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Abstract. The Linear Discriminant Analysis (LDA) is a powerful lin-
ear feature reduction technique. It often produces satisfactory results
under two conditions. The first one requires that the global data struc-
ture and the local data structure must be coherent. The second concerns
data classes distribution nature. It should be a Gaussian distribution.
Nevertheless, in pattern recognition problems, especially network anom-
alies detection, these conditions are not always fulfilled. In this paper, we
propose an improved LDA algorithm, the median nearest neighbors LDA
(median NN-LDA), which performs well without satisfying the above two
conditions. Our approach can effectively get the local structure of data
by working with samples that are near to the median of every data class.
The further samples will be essential for preserving the global structure
of every class. Extensive experiments on two well known datasets namely
KDDcup99 and NSL-KDD show that the proposed approach can achieve
a promising attack identification accuracy.

Keywords: LDA · median NN-LDA · Network anomaly detection ·
NSL-KDD · KDDcup99

1 Introduction

The linear discriminant analysis (LDA) [1] is a family of techniques whose role
is dimensionality reduction and feature extraction. Fishers LDA is one of the
most known LDA methods. It has been used successfully in a variety of pattern
recognition problems including network anomalies detection [2–4]. The key pro-
cedure behind Fishers LDA or LDA is to employ the well-known Fisher criterion
to extract a linearly independent discriminant vectors and exploit them as basis
by which samples are projected into a new space. These vectors contribute in
maximizing the ratio of the inter-class distance to intra-class distance in the
obtained space.

In literature, many works have been proposed to ameliorate the performance
and the accuracy of the classical LDA. These works can be generally divided into
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two categories. The first category tries to solve the small sample size (SSS) prob-
lem, which always happens when the data dimension is greater than the number
of training samples. As noticed in previous contributions, to overcome the SSS
problem, direct linear discriminant analysis (Direct LDA) [5] eliminates the null
space of the inter-class scatter matrix as a first step. After that, it extracts the
discriminant information from the null space of the intra-class scatter matrix. In
the same way, Null space LDA [6] exploited the valuable discriminant vectors of
the null space of the intra-class scatter matrix with the help of PCA [7]. These
vectors are used rather than the eigenvectors of the classical LDA. The authors
of the last method also demonstrated that the extracted vectors are equivalent
to the optimal LDA discriminant vectors obtained in the original space.

In [8] we can see an exponential discriminant analysis algorithm that derive
the most discriminant information which exists in the intra-class scatter matrix’s
null space. However, the procedures employed by the aforementioned algorithms
destroy a big part of discriminant information essential for classification. Another
technique to overcome the (SSS) problem is presented in [9]. It employed an opti-
mization criterion which used a generalized singular value decomposition. This
technique is operational regardless of whether the dimension of data is greater
than the number of training samples. Alternatively, an ensemble learning frame-
work was developed by Wang and Tang [10] in order to preserve the significant
discriminant information by random sampling on feature vectors and training
samples. In [11], three LDA approaches were proposed to solve the SSS problem:
regularized discriminant analysis [12], discriminant common vectors [13], and
Maximum Margin Criterion (MMC) [14]. Another famous approach to address
the SSS consists in using PCA + LDA to get the discriminant features (i.e.,
apply PCA on data before LDA). Nevertheless, this method may lose valuable
discriminant information in PCAs stage.

The second part of works deals with the incremental versions of the LDA.
This kind of LDA is very useful for online learning tasks. One of their main advan-
tages is that the feature extraction method does not need to save the entire data
matrix in the memory. In [15], QR decomposition with a LDA-based incremen-
tal algorithm were proposed. In [16], the authors developed many incremental
LDAs which have a common point. The algorithms have to update in every step
the between-class and within-class scatter matrices. Another incremental LDA
is presented in [17]. Here, the authors showcase a good mechanism to update
the scatter matrices. Besides the above two kind of improvements of LDA, there
are also some LDA-based algorithms such as R1 LDA [18], L1 LDA [19], Median
LDA [20] and pseudo LDA [21].

Unfortunately, all these aforementioned LDA methods pay more attention to
the global structure of classes. As a result, the produced discriminant vectors
are often skewed. Before going through the explanation of this fact, we give an
overview of class distribution types. In general, there is two kind of complemen-
tary distributions. One is local and the other is global. The first one represents a
portion of samples that defines in a certain manner the real distribution nature
of every class. In the other hand, the global distribution determines the class
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boundaries and helps us to separate as much as possible the classes. However,
in reality, the last distribution is in most of cases not Gaussian and has a more
complex structure. In addition, it is often incoherent with the first type of dis-
tribution. All these assumptions lead to an inaccurate discriminant vectors.

