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Abstract. The security of McEliece cryptosystem heavily relies on the
hardness of decoding a random linear code. The best known generic
decoding algorithms are derived from the Information-Set Decoding
(ISD) algorithm. The ISD algorithm was proposed in 1962 by Prange and
improved in 1989 by Stern and later in 1991 by Dumer. Since then, there
have been numerous works improving and generalizing the ISD algo-
rithm: Peters in 2009, May, Meurer and Thomae in 2011, Becker, Joux,
May and Meurer in 2012, May and Ozerov in 2015, and Hirose in 2016.
Among all these improvement and generalization only those ofPeters and
Hirose are over Fq with q an arbitrary prime power. In Hirose’s paper,
he describes the May-Ozerov nearest-neighbor algorithm generalized to
work for vectors over the finite field Fq with arbitrary prime power q.
He also applies the generalized algorithm to the decoding problem of
random linear codes over Fq. And he observed by a numerical analysis of
asymptotic time complexity that the May-Ozerov nearest-neighbor algo-
rithm may not contribute to the performance improvement of Stern’s
ISD algorithm over Fq with q ≥ 3. In this paper, we will extend the
Becker, Joux, May, and Meurer ’s ISD using the May-Ozerov algorithm
for Nearest-Neighbor problem over Fq with q an arbitrary prime power.
We analyze the impact of May-Ozerov algorithm for Nearest-Neighbor
Problem over Fq on the Becker, Joux, May and Meurer ’s ISD.

Keywords: Code-based cryptography · Information-Set Decoding
(ISD) algorithm · Linear code · Nearest neighbor

1 Introduction

Code-based cryptography introduced by McEliece [29] is one of the most promis-
ing solution for designing secure cryptosystems against quantum attacks. The
McEliece public-key encryption scheme, based on binary Goppa codes, has so far
successfully resisted all cryptanalysis efforts. But it is not used in real life because
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of the key length problem. In order to decrease the public-key size, some variants
were proposed by concentrating on subclasses of alternant/Goppa codes which
admit very compact public matrices, typically quasi-cyclic (QC), quasi-dyadic
(QD), or quasi-monoidic (QM) matrices [2,14,18,27,28,30,36]. The security of
the McEliece cryptosystem relies on the fact that the public key does not have
any known structure. The attacker is faced with the problem of decoding a ran-
dom code. A way to do this decoding is to use the Information-Set Decoding
(ISD) algorithm. The ISD algorithm was introduced by Prange in 1962 [38]. Its
principle is to find an information set where there are no errors positions. Its
target is to answer to the Computational Syndrome Decoding (CSD) Problem.

In this paper, we will extend the best version of the ISD attack algorithm
to arbitrary code over Fq and analyze the security of such codes to this new
improved version. It is important to note that Peters used the ISD attack to
prove the security of arbitrary codes over Fq [37], later Ayoub et al. introduced
a polynomial attack against Wild McEliece over quadratic extensions and their
attack is a structural attack [9]. Recently, Hirose applied the May-Ozerov algo-
rithm for Nearest-Neighbor problem over Fq to generalize Stern’s ISD version
and he observed that the May-Ozerov algorithm for Nearest-Neighbor problem
may not contribute to improve Stern’s ISD [19]. The contribution of our paper is
the generalization of Becker, Joux, May, and Meurer’s ISD using the May-Ozerov
algorithm for Nearest-Neighbor problem [32] over Fq with q an arbitrary prime
power. We analyze the contribution of the May-Ozerov algorithm for Nearest-
Neighbor problem over an arbitrary finite field Fq to the performance of Becker,
Joux, May, and Meurer ’s ISD. And we analyze the security over an arbitrary
finite field Fq.

q-ary Computational Syndrome Decoding (CSD) Problem
Input: H ∈ F

(n−k)×n
q , s ∈ F

n−k
q and an integer ω > 0.

