2

0

μ2
m(

μ′

μ
,
m2

0

μ2
,λ0),λ(

μ′

μ
,
m2

0

μ2
,λ0)

)
.

(9.16)
The functional equations obtained above can be used in order to generate various

differential equations (or rather identities). Equations of the Gell-Mann–Low type
are obtained by differentiating both sides of the functional equations with respect to
μ′′, and putting μ′′ = μ′ afterwards. In the case of (9.14) we obtain

t
∂λ(t,m2

0/μ
2,λ0)

∂t
= β(

m2
0

μ2
m(t,

m2
0

μ2
,λ0),λ(t,

m2
0

μ2
,λ0)), (9.17)

where
t = μ′/μ,

and the Gell-Mann–Low function β(m2/μ2,λ) is defined as follows:

β(
m2

μ2
,λ)

d f= ∂λ(x,m2/μ2,λ)

∂x

∣∣∣∣
x=1

. (9.18)

Here x just denotes the first argument of the function λ. Here it does not matter which
letter we use, because we finally put x = 1. From (9.15), we analogously obtain

t
∂ lnm(t,m2

0/μ
2,λ0)

∂t
= γm

(
m2

0

μ2
m(t,

m2
0

μ2
,λ0), λ(t,

m2
0

μ2
,λ0)

)
, (9.19)

2In the presented approach to the renormalization group they are just identities which follow from
the definitions of λ, m and z3. Nevertheless, we shall call them equations as in most textbooks.
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where

γm(
m2

μ2
,λ)

d f= ∂m(x,m2/μ2,λ)

∂x

∣∣∣∣
x=1

. (9.20)

Finally, (9.16) gives

t
∂ ln z3(t,m2

0/μ
2,λ0)

∂t
= γ

(
m2

0

μ2
m(t,

m2
0

μ2
,λ0), λ(t,

m2
0

μ2
,λ0)

)
, (9.21)

where

γ(
m2

μ2
,λ)

d f= ∂z3(x,m2/μ2,λ)

∂x

∣∣∣∣
x=1

. (9.22)

These differential equations are supplemented with the ‘initial conditions’

λ(1,
m2

0

μ2
,λ0) = λ0, m(1,

m2
0

μ2
,λ0) = 1, z3(1,

m2
0

μ2
,λ0) = 1. (9.23)

Note that in order to calculate the functions β, γm and γ it is sufficient to know the
functions λ, m and z3 for all t from an arbitrarily small open interval containing
t = 1. The differential equations (9.17), (9.19) and (9.21) can be used in order to
calculate these functions for t outside that arbitrarily small interval.

Another set of differential equations, called the Callan–Symanzik equations, is
obtained by differentiation of the functional equations (9.14)–(9.16) with respect to
μ′, next putting μ′ = μ, and finally changing the notation μ′′ → μ′. The derivatives
of the l.h.s.’s of the functional equations vanish, while on the r.h.s.’s we obtain
derivatives with respect to all three arguments. For example, (9.14) gives the Callan–
Symanzik equation for the running coupling constant:

t
∂λ(t,m2

0/μ
2,λ0)

∂t
− m2

0

μ2
γm(

m2
0

μ2
,λ0)

∂λ(t,m2
0/μ

2,λ0)

∂(m2
0/μ

2)

− β(
m2

0

μ2
,λ0)

∂λ(t,m2
0/μ

2,λ0)

∂λ0
= 0. (9.24)

The differentiation with respect to μ′ and subsequent substitution μ′ = μ applied to
formula (9.4) gives the Callan–Symanzik equation for G̃(n)

ren :

μ
∂G̃(n)

ren

∂μ
+ β(

m2
0

μ2
,λ0)

∂G̃(n)
ren

∂λ0

+ m2
0

[
γm(

m2
0

μ2
,λ0) + 2

]∂G̃(n)
ren

∂m2
0

+ n

2
γ(

m2
0

μ2
,λ0)G̃

(n)
ren = 0. (9.25)

The Callan–Symanzik equation for �̃(n)
ren has a similar form. It can readily be obtained

from relation (9.6).
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9.2 The Running Coupling Constant

The running coupling constant plays an important role in assessing the reliability
of the perturbative approximation. Let us introduce a dimensionless function g̃(n)

(which should not be confused with the regularizing function g̃ considered in the
previous chapters) such that

G̃(n)
ren(pi ;λ0,m

2
0,μ) = md0

0 g̃(n)(
pi
μ

;λ0,
m2

0

μ2
), (9.26)

where d0 = −3n is the dimension of G̃(n)
ren in units of mass.3 We have assumed

that m0 �= 0. The perturbative contributions to the renormalized Green’s function
can always be written in the form (9.26). One can see this from the formulas for
the BPHZ subtractions and for the free propagator �F (k): all external and internal
four-momenta k j are written as k j = μ k j/μ, where μ > 0, and the factors μ are
extracted, e.g.,

i

k2 − m2
0 + i0+

= μ−2 i

k2/μ2 − m2
0/μ

2 + i0+
.

The factors μ can also be extracted from the four-momenta
(0)
p i which appear in the

symmetric subtraction point (8.18), from the cutoff parameter M (M2 = μ2M2/μ2),
as well as from the four-momenta in δ(

∑
pi ). Finally, we write μ = m0 μ/m0 and

collect all factors m0. This gives the overall factor m
d0
0 . The definition (9.26), used

on both sides of relation (9.4), gives

g̃(n)(
pi
μ

;λ0,
m2

0

μ2
) =

(
μ′

μ

)d0

md0/2(
μ′

μ
,
m2

0

μ2
,λ0)

zn/2
3 (

μ′

μ
,
m2

0

μ2
,λ0) g̃(n)

(
pi
μ′ ;λ(

μ′

μ
,
m2

0

μ2
,λ0),

m2
0

μ2
m(

μ′

μ
,
m2

0

μ2
,λ0)

)
. (9.27)

Let us take particular four-momenta pi ,

pi = μ′

μ
p
i
, (9.28)

where the momenta p
i
are fixed. Then, the four-vectors pi/μ, pi/μ′ present in

formula (9.27) can be written as

3In the natural units (� = 1, c = 1) the field φ(x) has the dimension cm−1, and the vacuum state
vector |0〉 is dimensionless, hence [G(n)] = cm−n . The Fourier transform changes the dimension
by +4n. Therefore, [G̃(n)] = cm+3n = [m0]−3n .

http://dx.doi.org/10.1007/978-3-319-55619-2_8
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pi
μ

= t
p
i

μ
,

pi
μ′ = p

i

μ
,

where t = μ′/μ. Therefore,

g̃(n)(t
p
i

μ
;λ0,

m2
0

μ2
) = td0md0/2zn/2

3 g̃(n)

( p
i

μ
;λ,

m2
0

μ2
m

)
, (9.29)

where m, z3 and λ are functions of t,m2
0/μ

2 and λ0 as shown in (9.27). Using the
definition (9.26) again, we see that

G̃(n)
ren(t pi ;λ0,m

2
0,μ) = td0 zn/2

3 G̃(n)
ren(pi ;λ,m2

0 m,μ). (9.30)

On both sides of this relation we have the renormalized Green’s functions with the
same subtraction point μ.

Relation (9.30) shows that the renormalized Green’s functions calculated at the
four-momenta t p

i
in the model with coupling constant λ0, are related to the Green’s

functions calculated at the four-momenta p
i
in the model with the coupling constant

λ. It is essentially a consequence of straightforward dimensional analysis applied to
relation (9.4).

Suppose that there exists t0 such that λ(t,m2
0/μ

2,λ0) → 0 when t → t0.Because
λ is the actual coupling constant on the r.h.s. of formula (9.30), one may hope
that for pi ≈ t0 pi one can obtain a good approximation to G̃(n)

ren(t pi ;λ0,m2
0,μ)

by taking into account only the first few terms in the perturbative expansion for
G̃(n)

ren on the r.h.s. of formula (9.30). On the other hand, if λ diverges at a certain
t = t∞, i.e., λ(t,m2

0/μ
2,λ0) → ∞ when t → t∞, the perturbative approximation

is not trustworthy at the four-momenta pi ≈ t∞ p
i
. A more precise meaning of

these statements is as follows. Suppose that we have calculated the perturbative
approximation for G̃(n)

ren(pi ;λ0,m2
0,μ) up to a certain finite order in λ0 at certain

four-momenta p
i
. Relation (9.30) says that when we use such a perturbative formula

with the rescaled four-momenta t p
i
instead of p

i
, we may take as the four-momenta

again p
i
, but the coupling constant λ0 should then be replaced by λ (of course one

should also include the prefactors td0 zn/2
3 , and m). It is clear that we can trust the

perturbative formulawith the four-momenta equal to t p
i
whenλ < λ0, andwe should

be concerned about its usefulness if λ 
 λ0. At t∞ our approximation completely
breaks down. In practice, such considerations yield information about the reliability
of the perturbative approximation only for very small or very large four-momenta,
because working with the perturbative approximations for λ one usually finds that
t0 and t∞ are either equal to 0 or very large. Also note that all components of all
four-momenta in formula (9.30) are rescaled by the same factor t . It remains an open
question what happens if we keep finite, e.g., the momenta �pi and rescale only the
components p0i (the energies).

We have just seen that the behavior of the running coupling constant as a function
of t is crucial for checking in which asymptotic region we may trust the perturbative
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approximation. In order to investigate the behavior of λ we use the Gell-Mann–Low
equation (9.17), which has to be considered together with (9.19) form. The functions
β and γm can be computed from their definitions (9.18) and (9.20). To this end, we
only need to know λ and m for t ≈ 1. For this we may use formulas (9.7) and (9.10)
in which �̃4 and G̃ are calculated perturbatively.

As an example, let us find the form of equations (9.17) and (9.19) in the 1-loop
approximation, in which only graph A1 (Fig. 8.7) is present, apart from the zeroth
order graphs. The self-energygraph A2, Fig. 8.9, has two independent loops, therefore
it is discarded. Thus,

Z1 = 1 + 3λ0C1

2(2π)4
, Z3 = 1, δm2 = 0.

It follows that

z(1)
3 = 1, m(1)(

μ′

μ
,
m2

0

μ2
,λ0) = μ2

μ′2 = 1

t2
,

where the superscript (1) denotes the 1-loop approximation. Definition (9.20) gives
γ(1)
m = −2. In order to find β(1) we use the one-loop approximation for �̃4,

�̃4 = − iλ0

(2π)4
− 3iλ2

0

8(2π)6

∫ 1

0
dz ln

3m2
0/μ

2 + 4t2z(1 − z)

3m2
0/μ

2 + 4z(1 − z)
+ O(λ3

0), (9.31)

where we have used result (8.19) together with the combinatorial factor (4!)2 shown
in the first line of Fig. 7.6. The factor 3 in front of the integral appears because there
are three 1PI graphs (the first line in Fig. 7.6) which contribute to �̃4—because
the subtraction point is the symmetric one they give identical contributions. Since
z(1)
3 = 1, formulas (9.3), (9.7), (9.18), and (9.31) give

β(1)(
m2

0

μ2
,λ0) = 3λ2

0

16π2

∫ 1

0
dz

4z(1 − z)

4z(1 − z) + 3m2
0/μ

2
. (9.32)

Therefore, the Gell-Mann–Low equation (9.17) in the 1-loop order has the form

t
∂λ

∂t
= 3λ2

16π2

∫ 1

0
dz

4z(1 − z)

4z(1 − z) + 3m2
0/(μ

2t2)
. (9.33)

The integral over z is elementary, but it gives a rather complicated function of t .
Result (9.33) holds in the renormalization scheme used in Chap.8.

One can simplify the approximate form of the β function by adopting a special
renormalization scheme. Especially attractive in this respect is the so called mass
independent (MI) renormalization scheme in which one putsm0 = 0 in the constants
Z1 and Z3, but of course not in the original Feynman graphs. It turns out that such
subtractions are sufficient for the removal of the UV divergences.

http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_8
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For example, let us reconsider the graph A1 from Sect. 8.2. In the MI scheme we
replace definition (8.16) of the renormalized contribution by

AMI
1 (k2)

d f= lim
M→∞

(
A1(k

2; M) − A1((
(0)
k )2; M)|m0=0

)
, (9.34)

where in the first term on the r.h.s. we still keep the original value m0 > 0. With this
new definition, formula (8.19) for Aren

1 is replaced by

AMI
1 = iπ2 λ2

0

(4!)2(2π)8

∫ 1

0
dz ln

3m2
0 − 3k2z(1 − z)

4μ2z(1 − z)
.

It is clear that AMI
1 does not obey the renormalization condition (8.17).

The MI renormalization scheme has the same types of counterterms as discussed
in Sect. 8.5, only the concrete values of the constants Z1, Z3 and δm2 are different.
Therefore, the multiplicative renormalization formulas (8.38) and (8.40) are still
valid.

Let us calculate the β function in the MI scheme in the 1-loop approximation.
Because Z1 and Z3 do not depend on m2

0, the same is true for z1, z3 and, in conse-
quence, for λ defined by formula (9.3). Therefore, the dimensional analysis applied
to λ in the MI scheme implies that it is a function of t = μ′/μ and λ0,

λ = λMI (t,λ0).

Definition (9.18) implies thatβ in (9.17) depends only onλ. Hence, in theMI scheme,
the Gell-Mann–Low equation (9.17) decouples from the equation for m,

t
∂λMI (t,λ0)

∂t
= βMI (λMI (t,λ0)). (9.35)

In order to calculate βMI we need λMI for t ≈ 1. The perturbative approximation for
it can be directly found from definition (9.3), and the definitions of z1 and z3 given
at the beginning of Sect. 9.1. For example, if we calculate βMI in the 1-loop order,
we may put z3 = 1 as before. The counterterm giving Z1 is essentially defined by
formula (9.34). Including appropriate numerical factors and taking the limitM → ∞
we find that

zM I
1 = lim

M→∞
Z ′
1

Z1
= 1 − 3λ0

16π2
ln t + O(λ2

0).

Therefore,

λMI = λ0 + 3λ2
0

16π2
ln t + O(λ3

0), (9.36)

http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
http://dx.doi.org/10.1007/978-3-319-55619-2_8
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and finally in the 1-loop approximation

βMI (λ0) = 3λ2
0

16π2
. (9.37)

Let us insert formula (9.37) on the r.h.s. of (9.35),

t
∂λMI (t,λ0)

∂t
= 3

16π2
(λMI (t,λ0))

2.

The solution of this equation with the ‘initial condition’

λMI (1,λ0) = λ0

has the form

λMI (t,λ0) = λ0

1 − 3
16π2 λ0 ln t

. (9.38)

Comparing (9.38) with formula (9.36), we see that the first two terms in the expan-
sions in powers of λ0 coincide, but (9.38) contains terms of an arbitrarily high order.
Formula (9.38) is often called the renormalization group improved version of (9.36).
Of course, formula (9.38) is not the exact formula for the running coupling constant,
because we have used the approximate form of the β function.

Formula (9.38) implies that

t0 = 0, t∞ = exp(
16π2

3λ0
) ≈ (7.25 × 1022)1/λ0 .

Thus, we may expect that when the four-momenta become large, the quality of the
perturbative approximation will worsen.

In the model λ0 :φ3
6:, which involves the real scalar field in a six-dimensional

space-time with the (self)interaction λ0 :φ3:, one finds that the first non-vanishing
contribution to the β function has the form

βMI (λ0) = −a1λ
3
0,

where a1 is a positive constant. In this case, the Gell-Mann–Low equation (9.35)
gives

λMI (t,λ0) = λ2
0

1 + 2a1λ2
0 ln t

.

Hence, in this model

t0 = ∞, t∞ = exp(− 1

2a1λ2
0

) < 1.
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Now the accuracy of the perturbative approximation is better at the large four-
momenta t p

i
, t 
 1, and worse at the four-momenta t p

i
, t < 1. Models in which

λ → 0 as t → ∞ are called asymptotically free. The :φ3
6: model is renormalizable,

but it is not very interesting because of the large dimensionality of the space-time,
and also because the corresponding quantumHamiltonian is likely not bounded from
below. A much more interesting asymptotically free theory is provided by the quan-
tum Yang–Mills fields. This theory is the main ingredient of modern theories of
interactions of particles. It is discussed in Chap.12.

9.3 Dimensional Transmutation

Dimensional transmutation is the phenomenon of an emerging physical mass scale
in superficially massless quantum field models. For example, the classical theory of
the Yang–Mills fields contains a dimensionless coupling constant g and no explicit
mass parameter (m0 = 0). On the other hand, there are many indications of particles
called glueballs with a non-zero rest mass in the quantum version of that theory. It
is a puzzle as to how a non-zero rest mass can be obtained in a theory, in which
no dimensional parameter is available. In fact, it cannot be obtained in the classical
theory, but the quantum theory of the Yang–Mills field actually contains a dimen-
sional parameter, namely the subtraction parameter μ, or equivalent parameters in
other renormalization schemes. This answer is not fully satisfactory because μ has
no physical meaning—it can have arbitrary positive values. However, it turns out that
by using μ one can construct a parameter of the dimension of mass which is constant
on the renormalization group trajectory, hence that parameter belongs to the set of
physical characteristics of the model.

A physically meaningful quantity F(λ0,m2
0,μ), defined within the perturbative

approach, should be constant on the trajectories (9.5) of the renormalization group
transformations—in other words, F should be invariant under the renormalization
group transformations,

F(λ0,m
2
0,μ) = F

(
λ(

μ′

μ
,
m2

0

μ2
,λ0),m

2
0
μ

′2

μ2
m(

μ′

μ
,
m2

0

μ2
,λ0),μ

′
)

. (9.39)

The differential form of this condition is obtained by differentiation with respect to
μ′ and putting μ′ = μ,

μ
∂F(λ0,m2

0,μ)

∂μ

+ β(
m2

0

μ2
,λ0)

∂F(λ0,m2
0,μ)

∂λ0
+ m2

0

[
2 + γm(

m2
0

μ2
,λ0)

] ∂F(λ0,m2
0,μ)

∂m2
0

= 0.

(9.40)

http://dx.doi.org/10.1007/978-3-319-55619-2_12
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It is the Callan–Symanzik equation for F . Note that the renormalized Green’s func-
tions G̃(n)

ren do not obey condition (9.39)—they are not invariant with respect to the
renormalization group transformations (9.5).

In the massless case (m0 = 0) (9.40) reduces to

μ
∂F(λ0,μ)

∂μ
+ β(λ0)

∂F(λ0,μ)

∂λ0
= 0. (9.41)

It is clear that F(λ0,μ) = μ does not obey this condition. On the other hand, let us
take

F(λ0,μ) = �(λ0,μ)
d f= μ exp

(
−

∫ λ0

a

dλ′

β(λ′)

)
, (9.42)

where a is a constant. Simple calculation shows that�(λ0,μ) obeys condition (9.40),
hence it is a renormalization group invariant. It provides the physically meaningful
mass scale. Of course, λ0 and the constant a should be chosen in such a way that the
integral in the exponent exists.

Exercises

9.1 Compute �(λ0,μ) for the massless :φ4
4: and :φ3

6: models using the results of
Sect. 9.2. Analyze the behavior of � when λ0 → 0+.

9.2 Using the value of the Z3 renormalization constant, calculated for the subtraction

point
(0)
p such that (

(0)
p )2 = −μ2 in Exercise 8.10,

Z3 = Z3(μ) = 1 − e20
2π2+ε

�(ε)

1∫
0

dx x(1 − x)
(
m2

0 + x(1 − x)μ2
)−ε

,

and the relation e(μ) = √
Z3(μ) eb, find the form of the one-loop beta function in

QED in the case μ 
 m0.

Answer:

β(e(μ)) = e3(μ)

12π2
+ O (

e5(μ)
)
.

http://dx.doi.org/10.1007/978-3-319-55619-2_8


Chapter 10
Relativistic Invariance and the Spectral
Decomposition of G(2)

Abstract The requirements for a relativistically invariant quantumfield theory.Gen-
erators of the unitary representations of the universal covering group of the Poincaré
group, and their commutation relations. The spectral decomposition of the two-point
function G(2) in the quantum theory of the real scalar field. The contribution of the
single particle states. The pole of G̃(2) at the physical value of p2 of the single particle.
Finite mass corrections to the renormalized two-point function.

We have seen how one can perturbatively compute Green’s functions in the :φ4
4:

model. For purely mathematical reasons, we have had to introduce the regularizing
function g, which does not have any physical meaning. Next, we have shown that
one can redefine the model (by including the subtractions) in such a way that the
regularizing function can be removed. This is done graph by graph, and the sum of
all such renormalized graphs up to a certain finite order defines the renormalized,
perturbative Green’s functions. Computations of infinite sums of graphs are possible
only in rather special cases, because calculations of contributions represented by
graphs with a large number of loops in general are prohibitively complicated.

In the presence of the regularizing function, the model, and in particular the
interaction Hamiltonian V̂Ig, is well-defined in the Fock space spanned by the basis
states |0I 〉, â†I (�k)|0I 〉, . . .. We expect that the perturbatively calculated renormal-
ized Green’s functions are approximations of Green’s functions of a certain rela-
tivistic model which can be called the exact :φ4

4: model. We have already mentioned
in Chap.7 that we do not know how to construct such an exact model. Neverthe-
less, accepting a number of reasonable assumptions about its properties, we can
derive a certain formula for the exact Green’s function G̃(2), known as the spectral
decomposition. The assumptions include the relativistic invariance and the particle
interpretation. Next, by comparing the spectral decomposition with the perturbative,
renormalized Green’s function G̃(2)

ren , we shall see that if the latter is to be an approxi-
mation to the exact Green’s function, the mass parameterm2

0 of the initial Lagrangian
(7.1) has to be chosen in a special way. Only in the zeroth order is this parameter
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H. Arodź and L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
Graduate Texts in Physics, DOI 10.1007/978-3-319-55619-2_10

225

http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7


226 10 Relativistic Invariance and the Spectral Decomposition of G(2)

equal to m2, that is to the square of the rest mass of the scalar particle associated
with the field φ̂(x). In general, m2

0 = m2 (1+ a2λ2
0 + a3λ3

0 + . . .), where a2, a3, . . .
are dimensionless functions of m2/μ2. They can be calculated within the framework
of the renormalized perturbative expansion.

10.1 Relativistic Invariance in QFT

Similarly as in Sect. 3.1, we consider the proper orthochronous Lorentz transforma-
tions, which form the group L↑

+, and the translations in Minkowski space-time (the
group T4). Together they form the Poincaré group P ,

P = {(L̂, a) : L̂ ∈ L↑
+, a ∈ T4}.

In the present context of relativistic invariance we adopt the so called passive inter-
pretation of the Poincaré transformations

x
′μ = Lμ

νx
ν + aμ, (10.1)

where L̂ = (Lμ
ν), a = (aμ) do not depend on xμ. Namely, formula (10.1) is

regarded as a change of Cartesian coordinates in Minkowski space-time M . Thus,
xμ and x

′μ are coordinates of the same point in M . The alternative (so called active)
interpretation assumes that we use one Cartesian coordinate system in M and (10.1)
defines a transformation of the points in M : the point x with the coordinates xμ is
moved to the point x ′ with the coordinates x ′μ.

Thus, the Poincaré transformation (10.1) now represents a change of inertial ref-
erence frame in which we investigate the fields. The fundamental assumption is that
such frames are equivalent in the sense that all physical laws, which in particular say
which phenomena are possible and which are not, are identical in all of them.1

The group multiplication in P has the form

(L̂2, a2)(L̂1, a1) = (L̂2 L̂1, L̂2a1 + a2). (10.2)

The Poincaré group is the most important group of symmetries of Minkowski space-
time. Its unitary irreducible representations (UIR’s) appear in the definition of the
relativistically invariant quantum field theory (QFT) given below.

1This does not have to be true if one generalizes Poincaré transformations (10.1). For example,
often one performs a Lorentz transformation to the rest frame of an accelerated particle. Such a
Lorentz transformation is time-dependent, because the particle changes its velocity. The rest frame
is non-inertial, and the transformation is not a symmetry. The physics in the rest frame is different
from that of the inertial laboratory frame, because in the former case any physical object (particles
or fields) is affected by special forces like the centrifugal one. In the rest frame they are real forces,
which in quantum field theory may lead, e.g., to creation of particle-antiparticle pairs. Such forces
are absent in the inertial laboratory frame.

http://dx.doi.org/10.1007/978-3-319-55619-2_3
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The theory of the symmetry of quantum systems was developed mainly by
E.P.Wigner. It belongs among themost beautiful pieces of theoretical physics. Below
we briefly outline the main points of that theory.

Let us begin from the observation that physical states2 of the quantum system are
represented by (that is, they are in one-to-one correspondence with) rays in a Hilbert
spaceH, and not with vectors inH. The ray [ψ] is the set of all vectors inH obtained
from a single vector |ψ〉 by multiplying it by an arbitrary complex number different
from 0. Thus,

[ψ] = {c|ψ〉 : c ∈ C, c �= 0}. (10.3)

Any concrete vector belonging to the given ray is called a representative of that
ray. Actually, it is sufficient to consider normalized rays, obtained by adding the
restrictions

|c| = 1, 〈ψ|ψ〉 = 1.

In the following we use only the normalized rays. The space of physical pure states
can be identified with the space of all normalized rays in H. We will denote it by
RH.

As we know from quantum mechanics, physical predictions are obtained by cal-
culating scalar products of vectors from H. More precisely, the physically relevant
quantity is

([ψ] | [χ]) d f= |〈ψ|χ〉|.

It does not depend on the choice of the representatives of the rays, as opposed to the
scalar product. Expectation values of an observable Â, given by the formula 〈ψ| Âψ〉,
also do not depend on the choice of representative c|ψ〉 of the normalized ray [ψ].

Let us consider a certain Poincaré transformation of the states of a quantum
system. It is represented by an operator UR in the space RH. Thus, UR transforms
each normalized ray into a normalized ray. Both [ψ] and UR[ψ] represent states of
the field with respect to the reference frame (xμ). We may look at the field in the
state [ψ] also from a reference frame (x

′μ) defined by (10.1). Then we shall see
the field in a state represented by [ψ′]. The operator UR is defined by the formula
[ψ′] = UR[ψ]. Thus, the stateUR[ψ] of the field seen from reference frame (xμ), and
the state [ψ] seen from reference frame (x

′μ), look the same. If the transformation
is to be a symmetry of the system, it should leave invariant both the space of states
and the product ([ψ] | [χ]), that is

(i) URRH = RH, (i i) (UR[ψ] |UR[χ]) = ([ψ] | [χ])

2For brevity, we discuss here only pure states. Themost general space of states includesmixed states,
represented by density operators. However, suchmixed states can be regarded as being composed of
several pure states, therefore one may introduce the notion of symmetry using only the pure states.
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for all [ψ], [χ] ∈ RH. The meaning of condition (i) is that the full space RH of states
of the quantum field in reference frame (xμ) coincides with the full space of states
URRH of that field in reference frame (x

′μ). Condition (i i) says that the probability
of finding the state [ψ] in the state [χ], both states given with respect to reference
frame (xμ), does not change if we look at these states from reference frame (x

′μ).

Conditions (i) and (i i) give the precise formulation of the equivalence of the two
inertial reference frames.

E.P.Wigner has shown that every symmetry transformationUR can be represented
in the Hilbert space H by an operator U such that:

(I a) UH = H

and
(I b) 〈Uψ|Uψ〉 = 〈ψ|ψ〉

for all |ψ〉 fromH. Moreover,

(I c) U (|ψ〉+|χ〉) = U |ψ〉+U |χ〉

for all |ψ〉 and |χ〉 fromH, and either

(I d) U (c|ψ〉) = c U |ψ〉

or

(I e) U (c|ψ〉) = c∗ U |ψ〉,

where c is an arbitrary complex number with c∗ its complex conjugation. It is clear
that U transforms rays into rays, and precisely this transformation of rays coincides
with UR .

In the case (I d) the operator U is unitary, while in the case (I e) it is called
antiunitary. Properties (I b − I e) allow us to compute 〈Uψ|Uχ〉 also when ψ �= χ
because

〈ψ1|ψ2〉 = 1

4
〈ψ1 + ψ2|ψ1 + ψ2〉 − 1

4
〈ψ1 − ψ2|ψ1 − ψ2〉

− i

4
〈ψ1 + iψ2|ψ1 + iψ2〉 + i

4
〈ψ1 − iψ2|ψ1 − iψ2〉.

The r.h.s. of this formula contains only the norms of vectors |ψ1〉 ± |ψ2〉 and |ψ1〉 ±
i |ψ2〉, to which we may apply (I b). Using that formula for |ψ1〉 = U |ψ〉 and |ψ2〉 =
U |χ〉 we find that in the unitary case (I d)

〈Uψ|Uχ〉 = 〈ψ|χ〉.
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In the antiunitary case U |ψ〉 ± iU |χ〉 = U (|ψ〉 ∓ i |χ〉) and therefore

〈Uψ|Uχ〉 = 〈χ|ψ〉.

In the relativistically invariant QFTwe demand that each Poincaré transformation
be a symmetry. Hence, for each element (L̂, a) from P we have an operatorU (L̂, a)

inH, which has the properties (I a)–(I c), and also (I d).
Wechoose (I d) andnot (I e) for the following reason.ThePoincaré group includes

the trivial transformation (I4, 0). It is natural to demand that it be represented by the
unit operator I inH

U (I4, 0) = I, (10.4)

and this operator is of course unitary. Another natural assumption is that the operator
U (L̂, a) depends on L̂ and a in a continuous manner. In particular, U (L̂n, an) → I
if the sequence (L̂n, an) is convergent to the trivial element (I4, 0) when n → ∞.

Now, suppose that the operators U (L̂n, an) are antiunitary. Then, for any |ψ〉 ∈ H

U (L̂n, an)(i |ψ〉) = −iU (L̂n, an)|ψ〉.

Because of the continuity the l.h.s. is convergent to i |ψ〉 while the r.h.s. to −i |ψ〉,
and we obtain a contradiction. Thus, all operators U (L̂, a) have to be unitary.

Yet another requirement imposed on the operatorsU (L̂, a) stems from the fact that
twoconsecutivePoincaré transformations, first g1 = (L̂1, a1) and then g2 = (L̂2, a2),
are equivalent to the product transformation g2g1 = (L̂2 L̂1, L̂2a1 + a2). It is natural
to demand that the same holds for the corresponding transformations of the rays in
H, that is that

UR(L̂2, a2)UR(L̂1, a1) = UR(L̂2 L̂1, L̂2a1 + a2). (10.5)

On the level of the operators in the Hilbert space H property (10.5) is represented
by the formula

U (g2)U (g1) = exp(iω(g2, g1)) U (g2g1), (10.6)

where ω(g2, g1) is a real-valued function of the indicated variables. The phase factor
exp(iω) is called the cocycle. We assume that it is a continuous function of g1 and
g2. The set of all unitary operatorsU (g) in the given Hilbert spaceH, where g ∈ P ,
is called a unitary, projective representation of the Poincaré group if all U (g) obey
conditions (10.4) and (10.6), and also the condition of continuity with respect to g.
‘Projective’ refers to the presence of the cocycle—in the case ω(g2, g1) = 1 for all
g1, g2 ∈ P we just say ‘unitary representation’.

The presence of the cocycle is a characteristic feature of symmetries of quantum
systems. For many groups, e.g., SU (N ) groups, it can be removed just by redefining
the representation operators U (g). In the case of rotations (the SO(3) group), as
well as for the Lorentz and Poincaré groups which contain SO(3) as a subgroup, the
cocycle cannot be completely removed. Wigner has proved that all unitary projective
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representations of P can be divided into two classes. In the first class, relevant for
bosonic fields and integer spin particles, the cocycle can be completely removed just
by redefining U (g). In the second class, related to fermionic fields and particles of
half-integer spin, the cocycle can be removed only if we introduce a double-valued
unitary representation: for any given g ∈ P we have two operators ±U (g). It is
a well-known fact that in the theory of continuous multivalued complex functions
of a complex variable z ∈ C one can remove the multivaluedness by extending the
domain of the z variable from C to an appropriate Riemann surface. In the case of
representations of the Poincaré group, there exists an analogous construction: each
double-valued unitary representation U of P in H is equivalent to a single-valued
unitary representation (also in H) of a group P̃ larger than P . That new group
is called the universal covering group. It consists of all pairs of the form (�, a),

where a is an arbitrary translation as before, while � is an arbitrary element of the
SL(2,C) group. Let us recall that the SL(2,C) group consists of all the 2 by 2
complex matrices with the determinant equal to +1. Such a set of matrices forms
the group with respect to the matrix product. The relation between SL(2,C) and L↑

+
was discussed in Sect. 5.1, see formulas (5.22) and (5.23). We recall it in Sect. 10.3
below. Because � and −� give the same L̂ ∈ L↑

+, SL(2,C) covers P twice. The
group product in P̃ has the form (�1, a1)(�2, a2) = (�1�2, L̂(�1)a2 + a1), where
L̂(�1) is the Lorentz transformation corresponding to �1. The unit element has the
form (σ0, 0). Thus,

Ũ (�, a)H = H,

〈Ũ (�, a)ψ|Ũ (�, a)χ〉 = 〈ψ|χ〉

for all |ψ〉, |χ〉 ∈ H, and

Ũ (�1, a1)Ũ (�2, a2) = Ũ (�1�2, L̂(�1)a2 + a1).

The correspondence between SL(2,C) and L↑
+ becomes an isomorphism if we

take �’s from a certain not-too-large vicinity of the 2 by 2 unit matrix σ0. Such
�’s can be smoothly parameterized by the 6 real parameters known from Sect. 3.1:
ω12,ω23,ω31,ω01,ω02,ω03. Thus, in that vicinity of the unit element of P̃ , we may
useω anda as the parameters: g = (�(ω), a),whereω denotes the six real parameters
specified above. It is clear that �(ω = 0) = σ0.

It turns out that in the case of continuous unitary representations of P̃ which
appear in QFT, the operators Ũ (�(ω), a) can be written as an infinite series with
respect to ωμν’s and aμ’s:

Ũ (�(ω), a) = I + iaμ P̂μ + i

2
ωμν M̂μν + . . . , (10.7)

where by definition
M̂μν = −M̂νμ.

http://dx.doi.org/10.1007/978-3-319-55619-2_5
http://dx.doi.org/10.1007/978-3-319-55619-2_5
http://dx.doi.org/10.1007/978-3-319-55619-2_5
http://dx.doi.org/10.1007/978-3-319-55619-2_3
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This last condition is related to the fact thatωμν = −ωνμ.The factor 1/2 is introduced
in order to cancel the factor 2 from

ωμν M̂μν = 2
( 3∑

i=1

ω0i M̂0i + ω12M̂12 + ω23M̂23 + ω31M̂31
)
.

Because Ũ (g) are unitary operators, the operators P̂μ and M̂μν are Hermitian—this
is the reason for extracting the factors i in the second and third term on the r.h.s. of
formula (10.7). P̂μ and M̂μν are called the generators of the representation Ũ in the
chosen parametrization (ω, a).

