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Abstract Sliding mode control is an important method used to solve various

problems in control systems engineering. In robust control systems, the sliding

mode control is often adopted due to its inherent advantages of easy realization,

fast response and good transient performance as well as insensitivity to parameter

uncertainties and disturbance. In this work, we derive a novel second order sliding

mode control method for the global stabilization of any nonlinear system. The global

stabilization result is derived using novel second order sliding mode control method

and established using Lyapunov stability theory. Chaos in nonlinear dynamics occurs

widely in physics, chemistry, biology, ecology, secure communications, cryptosys-

tems and many scientific branches. Synchronization of chaotic systems is an impor-

tant research problem in chaos theory. As an application of the general result, the

problem of global chaos control of a novel highly chaotic system is studied and a

new sliding mode controller is derived. The Lyapunov exponents of the novel chaotic

system are obtained as L1 = 12.8393, L2 = 0 and L3 = −33.1207. The large value

of the maximal Lyapunov exponent (MLE) shows that the novel chaotic system is

highly chaotic. The Kaplan-Yorke dimension of the novel chaotic system is obtained

as DKY = 2.3877. We show that the novel highly chaotic system has three unsta-

ble equilibrium points. Numerical simulations using MATLAB have been shown to

depict the phase portraits of the novel highly chaotic system and the global chaos

control of the state trajectories of the novel highly chaotic system.
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1 Introduction

Chaos theory describes the quantitative study of unstable aperiodic dynamic behav-

ior in deterministic nonlinear dynamical systems. For the motion of a dynamical

system to be chaotic, the system variables should contain some nonlinear terms and

the system must satisfy three properties: boundedness, infinite recurrence and sen-

sitive dependence on initial conditions [4–6, 125–127].

Chaos theory has applications in several fields such as memristors [28, 30, 31,

34–36, 137, 140, 142], fuzzy logic [7, 49, 111, 146], communication systems [13,

14, 143], cryptosystems [10, 12], electromechanical systems [15, 58], lasers [8, 21,

145], encryption [22, 23, 147], electrical circuits [1, 2, 16, 120, 138], chemical

reactions [75, 76, 78, 79, 81, 83, 85–87, 90, 92, 96, 112], oscillators [93, 94, 97,

98, 139], tokamak systems [91, 99], neurology [80, 88, 89, 95, 105, 141], ecology

[77, 82, 106, 108], etc.

The problem of global control of a chaotic system is to device feedback control

laws so that the closed-loop system is globally asymptotically stable. The problem of

global chaos synchronization of chaotic systems is to find feedback control laws so

that the master and slave systems are globally and asymptotically synchronized with

respect to their states. There are many techniques available in the control literature

for the regulation and synchronization of chaotic systems such as active control [17,

44, 45, 54, 118, 129], adaptive control [46–48, 51, 53, 64, 104, 115, 119, 120],

backstepping control [37–41, 57, 122, 130, 135, 136], sliding mode control [19, 26,

56, 63, 65, 66, 73, 103, 107, 123], etc.

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz sys-

tem [24], Rössler system [42], ACT system [3], Sprott systems [50], Chen system

[11], Lü system [25], Cai system [9], Tigan system [60], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou

system [148], Zhu system [149], Li system [20], Sundarapandian systems [52, 55],

Vaidyanathan systems [67–72, 74, 84, 100, 102, 109, 110, 113, 114, 116, 117, 121,

124, 128, 131–134], Pehlivan system [27], Sampath system [43], Tacha system [59],

Pham systems [29, 32, 33, 35], Akgul system [2], etc.

In this research work, we derive a general result for the global stabilization of

nonlinear systems using second order sliding mode control (SMC) [61, 62]. The

sliding mode control approach is recognized as an efficient tool for designing robust

controllers for linear or nonlinear control systems operating under uncertainty con-

ditions.

A major advantage of sliding mode control is low sensitivity to parameter varia-

tions in the plant and disturbances affecting the plant, which eliminates the necessity

of exact modeling of the plant. In the sliding mode control, the control dynamics will

have two sequential modes, viz. the reaching mode and the sliding mode. Basically,

a sliding mode controller design consists of two parts: hyperplane design and con-

troller design. A hyperplane is first designed via the pole-placement approach and a

controller is then designed based on the sliding condition. The stability of the overall

system is guaranteed by the sliding condition and by a stable hyperplane.
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This work is organized as follows. In Sect. 2, we discuss the problem statement for

the global stabilization of nonlinear systems. Then we derive a general result for the

global stabilization of nonlinear systems using novel second order sliding mode con-

trol. In Sect. 3, we describe the novel highly chaotic system and its phase portraits.