Output: Find e ∈ F
n
q of weight ≤ ω such that HeT = s

Information-Set Decoding (ISD) Algorithm. The best known attacks
against the classical McEliece code-based cryptosystem are generic decoding
attacks that treat McEliece’s hidden binary Goppa codes as random linear codes.
Introduced by Prange in 1962 (see [38]), the ISD algorithm is a generic decoding
attack algorithm. Its target is to solve the CSD problem taking only as inputs a
basis of the code and a noisy codeword. Improvements of this form of ISD were
developed by Lee and Brickell [25], Stern [40], May, Meurer and Thomae [31],
Becker, Joux, May and Meurer (BJMM-ISD) [4], later by May and Ozerov [32]
used the nearest neighbor algorithm to improve the BJMM-ISD.

Organisation of Paper. The paper is organized as follows: in Sect. 2, we give
some definitions and notations on coding theory, in Sect. 3 we give a summary of
previous and recent results on ISD algorithm over an arbitrary finite fields Fq.
In Sect. 4, we give the version of BJMM-ISD using the May-Ozerov Nearest
Neighbor algorithm. And in Sect. 5, we give the asymptotic complexity of our
algorithm.
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2 Coding Theory Background

2.1 Definitions and Notations

Let Fq be a finite field (q = pm, p is prime). A q-ary linear code C of length n and
dimension k over Fq is a vectorial subspace of dimension k of the full vectorial
space F

n
q . It can be specified by a full rank matrix G ∈ F

k×n
q called generator

matrix of C whose rows span the code. Namely, C =
{
xG such that x ∈ F

k
q

}
.

A linear code can be also defined by the right kernel of matrix H called
parity-check matrix of C as follows:

C =
{
x ∈ F

n
q such that HxT = 0

}
.

The Hamming distance between two codewords is the number of positions
(coordinates) where they differ. The minimal distance of a code is the minimal
distance of all codewords. The weight of a word x ∈ F

n
q denote by wt (x ) is the

number of its nonzero positions. Then the minimal weight of a code C is the
minimal weight of all codewords. If a code C is linear, the minimal distance is
equal to the minimal weight of the code.

Let C be a q-ary linear code of length n, dimension k and generator
matrix G =

(
g0, g1, ..., gn−1

)
with g i ∈ F

n
q for all i ∈ {0, 1, . . . , n − 1}. Let

I ⊂ {0, 1, . . . , n − 1} with |I| = k. We call I an information set if and only if
the matrix GI = (g)i∈I is inversible.

A vector u ∈ F
�
q is called a balanced vector if the number of its coordinates

equal to x is �/q for all x ∈ Fq.
For x = (x1, ..., xn) ∈ F

n
q and a non zero integer j < n, let x[j] = (x1, ..., xj)

and x [j] = (xn−j+1, ..., xn).
We denote the q-ary entropy function by:

Hq(x) = x log (q − 1) − x log (x) − (1 − x) log (1 − x)

For all integer n, let [n] = {1, . . . , n}. If I is a subset of [n], for all vector
x = (x1, ..., xn), let x I = (xi)i∈I .

2.2 McEliece’s Cryptosystem

McEliece’s cryptosystem is a public-key encryption scheme introduced in 1978 by
McEliece. The original version used the Goppa binary code remained unbroken.
It can also be used with any class of codes which has an efficient decoding
algorithm.

Secret keys: A matrix G ∈ F
k×n
2 , S ∈ F

k×k
2 (an invertible matrix), P ∈ F

n×n
2

(a random permutation matrix).
Public keys: The matrix G̃ = SGP and the corrector capacity t.
Encryption: Let m be a plaintext then the ciphertext c is given by:

c = mG̃ + e

with e a q-ary vector of length n and weight t.
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Decryption: Compute
c̃ = mG̃P−1 + eP−1

and use the decoding algorithm to find m̃ = mS and finally find m by computing
m = m̃S−1.