The group structure of P̃ implies commutation relations for P̂μ and M̂μν . In order
to derive them we first notice that

P̂μ = −i
∂Ũ (�(ω), a)

∂aμ

∣
∣∣∣∣
ω=0, a=0

, M̂μν = −i
∂Ũ (�(ω), a)

∂ωμν

∣
∣∣∣∣
ω=0, a=0

. (10.8)

Now, consider the following identity

Ũ (σ0, a1) Ũ (σ0, a2) = Ũ (σ0, a1 + a2) = Ũ (σ0, a2) Ũ (σ0, a1).

The derivative with respect to aμ
1 taken at a1 = 0 gives

i P̂μŨ (σ0, a2) = ∂Ũ (σ0, a2)

∂aμ
2

= iŨ (σ0, a2)P̂μ. (10.9)

This formula implies that the operators P̂μ are invariantwith respect to translations,
that is that

Ũ−1(σ0, a2)P̂μŨ (σ0, a2) = P̂μ. (10.10)

The l.h.s. of this formula is, by definition, the transformation of the operator P̂μ

corresponding to the symmetry represented by Ũ . It is a general postulate of quantum
theory that the action of a unitary symmetry transformation Ũ (g) on an operator Q̂
in the Hilbert space H has the form

Q̂ → Q̂′ d f= Ũ−1(g)Q̂Ũ (g). (10.11)

Let us take the derivative of both sides of formula (10.9) with respect to aν
2 at

a2 = 0. The result can be written as

[P̂μ, P̂ν] = 0. (10.12)

We see that the generators of space-time translations commute with each other. In a
relativistically invariant theory, the generator of time translations P̂0 coincides with
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the quantum Hamiltonian of the considered field, and P̂ i coincide with components
of the operator of the total momentum of the field.

The first part of formula (10.9), namely

i P̂μŨ (σ0, a2) = ∂Ũ (σ0, a2)

∂aμ
2

,

can actually be regarded as a set of differential equations for Ũ (σ0, a2). Because P̂μ

commute, the solution which obeys the condition Ũ (σ0, 0) = I has the form

Ũ (σ0, a2) = exp(iaμ
2 P̂μ). (10.13)

Acting with −i∂/∂aμ on both sides of another identity, namely

Ũ (�, 0) Ũ (σ0, a) = Ũ (σ0, L(�)a) Ũ (�, 0), (10.14)

and setting a = 0, we obtain

Ũ (�, 0)P̂μ = P̂νL(�)νμŨ (�, 0). (10.15)

This formula can be written in the form

Ũ−1(�, 0)P̂μŨ (�, 0) = L(�)μν P̂
ν, (10.16)

(as always, we raise the indices using ημν : P̂ν = ηνμ P̂μ). Formula (10.16) says that
the operators P̂μ transform under Lorentz transformations as components of a four-
vector. Formula (10.15) implies the commutation relation between P̂μ and M̂ρλ: we
take the derivative of both sides of it with respect to ωρλ and we put ω = 0. Because
L(�)νμ = δν

μ + ων
μ + O(ω2), we have

∂L(�)νμ

∂ωρλ

∣∣∣
∣
ω=0

= δν
ρημλ − δν

λημρ,

and therefore
M̂ρλ P̂μ = −i(P̂ρημλ − P̂λημρ) + P̂μM̂ρλ,

or
[M̂ρλ, P̂μ] = i(ημρ P̂λ − ημλ P̂ρ). (10.17)

Finally, let us consider the identity

Ũ−1(�(ω), 0) Ũ (�(ω1), 0) Ũ (�(ω), 0) = Ũ (�−1(ω)�(ω1)�(ω), 0),
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where �−1(ω) ≡ (�(ω))−1. Its derivative with respect to ω1μν at ω1 = 0 gives

Ũ−1(�, 0)M̂μνŨ (�, 0) = L(�)μσL(�)νρM̂
σρ, (10.18)

where � = �(ω) (Exercise 10.1). This formula shows that the operators M̂μν trans-
form as components of a second rank tensor.

Note that formula (10.14) implies that the operators Mσρ also have a nontrivial
transformation law with respect to translations:

Ũ−1(σ0, a)M̂σρŨ (σ0, a) = M̂σρ + Ũ−1(σ0, a)(aρ P̂σ − aσ P̂ρ),

(Exercise 10.2).
Taking the derivative of both sides of formula (10.18) with respect to ωαβ at

ω = 0, and lowering the indices, we find that

[M̂αβ, M̂μν] = i(ηαμM̂βν − ηαν M̂βμ + ηβν M̂αμ − ηβμM̂αν). (10.19)

We have emphasized in Chap.2 that a symmetry transformation in classical field
theory transforms solutions of the pertinent field equations into solutions of the same
equations. Similarly as in Chap.2, we will use the general notation ui (x) for the
classical fields. Their relativistic transformation law can be written in the general
form as

u′
i (x) = Vik(L̂)uk(L̂

−1(x − a)). (10.20)

In particular, Vik(L̂) = δik when ui (x) is a set of scalar fields, Vik(L̂) = Lμ
ν for a

vector field ui (x) = W ν(x), or V (L̂) = S(L̂) if {ui } = ψ is the Dirac field. The
corresponding quantum fields in the Heisenberg picture are denoted by ûi (x). By
definition, their transformation law has the form (10.11), that is

û′
i (x)

d f= Ũ−1(�, a) ûi (x) Ũ (�, a). (10.21)

The quantum field is called a scalar, vector, bispinor, etc., if the definition (10.21)
implies that

(I I ) û′
i (x) = Vik(L̂(�)) ûk(L̂

−1(�)(x −a)), (10.22)

where Vik(L̂(�)) has the same form as in the classical case (10.20).
In particular, the quantum field φ̂(x) is called a relativistic scalar field if it obeys

the condition

(I I ′) Ũ−1(�, a)φ̂(x)Ũ (�, a) = φ̂(L̂−1(�)(x − a)) (10.23)

http://dx.doi.org/10.1007/978-3-319-55619-2_2
http://dx.doi.org/10.1007/978-3-319-55619-2_2
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for all (�, a) ∈ P̃ . Differentiation of this formula with respect to aμ and ωμν gives,
after setting a = 0 and ω = 0, the conditions

[P̂μ, φ̂(x)] = −i∂μφ̂(x), (10.24)

[M̂μν, φ̂(x)] = −i(xν∂μ − xμ∂ν)φ̂(x). (10.25)

Actually, one can prove that they are equivalent to (10.23).
To summarize, the first requirement for a relativistically invariant quantum field

theory is that in the Hilbert space of the model there exists a unitary representation
Ũ of the group P̃ . The second requirement concerns the quantum fields: we demand
that the transformed quantum field û′

i (x), which is defined by formula (10.21), be
a solution of the Heisenberg equation of motion together with ûi (x), and that the
quantum field ûi (x) obeys condition (10.22).

It turns out that in order to obtain the representation Ũ it is sufficient to know
the operators P̂μ and M̂μν obeying commutation relations (10.12), (10.17), (10.19),
(10.24) and (10.25). The proof of this theorem is based on the fact that any element
of the group P̃ can be written as a product of sufficiently many elements from
a small vicinity of the unit element (σ0, 0). The same is true for representation
operators Ũ . For each factor in that productwemayuse expansion (10.7), inwhich the
terms denoted by dots may be neglected. Therefore, in practice one rarely explicitly
introduces the unitary operators Ũ—it is sufficient to consider the generators P̂μ and
M̂νσ.

The third groupof requirements for a relativistically invariant quantumfield theory
is related to its particle interpretation. Such an interpretationmeans that in the Hilbert
space of the model there exists a basis which consists of states with definite numbers
of particles, including a single state without any particles3: the vacuum state |0〉. A
generic state is a superposition of these basis states—it can have components with
various numbers of particles. In general, such basis states are not eigenstates of the
Hamiltonian of the quantum field, because of interactions between particles which
can lead to the creation or annihilation of them, while the eigenstates can change in
time only by a phase factor, hence their particle content is constant in time. In the free
field models discussed in Chap. 6 such interactions are absent, and in consequence
the basis states in the Fock space can be chosen in such away that they are eigenstates
of the pertinent Hamiltonians and particle number operators.

In the theory with the particle interpretation, physical characteristics of a given
state of the field can be regarded as contributions from the particles present in that
state. For example, the total energy of the field in a certain statewith a definite number
of particles, that is the expectation value of the Hamiltonian in that state, has the form
of the sum of the kinetic energies of the particles and energies of interactions between

3If in the classical system spontaneous symmetry breaking is present, one has to pick one of the
several classical ground states in order to construct the corresponding quantum model, and then the
quantum vacuum state corresponds to that chosen classical ground state. The remaining classical
ground states are not incorporated into such quantum theory.

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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them, weighted by appropriate probability densities. The vacuum state |0〉 does not
contain any particles. Hence, there is no kinetic or interaction energy involved, and
such a state should be the eigenstate of the quantum Hamiltonian of the field with
vanishing eigenvalue, E = 0:

Ĥ |0〉 = 0. (10.26)

For the same reason, it is assumed that E = 0 is the smallest eigenvalue of Ĥ—when
particles are present the energy is larger because of the relativistic kinetic energies√ �p 2 + m2, where m is the rest mass of the particle.4 Furthermore, the state without
any particles should have vanishing total momentum,

P̂ i |0〉 = 0. (10.27)

Nowwe are ready to state the third group of requirements for relativistic invariance
in QFT. In accordance with conditions (10.26) and (10.27), we demand that the
vacuum be invariant under space-time translations:

(I I I a) Ũ (σ0, a)|0〉 = |0〉.
(10.28)

One more requirement is that the vacuum state should look identical to all
observers related to each other by the Lorentz transformations:

Ũ (�, 0)|0〉 = eiχ(�)|0〉,

where eiχ(�) is a phase factor, which can depend on� ∈ SL(2,C). This phase factor
has the property

eiχ(�1)eiχ(�2) = eiχ(�1�2)

for all �1,�2 ∈ SL(2,C), which is obtained by applying both sides of the iden-
tity Ũ (�1, 0)Ũ (�2, 0) = Ũ (�1�2, 0) to the vacuum state. One can show that the
mapping SL(2,C) � � → eiχ(�) is a one dimensional unitary representation of the
SL(2,C) group. On the other hand, it is known that all unitary representations of
this group are infinite dimensional, except for the trivial one for which eiχ(�) = 1.
Thus, the phase factors are equal to 1, and

(I I I b) Ũ (�, 0)|0〉 = |0〉
(10.29)

for all � ∈ SL(2,C).

In the classical theory the energy can always be shifted by a constant. In the
relativistically invariant quantum field theory this is no longer true. The structure of

4Notice that this means that we hope that the particles and the vacuum state can be defined in such
a manner that the interaction energies cannot render the total energy of the states with particles
negative.
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such a theory is so tight, that such freedom is not allowed. To see this, let us suppose
that the vacuum state has non vanishing energy or momentum,

P̂μ|0〉 = pμ
(0)|0〉.

Applying both sides of formula (10.16) to the vacuum state and using (10.29) we
find that

pν
(0) = L(�)νμ p

μ
(0)

for all L̂ from the L↑
+ group. This is possible only if pν

(0) = 0.Thus, the vacuum has to
have vanishing energy and momentum if the quantum model is to be relativistically
invariant. Another consequence of the lack of freedom of adding a constant to the
energy is that the energy of a single free particle of momentum �p, which is equal to√ �p 2 + m2 as we have found when discussing the free quantum field models, also
cannot be shifted by a constant.

Apart from the presence of the vacuum state, we also assume that there are states
of the quantum field which contain just a single stable particle. In general, a quantum
field theoretic model can predict the existence of several species of stable particles.
We shall label them with the index K = a, b, . . . . In order to simplify the discussion
we assume that all these particles are massive, that is that their rest masses mK are
strictly positive. States of K -th particle are represented by rays in a subspace H(1)

K
of the full Hilbert spaceH. Such single particle states have the special property that
they evolve in time as states of a free relativistic particle, because, by assumption, in
these states there are no other particles with which the given particle could interact.
As a basis in H(1)

K we may take the normalized eigenstates of the total momentum
�̂P , and of a certain component of the spin operator. In particular,

P̂ i | �p,λ, K 〉 = pi | �p,λ, K 〉,

where λ stands for the projection of spin of the K -th particle on, e.g., the x3-axis.
In a single particle subspace, �p is of course equal to the momentum of the particle.
The energy eigenvalue is a function of the momentum,

P̂0| �p,λ, K 〉 = EK ( �p )| �p,λ, K 〉, (10.30)

where

EK ( �p ) =
√

�p 2 + m2
K . (10.31)

Note that formula (10.31) contains the square of mK , which is insensitive to the
sign of mK . It is merely a convention that non-vanishing masses of particles in
relativistically invariant theories are positive.

Let us stress that the massesmK should not be confused with the mass parameters
present in classical Lagrangians, e.g., with m0 present in Lagrangian (7.1) in the
case of the :φ4

4: model, see Sect. 10.4 for a detailed discussion. Only in special cases,

http://dx.doi.org/10.1007/978-3-319-55619-2_7
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like the free quantum fields, or models with special symmetries, is the rest mass of
the particle (mK ) equal to the corresponding mass parameter (m0) in the pertinent
classical Lagrangian.

A general vector |ψ〉 from the Hilbert space H(1)
K has the form

|ψ〉 =
∑

λ

∫
d3 p ψλ( �p )| �p,λ, K 〉, (10.32)

where

〈ψ|ψ〉 =
∑

λ

∫
d3 p ψλ( �p )ψλ( �p ) < ∞.

All vectors of the form (10.32) are eigenvectors of the operator P̂μ P̂μ =
(P̂0)2 − (

�̂P)2. In fact,

P̂μ P̂μ|ψ〉 =
∑

λ

∫
d3 p ψλ( �p )P̂μ P̂μ| �p,λ, K 〉

=
∑

λ

∫
d3 p ψλ( �p )(E2

K ( �p ) − �p 2)| �p,λ, K 〉 = m2
K |ψ〉.

Because they have finite norm, they are true eigenvectors of the operator P̂μ P̂μ. For
a comparison consider the two-particle sector of the free scalar field, see Sect. 6.1.
The vectors |�k1, �k2〉 are eigenvectors of P̂μ P̂μ in the sense that

P̂μ P̂μ|�k1, �k2〉 = M2(�k1, �k2)|�k1, �k2〉,

where

M2(�k1, �k2) =
(√

�k 2
1 + m2

0 +
√

�k 2
2 + m2

0

)2

− (�k1 + �k2)2

= 2(m2
0 +

√
�k 2
1 + m2

0

√
�k 2
2 + m2

0 − �k1�k2),

but there is the crucial difference that in the latter case the eigenvalues of P̂μ P̂μ form
a continuous set, hence the corresponding eigenvectors do not have a finite norm.
Therefore, they do not belong to the Hilbert spaceH. The vectors (10.32) have finite
norm, they belong to the Hilbert space, and the eigenvalues m2

K are a part of the
discrete spectrum of P̂μ P̂μ.

Each space H(1)
K , K = a, b, . . . , is invariant under the representation Ũ of P̃ ,

that is
Ũ (�, a)|ψ〉 ∈ H(1)

K if |ψ〉 ∈ H(1)
K .

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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This mathematical fact has an obvious physical meaning—the type of the particle
does not change if we look at the particle from another inertial reference frame. In
particular, all states Ũ (�, a)|ψ〉 belong to the same eigenspace of the operator P̂μ P̂μ.
This follows from formulas (10.10) and (10.16):

P̂μ P̂μŨ (�, a)|ψ〉 = Ũ (�, a)Ũ−1(�, a)P̂μŨ (�, a)Ũ−1(�, a)P̂μŨ (�, a)|ψ〉
= Ũ (�, a)L(�) ρ

μ P̂ρL(�)μ σ P̂
σ|ψ〉 = Ũ (�, a)P̂ρ P̂

ρ|ψ〉 = m2
K Ũ (�, a)|ψ〉.

Moreover, if the space H(1)
K could be split into two or more nontrivial5 subspaces

H(1a)
K and H(1b)

K , etc., each of them being invariant under the representation Ũ , we
would rather regard the states from these subspaces as states of different particles, Ka

and Kb, etc. In such a case, we accordingly redefine the particle label K in (10.30),
so that finally the spaces H(1)

K do not contain any nontrivial invariant subspaces. In
mathematical language, the unitary representation Ũ restricted to such a subspace is
irreducible. Mathematical investigations of unitary irreducible representations of the
group P̃ have shown that in the case m2

K > 0 the basis states inH(1)
K are labelled by

the momentum �p, and the projection of spin λ = −s,−s + 1, . . . , s − 1, s, where
the spin s has one value chosen from the set of numbers 0, 1/2, 1, . . .. The value s of
the spin is included in the particle label K . It does not change when we look at the
particle from various inertial reference frames, i.e., it is invariant with respect to the
Poincaré transformations, in contrary to the spin projection which can be changed,
for example, by a rotation.

The particle label K also includes the restmassmK , aswell as other characteristics
of the particle such as its electric charge, various parities, strangeness, etc. Each of
them is invariant with respect to the Poincaré transformations.

Let us summarize:
The pure states of the quantum field that contain only
a single particle of type K are represented by rays in the

(I I I c) subspace H(1)
K of the full Hilbert space H. The representation Ũ

restricted to this subspace is irreducible. In
particular, P̂μ P̂μ|ψ〉 = m2

K |ψ〉 for all |ψ〉 ∈ H(1)
K . Such |ψ〉

are normalizable.
Note that with such a definition of a relativistic quantum particle—as a subclass

of the states of the quantum field—a stable bound state of two or more particles is a
particle too. Of course, such a particle should not be called an elementary one.

Let us return to the real scalar quantum field. In the case of the free field, the
operators P̂0 ≡ Ĥ , P̂ i , M̂ik and M̂0i constructed in Sect. 6.1 obey the commutation
relations (10.12), (10.17) and (10.19). Therefore, we have the representation Ũ of the
group P̃ in the Fock spaceHF . Also the commutation relations (10.24) and (10.25)
are satisfied.Hence, this field is indeed a relativistic scalar quantumfield. The vacuum
state |0〉 has the properties (10.28) and (10.29). The vectors |�k〉, which form a basis
of the single particle subspace do not have any additional label λ. This suggests

5That is, larger than the trivial space consisting of the single zero vector.

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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that the particle is spinless, s = 0. In order to check that, one should rotate the
basis vector with momentum equal to zero. This actually means acting with Ũ (u, 0),
where u ∈ SU (2) ⊂ SL(2,C), on the vector |�0 〉.6 In the case of a spinless particle,
this state should be invariant with respect to all rotations. It is sufficient to check this
for infinitesimal rotations, when we may use formula (10.7) with a = 0, ω0i = 0,
and with omission of the terms denoted by dots. Using formula (6.47), we find that
M̂ik |�0 〉 = 0, hence indeed Ũ (u, 0)|�0 〉 = |�0 〉. The rest mass of the particle coincides
with the mass parameter m in the Lagrangian (6.1).

In the case of the :φ4
4: model,7 we are not able to provide even the Hilbert space

H, not to mention the representation Ũ . We hope that at least for small λ0, such a
quantum model exists, and that its properties do not differ drastically from those of
the free real scalar field (which is obtainedwhenλ0 = 0). In particular, we expect that
there exists a single vacuum state |0〉, which is invariant under the Poincaré group,
and a sector H(1) describing a single spinless particle with rest mass m > 0. Such
expectations are to some extent supported by the fact that using the renormalized
perturbative expansion in λ0, one can construct approximate generators P̂μ and M̂μν

in the interaction picture Fock space, introduced in Sect. 7.1. They obey the required
commutation relations up to the considered order of the perturbative expansion.
The problem with the renormalized perturbative expansion is that we do not know
whether it really approximates (in the sense of the theory of asymptotic series) that
hypothetical exact theory.

10.2 The Spectral Decomposition of G(2)

In this Section we derive a very important formula for the Green’s function G(2),
known as the spectral decomposition. It follows from the postulates of relativistic
invariance, and from the assumptions about the particle interpretation of the quantum
field. For the sake of simplicity we will again discuss the real scalar quantum field
only.

Let us first introduce the 2-pointWightman’s functionW (2). It is defined as follows

W (2)(x1, x2) = 〈0|φ̂(x1)φ̂(x2)|0〉, (10.33)

where φ̂(x) is the quantum field operator in the Heisenberg picture, and x1 and x2
are points in Minkowski space-time.W (2)(x1, x2) is a generalized function of x1 and
x2. The Green’s function G(2) is defined by the formula

6The subgroup SU (2) of SL(2,C) consists of all 2 by 2 matrices which are unitary (u† = u−1)
and unimodular (det u = 1). It is the universal covering group of the SO(3) subgroup of L↑

+.
7We mean here a model without the regularizing function g.

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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G(2)(x1, x2) = 〈0|T (φ̂(x1)φ̂(x2))|0〉
= �(x01 − x02 )〈0|φ̂(x1)φ̂(x2)|0〉 + �(x02 − x01 )〈0|φ̂(x2)φ̂(x1)|0〉. (10.34)

Therefore,

G(2)(x1, x2) = �(x01 − x02 )W
(2)(x1, x2) + �(x02 − x01 )W

(2)(x2, x1). (10.35)

Formula (10.23) with � = σ0, a = x , and formula (10.13) give

φ̂(x) = exp(i P̂μx
μ)φ̂(0) exp(−i P̂νx

ν). (10.36)

Using this formula and the property (10.28) of the vacuum state, we obtain the
following expression for Wightman’s function

W (2)(x1, x2) = 〈0|φ̂(0) exp[−i P̂μ(x1 − x2)
μ]φ̂(0)|0〉. (10.37)

Thus, the translational invariance of the quantum field theory implies that W (2)

depends only on x1 − x2. In consequence, also G(2)(x1, x2) is a generalized function
of x1 − x2 only.

Invariance with respect to Lorentz transformations implies that

φ̂(x) = Ũ−1(�, 0)φ̂(L̂(�)x)Ũ (�, 0), Ũ (�, 0)|0〉 = |0〉. (10.38)

Therefore,
W (2)(L̂x1, L̂x2) = W (2)(x1, x2) (10.39)

for all L̂ ∈ L↑
+.

In the next step we use the completeness relation in the full Hilbert space H of
the model

|0〉〈0| +
∫
d3 p | �p 〉〈 �p | +

∫∑

α

|α〉〈α| = I, (10.40)

where {|0〉, | �p 〉, |α〉} is a basis in H. The vectors |α〉 form a basis in the part of
the Hilbert space orthogonal to the vacuum and the single particle subspaces—these
vectors are enumerated by a set of quantum numbers denoted here by α. The symbol∫ ∑

α is used in order to denote that among these quantum numbers there can be
continuous as well as discrete ones. The basis is chosen in such a way that each
vector |α〉 is an eigenstate of the total four-momentum of the field,

P̂μ|α〉 = pμ
α|α〉. (10.41)

Of course,
P̂μ|0〉 = 0, P̂μ| �p 〉 = pμ| �p 〉, (10.42)
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where
p0 = E( �p ) =

√
�p 2 + m2,

andm is the restmass of the particle. Inserting (10.40) on the r.h.s. of formula (10.37),
and using (10.41) and (10.42), we obtain

W (2)(x1, x2) = |〈0|φ̂(0)|0〉|2+
∫

d3 p |〈0|φ̂(0)| �p 〉|2 exp(−i p(x1 − x2))

+
∫ ∑

α

|〈0|φ̂(0)|α〉|2 exp(−i pα(x1 − x2)). (10.43)

In the contribution from the single particle sector, given by the last term in the first
line, we have p = (p0, �p ), where p0 = E( �p ) = √ �p 2 + m2.

In the next section we prove that

|〈0|φ̂(0)| �p 〉|2 = m

E( �p )
|〈0|φ̂(0)|�0 〉|2, (10.44)

where |�0 〉 is the basis vector in the single particle sector with momentum equal to
zero. Therefore, the contribution of the single particle states can be written in the
form

∫
d3 p |〈0|φ̂(0)| �p 〉|2 exp(−i p(x1 − x2)) = c0W

(2)
m (x1, x2), (10.45)

where

W (2)
m (x1, x2) = 1

2(2π)3

∫
d3 p

E( �p )
exp(−i p(x1 − x2)), (10.46)

and
c0 = 2(2π)3m|〈0|φ̂(0)|�0 〉|2. (10.47)

Note that c0 ≥ 0.
W (2)

m (x1, x2) is the 2-point Wightman’s function for the free scalar field with mass
parameter equal tom. This fact can easily be checked with the help of formula (6.16)
for the free scalar field. The W (2)

m (x1, x2) function is of course Lorentz invariant: for
all L̂ ∈ L↑

+
W (2)

m (L̂x1, L̂x2) = W (2)
m (x1, x2), (10.48)

because the theory of the free scalar field constructed in Sect. 6.1 is Lorentz invariant.
Formula (10.48) can also be obtained directly by rewriting the integral in formula
(10.46) in the Lorentz invariant form,

W (2)
m (x1, x2) = 1

(2π)3

∫
d4 p �(p0)δ(p

2 − m2) exp(−i p(x1 − x2)). (10.49)

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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In the case of the free scalar field, formula (6.16), simple calculation gives c0 = 1.
Therefore, we expect that c0 is also strictly positive, c0 > 0, for a sufficiently small
λ0 > 0.

Now let us consider the contribution of the multi-particle states. It is given by the
last term on the r.h.s. of formula (10.43). It is convenient to introduce the generalized
function

ρ(q) = (2π)3
∫∑

α

|〈0|φ̂(0)|α〉|2δ4(q − pα). (10.50)

Then, formula (10.43) can be rewritten in the form

W (2)(x1, x2) = (〈0|φ̂(0)|0〉)2

+ c0W
(2)
m (x1, x2) + (2π)−3

∫
d4q ρ(q) exp(−i(x1 − x2)q). (10.51)

The function ρ(q) is positive, ρ(q) ≥ 0, in the sense that

∫
d4q ρ(q)χ(q) ≥ 0

for any non-negative test function χ(q). This property of ρ(q) follows directly from
its definition:

∫
d4q ρ(q)χ(q) = (2π)3

∫∑

α

|〈0|φ̂(0)|α〉|2χ(pα) ≥ 0.

Comparing formulas (10.39), (10.48) and (10.51) we obtain the equality

∫
d4q ρ(q) exp(−iq(x1 − x2)) =

∫
d4q ρ(q) exp(−iq(L̂x1 − L̂x2))

for any L̂ ∈ L↑
+. The r.h.s. of this formula is equal to

∫
d4q ρ(L̂q) exp(−iq(x1 − x2)),

because the scalar product in the exponent as well as the four-dimensional volume
element d4q are Lorentz invariant. The Fourier transformation in the space of gen-
eralized functions is invertible. Therefore,

ρ(L̂q) = ρ(q) for all L̂ ∈ L↑
+, (10.52)

that is, ρ(q) is Lorentz invariant.
Another important property of ρ(q) is that it vanishes when q0 < 0. The reason

for this is that the energies p0α of the multiparticle states are positive because, for

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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the assumed small value of the coupling constant λ0, attractive interactions between
particles are not strong enough to formbound stateswith negative total energy. Taking
into account property (10.52), we may write ρ(q) in the standard form

ρ(q) = �(q0)σ(q2), (10.53)

where σ(q2) is called the multiparticle spectral function. Furthermore, we expect
that if λ0 is small enough, so that no bound states of particles can be formed, then

σ(q2) = 0 for q2 < 4m2,

because the smallest value of p2α is obtained for two particles with total momentum
�q = �0 (then q0 = 2m, and q2 = 4m2). In the case of the free scalar field σ(q2) = 0,
because the states |α〉 contain at least two particles, while in the free field operator
there is only one annihilation operator.

Formula (10.51) can now be written in the form

W (2)(x1, x2) = (〈0|φ̂(0)|0〉)2 + c0W
(2)
m (x1, x2) (10.54)

+ 1

(2π)3

∫ ∞

4m2
d M2 σ(M2)

∫
d4q �(q0)δ(q2 − M2) exp(−iq(x1 − x2))

= (〈0|φ̂(0)|0〉)2 + c0W
(2)
m (x1, x2) +

∫ ∞

4m2
dM2 σ(M2)W (2)

M (x1, x2),

where W (2)
M (x1, x2) denotes the 2-point Wightman’s function of the free scalar field

with mass parameter M . The integration variable is M2. Formula (10.54) is called
the spectral decomposition of Wightman’s function.

The spectral decomposition for G(2) is obtained by inserting (10.54) on the r.h.s.
of formula (10.35):

G(2)(x1, x2) = |〈0|φ̂(0)|0〉|2 + c0G
(2)
m (x1, x2) +

∫ ∞

4m2
dM2 σ(M2)G(2)

M (x1, x2).

(10.55)
Here G(2)

m and G(2)
M denote Green’s functions of the free scalar field with mass para-

meters equal to m and M ≥ 2m, respectively.
The Fourier transform of formula (10.55), (see the definition (7.49) with n = 2)

has the form G̃(2)(k1, k2) = δ(k1 + k2)G̃(k1), where

G̃(k1) = (2π)4|〈0|φ̂(0)|0〉|2δ4(k1)
+ ic0

k21 − m2 + i0+
+

∫ ∞

4m2
dM2 σ(M2)

i

k21 − M2 + i0+
. (10.56)

It is clear that G̃(k1) obeys property (8.30).

http://dx.doi.org/10.1007/978-3-319-55619-2_7
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The spectral decomposition (10.56) shows that G̃(k1) has a simple pole at k21 = m2

with residue ic0 where c0 > 0. The perturbative results for G̃(k1), discussed in
Chaps. 7 and 8, have to be reconsidered in this respect. This will be done in Sect. 10.4.

10.3 The Contribution of the Single Particle Sector

This section is devoted to thederivationof formula (10.44).We shall see howpowerful
the requirement of relativistic invariance is: it implies that all basis states | �p 〉 can be
obtained from, e.g., the state |�0 〉, by applying the representation operators Ũ .

We shall use so called Hermitian boosts: the Hermitian, positive definite matrices
Hp ∈ SL(2,C) determined from the condition

mH 2
p = p0σ0 + piσi , (10.57)

where σi are Pauli matrices, p = (p0, pi ) is a given four-momentum such that
pμ pμ = m2 and p0 > 0, m > 0. Simple calculation shows that

Hp = (p0 + m)σ0 + pkσk√
2m(p0 + m)

.

We know from Chap.5 that

�−1σμ(�†)−1 = L(�)μνσ
ν

for any � ∈ SL(2,C), or equivalently

�σμ�† = L(�−1)μνσ
ν = σνL(�) μ

ν . (10.58)

It is convenient to introduce the matrix

â
d f= aμσ

μ = aμσμ.

Multiplying both sides of formula (10.58) by aμ and summing over μ we obtain

�â�† = a
′μσμ, (10.59)

where
a

′μ = L(�)μνa
ν . (10.60)

Comparing (10.57) with (10.59) and (10.60) we see that L̂(Hp) is a Lorentz trans-
formation which transforms the 4-vector (m, 0, 0, 0) into (p0, �p).

http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_8
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Note that instead of Hp we may take H ′
p = Hpu, with arbitrary u ∈ SU (2). The

corresponding Lorentz transformation L̂(H ′
p) = L̂(Hp)L̂(u) contains L̂(u), which

is a spatial rotation because it does not change the 4-vector (m, 0, 0, 0): u mσ0 u† =
mσ0.The boost H ′

p is not Hermitian in general. One can prove that an arbitrarymatrix
� ∈ SL(2,C) can be written in the form� = Hpu, where Hp is the Hermitian boost
and u ∈ SU (2).

Now, let us consider the vector Ũ (�, 0)|�q 〉 from the spaceH(1). Formula (10.16)
implies that it is an eigenvector of P̂μ:

P̂μŨ (�, 0)|�q 〉 = Ũ (�, 0)Ũ−1(�, 0)P̂μŨ (�, 0)|�q 〉
= Ũ (�, 0)L(�)μν P̂

ν |�q 〉 = L(�)μνq
νŨ (�, 0)|�q 〉.

We see that the eigenvalues are equal to L(�)μνq
ν , where q0 = E(�q ) = √�q 2 + m2.

Because the operators P̂ i , i = 1, 2, 3, form the complete set of commuting observ-
ables inH(1), the vector Ũ (�, 0)|�q 〉 has to be proportional to | �Lq〉, where �Lq denotes
the spatial part of the 4-vector L̂(�)q, i.e., (Lq)i = Li

0E(�q ) + Li
kq

k . Thus,

Ũ (�, 0)|�q 〉 = N (�, �q )| �Lq〉, (10.61)

where the coefficient N can depend on � and �q.

In order to calculate the coefficient N , we use the normalization condition for the
basis vectors,

〈�q |�q ′〉 = δ3(�q − �q ′).

Because

〈�q |�q ′〉 = 〈�q |Ũ †(�, 0)Ũ (�, 0)|�q ′〉 = N (�, �q )N (�, �q ′)〈 �Lq| �Lq ′〉,

we have the condition

δ3(�q − �q ′) = N (�, �q)N (�, �q ′)δ3( �Lq − �Lq ′
).

Next, on the r.h.s. of this condition we use the formula

δ3( �Lq − �Lq ′
) = E(�q )

E( �Lq)
δ3(�q − �q ′) (10.62)

which is proved at the end of this section. It follows that

|N (�, �q )|2 = E( �Lq)

E(�q )
.
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Thus,

N (�, �q ) =
√

E( �Lq)

E(�q )
exp(iχ(�, �q)),

where exp(iχ) is a phase factor.
Let us now take �q = 0 and � = Hp. Then

N (Hp, 0) =
√

E( �p )

m
exp(iχ(Hp, 0)),

and formula (10.61) says that

Ũ (Hp, 0)|�0 〉 =
√

E( �p)
m

exp(iχ(�, �q))| �p 〉,

or

| �p 〉 =
√

m

E( �p )
exp(−iχ(�, �q ))Ũ (Hp, 0)|�0 〉. (10.63)

Formula (10.44) follows immediately from (10.63), (10.23) and (10.29):

|〈0|φ̂(0)| �p 〉|2 = m

E( �p )
|〈0|φ̂(0)Ũ (Hp, 0)|�0 〉|2

= m

E( �p )
|〈0|Ũ (Hp, 0)Ũ

−1(Hp, 0)φ̂(0)Ũ (Hp, 0)|�0 〉|2 = m

E( �p )
|〈0|φ̂(0)|�0 〉|2.

It remains to prove formula (10.62). Let us regard �q ′ as a fixed vector and �q as a
variable. We shall use the general formula

δ3( �F(�q )) = 1

|detM̂(�q0)|
δ3(�q − �q0), (10.64)

where �q0 is the vector such that �F(�q0) = �0, and the Jacobi matrix

M̂ =
[
∂Fi

∂q j

]∣∣∣∣�q=�q0

is nonsingular. It is assumed that apart from �q0 there are no other vectors �q for
which �F(�q ) = �0. In our case

�F(�q ) = �Lq − �Lq ′,

that is
Fi (�q ) = Li

0E(�q ) + Li
sq

s − Li
0E(�q ′) − Li

sq
′s,



10.3 The Contribution of the Single Particle Sector 247

where
E(�q ) =

√
�q 2 + m2, E(�q ′) =

√
�q ′2 + m2. (10.65)

Let us first prove that �F(�q ) = �0 only for �q = �q ′. These two vectors are momenta of
the particle of rest mass m. The corresponding energies have the form (10.65). The
energies corresponding to the momenta �Lq and �Lq ′ are given by formulas

E( �Lq) =
√

( �Lq)2 + m2 = L0
0E(�q ) + L0

i q
i ,

E( �Lq ′) =
√

( �Lq ′)2 + m2 = L0
0E(�q ′) + L0

i q
′i .