In order to address this matter, previous works [22–24] exploited local infor-
mation to obtain optimal discriminant vectors. Nonetheless, in these works, it is
necessary to calculate a matrix where each of it element is a distance between
two data samples, in addition, we have to do an eigen decomposition of a huge
matrix generated by the entire training set. For network intrusion detection field
it will be a time consuming and even an infeasible task. As a result, it is difficult
to implement these approaches.

In this paper, to deal with the drawback of the global LDA, we propose a
kind of local LDA namely Median Nearest Neighbors LDA. The method takes
into account also preserving the global structure. Our approach consists of two
parts. The first part is to find a proper number of nearest neighbors to the
median of every class training set. The determined nearest neighbors will be
used to compute the within-class scatter matrix. In the second part, the rest
of samples which are further from the median will determine the between-class
scatter matrix.

The rest of this paper is organized as follows. In Sect. 2, we outline the clas-
sical LDA. Section 3 presents in details the proposed approach. Section 4 intro-
duces the two well known network datasets KDDcup99 and NSL-KDD. In Sect. 5
we give the experimental results and illustrate the effectiveness of the algorithm
and compare it to some of the above LDA approaches. Finally, Sect. 6 offers our
conclusions.

2 Linear Discriminant Analysis

The conventional LDA aims to reduce dimensionality while keeping the maxi-
mum of class-discriminatory information. This operation is realized by projecting
original data onto a lower dimensional space with taking into account maximiz-
ing separation of different classes on the one hand, and minimizing dispersion of
samples of the same class on the other hand. Mathematically speaking, suppose
we have a data matrix X = [x1, . . . , xn] ∈ R

d×n composed of n samples, our
purpose is to find a linear transformation G ∈ R

d×l that transforms each vector
xi to a new vector xl

i in the reduced l-dimensional space as follows:

xl
i = GTxi ∈ R

l(l < d)

The data matrix X can be rewritten as X = [X1, . . . , Xk] such that k is the
number of classes and Xi ∈ R

d×ni represents samples of the ith class, ni is the

sample size of the ith class and
k∑

i=1

ni = n. LDA operates on three important

matrices namely within-class, between-class and total-scatter matrices which are
defined as follows:
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Sw = (1/n)
k∑

i=1

∑

x∈Xi

(x − ci)(x − ci)T (1)

Sb = (1/n)
k∑

i=1

ni(ci − c)(ci − c)T (2)

St = (1/n)
n∑

i=1

(xi − c)(xi − c)T (3)

ci is the mean of the ith class, and c is the general mean. It can be proved that
St = Sw + Sb [1]. It follows from (1) and (2) that:

trace(Sw) = (1/n)
k∑

i=1

∑

x∈Xi

||x − ci||2 (4)

trace(Sb) = (1/n)
k∑

i=1

ni||ci − c||2 (5)

The trace of Sw gives us an idea on how every sample is close to its class mean.
The trace of Sb shows us how each class is far from the global mean. In the dimen-
sionality reduced space transformed by G, the three scatter matrices become:

Sl
w = GTSwG

Sl
b = GTSbG

Sl
t = GTStG

The optimal projection matrix can be gained by maximizing the following objec-
tive function:

G = arg max
trace(Sb)
trace(Sw)

(6)

When Sw is invertible, the solutions to (6) can be obtained by performing
the following generalized eigenvalue decomposition:

S−1
w Sbgi = λigi (7)

where G = [g1, . . . , gl].
Setting aside the famous (SSS) problem, LDA suffers from another matter. It

uses the global structure information of the total training samples to determine
the linear discriminant vectors. In general, the use of these vectors to extract
features from the samples may lead to erroneous classification. The potential
reason behind this phenomenon seems to be that the global distribution of the
data does not represent the real distribution nature of every class. In other
words, the global distribution is not always consistent with the local distribution.
Moreover, the non Gaussian nature of data might cause a nonlinear boundaries
between the classes. So it becomes difficult to use global linear discriminant
vectors to separate the data.
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3 The Proposed Method

To overcome the aforementioned LDA drawbacks, we propose to exploit the local
distribution of every class. To do that we were based on the concept of median. In
probability theory and statistics, the median is defined as a sample that separates
the higher half of a probability distribution from the lower half. It is the middle
value in a distribution, above and below which lie an equal number of samples.
From this assumption, we observe that the samples which are close to the median
represent the central distribution of every class and match logically with the
local distribution. In the other hand we can assimilate the further samples to
the global distribution, since they exist naturally in the boundaries of the class
and facilitate the separation of classes. With this concept we dissociate the two
distributions. Therefore, we resolve the matter of distribution’s consistency.

Our approach (median NN-LDA) also performs well even if the data is not
Gaussian or has nonlinear boundaries. Since it can extract the global structures
of the data through determining the samples which are far from the median, the
method can obtain a number of local linear discriminant vectors which approx-
imate the nonlinear boundary between the classes.