2.3 Nearest-Neighbor Problem

The nearest-neighbor (NN) problem over the binary field defined in [32] is gen-
eralized over other finite fields in [19].

Neartest Neighbor Problem over Fq: Let q be a prime power. Let m be a positive
integer. Let 0 < γ < 1/2 and 0 < λ < 1. Then (m, γ, λ)-NN problem is defined
by:

Input: The constant γ and two lists U ⊂ F
m
q , V ⊂ F

m
q of size |U | = |U | = qλn

with uniform and pairwise independent vectors.
Output: C ⊂ U ×V which has (u , v) such that wt(u−v) = γm with wt (u − v)
is the weight of u − v .

3 Preview Work on Information-Set Decoding over Fq

We denote in the rest of the paper the concatenation of two vectors x and y
(respectively of two matrices A and B) by (x |y) (respectively (A|B)).

In this section we give a survey of the generalization of ISD algorithm over
an arbitrary finite field.

Peters: In 2009, Peters was the first to propose a generalization of the ISD
algorithm over an arbitrary finite field Fq. In her paper [37], she proposed the
generalization of Stern-ISD which all of the ISD improvements are based on.

Cayrel et al.: In 2010 just few months after Peters’s paper, Cayrel et al. [34]
improved the performance of the ISD over an arbitrary finite field by giving a
lower bound of ISD algorithm and they generalized the formula of the lower
bound introduced by Finiasz et al. in [15].

Meurer: In 2012 just after their ISD algorithm in the binary case in [4,31],
Meurer proposed a new generalization of the ISD algorithm over an arbitrary
finite field in his dissertation thesis [33] based on these two papers.

Hirose: In 2016 Hirose gave a generalization of the nearest-neighbor algorithm
introduced by May-Ozerov [32] to generalize the Stern-ISD algorithm. And he
analyzed the contribution of the May-Ozerov ’s nearest-neighbor algorithm over
an arbitrary finite field to the performance of Stern-ISD algorithm over an arbi-
trary finite field.

The following tables give us a summary complexity results on the ISD algo-
rithm generalization previous work. We denote the ISD algorithm generaliza-
tion given byPeters by q-Stern-ISD, Hirose’s generalization by q-Hirose-ISD.
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Table 1. Complexity of ISD algorithm over an arbitrary finite field given in [19].

q q-Stern-ISD q-Hirose-ISD

Half distance Half distance

2 0.05563 0.05498

3 0.05217 0.05242

4 0.04987 0.05032

5 0.04815 0.04864

7 0.04571 0.04614

8 0.04478 0.04519

8 0.04266 0.04299

Table 2. Complexity of ISD algorithm over an arbitrary finite field given by Meurer
in [33].

q q-Meurer-ISD

BReps XBReps

2 0.1053 -

4 0.1033 0.1014

8 0.0989 0.0969

16 0.0929 0.0918

32 0.0867 0.0863

64 0.0808 0.0806

In Meurer ’s dissertation thesis, he gave two variants of ISD algorithm general-
ization then we denote the basic variant by BReps and the extended variant by
XBReps.

4 Becker, Joux, May and Meurer ISD Using May-Ozerov
Nearest-Neighbor Algorithm over Fq

The Becker, Joux, May and Meurer ISD using May-Ozerov Nearest-Neighbor
algorithm over an arbitrary finite field Fq is presented in Algorithm 1.