Therefore, the equation �F(�q ) = �0 is equivalent to the equality of the 4-momenta

(
E( �Lq)

�Lq
)

=
(
E( �Lq ′)

�Lq ′

)
.

Acting on both sides of this equality with the inverse Lorentz transformation L̂−1 we
obtain the equivalent equation

(
E(�q )

�q
)

=
(
E(�q ′)

�q ′

)
,

which has �q = �q ′ as the only solution.
The elements Mi

k of the Jacobi matrix M̂ at the point �q0 = �q ′ have the form

Mi
k(�q ′) = Li

k + Li
0q

′k

E(�q ′)
.

In order to compute detM̂ we use the following trick. Let us introduce another matrix
Â = [Ak

s], where
Ak

s = Lk
s − Lk

0L
0
s

L0
0

,

and consider the matrix B̂ = M̂ ÂT , where T denotes matrix transposition. Using
the following properties of the Lorentz transformations

Li
s L

r
s = Li

0L
r
0 + δir , (10.66)

Li
s L

0
s = Li

0L
0
0, (10.67)
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we find that
Bi

r = Mi
s( Â

T )s r = Mi
s A

r
s = δir + cidr ,

where

ci = Li
0, dr = 1

E(�q ′)

(

Lr
sq

′s − Lr
0L

0
sq

′s

L0
0

)

.

Straightforward calculation gives

detB̂ = 1 + �c �d = 1 + Li
0L

i
sq

′s

E(�q ′)
− Li

0L
i
0L

0
sq

′s

E(�q ′)L0
0

.

The r.h.s. of this formula can be simplified with the help of another identity satisfied
by the Lorentz matrices, namely

Li
0L

i
0 = L0

0L
0
0 − 1.

On the other hand,
detB̂ = detM̂ det Â.

Because, as we show below,

det Â = 1

L0
0

, (10.68)

we obtain

detM̂ = L0
0 + L0

sq
′s

E(�q ′)
= E( �Lq ′)

E(�q ′)
.

Thus, indeed formula (10.64) gives (10.62).
In order to compute det Â we use the fact that detL̂ = 1. Because

1 = detL̂ = det

(
L0

0 L0
k

Li
0 Li

k

)
= L0

0det

(
1 L0

k

L0
0

Li
0 Li

k

)

= L0
0 det

⎛

⎜⎜
⎝

1 L0
k

L0
0

0 Li
k − Li

0L
0
k

L0
0

⎞

⎟⎟
⎠ = L0

0 det Â,

we see that formula (10.68) is indeed true.
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10.4 The Pole of the Perturbative G̃(2)

The perturbative approach to the Green’s functions in the :φ4
4: model has been dis-

cussed in Chap.7. We have seen that G(1) ≡ 0, that is that 〈0|φ̂(x)|0〉 = 0. For this
reason, the first term in the spectral decompositions (10.54) and (10.56) vanishes.

The renormalized perturbative contribution to the G̃(k) function is schematically
depicted in Fig. 10.1. The lines represent

�F (k) = i

k2 − m2
0 + i0+

,

while the dark circles, denoted by�ren , stand for the sum of all 1-particle irreducible
renormalized graphs contributing to the 2-point function. Analytically, G̃(k) is given
by the geometric series

G̃(k) = �F (k) + �F (k) �ren �F (k) + �F (k)(�ren �F (k))2 + . . .

= �F (k)

1 − �ren�F (k)
.

Therefore, in the perturbative approach

G̃(k) = i

k2 − m2
0 − i�ren + i0+

. (10.69)

On the other hand, formula (10.56) shows that G̃(k) is a regular function of k2 for
k2 < 4m2, apart from the simple pole at k2 = m2 (remember that 〈0|φ̂(0)|0〉 = 0):

lim
k2→m2

(k2 − m2) G̃(k) = ic0. (10.70)

Moreover, 1/G̃(k) is a smooth function of k2 in a vicinity of k2 = m2. Therefore,
for k2 < 4m2 the perturbatively calculated �ren should also be only a function of k2,
which is smooth in a vicinity of k2 = m2. Renormalization schemes have to respect
these conditions.

Inserting (10.69) on the l.h.s. of formula (10.70), we obtain the condition

lim
k2→m2

k2 − m2

k2 − m2
0 − i�ren(k2) + i0+

= c0, (10.71)

Π Π Πren ren ren

Fig. 10.1 The schematic picture of the perturbative contributions to G̃(k)

http://dx.doi.org/10.1007/978-3-319-55619-2_7
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where c0 > 0. Therefore, the denominator has to vanish at k2 = m2:

m2 − m2
0 − i�ren(k2 = m2) = 0. (10.72)

This condition determines the mass parameter m2
0 present in the Lagrangian (7.1).

The value of m2 is provided by measuring the rest mass of the particle.8

Let us analyze condition (10.72) order by order. In the lowest order, ∼ λ0
0, there

are no 1-particle irreducible graphs contributing to G̃(2). Hence, �ren
(0) (k

2) = 0 and

m2
0 = m2. (10.73)

Thus, in the zeroth order, the mass parameter m2
0 is equal to the rest mass squared

of the scalar particle. Comparing (10.69) with (10.56) we also find that in the zeroth
order

σ(0) = 0, c(0)
0 = 1.

The first non vanishing contribution to �ren(k2) appears in the λ2
0 order. It is

represented by the graph from Fig. 8.9. Let us denote it by �ren
(2) (k

2). Now formula
(10.72) has the form

m2
0 = m2 − i�ren

(2) (k
2 = m2). (10.74)

�ren
(2) (m

2) contains m2
0 in the free propagators �F (k), hence (10.74) is actually an

equation form2
0.However, because�ren

(2) is already proportional toλ2
0,wemay replace

m2
0 by m

2 in the free propagators—this does not change the term proportional to λ2
0.

Thus, in the second order

m2
0 = m2 − i �ren

(2) (k
2 = m2)

∣
∣
m2

0=m2 . (10.75)

The mass parameter m2
0, which in the zeroth order was equal to m2, now has to be

corrected in accordance with formula (10.75). The term −m2
0φ

2/2 in the Lagrangian
can be written in the form

−1

2
m2φ2 + i

2
�ren

(2) (k
2 = m2)

∣∣
m2

0=m2 φ2.

The term i
2 �ren

(2) (k
2 = m2)

∣∣
∣
m2

0=m2
φ2 is called the finite mass counterterm. It is finite

because it is calculated from the renormalized �ren
(2) (k

2). Also in higher orders, finite

8The coupling constantλ0 is also determined, at least in principle, by comparisonwith the the results
of measurements of, e.g., a scattering cross section with a perturbatively calculated theoretical
prediction. However, it is clear that such λ0 depends on the subtraction point μ which is present in
the perturbative formulas. Hence, in fact it should be regarded as the running coupling constant at
that value of μ.

http://dx.doi.org/10.1007/978-3-319-55619-2_7
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counterterms of this type are necessary. Without them, the perturbative :φ4
4: model

would not be compatible with relativistic invariance and the particle interpretation.

Exercises

10.1 Derive formula (10.18).
Hint: �−1(ω)�(ω1)�(ω) = �(ω̃), where ω̃ is determined from the formula
L̂−1(ω)L̂(ω1)L̂(ω) = L̂(ω̃).

10.2 Obtain the transformation lawof M̂μν with respect to translations in space-time.
Hint: Compute derivatives of both sides of formula (10.14) with respect to ωμν

assuming that � = �(ω) and next put ω = 0.

10.3 Check that the free real scalar field obeys the relation (10.24).

10.4 Starting from formula (10.71) prove that

c0 = 1

1 − i�ren ′(k2 = m2)
,

where ′ denotes the derivative with respect to k2.
Hint: Apply l’Hospital’s rule known from calculus.



Chapter 11
Path Integrals in QFT

Abstract The path integral formulas for the evolution operator in quantummechan-
ics. The path integral formula for the generating functional Z [ j] in the quantum
theory of the real scalar field. Rederivation of the perturbative expansion for the φ4

4
model. Integration overGrassmannvariables. Path integral formula for the generating
functional in the theory of the quantum Dirac field.

The time evolution of the states of an isolated quantum system is described by a
unitary operatorU in a Hilbert space. Path integrals are used in order to write matrix
elements of U in a form which makes the connection with a certain classical theory
explicit, hence path integrals facilitate the study of the classical limit of the quantum
theory. In many cases in field theory we are not able to construct the quantum theory
explicitly. Then path integrals can be used as a heuristic tool, with which we can
guess many features of the sought after quantum theory. An outstanding example of
such ‘reversed’ use of path integrals is provided by non-Abelian gauge fields, to be
discussed in the next chapter.

We start our introduction to the formalism of path integrals with a very simple
example, namely that of a single, spinless, one-dimensional particle where the quan-
tum theory is well-known. Next, we pass to the relativistic quantum scalar field for
which we already know the perturbative expansion for the Green’s functions. Finally,
we introduce path integrals for fermionic fields—in this case anticommuting classical
fields appear.

11.1 Path Integrals in Quantum Mechanics

In this section we show how the path integrals are derived in the framework of the
operator formalism of quantum mechanics. We consider a spinless, nonrelativistic
particle ofmassm. It canmove only along a straight line, whichwe call the x axis, and
it is subject to forces described by a smooth classical potential V (x). The quantum
Hamiltonian for such a particle has the form

© Springer International Publishing AG 2017
H. Arodź and L. Hadasz, Lectures on Classical and Quantum Theory of Fields,
Graduate Texts in Physics, DOI 10.1007/978-3-319-55619-2_11

253



254 11 Path Integrals in QFT

Ĥ = T ( p̂) + V (x̂), (11.1)

where x̂ and p̂ = −i�d/dx are the position and momentum operators in the
Schroedinger picture, and

T ( p̂) = p̂2

2m

is the kinetic energy operator. In the present section we write the Planck constant
� explicitely because natural units are very rarely used in quantum mechanics. The
Hamiltonian Ĥ does not depend on time, therefore the evolution operator is given
by the formula

U (t ′′, t ′) = exp

[
− i

�
Ĥ(t ′′ − t ′)

]
. (11.2)

This operator is fully described by its matrix elements 〈x ′′|U (t ′′, t ′)|x ′〉 in the basis
of eigenstates |x〉 of the position operator x̂

x̂ |x〉 = x |x〉.

The matrix elements 〈x ′′|U (t ′′, t ′)|x ′〉 can be expressed by an integral over a
certain set of trajectories in the phase space of the particle. Let us divide the interval
[t ′′, t ′] into N subintervals [ti−1, ti ], where

ti = t ′ + ε i, i = 0, . . . , N , ε = (t ′′ − t ′)/N ,

with t0 ≡ t ′, tN ≡ t ′′. Then

〈x ′′|U (t ′′, t ′)|x ′〉 = 〈x ′′|U (t ′′, tN−1)U (tN−1, tN−2) . . .U (t1, t
′)|x ′〉. (11.3)

Next, we insert N identity operators of the form

I =
∫ +∞

−∞
dp |p〉〈p|,

where |p〉 is the eigenstate of the momentum operator

p̂|p〉 = p|p〉,

and also N − 1 identity operators of the form

I =
∫ +∞

−∞
dx |x〉〈x |.

For the sake of clarity, the integration variables x and p in all identity operators are
appropriately numbered. We obtain the following formula
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〈x ′′|U (t ′′, t ′)|x ′〉 =
∫ +∞

−∞
. . .

∫ +∞

−∞
dpNdpN−1dxN−1 . . . dp1dx1〈x ′′|pN 〉

〈pN |e− i
�

εĤ |xN−1〉〈xN−1|pN−1〉〈pN−1|e− i
�

εĤ |xN−2〉〈xN−2|pN−2〉
〈pN−2|e− i

�
εĤ |xN−3〉〈xN−3|pN−3〉 . . . 〈p1|e− i

�
εĤ |x ′〉. (11.4)

The scalar products of the form 〈x |p〉 are normalized plane waves

〈x |p〉 = 1√
2π�

e
i
�
xp. (11.5)

We are interested in the limit ε → 0. Therefore, ε is small and the matrix elements
of the exponentials in formula (11.4) can be rewritten as follows

〈pk+1|e− i
�

εĤ |xk〉
=

[
1 − i

�
ε

(
T (pk+1) + V (

xk + xk+1

2
)

)
+ O(ε2)

]
e− i

�
pk+1xk

= e− i
�

ε(T (pk+1)+V (
xk+xk+1

2 ))e− i
�
pk+1xk + O(ε2). (11.6)

Using formulas (11.5), (11.6) we transform (11.4) into the following form

〈x ′′|U (t ′′, t ′)|x ′〉 =
∫ +∞

−∞
dpN
2π�

∫ +∞

−∞
. . .

∫ +∞

−∞

N−1∏
l=1

dpldxl
2π�

exp

(
i

�
ε

N−1∑
k=1

[
pk+1

xk+1 − xk
ε

− T (pk+1) − V (
xk + xk+1

2
)

])
(1 + O(ε2)).

(11.7)

Note that the number of integrals over the momenta is larger by 1 than over the
positions. We expect that in the limit ε → 0 the terms marked as O(ε2) can be
neglected. Unfortunately, precise control of these terms turns out to be very difficult.
It is a major obstacle in obtaining a mathematically rigorous definition of the path
integrals.

The action functional for the path (x(t), p(t)) in the phase space of the particle
has the form

S[x(t), p(t)] =
∫ t ′′

t ′
dt [ẋ(t)p(t) − H(p(t), x(t))] .

Let us take a path (p(N )(t), x(N )(t)) in the phase space such that p(N )(t) is constant
in each interval (tk, tk+1] introduced above—the value of p(N )(t) in that interval is
denoted as pk+1 (here k = 0, 1, N − 1), see Fig. 11.1. Moreover, the function x(N )(t)
is linear in each time interval, namely
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t0 t1 t2

tN –1 tN

t

p

p1

p2

pN

Fig. 11.1 The function p(N )(t)

x(N )(t) = xk + (t − tk)
xk+1 − xk

ε
if t ∈ [tk, tk+1],

see Fig. 11.2. Note that the momentum part of the phase space path is not continuous
in general, while the position part is always continuous. The velocity ẋ(t) is constant
during the introduced time intervals and equal to (xk+1 − xk)/ε. It is not correlated
at all with the values pk+1 of the momentum in these time intervals. In particular,
the relation pk+1/m = (xk+1 − xk)/ε, which would correspond to p(t)/m = ẋ(t),
is not true in general—this relation holds only for the paths which are the physical
trajectories of the particle, that is for solutions of the classical Hamilton equations,
while hereweconsider arbitrary paths. In the limit ε → 0, equivalent to the limit N →
∞, the functions x(N )(t) remain continuous, but in general they are not differentiable
on the whole interval (t ′, t ′′).

The value of the action functional S for the path (p(N )(t), x(N )(t)), denoted by
SN , is calculated as follows:

SN =
N−1∑
k=0

∫ tk+1

tk

dt (pẋ − H)

=
N−1∑
k=0

ε

[
pk+1

xk+1 − xk
ε

− T (pk+1) − V (
xk + xk+1

2
)

] (
1 + O(ε2)

)
,

where we have used the following approximation

∫ tk+1

tk

dt V (x(N )) = εV (
xk + xk+1

2
) + O(ε2).
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x

xN

xN –1

x1
x0

t t t t t t0 1 2 –1N N

Fig. 11.2 The function x(N )(t)

Therefore, formula (11.7) can be written in the form

〈x ′′|U (t ′′, t ′)|x ′〉

=
∫ +∞

−∞
dpN
2π�

∫ +∞

−∞
. . .

∫ +∞

−∞

N−1∏
l=1

dpldxl
2π�

exp

(
i

�
SN

) (
1 + O(ε2)

)
. (11.8)

In the cases where theO(ε2) terms do not give any contribution to the limit N → ∞
we may write

〈x ′′|U (t ′′, t ′)|x ′〉 = lim
N→∞

∫ +∞

−∞
dpN
2π�

∫ +∞

−∞
. . .

∫ +∞

−∞

N−1∏
l=1

dpldxl
2π�

exp

(
i

�
SN

)

(11.9)

Formula (11.9) gives a representation of the matrix elements 〈x ′′|U (t ′′, t ′)|x ′〉 in
terms of integration over the set of paths in the phase space—for each concrete choice
of values of the integration variables x1, . . . , xN−1, p1, . . . , pN we have the paths
(xN (t), pN (t)) in the phase space. That formula is often written in a concise form as

〈x ′′|U (t ′′, t ′)|x ′〉 =
∫

x(t ′) = x ′
x(t ′′) = x ′′

∏
t∈(t ′,t ′′)

dp(t)dx(t)

2π�
exp

(
i

�
S[p, x]

)
, (11.10)

or, in an even more concise form,

〈x ′′|U (t ′′, t ′)|x ′〉 =
∫

[dpdx
2π�

] exp

(
i

�
S[p, x]

)
. (11.11)
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These short forms can be misleading: one does not see from them that the numbers
of integrals over p and x are different, and that the functions p(t) are not continu-
ous. Moreover, the paths x(t) have fixed ends, while p(t) do not. One should also
remember that ẋ(t) is not related to p(t).

The integrals over momenta can be calculated, because T (p) = p2/(2m) and
these integrals have the Gaussian form. Using

∫ +∞

−∞
dp exp(−ap2 + bp) =

√
π

a
exp(

b2

4a
),

we obtain

∫ +∞

−∞
dpk+1 exp

(
i

�

[
pk+1(xk+1 − xk) − ε

p2k+1

2m

])

=
√
2π�m

iε
exp

(
im

2�ε
(xk+1 − xk)

2

)
.

In consequence,

〈x ′′|U (t ′′, t ′)|x ′〉 =
( m

2πi�ε

) N
2

∫ +∞

−∞
. . .

∫ +∞

−∞

N−1∏
l=1

dxl

exp

(
N−1∑
k=0

[
im

2�ε
(xk+1 − xk)

2 − iε

�
V (

xk+1 + xk
2

)

]) (
1 + O(ε2)

)
. (11.12)

On the other hand, the action functional for a path x(t) in the configuration space of
the particle has the form

S[x(t)] =
∫ t ′′

t ′
dt L(x(t), ẋ(t)),

where
L = m

2
ẋ2 − V (x(t)).

Therefore,

S[xN (t)] =
N−1∑
k=0

∫ tk+1

tk

dt L(xN (t), ẋN (t))

=
N−1∑
k=0

[
m(xk+1 − xk)2

2ε
− ε V (

xk+1 + xk
2

)

] (
1 + O(ε2)

)
. (11.13)
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and

〈x ′′|U (t ′′, t ′)|x ′〉

= lim
N→∞

( m

2πi�ε

) N
2

∫ +∞

−∞
. . .

∫ +∞

−∞

(
N−1∏
l=1

dxl

)
exp

(
i

�
S[xN (t)]

)
, (11.14)

if the O(ε2) terms do not give any contribution in the N → ∞ limit. This formula
is written in a concise form as

〈x ′′|U (t ′′, t ′)|x ′〉 = N
∫

x(t ′) = x ′
x(t ′′) = x ′′

[dx(t)] exp
(
i

�
S[x(t)]

)
. (11.15)

Formula (11.14) gives the matrix elements of the time evolution operator in terms
of the integral over a set of paths x(t) in the classical configuration space of the parti-
cle. The paths have fixed ends, they are continuous, but in general not differentiable.
Note that the paths do not go back in time—it is clear from Fig. 11.2 that for such
paths there would be three or more integration variables at given time tk , while in
our derivation we have introduced just one.

Quantummechanical Green’s functions have the form of matrix elements of time-
ordered products of the position operator x̂H (t) in the Heisenberg picture,

x̂H (t) = exp(
i

�
t Ĥ) x̂ exp(− i

�
t Ĥ), (11.16)

namely

G(n)(t1, t2, . . . , tn) = 〈b|T (
x̂H (t1)x̂H (t2) . . . x̂H (tn)

) |a〉, (11.17)

where |a〉 and |b〉 are certain states. Using formula (11.16) and performing the time
ordering we obtain

G(n)(t1, t2, . . . , tn)

= 〈b| exp
(
i

�
tin Ĥ

)
x̂ U (tin , tin−1) x̂ . . .U (ti2 , ti1) x̂ exp

(
i

�
ti1 Ĥ

)
|a〉, (11.18)

where tin ≥ tin−1 ≥ . . . ti2 ≥ ti1 is the time ordered sequence obtained by permuting
t1, t2, . . . , tn . In order to obtain the path integral formula for the Green’s functions we
substitute for each operator x̂ in formula (11.18) its spectral representation, namely

x̂ =
∫ ∞

−∞
dx |x〉 x 〈x |. (11.19)
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We distinguish the integration variables in formula (11.19) for n operators x̂ in
(11.18) by denoting them as x(tik ) with k = 1, 2, . . . , n, namely x(tik ) is used in the
spectral representation of that operator x̂ in formula (11.18) which has tik on both
sides. Moreover, we insert two identity operators of the form

I =
∫ ∞

−∞
dx f |x f 〉〈x f |, I =

∫ ∞

−∞
dxi |xi 〉〈xi |,

and the exponentials exp(± i
�
T f Ĥ) and exp(± i

�
Ti Ĥ), where T f > tin ≥ ti1 > Ti .

After all these steps, the r.h.s. of formula (11.18) has the following form

∫ ∞

−∞
. . .

∫ ∞

−∞
dx f dxidx(ti1) . . . dx(tin ) 〈b| exp

(
i

�
T f Ĥ

)
|x f 〉

〈x f |U (T f , tin )|x(tin )〉 x(tin ) 〈x(tin )|U (tin , tin−1)|x(tin−1)〉 x(tin−1) . . .

〈x(ti2)|U (ti2 , ti2)|x(ti1)〉 x(ti1)〈x(ti1)|U (ti1, Ti )|xi 〉 〈xi | exp
(

− i

�
Ti Ĥ

)
|a〉.

For each matrix element 〈x(tik )|U (tik , tik−1)|x(tik−1)〉 we use formula (11.15), which
involves paths connecting the points x(tik ) and x(tik−1). These paths from consecutive
time intervals are combined to form long paths connecting the points x f and xi .
Therefore, the path integral representation of the Green’s function has the form

G(n)(t1, t2, . . . , tn)

= N
∫ ∞

−∞
dx f dxi 〈b| exp

(
i

�
T f Ĥ

)
|x f 〉 〈xi | exp

(
− i

�
Ti Ĥ

)
|a〉

∫
x(Ti ) = xi
x(T f ) = x f

[dx(t)] x(t1)x(t2) . . . x(tn) exp

(
i

�
S[x(t)]

)
. (11.20)

In the particular case of |a〉 and |b〉 being eigenstates of Ĥ with eigenvalues Ea

and Eb, respectively,

G(n)(t1, t2, . . . , tn)

= N
∫ ∞

−∞
dx f dxi ψ∗

b(x f )ψa(xi ) exp

(
i

�
[T f Eb − Ti Ea]

)
∫

x(Ti ) = xi
x(T f ) = x f

[dx(t)] x(t1)x(t2) . . . x(tn) exp

(
i

�
S[x(t)]

)
, (11.21)

where ψa(xi ) = 〈xi |a〉 and ψb(x f ) = 〈x f |a〉 are the wave functions corresponding
to the states |a〉 and |b〉.

The main attractive feature of the path integral representation of time evolution in
the quantum theory is the explicit appearance of the classical action, see for example
formula (11.15). This fact facilitates a derivation of the classical limit of the quantum
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theory. The topic of the classical limit of quantum theory lies outside the scope of our
considerations, but it is so important that we cannot leave it without a comment. Note
that the classical action has appeared in formula (11.15), which has been obtained
as a result of a computation in which we have assumed that we know the quantum
Hamiltonian (11.1). Thus, the form of the classical action is dictated by the quantum
theory, and not vice versa. Furthermore, the path integral formulation of quantum
mechanics gives a rather simple explanation of the otherwise rather strange fact, that
equations ofmotion for a classical particle often have the form of the Euler–Lagrange
equations obtained from the stationary action principle: this principle follows from
a certain quantum theory in the path integral formulation by taking the limit � → 0.
One may say that the existence of the Lagrangian form of the classical equation of
motion points to the fact that the classical theory is just a classical limit of a certain
underlying quantum theory.

The path integral representation can also be used as an heuristic tool to help us
construct a quantum theory which would correspond to a previously known classi-
cal theory. An example of such a use of the path integral is presented in the next
chapter, where we construct a renormalizable perturbative expansion for quantized
non-Abelian gauge fields. Let us give here another example.

It is a well-known fact in classical mechanics that the Lagrange functions L(x, ẋ)
and L ′ = L + ẋ f ′(x), where f is a differentiable function and f ′ = d f/dx , are
equivalent in the sense that they give the same Euler–Lagrange equation. For sim-
plicity we consider a particle in the one-dimensional space R1. Let us insert the
action

S′ =
∫ T f

Ti

dt
(
L + d f (x(t))

dt

) = S + f (x(T f )) − f (x(Ti ))

in formula (11.21) instead of S. Because x(Ti ) = xi and x(T f ) = x f , the net result
of such a change of the action is equivalent to changing the wave functions ψa and
ψb by a phase factor exp(−i f/�),

ψa,b(x) → exp
( − i

�
f (x)

)
ψa,b(x).

Thus, we see that the two quantum theories obtained from the actions S and S′,
respectively, are equivalent in the sense that there exists a (unitary) transformation
from one to the other—it consists in the multiplication of all wave functions by the
same x-dependent phase factor exp(−i f/�). The field theoretic version of this fact
was used in Sect. 6.2 in order to facilitate the quantization of the Dirac field.

Yet another application of path integrals is based on the fact that various matrix
elements, originally given in terms of states and operators in the Hilbert space, can
be expressed by path integrals, which subsequently can be computed with the help
of efficient numerical approximation techniques.

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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11.2 The Path Integral for Bosonic Fields

The path integral formula for Green’s functions in the case of bosonic fields is
obtained essentially by repeating the steps described in the previous section. For
brevity, we will discuss just one real, scalar field with the Lagrangian

L = 1

2
∂μφ∂μφ − 1

2
m2

0φ
2 − V (φ), (11.22)

and the canonical momentum and Hamiltonian

π = ∂0φ, H = 1

2
π2 + 1

2
∂iφ∂iφ + 1

2
m2

0φ
2 + V (φ). (11.23)

We again use the natural units. The time variable is denoted by x0 or t , as convenient.
The counterpart of the position operator x̂ in the Schroedinger representation is

the time-independent field operator φ̂S(�x). Because

φ̂S(�x)φ̂S(�y) − φ̂S(�y)φ̂S(�x) = 0 for all �x, �y ∈ R3,

there exist eigenstates of the field operator, denoted as |φ〉:

φ̂S(�x)|φ〉 = φ(�x)|φ〉 for all �x ∈ R3.

Thus, the eigenstates are labeled by the functions φ(�x) defined on the space R3. The
identity operator and the spectral representation of φ̂S have the following form

I =
∫

(dφ) |φ〉〈φ|, φ̂S(�x) =
∫

(dφ) |φ〉φ(�x)〈φ|, (11.24)

where
(dφ) =

∏
�y∈R3

dφ(�y).

Of course, this last formula for the integration measure (dφ) should not be taken
literally—rather it is to be understood as a limit in which a discrete and finite set of
points �x from the space R3 is becoming larger anddenser, asymptotically approaching
the whole R3. A mathematically rigorous discussion of such a limit is not necessary
for our purposes.

The operators π̂S(�x) and π̂S(�y) also commute with each other, therefore there
exist eigenstates |π〉 such that

I =
∫

(dπ) |π〉〈π|, π̂S(�x) =
∫

(dπ) |π〉π(�x)〈π|, (11.25)
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where
(dπ) =

∏
�y∈R3

dπ(�y).

The evolution operator has the form (11.2), where now

Ĥ = 1

2
π̂2 + 1

2
∂i φ̂∂i φ̂ + 1

2
m2

0φ̂
2 + V (φ̂).

Here we assume that the operator expressions are suitably regularized if necessary.
Repeating the steps leading to formula (11.10), we obtain

〈φ′′|U (t ′′, t ′)|φ′〉 =
∫

φ(t ′, �x) = φ′(�x)
φ(t ′′, �x) = φ′′(�x)

[dπdφ] ei S[π,φ], (11.26)

where

[dπdφ] =
∏

x0∈(t ′,t ′′)

∏
�x∈R3

dπ(x0, �x) dφ(x0, �x)
2π

and

S[π,φ] =
∫
R3
d3x

∫ t ′′

t ′
dx0

[
π(x0, �x)∂0φ(x0, �x) − L]

.

The integration in formula (11.26) is over paths in the phase spaceof thefield.Because
Hamiltonian (11.23) is quadratic in the canonical momentum, we can integrate over
it. This gives the analog of formula (11.15),

〈φ′′|U (t ′′, t ′)|φ′〉 = N
∫

φ(t ′, �x) = φ′(�x)
φ(t ′′, �x) = φ′′(�x)

[dφ]ei S[φ], (11.27)

where

S[φ] =
∫
R3
d3x

∫ t ′′

t ′
dx0 L(φ(x0, �x), ∂μφ(x0, �x)).

The Green’s functions are given by a formula analogous to (11.21)—instead of
the x̂H (t) operator, we now take the scalar field operator in the Heisenberg picture.
If both states |a〉 and |b〉 are the vacuum state |0〉, then Ea = Eb = 0, and

〈0|T
(
φ̂(x1) . . . φ̂(xn)

)
|0〉

= N
∫

(dφ′′)(dφ′) �∗
0 [φ′′]�0[φ′]

∫
φ(Ti , �x) = φ′(�x)
φ(T f , �x) = φ′′(�x)

[dφ] φ(x1) . . . φ(xn)e
i S[φ],

(11.28)
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where�0[φ] = 〈φ|0〉 is the wave functional of the vacuum state. The time T f is later
and Ti earlier than any of the times x0k .

Unfortunately, in the most interesting cases the wave functional �0[φ] is not
known. We circumvent this problem with the help of formula

〈0|T (
φ̂(x1) . . . φ̂(xn)

)|0〉 = lim
T f →∞

Ti→−∞

〈χ|e−iT f Ĥ T
(
φ̂(x1) . . . φ̂(xn)

)
eiTi Ĥ |η〉

〈χ|e−i(T f −Ti )Ĥ |η〉 , (11.29)

which appeared inChap. 7, in the derivation of theGell-Mann–Low formula precisely
in order to get rid of the vacuum state |0〉. Next, we use the field theoretic version of
formula (11.20) with

|a〉 = eiTi Ĥ |η〉, 〈b| = 〈χ|e−iT f Ĥ .

Because the exponentials with T f and Ti on the r.h.s. cancel out, the numerator in
(11.29) can be written as

〈χ|e−iT f Ĥ T
(
φ̂(x1) . . . φ̂(xn)

)
eiTi Ĥ |η〉

= N
∫

(dφ′′)(dφ′) χ∗[φ′′] η[φ′]
∫

φ(Ti , �x) = φ′(�x)
φ(T f , �x) = φ′′(�x)

[dφ] φ(x1) . . . φ(xn)e
i S[φ],

(11.30)

where χ[φ′′] = 〈φ′′|χ〉 and η[φ′] = 〈φ′|η〉.
For the denominator we have

〈χ|e−i(T f −Ti )Ĥ |η〉 = N
∫

(dφ′′)(dφ′) χ∗[φ′′] η[φ′]
∫

φ(Ti , �x) = φ′(�x)
φ(T f , �x) = φ′′(�x)

[dφ] ei S[φ].

(11.31)

The path integral representation of the generating functional for the Green’s func-
tions

Z [ j] = 〈0|T exp

(
i
∫

d4x j (x)φ̂(x)

)
|0〉

follows from the formulas (11.29)–(11.31):

Z [ j] = Z [ j]
Z [0] , (11.32)

where

Z [ j] =
∫

(dφ′′)(dφ′) χ∗[φ′′] η[φ′]
∫

φ(−∞, �x) = φ′(�x)
φ(∞, �x) = φ′′(�x)

[dφ] ei S[φ]+i
∫
d4x j (x)φ̂(x).

(11.33)

http://dx.doi.org/10.1007/978-3-319-55619-2_7
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Here T f and Ti have been replaced by ∞ and −∞, respectively.
Let us show how one can recover formulas (7.50) and (7.31), on which the deriva-

tion of the perturbative expansion was based, starting from the path integral (11.33).
In the first step we put

η[φ] = χ[φ] = exp

(
−1

2

∫
d3x φ(�x)

√
m2

0 −  φ(�x)
)

.

These wave functionals correspond to the choice |η〉 = |χ〉 = |0I 〉made in Sect. 7.1,
see Exercise 6.6. Next, we use the following identity [9]

∫
d3x

[
φ′(�x)

√
m2

0 −  φ′(�x) + φ′′(�x)
√
m2

0 −  φ′′(�x)
]

= lim
ε→0+

[ε
∫
d4x e−ε|x0|φ(x0, �x)

√
m2

0 −  φ(x0, �x)],

where φ(x0, �x) can be any function such that the integral on the r.h.s. exists and,
moreover,

lim
x0→∞

φ(x0, �x) = φ′′(�x), lim
x0→−∞

φ(x0, �x) = φ′(�x).

In order to check this identity, first we change the integration variable from x0 to εx0,
next we split the integration range into subintervals (−∞, 0] and [0,+∞), then we
take the limit ε → 0+ separately in each subinterval, and note that∫ ∞
0 dx0 exp(−x0) = 1.
In the next step we insert that identity on the r.h.s. of (11.33), and note that

∫
(dφ′′)(dφ′)

∫
φ(−∞, �x) = φ′(�x)
φ(∞, �x) = φ′′(�x)

[dφ] . . . =
∫

[dφ] . . . ,

where [dφ] = ∏
x∈M dφ(x). In the last path integral there are no restrictions on the

ends of the paths. The resulting formula

Z [ j] = lim
ε→0+

∫
[dφ] exp(i S[φ]

+ i
∫

d4x j (x)φ(x) − 1

2
ε

∫
d4x e−ε|x0|φ

√
m2

0 −  φ) (11.34)

contains the integration over all of the paths in the configuration space of the field,
without any restriction on the ends of the paths.

Finally, we use the correspondence φ(x) ↔ −iδ/δ j (x) in order to write

Z [ j] = exp

[
−iV

(
−i

δ

δ j (x)

)]
Z0[ j], (11.35)

http://dx.doi.org/10.1007/978-3-319-55619-2_7
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where

Z0[ j] =
lim

ε→0+

∫
[dφ] exp

(
i S0[φ] + i

∫
d4x jφ − 1

2
ε

∫
d4x e−ε|x0|φ

√
m2

0 −  φ
)
,

(11.36)

and

S0[φ] = 1

2

∫
d4x (∂μφ∂μφ − m2

0φ
2).