In Sect. 4, we describe the qualitative properties of the novel highly chaotic system.

The Lyapunov exponents of the novel chaotic system are obtained as L1 = 12.8393,

L2 = 0 and L3 = −33.1207. The Kaplan-Yorke dimension of the novel chaotic sys-

tem is obtained as DKY = 2.3877. We show that the novel highly chaotic system has

three unstable equilibrium points. In Sect. 5, we describe the second order sliding

mode controller design for the global chaos control of the novel highly chaotic sys-

tem and its numerical simulations. Section 6 contains the conclusions of this work.

2 Second Order Sliding Mode Control for Nonlinear
Systems

We consider a general nonlinear system given by

𝐱̇ = A𝐱 + f (𝐱) + 𝐮 (1)

where 𝐱 ∈ 𝐑n
denotes the state of the system, A ∈ 𝐑n×n

denotes the matrix of sys-

tem parameters and f (𝐱) ∈ 𝐑n
contains the nonlinear parts of the system. Also, 𝐮

represents the sliding mode controller to be designed.

Then the global stabilization problem for the system (1) can be stated as follows:

Find a controller 𝐮(𝐱) so as to render the state 𝐱(t) to be globally asymptotically

stable for all values of 𝐱(0) ∈ 𝐑n
, i.e.

lim
t→∞

‖𝐱(t)‖ = 0 for all 𝐱(0) ∈ 𝐑n
(2)

We start the controller design by setting

𝐮(t) = −f (𝐱) + Bv(t) (3)

In Eq. (3), B ∈ 𝐑n
is chosen such that (A,B) is completely controllable.

By substituting (3) into (1), we get the closed-loop system dynamics

𝐱̇ = A𝐱 + Bv (4)

Next, we start the sliding controller design by defining the sliding variable as

s(𝐱) = C𝐱 = c1x1 + c2x2 +⋯ + cnxn, (5)

where C ∈ 𝐑1×n
is a constant vector to be determined.
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The sliding manifold S is defined as the hyperplane

S = {𝐱 ∈ 𝐑n ∶ s(𝐱) = C𝐱 = 0} (6)

We shall assume that a sliding motion occurs on the hyperplane S.

In the second order sliding mode control, the following equations must be satis-

fied:

s = 0 (7a)

ṡ = CA𝐱 + CBv = 0 (7b)

We assume that

CB ≠ 0 (8)

The sliding motion is influenced by equivalent control derived from (7b) as

v
eq
(t) = −(CB)−1 CA𝐱(t) (9)

By substituting (9) into (4), we obtain the equivalent error dynamics in the sliding

phase as follows:

𝐱̇ = A𝐱 − (CB)−1CA𝐱 = E𝐱, (10)

where

E =
[
I − B(CB)−1C

]
A (11)

We note that E is independent of the control and has at most (n − 1) non-zero

eigenvalues, depending on the chosen switching surface, while the associated eigen-

vectors belong to ker(C).
Since (A,B) is controllable, we can use sliding control theory [61, 62] to choose

B and C so that E has any desired (n − 1) stable eigenvalues.

This shows that the dynamics (10) is globally asymptotically stable.

Finally, for the sliding controller design, we apply a novel sliding control law, viz.

ṡ = −ks − qs2 sgn(s) (12)

In (12), sgn(⋅) denotes the sign function and the SMC constants k > 0, q > 0 are

found in such a way that the sliding condition is satisfied and that the sliding motion

will occur.

By combining Eqs. (7b), (9) and (12), we finally obtain the sliding mode controller

v(t) as

v(t) = −(CB)−1
[
C(kI + A)𝐱 + qs2 sgn(s)

]
(13)

Next, we establish the main result of this section.
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Theorem 1 The second order sliding mode controller defined by (3) achieves global
stabilization for all the states of the system (1) where v is defined by the novel sliding
mode control law (13), B ∈ 𝐑n×1 is such that (A,B) is controllable, C ∈ 𝐑1×n is such
that CB ≠ 0 and the matrix E defined by (11) has (n − 1) stable eigenvalues.