In this algorithm we construct Base Lists over Fq like in [4]. For all j = 0, 1
we denote the Base Lists by BLj

j,1, BLj

j,2, BRj

j,1 and BRj

j,2 . We define BLj

j,1 as follows:

Let PLj

j,1 and PLj

j,2 be be a partition of [k + �] = {1, ..., k + �} such that
∣
∣
∣PLj

j,1

∣
∣
∣ =

∣
∣
∣PLj

j,2

∣
∣
∣ =

k + �

2
then

BLj

j,1 =

{
x ∈ F

k+�
q ×

{
0n−k−�

}
s.t wt (x ) =

p

8
+

ε1
4

+
ε2
2

with x
P

Lj
j,2

= (0, 0, ..., 0)

}
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Where p, ε1 and ε2 are the parameters of the algorithm such that 0 ≤ p <

k + �, 0 < ε1 < k + � − p, 0 < ε2 < k + � − p

2
− ε1. The construction of BLj

j,2, BRj

j,1

and BRj

j,2 is similar.
We use these Base Lists to compute a vector e ∈ F

k+�
q ×

{
0n−k−�

}
such

that wt
(
e [k+�]

)
= p and e = e1 − e2 with e1, e2 ∈ F

k+�
q ×

{
0n−k−�

}
and

wt (e1) = wt(e2) =
p

2
+ ε1.

Proposition 1 [33]. Let 0 ≤ p ≤ k + � be an integer and e ∈ F
k+�
q ×

{
0n−k−�

}

be a vector such that wt (e) = p. For all integer ε such that 0 ≤ ε < k + � − p,
denote ϑ (k, �, ε, p, q) the number of pairs (e1, e2) such that e = e1 − e2 with e1,
e2 ∈ F

k+�
q ×

{
0n−k−�

}
and wt (e1) = wt(e2) =

p

2
+ ε. It holds

ϑ (k, �, ε, p, q) =
min( p

2 ,ε)∑

i=0

(
p − 2i
p
2 − i

)
(q − 2)2i

(
k + � − p

ε − i

)
(q − 1)ε−i

Then ϑ (k, �, ε, p, q) ≥
(

p
p
2

)(
k+�−p

ε

)
(q − 1)ε.

And asymtopticalLy by using the inequality logq 2 < Hq

(
1
2

)
, we implicity

lower bound logq ϑ (k, �, ε, p, q) ≥ p logq 2 + (k + � − p) Hq

(
ε

k+�−p

)
[33]. This

brief analysis will allow us to give a constraint on some parameters of our algo-
rithm.

Algorithm 1. q-BJMM-MO algorithm over Fq

Constants: Let n, k, d and ω be nonzero integers such that k ≤ n and ω = �d−1
2 �

with d = H−1
q

(
1 − k

n

)

Parameters: Integers p, �, r1, ε1 and ε2 such that 0 ≤ p ≤ min {k + �, ω},
0 < r1 < � ≤ min {n − k − ω + p, n − k}, 0 < ε1 < k + � − p and 0 < ε2 <
k + � − p

2 − ε1.
Input: two nonzero integers n and k, a matrix H ∈ F

(n−k)×n
q , and a nonzero

vector x ∈ F
n
q .

Output: A vector e ∈ F
n
q of weight wt (e) = ω such that HeT = HxT .

1 : Procedure: BJMM-MO(n, k, H, x )
2 : s ←− HxT

3 : d ←− nH−1
(
1 − k

n

)

4 : ω ←− �d−1
2 �

5 : Choose parameters p, ε1, ε2, 0 < r1 < � < n − k.
6 : Repeat:
7 : π ←− a random permutation on {1, 2, ..., n}.
8 : (Q1|Q2) ←− π (H) with Q2 ∈ F

(n−k)×(n−k)
q and Q1 ∈ F

(n−k)×k
q

9 : While Q2 is not invertible:
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10 : π ←− a random permutation on {1, 2, ..., n}.
11 : (Q1|Q2) ←− π (H)
12 : H̃ ←− Q−1

2 π (H) and s̃ ←− Q−1
2 s

13 : Choose randomly tL ∈ F
�
2 and tL0 , tR0 ∈ F

r1
q

14 : Compute tR = tL − s̃ [�], tL1 = tL0 − (tL)[r1]
and

tR1 = tR0 − (tR)[r1]
.