As we know from Chap.6, expressions of the form δ4/(δ j (x))4 are ill-defined. The
cure lies in introducing a regularization in the form of an integration with a test
function g, see formula (7.33) in the case of V = λ0φ

4/4!. Henceforth we replace V
in formula (11.35) by its regularized form Vg .

The functional Z0[ j] can be calculated explicitly. To this end, we write it in the
form of the Gaussian integral,

Z0[ j] = lim
ε→0+

∫
[dφ] exp

(
− i

2

∫
d4xd4y φ(x)Oε(x, y)φ(y) + i

∫
d4x j (x)φ(x)

)
,

where

Oε(x, y) = −∂2δ(x − y)

∂xμ∂yμ
+ m2

0δ(x − y)

− 1

2
iεe−ε|y0|

√
m2

0 −  δ(x − y) − 1

2
iεe−ε|x0|

√
m2

0 −  δ(x − y),

and change the integration variable φ in the path integral to φ1(x) = φ(x) −∫
d4z O−1

ε (x, z) j (z), where O−1
ε (x, z) is defined by the following equations:

∫
d4z Oε(x, z)O

−1
ε (z, y) = δ(x − y),

∫
d4z O−1

ε (x, z)Oε(z, y) = δ(x − y).

(11.37)

Such a shift of the integration variable does not change the ‘volume element’,
[dφ] = [dφ1], because dφ(x) = dφ1(x) for each fixed x , as follows from the fact
that

∫
d4z O−1

ε j does not depend on φ1. Therefore,

Z0[ j] = lim
ε→0+

∫
[dφ1] exp

(
− i

2

∫
d4xd4y φ1(x)Oε(x, y)φ1(y)

)

exp

(
i

2

∫
d4zd4y j (z)O−1

ε (z, y) j (y)

)
.

http://dx.doi.org/10.1007/978-3-319-55619-2_6
http://dx.doi.org/10.1007/978-3-319-55619-2_7
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The path integral gives a non-vanishing constant N0, which does not depend on j .
It cancels out in formula (11.32), because the same constant is also present in the
denominator.

It remains to compute O−1
ε . Because Oε(x, y) = Oε(y, x), O−1

ε (x, y) is also
symmetric in x and y, and then it is sufficient to consider only one of Eqs. (11.37),
for instance the first. Moreover, we may take the limit ε → 0+ in two steps: in the
first one we put e−ε|x0| = e−ε|y0| = 1 in Oε(x, y), but we keep the ε’s in front of the
exponentials. Let us seek O−1

ε in the Fourier form

O−1
ε (z, y) = (2π)−4

∫
d4k1d

4k2 e
ik1z+ik2 y Õ−1

ε (k1, k2),

and substitute the Fourier representation of Oε(x, z) into the first equation (11.37),

Oε(x, z) = (2π)−4
∫

d4q eiq(x−z)
( − q2 + m2

0 − iε
√
m2

0 + �q 2
)
.

Simple calculations give

Õ−1
ε (k1, k2) = δ(k1 + k2)

k21 − m2
0 + iε

√
m2

0 + �k 2
1

.

Thus, finally

Z0[ j] = N0 exp

[
− i

2

∫
d4k1d

4k2 j̃(k1)
δ(k1 + k2)

k21 − m2
0 + i0+

j̃(k2)

]
, (11.38)

where j̃ is the Fourier transform of j .
Comparing our present results for the scalar field with formula (7.54), obtained

in Chap.7, we see that Z0[ j] = Z0[ j] up to the constant N0. Furthermore, Z [ j] =
ZI [ j] if we take V = λ0φ

4/4!, compare formula (7.31). Thus, we have recovered
the results for the generating functional obtained in Chap.7 in the framework of the
operator approach. This gives us a certain confidence in the path integral formulation,
in spite of it lacking some mathematical rigor.

11.3 The Path Integral for Fermionic Fields

Field theoretical models of fundamental importance for physics, e.g., the standard
model of particle physics, usually involve several kinds of fields, among them are
fermionic ones. For this reason it is desirable to also have a path integral formulation
for the quantum theory of fermionic fields, similar to the one presented above for
the scalar field. This would provide a unified theoretical framework for investigating
such models, complementary to the operator formulation.

http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
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Our main objective is a path integral formula for the Green’s functions of the
fermionic field, analogous to (11.28), or equivalently, for the pertinent generating
functional. For concreteness we consider the Dirac fieldψ(x). The Green’s functions
are defined as the vacuum expectation values of time ordered products of the field
operators in the Heisenberg picture. There is an innocent looking difference in the
definition of the time ordered product (T -product) in bosonic and fermionic cases:
in the latter any interchange of two factors results in the change of the sign of the
T -product, i.e., the T -product is antisymmetric. For example,

〈0|T (. . . ψ̂αψ̂β . . .)|0〉 = −〈0|T (. . . ψ̂βψ̂α . . .)|0〉.

The T -product of anticommuting operators ψ̂(ti ) is defined as follows

T
(
ψ̂(t1)ψ̂(t2) . . . ψ̂(tn)

)

=
∑
P

sign(P) �(ti1 − ti2)�(ti2 − ti3) . . . �(tin−1 − tin )ψ̂(ti1)ψ̂(ti2) . . . ψ̂(tin ),

(11.39)

where we have omitted the bispinor indices and vectors �xi . The sum is over the set
of all permutations (t1, t2, . . . , tn) → (ti1 , ti2 , . . . , tin ), and sign(P) is equal to +1 for
even permutations, and −1 for odd permutations. The presence of the factor sign(P)

is related to the fact that the components of the quantized Dirac field taken at spatially
separated points anticommute. Without it we would get a contradiction. Let us take,
for example, t1 > t2,

T
(
ψ̂(t1)ψ̂(t2)

)
= ψ̂(t1)ψ̂(t2) �= 0.

On the other hand, if the T -product does not contain the sign factor, and ψ̂(t1), ψ̂(t2)
anticommute, then

T
(
ψ̂(t1)ψ̂(t2)

)
= T

(
−ψ̂(t2)ψ̂(t1)

)
= −ψ̂(t1)ψ̂(t2),

in contradiction with the previous result for T
(
ψ̂(t1)ψ̂(t2)

)
.

Wewould like to have a formula similar to (11.28). Because the T -product present
on the l.h.s. is antisymmetric, the classical fields in the product preceding the expo-
nential on the r.h.s. have to anticommute with each other. Thus, we need a path
integral over a set of anticommuting classical fields. Let us begin from integrals over
a finite set of independent anticommuting elements θ1, . . . θN , where

θiθ j + θ jθi = 0.
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Because in particular θ2i = 0, the set of expressions one can construct from these ele-
ments is rather small. There are 2N − 1 independent products, including the elements
themselves, and the most general expression has the form

f (θ1, θ2, . . . θN ) = c0 + c1θ1 + · · · + cN θN + c12 θ1θ2 + · · · + c12...N θ1θ2 . . . θN ,

(11.40)

where c0, ci , c12, . . . are numbers. The set of all such expressions is called the Grass-
mann algebra, and θ1, . . . θN are its generating elements. In the present case its
dimension is finite, equal to 2N . The integral we are seeking is a linear mapping
which ascribes a number to each expression of the form (11.40) (by integral we
mean here a definite one). Let us consider the integral of f over θ1, traditionally
denoted as

∫
dθ1 f . There are only two kinds of terms we have to deal with: terms

which contain θ1 and terms which do not. As the value of the integral
∫
dθ1 θ1 we

may take an arbitrary number different from 0—it is just a normalization of the
integral. Therefore, we assume that

∫
dθ1 θ1 = 1,

∫
dθ2 θ2 = 1, . . . ,

∫
dθN θN = 1. (11.41)

Apart from the linearity, we also assume that the integral is invariant under transla-
tions in the following sense:

∫
dθ1 f (θ1 + g, θ2, . . . θN ) = ∫

dθ1 f (θ1, θ2, . . . , θN ),
where g can be any expression which does not contain the element θ1. This require-
ment corresponds to the identity

∫ ∞
−∞ dx f (x + a) = ∫ ∞

−∞ dx f (x) for the ordinary
definite integral over thewhole real axis. The invariance under translations is achieved
by assuming that ∫

dθk f (. . . �θk . . .) = 0 (11.42)

for any expression f that does not contain θk . In particular,
∫
dθk = 0 (in this

case f = 1). Formulas (11.41) would lead to contradictions if not supplemented
by another rule: the integration symbol

∫
dθk should be anticommuted with the gen-

erating elements until it is just in front of θk—only then may we apply (11.41).
In order to see the contradiction, consider, for example,

∫
dθ1 θ1θ2 = θ2. On the

other hand, if we abandon the rule,
∫
dθ1 θ1θ2 = − ∫

dθ1 θ2θ1 = −θ2. With the rule
adopted, we have − ∫

dθ1 θ2θ1 = θ2
∫
dθ1 θ1 = θ2, as it should be.

Let us now take another Grassmann algebra, such that it can be regarded as a finite
dimensional analogue of theGrassmann algebra thatwill appearwhenwe come to the
Dirac field. Now there are 4N independent generating elements denoted as follows
ψ1, . . . ,ψN ,ψ1, . . . ,ψN , b1, . . . , bN , b1, . . . , bN . It turns out that

∫ N∏
j=1

dψ j dψ j exp
(
ψk A

k
lψ

l + iψkb
k + ibkψ

k
)

= det Â exp
(
bk(A

−1)klb
l
)
.

(11.43)
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Here, the N by N matrix Â = [Ai
k] is nonsingular and its matrix elements Ai

k are
numbers. Derivation of formula (11.43) is left as Exercise11.2(a).

Now let us turn to the Dirac field. The quantum theory of the free Dirac field has
been constructed in Sect. 6.2. In the case of an interacting Dirac field we proceed
analogously as in Sects. 7.1 and 7.2 for the real scalar field. Let us consider a model
with a Lagrangian of the form

L = L0(ψ,ψ) − V (ψ,ψ).

HereL0 is the free field part of the Lagrangian. It has the same form as the Lagrangian
(6.64) of the free Dirac field. V is the interaction term. We do not need to specify its
form. The generating functional for Green’s functions is defined as follows

Z [η, η] = 〈0|T exp

(
i
∫
d4x

4∑
α=1

(ηαψ̂α + ψ̂αηα)

)
|0〉, (11.44)

where the external sources η and η are generating elements of a certain Grassmann

algebra, ψ̂ and ψ̂ are the Dirac field and its conjugate in the Heisenberg picture, and
|0〉 is the vacuum state. The Green’s functions are obtained by taking variational
derivatives of Z with respect to η and η and putting η = η = 0 afterwards. For
example,

〈0|T (ψ̂α(x) ψ̂β(y))|0〉 = δ2Z

δηα(x)δηβ(y)

∣∣∣∣
η=η=0

.

The Gell-Mann–Low formula for the generating functional in the present case has
the form

Z [η, η]

=
〈0I |T

(
exp

[
i
∫
d4x

∑4
α=1 (ηαψ̂α

I + ψ̂ Iαηα)
]
exp(−i

∫
d4xVI (ψ I ,ψI ))

)
|0I 〉

〈0I |T exp(−i
∫
d4xVI (ψ I ,ψI ))|0I 〉

.

(11.45)

This formula is used in order to express Z by the generating functional Z0 for the
Green’s functions of the free Dirac field:

Z [η, η] = ZI [η, η]
ZI [0, 0] , (11.46)

where

ZI [η, η] = exp

(
−i

∫
d4x VI

(
i

δ

δη
,−i

δ

δη

))
Z0[η, η], (11.47)

http://dx.doi.org/10.1007/978-3-319-55619-2_6
http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_6
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and

Z0[η, η] = 〈0I |T (exp[i
∫
d4x

4∑
α=1

(ηαψ̂α
I + ψ̂ Iαηα)])|0I 〉. (11.48)

Thus, it suffices to provide the path integral representation for the generating func-
tional Z0.

The generating functional Z0 can be calculated with the help of the free Dirac
field version of Wick’s formula. Such a formula can be obtained by repeating the
calculations of Sect. 7.2 with the scalar field replaced by the free Dirac field, see
Exercise 7.7. The result has the form

Z0[η, η] = exp
( − i

∫
d4xd4y ηα(x)Sα

F β(x − y)ηβ(y)
)
, (11.49)

where

Sα
F β(x − y) = −i〈0I |T (ψα

I (x)ψ Iβ(y))|0I 〉 = (γμ ∂

∂xμ
− im I4)

α
βF (x − y).

SF is the inverse of the Dirac operator iγμ∂μ − mI4, that is

∫
d4y (iγμ ∂

∂xμ
− mI4)

γ
αδ(x − y)Sα

F β(y − z) = δ
γ
βδ(x − z).

Therefore, the path integral representation for Z0 is obtained from formula (11.43) by
the following substitutions: Â−1 → −i SF , bk → ηβ(y), bs → ηα(x), ψk → ψβ(y)
and ψi → ψα(x). The discrete indices i and k are replaced by multi-indices (α, x)
and (β, y). Instead of Ai

k we now have (−γμ∂/∂xμ − im I4)γαδ(x − y), and

Z0[η, η]
= N−1

∫
[dψdψ] exp

[
i
∫
d4x

(L0(ψ,ψ) + ηα(x)ψα(x) + ψα(x)ηα(x)
)]

,

(11.50)

where

L0 = ψ(iγμ ∂

∂xμ
− mI4)ψ.

The constant N is determined from the condition Z0[0, 0] = 1:

N =
∫

[dψdψ] exp
(
i
∫
d4x L0(ψ,ψ)

)
.

Finally, by inserting (11.50) for Z0 in formula (11.47), we find the path integral
representation for the model with interactions: the generating functional is given by
formula (11.46), where

http://dx.doi.org/10.1007/978-3-319-55619-2_7
http://dx.doi.org/10.1007/978-3-319-55619-2_7
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ZI [η, η] = N−1
∫

[dψdψ]

exp
[
i
∫
d4x

(L0(ψ,ψ) − V (ψ,ψ) + ηα(x)ψα(x) + ψα(x)ηα(x)
)]

. (11.51)

Note that the coefficient N−1 cancels out in formula (11.46).
Comparing the derivations of the path integral representation for the real scalar

field, for the spinless particle, and for the Dirac field, we see that in the fermionic
case it is indirect, in the sense that it has been obtained by rewriting the known
formula (11.49) as the path integral, formula (11.50). There has been no reference to
a Hilbert space, basis states like |φ〉, or wave functionals. For a derivation analogous
to the ones presented in Sects. 11.1 and 11.2 wewould need a Grassmann analogue of
the particle considered in Sect. 11.1 and its quantum mechanics. Such a Grassmann
analogue should have trajectories in a space with anticommuting coordinates instead
of xi . It turns out that it can be constructed [9], and proceeding in full analogy with
the bosonic case one can first obtain the path integral in the quantum mechanics
of such a particle, and next its field theoretic generalization. Such a direct approach
turns out to be rather complicated.Moreover, it is rather artificial because Grassmann
analogues of ordinary particles have not been observed in Nature—one should not
confuse such a Grassmann analogue with a real fermionic particle, e.g., an electron,
which has an ordinary configuration space with commuting coordinates xi .

Exercises

11.1 Compute the r.h.s. of formula (11.14) in the case of a one dimensional, non
relativistic particle with the action S[x(t)] = ∫ t ′′

t ′ dt mẋ2(t)/2. Compare the result
with the formula

〈x ′′|U (t ′′, t ′)|x ′〉 =
√

m

2πi�(t ′′ − t ′)
exp

[ − i
m(x ′′ − x ′)2

2�(t ′′ − t ′)
]
,

known from textbooks on quantum mechanics.

Hints: Consider the Fourier transform
∫ ∞
−∞dx ′′ eikx ′′

R, where R denotes the r.h.s. of
formula (11.14). The Fourier transform of convolution of functions is equal to the
product of the Fourier transforms of these functions.

11.2 (a) Prove formula (11.43).

Hints: 1. Using the translational invariance of the integral, replace ψk by ψk +
i( Â−1)klb

l and ψk by ψk + ib j ( Â−1)
j
k in order to simplify the exponent on the

l.h.s. of formula (11.43).
2. Check that
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∫ N∏
j=1

dψ j dψ j exp
(
ψk A

k
lψ

l
)

= 1

N !
∫ N∏

j=1

dψ j dψ j

(
ψk A

k
lψ

l
)N = det Â.

(b) The Grassmann elements θ′
k, θl , where k, l = 1, 2, . . . N , are related by the for-

mula θ′
k = Akl θl . The matrix Â = (Akl) is nonsingular, its matrix elements are num-

bers. The integrals over θk and θ′
l are defined by formulas (11.41) and (11.42). Check

that the relation
dθ′

1 . . . dθ′
N = (det Â)−1dθ1 . . . dθN

is consistent with these definitions.

Hint: Start from
∫
dθ′

1 . . . dθ′
Nθ′

N . . . θ′
1 = 1.



Chapter 12
The Perturbative Expansion for Non-Abelian
Gauge Fields

Abstract The invariant volume element in the SU (N ) group (the Haar measure).
The Faddeev–Popov–DeWitt determinant for a given gauge condition. The Faddeev–
Popov ghost fields. The correct path integral representation of the Green’s functions
of local gauge-invariant operators. Feynmandiagrams for the pure non-Abeliangauge
field theory. The essential role of the gaugefixing term in the classical effective action.
BRST invariance of the effective action and of the measure in the path integral. The
Slavnov–Taylor identity for the generating functional of Green’s functions.

We have considered in Chap.4 the classical non-Abelian gauge fields. However, from
a physical viewpoint, the quantum theory of these fields is much more important. As
we know from the case of the renormalizable :φ4

4: model, it is possible to develop,
with some effort, a sensible perturbative expansion for the Green’s functions. On the
other hand, it is still practically impossible to construct an exact quantum version
of the model. The same is true for the non-Abelian gauge fields, but here even the
perturbative expansion is rather intricate. Its construction, completed around 1970,
is regarded as one of the most outstanding achievements of theoretical physics in the
second half of the 20th century. It clearly shows the sophisticated beauty of the non-
Abelian gauge fields. In the present chapter, we construct the perturbative expansion
and obtain the very important Slavnov–Taylor identities for the Green’s functions of
the quantized non-Abelian gauge fields. As the main tool we use the path integrals.

Because of the utmost importance of the quantized non-Abelian gauge fields for
particle physics, an enormous effort has been put into non perturbative approaches to
their theory.Many important results have been obtained in this direction, nevertheless
it is clear that a lot of work and new ideas are still needed in order to get closer to
the exact version of the quantum theory of these fields. Particularly hard is the most
important problem, that of finding the particle spectrum. It is known as the problem
of the confinement of gluons, and of quarks, when an interaction with quark fields
is included. We do not touch these fascinating topics here.
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12.1 The Faddeev–Popov–DeWitt Determinant

Trajectories of the classical non-Abelian gauge field of the SU (N ) type are repre-
sented by the matrix valued functions Âμ(x) on Minkowski space-time M . For each
x ∈ M and μ = 0, 1, 2, 3, Âμ(x) is an N ×N Hermitian, traceless matrix. Note that
here the hat just denotes the matrix, not a quantum operator in a Hilbert space—in
the present chapter such operators will be denoted by the boldface Âμ. The gauge
fields related by the gauge transformation (4.23) are physically equivalent, that is
they give identical values of all observables. It is quite natural to expect that in the
path integral in the quantum theory of such fields just one gauge field from each
class of the equivalent fields should appear, not all fields. To achieve this, we first
introduce a gauge condition

F( Âμ) = 0, (12.1)

so that in each class of physically equivalent fields there is exactly one gauge field
that satisfies it. In other words, the condition

F( Âω
μ) = 0,

regarded as an equation for the SU (N ) matrix-valued gauge function ω(x), has
exactly one solution for every fixed gauge field Âμ. The elements of the SU (N ) group
in a vicinity of the unit matrix IN can be parameterized by N 2 − 1 real parameters,
let us denote them by ta , a = 1, ..., N 2 − 1, which form a local coordinate system
on the group. Therefore, the SU (N ) valued function ω(x) is equivalent to N 2 − 1
real valued functions ta(x). The gauge condition (12.1) should uniquely determine
all these functions, hence it should be equivalent to N 2 − 1 independent equations
for them. We shall write these equations as Fa( Âω

μ)(x) = 0.
Wewill use integration over the SU (N ) group regarded as a certain n-dimensional

space, n = N 2 − 1. In the mathematical theory of Lie groups, such as the SU (N )

group, it is shown that one can introduce a volume element on the group, which in
mathematics is called the Haar measure. We denote it as dV (ω), where ω ∈ SU (N ).
When the group elements are parameterized by ta , such an infinitesimal volume
element has the form

dV (ω) = v(ta) dt1 . . . dtn, (12.2)

where v(ta) is a certain positive function of the parameters. Furthermore, this volume
element is invariant under the so called translations on the group, that is transfor-
mations of the form ω(ta) → ω0ω(ta) (the left translations), and ω(ta) → ω(ta)ω0

(the right translations), where ω0 ∈ SU (N ). The coordinates of the group element
ω0ω(ta) are denoted as t a , hence ω0ω(ta) = ω(t a). Similarly, ω(ta)ω0 = ω(ta).
The invariance of the volume element means that

dV (ω0ω) = dV (ω) = dV (ωω0),

or

http://dx.doi.org/10.1007/978-3-319-55619-2_4
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v(t a) dt 1 . . . dt n = v(ta) dt1 . . . dtn = v(ta) dt1 . . . dtn.

We shall not need the detailed form of the invariant volume element.
One way to eliminate the gauge equivalent fields from the path integral is to

include in its integrand a functional Dirac delta of the form1

δ[F( Â)] =
∏

a,x

δ(Fa( Âμ(x)),

but then the result of the integration would in general depend on the choice of the
gauge condition. This would not be satisfactory, because the choice of the gauge
condition should not affect the expectation values of observables represented by
gauge invariant operators. According to Faddeev and Popov, the functional Dirac
delta should be inserted in the path integral indirectly, namely one should hide it in a
numerical factor equal to 1, which certainly does not change the integral. Moreover,
it obviously does not depend on the choice of the gauge condition. The factor 1 is
constructed from the Dirac delta as follows

1 = M[ Â]
∫

[dω] δ[F( Âω)]. (12.3)

Here [dω] = ∏
x dV (ω(x)) is the measure (the infinitesimal volume element) in the

space of the gauge functions ω(x). Thus, with each point x ∈ M we associate the
invariant volume element in the SU (N ) group. Âω denotes the gauge transformed
field, i.e.,

Âω
μ(x) = ω(x) Âμ(x)ω

−1(x) + i

g
∂μω(x) ω−1(x). (12.4)

In the present chapter we use the rescaled gauge field introduced in Sect. 4.2 (below
formula (4.33)) and denoted there as B̂μ. M[ Â] is a functional of the gauge field
defined by formula (12.3). It is called the Faddeev–Popov–DeWitt determinant. Of
course it depends on the choice of F , but it is gauge invariant, that is

M[ Âω0 ] = M[ Â]

for any gauge functionω0(x). This follows from the invariance of themeasure dV (ω),
namely

1 = M[ Âω0 ]
∫

[dω] δ[F(( Âω0)ω)] = M[ Âω0 ]
∫

[d(ω0ω)] δ[F( Âω0ω)]

(ω′=ω0ω)= M[ Âω0 ]
∫

[dω′] δ[F( Âω′
)] = M[ Âω0 ]

M[ Â] .

1We will often omit the space-time index μ of Âμ in order to keep formulas transparent.

http://dx.doi.org/10.1007/978-3-319-55619-2_4
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In the case of Âμ obeying the gauge condition (12.1), the integral in (12.3) is
determined by the form of the integrand in an arbitrarily small vicinity of the constant
ω = IN . Let us parameterize ω(x) in such a vicinity as follows:

ω(x) = IN + igεa(x) T̂a + O(�ε 2),

where the matrices T̂a , with a = 1, . . . , N 2 − 1, have been introduced in Sect. 4.2.
Then, the volume element has the form dV (ω) = v(εa)dnε, where we may replace
v(εa) by v(0), and normalize the SU (N ) volume element by putting v(0) = 1. Thus,
as the measure [dω] in (12.3) we take [dω] = ∏

x∈M dnε(x) ≡ [dε]. This expression
should be treated in the same spirit as the measures that appear in the path integrals.

Formula (12.3) also contains F( Âω). For ω in the vicinity of IN

Âω
μ(x) = Âμ(x) − ∂με̂(x) + ig[ε̂(x), Âμ(x)] + O(�ε 2)

= T̂b(A
b
μ(x) − ∂με

b(x) − g facbε
a(x)Ac

μ(x)) + O(�ε 2). (12.5)

The structure constants facb are antisymmetric in all indices, see Exercise 4.2.
Let us expand F( Âω) with respect to εa(x):

Fc( Âω)(x) = Fc( Â)(x)+
∫
d4yd4z

δFc( Âω)(x)

δ( Âω
μ)b(y)

∣∣∣∣∣
ω=IN

δ( Âω
μ)b(y)

δεa(z)

∣∣∣∣∣�ε=0

εa(z)+O(�ε 2),

where Fc( Â)(x) = 0 because Âμ obeys condition (12.1). Using formula (12.5) we
obtain

δ( Âω
μ)b(y)

δεa(z)

∣∣∣∣∣�ε=0

= −δab
∂

∂zμ
δ(y − z) − g facb A

c
μ(y)δ(y − z).

Therefore,

Fc( Âω)(x) =
∫

d4y Mca(x, y)ε
a(y) + O(�ε 2), (12.6)

where

Mca(x, y) =
(

δab
∂

∂yμ
− g fadb A

d
μ(y)

)
δFc( Â)(x)

δAb
μ(y)

. (12.7)

Formula (12.6) can be written in a concise form as

F( Âω) = M̂ε + O(ε2),

where the operator M̂ has the matrix elements Mcx;ay = Mca(x, y). Our assumption
about the uniqueness of the solution of the equation F( Âω) = 0 implies that M̂ is
nonsingular (i.e., M̂−1 exists).
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After these preparations we can compute M. Definition (12.3) gives

1 = M[ Â]
∫

[dε] δ[M̂ε + O(�ε 2)] = M[ Â] (detM̂)−1.

Thus, for the gauge fields obeying gauge condition (12.1)

M[ Â] = detM̂ .

It is of course not clear how to actually compute the determinant of M̂ . Luckily, one
can evade this problem by using the infinite dimensional version of formula (11.43),

detM̂ = N
∫

[dcdc] exp

(
−i

∫
d4xd4y ca(x)Mab(x, y)c

b(y)

)
, (12.8)

where ca(x) and cb(y) are independent Grassmann fields, called antighost or ghost,
respectively. The factor −i in the exponent in (12.8) has been introduced for later
convenience. The factorN is not important as it will not appear in the final formula
for the generating functional for the Green’s functions. The expression

Sgh[A, c, c] = −
∫
d4xd4y ca(x)Mab(x, y)c

b(y)

is often called the Faddeev–Popov–DeWitt action.
As an example, let us consider the Lorentz gauge condition

∂μA
aμ(x) = 0. (12.9)

In this case
δFc( Â)(x)

δAb
μ(y)

= δbc
∂δ(x − y)

∂xμ
,

Mab(x, y) = −δab
∂2δ(x − y)

∂xμ∂xμ
+ g fadb A

d
μ(y)

∂δ(x − y)

∂xμ
,

and

Sgh =
∫
d4x

(
ca(x)∂μ∂

μca(x) − g facbca(x)∂
μ(Ac

μ(x)c
b(x))

)
. (12.10)

Introducing the covariant derivative of the ghost field,

(Dμc)
a(x) = ∂μc

a(x) − g facb A
c
μ(x)c

b(x),

http://dx.doi.org/10.1007/978-3-319-55619-2_11
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we may write Sgh in the concise form

Sgh =
∫
d4x ca(x) ∂μ[(Dμc)

a(x)]. (12.11)

Note that the (anti-)ghost fields do not bear any spinor indices—they would yield
spinless particles if regarded as relativistic quantum fields. A spin zero fermionic
field violates the spin-statistics theorem, hence it cannot be regarded as a physical
field. In our considerations it has appeared only as an auxiliarymathematical variable
to be integrated over in formula (12.8).

The Lorentz gauge condition is used in applications of the non-Abelian gauge
fields in particle physics. It should be noted that this condition is not perfect because
among fields obeying it one can find gauge equivalent ones.2 This is the so called
Gribov problemwith the gauge condition. It is also present for other choices of gauge
condition. The gauge equivalent solutions of a gauge condition are called Gribov
copies. The question of whether their presence has an influence on the physical
predictions obtained within the perturbative approach to the quantized non-Abelian
gauge fields, remains an open question. In the considerations below, in which we
use the Lorentz condition, the Gribov copies are automatically included in the path
integral because we sum over all the gauge fields that obey that condition.

12.2 The Generating Functional for Green’s Functions

TheFaddeev–Popov–DeWitt determinant is needed for the construction of the correct
generating functional for Green’s functions in the non-Abelian gauge theory with
the classical action (4.33)

SYM [A] = −1

4

∫
d4x Fa

μνF
aμν .

Let us begin by writing an analogous to (11.28) path integral formula for the vacuum
expectation value (correlation function) of the time ordered product of local gauge
invariant operatorsO1[A](x1), . . . ,On[A](xn) (in the Heisenberg picture). Operator
O[A](x) is local if it is constructed from the non-Abelian gauge field operatorsAa

μ(x)
and their derivatives at the point x .3 Thus, we begin with

2Let us recall that we assume that ω(x) → IN when |�x | → ∞. This condition excludes, for
example, ω independent of x and different from IN .
3For brevity, we write A instead of Â if there is no risk of confusion.

http://dx.doi.org/10.1007/978-3-319-55619-2_4
http://dx.doi.org/10.1007/978-3-319-55619-2_11
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〈0|T (O1[A](x1) · · ·On[A](xn))|0〉
= N

∫
(d A′′)(d A′) �∗

0 [A′′]�0[A′]
∫

A(Ti ) = A′
A(T f ) = A′′

[d A] ei SYM [A]
n∏

i=1

Oi [A](xi ).
(12.12)

Here �0[A] is the wave functional of the vacuum state of the gauge field. It is
defined on the configuration space of the field, and A′, A′′ denote points in that
infinite dimensional space. The single point A is represented by the set of functions
Aa

μ(�x), where �x ∈ R3. The trajectory of the fieldmay be denoted as A(t)—it is the set
of functions Aa

μ(t, �x). Note that it is the trajectory that is customarily adopted as the
mathematical representation of the non-Abelian gauge field, and not A = Aa

μ(�x)—
the field as such is a physical object. (d A) denotes the measure (the volume element)
in the configuration space, (d A) = ∏

�x∈R3

∏N 2−1
a=1

∏3
μ=0 d A

a
μ(�x).

Formula (12.12) is not satisfactory because it contains the integral over all of
the gauge fields, including the ones related by a gauge transformation. In order to
improve it, we multiply the r.h.s. of (12.12) by 1 in the form (12.3), and change
the order of the functional integrations by shifting the integral over ω(x) to the left.
Next we change the integration variable from A to B = Aω . The action SYM , the
expressions Oi [A](xi ), andM[A] are gauge invariant, hence wemay simply replace
A by B.

The measure [d A] is also invariant, [d A] = [dB]. To see this, first notice that the
gauge transformation does not change the space-time arguments or Lorentz indices
of the field. Therefore, we need only to show the invariance of the N 2−1 dimensional
volume element, that is the equality

N 2−1∏

a=1

dBa
μ(x) =

N 2−1∏

a=1

d Aa
μ(x).

Let us split the gauge transformation into the shift Âμ → Âμ + i∂μωω−1 and the
‘rotation’ Âμ → Ĉμ = ω Âμω

−1. Neither of them changes the volume element. In
the case of the shift, this follows from the fact that ∂μωω−1 does not depend on Aa

μ.
The ‘rotation’ does not change the volume element because it leaves the lengths and
angles unchanged. This can be seen from the invariance of the scalar product:

Xa
1 X

a
2 = 2tr(X̂1 X̂2) = 2tr(Ŷ1Ŷ2) = Y a

1 Y
a
2 ,

where X̂i = ωŶiω−1.
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After these steps formula (12.12) acquires the following form

〈0|T (O1[A](x1) · · ·On[A](xn))|0〉 = N
∫

[dω]
∫

(d A′′)(d A′) �∗
0 [A′′]�0[A′]

∫

B(Ti ) = A
′ω−1

B(T f ) = A
′′ω−1

[dB] M[B̂] δ[F(B)] ei SYM [B]
n∏

i=1

Oi [B](xi ).

Nowwe change the integration variables A′ → B ′ = A
′ω−1

and A′′ → B ′′ = A
′′ω−1

.
The measures (d A′) and (d A′′) are invariant for exactly the same reasons as [d A].
The wave functional �0 is assumed to be invariant up to multiplication by a phase
factor4 which can depend onω. Such a phase factor cancels out in the product� ∗

0 �0.
Thus, the gauge function ω has been removed from all terms on the r.h.s. of the path
integral formula. In consequence, the integral

∫ [dω] has a constant integrand. This
integral yields a constant (the total volume of the gauge group) which is canceled by
an appropriate coefficient in the normalization factor N . Thus, writing A instead of
B everywhere, we finally have

〈0|T (O1[A](x1) · · ·On[A](xn))|0〉 = N
∫

(d A′′)(d A′) �∗
0 [A′′]�0[A′]

∫

A(Ti ) = A
′

A(T f ) = A
′′
[d A] M[ Â] δ[F(A)] ei SYM [A]

n∏

i=1

Oi [A](xi ). (12.13)

The normalization factor N is determined from the condition 〈0|0〉 = 1, which
corresponds to taking n = 1 andO1[A] = I. Formula (12.13) explicitly incorporates
the gauge condition (12.1). It is clear from its derivation that the r.h.s. of it does not
depend on the form of F , in spite of its appearance.

In order to construct the perturbative expansion we have to write the integrand in
(12.13) in exponential form, from which we can read off the kinetic and interaction
parts. ForMweuse formula (12.8)with the ghosts. The functionalDirac delta is dealt
with by making use of the lack of dependence of the correlation function on the form
of F . Let us replace the condition (12.1) by an auxiliary gauge condition of the form
Fa( Â)(x)−λa(x) = 0 with certain functions λa(x). Because δλa/δAb

μ = 0, we see

from formula (12.7) that M̂ , and in consequenceM, do not dependon these functions.
On the r.h.s. of formula (12.13) they are present only in the factor δ[F(A) − λ].
Next, we multiply both sides of formula (12.13) by exp(−i

∫
d4x λa(x)λa(x)/2α),

and functionally integrate over λa . The real parameter α is often called the gauge
parameter. On the r.h.s. we have the integral

∫
[dλ] δ[F(A) − λ] exp

(
− i

2α

∫
d4x λa(x)λa(x)

)
= exp(i Sg f [A]),

4This is an assumption because we are not able to compute�0, nor to prove that there exists exactly
one vacuum state.
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where

Sg f [A] = − 1

2α

∫
d4x Fa( Â)(x)Fa( Â)(x).