In mathematical terms, Xi will be divided into Xw
i and Xb

i .
Let Xw

i = [x1, . . . , xp] ∈ R
d×p represents the p median nearest neighbors of

every class.
Let Xb

i = [xp+1, . . . , xni
] ∈ R

d×(ni−p) contains the ni − p samples which are
far from the median of every class.

The local distribution Xw
i will be exploited by the new within class scatter

matrix S′
w, since it measures the intra-class compactness. In the other hand, the

global distribution represented by Xb
i is required to compute the new between-

class scatter matrix S′
b and more specifically the general mean c.

Then the Eqs. (1) and (2) will be rewritten as follow:

S′
w = (1/p)

k∑

i=1

∑

x∈Xw
i

(x − cwi )(x − cwi )T (8)

S′
b = (1/p)

k∑

i=1

(cwi − c)(cwi − c)T (9)

Where cwi is the mean of Xw
i , cbi is the mean of Xb

i and c = 1
k

k∑

i=1

(cbi ) is the

general mean.
As a consequence, Eqs. (4) and (5) will be replaced by:

trace(S′
w) = (1/p)

k∑

i=1

∑

x∈Xw
i

||x − cwi ||2 (10)

trace(S′
b) = (1/p)

k∑

i=1

ni||cwi − c||2 (11)
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We obtain the discriminant vectors by maximizing the following objective
function:

G′ = arg max
trace(S′

b)
trace(S′

w)
(12)

The solution can be reached by performing:

(S′
w)−1S′

bg
′
i = λ′

ig
′
i (13)

where G′ = [g′
1, . . . , g′

l].
In order to deal with the singularity problem, we propose to apply an inter-

mediate dimensionality reduction stage, such as principal component analysis
(PCA) [7] to reduce the data dimensionality before applying median NN-LDA.

4 The Simulated Databases and Its Transformation

4.1 KDDcup99

The KDDcup99 [25] intrusion detection datasets relies on the 1998 DARPA ini-
tiative, which offers to researchers in intrusion detection field a benchmark where
to evaluate various approaches. This dataset is composed of many connections.

A connection is a sequence of TCP packets which begins and ends at some
well defined times. In this laps of time, a data flows from a source IP address to
a target IP address under a defined protocol.

Every connection is composed of 41 features and it is labeled as normal or
malicious. If the connection is malicious, it falls into one of four categories:

1. Probing: surveillance and other probing, e.g., port scanning;
2. U2R: unauthorized access to local superuser (root) privileges, e.g., various

buffer overflow attacks;
3. DOS: denial-of-service, e.g. syn flooding;
4. R2L: unauthorized access from a remote machine, e.g. password guessing.

We have worked with “kddcup.data 10 percent” as training dataset and “cor-
rected” as testing dataset. The training set contains 494,021 records which is
divided as follow: 97,280 are normal connection records, the rest corresponds
to attacks. In the other side, the test set contains 311,029 records composed of
60,593 normal connections. It is important to note that:

1. the test data probability distribution is not like that of the training data;
2. the test data contains some new kind of attacks which are dispersed as follow:

4 U2R attack types, 4 DOS attack, 7 R2L attack and 2 Probing attacks. All
these attacks do not belong to the training dataset, a fact that makes the
IDS’s work more challenging.
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4.2 NSL-KDD

NSL-KDD [26] is a new version of KDDcup99 dataset. This dataset has some
advantages over the old one and has addressed some of it critical problems. Here
are the important ones:

1. Duplicate records from the training set are removed.
2. Redundant records from the test set are eliminated to improve the intrusion

detection performance.
3. Each difficulty level group contains a number of records which is inversely

proportional to the percentage of records in the original KDD data set. As
a consequence, we will have a more precise evaluation of different machine
learning techniques.

4. It is possible to exploit the complete dataset without selecting a random small
portion of data because the number of records in the train and test sets are
acceptable. Consequently, evaluation results of different research works will
be consistent and comparable.

4.3 Transformation Process

In order to successfully apply the approach on the datasets, as a crucial step, we
have converted all the discrete attributes values of the datasets to continuous
values. To accomplish that, we applied the following procedure: every discrete
attribute i which takes k different values will be represented as k coordinates com-
posed of ones and zeros. For example, we know that the protocol type attribute
has three values tcp, udp or icmp. According to the procedure, all these values
will be transformed to the corresponding coordinates (1, 0, 0), (0, 1, 0) or (0, 0, 1).

5 Experiments and Discussion

In this section, in order to demonstrate the effectiveness of the proposed method,
we conduct a series of experiments with KDDcup99 and NSL-KDD. Meanwhile,
we also compare median NN-LDA performance with LDA, direct LDA, null
space LDA, R1 LDA, pseudo LDA in an all-round way.