15 : Compute Base Lists BLi
i,1, BLi

i,2, BRi
i,1 and BRi

i,1 , with i = 0, 1 and:
16 : Li ←−

{
u = a − b s.t a ∈ BLi

i,1, b ∈ BLi
i,2 with wt (u) = p

4 +
ε1
2 + ε2,

and
(
H̃uT

)
[r1]

= tLi

}

17 : Ri ←−
{
u = a − b s.t a ∈ BRi

i,1 , b ∈ BRi
i,2 with wt (u) = p

4 +
ε1
2 + ε2,

and
(
H̃uT

)
[r1]

= tRi

}

18 : L ←−
{(

H̃zT
)[n−k−�]

s.t z = u − v and (u , v) ∈ L0 × L1

with
(
H̃zT

)

[�]
= tL

}

19 : R ←−
{(

H̃zT + s̃
)[n−k−�]

s.t z = u − v and (u , v) ∈ R0 × R1

with
(
H̃zT

)

[�]
= tR

}

20 : In 18 and 19 we keep only elements with wt(z ) = p
2 + ε1

21 : C ←− MO-NN
(
L,R, ω−p

n−k−�

)

22 : For all (u , v) ∈ C ∩ L × R :

23 : Find (e1, e2) s.t u =
(
H̃eT

1

)[n−k−�]

and

v =
(
H̃eT

2 + s̃
)[n−k−�]

24 : If wt (e1 − e2) = p:
25 : Return π−1

(
e1 − e2 −

(
0 k+�|u − u

))

26 : End Procedure

The complexity the q-BJMM-MO is given by:

Theorem 1. Let ε > 0 be a real. The q-BJMM-MO algorithm solves the Syn-
drome Decoding problem of random [n, k]-linear code over Fq with overwhelming
probability in time

τ (q, n, k, p, ω, hx, ε) = Õ
(
qnτ1

(
qnτ2 + q2nτ2−r1 + q4nτ2−r1−� + qnμ + q(y+ε)(n−k−�)

))

where

τ1 =
(

H
(ω

n

)
−

(
k + �

n

)
H

(
p

k + �

)
−

(
1 − k + �

n

)
H

(
ω − p

n − k − �

))
logq 2,

τ2 =
k + �

2n
Hq

( p
4 + ε1

2 + ε2

k + �

)
and μ =

k + �

n
Hq

( p
2 + ε1

k + �

)
− �

n
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with

y = (1 − γ)

⎛

⎝Hq (β) − 1
q

∑

x∈Fq

Hq

(
qhx − γ

1 − γ
β

)
⎞

⎠ , γ =
ω − p

n − k − p
, 0 < β < 1,

max {0, ω + k + � − n} ≤ p ≤ min {k + �, ω) ,
∑

x∈Fq

hx = 1,

γ

q
< hx <

γ

q
+

1 − γ

qβ
for each x ∈ Fq,

� = p logq 2+(k + � − p) Hq

(
ε1

k + � − p

)
and � ≤ min {n − k − ω + p, n − k}

r1 =
(p

2
+ ε1

)
logq 2 +

(
k + � − p

2
− ε1

)
Hq

(
ε2

k + � − p
2 − ε1

)

λ =
nμ

n − k − �
≤ Hq (β) − 1

q

∑

x∈Fq

Hq (qhxβ) .

Proof. Recall that

T (q, n, k, p, ω, hx, ε) =
1

P(πsucc)
Cin

where P(πsucc) is a the probability to have the good permutation (permutation
allowing to have a success decoding) and Cin is the cost of each iteration with:

P(πsucc) = Õ
((

k+�
p

)(
n−k−�

ω−p

)

(
n
ω

)

)

=⇒ 1
P(πsucc)

= Õ
( (

n
ω

)

(
k+�

p

)(
n−k−�

ω−p

)

)

.

Using the equality (
n

k

)
= 2nH( k

n )

with H the binary entropie function.