On the l.h.s. we obtain a constant factor. We divide by it and include it in the factor
N . Thus, we have obtained, from (12.13), the following formula

〈0|T (O1[A](x1) · · ·On[A](xn))|0〉 =
N

∫
(d A′′)(d A′) �∗

0 [A′′]�0[A′]
∫

A(Ti ) = A
′

A(T f ) = A
′′
[d A][dcdc] ei S[A,c,c]

n∏

i=1

Oi [A](xi ),

(12.14)

where
S[A, c, c] = SYM [A] + Sgh[c, c] + Sg f [A]. (12.15)

Sg f [A] is called the gauge fixing term, and S[A, c, c] the classical effective action.
Now it should be clear that we may take as the generating functional

Z [ j, ξ, ξ] = Z [ j, ξ, ξ]
Z [0, 0, 0] , (12.16)

where

Z [ j, ξ, ξ] =
∫

(d A′′)(d A′) �∗
0 [A′′]�0[A′]

∫

A(Ti ) = A
′

A(T f ) = A
′′
[d A][dcdc] ei S[A,c,c]+i

∫
d4x ( jaμ (x)Aaμ(x)+ca(x)ξa(x)+ξa(x)c

a(x)). (12.17)

Suitable combinations of the derivatives −iδ/δ j aμ (x) acting on Z will give, after

putting j aμ = 0, ξa = 0 and ξa = 0, formulas for the vacuum expectation values
of the time ordered products of the components of the gauge field. Formula (12.17)
also contains Grassmann type external sources ξa and ξa for the ghost fields. They
anticommute with the ghost fields, and with themselves. The derivatives −iδ/δξa
and iδ/δξa will give Green’s functions in which the ghost fields are also present.
Such more general Green’s functions are in principle not needed, because the ghost
fields are not physical fields, but auxiliary variables introduced in order to write the
Faddeev–Popov–DeWitt determinant in an exponential form. Nevertheless, corre-
sponding to them internal vertices and internal lines will appear in the perturbative
expansion anyway, and they have to be taken into account when discussing, e.g., the
renormalizability of the model. Therefore, it is useful to consider graphs in which
the ghosts appear as external lines.

Note that formula (12.17) can also be applied in the case of the free electromag-
netic field: one should put fabc = 0 and restrict the values of the Latin indices to
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just 1. Then A1
μ can be identified with the electromagnetic field. The ghost fields

are needed only if detM̂ depends on the gauge field, because in the opposite case
it is a constant that does not matter. Formula (12.7) with fabc = 0 shows that the
dependence on the Abelian gauge field is possible only if F(A) is not linear in Aμ, for
example, F(A)(x) = (∂μ − Aμ(x))Aμ(x) (Exercise 12.1). In electrodynamics such
gauge conditions are not used in practice, because then even the quantum theory of
the free field would become quite complicated. The most popular gauge conditions:
Lorentz (∂μAμ = 0), Coulomb (∂i Ai = 0) and temporal (A0 = 0), are all linear in
Aμ.

The considerations presented above that have forced us to introduce the ghost
fields, can be regarded as a spectacular example of the usefulness of the path integrals
in field theory. There had been some earlier suggestions about the presence of ghost
fields in the quantum theory of gauge fields, but only with the use of the path integrals
came a clear recognition of this fact.

12.3 Feynman Diagrams

The derivation of Feynman diagrams for the non-Abelian gauge fields is based on the
formulas (12.16) and (12.17) for the generating functional. The ghost part is taken
in the form (12.11)—we adopt the Lorentz gauge condition (12.9). We divide the
action S into the free and the interaction parts, and formally expand Z in powers
of the interaction. The calculations are very similar to those presented in detail in
Sect. 11.2 (below formula (11.33)) in the case of the scalar field. Therefore, we will
skip details of calculations and present only the main points.

The functional �0[A] is replaced by the wave functional of the vacuum state of
the free non-Abelian gauge field5

�0[A] = N0 exp

(
−1

2

∫
d3x Aai

√−� Aai

)
. (12.18)

The same trick as in Sect. (11.2) gives

Z [ j, ξ, ξ] = lim
ε→0+

∫
[d A][dcdc] exp [

i S[A, c, c]

− ε

2

∫
d4x e−ε|x0|Aai

√−� Aai + i
∫
d4x ( j aμ A

aμ + caξ
a + ξac

a)
]
. (12.19)

5By the free non-Abelian gauge field we mean the field Aa
μ with the action that does not contain the

self-interactions present in the full Yang–Mills action. Such self-interactions are switched off by
equating the structure constants with zero, fabc = 0. The resulting model contains the collection
of N 2 − 1 independent free gauge fields of the Abelian type, and it is not invariant under the full
SU (N ) gauge group.

http://dx.doi.org/10.1007/978-3-319-55619-2_11
http://dx.doi.org/10.1007/978-3-319-55619-2_11
http://dx.doi.org/10.1007/978-3-319-55619-2_11
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By definition, the interaction part Sint of the action S contains all the terms that are
proportional to g or g2. Thus,

Sint [A, c, c] =
∫
d4x

(
g fabc∂μA

a
ν A

bμAcν

− g2

4
fabc fade A

b
μA

c
ν A

dμAeν − g facb ca∂μ(c
b Acμ)

)
. (12.20)

In this part of the action we replace the fields with the appropriate functional deriv-
atives with respect to the external currents:

Aa
μ(x) → −i

δ

δ j aμ(x)
, ca(x) → −i

δ

δξa(x)
, ca(x) → i

δ

δξa(x)
.

Then we may write

Z [ j, ξ, ξ] = ei Sint [−i δ
δ j ,−i δ

δξ
,i δ

δξ ] (
Z0[ j] Z0[ξ, ξ]

)
, (12.21)

where

Z0[ j] = lim
ε→0+

∫
[d A] exp(i

∫
d4x jaμ A

aμ) exp

(
i

2

∫
d4x [∂μA

a
ν ∂νAaμ

−∂μA
a
ν ∂μAaν − 1

α
∂μA

a
μ ∂νAaν + iεe−ε|x0|Aai

√−� Aai ]
)

,

and

Z0[ξ, ξ] =
∫

[dcdc] exp

(
i
∫
d4x (cb∂

μ∂μc
b + cξ + ξc)

)
.

The Gaussian path integrals on the r.h.s.’s of these formulas can be calculated in
the same way as shown in Chap.11. The formula for Z0[ j] can be rewritten in the
form

Z0[ j] = lim
ε→0+

∫
[d A] exp

(
i

2

∫
d4xd4y Aa

μ(x)Oμν
εab(x, y)A

b
ν(y)

+i
∫
d4x jaμ (x)Aaμ(x)

)
,

where

Oμν
εab(x, y) = δab

[
ημν ∂2δ(x − y)

∂xλ∂xλ
−(1 − 1

α
)
∂2δ(x − y)

∂xμ∂xν

−iε(ημν − δμ0δν0)e−ε|x0|√−� δ(x − y) ] .

http://dx.doi.org/10.1007/978-3-319-55619-2_11
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The substitution A = A′ −O−1
ε j (all indices suppressed) transforms the integral into

a pure Gaussian integral which yields a constant independent of j . It turns out that
in the limit ε → 0+

Z0[ j] = N exp

[
i

2

∫
d4xd4y jaμ (x) (O−1)

μν
ab (x − y) j bν (y)

]
, (12.22)

where

(O−1)
μν
ab (x − y) = − δab

(2π)4

∫
d4k

e−ik(x−y)

k2 + i0+

[
ημν − (1 − α)

kμkν

k2 + i0+

]
, (12.23)

andN is a constant. It follows from formula (12.23), that the free propagator of the
gauge field has the following form

Dμν
ab (k) = δab

i

k2 + i0+
[−ημν + (1 − α)

kμkν

k2 + i0+
]. (12.24)

In Feynman diagrams it is represented by a wavy line, see Fig. 12.1. The exponent in
formula (12.22) is symmetric with respect to the interchange (x, a,μ) ↔ (y, b, ν)

(in particular because Dμν
ab (k) = Dμν

ab (−k)), therefore we do not have to put an arrow
on such lines.

Note that the presence of the gauge fixing term is crucial for the existence ofO−1.
The absence of this term in the action S would correspond to the limit α → ∞,
but then formula (12.23) becomes meaningless. The choice α = 0 is called the
Landau gauge. It makes sense once we decide to work only within the perturbative
approach—on the level of the action we may take α arbitrarily close to 0, but not
equal to. In the Landau gauge the propagator is transverse, that is

kμD
μν
ab (k) = 0.

The choice α = 1 is called the Feynman gauge.
In the case of the functional Z0[ξ, ξ] similar calculations give

Z0[ξ, ξ] = N1 exp

[
i
∫
d4xd4y ξa(x) (O−1

1 )ab(x − y) ξb(y)

]
, (12.25)

where

(O−1
1 )ab(x − y) = − δab

(2π)4

∫
d4 p

e−i p(x−y)

p2 + i0+
. (12.26)

As the free propagator of the ghost fields we take

�ab(p) = δab
i

p2 + i0+
. (12.27)
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Δab( )p
D k( )

μν
ab

k

Fig. 12.1 The ghost and the gauge field propagators

k a1 3 4 3ν λ ρ λ

2 1 2νc kµd

Fig. 12.2 The internal vertices of the SU (N ) non-Abelian gauge theory

It is represented graphically by the dashed line with an arrow, see Fig. 12.1. The
arrow points to that end at which there was the external source ξ. Thus, such an
arrow does not show the flow of four-momentum as it was the case in Fig. 8.9.

The Sint part of the action gives the internal vertices of the Feynman diagrams,
see Fig. 12.2. The first vertex in that figure corresponds to the first term on the
r.h.s. of formula (12.20). All three legs of this vertex bear indices of the same kind,
therefore when connecting such a vertex with the rest of the diagram we can do it in
6 ways (if it were a scalar field instead of Âμ this would give the combinatorial factor
3!). Summing all 6 possibilities we obtain the full, symmetric 3-leg vertex with a
contribution of the form

ig

(2π)2
fabcδ(k1 + k2 + k3) [(k1 − k3)

μηλν + (k3 − k2)
νημλ + (k2 − k1)

λημν]. (12.28)

The linear dependence on the four-momenta ki reflects the presence of the derivative
∂μAa

ν in the pertinent term in (12.20).
In the case of the 4-leg vertex, there are 24 ways to connect it with the rest of the

diagram. Summing them all we obtain the full, symmetric 4-leg vertex

−i
g2

(2π)4
δ(k1 + k2 + k3 + k4) [ fabc fade(ημληνρ − ημρηλν)

+ face fadb(η
μρηνλ − ημνηλρ) + fabe fadc(η

μληνρ − ημνηλρ)]. (12.29)

The third vertex in Fig. 12.2 corresponds to the ghost term in Sint . The analytical
expression associated with it has the form

ig

(2π)2
fadb δ(k + p − q) pμ. (12.30)

http://dx.doi.org/10.1007/978-3-319-55619-2_8
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The linear dependence on pμ reflects the presence of the derivative ∂μ in the ghost
term in (12.20).

All the coupling constants in the action (12.20) are dimensionless. This fact sug-
gests that the perturbative expansion in powers of Sint is renormalizable. Such expec-
tation is corroborated by a calculation of the superficial degree of divergence of 1PI
graphs. Let V3, V4 and Vgh denote the numbers of internal vertices shown in Fig. 12.2
(starting from the left), n and I the number of, respectively, external and internal lines
corresponding to the gauge field propagator Dμν

ab (the wavy lines), and ngh (Igh)—the
number of external (internal) ghost lines. Then,

3V3 + 4V4 + Vgh = 2I + n, 2Vgh = 2Igh + ngh .

The number of independent loops and the superficial degree of divergence are given
by the formulas

L = I + Igh − V3 − V4 − Vgh + 1, ω = 4L + V3 + Vgh − 2I − 2Igh

(each vertex with three legs introduces one power of a four-momentum, see formulas
(12.28) and (12.30)). It follows from these formulas that

ω = 4 − n − ngh . (12.31)

Thus, ω depends only on the number of external legs, similarly as in the case of the
renormalizable λ0φ

4
4 model.

Note that according to formula (12.31), the diagrams that have n = 0 and ngh = 4
are logarithmically divergent. The corresponding countertermwould have the general
form (cc)2. Because there is no term of this kind in the action (12.20), the presence of
this counterterm in the effective actionwould pose a problem—itwould signal that the
deep analysis carried out in the Sects. 12.1 and 12.2 was not precise enough. Luckily,
this is not the case. Two of the external lines in all diagrams with n = 0, ngh = 4
have arrows pointing outward from the diagrams. Therefore, the two internal vertices
from which these two external lines start are proportional to the fixed external four-
momenta, c.f. formula (12.30) and the last vertex in Fig. 12.2. It follows that the
superficial degree of divergence is in fact smaller by 2, i.e., it is equal to −1, and the
controversial counterterm is not needed.

12.4 BRST Invariance and the Slavnov–Taylor Identities

The classical effective action S[A, c, c], formula (12.15), is not gauge invariant by
its construction—it was precisely our goal in Sect. 12.1 to eliminate the freedom
of performing the gauge transformations. However, in 1975 C. Becchi, A. Rouet,
R. Stora, and independently I. V. Tyutin, discovered that this action is invariant with
respect to rather special transformations, which are usually written in the following
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form:

A
′a
μ (x) = Aa

μ(x) + δAa
μ(x), c

′a(x) = ca(x) + δca(x), c′
a(x) = ca(x) + δca(x),

(12.32)
where

δAa
μ(x) = αθ (Dμc)

a(x), δca(x) = 1

2
αgθ fabdc

bcd , δca(x) = θ ∂μA
aμ.

Here θ is aGrassmann element. By assumption, it anticommuteswith the ghost fields.
Because θ2 = 0, the above form of the transformations is the exact one, in spite of the
notation which might suggest that, e.g., δAa

μ is an infinitesimal contribution (which
it in fact is not). It turns out that these transformations leave invariant the Lagrangian
that corresponds to the action S,

L = −1

4
Fa

μνF
aμν − 1

2α
∂μA

aμ∂ν A
aν + ca(x) ∂μ[(Dμc)a(x)]. (12.33)

Actually L is not the simplest BRST invariant object. There exist other invariants:
LYM = −Fa

μνF
aμν/4, as well as

I a1 (x) = αg fabdc
b(x)cd(x)/2, I aμ

2 = α(Dμc)a(x)

(Exercise 12.3). Their presence facilitates checking the invariance of L.
The measure [d A][dcdc] is also invariant with respect to the BRST transforma-

tions. In order to demonstrate this, it is sufficient to consider the products

N 2−1∏

a=1

d Aa
μ(x)

N 2−1∏

b=1

dcb(x)
N 2−1∏

d=1

dcd(x)

with an arbitrary fixed x ∈ M , μ = 0, 1, 2, 3. Because θ is a constant,

N 2−1∏

b=1

dc′
b(x) =

N 2−1∏

b=1

dcb(x).

Next,
N 2−1∏

d=1

dc
′d(x) = (det Ĵ )−1

N 2−1∏

d=1

dcd(x),

where the matrix elements of the N 2 − 1 by N 2 − 1 matrix Ĵ have the form
Jab = δab + αgθ fadbcd(x). In the derivation of this formula the antisymmetry of
fadb was used. Because θ2 = 0, det Ĵ = 1 + αgθ fadacd(x) = 1. Furthermore,
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N 2−1∏

a=1

d A
′a
μ (x)

N 2−1∏

d=1

dc
′d(x) = det Ĵ (det Ĵ )−1

N 2−1∏

a=1

d Aa
μ(x)

N 2−1∏

d=1

dcd(x)

=
N 2−1∏

a=1

d Aa
μ(x)

N 2−1∏

d=1

dcd(x).

The BRST invariance of the Lagrangian, and of the measure, implies certain iden-
tities for the Green’s functions, called the Slavnow–Taylor identities. It is convenient
to first obtain the Slavnov–Taylor identity for a certain generating functional. The
Green’s functions will be considered next. Let us introduce an extended generating
functional Z ,

Z[ j, ξ, ξ, H, K ] = Z[ j, ξ, ξ, H, K ]
Z[0] , (12.34)

where

Z[ j, ξ, ξ, H, K ] = lim
ε→0+

∫
[d A][dcdc] exp

[
i S[A, c, c]

− ε

2

∫
d4x e−ε|x0|Aai

√−�Aai
]
exp

[
i
∫
d4x

(
j aμ (x)Aaμ(x) + ca(x)ξ

a(x)

+ξa(x)c
a(x) + Ha(x)I

a
1 (x) + K

μ

a (x)I
a
2μ

) ]
. (12.35)

Here Ha(x) and K
μ

a (x) are new external sources. K
μ

a is of Grassmann type like ξa

and ξa . The expression

N [A, c, c] =
exp

[
i
∫
d4x

(
jaμ (x)Aaμ(x) + ca(x)ξ

a(x) + ξa(x)c
a(x) − ε

2
e−ε|x0|Aai

√−�Aai
) ]

,

which is a part of formula (12.35), is not invariant under the transformations (12.32):

N [A′, c′, c′] = N [A, c, c] + iθ lim
ε→0+

∫
d4x

[
j aμ I a2μ

+ ξa∂μA
aμ − ξa I

a
1 + i

2
εe−ε|x0|(I ai2

√−�Aai + Aai
√−�I ai2 )

]
N [A, c, c].

The last term on the r.h.s. vanishes in the limit ε → 0. Note that I a1 (x), I a2μ(x), and

Aaμ(x) can be replaced by the variational derivatives −iδ/δHa(x), −iδ/δK
μ

a (x),
and −iδ/δ j aμ (x), respectively.

The Slavnov–Taylor identity for Z follows from the fact that in the path integral
giving this functional, formula (12.35), we may perform a nonsingular change of the
integration variables, in particular the change given by formulas (12.32). Because
of the invariance of the integration measure, and of the whole integrand except
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N [A, c, c], we have the following identity

Z[ j, ξ, ξ, H, K ] =Z[ j, ξ, ξ, H, K ]

+ θ

∫
d4x

[
j aμ(x)

δZ
δK

μ

a (x)
+ ξa∂μ

δZ
δ j aμ (x)

− ξa
δZ

δHa(x)

]
.

Fromhere, dividingbyZ[0],weobtain theSlavnov–Taylor identity for the generating
functional Z:

∫
d4x

(
j aμ(x)

δZ
δK

μ

a (x)
+ ξa∂μ

δZ
δ j aμ (x)

− ξa
δZ

δHa(x)

)
= 0. (12.36)

The identities for Green’s functions are generated from (12.36) by taking varia-
tional derivatives with respect to j aμ , ξa and ξa , and putting zero for all of the external

sources, including Ha and K
μ

a . Note that such identities involve Green’s functions,
which are the vacuum expectation values of the time ordered products of not only
the fields Aa

μ(x), ca(c), ca(x), but also the composite fields Ia1(x) and Ia2μ(x).
The Slavnov–Taylor identities encode, on the level of Green’s functions, the fact

that the Lagrangian (12.33) has a very specific form. This form of the Lagrangian is
the consequence of the gauge invariance of the original Yang–Mills LagrangianLYM .
Therefore, violation of these identities would imply violation of gauge invariance.6

It is also clear from the remarks above that the renormalized Green’s functions
should obey the Slavnov–Taylor identities. In order to achieve this, the various coun-
terterms which are introduced in the process of removing the UV divergences have to
be interrelated in the appropriate manner. With such restrictions on the counterterms,
the renormalization of non-Abelian gauge theories is quite nontrivial. The proof of the
renormalizability of these theories, provided by G. ’t Hooft and M. Veltman around
1970, requires in particular a rather special regularization, called the dimensional
regularization.

The quantum non-Abelian gauge field is asymptotically free— the Gell-Mann–
Low β function turns out to be negative, at least for small values of the coupling
constant g. Therefore the perturbative results are trustworthy only at very large four-
momenta. Unfortunately, nuclear phenomena and the structure of hadrons belong to
the realm of (relatively) low four-momenta physics, where the perturbative results
are not reliable.

6One should distinguish between gauge invariance and gauge independence. This last term, often
used in literature, refers to the lack of dependence on the concrete choice of a gauge condition
(12.1).
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Exercises

12.1 Find the form of the Faddeev–Popov–DeWitt action in the case of the free
Abelian gauge field with the ’t Hooft–Veltman non-linear gauge condition
(∂μ − Aμ)Aμ = 0.
Hint: δF(x)/δAμ(y) = ∂μδ(x − y) − 2Aμ(x)δ(x − y)

12.2 The gauge condition nμAa
μ(x) = 0,where n = (nμ) is a constant non-vanishing

four-vector, encompasses the Coulomb, the temporal (Aa
0 = 0) and other popular

gauge conditions. Show thatwith this gauge condition one can obtain formula (12.14)
in which the ghost fields are absent.
Hint: Notice that Mca(x, y) contains the expression nμAd

μ(y), which is equal to
λd(y) when we consider the auxiliary gauge condition Fa(A)(x) = λa(x) used in
the derivation of formula (12.14). Therefore, the factor M[ Â] in formula (12.13),
in which we now have δ[F(A) − λ] instead of δ[F(A)], can be replaced by
M[ Â]|nAa=λa . This factor does not depend on Aa

μ, hence it can be omitted (in fact it
is canceled by a factor in N ).

12.3 Check that LYM , I a1 , and I a2μ are invariant with respect to the BRST transfor-
mations.
Hint: In the case of LYM first prove that δ F̂μν = iαgθ [F̂μν, ĉ], where ĉ = T̂aca .
Next, write Fa

μνF
aμν/4 as tr(F̂μν F̂μν)/2 and check that tr(δ F̂μν F̂μν) = 0.



Chapter 13
The Simplest Supersymmetric Models

Abstract The generating elements and their (anti-)commutation relations in the
N = 1 superalgebra. Multiplets of quantum states generated by elements of the
superalgebra. An example of a supersymmetric Lagrangian with free fields. The
notions of superspace, superfield, and chiral superfield. The Wess–Zumino model
and the Feynman diagrams for it. Examples of the mutual cancellation of ultraviolet
divergences. The supersymmetric gauge theory. The N = 2 extended supersymme-
try. A glossary of formulas used in the analysis of supersymmetric models.

TheBRST invariance of the classical effective action for the non-Abelian gauge fields
is an example of a symmetry with the parameters of the transformation belonging
to the Grassmann algebra. Such symmetries, called supersymmetries, have become
increasingly popular in field theory in their own right. Below we present three exam-
ples of supersymmetricmodels: a free fieldmodel, the so calledWess–Zuminomodel
and (with less details) supersymmetric models with gauge fields.

13.1 The Superalgebra

A superalgebra includes, besides the bosonic generators of the Poincaré group P , at
least one spinor generator Q̂ with two components. We will discuss in this chapter
only four-dimensional Minkowski space-time so that the simplest possibility is to
take Q̂ to be the right-handed Weyl spinor Q̂α, α = 1, 2, of the Grassmann type
(see Chap.5). This will lead us to the so called N = 1 supersymmetry. Our goal will
be thus: to determine the allowed form of the superalgebra containing—besides the

generators of P—the generator Q̂α and its conjugate ˆ̄Qα̇ (notice that—to conform
with most of the literature on supersymmetry—we have changed the notation for the
conjugate spinor from a ‘star’ to a ‘bar’).
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Consider first the commutator [P̂μ, Q̂α]. It is a spinor quantity, so let us assume
that1:

[P̂μ, Q̂α] = cσμ

αβ̇
ˆ̄Qβ̇ (13.1)

with some complex constant c. Consequently, upon conjugation of both sides

[P̂μ, ˆ̄Qβ̇] = −c∗σ̃μβ̇γ Q̂γ . (13.2)

Using (13.1), (13.2), the Jacobi identity

[P̂μ, [P̂ν, Q̂α]] + [P̂ν, [Q̂α, P̂μ]] + [Q̂α, [P̂μ, P̂ν]] = 0 (13.3)

and the relation [P̂μ, P̂ν] = 0, we get

|c|2 (σμσ̃ν + σνσ̃μ) = 0,

so that c = 0, and we have

[P̂μ, Q̂α] = [
P̂μ, ˆ̄Qβ̇

] = 0. (13.4)

In the spinor representation (see (5.19)) the Dirac matrices read

γμ =
(

0 σμ

σ̃μ 0

)
, [γμ, γν] =

(
σμν 0
0 σ̃μν

)
.

It then follows from (5.17) that under aLorentz transformationwith an antisymmetric,
infinitesimal ωμν , the generator Qα transforms as

Q̂′
α = (1 + 1

2ωμνσ
μν) β

α Q̂β = Q̂α + i

2
ωμν

[
M̂μν, Q̂α

]
,

so that [
M̂μν, Q̂α

]
= −i(σμν) β

α Q̂β . (13.5)

A similar derivation gives

[
M̂μν, ˆ̄Qα̇

] = −i(σ̃μν)α̇
β̇

ˆ̄Qβ̇ . (13.6)

Consider now the anticommutator {Q̂α, Q̂β}. It is clearly a bosonic object and the
transformation properties of Q̂α under Poincaré transformations constrain it to be
proportional to (σμν)

β
α M̂μν . In view of (13.4)

1See Sect. 13.7 for the notation and conventions.

http://dx.doi.org/10.1007/978-3-319-55619-2_5
http://dx.doi.org/10.1007/978-3-319-55619-2_5


13.1 The Superalgebra 295

[
P̂μ, {Q̂α, Q̂β}

]
= 0

while [P̂μ, M̂νρ] �= 0 (seeSect. 10.1), so that the proportionality constantmust vanish
and we have

{Q̂α, Q̂β} = { ˆ̄Qα̇, ˆ̄Qβ̇} = 0. (13.7)

Finally, {Q̂α, ˆ̄Qβ̇} ∝ σ
μ

αβ̇
P̂μ. The proportionality constant can be adjusted at will by

appropriately rescaling the generators, and we take

{Q̂α, ˆ̄Qβ̇} = 2σμ

αβ̇
P̂μ. (13.8)

This relation has very interesting consequences. Since

σμσ̃ν = ημν I2 + 2σμν

and σμν are traceless, we have

tr(σμσ̃ν) = 2ημν .

From (13.8) we thus get

(σ̃ν)β̇α{Q̂α, ˆ̄Qβ̇} = 2 tr(σ̃νσμ)P̂μ = 4P̂ν .

Taking ν = 0 we have for any state |ψ〉 �= 0

〈ψ|P̂0|ψ〉 = 1

4
〈ψ|Q̂1

ˆ̄Q 1̇ + Q̂2
ˆ̄Q 2̇ + ˆ̄Q 1̇ Q̂1 + ˆ̄Q 2̇ Q̂2|ψ〉

= 1

4
〈ψ|Q̂α(Q̂α)† + (Q̂α)† Q̂α|ψ〉 ≥ 0. (13.9)

Here we have taken into account the fact that the Grassmann conjugation of theWeyl
spinors can finally be reduced to Hermitian conjugation. Thus in any supersymmetric
theory

〈0|P̂0|0〉 = 0 ⇔ Q̂α|0〉 = 0 (13.10)

and all states have non-negative energy.

13.2 Supersymmetry Multiplets

Let us have a look at the consequences of the superalgebra restricted to the subspace
of single particle states. The spatial components of the operator M̂μν , generators of
the rotations in the three dimensional space, are often denoted as

http://dx.doi.org/10.1007/978-3-319-55619-2_10
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M̂23 = −M̂32 = Ĵ 1, M̂31 = −M̂13 = Ĵ 2, M̂12 = −M̂21 = Ĵ 3,

or equivalently Ĵ i = 1
2 ε

i jk M̂ jk . It follows from the commutation relation satisfied

by the operators P̂μ and M̂μν , see (10.12), (10.17), and (10.19), that P̂μ, Ĵ 3 and


̂J 2 commute with each other if restricted to the subspace of states with vanishing
momentum P̂ i . As a basis in this subspace we take the states |
0, s, s3〉 such that

P̂μ|
0, s, s3〉 = mδ
μ
0 |
0, s, s3〉,


̂J 2|
0, s, s3〉 = s(s + 1)|
0, s, s3〉,
Ĵ 3|
0, s, s3〉 = s3|
0, s, s3〉, (13.11)

wherem > 0 is the mass of the particle, which is assumed to be positive. Now define
rescaled generators,

âα = 1√
2m

Q̂α, â†α = 1√
2m

ˆ̄Qα̇. (13.12)

In the particle’s rest frame, their algebra (with the form which follows from (13.7)
and (13.8)) is isomorphic to the algebra of two fermionic creation and annihilation
operators,

{âα, â†β} = δβ
α, {âα, âβ} = {â†α, â†β} = 0. (13.13)

We can construct their representation on the space spanned by the vectors |
0, s, s3〉
as follows. Suppose that |
0, s ′, s ′

3〉 is an eigenstate of P̂μ, 
̂J 2 and Ĵ 3. Then either
â1|
0, s ′, s ′

3〉 = 0 or, thanks to (13.4), (13.5), |
0, s, s3〉 = â1|
0, s ′, s ′
3〉 is also an eigen-

state of these operators (although corresponding to different eigenvalues of the latter
two). Moreover, from the relation â21 = 1

2 {â1, â1} = 0 it follows that

â1|
0, s, s3〉 = 0

An analogous argument for â2 shows that we can always choose |
0, s, s3〉 to be anni-
hilated by âα,α = 1, 2. We shall denote the state satysfying (13.11) and annihilated
by aα,α = 1, 2, by |
0, s, s3〉0.

From each of the states |
0, s, s3〉0 we then construct three more states with the
same mass,

â†α|
0, s, s3〉0, â†2 â
†
1 |
0, s, s3〉0.

Equation (13.6) implies that

[ Ĵ i , â†α] = 1

2
(σi â†)α

http://dx.doi.org/10.1007/978-3-319-55619-2_10
http://dx.doi.org/10.1007/978-3-319-55619-2_10
http://dx.doi.org/10.1007/978-3-319-55619-2_10
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from which it follows that

Ĵ 3â†1 |
0, s, s3〉 = (s3 + 1
2 )â

†
1 |
0, s, s3〉, Ĵ 3â†2 |
0, s, s3〉 = (s3 − 1

2 )â
†
2 |
0, s, s3〉,

(13.14)
and

Ĵ 3â†2 â
†
1 |
0, s, s3〉 = s3â

†
2 â

†
1 |
0, s, s3〉. (13.15)

Notice also that

[ Ĵ 1 − i Ĵ 2, â†1 ] = â†2 , [ Ĵ 1 + i Ĵ 2, â†2 ] = â†1 , [ Ĵ 1 + i Ĵ 2, â†1 ] = [ Ĵ 1 − i Ĵ 2, â†2 ] = 0.

(13.16)

From the relations above one may show that in general, starting with a 2s + 1 com-
ponent multiplet with spin s, and acting on it with â†α we generate a spin (s + 1

2 )

multiplet, a spin (s − 1
2 ) multiplet and one more spin s multiplet. Thus a general

massive representation has 4(2s + 1) basis states, half of which are bosonic and half
fermionic. In particular, starting from the scalar |
0, 0, 0〉0 we get an s = 1

2 doublet

â†1 |
0, 0, 0〉0 = |
0, 1
2 ,

1
2 〉, â†2 |
0, 0, 0〉0 = |
0, 1

2 ,− 1
2 〉,

and a second scalar
|
0, 0, 0〉′ = â†2 â

†
1 |
0, 0, 0〉0.

In the s = 1
2 case we get

â†1 |
0, 1
2 ,

1
2 〉0 = |
0, 1, 1〉, â†2 |
0, 1

2 ,
1
2 〉0 = 1√

2

(
|
0, 1, 0〉 + |
0, 0, 0〉

)
,

â†2 |
0, 1
2 ,− 1

2 〉0 = |
0, 1,−1〉, â†1 |
0, 1
2 ,− 1

2 〉0 = 1√
2

(
|
0, 1, 0〉 − |
0, 0, 0〉

)
,

â†2 â
†
1 |
0, 1

2 ,
1
2 〉0 = |
0, 1

2 ,
1
2 〉′, â†2 â

†
1 |
0, 1

2 ,− 1
2 〉0 = |
0, 1

2 ,− 1
2 〉′.

13.3 Representation of Supersymmetry in a Space of Fields

An important feature of the superalgebra is that it can be realized in a field theory and
its generators may be represented in terms of integrals of conserved, local currents,

Q̂α =
∫
d3x ĵ0α(x), ∂μ ĵ

μ
α (x) = 0.

The currents may in turn be expressed as local products of fields (for an example see
Exercise13.2).
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Let ξα and ξ̄α̇ denote Grassmann (anticommuting) parameters, satisfying

{ξα, ξβ} = {ξα, ξ̄β̇} = {ξ̄α̇, ξ̄β̇} = 0,

which are supposed to anticommute with the supersymmetry generators, and to
commute with the generators of the Poincaré group,

{ξα, Q̂β} = {ξα, ˆ̄Qβ̇} = [ξα, P̂μ] = [ξα, M̂μν] = 0,

{ξ̄α̇, Qβ} = {ξ̄α̇, ˆ̄Qβ̇} = [ξ̄α̇, P̂μ] = [ξ̄α̇, M̂μν] = 0. (13.17)

Using them, and another set of constant Grassmann parameters ηα and ηα̇, we can
rewrite the superalgebra using only commutators,

[P̂μ, ξ Q̂] = [P̂μ, ξ̄ ˆ̄Q] = 0,[
M̂μν, ξ Q̂

]
= −i ξσμν Q̂, [M̂μν, ξ̄ ˆ̄Q] = −i ξ̄σ̃μν ˆ̄Q,

[ξ Q̂, ηQ̂] = [ξ̄ ˆ̄Q, η̄ ˆ̄Q] = 0, [ξ Q̂, η̄ ˆ̄Q] = 2(ξσμη̄)P̂μ,

(13.18)

where, in the adopted conventions, ξ Q̂ = ξα Q̂α, ξ̄ ˆ̄Q = ξ̄α̇
ˆ̄Qα̇, e.t.c.

As was already discussed in Chap. 10, any quantum field in the Heisenberg picture
û(x) transforms under a symmetry transformation, represented by a unitary operator
U , as

û′(x) = U †û(x)U.