Proof Upon substitution of the control laws (3) and (13) into the state dynamics (1),

we obtain the closed-loop system dynamics as

𝐱̇ = A𝐱 − B(CB)−1
[
C(kI + A)𝐱 + qs2 sgn(s)

]
(14)

We shall show that the error dynamics (14) is globally asymptotically stable by

considering the quadratic Lyapunov function

V(𝐱) = 1
2
s2(𝐱) (15)

The sliding mode motion is characterized by the equations

s(𝐱) = 0 and ṡ(𝐱) = 0 (16)

By the choice of E, the dynamics in the sliding mode given by Eq. (10) is globally

asymptotically stable.

When s(𝐱) ≠ 0, V(𝐱) > 0.

Also, when s(𝐱) ≠ 0, differentiating V along the error dynamics (14) or the equiv-

alent dynamics (12), we get

̇V(𝐱) = sṡ = −ks2 − qs3 sgn(s) < 0 (17)

Hence, by Lyapunov stability theory [18], the error dynamics (14) is globally

asymptotically stable for all 𝐱(0) ∈ 𝐑n
.

This completes the proof. ■

3 A Novel Highly Chaotic System

In this work, we propose a novel highly chaotic system described by

ẋ1 = a(x2 − x1) + dx2x3
ẋ2 = bx1 − x2 − x1x3
ẋ3 = x1x2 − cx3 + px22

(18)

where x1, x2, x3 are the states and a, b, c, d, p are constant, positive, parameters.
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In this chapter, we show that the system (18) is chaotic when the parameters take

the values

a = 14, b = 18, c = 6, d = 98, p = 12 (19)

For numerical simulations, we take the initial state of the system (18) as

x1(0) = 0.2, x2(0) = 0.2, x3(0) = 0.2 (20)

The Lyapunov exponents of the system (18) for the parameter values (19) and the

initial state (20) are determined by Wolf’s algorithm [144] as

L1 = 12.8393, L2 = 0, L3 = −33.1207 (21)

Since L1 > 0, we conclude that the system (18) is chaotic.

Since L1 + L2 + L3 < 0, we deduce that the system (18) is dissipative.

Hence, the limit sets of the system (18) are ultimately confined into a specific limit

set of zero volume, and the asymptotic motion of the novel highly chaotic system (18)

settles onto a strange attractor of the system.

From (21), we see that the maximal Lyapunov exponent (MLE) of the chaotic

system (18) is L1 = 12.8393, which is very large.

Thus, we conclude that the proposed novel system (18) is highly chaotic.

Also, the Kaplan-Yorke dimension of the novel highly chaotic system (18) is cal-

culated as

DKY = 2 +
L1 + L2
|L3|

= 2.3877, (22)

which shows the high complexity of the system (18).

Figure 1 shows the 3-D phase portrait of the highly chaotic system (18) in 𝐑3
.

Figures 2, 3 and 4 show the 2-D projections of the highly chaotic system (18) in

(x1, x2), (x2, x3) and (x1, x3) planes, respectively.

4 Qualitative Properties of the Novel Highly Chaotic
System

4.1 Dissipativity

In vector notation, the novel highly chaotic system (18) can be expressed as

𝐱̇ = f (𝐱) =
⎡
⎢
⎢
⎢
⎣

f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

⎤
⎥
⎥
⎥
⎦

, (23)
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Fig. 1 3-D phase portrait of the novel highly chaotic system in 𝐑3
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Fig. 2 2-D phase portrait of the novel highly chaotic system in (x1, x2) plane
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Fig. 3 2-D phase portrait of the novel highly chaotic system in (x2, x3) plane
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Fig. 4 2-D phase portrait of the novel highly chaotic system in (x1, x3) plane
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where

⎧
⎪
⎨
⎪
⎩

f1(x1, x2, x3) = a(x2 − x1) + dx2x3
f2(x1, x2, x3) = bx1 − x2 − x1x3
f3(x1, x2, x3) = x1x2 − cx3 + px22

(24)

We take the parameter values as in the chaotic case (19).

Let 𝛺 be any region in𝐑3
with a smooth boundary and also, 𝛺(t) = 𝛷t(𝛺),where

𝛷t is the flow of f . Furthermore, let V(t) denote the volume of 𝛺(t).
By Liouville’s theorem, we know that

̇V(t) =
∫
𝛺(t)

(∇ ⋅ f ) dx1 dx2 dx3 (25)

The divergence of the novel chaotic system (23) is calculated as

∇ ⋅ f =
𝜕f1
𝜕x1

+
𝜕f2
𝜕x2

+
𝜕f3
𝜕x3

= −(a + c + 1) = −𝜇 < 0 (26)

where 𝜇 = a + c + 1 = 21 > 0.