P(πsucc) = Õ
(
2n(H(ω

n )− k+�
n H( p

k+� )−(1− k+�
n )H( ω−p

n−k−� ))
)

= Õ
(
qn(H(ω

n )− k+�
n H( p

k+� )−(1− k+�
n )H( ω−p

n−k−� )) logq 2
)

= Õ (qnτ1) .

Let us examine the complexity of each iteration. First we construct Base
Lists and the cardinality of each Base List is given by, for each i = 1, 2 and
j = 1, 2

|BLj

j,i | =
( k+�

2
p
8 + ε1

4 + ε2
2

)
(q − 1)

p
8+

ε1
4 +

ε2
2 .
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Then by using the equality
(

n

k

)
(q − 1)k = Õ

(
qnHq(

k
n )

)
,

the complexity to compute Base Lists is given by

Õ
(

q
n

(
k+�
2n Hq

( p
4 +

ε1
2 +ε2

k+�

)))

= Õ (qnτ2) .

Second we use Base Lists to make a filtering to compute Li and Ri for each
i = 1, 2 and the cost of this filtering is given by:

Õ
(

|BLi
i,1||B

Lj

i,2 |
qr1

)

= Õ
(
q2nτ2−r1

)
.

Third we compute the lists L and R with a filtering and the cost of this
filtering is given by

Õ
(

|Li||Lj |
q�−r1

)
= Õ

(
q4nτ2−r1−�

)
.

Line 20 only gives the upper bound on |L| = |R|.

Õ
((

k+�
p
2+ε1

)
(q − 1)

p
2+ε1

q�

)

= Õ
(

q
n

(
k+�

n Hq

( p
2 +ε1
k+�

)
− �

n

))

= Õ (qμn) .

And finally we make a last filtering using the May-Ozerov Nearest Neighbor
algorithm and the cost of this filtering is given by:

Õ
(
q(y+ε)(n−k−�)

)
.

We have |L| = |R| = qμn. Thus MO-NN is given an instance of (m, γ, λ)-NN
problem with:

m = n − k − �, γ =
ω − p

n − k − �

and
λ =

μn

n − k − �
.

According to Lemma 3 in [19] we must have

λ ≤ Hq(β) − 1
q

∑

x∈Fq

Hq (qhxβ) .

5 Numerical Analysis of Time Complexity

We give in this section a optimization numerical time complexity of our algorithm
in the half distance decoding using the code’s parameters given in [19] and in the
full distance decoding using the code’s parameters given in [33]. We give these
complexities for q ≥ 3 because the case q = 2 is already done in [4,31–33]
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Table 3. Complexity of the q-BJMM-MO algorithm in the half distance decoding for
parameters in [19].

q q-BJMM-MO

ck c� cp h β Half dist.

3 0.4545 0.06273 0.015678 0.104457 0.081899 0.04427

4 0.4625 0.05936 0.012787 0.109280 0.065891 0.04194

5 0.4727 0.05664 0.010710 0.119404 0.059101 0.03955

7 0.4812 0.05383 0.009768 0.103261 0.042989 0.03706

8 0.4891 0.05232 0.008728 0.116760 0.039019 0.03593

11 0.4959 0.05045 0.009829 0.093971 0.029929 0.03335

Table 4. Complexity of the q-BJMM-MO algorithm in the full distance decoding for
parameters in [33].

q q-BJMM-MO

ck c� cp h β Full dist.