For a supersymmetry transformation parameterized by ξ and ξ̄

U = U (ξ, ξ̄) = ei(ξ Q̂+ ˆ̄Qξ̄),

and, up to the terms linear in ξ and ξ̄,

δξ û(x) ≡ û′(x) − û(x) = −i[ξ Q̂ + ξ̄ ˆ̄Q, û(x)]. (13.19)

The form of δξ û(x) must be consistent with the algebra (13.18). In particular, for
two subsequent SUSY transformations, (13.19) and the Jacobi identity for commu-
tators

[A, [B,C]] + [B, [C, A]] + [C, [A, B]] = 0

give

[δη, δξ]û(x) ≡ (δηδξ − δξδη)û(x) = −
[
[ηQ̂ + η̄ ˆ̄Q, ξ Q̂ + ξ̄ ˆ̄Q], û(x)

]
.

http://dx.doi.org/10.1007/978-3-319-55619-2_10
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Using (13.18), we thus get

[δη, δξ]û(x) = 2(ξσμη̄ − ησμξ̄)[P̂μ, û(x)]. (13.20)

Moreover, if û(x) is scalar under translations, then (see Chap.10, (10.24))

[P̂μ, û(x)] = −i∂μû(x), (13.21)

and we arrive at the condition

[δη, δξ]û(x) = 2i(ησμξ̄ − ξσμη̄)∂μû(x). (13.22)

This is in fact a sufficient condition for the consistency of (13.19) with (13.18).
Equation (13.22) was derived for the quantum field û(x), but its right hand side

also makes perfect sense when u(x) is a classical field. Our goal now will be to find
the simplest possible set of classical fields ui (x), and to define their supersymmetric
variations δξui (x) so that (13.22) is satisfied. Moreover, we shall require the classical
action functional for the fields ui (x) to be invariant when we replace ui (x) with
ui (x) + δξui (x).

Aswe have learned in the previous Section, the simplest supersymmetricmultiplet
(obtained by starting from the state |
0, 0, 0〉) contains two states with total spin s = 0,
and a doublet of states with the total spin s = 1

2 and its two possible s3 components.
Thus, we may try to construct its field theoretic realization in a model containing a
classicalWeyl spinorfieldψ and a complex scalar fieldϕ. Let us start bypostulating—
guided by the dimensional analysis—a transformation law for the scalar field ϕ(x).
The form of the action functionals for the scalar and Weyl fields show that (in the
system of units � = c = 1) their dimensions read

[ϕ(x)] = cm−1, [ψ(x)] = [ψ̄(x)] = cm− 3
2 .

Now, [P̂μ] = cm−1 so that equation (13.8) gives

[Q̂] = [ ˆ̄Q] = cm− 1
2

and (since ξ Q̂ and ξ̄ ˆ̄Q have to be dimensionless for U (ξ) to make sense)

[ξ] = [ξ̄] = cm
1
2 .

Because an infinitesimal transformation is linear in the transformation parameters
and [δξϕ] = [ϕ], it must therefore be of the form

δξϕ = aξψ + bξ̄ψ̄ (13.23)

where a and b are complex constants to be determined from (13.22), and ψ̄ = (ψ)∗.

http://dx.doi.org/10.1007/978-3-319-55619-2_10


300 13 The Simplest Supersymmetric Models

Since δξψ also has the dimension cm− 3
2 and we assume that ϕ and ψ are the only

fields in the constructed model, the only choice for δξψ is

δξψα = cσμ
αα̇ξ̄α̇∂μϕ (13.24)

with a constant c, and consequently

δξψ̄
β̇ = εβ̇α̇

(
δξψα

)∗ = −c∗(σ̃μ)β̇βξβ∂μϕ
∗ (13.25)

where the formula
εβαεβ̇α̇σ

μ
αα̇ = (σ̃μ)β̇β

was used. Equations (13.23), (13.24), and (13.25) give

δηδξϕ = ac(ξσμη̄)∂μϕ + bc∗(ησμξ̄)∂μϕ
∗,

and the consistency condition

[δη, δξ]ϕ(x) = 2i(ησμξ̄ − ξσμη̄)∂μϕ(x)

holds if
ac = −2i, b = 0. (13.26)

Furthermore (for θ being a constant spinor, introduced here to avoid explicitlywriting
down the indices)

δηδξ θψ = ca(θσμξ̄)
(
η∂μψ

)
,

and, using (13.26) with an appropriate Fierz identity (see Exercise13.5), we get

δηδξ(θψ) = 2i(ησμξ̄)(θ∂μψ) − i(ησνξ̄)(θσ
νσ̃μ∂μψ). (13.27)

The consistency condition

[δη, δξ]u(x) = 2i(ησμξ̄ − ξσμη̄)∂μu(x)

is satisfied for u(x) = ψ (and, by complex conjugation, for u(x) = ψ̄) if and only
if the second term on the r.h.s. of (13.27) vanishes, or, equivalently, ψ obeys the
equation of the motion of a free, massless Weyl field,

σ̃μ∂μψ = 0. (13.28)

The consistency of field variations with the SUSY algebra is just a necessary
condition for the SUSY invariance of a given field theoretic model. We also need to
checkwhether the pertinent action functional is invariant. In view of (13.28), we shall
discuss the theory of a non–interacting Weyl spinor and a massless, free, complex
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scalar with a Lagrangian of the form

L(1) = ∂μϕ
∗∂μϕ + i

2

(
ψ̄σ̃μ∂μψ − ∂μψ̄σ̃μψ

)
. (13.29)

Using (13.23), (13.24), (13.25), and taking into account (13.26) we get

δξL(1) = (a + ic∗)ξ∂μψ ∂μϕ∗ + (a∗ − ic)ξ̄∂μψ̄∂μϕ

+ i

2
∂μ

[
c
(
2ψ̄σ̃νμξ̄∂νϕ + ψ̄ξ̄∂μϕ

) + c∗
(
2ξσνμψ ∂νϕ∗ − ξψ ∂μϕ∗)]

. (13.30)

Thus, the Lagrangian itself is invariant if, and only if, a = c = 0, but then the super-
symmetry transformations are trivial. Fortunately, the presence of a total derivative
in δξL(1) does not spoil the invariance of the action functional. Therefore we take
a = −ic∗. Equation (13.26) then gives |c|2 = 2, and choosing the phase factor con-
veniently we finally get

a = −√
2, c = i

√
2.

The action

S =
∫
d4x L(1)

with the Lagrangian given by (13.29) is thus invariant under SUSY transformations
of the form

δξϕ(x) = −√
2 ξψ(x), δξψ(x) = i

√
2 σμξ̄ ∂μϕ(x), (13.31)

and (13.31) ‘close on shell’, that is, the consistency conditions (13.22) are satisfied
provided the spinor field obeys the equation (13.28).

Let us count the number of (functional) degrees of freedom of the fields involved.
If we do not take into account the equations of motion (i.e. “off shell”), we have two
(real) bosonic and four fermionic degrees of freedom (remember that ϕ and ψα are
complex). Ifwe now impose the equations ofmotion, then—since the e.o.m. forϕ, the
massless Klein-Gordon equation, is of second order and its solutions are determined
by two arbitrary functions, say ϕ(t, 
x)∣∣t=0 and ∂tϕ(t, 
x)∣∣t=0, while to determine a
solution of the first order Dirac equation one only needs to specify ψα(t, 
x)∣∣t=0—we
have two bosonic and two fermionic d.o.f. To match the degrees of freedom in the
off shell case we have to introduce another complex scalar field, whose equation of
motion is trivial,

F(x) = 0,

in order not to spoil the counting of the degrees of freedom on shell. The modified
Lagrangian thus reads

L = ∂μϕ
∗∂μϕ + i

2

(
ψ̄σ̃μ∂μψ − ∂μψ̄σ̃μψ

) + F∗F. (13.32)
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Consequently, [F] = cm−2, and we can modify the transformation law of the spinor
field to be

δξψ(x) = i
√
2σμξ̄∂μϕ(x) + d ξF(x) (13.33)

with some constant d, and postulate (matching the dimensions of fields)

δξF(x) = gξ̄σ̃μ∂μψ(x), (13.34)

where g is yet another constant. Thus, we have

δηδξ(θψ) = −2i(θσμξ̄)(η∂μψ) + dg(η̄σ̃μ∂μψ)(θξ)

= 2i(ησμξ̄)(θ∂μψ) − i(ησνξ̄)(θσ
νσ̃μ∂μψ) + 1

2
gd(ξσνη̄)(θσνσ̃μ∂μψ),

where we used the Fierz identity (13.96) and (13.88). Therefore,

[δη, δξ](θψ)

= 2i
(
ησμξ̄ − ξσμη̄

)
(θ∂μψ) + 1

2
(gd + 2i)

(
ξσνη̄ − ησνξ̄

)
(θσνσ̃μ∂μψ).

Consequently, if
gd = −2i, (13.35)

then we get
[δη, δξ]ψα = 2i

(
ησμξ̄ − ξσμη̄

)
∂μψα

without using the equations of motion. Similarly,

δηδξF = gc ξ̄σ̃μσνη̄ ∂μ∂νϕ + 2i ησμξ̄ ∂μF = gc ξ̄η̄ ∂μ∂
μϕ + 2i ησμξ̄ ∂μF,

where (13.35) was employed, so that, without using the equations of motion, we get
the closure of the supersymmetry algebra on the auxiliary field F :

[δη, δξ]F = 2i(ησμξ̄ − ξσμη̄)∂μF.

Finally,

δξL = δξL(1) + g ξ̄σ̃μ∂μψ F∗ − g∗ξσμ∂μψ̄ F

+ id

2

[
ξσμ∂μψ̄ F − ξσμψ̄ ∂μF

] + id∗

2

[
ξ̄σ̃μ∂μψ F∗ − ξ̄σ̃μψ ∂μF

∗]

= δξL(1) + (g∗ − id)ξσμψ̄ ∂μF − (g + id∗)ξ̄σ̃μψ ∂μF
∗

+ ∂μ

[(
g + id∗

2

)
ξ̄σ̃μψ F∗ − (

g∗ − id
2

)
ξσμψ̄ F

]
.
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The action ∫
d4x L

is thus invariant provided
g = −id∗. (13.36)

Thefinal formof theSUSYvariations, keeping the actionwith theLagrangian (13.32)
invariant and satisfying the classical counterpart of the consistency condition (13.22),
reads

δξϕ(x) = −√
2 ξψ(x),

δξψ(x) = i
√
2 σμξ̄∂μϕ(x) − √

2 ξF(x), (13.37)

δξF(x) = i
√
2 ξ̄σ̃μ∂μψ(x).

13.4 The Superspace

The field ϕ̂(x) can be viewed as an operator ϕ̂(0) translated from 0 to an arbitrary
space-time point x ,

ϕ̂(x) = ei x
μ P̂μ ϕ̂(0)e−i xμ P̂μ . (13.38)

The presence of the generators, Q̂ and ˆ̄Q, allows us to define a more general object:
the superfield

Ŝ(x, θ, θ̄) = ei(x
μ P̂μ+θα Q̂α+ ˆ̄Qα̇ θ̄α̇)ϕ̂(0)e−i(xμ P̂μ+θα Q̂α+ ˆ̄Qα̇ θ̄α̇) (13.39)

(do not confuse it with the action functional), where θα and θ̄α̇ are Grassmann
variables. The set of variables (x, θ, θ̄) defines a structure called the superspace.

Definition (13.39) allows us to find the form of a translation (parameterized by
the commuting variable a and the Grassmann numbers ξ and ξ̄) on the superspace.
We have

Ŝ(x ′, θ′, θ̄′) = ei(a
μ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄α̇) Ŝ(x, θ, θ̄) e−i(aμ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄α̇). (13.40)

The Baker–Campbell–Hausdorff formula

eAeB = eA+B+ 1
2 [A,B]
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with A and B such that [A, [A, B]] = [B, [A, B]] = 0, then gives

exp
(
i(aμ P̂μ + ξα Q̂α + ˆ̄Qα̇ξ̄α̇)

)
exp

(
i(xμ P̂μ + θα Q̂α + ˆ̄Qα̇θ̄α̇)

)
=

exp
(
i
[
(xμ + aμ + iξασ

μ
αα̇θ̄α̇ − iθασ

μ
αα̇ξ̄α̇)P̂μ + (θα + ξα)Q̂α + ˆ̄Qα̇(θ̄α̇ + ξ̄α̇)

])

so that

x ′ = x + a + iξσθ̄ − iθσξ̄,

θ′ = θ + ξ, (13.41)

θ̄′ = θ̄ + ξ̄.

By definition, the superfield which transforms as a scalar with respect to the transla-
tion (13.41) satisfies

Ŝ′(x ′, θ′, θ̄′) = Ŝ(x, θ, θ̄). (13.42)

From (13.40)

Ŝ′(x, θ, θ̄) = e−i(aμ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄α̇) Ŝ′(x ′, θ′, θ̄′) ei(a
μ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄α̇),

and, using (13.42), we have, up to the terms linear in a, ξ, ξ̄

Ŝ′(x, θ, θ̄) = e−i(aμ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄α̇) Ŝ(x, θ, θ̄) ei(a
μ P̂μ+ξα Q̂α+ ˆ̄Qα̇ ξ̄α̇)

= Ŝ(x, θ, θ̄) − iaμ
[
P̂μ, Ŝ(x, θ, θ̄)

]
(13.43)

−i
[
ξα Q̂α, Ŝ(x, θ, θ̄)

]
− i

[ ˆ̄Qα̇ξ̄α̇, Ŝ(x, θ, θ̄)
]
.

From (13.41) and (13.42) we also have

Ŝ′(x, θ, θ̄) = Ŝ(x − a − iξσθ̄ + iθσξ̄, θ − ξ, θ̄ − ξ̄)

= Ŝ(x, θ, θ̄) − (
aμ + iξσμθ̄ − iθσμξ̄

) ∂

∂xμ
Ŝ(x, θ, θ̄) − ξα ∂

∂θα
Ŝ(x, θ, θ̄)

−ξ̄α̇ ∂

∂θ̄α̇
Ŝ(x, θ, θ̄).

Comparing this result with (13.43) we get

i
[
P̂μ, Ŝ(x, θ, θ̄)

]
= ∂

∂xμ
Ŝ(x, θ, θ̄), (13.44)

i
[
ξα Q̂α, Ŝ(x, θ, θ̄)

]
= ξα

(
∂

∂θα
+ iσμ

αα̇θ̄α̇ ∂

∂xμ

)
Ŝ(x, θ, θ̄) ≡ ξαQα Ŝ(x, θ, θ̄),

i
[ ˆ̄Qα̇ξ̄α̇, Ŝ(x, θ, θ̄)

]
= ξ̄α̇

(
∂

∂θ̄α̇
+ iθασ

μ
αα̇

∂

∂xμ

)
Ŝ(x, θ, θ̄) ≡ Q̄α̇ξ̄α̇ Ŝ(x, θ, θ̄),
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where

Qα = ∂

∂θα
+ iσμ

αα̇θ̄α̇ ∂

∂xμ
, Q̄α̇ = − ∂

∂θ̄α̇
− iθασ

μ
αα̇

∂

∂xμ
(13.45)

are differential operators generating supersymmetric transformations on the space
of scalar superfields.

We can expand the superfield Ŝ(x, θ, θ̄) in a power series in θ and θ̄. Since the
square of a Grassmann variable is zero, this expansion terminates after a few terms

Ŝ(x, θ, θ̄) = ϕ̂(x) + θψ̂(x) + θ̄ ˆ̄ψ(x) + θθ F̂(x) + θ̄θ̄Ĝ(x) (13.46)

+ (θσμθ̄)v̂μ(x) + θ̄θ̄ θλ̂(x) + θθ θ̄ ˆ̄λ(x) + θθ θ̄θ̄ D̂(x).

The SUSY variations of the component fields ϕ̂, ψ̂, . . . , D̂ can now be computed by
comparing the formula

δξS(x, θ, θ̄) = δξϕ̂(x) + θδξψ̂(x) + θ̄δξ
ˆ̄ψ(x) + θθδξ F̂(x) + θ̄θ̄δξĜ(x)

+ (θσμθ̄)δξ v̂μ(x) + θ̄θ̄ θδξλ̂(x) + θθ θ̄δξ
ˆ̄λ(x) + θθ θ̄θ̄ δξ D̂(x)

with (see (13.43) and (13.44))

δξ Ŝ(x, θ, θ̄) = −i
[
ξα Q̂α, Ŝ(x, θ, θ̄)

]
− i

[ ˆ̄Qα̇ξ̄α̇, Ŝ(x, θ, θ̄)
]

= −(ξαQα + Q̄α̇ξ̄α̇)Ŝ(x, θ, θ̄), (13.47)

where Qα and Q̄α̇ in the last line are given by (13.45). In particular,

δξ D̂(x) = i

2

∂

∂xμ

(
ξσμ ˆ̄λ(x) − λ̂(x)σμξ̄

)
(13.48)

—the supersymmetric variation of the θθ θ̄θ̄ term of the superfield (which is custom-
arily named the D-term) is a total derivative.

The general superfield Ŝ contains four scalar, fourWeyl, and one vector field. One
can construct superfields with a smaller number of components, transforming into
each other under the SUSY transformations. To this end, we may use a supersym-
metric covariant derivative Dβ , a first order (in θα) differential operator such that its
action on a superfield does not change its transformation properties, i.e.

δξDβ Ŝ(x, θ, θ̄) ≡ −(ξαQα + Q̄α̇ξ̄α̇)Dβ Ŝ(x, θ, θ̄)

= −Dβ(ξαQα + Q̄α̇ξ̄α̇)Ŝ(x, θ, θ̄) ≡ Dβδξ Ŝ(x, θ, θ̄),
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which is equivalent to requiring

{Qα, Dβ} = {Q̄α̇, Dβ} = 0.

An operator satisfying these conditions is of the form

Dβ = ∂

∂θβ
− iσμ

ββ̇
θ̄β̇ ∂

∂xμ
. (13.49)

Similarly, a first order differential operator in θ̄α̇, anticommuting with Qα and Q̄α̇

has the form

D̄β̇ = ∂

∂θ̄β̇
− iθβσ

μ

ββ̇

∂

∂xμ
. (13.50)

The chiral superfield (an object important enough to deserve a separate ‘name’
�̂) is a superfield satisfying

D̄β̇�̂(x, θ, θ̄) = 0.

Let
yμ = xμ − iθασ

μ
αα̇θ̄α̇.

We have

D̄β̇ y
μ = −iθβσν

ββ̇

∂

∂xν
xμ − i

∂

∂θ̄β̇
θασ

μ
αα̇θ̄α̇ = −iθβσν

ββ̇
δμ
ν + iθασ

μ
αα̇δα̇

β̇
= 0

and
D̄β̇θα = 0, D̄β̇ θ̄α̇ = δα̇

β̇
.

Changing variables and defining

�̂(x, θ, θ̄) = ˆ̃
�(y, θ, θ̄),

we get

D̄β̇�̂(x, θ, θ̄) = D̄β̇
ˆ̃
�(y, θ, θ̄)

=
(
D̄β̇ y

μ ∂

∂yμ
+ D̄β̇θα ∂

∂θα
+ D̄β̇ θ̄α̇ ∂

∂θ̄α̇

)
ˆ̃
�(y, θ, θ̄)

= ∂

∂θ̄β̇

ˆ̃
�(y, θ, θ̄).

Consequently, the chiral superfield is an arbitrary function of θ and y,

�̂(x, θ, θ̄) = ˆ̃
�(y, θ).
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Writing it as a power series in θ we get

ˆ̃
�(y, θ) = ϕ̂(y) + √

2 θαψ̂α(y) + θαθα F̂(y), (13.51)

and further

ϕ̂(x − iθσμθ̄) = ϕ̂(x) − i(θσμθ̄)∂μϕ̂(x) − 1

2
(θσμθ̄)(θσνθ̄)∂μ∂νϕ̂(x)

= ϕ̂(x) − i(θσμθ̄)∂μϕ̂(x) − 1

4
θθ θ̄θ̄∂μ∂

μϕ̂(x),
√
2θαψ̂α(x − iθσμθ̄) = √

2θαψ̂α(x) − i
√
2θα(θσμθ̄)∂μψ̂α(x) (13.52)

= √
2θαψ̂α(x) + i√

2
θθ ∂μψ̂(x)σ̃μθ̄,

θθ F̂(x − iθσμθ̄) = θθ F̂(x).

Using (13.47) with �̂ substituted for Ŝ, we see that the SUSY transformations of the
fields ϕ̂, ψ̂ and F̂ , obtained in this section have forms coinciding with (13.37).

13.5 The Wess–Zumino Model

Let us define the classical, chiral superfield

�(x, θ, θ̄) = ϕ(y) + √
2 θαψα(y) + θαθα F(y), (13.53)

where ϕ and F are classical, complex scalar fields and ψ is a classical (Grassmann
type) Weyl field. As in the previous section yμ = xμ − iθσμθ is a formal argument,
and the fields ϕ(x),ψ(x) and F(x) may be obtained as in (13.52).

Since the covariant derivative satisfies the Leibniz rule, the product of chiral
superfields is again a chiral superfield,

D̄α̇�i = 0, i = 1, 2, ⇒ D̄α̇(�1�2) = 0. (13.54)

The SUSY variation of the θθ coefficient (the F-term) in the expansion of a chiral
field is a total derivative (see (13.52), (13.51) and (13.37)). We can thus construct
a SUSY invariant expression by integrating over the space-time expressions of the
form

a1�
∣
∣
θθ

+ a2��
∣
∣
θθ

+ a3���
∣
∣
θθ

+ . . .

with |θθ denoting the θθ component andwith constant ai . Aswe shall see in amoment,
this gives the mass and the interaction terms in the action functional; to obtain the
kinetic term more work is needed.
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It follows from definitions (13.49), (13.50), that the covariant derivatives satisfy
an algebra of the form

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0,

{Dα, D̄β̇} = −2iσμ

αβ̇

∂

∂xμ
, (13.55)

and consequently D̄α̇(D̄ D̄) = 0. We may now use an antichiral field, i.e.,

�̄(x, θ, θ̄) = ϕ∗(x + iθσθ̄) + √
2 θ̄ψ̄(x + iθσθ̄) + θ̄θ̄ F∗(x + iθσθ̄), (13.56)

satisfying Dα�̄ = 0, to construct a chiral field

�K = 1

4
�(D̄ D̄)�̄ (13.57)

which will finally yield the kinetic term in a SUSY invariant action functional.
It is customary to replace the |θθ operation with an integration over the Grassmann

variables θα. Let us define
∫
d2θ =

∫
dθ1dθ2,

∫
d2θ̄ =

∫
d θ̄2̇d θ̄1̇,

hence ∫
d2θ θθ =

∫
d2θ̄ θ̄θ̄ = 2. (13.58)

From (13.52) we see that

∫
d4x �(x, θ, θ̄)

∣∣
θθ

= 1

2

∫
d4xd2θ �(x, θ, θ̄).

Let us notice that the difference between D̄α̇ and ∂/∂θ̄α̇ is an ordinary space-time
derivative multiplied by a coefficient which does not depend on θ̄. Since the rules of
Grassmann integration make it equivalent to the differentiation,

∫
dη f (η) = ∂

∂η
f (η),

we have
∫
d4xd2θ �(D̄ D̄)�̄ =

∫
d4xd2θ D̄ D̄(��̄) =

∫
d4xd2θ

∂

∂θ̄α̇

∂

∂θ̄α̇

��̄

= 1

2

∫
d4xd2θd2θ̄ ��̄.
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The integral appearing on the l.h.s. of this identity is SUSY invariant, thanks to the
chirality of�(D̄ D̄)�̄. On the other hand, even if��̄ is no longer a chiral superfield,
the SUSY invariance of the integral on the r.h.s. can be inferred from (13.48).

Before we finally construct an action functional containing only the fields which
build up the chiral field � and its conjugate �̄, it is useful to perform a dimensional
analysis. We have already seen that θ and θ̄ carry the dimensions cm

1
2 , ϕ and ψ have

dimensions cm−1 and cm− 3
2 , respectively, so that the whole superfield � has the

dimension cm−1. From (13.58) it then follows that the measures d2θ and d2θ̄ have
the dimensions cm−1 each, the dimension of the measure d4xd2θ is thus cm3 and
the dimension of d4xd2θd2θ̄ is equal to cm2.

In order to construct a (perturbatively) renormalizable theory, we have to build
a dimensionless action which contains no coupling constants with positive length
dimensions. The only possibility (the so-calledWess–Zumino action) with the super-
kinetic term quadratic in the fields is

SW Z = 1

2

∫
d4xd2θ

(
1

2
�D̄2�̄ + 1

2
m�2 + 1

3
g�3

)
+ c.c.

= 1

8

∫
d4xd2θd2θ̄ ��̄ + 1

2

∫
d4xd2θ

(
1

2
m�2 + 1

3
g�3

)
+ c.c. (13.59)

with the coupling constants:m having dimension cm−1 (or, equivalently,mass dimen-
sion +1) and dimensionless g. In terms of the component, scalar fields ϕ(x), F(x)
and ψα(x) we have

SW Z =
∫
d4x LWZ ,

where

LWZ = ∂μϕ
∗∂μϕ + iψ̄σ̃μ∂μψ + F∗F + m(Fϕ + F∗ϕ∗) − m

2 (ψψ + ψ̄ψ̄)

+ g
(
Fϕϕ + F∗ϕ∗ϕ∗ − ϕψψ − ϕ∗ψ̄ψ̄

) + (4−div). (13.60)

It is slightly more convenient to rewrite (13.60) in terms of the Majorana spinor

�M =
(

ψα

ψ̄α̇

)
.

Since in the spinor representation

γ5 =
(
I2 0
0 −I2

)
,

we have

ψψ = 1

2
�̄M(1 + γ5)�M , ψ̄ψ̄ = 1

2
�̄M(1 − γ5)�M ,
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and (13.60) takes the form

LWZ = ∂μϕ
∗∂μϕ + m(Fϕ + F∗ϕ∗) + 1

2
�̄M(i∂/ − m)�M + F∗F

+ g
(
Fϕϕ + F∗ϕ∗ϕ∗) − g

2
ϕ�̄M(1 + γ5)�M − g

2
ϕ∗�̄M(1 − γ5)�M . (13.61)

The equations of motion for the F and F∗ fields are purely algebraic

F = −mϕ∗ − g(ϕ∗)2,
F∗ = −mϕ − gϕ2. (13.62)

Inserting (13.62) back into (13.61) we arrive at theWess–Zumino model Lagrangian
expressed entirely in terms of the fields ϕ(x),�M (x) and their conjugates,

LWZ = ∂μϕ
∗∂μϕ − m2ϕ∗ϕ + 1

2
�̄M(i∂/ − m)�M

− g

2
ϕ�̄M(1 + γ5)�M − g

2
ϕ∗�̄M(1 − γ5)�M (13.63)

− mg
(
ϕ∗ϕ2 + (ϕ∗)2ϕ

) − g2(ϕ∗)2ϕ2.

The price one pays for this simplification is—as we already know—that the
obtained action is SUSY invariant only on shell, i.e. only when the equations of
motion for the spinor field are taken into account.

Let us now sketch the Feynman rules of the theory which is obtained upon quan-
tization of the Wess–Zumino model. The first line of (13.63) defines the free action,
and consequently in the interaction picture the operators ϕ̂(x) and �̂M(x), together
with their Hermitian conjugates, satisfy the Klein–Gordon and Dirac equations

∂μ∂
μϕ̂(x) + m2ϕ̂(x) = 0,

(i∂/ − m)�̂M(x) = 0.

One can then show, analogously as inChap.6 for the real scalar field, that the complex
scalar field operator ϕ̂(x) can be represented as

ϕ̂(x) =
∫

d3k
√
2(2π)3ω(k)

(
e−ikx â(
k) + eikx b̂†(
k)

)
,

where k0 = ω(
k) =
√
k2 + m2 and

[â(k), â†(
q)] = [b̂(k), b̂†(
q)] = δ(
k − 
q), [â(k), b̂(
q)] = [â(k), b̂†(
q)] = 0.

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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This gives the ϕ field propagator

〈0I |T
(
ϕ̂(x)ϕ̂†(y)

) |0I 〉 = �F (x − y) =
∫

d4k

(2π)4
e−ik(x−y) i

k2 − m2 + i0+
.

(13.64)

The operator �̂M(x) can be constructed with the help of the formulae (5.68) and
(5.69) by ‘promoting’ the generating elements of the Grassmann algebra cλ

ε (
k) to be
operators, acting in the appropriate Hilbert space and satisfying the usual anticom-
mutation relations. Calculating the propagator for the Majorana field we get

〈0I |T
(
�̂M(x) ˆ̄�M(y)

)
|0I 〉 = SF (x − y) =

∫
d4k

(2π)4
e−ik(x−y) i(k/ + m)

k2 − m2 + i0+
.

(13.65)

Graphically, we shall denote the scalar field propagator with a wavy line, directed
from the ϕ† to the ϕ field and the Majorana field propagator by a solid line. In the
latter case the arrow just points in the direction inwhichmomentumflows (Fig. 13.1).

The second and the third line of (13.63) allowus to read off the interaction vertices.
Up to the factor (2π)4 and the four-momentum conservation Dirac delta, they are
specified in Fig. 13.2.

Let us end this section by presenting two examples of a phenomenonwhichmakes
supersymmetricmodels especially interesting—the cancellation of somedivergences
appearing in the Green’s functions due to the opposite signs of contributions from

Fig. 13.1 Propagators in the
Wess–Zumino model

Δ (F p)

SF (p)

Fig. 13.2 Vertices in the
Wess–Zumino model
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Fig. 13.3 The one-loop graphs contributing to the scalar field self-energy

the bosonic and fermionic fields. Our first example is the one-loop correction to the
scalar field self-energy, given by the contributions from the graphs in the Fig. 13.3.
The superficial degree of divergence of the first two graphs is equal (in the four-
dimensional space-time) to two—if we try to calculate the integrals by restricting
the modulus of the integration momentum by a cut-off �, they diverge like �2. In
the dimensional regularization the contribution from the first graph is2

Ia(p) = 2(−1)
g2

4

∫
dDk

Tr(1 − γ5)(k/ + m)(1 + γ5)(k/ + p/ + m)

(k2 − m2 + i0+)
(
(k + p)2 − m2 + i0+

)

= −4g2
∫
dDk

k(k + p)

(k2 − m2 + i0+)
(
(k + p)2 − m2 + i0+

) ,

while the second graph yields

Ib = 4g2
∫
dDk

1

k2 − m2 + i0+
.

Consequently,

Ia(p) + Ib = 4g2
∫
dDk

p(k + p) − m2

(k2 − m2 + i0+)
(
(k + p)2 − m2 + i0+

) .

Using Feynman’s formula

1

ab
=

∫ 1

0

dx

[ax + b(1 − x)]2

in order to combine the denominators we get

Ia(p) + Ib = 4g2
∫ 1

0
dx

∫
dDk

p(k + p) − m2

(
(k + xp)2 + x(1 − x)p2 − m2

)2

= 4g2
∫ 1

0
dx

(
(1 − x)p2 − m2

) ∫
dDq

[
q2 + x(1 − x)p2 − m2

]2 ,

2Notice the additional symmetry factor 2 which appears for the Majorana spinors and would not be
present for the Dirac spinor fields.
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Fig. 13.4 The one-loop graphs contributing to the fermion-scalar interaction vertex

where in the last line we have changed the integration variable k → q = k − xp and
neglected the termwhich is odd in q. The resulting integral diverges for large |q| = �

only as log�—the quadratic divergences of Fig. 13.3a, b have canceled each other.
The contribution to the scalar field self-energydepictedby thegraph (c) inFig. 13.3

is already only logarithmically divergent and reads

Ic(p) = 4g2m2
∫
dDk

1

(k2 − m2 + i0+)
(
(k + p)2 − m2 + i0+

)

= 4g2m2
∫ 1

0
dx (1 − x)p2

∫
dDq

[
q2 + x(1 − x)p2 − m2

]2 .

The quantity

Ia(p) + Ib + Ic(p) = 4g2 p2
∫ 1

0
dx(1 − x)

∫
dDq

[
q2 + x(1 − x)p2 − m2

]2

calculated at zero external momentum, p = 0, gives the one-loop correction to the
scalar field mass. From this formula follows the remarkable result, that in the Wess–
Zumino model this correction actually vanishes.

A similar mechanism in the minimal supersymmetric extension of the Standard
Model (MSSM) allows one to solve the so called hierarchy problem: it ‘protects’ the
mass of the Higgs particle from receiving large, physically unacceptable perturbative
corrections.

Our second example is the one-loop correction to the ϕ�̄M�M interaction vertex.
Two of the four contributions are depicted in Fig. 13.4 (we encourage the reader to
draw and analyze the remaining two contributions).
We have

Ia(p, q) = g3
∫
dDk

(1 + γ5)(k/ + q/ + m)(1 + γ5)(k/ + m)(1 − γ5)(
(k − p)2 − m2

) (
(k + q)2 − m2

) (
k2 − m2

)

= 4mg3
∫
dDk

(1 + γ5)k/(
(k − p)2 − m2

) (
(k + q)2 − m2

) (
k2 − m2

) ,



314 13 The Simplest Supersymmetric Models

and

Ib(p, q) = 2mg3
∫
dDk

(1 + γ5)(p/ − k/ + m)(1 − γ5)(
(k − p)2 − m2

) (
(k + q)2 − m2

) (
k2 − m2

)

= 4mg3
∫
dDk

(1 + γ5)(p/ − k/)
(
(k − p)2 − m2

) (
(k + q)2 − m2

) (
k2 − m2

) .

The sum

Ia(p, q) + Ib(p, q) = 4mg3
∫
dDk

(1 + γ5)p/(
(k − p)2 − m2

) (
(k + q)2 − m2

) (
k2 − m2

)

is finite for D = 4.

13.6 More Advanced Topics

Supersymmetric models with gauge fields

The Wess–Zumino model, even if providing illustration of important features of
supersymmetric field models, does not contain gauge fields. Such a field appears as
a component of the real superfield V (x, θ, θ̄),

V (x, θ, θ̄) = (
V (x, θ, θ̄)

)∗
, (13.66)

which contains, among others, the term

θσμθ̄ vμ(x)

with vμ(x) being a real four-vector. Under the transformation

V → V + � + �∗, (13.67)

where � is a chiral superfield, this component transforms as vμ → vμ + ∂μ(2Imφ).
Theory which contains the real superfield and is invariant under transformation
(13.67) is therefore a supersymmetric version of an Abelian gauge theory.

A specific choice of the chiral superfield in (13.67) (the Wess–Zumino gauge)
allows to reduce the real superfield to the form

VWZ = θσμθ̄ vμ(x) + iθθθ̄λ̄(x) − i θ̄θ̄θλ(x) + 1

2
θθθ̄θ̄D(x).

Physical components of “vector supermultiplet” are thus: the real scalar D (which
turns out to be an auxiliary field and can be eliminated from the action by solving
algebraic equations of motion), the Weyl fermion λ and the real vector field vμ.
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To construct a kinetic term for the vector field vμ we need to act on V with some
covariant derivatives. A suitable choice of the superfield which yields such a kinetic
term turns out to be

Wα = −1

4
D̄ D̄DαV .

Using the anticommutation relations satisfied by covariant derivatives and definition
of (anti)chiral superfield it is immediate to check that Wα is invariant under the gen-
eralized gauge transformation (13.67). To calculate its components one can therefore
work in any gauge, in particular in the Wess–Zumino one. Moreover, since Wα is a
chiral field, the SUSY invariant Lagrangian can be constructed as a d2θ integral of
some of its power. The reader is encouraged to check that

∫
d2θ WαWα = −1

2
fμν f

μν + 2iλσμ∂μλ̄ + i

4
εμνρσ fμν fρσ,

where fμν = ∂μvν − ∂νvμ. The last, imaginary termhas the formof four-dimensional
divergence,

1

2
εμνρσ fμν fρσ = ∂μ

(
εμνρσvν fρσ

)
,

but it contains also derivatives of the gauge field. Therefore, in general it should not
be omitted.