Inserting the value of ∇ ⋅ f from (26) into (25), we get

̇V(t) =
∫
𝛺(t)

(−𝜇) dx1 dx2 dx3 = −𝜇V(t) (27)

Integrating the first order linear differential equation (27), we get

V(t) = exp(−𝜇t)V(0) (28)

Since 𝜇 > 0, it follows from Eq. (28) that V(t) → 0 exponentially as t → ∞.

This shows that the novel chaotic system (18) is dissipative. Hence, the limit sets

of the system (18) are ultimately confined into a specific limit set of zero volume,

and the asymptotic motion of the novel chaotic system (18) settles onto a strange

attractor of the system.

4.2 Equilibrium Points

The equilibrium points of the novel highly chaotic system (18) are obtained by solv-

ing the equations
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⎧
⎪
⎨
⎪
⎩

f1(x1, x2, x3) = a(x2 − x1) + dx2x3 = 0
f2(x1, x2, x3) = bx1 − x2 − x1x3 = 0
f3(x1, x2, x3) = x1x2 − cx3 + px22 = 0

(29)

We take the parameter values as in the chaotic case (19).

Solving the system (29), we find that the system (18) has three equilibrium points

given by

E0 =
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

, E1 =
⎡
⎢
⎢
⎣

111.8950
0.8814
17.9921

⎤
⎥
⎥
⎦

, E2 =
⎡
⎢
⎢
⎣

−111.8950
−0.8814
17.9921

⎤
⎥
⎥
⎦

(30)

To test the stability type of the equilibrium points, we calculate the Jacobian of

the system (18) at any 𝐱 ∈ 𝐑3
as

J(𝐱) =
⎡
⎢
⎢
⎣

−a a + dx3 dx2
b − x3 −1 −x1
x2 x1 + 2px2 −c

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

−14 14 + 98x3 98x2
18 − x3 −1 −x1

x2 x1 + 24x2 −6

⎤
⎥
⎥
⎦

(31)

The matrix J0 = J(E0) has the eigenvalues

𝜆1 = −24.6537, 𝜆2 = −6, 𝜆3 = 9.6537 (32)

This shows that the equilibrium point E0 is a saddle point, which is unstable.

The matrix J1 = J(E1) has the eigenvalues

𝜆1 = −25.54, 𝜆2,3 = 2.27 ± 122.52i (33)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.

The matrix J2 = J(E2) has the same eigenvalues as J1 = J(E1). Hence, we con-

clude that the equilibrium point E2 is also a saddle-focus, which is unstable.

Thus, all three equilibrium points of the novel highly chaotic system (18) are

unstable.

4.3 Rotation Symmetry About the x𝟑-Axis

It is easy to see that the system (18) is invariant under the change of coordinates

(x1, x2, x3) ↦ (−x1,−x2, x3) (34)
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Thus, the 3-D novel chaotic system (18) has rotation symmetry about the x3-axis.

Hence, it follows that any non-trivial trajectory of the system (18) must have a twin

trajectory

4.4 Invariance

It is easy to see that the x3-axis is invariant under the flow of the 3-D novel highly

chaotic system (18). The invariant motion along the x3-axis is characterized by

ẋ3 = −cx3, (c > 0) (35)

which is globally exponentially stable.

4.5 Lyapunov Exponents and Kaplan-Yorke Dimension

We take the parameters of the system (18) as

a = 14, b = 18, c = 6, d = 98, p = 12 (36)

Also, we take the initial state of the system (18) as

x1(0) = 0.2, x2(0) = 0.2, x3(0) = 0.2 (37)

The Lyapunov exponents of the system (18) for the parameter values (36) and the

initial state (37) are determined by Wolf’s algorithm [144] as

L1 = 12.8393, L2 = 0, L3 = −33.1207 (38)

Figure 5 describes the MATLAB plot for the Lyapunov exponents of the novel

chaotic system (18).

From (21), we see that the maximal Lyapunov exponent (MLE) of the chaotic

system (18) is L1 = 12.8393, which is very large. Thus, novel system (18) is highly

chaotic. Also, the Kaplan-Yorke dimension of the novel highly chaotic system (18)

is calculated as

DKY = 2 +
L1 + L2
|L3|

= 2.3877, (39)

which shows the high complexity of the system (18).