4 0.4259 0.047749 0.015721 0.113254 0.058929 0.09951

8 0.4529 0.036823 0.009021 0.123717 0.019890 0.09388

16 0.4729 0.029908 0.008021 0.049354 0.021199 0.09012

32 0.4829 0.025151 0.007521 0.031235 0.014109 0.08264

64 0.4929 0.021496 0.006521 0.012637 0.013109 0.07861

6 Conclusion

The May-Ozerov ’s Nearest Neighbor algoritm allows us to improve the general-
ization of BJMM-ISD. We show in the Tables 1 and 3 that our generalization is
faster than Hirose’s generalization in the half distance decoding and in addition
by comparing the Tables 2 and 4 we show that is faster than Meurer ’s general-
ization.
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for CBC project and financial support of the government of Senegal’s Ministry of Hight
Education and Research for ISPQ project. The third author was supported in part by
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Appendix

Nearest-Neighbor Algorithm over an Arbitrary Finite
Field Fq

We give in this section the May-Ozerov Nearest-Neighbor algorithm over Fq

proposed by Hirose in [19]
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Algorithm 2. May-Ozerov Nearest-Neighbor algorithm over Fq

1: Procedure:MO-NN(L, R, γ )

2: y ←− (1 − γ)

(

Hq(β) − 1
q

∑

x∈Fq

Hq

(
qhx−γ
1−γ β

)
)

3: Choose ε > 0
4: t ←− � log2(y−λ+ ε

2 )−log2(
ε
2 )

log2(y)−log2(λ)
�

5: α1 ←− y−λ+ ε
2

y

6: αj ←− λ
y αj−1 for 2 ≤ j ≤ t

7: For mO(1) times:
8: Choose a permutation π on F

m
q uniformly at random

10: Choose a vector r = (r1, . . . , rt) ∈ F
α1m
q × . . . × F

αtm
q =

F
m
q uniformly at random s.t ri is balanced for all

1 ≤ i ≤ t
11: L̃ ←− {ũ = (ũ1, . . . , ũt) s.t ũ = π(u) + r with u ∈ L

and ũj is balanced for every 1 ≤ j ≤ t}
12: R̃ ←− {ṽ = (ṽ1, . . . , ṽt) s.t ṽ = π(v) + r with u ∈ R

and ṽj is balanced for every 1 ≤ j ≤ t}
13: Return MO-NNR(L̃, R̃, m, t, γ, λ, α1,. . ., αt,y, ε, 1 )
14: End Procedure

The complexity of May-Ozerov Nearest Neighbor algorithm is given by:

Theorem 2 [19]. Let q be a prime power. Let γ, β, ε > 0 and λ be reals such
that 0 < γ < 1

2 , 0 < β < 1, ε > 0 and λ ≤ Hq(β) − 1
q

∑

x∈Fq

Hq(qβhx) with
∑

x∈Fq

hx = 1 and for each x ∈ Fq, γ
q < hx < γ

q + 1−γ
qβ .

Let y = (1−γ)

(

Hq(β) − 1
q

∑

x∈Fq

Hq

(
qhx−γ
1−γ β

)
)

. Then the MO-NN algorithm

solves the (m, γ, λ)NN problem over Fq with overwhelming probability in time

Õ
(
q(y+ε)m

)
.

Algorithm 3. May-Ozerov NearestNeighborRec algorithm over Fq

1: Procedure:MO-NNR(L, R, m, t, γ, λ, α1,. . ., αt, y, ε, i )
2: If i = t + 1:
3: C ←− {(u,v) ∈ L × R s.t wt(u − v) = γm}
4: For O(qyαim) times:
5: Choose Ai ⊂ {(α1 + · · · + αi−1)m + 1, . . . , (α1 + · · · + αi)m}

uniformly at random s.t |Ai| = βαim with
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(α1 + · · · + αi−1)m = 0 if i = 1
6: L′ ←− {u ∈ L s.t the number of each x ∈ Fq on

Ai is hxβαim}
7: R′ ←− {v ∈ L s.t the number of every x ∈ Fq on

Ai is hxβαim}

8: If |L′| = |R′| = Õ

⎛

⎝q

(
λ

(
1−

i∑
j=1

αj

)
+ ε

2

)
m

⎞

⎠:

9: C ←− C ∪ MO-NNR(L′,R′,m,t,γ,λ, α1,. . .,αt,y,ε, i + 1)
10 Return C
11: End Procedure
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