In order to construct a supersymmetric version of non-Abelian gauge theory we
replace a single real superfield V with a matrix superfield

V (x, θ, θ̄) = Va(x, θ, θ̄)T
a

where T a are generators of the desired gauge group in the adjoint representation.
The non-Abelian analog of the Wα superfield reads

Wα = −1

4
D̄ D̄

(
e−2gV Dα e

2gV
)

where g is the gauge coupling constant. Under non-Abelian gauge transformation

e2gV → ei�
†
e2gV e−i�

with a chiral superfield � = �aT a , Wα transforms covariantly, that is

Wα → ei� Wα e
−i�.

If we now combine the coupling constant g with a real parameter � (the so called
“theta angle”) into the complex coupling constant
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τ = �

2π
+ 4πi

g2
,

then the Lagrangian for the non-Abelian gauge field can be written as

Lgauge = 1

32π
Im

(
τ

∫
d2θ trWαWα

)
. (13.68)

Since Wα is a chiral field, this Lagrangian is manifestly invariant under supersym-
metry transformations. The r.h.s. of (13.68), after expanding in components and
evaluating the Grassmannian integral, reproduces the Yang-Mills Lagragian supple-
mented with the Lagrangian of the spinor λα covariantly coupled to the gauge field
vμ, as well as the term

�g2

32π
εμνρσ tr FμνFρσ.

As in the Abelian case this last term can be written as a four-divergence.

The non-linear sigma model

When we do not require theory to be renormalizable (e.g. we are discussing an
effective theory which emerges from a quantum renormalizable one as a certain
approximation to it) the potential containing the chiral superfield need not to be
at most cubic polynomial. The most general, real, supersymmetric Lagrangian for
chiral superfields�a and their conjugate anti-chiral fields �̄ā which contains at most
first order space-time derivatives has then the form

Lσ =
∫
d2θd2θ̄ K (�a, �̄ā) +

∫
d2θ W (�a) +

∫
d2θ̄ W (�̄ā). (13.69)

Here K (�a, �̄ā) with a, ā = 1, . . . , n must be a real superfield which is the case
provided that the function K (za, z̄ā)with arguments being complex numbers satisfies

K̄ (za, z̄ā) = K (z̄ā, za).

After expanding K (�a, �̄ā) in powers of θ and θ̄ and dropping terms being four-
dimensional divergences we obtain among others the term

∑

a,ā

∂2K

∂φa∂φ̄ā

∣∣∣∣
θ,θ̄=0

∂μφ
a∂μφ̄ā . (13.70)

Notice that if we view
(
φa, φ̄ā

)
as complex coordinates on some “internal space”,

then the line element on such a space would have the form
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ds2 =
∑

a,ā

Gaādφadφ̄ā .

Allowing for a dependence of
(
φa, φ̄ā

)
on space-time variable xμ we get

ds2 =
∑

a,ā

Gaā∂μφ
a∂νφ̄

ādxμdxν .

Comparing the last expression with (13.70) we see that it is legitimate to consider

Gaā = ∂2K
∂φa∂φ̄ā

∣∣∣
θ,θ̄=0

as a metric on this space. This is a special kind of a metric, since

the metric tensor Gaā is obtained by differentiating a single function K . It is called
Kähler metric, and the function K

(
φa, φ̄ā

)
is addressed to as a Kähler potential. The

role of Gaā as a metric is even more transparent when we explicitly write down all
the terms of the Lagrangian (13.69) which contain derivatives. They can be presented
in the form:

L(1)
σ = Gaā

(
∂μφ

a∂μφ̄ā + i
2Dμψ

aσμψ̄ā − i
2ψ

aσμDμψ̄
ā
)
,

where
Dμψ

a = ∂μψ
a + �a

bc∂μφ
bψc

is a covariant derivative with �a
bc being the Christoffel symbol of the metric Gaā .

Extended supersymmetry

New, interesting theories appear when we add to the algebra discussed in Sect. 13.1

a second pair of fermionic generators Q̂α,
ˆ̄Qβ̇ , thus constructing an N = 2 extended

supersymmetry. Commutation relations of the second pair of supersymmetry gen-
erators with the operators of momentum and angular momentum are of the same

form as the commutators of the first pair, while for the anticommutators of Q̂ I
α,

ˆ̄QJ β̇ ,
I, J = 1, 2 we postulate

{
Q̂ I

α, ˆ̄QJ
β̇

} = 2δ I Jσ
μ

αβ̇
P̂μ,

{
Q̂ I

α, Q̂ J
β

} = ZεI J εαβ,

{ ˆ̄QI
α̇, ˆ̄QJ

β̇

} = Z∗εI J εα̇β̇ (13.71)

where εI J = −εJ I and Z , called the central charge, is an operator which commutes
with all elements of the N = 2 algebra.

To obtain representation of this algebra we must allow all the fields composing
the chiral and the real multiplet to transform into each other, creating in this way an
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N = 2 “vector multiplet” which contains, besides the auxiliary fields, a vector field,
two spinor fields and a complex scalar field.3

Given a gauge grup, the gauge invariant, renormalizable Lagrangian for such a
multiplet can be constructed in a unique way and it reads:

LN=2
YM = 1

32π
Im

(
τ

∫
d2θ TrWαWα

)
+

∫
d2θd2θ̄ Tr�†e2gV�, (13.72)

where � = �aT a . The possibility of chiral fields transforming in the representation
of the gauge group different that the adjoint one is excluded by the fact that the chiral
and the gauge fields transform into each other under the transformations generated
by Q̂i

α.
There is no way to distinguish in an invariant way between the generators Q̂1

α

and Q̂2
α. It is reflected by the fact that the N = 2 SUSY algebra is invariant under

“rotation”
Q̂ I

α → U I
J Q̂

J
α

where U is a 2 × 2 unitary, unimodular matrix. This SU(2)R symmetry must be
therefore respected by the Lagrangian (13.72). This requirement fixes the relative
coefficient between the two terms appearing in (13.72) and does not allow for any
terms of the form ∫

d2θ W (�).

In literature one can find an avalanche of nontrivial results concerning effective,
low energy actions for supersymmetric models with a variety of gauge groups and
fields, as well as relations of supersymmetric models with matrix models, topolog-
ical field theories, and geometry of both Riemann surfaces and higher dimensional
complex manifolds. It is a very interesting branch of mathematical physics.

13.7 Notation and Conventions

The notation traditionally used in the modern analysis of supersymmetric models
can be somewhat cumbersome. In this section we have gathered the main definitions
with the hope that such a glossary will be helpful.

For the antisymmetric symbol with two indices we choose

ε12 = ε1̇2̇ = 1, ε12 = ε1̇2̇ = −1 (13.73)

3There is a second possibility: one can obtain a representation of N = 2 algebra on fields composing
two chiral multiplets, creating in this way the so called hypermultiplet, but we shall not discuss it
here.
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which gives
εαβεβγ = δα

γ . (13.74)

The ε symbol is used to raise and lower the spinor indices:

ψα = εαβψβ, χ̄α̇ = εα̇β̇ χ̄β̇, (13.75)

and consequently
ψα = εαβψβ, χ̄α̇ = εα̇β̇ χ̄β̇ . (13.76)

Let θα be a constant spinor (of the Grassmann type). By definition, we have

∂

∂θβ
θα = δα

β (13.77)

which gives
∂

∂θβ
θα = εαγ

∂

∂θβ
θγ = εαβ . (13.78)

Similarly
∂

∂θβ
θα = εαβ, εαβ

∂

∂θβ
= − ∂

∂θα
. (13.79)

Analogous formulae hold for the conjugated spinors (with dotted indices).
We have chosen the ‘NW–SE’ (north west–south east) convention for the product

of the spinors,
ψχ ≡ ψαχα = −χαψα = χαψα = χψ, (13.80)

and the ‘SW–NE’ convention for the product of the conjugated spinors

ψ̄χ̄ ≡ ψ̄α̇χ̄α̇ = −χ̄α̇ψ̄α̇ = χ̄α̇ψ̄α̇ = χ̄ψ̄. (13.81)

Conjugation is defined as follows

(ψα)∗ = ψ̄α̇, (χα)
∗ = χ̄α̇. (13.82)

It reverses the order in products,

(ψχ)∗ = (ψαχα)
∗ = χ̄α̇ψ̄α̇ = χ̄ψ̄, (13.83)

and changes a complex number into its complex conjugate.
The three Pauli matrices σi = −σi and the 2 × 2 identity matrix I2 can be assem-

bled into two “matrix four-vectors”

(σμ) = (I2,σ
i ), (σ̃μ) = (I2,−σi ) = (

σμ

)
. (13.84)
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Thus, σ0 = I2. Let us also define

σμν = 1

4
(σμσ̃ν − σνσ̃μ) , σ̃μν = 1

4
(σ̃μσν − σ̃νσμ) . (13.85)

These matrices have the following structure of indices:

(σμ)αβ̇ , (σ̃μ)
α̇β

, (σμν)
β

α , (σ̃μν) α̇
β̇
. (13.86)

ψσμχ̄ ≡ ψασ
μ

αβ̇
χ̄β̇ is a vector under the Poincaré transformations,ψσμνχ is an (anti-

symmetric) tensor, etc.
With (13.73) and the definitions (13.84), it is also immediate to check the identity

σ̃μα̇α = εαβεα̇β̇σ
μ

ββ̇
, (13.87)

which also gives

ψσμχ̄ ≡ ψασ
μ
αα̇χ̄α̇ = εαβψβσ

μ
αα̇εα̇β̇ χ̄β̇ (13.88)

= −χ̄β̇εβαεβ̇α̇σ
μ
αα̇ψβ = −χ̄β̇ σ̃μβ̇βψβ = −χ̄σ̃μψ.

The form of the Pauli matrices implies that under conjugation

(
σ

μ

αβ̇

)∗ = σ
μ
βα̇ (13.89)

so that
(ψσμχ̄)

∗ = (
ψασ

μ

αβ̇
χ̄β̇

)∗ = χβσ
μ
βα̇ψ̄α̇ = χσμψ̄. (13.90)

Similarly,

(ψσμσ̃νχ)
∗ = χ̄γ̇ σ̃

νγ̇βσ
μ
βα̇ψ̄α̇ = χ̄σ̃νσμψ̄,

(ψσμνχ)
∗ = χ̄σ̃νμψ̄ = −χ̄σ̃μνψ̄, (13.91)

(
χ̄σ̃μνψ̄

)∗ = χ̄σνμψ̄ = −χ̄σμνψ̄.

Finally, let �D =
(

ψα

χ̄α̇

)
be an arbitrary Dirac spinor. In the spinor representation its

charge conjugate is of the form�c
D =

(
χα

ψ̄α̇

)
. TheMajorana condition�M = �c

M thus

gives ψ = χ, so that in the spinor representation the Majorana spinor has the form

�M =
(

ψα

ψ̄α̇

)
. (13.92)
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Exercises

13.1 In Sect. 13.2 we have discussed the representation of the superalgebra on the
one-particle, massive states. We want to repeat this analysis for massless states. They
can be chosen to satisfy

P̂μ|p,λ〉 = pμ|p,λ〉, Ŵ μ|p,λ〉 = λ pμ|p,λ〉

where (pμ) = (E, 0, 0, E), Ŵ μ is the Pauli–Lubanski four-vector,

Ŵ μ = 1

2
εμνρλ P̂ν M̂ρλ

and λ = 1
E ( 
J · 
P) is the helicity. Show that one can always choose the state |p,λ〉

so that Q̂α|p,λ〉 = 0, α = 1, 2, ˆ̄Q 1̇|p,λ〉 = 0, and that the only other state in the
supersymmetric multiplet is

1√
4E

ˆ̄Q 2̇|p,λ〉.

What is the helicity of this state?

13.2 Find the form of a conserved current which exists thanks to an invariance of
the action functional defined by the Lagrangian (13.32) under the transformations
(13.37).

13.3 Check the validity of the relations

• θαθβ = − 1
2 ε

αβθγθγ ≡ − 1
2 ε

αβ θθ,

• θ̄α̇θ̄β̇ = 1
2 ε

α̇β̇ θ̄γ̇ θ̄
γ̇ ≡ 1

2 ε
α̇β̇ θ̄θ̄,

• εαβεα̇β̇σν
ββ̇

= (σ̃ν)
α̇α.

Using them prove the identities

(θσμθ̄)(θσνθ̄) = 1
2 θθ θ̄θ̄ ημν, θσμθ̄ θ∂μψ(x) = − 1

2θθ ∂μψ(x)σμθ̄.

13.4 Taking into account that σμ form a basis of a (complex) vector space of 2 × 2
matrices, show the basic Fierz identity:

δβ
αδ

γ̇

δ̇
= 1

2
σν

αδ̇
σ̃γ̇β

ν . (13.93)

13.5 Contracting both sides of (13.93) with ξαψβχ̄γ̇ η̄
δ̇ show that

(ξψ)(χ̄η̄) = −1

2
(ξσνη̄)(χ̄σ̃νψ) = 1

2
(ξσνη̄)(ψσνχ̄). (13.94)
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Fig. 13.5 The tadpole
diagrams in the
Wess–Zumino model
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13.6 Contracting both sides of (13.93) with σ
μ
ργ̇η

αψβθρξ̄δ̇ show that

(ηψ)(θσμξ̄) = −1

2
(ησνξ̄)(θσ

μσ̃νψ) = −1

2
(ησμξ̄)(θψ) − (ησνξ̄)(θσ

μνψ)

= −(ησμξ̄)(θψ) + 1

2
(ησνξ̄)(θσ

νσ̃μψ). (13.95)

13.7 Similarly as in Exercise13.6, demonstrate that

(θξ)(η̄σ̃μψ) = −1

2
(η̄σ̃νξ)(θσ

νσ̃μψ) = −1

2
(η̄σ̃μξ)(θψ) − (η̄σ̃νξ)(θσ

νμψ)

= −(η̄σ̃μξ)(θψ) + 1

2
(η̄σ̃νξ)(θσ

μσ̃νψ). (13.96)

13.8 Show that in the Wess–Zumino model the sum of the contributions from the
‘tadpole’ diagrams plotted in Fig. 13.5 vanishes.



Chapter 14
Anomalies

Abstract The splitting of the massless (1 + 1)-dimensional Dirac field into right-
and left-handed components. The quantization of the right- and left-handed fields.
Construction of the Hamiltonian and of the U (1) current operator. The non-
conservation of the U (1) current in the presence of an external Abelian gauge field.
Derivation of theU (1) anomaly equation. Cancelation of anomalies. Non-invariance
of the fermionic path integral measure under the axialU (1) transformations. Deriva-
tion of the U (1) anomaly equation in the path integral formulation of the quantum
theory of the massless Dirac Dirac field in four-dimensional Euclidean space. The
index of the Dirac operator.

The term ‘anomaly’ in quantum field theory refers to a case where a conservation
law is lost on the way between classical and quantum versions of the theory. This
phenomenon was discovered in 1969 (S. Adler, W. A. Bardeen, J.S. Bell, R. Jackiw),
and it came as a surprise. Now it is rather well understood. Heuristically, the presence
of an anomaly is a direct consequence of the fact that in order to obtain quantum
observables it does not suffice just to replace classical fields by their quantumcounter-
parts in the pertinent formulas. A careful approach to defining quantum observables
involves a regularization, appropriate subtractions and removal of the regularization.
Moreover, all this should be done in a physically relevant Hilbert space. Such a pro-
cedure can give surprising results. The phenomenon of anomalies is a very important
example of that.

14.1 A Simple Example of an Anomaly

The model that we analyze below is distinguished by its mathematical simplicity.1

It is related to a model first considered by J. Schwinger (see, e.g., Sect. 11.3 in [8]),
but is significantly simpler, because we include only external gauge fields which by
assumption have a fixed form.

1It is certainly simple when compared with other models, nonetheless we consider a system that
has an infinite number of degrees of freedom. Simplicity is a relative notion.
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We consider a massless Dirac field ψ(t, x) in a one-dimensional space, x ∈ R1.
The time variable has the usual range, t ∈ R1, hence the variables (t, x) can be
regarded as coordinates on the plane R2. This plane is pseudoeuclidean because
the metric tensor has the Minkowski form: η12 = η21 = 0, η00 = 1, η11 = −1. The
field ψ has two complex components,

ψ =
(

ψ+
ψ−

)
.

We use the c-number version of the classical Dirac field. In the case of (1 + 1)-
dimensional space-time we have two Dirac matrices γ0, γ1, and γ5 = γ0γ1. We take
the following representation for them

γ0 = σ1, γ1 = −iσ2, γ5 = σ3, (14.1)

where σi are Pauli matrices. The Dirac matrices and γ5 have the usual properties:

γμγν + γνγμ = 2ημν I2, γ5γ
μ + γμγ5 = 0, γ2

5 = I2, γ†
5 = γ5.

As the Lagrangian for the free, massless, classical Dirac field we take

L0 = i

2
(ψγμ∂μψ − ∂μψγμψ), (14.2)

whereψ = ψ†γ0. TheDirac equation, that follows from this Lagrangian as the Euler–
Lagrange equation, has the form

γμ∂μψ = 0. (14.3)

In the absence of the mass term m0ψψ, the Lagrangian L0 can be split into two
independent parts, L0 = L1 + L2, where

L1 = i

2
(ψ∗

+ ∂0ψ+ + ψ∗
+ ∂1ψ+ − ∂0ψ

∗
+ ψ+ − ∂1ψ

∗
+ ψ+), (14.4)

L2 = i

2
(ψ∗

− ∂0ψ− − ψ∗
− ∂1ψ− − ∂0ψ

∗
− ψ− + ∂1ψ

∗
− ψ−). (14.5)

The Dirac equation (14.3) is equivalent to the following simple equations

∂0ψ+ + ∂1ψ+ = 0, (14.6)

∂0ψ− − ∂1ψ− = 0. (14.7)
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The general solutions of (14.6), (14.7) have the form ψ+(t, x) = f (t − x) and
ψ−(t, x) = h(t + x), where f and h are arbitrary differentiable functions. For this
reason ψ+ is called the right-mover field, and ψ− the left-mover field.

We see that the fieldsψ+ andψ− are independent of each other. The split ofψ into
ψ+ and ψ− is analogous to the decomposition of the (3+1)-dimensional Dirac field
into right- and left-handed components ψR and ψL , as discussed in Chap.5. Such a
decomposition is Poincaré invariant. This can be seen from the formulas

(
ψ+
0

)
= 1

2
(I2 + γ5)ψ,

(
0

ψ−

)
= 1

2
(I2 − γ5)ψ,

and the fact that γ5 is invariant with respect to proper Lorentz transformations in
(1 + 1)-dimensional space-time (Exercise14.1). From now on we will consider ψ+
and ψ− separately, so we have two models: one with ψ+, and the other with ψ−. We
shall return to the Dirac field at the end of this section.

Let us generalize our two models by including interactions with classical external
gauge fields: Bμ(t, x) in the case of the right-mover field ψ+, and Cμ(t, x) in the
case of ψ−. We apply the minimal coupling rule, i.e., the only change in the pertinent
Lagrangian is

∂μψ+ → Dμ(B)ψ+ = ∂μψ+ − i Bμψ+, ∂μψ− → Dμ(C)ψ− = ∂μψ− − iCμψ−.

(14.8)
Here Bμ and Cμ are arbitrary, but fixed—there is no evolution equation for them.
Models which differ only by the form of the external field should in general be
regarded as different (an exception to this is discussed below). Thus, we are led to
consider two independent classes of models: one class with Lagrangians of the form

L+ = i

2
[ψ∗

+ D0(B)ψ+ + ψ∗
+ D1(B)ψ+ − (D0(B)ψ+)∗ψ+ − (D1(B)ψ+)∗ψ+]

(14.9)
and the Euler-Lagrange equations

D0(B)ψ+ + D1(B)ψ+ = 0, (14.10)

and the other class with

L− = i

2
[ψ∗

− D0(C)ψ− − ψ∗
− D1(C)ψ− − (D0(C)ψ−)∗ψ− + (D1(C)ψ−)∗ψ−]

(14.11)
and the Euler-Lagrange equations

D0(C)ψ− − D1(C)ψ− = 0. (14.12)

The models within one such class differ by the form of the external field.

http://dx.doi.org/10.1007/978-3-319-55619-2_5
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TheLagrangianL+ is invariantwith respect to theU+(1) group of transformations
of the form

ψ+(t, x) → eiχψ+(t, x), (14.13)

whereχ is a real parameter.As a consequence of this symmetrywehave the conserved
current density

j μ
+ (t, x) =

(
ψ+
0

)
γμ

(
ψ+
0

)
(14.14)

that obeys the continuity equation

∂μ j
μ

+ (t, x) = 0,

provided that ψ+ obeys (14.10). Formula (14.14) gives the two-vector of the form

( jμ+) =
(

ψ∗+ψ+
ψ∗+ψ+

)
. (14.15)

Similarly, L− is invariant with respect to the transformations

ψ−(t, x) → eiηψ−(t, x) (14.16)

with arbitrary real η. These transformations form the groupU−(1). The components
of the corresponding conserved current density are given by the formula

j μ
− (t, x) =

(
0

ψ−

)
γμ

(
0

ψ−

)
,

or in the two-vector form

( jμ−) =
(

ψ∗−ψ−
−ψ∗−ψ−

)
. (14.17)

Similarly as in the previous case,

∂μ j
μ

− (t, x) = 0,

provided that ψ− obeys (14.12).
Because Bμ and Cμ are fixed functions and not dynamical fields, there is no

gauge invariance of the type discussed in Chap.4. Nevertheless, the particular form
of the coupling implies that models with various choices of these functions can be
equivalent to each other. Specifically, the model (14.9) with the external field Bμ and
the field ψ+ is equivalent to the model with the external field B ′

μ and the field ψ′+, if

B ′
μ(t, x) = Bμ(t, x) + ∂μχ(t, x), ψ′

+(t, x) = eiχ(t,x)ψ+(t, x), (14.18)

http://dx.doi.org/10.1007/978-3-319-55619-2_4
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where χ(t, x) is an arbitrary differentiable function that vanishes together with its
derivatives in the limit |x | → ∞. The conserved current jμ+ and all the other physical
quantities have exactly the same values in all equivalent models. The equivalence
transformation in the models of the type (14.11) has the form

C ′
μ(t, x) = Cμ(t, x) + ∂μη(t, x), ψ′

−(t, x) = eiη(t,x)ψ−(t, x), (14.19)

where η(t, x) has the same properties as the function χ(t, x) above. Of course,
these equivalence transformations are akin to the gauge transformations of the type
U (1)±,loc of the classical Schwinger model, in which Bμ and Cμ are also dynamical
fields. The Lagrangian of the Schwinger model contains the standard kinetic terms
for these fields, i.e.,

−1

4
Fμν(B)Fμν(B) − 1

4
Fμν(C)Fμν(C),

where Fμν(B) = ∂μBν − ∂νBμ, Fμν(C) = ∂μCν − ∂νCμ. Because of that relation-
ship,wewill use themore popular name ‘gauge transformations’ also for the transfor-
mations (14.18), (14.19), instead of the more precise ‘equivalence transformations’.

Using gauge transformations (14.18), (14.19) we can eliminate B0,C0:

B0 = 0, C0 = 0.

These conditions, called the temporal gauge conditions, do not eliminate the gauge
transformations, but restrict them to the functions χ and η that do not depend on t ,
χ = χ(x) and η = η(x). In all our considerations below, we assume that the external
fields have been transformed to the temporal gauge.

Now let us construct quantum versions of our models. By analogy with the previ-
ously discussed (in Sect. 6.2) free Dirac field on the space R3, we postulate the equal
time anticommutation relations for the fields ψ±, namely

{
ψ̂+(t, x), ψ̂+(t, x ′)

}
= 0,

{
ψ̂†

+(t, x), ψ̂+(t, x ′)
}

= δ(x − x ′) I (14.20)

and
{
ψ̂−(t, x), ψ̂−(t, x ′)

}
= 0,

{
ψ̂†

−(t, x), ψ̂−(t, x ′)
}

= δ(x − x ′) I. (14.21)

Note that at this point it is not possible to specify the (anti-)commutation relations
between the fields ψ̂+ and ψ̂− because they act in different Hilbert spaces.

The classical energy density obtained from the Lagrangian L+ has the form

T00 = i

2
(D1(B)ψ+)∗ψ+ − i

2
ψ∗

+ D1(B)ψ+.

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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Therefore, as the quantum Hamiltonian, we would like to take the operator2

i

2

∫
dx (D1(B)ψ̂+(t, x))†ψ̂+(t, x) + h.c. (14.22)

Unfortunately, such an expression is notwell-defined. First, we expect that ψ̂+(t, x) is
an operator-valued generalized function of (t, x), and we know that expressions like
(ψ̂+(t, x))†ψ̂+(t, x) should be avoided. In fact, the second relation (14.20) suggests
that indeed, such a product is ill-defined. Second, assuming that we can ‘repair’
the products of the generalized functions, the integrand in our candidate formula
will be another generalized function, and as such it can only be integrated with a
test function. Such a test function is missing from our formula. Therefore, we first
consider the well-defined operator

Ĥε[B1] = − i

2

∫
dx f (x) ψ̂†

+(t, x + ε) W [ε; B1] D1(B)ψ̂+(t, x) + h.c. , (14.23)

where ε > 0, and f (x) is a test function (real-valued). The operator Ĥε[B1] is the
regularized form of operator (14.22).

Similarly, the regularized two-current density ĵμ+,ε(t, x) has the form (14.15) with
j0+ = ψ∗+ψ+ = j1+ replaced by

ĵ0+,ε(t, x) = 1

2
ψ̂†

+(t, x + ε) W [ε; B1] ψ̂+(t, x) + h.c. = ĵ1+,ε(t, x). (14.24)

The factor

W [ε; B1] = exp

(
i
∫ x+ε

x
dx ′ B1(t, x

′)
)

(14.25)

is the parallel transporter from the point (t, x) to the point (t, x + ε) along the rec-
tilinear segment connecting these points. It is analogous to the one considered in
Chap.4. We have included it in order to ensure that Ĥε[B1] is gauge invariant. The
gauge transformation corresponding to (14.18) in the quantum model (with χ inde-
pendent of t) has the form (Exercise14.2)

U−1[χ, t] ψ̂+(t, x) U [χ, t] = exp(iχ(x)) ψ̂+(t, x), (14.26)

where

U [χ, t] = exp

(
i
∫
dx χ(x) Ĵ 0

+(t, x)

)
. (14.27)

2Let us recall that a term denoted as ‘h.c.’ is obtained by the Hermitian conjugation of the preceding
term or terms.

http://dx.doi.org/10.1007/978-3-319-55619-2_4
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Here Ĵ 0+(t, x) is the quantum counterpart of the classical charge density j0+(t, x)—it
will be obtained below from ĵ0+,ε. Because ĵ0+(t, x) is a generalized function of x ,
the function χ(x) should be a test function. Note that as far as transformation law
(14.26) is concerned, we may add to Ĵ 0+ certain terms proportional to the identity
operator—they will cancel out in the product on the l.h.s. of formula (14.26). The
gauge invariance of the operator Ĥε[B1] means that

U−1[χ, t] Ĥε[B1 + ∂1χ] U [χ, t] = Ĥε[B1].

The regularization employed in formula (14.23) for Ĥε[B1] consists of two steps.
The first step, that is the introduction of ε and W [ε; B1] is called the gauge invariant
point splitting. It is applied in order to ‘repair’ the product of generalized functions
without spoiling the gauge invariance. The second step consists in introducing the
test function f in order to secure the convergence of the integral over x . This step
is sometimes called the regularization in the infrared (because the problem lies at
large values of x), while the first step is the regularization in the ultraviolet. After the
calculation of Ĥε[B1] we shall attempt to take the limit ε → 0, f (x) → 1. It turns
out that such a limit exists if we abandon some terms proportional to the identity
operator I . Of course, in the case of the current density only the first step—the gauge
invariant point splitting—is needed because there is no integration.

Analogously, in the case of the left-mover field ψ̂− we consider the operators

Ĥε[C1] = i

2

∫
dx f (x) ψ̂†

−(t, x + ε) W [ε;C1] D1(C)ψ̂−(t, x) + h.c. , (14.28)

and

ĵ0−,ε(t, x) = 1

2
ψ̂†

−(t, x + ε) W [ε;C1] ψ̂−(t, x) + h.c. = − ĵ1−,ε(t, x). (14.29)

The change of sign in Ĥε[C1], as compared with Ĥε[B1], is due to the difference
in the signs of the terms containing D1(B)ψ+ and D1(C)ψ− in Lagrangians (14.9),
(14.11).

The Heisenberg equations of motion for the fields ψ̂+ and ψ̂− have the form

∂0ψ̂+ + D1(B)ψ̂+ = 0, (14.30)

∂0ψ̂− − D1(C)ψ̂− = 0. (14.31)

They can easily be solved if B1 and C1 do not depend on x , i.e., when

B1 = B(t), C1 = C(t). (14.32)

In this case
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ψ̂+(t, x) = ei
∫ t
0 dt

′B(t ′) 1√
2π

∫
dp eip(x−t) ĉ+(p), (14.33)

ψ̂−(t, x) = e−i
∫ t
0 dt

′C(t ′) 1√
2π

∫
dp eip(x+t) ĉ−(p). (14.34)

The anticommutation relations (14.20), (14.21) are satisfied if

{ĉ+(p), ĉ+(p′)} = 0, {ĉ†+(p), ĉ+(p′)} = δ(p − p′)I, (14.35)

{ĉ−(p), ĉ−(p′)} = 0, {ĉ†−(p), ĉ−(p′)} = δ(p − p′)I. (14.36)

Let us construct the quantum Hamiltonian for the right-mover field. Note that the
integration in the parallel transporters is now trivial, W [ε; B1] = eiεB(t). Inserting
solution (14.33) in formula (14.23) and integrating over x we obtain

Ĥε[B] = eiεB(t)

4π

∫
dp′

∫
dp f̃ (p′ − p) eit (p

′−p)−i p′ε (p − B) ĉ†+(p′) ĉ+(p) + h.c. ,

where

f̃ (p′ − p) =
∫
dx e−i(p′−p)x f (x),

and B ≡ B(t). The limit f (x) → 1 corresponds to f̃ (p′ − p) → 2πδ(p′ − p). Note
also that f̃ ∗(p′ − p) = f̃ (p − p′). The limit ε → 0, f (x) → 1 gives the operator

Ĥ0[B] =
∫
dp (p − B) ĉ†+(p) ĉ+(p),

which is well-defined in the Fock space generated by the operators ĉ†+(p) acting on
the vacuum state |0〉 such that ĉ+(p)|0〉 = 0 for all p ∈ R. It is clear that this operator
is not bounded from below. It is the same problem as that encountered in Sect. 6.2
in the case of the free massive Dirac field. We are going to use essentially the same
solution, that is, we will use the Dirac vacuum |0〉D instead of |0〉, and transform the
negative energy sector into the sector of antiparticles with positive energy.

Unfortunately, in the case of themasslessDirac fieldwe have to paymore attention
to the mathematical side of the theory. The reason is that the positive and negative
energy sectors are not well-separated—in fact they touch each other at p = B. This
has a rather unexpected consequence in that the integral

∫
dp (...) in general cannot be

simplywritten as
∫ B
−∞dp(...) + ∫ ∞

B dp(...)! This integral is already present in formula
(14.33). Because of the presence of the Dirac delta on the r.h.s. of anticommutation
relation (14.35) ĉ+(p) is an operator-valued generalized function of p. As explained
in the Appendix, for the safe approach to the decomposition of the integral, one
should introduce a smooth function θκ(p) that represents a smoothed step function
�(p). Then,

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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∫
dp (...) =

∫
dp θκ(p − B)(...) +

∫
dp [1 − θκ(p − B)](...).

We shall use a function θκ(p) of the form

θκ(p) =
⎧⎨
⎩

1 when p ≥ κ
α(p) when −κ < p < κ
0 when p ≤ −κ,

where α(p) is a smooth monotonic function that interpolates between 0 and 1, and
κ > 0 is a constant. For simplicity, we also assume that α(p) + α(−p) = 1 for
p ∈ (κ,−κ). Then

θκ(B − p) + θκ(p − B) = 1. (14.37)

The step function �(p − B) is obtained in the limit κ → 0+. The mathematically
correct decomposition of ψ̂+ into the positive and negative energy components has
the form

ψ̂+(t, x) = ψ̂(+)
+ (t, x) + ψ̂(−)

+ (t, x), (14.38)

where

ψ̂(+)
+ (t, x) = ei

∫ t
0 dt

′B(t ′) 1√
2π

∫
dp θκ(p − B) eip(x−t) ĉ+(p),

ψ̂(−)
+ (t, x) = ei

∫ t
0 dt

′B(t ′) 1√
2π

∫
dp θκ(B − p) eip(x−t) ĉ+(p).

The first integral extends essentially over the interval [B − κ,∞) and the second
over (−∞, B + κ]. Such a smoothing of the decomposition is not needed in the case
of the massive Dirac field in Sect. 6.2, because there the positive and negative energy
sectors are well-separated: the operators â(+)

s ( �p) and â(−)
s ( �p), present in formula

(6.79) are never equal to each other.
Let us recalculate Ĥε[B] using decomposition (14.38). Inserting (14.38) into

formula (14.23), we obtain terms of the type ψ̂(+)†
+ ψ̂(+)

+ , ψ̂(+)†
+ ψ̂(−)

+ , ψ̂(−)†
+ ψ̂(+)

+ ,
ψ̂(−)†

+ ψ̂(−)
+ . In the last two we use anticommutation relation (14.35). Next, we take the

limits f (x) → 1 and ε → 0 in all the terms except the two that are proportional to
the identity operator I . Finally, we apply identity (14.37), and change the integration
variable (p → −p) in the two terms that contain the expression ĉ+(p)ĉ†+(p). We
obtain

Ĥ [B] =
∫
dp θκ(p − B) (p − B) ĉ†+(p)ĉ+(p)

+
∫
dp θκ(p + B) (p + B) ĉ+(−p)ĉ†+(−p)

− f̃ (0)

4π

∫
dp θκ(B − p) (B − p) (eiε(B−p) + eiε(p−B)) I. (14.39)

http://dx.doi.org/10.1007/978-3-319-55619-2_6
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The third term is the consequence of using the second relation (14.35). It is singular
in the limit f → 1 because then f̃ (0) → ∫

dx1. This singularity can be called the
infrared one. There is also the singularity at ε = 0 which is of the ultraviolet type.
Therefore, we just omit that term, and define the quantum Hamiltonian of the right-
mover field as the sum of the first two terms in formula (14.39). In the κ → 0 limit

Ĥ+[B] =
∫ ∞

B
dp (p − B) â†+(p)â+(p) +

∫ ∞

−B
dp (p + B) d̂†

+(p)d̂+(p), (14.40)

where

â+(p) = ĉ+(p) for p ∈ [B,∞), d̂+(p) = ĉ†+(−p) for p ∈ (−B,∞).