We can employ the following measures to evaluate these methods:

DR =
TP

TP + FN
× 100 (14)

FPR =
FP

FP + TN
× 100 (15)

In network security jargon, (DR) refers to Detection Rate and (FPR) is
False Positive Rate. True positives (TP) are attacks correctly predicted. False
negatives (FN) represent intrusions classified as normal instances, false positive
(FP) refer to normal instances wrongly classified, and true negatives (TN) are
normal instances classified as normal. Therefore, the most performant feature
extraction method, is the one which produces a high DR and a low FPR.
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In our experiments, we varied the size of training samples and kept test
dataset intact with the following composition (100 normal data, 100 DOS data,
50 U2R data, 100 R2L data, and 100 PROBE). To reduce the variation of the
detection rate (DR), we adopt the mean of twenty runs. Since our aim is to
evaluate the efficacy of feature extraction method, we use a simple classifier, the
nearest neighbor classifier.

The first experiment consists in defining the adequate number of samples p
which represent the local structure of every class. In theory, it is difficult to do
that. The most suitable p is affected by several factors such as the total number

Fig. 1. Detection rate of different K for KDDcup99

Fig. 2. Detection rate of different K for NSL-KDD
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of training samples, the number of total classes, the distribution of the samples.
Therefore, the value of p often needs to be empirically determined. For instance,
we consider p as ni

K and we varied K from 2 to 10. Figures 1 and 2 show us
that p = ni

2 is the value which obtains the highest average detection rate (DR)
for KDDcup99 and NSL-KDD. Consequently, we set p to this value in the next
experiments.

In the second experiment we compare our proposed method to the follow-
ing algorithms: LDA, median LDA, null space LDA, Direct LDA and pseudo
LDA. To avoid the (SSS) problem, PCA is used as the first stage of the LDA,

Fig. 3. Training data vs. detection rate for KDDcup99

Fig. 4. Training data vs. detection rate for NSL-KDD
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median LDA and median NN-LDA algorithms. Hence, these algorithms can also
be viewed as the PCA + LDA, PCA + median LDA, PCA + median NN-LDA.
We have chosen 3 principal components in the first stage of these methods. In the
second stage we have chosen 3top features. The rest of LDA algorithms exploit
the 4 top discriminant vectors. Having said that, we increased the number of
training data and we visualized it influence on DR and FPR of every method.

Figures 3, 4, 5 and 6 illustrate the results we found when we compare our app-
roach to LDA, median LDA and null space LDA for the two datasets. According
to the first two figures, we observe that our approach takes the lead in attacks

Fig. 5. Training data vs. FPR for KDDcup99

Fig. 6. Training data vs. FPR for NSL-KDD
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detection as the training data grows up. The reason behind this phenomenon
seems to be that more we have training samples, the easier the local structure
around every class median can be captured. In addition, when we increase the
number of training samples, the boundaries of every class become more struc-
tured and separable. This truth helps as much as possible in preserving the
global distribution. The rest of figures depict the relationship between training
samples and FPR. It is clear that median NN-LDA produces the lowest false
positive rate compared to the other methods. This fact proves the high ability
of our approach to recognize the normal network instances regardless of training
samples size.

Fig. 7. Training data vs. detection rate for KDDcup99

Fig. 8. Training data vs. FPR for KDDcup99
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To further evaluate the performance of our approach, we compare it to other
LDA methods such as Direct LDA and pseudo LDA. Figures 7, 8, 9 and 10 expose
the obtained results while using KDDcup99 and NSL-KDD. As we have done in
the previous experiments, we varied the number of training samples from 1350
to 9150 and illustrate DR and FPR behaviors.

As regards the first dataset, we observe from Fig. 7 that median NN-LDA
overcomes the two approaches once the size of training data is superior than 2000.
In the other hand, Fig. 8 shows that Pseudo LDA and the proposed approach
give the fewest number of false positives.

Fig. 9. Training data vs. detection rate for NSL-KDD

Fig. 10. Training data vs. FPR for NSL-KDD
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In case we use NSL-KDD, it is shown from Fig. 9 that in term of DR, median
NN-LDA surpasses Direct LDA and Pseudo LDA when the training dataset size
is less than 8000. Once this value is exceeded, Direct LDA starts to compete
with median NN-LDA. Concerning FPR, Fig. 10 asserts that our approach still
gives satisfactory results.

6 Conclusion

In this paper, a novel feature extraction method called median NN-LDA is pro-
posed. In this LDA approach we exploit the median of every class to compute
the within and between scatter matrices. There are two advantages of median
NN-LDA, one is that it preserves the local and the global distributions, the other
is it insensitivity to non Gaussian data. Therefore, the proposed method is more
robust than traditional linear discriminant analysis. We conduct the experiments
on two popular Network data sets (KDDcup99 and NSL-KDD), using many LDA
approaches. The experimental results indicate that the proposed method has a
promising performance.
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