182 S. Vaidyanathan

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−30

−20

−10

0

10

20

30

Time (sec)

Ly
ap

un
ov

 e
xp

on
en

ts
L1 = 12.8383
L2 = 0
L3 = −33.1207

Fig. 5 Lyapunov exponents of the novel highly chaotic system

5 Sliding Mode Controller Design for the Global Chaos
Control of the Novel Highly Chaotic System

In this section, we describe the sliding mode controller design for the global chaos

control of the novel highly chaotic system by applying the novel sliding mode control

method described by Theorem 1 in Sect. 2.

Thus, we consider the controlled novel highly chaotic system given by

ẋ1 = a(x2 − x1) + dx2x3 + u1
ẋ2 = bx1 − x2 − x1x3 + u2
ẋ3 = x1x2 − cx3 + px22 + u3

(40)

where x1, x2, x3 are the states and u is the sliding mode control to be designed.

We take the parameter values as in the chaotic case (19), i.e.

a = 14, b = 18, c = 6, d = 98, p = 12 (41)

In matrix form, we can write the system dynamics (40) as

𝐱̇ = A𝐱 + f (𝐱) + 𝐮 (42)
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The matrices in (42) are given by

A =
⎡
⎢
⎢
⎢
⎣

−a a 0
b −1 0
0 0 −c

⎤
⎥
⎥
⎥
⎦

and f (𝐱) =
⎡
⎢
⎢
⎢
⎣

dx2x3
−x1x3

x1x2 + px22

⎤
⎥
⎥
⎥
⎦

(43)

We follow the procedure given in Sect. 2 for the construction of the novel sliding

controller to achieve global chaos stabilization of the chaotic system (42).

First, we set 𝐮 as

𝐮(t) = −f (𝐱) + Bv(t) (44)

where B is selected such that (A,B) is completely controllable.

A simple choice of B is

B =
⎡
⎢
⎢
⎣

1
1
1

⎤
⎥
⎥
⎦

(45)

It can be easily checked that (A,B) is completely controllable.

Next, we find a sliding variable s = C𝐱 such that the matrix E = [I − B(CB)−1C]A
has two stable eigenvalues.

A simple calculation gives

s(𝐱) = C𝐱 =
[
1 8 1

]
𝐱 = x1 + 8x2 + x3 (46)

We also note that the matrix E = [I − B(CB)−1C]A has the eigenvalues

𝜆1 = −28.6140, 𝜆2 = −4.3860, 𝜆3 = 0 (47)

Next, we take the sliding mode gains as

k = 6, q = 0.2 (48)

From Eq. (13) in Sect. 2, we obtain the novel sliding control v as

v(t) = −13.6x1 − 5.4x2 − 0.02s2 sgn(s) (49)

As an application of Theorem 1 to the novel highly chaotic system (40), we obtain

the main result of this section as follows.

Theorem 2 The novel highly chaotic system (40) is globally and asymptotically sta-
bilized for all initial conditions 𝐱(0) ∈ 𝐑3 with the sliding controller 𝐮 defined by
(44), where f (𝐱) is defined by (43), B is defined by (45) and v is defined by (49). ■
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Fig. 6 Time-history of the controlled states x1, x2, x3

For numerical simulations, we use MATLAB for solving the systems of differ-

ential equations using the classical fourth-order Runge-Kutta method with step size

h = 10−8.

The parameter values of the novel highly chaotic system (40) are taken as in the

chaotic case (47).

The sliding mode gains are taken as k = 6 and q = 0.2.

We take the initial state of the chaotic system (40) as

x1(0) = 14.4, x2(0) = 10.7, x3(0) = 6.8 (50)

Figure 6 shows the time-history of the controlled states x1, x2, x3.

6 Conclusions

In robust control systems, the sliding mode control is commonly used due to its inher-

ent advantages of easy realization, fast response and good transient performance as

well as insensitivity to parameter uncertainties and disturbance. In this work, we

derived a novel second order sliding mode control method for the global stabiliza-

tion of nonlinear systems. We proved the main result using Lyapunov stability theory.

As an application of the general result, the problem of global chaos control of a novel
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highly chaotic system was studied and a new second order sliding mode controller

has been derived. Numerical simulations using MATLAB were shown to depict the

phase portraits of the novel highly chaotic system and the second order sliding mode

controller design for the global chaos control of the novel highly chaotic system.
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