â+(p) and d̂+(p) are the annihilation operators for the right-mover particle and anti-
particle, respectively, â†+(p) and d̂†

+(p) are the corresponding creation operators.
Now let us turn to the current Ĵμ

+. Similarly as in the case of the Hamiltonian, our
calculations are restricted to the particular case of external fields (14.32). Starting
from formula (14.24), we would like to obtain an operator that is well-defined in
the Fock space based on the Dirac vacuum. Hence, it should contain, like Ĥ [B], the
normal ordered products â†+â+ and d̂†

+d̂+. To this end we use decomposition (14.38),
and the relation (ε > 0)

{ψ̂(−)†
+ (t, x + ε), ψ̂+(t, x)} = 1

2π

∫
dp θκ(B − p)e−i pε I,

which follows from anticommutation relation (14.35). The term proportional to I
obtained from the anticommutator above is omitted. The resulting expression for the
components of the current has the form

Ĵ 0
+(t, x) = Ĵ 1

+(t, x)

= ψ̂(+)†
+ (t, x)ψ̂(+)

+ (t, x) + ψ̂(+)†
+ (t, x)ψ̂(−)

+ (t, x) − ψ̂(+)
+ (t, x)ψ̂(−)†

+ (t, x)

− ψ̂(−)
+ (t, x)ψ̂(−)†

+ (t, x). (14.41)

The transition from ĵμ+,ε to Ĵμ
+ is reminiscent of the normal ordering (and in the limit

κ → 0 it coincides with), hence we may write Ĵμ
+ = limε→0 : ĵμ+,ε :.

The total charge operator Q̂+ is obtained in the limit f → 1 of the integral
Q̂+[ f ] = ∫

dx f (x) Ĵ 0+(t, x). Simple calculations with the use of identity (14.37)
give

Q̂+ =
∫
dp

[
θκ(p − B) ĉ†+(p)ĉ+(p) − θκ(B − p) ĉ+(p)ĉ†+(p)

]
. (14.42)

In the limit κ → 0, and after the change p → −p of the integration variable in the
second term,
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Q̂+ =
∫ ∞

B
dp â†+(p)â+(p) −

∫ ∞

−B
dp d̂†

+(p)d̂+(p). (14.43)

This operator has been calculated in the Heisenberg picture, hence it should be
constant in time if the charge is conserved. Because the field B can vary with time,
one may suspect that this is not the case. Unfortunately, the time derivative of Q̂+
gives the mathematically meaningless (but physically justified, see below) result

˙̂Q+ = −Ḃ
∫
dp θ′

κ(p − B)
(
ĉ†+(p)ĉ+(p) + ĉ+(p)ĉ†+(p)

) = −Ḃδ(0)I.

The last equality is written because of (14.35). Here θ′
κ(q) = dθκ(q)/dq and∫

dq θ′
κ(q) = 1. We have also used the equality

θ′
κ(p − B) = θ′

κ(B − p)

that follows from identity (14.37).
Let us check instead whether Ĵμ

+ obeys the continuity equation. It is convenient
to use here the identities

∂0ψ̂
(±)
+ + (∂1 − i B) ψ̂(±)

+

= ∓ Ḃ√
2π

ei
∫ t
0 dt

′B(t ′)
∫ ∞

−∞
dp θ′

κ(±p) ei(B+p)(x−t) ĉ+(B + p).

It turns out that the current (14.41) is not conserved, namely

∂0 Ĵ
0
+ + ∂1 Ĵ

1
+ = − Ḃ

2π
I
∫
dp θ′

κ(p) = − Ḃ

2π
I. (14.44)

This formula is called the anomaly equation.
Let us stress that the non-conservation of the current is the result of the very

construction of the quantum model. In particular, it is not a dynamical effect related
to some peculiar interactions between the particles. To illuminate this point, let us
compare the total charge Q̂+ with the operator q̂+ = limε→0

∫
dx ĵ0+,ε(t, x). Using

formulas (14.24), (14.33) we obtain q̂+ = ∫
dp ĉ†+(p)ĉ+(p). This operator is con-

stant in time, ˙̂q+ = 0, but it has an infinite expectation value in the Dirac vacuum, and
in every normalized state from the Fock space based on that vacuum. The current
ĵ μ
+ = limε→0 ĵμ+,ε is conserved, ∂μ ĵ

μ
+ = 0. Thus, the anomaly is generated by the

normal ordering.
Moreover, let us also consider the difference

ĵ0+,ε − Ĵ 0
+ = 1

4π

∫
dp θκ(B − p)eiε(B−p) I + h.c.
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The expression on the r.h.s. is a generalized function of ε; it is the Fourier transform
of θκ(B − p) (up to a factor). In order to consider the limit ε → 0+, we have to turn
it into an ordinary function of ε. To this end, we regularize it by replacing θκ(B − p)
with eσ pθκ(B − p), where σ > 0. At the end of calculations we shall consider the
limit σ → 0+. Thus, we now consider the ordinary integral

∫ ∞

−∞
dp θκ(B − p)e(σ−iε)p =

∫ B−κ

−∞
dp e(σ−iε)p +

∫ B+κ

B−κ

dp α(B − p)e(σ−iε)p

= e(σ−iε)(B−κ)

σ − iε
+

∫ κ

−κ

dp α(p)e(σ−iε)(B−p).

Forσ > 0, this expression is a regular function of ε, andwemay put ε = 0. Therefore,

( ĵ0+,ε=0 − Ĵ 0
+)

∣∣∣
σ>0

= 1

2π

[
eσ(B−κ)

σ
+

∫ κ

−κ

dp α(p)eσ(B−p)

]
I

=
[

1

2πσ
+ B − κ

2π
+ 1

2π

∫ κ

−κ

dp α(p) + O(σ)

]
I,

where O(σ) denotes the terms which vanish when σ → 0. The first term is singular
at σ = 0, but it does not depend on B and κ. We see that the time derivative of
ĵ0+,ε=0 − Ĵ 0+ in the limit σ → 0 is equal to Ḃ I/2π, in agreement with the anomaly
equation (14.44).

The correct calculation of ˙̂Q+ should start from ˙̂Q+[ f ]. Using the anomaly equa-
tion we see that

˙̂Q+[ f ] =
∫
dx ∂1 f (x) Ĵ

1
+(t, x) − Ḃ

2π
I
∫
dx f (x).

In the limit f → 1 the first term on the r.h.s vanishes, while the second becomes
proportional to the infinite ‘volume’ of the one-dimensional space (

∫
dx/2π corre-

sponds to δ(0) in the meaningless formula for ˙̂Q+ shown below (14.43)). This is in
fact expected, because the external field (14.32) is constant in x , and therefore the
model possesses invariance with respect to spatial translations. For this reason, the
production rate for the charge density is the same over the whole space.

The Hamiltonian and the current in the quantum theory of the left-mover field
are obtained in a completely analogous manner. The decomposition into the positive
and negative energy components reads

ψ̂−(t, x) = ψ̂(+)
− (t, x) + ψ̂(−)

− (t, x), (14.45)

where

ψ̂(+)
− (t, x) = e−i

∫ t
0 dt

′C(t ′) 1√
2π

∫
dp θκ(C − p) eip(x−t) ĉ−(p),
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ψ̂(−)
− (t, x) = e−i

∫ t
0 dt

′C(t ′) 1√
2π

∫
dp θκ(p − C) eip(x−t) ĉ−(p).

The quantum Hamiltonian has the form

Ĥ−[C] =
∫ C

−∞
dp (C − p) â†−(p)â−(p) +

∫ −C

−∞
dp (−p − C) d̂†

−(p)d̂−(p),

(14.46)
where

â−(p) = ĉ−(p) for p ∈ (−∞,C], d̂−(p) = ĉ†−(−p) for p ∈ (−∞,−C).

â−(p) and d̂−(p) are the annihilation operators for the left-mover particle and antipar-
ticle, respectively. Note that the momenta of the left-mover particles (anti-particles)
are restricted fromabove byC (−C). Formula (14.46) has been obtained from (14.28)
in the limits f (x) → 1, ε → 0, κ → 0, taken after omitting a singular term pro-
portional to the identity operator I .

The total charge of the left-mover field is given by the formula

Q̂− =
∫ C

−∞
dp â†−(p)â−(p) −

∫ −C

−∞
dp d̂†

−(p)d̂−(p). (14.47)

As the anomaly equation we obtain

∂0 Ĵ
0
− + ∂1 Ĵ

1
− = Ċ

2π
I. (14.48)

The anomaly equations (14.44), (14.48) have very similar structures. This fact
suggests that one can combine the two models, and the currents, in order to
obtain a conserved current. One possibility of such a cancelation of the anomaly is
obtainedby considering the current Ĵμ = Ĵμ

+ + Ĵμ
−. Then∂μ Ĵμ = (Ċ − Ḃ)I/2π = 0

if we assume that B(t) = C(t). The current Ĵμ
5 = Ĵμ

+ − Ĵμ
− remains not conserved,

∂μ Ĵ
μ
5 = −Ḃ I/π. In this case the name ‘axial anomaly’ is used. The corresponding

classical currents jμ and jμ5 , and the condition B(t) = C(t), appear automatically if
we consider the classical Lagrangian

L = (L+ + L−)|B=C = i

2
[ψγμDμ(A)ψ − (Dμ(A)ψ)γμψ],

where
Dμ(A)ψ = ∂μψ − i Aμψ, Dμ(A)ψ = ∂μψ + i Aμψ.

Here we have changed the notation: for clarity the field Bμ = Cμ is denoted as Aμ.
The condition Bμ = Cμ is only compatible with the subset of gauge transformations
(14.18), (14.19) that is obtained by imposing the condition χ(t, x) = η(t, x). Such
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restricted gauge transformations act on theDiracfieldψ as localU (1) transformations
of the form

ψ′(t, x) = eiη(t,x) ψ(t, x). (14.49)

The classical counterparts of the currents Ĵμ and Ĵμ
5 have the form jμ = ψγμψ (the

vector current), jμ5 = ψγμγ5ψ (the axial vector current). Both classical currents are
conserved in the classical theory because they are theNoether currents corresponding
to the global symmetries of the Lagrangian L:

ψ′(t, x) = eiα ψ(t, x), α ∈ [0, 2π), (14.50)

in the case of the vector current, and

ψ′(t, x) = eiβγ5 ψ(t, x), β ∈ [0, 2π), (14.51)

for jμ5 .
One can also have Ĵμ

5 as the conserved current. In this case we assume that
B(t) = −C(t). Then, the current Ĵμ is not conserved, ∂μ Ĵμ = −Ḃ I/π. The condi-
tion B(t) = −C(t) is automatically satisfied if we consider the classical Lagrangian
L5 = (L+ + L−)|B=−C with the gauge field Bμ(t, x) = −Cμ(t, x) = A5μ(t, x).
This last condition is compatible with the gauge transformations restricted by the
condition η(t, x) = −χ(t, x) – then ψ′(t, x) = eiη(t,x)γ5 ψ(t, x). The Lagrangian L5

can be written in the form

L5 = i

2
[ψγμDμ(A5)ψ − (Dμ(A5)ψ)γμψ],

where

Dμ(A5)ψ = ∂μψ − i A5μγ5ψ, Dμ(A5)ψ = ∂μψ + i A5μψγ5.

This Lagrangian is also invariant under globalU (1) transformations (14.50), (14.51),
but only the axial vector current jμ5 = ψγμγ5ψ remains conserved after passing to
the quantum theory.

In the explicit construction of the quantum theory presented above we have con-
sidered external gauge fields of a particular form (14.32). It turns out that the results
remain similar if we consider more general gauge fields. Then the r.h.s.’s of the per-
tinent anomaly equations have a more general form, e.g., Ḃ is replaced by εμνFμν/2,
where Fμν = ∂μBν − ∂νBμ and εμν is the antisymmetric symbol (ε01 = +1).
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14.2 Anomalies and the Path Integral

The derivation of anomalies presented above relies heavily on the operator formalism
of quantum field theory. One may be puzzled about the source of anomalies when we
use the path integral formulation of the quantum theory. After all, in the path integral
there is the classical action which has the relevant symmetries, and there are no
operator-valued generalized functions (field operators). We address this question in
a model which is akin to the one discussed above, but the fields are now considered in
four-dimensional Euclidean space E with themetric (δμν) = diag(+1,+1,+1,+1),
where δμν is the Kronecker delta.

Let us consider the massless Dirac field ψ(x) interacting with a fixed external,
classical, electromagnetic field Aμ(x), x ∈ E . The classical Lagrangian has the form

L = 1

2
i[ψ(x)γμDμψ − Dμψγμψ], (14.52)

where
Dμψ = (

∂μ − i Aμ(x)
)
ψ, Dμψ = (

∂μ + i Aμ(x)
)
ψ.

and ψ is Euclidean anticommuting field, that is ψ(x) at each point x ∈ E is a Grass-
mann element.

In the Euclidean case the Dirac matrices γμ are Hermitian, and the Dirac relations
(5.2) are replaced by {γμ, γν} = 2δμν I4. Suchmatrices can be obtained, e.g., from the
matrices given by formulas (5.3) by multiplying γ1

D, γ2
D and γ3

D by i , and leaving γ0
D

unchanged. The Greek indices still have the values 0, 1, 2 and 3, as in theMinkowski
case. The matrix γ5 is defined as γ5 = γ0γ1γ2γ3. It is Hermitian, γ2

5 = I4, and it
anticommutes with thematrices γμ. The conjugation (6.65) is replacedwith a simpler
one, namely

(ψα(x))∗ = ψα(x), (ψα(x))∗ = ψα(x).

The definition of conjugation is such that the physical quantities like energy, momen-
tum, current density, etc., are selfconjugate, e.g., L∗ = L. It matters here whether
the γμ matrices are Hermitian or not. The conjugation (6.65) involves the γ0 matrix
precisely because in that case the matrices γi are anti-Hermitian, see Exercise6.5.

Lagrangian (14.52) and the action S = ∫
d4x L are invariant under the chiral

transformations

ψ(x) → ψ′(x) = eiαγ5ψ(x), ψ(x) → ψ
′
(x) = ψ(x)eiαγ5 , (14.53)

with constant α. The corresponding classical conserved current reads

jμ5 (x) = i ψ(x)γμγ5ψ(x).

http://dx.doi.org/10.1007/978-3-319-55619-2_5
http://dx.doi.org/10.1007/978-3-319-55619-2_5
http://dx.doi.org/10.1007/978-3-319-55619-2_6
http://dx.doi.org/10.1007/978-3-319-55619-2_6
http://dx.doi.org/10.1007/978-3-319-55619-2_6
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It is selfconjugate with respect to the above introduced Euclidean conjugation of the
Dirac field.

Note that under an infinitesimal form of (14.53) with space-time dependent α =
α(x),

ψ′(x) = (
1 + iα(x)γ5

)
ψ(x) + O

(
α2

)
, ψ

′
(x) = ψ(x)

(
1 + iα(x)γ5

) + O
(
α2

)
,

Lagrangian (14.52) transforms as

L(x) → L′(x) = L(x) −
(
ψ(x)γμγ5ψ(x)

)
∂μα(x) + O (

α2
)
. (14.54)

In order to prove that the current jμ5 is not conserved on the quantum level we shall
consider the so called quantum effective action W [Aμ], defined in the path integral
approach as

e−W [Aμ] =
∫

[dψdψ̄] e−S.

The crucial observation is that the path integral measure [dψdψ̄] is not invariant
under the chiral rotations with α dependent on x .

First, we need to define the measure more precisely. Let φn(x) denote the
normalized eigenfunctions and λn the corresponding eigenvalues of the operator
D̂ = γμ(i∂μ + Aμ(x)):

D̂φn(x) = λnφn(x),
∫
d4x φ†

n(x)φm(x) = δnm .

The completeness relation has the form

∑
n

φn(x)φ
†
n(y) = I4δ(x − y).

The eigenvalues λn are real. Operator D̂ is Hermitian in a Hilbert space L2(E,C4)

of functions on E with values in a complex 4-dimensional spaceC4. The eigenvalues
λn are gauge invariant in the sense that they do not change when we replace Aμ with
Aμ + ∂μχ(x) (Exercise14.4). We can expand ψ(x) and ψ(x) in the basis formed by
φn(x) and φ†

n(x):

ψ(x) =
∑
n

anφn(x), ψ(x) =
∑
n

φ†
n(x)ān,

where an and ān are independent Grassmann variables. Then

[dψdψ] =
∏
m

∏
n

damdān .
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Further, let a′
n denote the coefficients of the decomposition of the chirally rotated

spinor ψ′(x) = ψ(x) + iα(x)γ5ψ(x) + O(α2) in this basis,

ψ′(x) =
∑
n

a′
nφn(x).

Using the orthogonality relation for the eigenfunctions φn(x) we have:

an =
∫
d4x φ†

n(x)ψ(x)

and

a′
n =

∫
d4x φ†

n(x)ψ
′(x)

=
∫
d4x φ†

n(x)ψ(x) + i
∫
d4x α(x)φ†

n(x)γ5ψ(x) + O(α2)

= an + i
∫
d4x α(x)φ†

n(x)γ5

(∑
m

amφm(x)

)
+ O(α2)

=
(

δnm + i
∫
d4x α(x)φ†

n(x)γ5φm(x)

)
am + O(α2) ≡

∑
m

Cnmam + O(α2).

Therefore, after neglecting the O(α2) terms,

∏
m

da′
m =

(
det Ĉ

)−1 ∏
m

dam,

where Ĉ denotes the infinite matrix [Cnm]. The inverse determinant appears since am
and a′

m are Grassmann variables, see Exercise11.2 (b).
Let us write Ĉ in the form Ĉ = I + ε̂, where

εnm = i
∫
d4x α(x)φ†

n(x)γ5φm(x).

Using the formula
ln det Ĉ = tr ln Ĉ = trε̂ + O(ε̂2)

we have

(det Ĉ)−1 = exp
{
−tr ln Ĉ

}
= exp(−

∑
n

εnn)
(
1 + O(α2)

)

(14.55)

= exp

{
−i

∫
d4x α(x)

(∑
n

φ†
n(x)γ5φn(x)

)} (
1 + O(α2)

)
.

http://dx.doi.org/10.1007/978-3-319-55619-2_11
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Since

B(x) ≡
∑
n

φ†
n(x)γ5φn(x)

= tr4

(
γ5

∑
n

φn(x)φ
†
n(x)

)
= tr4γ5 · δ(0) “=” 0 · ∞,

where the trace tr4 is over the bispinor indices, we see that B(x) is not a well defined
quantity. In order to obtain a meaningful expression for B(x) we shall introduce a
Gaussian regularization and define

B(x) = lim
M→∞ lim

x ′→x

∑
n

tr4
(
γ5 e

−( λn
M )

2

φn(x)φ
†
n(x

′)
)

= lim
M→∞ lim

x ′→x
tr4

(
γ5 e

− D̂2

M2
∑
n

φn(x)φ
†
n(x

′)

)

= lim
M→∞ lim

x ′→x
tr4

(
γ5 e

− D̂2

M2

)
δ(x − x ′).

Using the representation

δ(x − x ′) =
∫

d4k

(2π)4
e−ik(x−x ′),

we get

B(x) = lim
M→∞ lim

x ′→x

∫
d4k

(2π)4
tr4

(
γ5 e

− D̂2

M2

)
e−ik(x−x ′)

= lim
M→∞

∫
d4k

(2π)4
tr4

(
γ5 e

ikxe− D̂2

M2 e−ikx

)

= lim
M→∞

∫
d4k

(2π)4
tr4

(
γ5 exp

{
− 1

M2
eikx D̂2e−ikx

})
.

Now, let us introduce the operator dμ = i∂μ + Aμ (it coincides with i Dμ, where Dμ

is the covariant derivative of the field ψ). We have

D̂2 = γμγνdμdν = 1

2
({γμ, γν} + [γμ, γν]) dμdν

= δμνdμdν I4 + 1

2
γμγν[dμ, dν] = dμdμ I4 + i

2
γμγνFμν,

where the identity
[dμ, dν] = i Fμν
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has been used. Consequently,

D̂2 e−ikx = e−ikx

[
(k + A)2 + i∂μAμ + i

2
γμγνFμν

]
,

and, changing the integration variable from k to q = 1
M (k + A), we get

B(x) = lim
M→∞

∫
d4k

(2π)4
tr4

(
γ5 e

− i
M2 [(k+A)2+i∂μAμ+ i

2 γμγν Fμν]
)

= lim
M→∞M

4
∫

d4q

(2π)4
tr4

(
γ5 e

−q2
e− i

M2 [∂μAμ+ 1
2 γμγν Fμν]

)
.

Expanding the exponent in powers of M−2, and using the facts that

tr4γ5 = tr4 (γ5γ
μγν) = 0, tr4

(
γ5γ

μγνγργλ
) = 4εμνρλ,

and ∫
d4q

(2π)4
e−q2 = 1

16π2
,

we get

B(x) = lim
M→∞

iM4

16π2

[
1

2

( −i

2M2

)2

tr4
(
γ5γ

μγνγργλ
)
FμνFρλ + O (

M−6
)]

= − 1

16π2
Fμν F̃μν,

where

F̃μν = 1

2
εμνρλFρλ.

Inserting this back into (14.55), we see that under the infinitesimal chiral transfor-
mation the integration measure changes according to the formula

[dψ′] = exp

{
i

16π2

∫
d4x α(x)Fμν(x)F̃μν(x)

}
[dψ] + O(α2). (14.56)

Analogous calculation shows that a chiral transformation of the measure [dψ] is
given also by formula (14.56).

The chiral rotation can be viewed as a change of integration variables, which does
not influence the value of the integral,

∫
[dψdψ] e−S[Aμ,ψ,ψ] =

∫
[dψ′dψ

′] e−S[Aμ,ψ′,ψ′].
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Neglecting the terms of order α2, and with the help of (14.54) and (14.56), we get
the identity

0 =
∫

[dψ′dψ
′] e−S[Aμ,ψ′,ψ′] −

∫
[dψdψ] e−S[Aμ,ψ,ψ]

=
∫

[dψdψ] e−S[Aμ,ψ,ψ]
∫
d4x

(
i

8π2
α(x)Fμν F̃μν + ψγμγ5ψ∂μα(x)

)

=
∫

[dψdψ] e−S[Aμ,ψ,ψ]
∫
d4x α(x)

(
i

8π2
Fμν F̃μν − ∂μ(ψγμγ5ψ)

)
.

The vacuum expectation value of the quantum chiral current is given by

〈 Ĵμ
5 (x)〉 = N−1

∫
[dψdψ] e−S[Aμ,ψ,ψ] iψ(x)γμγ5ψ(x),

where N = ∫[dψdψ] e−S . Because α(x) is arbitrary, the identity obtained above
implies an axial anomaly equation of the form

∂μ〈 Ĵμ
5 (x)〉 = − 1

8π2
Fμν(x)F̃μν(x). (14.57)

Let us end this section with a comment. Suppose that φn(x) is an eigenfunction
of the Hermitian operator D̂ with a non-zero eigenvalue λn,

D̂φn(x) = λnφn(x).

Since {
γ5, D̂

}
= 0,

the function γ5φn(x) is an eigenfunction of D̂ with the eigenvalue −λn. Eigenfunc-
tions corresponding to different eigenvalues are orthogonal, therefore

∫
d4x φ†

n(x)γ5e
− D̂2

M2 φn(x) = e− λ2n
M2

∫
d4x φ†

n(x)γ5φn(x) = 0.

This implies that for a constant parameter of the chiral rotation α, only the functions
φn(x) corresponding to the zero eigenvalues—the so called zero modes of the Dirac
operator D̂—contribute to the chiral variation of the path integral measure. These
eigenfunctions are denoted as φ(0)

i (x), i = 1, 2, . . . , n0. Since γ5φ
(0)
i (x) also is a

zero mode of D̂ and γ5 is Hermitian, we can split the set of zero modes into mutually
orthogonal subsets of eigenfunctions of γ5 with the eigenvalues+1 and−1, denoted
by φ(0)

i,+(x), i = 1, 2, . . . , ν+ and φ(0)
i,−(x), i = 1, 2, . . . , ν−, correspondingly,

γ5φ
(0)
i,±(x) = ±φ(0)

i,±(x).



14.2 Anomalies and the Path Integral 343

With this notation

∫
d4x B(x) =

∫
d4x

n0∑
i=1

φ
(0)
i (x)†γ5φ

(0)
i (x)

=
ν+∑
i=1

∫
d4x φ

(0)
i,+(x)†γ5φ

(0)
i,+(x) +

ν−∑
i=1

∫
d4x φ

(0)
i,−(x)†γ5φ

(0)
i,−(x) = ν+ − ν−.

The quantity
ν+ − ν− ≡ ind(D̂+)

is called the index of the projected Dirac operator D̂+ = D̂(1 + γ5)/2. From the
calculations above we see that the index determines the chiral anomaly.

Exercises

14.1 The Lorentz group in (1 + 1)-dimensional space-time consists of real, two by
two matrices (Lμ

ν), where L
0
0 = L1

1 = cosh u and L1
0 = L0

1 = sinh u. The parame-
teru (rapidity) can have an arbitrary real value. The corresponding transformation law
for the Dirac field has the form ψ′(x ′) = S(L)ψ(x), where x ′ = Lx , and the matrix
S(L) obeys the conditions S(L1)S(L2) = S(L1L2) and S−1(L)γμS(L) = Lμ

νγ
ν .

(a) Check that

S(L) =
(
e

u
2 0
0 e− u

2

)
.

(b) Check that the Lagrangians L± (given by formulas (14.10), (14.12)), as well as
γ5, are invariant with respect to the Lorentz transformations.

14.2 Derive formula (14.26).
Hints: Instead of Ĵ 0+(t, x)wemay insert ĵ0+,ε(t, x) given by formula (14.24), because
the two charge densities differ from each other by a term proportional to the identity
operator I . Next, introduce the operators

U (s) = exp
(
is

∫
dx ′ χ(x ′) ĵ0+,ε(t, x

′)
)
, ψ̂s(t, x) = U−1(s)ψ̂+(t, x)U (s),

where s is a real parameter. Using the anticommutation relations (14.20) obtain, in
the limit ε → 0, the equation

dψ̂s(t, x)

ds
= iχ(x)ψ̂s(t, x).

Find its solution such that ψ̂s(t, x)|s=0 = ψ̂+(t, x) and put s = 1.
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14.3 Derive the anomaly equation (14.48) for the left-mover current.

14.4 Prove that the eigevalues λn of the operator D̂ are gauge invariant.

14.5 Check that the quantum effective actionW [Aμ] is not invariant under the gauge
transformations Aμ(x) → Aμ(x) + ∂μα(x).
Hint: Consider δW [Aμ + ∂μα]/δα(x).



Appendix: Some Facts About Generalized
Functions

Here we recall some basic facts and formulas from the theory of generalized func-
tions. There are many mathematical textbooks on this subject. Physicists may find
useful concise texts, for example Chaps. 2–4 in [12], or Chaps. 2 and 3 in [8]. A
comprehensive introduction to the subject can be found in [2].

The generalized functions that appear in field theory are of the so called Schwartz
class, denoted as S′(Rn) or S∗(Rn). The reason is that all such generalized functions
have a Fourier transform. A generalized function of the Schwartz class1 (g. f.) is,
by definition, a linear and continuous functional on the Schwartz space of functions,
denoted by S(Rn). Elements of S(Rn) are called test functions. They are complex
valued functions on Rn of the C∞ class. Moreover, it is assumed that such functions,
and all their derivatives, vanish in the limit |x | = √

(x1)2 + (x2)2 + . . . + (xn)2 →
∞, also when multiplied by any finite order polynomial in the variables x1, . . . , xn .
Here x denotes arbitrary point in Rn and x1, . . . , xn are its Cartesian coordinates. The
space S(Rn) is endowed with a topology, but we shall not describe it here. Examples
of test functions from the space S(R1) include e−ax2 and 1/ cosh(ax), where a > 0
is a real constant. On the other hand, (1 + x2)−1 is not test function from S(R1).

The value of a generalized function F ∈ S∗(Rn) on a test function f ∈ S(Rn) is
denoted inmathematical literature as 〈F(x), f (x)〉, but in physics themost popular is
the misleading notation

∫
dnx F(x) f (x), for example,

∫
dnx δ(x) f (x) in the case of

the Dirac delta. One should keep inmind that the integral here is merely a symbol that
replaces 〈 , 〉 from themathematical notation—it is not a true integral. It may happen
however, that a generalized function is represented by an ordinary function F(x) such
that the true integral

∫
dnx F(x) f (x) exists for all f ∈ S(Rn). Such an F is called

a regular g.f. For example, the step function �(x), x ∈ R1, is a regular generalized
function from S∗(R1), because the integral

∫ ∞
−∞dx �(x) f (x) = ∫ ∞

0 dx f (x) exists
for every f ∈ S(R1). We show the integration range when we deal with a true
integral. The Dirac delta δ(x) is the prominent example of a non regular g.f. In the
mathematical notation its definition has the form 〈δ(x), f (x)〉 = f (0).

1Other names are also used: distribution for generalized function, and tempered distribution for
generalized functions from the Schwartz class.
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The derivative ∂i F of g.f. F is defined as follows:

∫
dnx ∂i F(x) f (x) = −

∫
dnx F(x)∂i f (x)

for all test functions f . One should remember that this is the definition, and not the
formula of integration by parts. For example,

∫
dx

d�(x)

dx
f (x) = −

∫ ∞

−∞
dx �(x)

d f (x)

dx
= −

∫ ∞

0
dx

d f (x)

dx
= f (0),

hence�′(x) = δ(x). The derivative of g.f. always exists and is a generalized function.
The Fourier transform f̃ (k) = (2π)n/2

∫
Rndnx exp(ikx) f (x) of a test function f

is also a test function from the space S(Rn). The g.f. F̃(x) ∈ S∗(Rn) such that for
every f ∈ S(Rn) ∫

dnx F̃(x) f (x) =
∫
dnk F(k) f̃ (k),

is called the Fourier transform of the g.f. F . It exists for any F ∈ S∗(Rn). The
operation of taking the Fourier transform is continuous with respect to F . This
property is used in order to facilitate the computation of the Fourier transform of
�(x)—we first compute the Fourier transform of e−εx�(x), where ε > 0, and take
the limit ε → 0+ at the end.2 Thus,

∫
dx �̃(x) f (x) = lim

ε→0+

∫ ∞

−∞
dke−εk�(k) f̃ (k)

= lim
ε→0+

1√
2π

∫ ∞

0
dk

∫ ∞

−∞
dx eikx−εk f (x) = lim

ε→0+

i√
2π

∫ ∞

−∞
dx

1

x + iε
f (x).

The r.h.s. of this formula defines the g.f. denoted as i√
2π

1
x+i0+ . Therefore,

�̃(x) = i√
2π

1

x + i0+
.

Note that the g.f. 1
x+iε is regular if ε > 0.

One can prove that
1

x + i0+
= P

1

x
− iπδ(x),

where the principal value distribution P 1
x is defined as

∫
dx P

1

x
f (x) = lim

ε→0+

(∫ −ε

−∞
dx

f (x)

x
+

∫ ∞

ε

dx
f (x)

x

)

2The notation ε → 0+ means that ε = 0 is approached from the side ε > 0.
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(it is not regular). The result for �̃(x) obtained above is often written in the form

∫ ∞

0
dp eipx = i P

1

x
+ πδ(x).

The formof a generalized function can be probed onlywith test functions. Because
there is no test functionwith support consisting of just a single-point, it is not possible
to tell what is the value of the g.f. at the given point. One can however check whether
a g.f., say F(x), is constant in a vicinity Vx0 of a point x0 ∈ Rn—it is sufficient to
show that the first derivatives of F(x) vanish in that vicinity, i.e., that

∫
∂i F(x) f (x) = 0

for every test function that has its support in Vx0 ⊂ Rn . For example, for δ(x) ∈
S∗(R1) one may say that δ(x) = 0 on every interval (a, b) that does not contain 0,
and that δ(x) �= 0 at x = 0, but not that δ(1) = 0.

A consequence of the lack of definite value at a single point is that there is
no general definition of a product of generalized functions. We know the gener-
alized functions F1(x) ∈ S∗(Rn) and F2(x) ∈ S∗(Rn) if we know the values of∫
dnx F1(x) f (x) and

∫
dnx F2(x) f (x) for every f ∈ S(Rn). It is not possible to

infer from this what values
∫
dnx F1(x)F2(x) f (x) should have. Only in some special

cases, e.g., for certain regular generalized functions, can such product be defined.
In particular, there is no problem with multiplication by an ordinary function ψ(x),
provided that ψ(x) f (x) ∈ S(Rn) for every f ∈ S(Rn). Then, the product ψ(x)F(x)
is the g.f. defined by the formula

∫
dnx (ψ(x)F(x)) f (x) =

∫
dnx F(x) (ψ(x) f (x)).

For example, if k is a fixed real number, eikxδ(x) is a generalized function, while
xaδ(x) with non integer constant a > 0 is not (not all functions xa f (x) belong to
S(R1) because of the problem with derivatives at x = 0).

On the other hand, there is no difficulty with a product of generalized functions
with different arguments. If F(x) ∈ S∗(Rn) and G(y) ∈ S∗(Rm), then we know∫
dnx F(x) f (x) and

∫
dm y G(y)g(y) for all f ∈ S(Rn) and g ∈ S(Rm). The

generalized function H(x, y) = F(x)G(y) ∈ S∗(Rn+m) is defined by its action on
the test functions h(x, y) ∈ S(Rn+m) of the form h(x, y) = f (x)g(y), namely

∫
dnxdm y H(x, y)h(x, y) =

∫
dnx F(x) f (x)

∫
dm y G(y)g(y).

Such factorized test functions f (x)g(y) form a subset of S(Rn+m) that is sufficiently
large to uniquely determine H(x, y) on the whole space S(Rn+m). An example: if
x, y ∈ R1 are independent variables, then δ(x)δ(y) ∈ S∗(R2).
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Finally, let us consider the question whether

∫
dx δ(x)

?=
∫ ∞

0
dx δ(x) +

∫ 0

−∞
dx δ(x),

or, in a more meaningful form, whether

δ(x) = 1δ(x) = (�(x) + �(−x))δ(x)
?= �(x)δ(x) + �(−x)δ(x).

The answer is that such a formula is wrong, because the products �(x)δ(x),
�(−x)δ(x) are not defined. The way to correct the splitting consists in replac-
ing �(±x) with two smooth functions θ1(x) and θ2(x) which obey the condition
θ1(x) + θ2(x) = 1, and resemble �(x) and �(−x), respectively. Moreover, these
functions should be such that θi (x) f (x) ∈ S(R1), i = 1, 2, for every f ∈ S(R1).
Then we may safely write

F(x) = θ1(x)F(x) + θ2(x)F(x)

for any F(x) ∈ S∗(R1).
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