
Codes for Side-Channel Attacks and Protections

Sylvain Guilley1,2(B), Annelie Heuser3, and Olivier Rioul2

1 Secure-IC S.A.S., 15 Rue Claude Chappe, Bât. B, 35 510 Cesson-Sévigné, France
sylvain.guilley@secure-ic.com

2 LTCI, Télécom ParisTech, Université Paris-Saclay, 75 013 Paris, France
3 IRISA, 263 Avenue Général Leclerc, 35 000 Rennes, France

Abstract. This article revisits side-channel analysis from the stand-
point of coding theory. On the one hand, the attacker is shown to apply
an optimal decoding algorithm in order to recover the secret key from the
analysis of the side-channel. On the other hand, the side-channel protec-
tions are presented as a coding problem where the information is mixed
with randomness to weaken as much as possible the sensitive information
leaked into the side-channel. Therefore, the field of side-channel analysis
is viewed as a struggle between a coder and a decoder. In this paper,
we focus on the main results obtained through this analysis. In terms of
attacks, we discuss optimal strategy in various practical contexts, such
as type of noise, dimensionality of the leakage and of the model, etc.
Regarding countermeasures, we give a formal analysis of some masking
schemes, including enhancements based on codes contributed via fruitful
collaborations with Claude Carlet.

1 Introduction

Digital information is handled by electronic devices, such as smartphones or
servers. Some information, such as keys, is sensitive, in the sense that it shall
remain confidential. In general, information is present in three states within
devices: at rest, in transit, and in computation. The protection of information at
rest can be ensured by on-chip encryption in the memories. The same technique
applies to the data in transit: the buses can be encrypted (e.g., in a lightweight
way, in which case one uses the term scrambling). Therefore, the protection of
information during computation is the big issue to be dealt with. It is a real
challenge, as a computing devices inadvertently leak some information about
the data they manipulate. In this context, three questions are of interest:

1. How does an attacker best exploit the leaked information? The situation is
similar to that of a decoding problem, and one aims at finding the optimal
decoder.

2. Second, the designer (and the end user) aim at being protected against such
attacks. Their goal is thus to try and weaken the side-channel. Randomization
is one option, referred to as masking in the literature. We will illustrate that
it can be seen as the use of code to optimally mix some random bits into
the computations, with the possibility to eventually get rid off this entropy,

c© Springer International Publishing AG 2017
S. El Hajji et al. (Eds.): C2SI 2017, LNCS 10194, pp. 35–55, 2017.
DOI: 10.1007/978-3-319-55589-8 3

36 S. Guilley et al.

e.g., at the end of the computation. Another interesting usage of codes is
to detect faults in circuits. This dual use of codes is of interest in general
security settings, where attacks can choose to be either passive or active. It is
also very relevant in the case the circuit is trapped with a Hardware Trojan
Horse.

3. Third, it is interesting to know in which respect the circuit leakage favors or
not attacks. In particular, we will investigate the effect of glitches as a threat
to masking schemes.

Outline. We start with the adversarial strategies in Sect. 2. Protection strate-
gies, especially masking, are presented in Sect. 3. We will show how the circuit
itself can contribute to the attack, through the analysis of glitches, in Sect. 4.
Conclusions are in Sect. 5. Eventually, AppendixA gives some computation evi-
dences why masking protection can be seen as reducing the signal-to-noise ratio,
by increasing the noise.

2 Side-Channel Analysis as a Decoding Problem

In this section, we first describe the setup and the objective of the attacker.
Second, we solve the objective of the attacker in various different setups.

2.1 Setup

We assume the device manipulates some data known by the attacker, such as a
plaintext or a ciphertext, called T . This data is mixed with some secret, say a
key k∗. The attacker manages to capture some noisy function of T and k∗, and
attempts to extract k∗. For this purpose, he will enumerate (manageable) parts
of the key (e.g., bytes), denoted k, and choose the key candidate k̂ which is the
most likely. Therefore, the attack resembles a communication channel, where the
input is k∗ and the output is k̂. The attack is termed successful if k̂ = k∗.

Two kinds of leakage models are realistic in practice:

1. direct probing model, where the attacker uses some kind of probes, each
being able to measure one bit,

2. indirect measurement of an aggregated function of the bits, using for
instance an electromagnetic probe.

These two ways of capturing the signal are, by nature, very different. They are
illustrated in Fig. 1.

The first one is noiseless. However, the bits in integrated circuits are nano-
metric, whereas probes are mesometric. Therefore, only few such probes can be
used simultaneously. The security parameter is thus linked to the ability for the
attacker to recover some useful information out of d probes (where d is typically
1, 2, 3 or 4). Besides, the probing requires a physical access to the wires, which
is challenging, since it is possible that the contact breaks the bit to be probed.

Codes for Side-Channel Attacks and Protections 37

Fig. 1. Settings for side-channel analysis. In the probing model (a), a few bits (here,
d = 3) are measured with dedicated probes. In the bounded moments model (b), the
attacker measures an integrated quantity of several bits.

Such attack is termed semi-invasive, since it leaves an evidence that the circuit
has been tampered with (an opening is necessity to insert the probe).

The second one is noisy and also leaks some function of the bits. Therefore,
the attacker needs to capture more than one trace to extract some information.
This is why we model, in the sequel, traces by random variables. By conven-
tion, the variables are printed with capital letters, such as X, when designat-
ing a random variable, and with small letters, such as x, when designating the
realization of random variables. We also denote by Q the number of queries
(= of measurements), and by x = (x1, . . . , xQ) the vector of measurements. This
attack will require a statistical analysis, which in general consists in the study
of the leakage probability distribution. This starts in general by the analysis of
the leakage moments.

We will link the two models in the case of RSM countermeasure (Sect. 3.5).
The next Sect. 2.2 discusses the channel k� → k̂, for the second case.

2.2 Example of AWGN Channel

The key recovery setup is illustrated in Fig. 2 (see Fig. 1 in [24]). When the noise
is Gaussian and independent from one measurement to others, it is referred to
as AWGN (Additive white Gaussian noise). We write:

X = y(T, k∗) + N, where N ∼ N (0, σ2). (1)

The random variable y(T, k∗) is the aggregated leakage model, and N is the
noise (independent from Y). Let n the bitwidth of the key k and of the texts
T . The function y : F

n
2 × F

n
2 → R is, in practice, the composition two functions

y = ϕ ◦ f , where:

– f is an algorithmic function called sensitive variable, such as f(T, k∗) = S(T ⊕
k∗), where S is a substitution box, and

38 S. Guilley et al.

Fig. 2. Side-channel analysis as a communication channel

– ϕ : F
n
2 → R accounts for the way the sensitive variable leaks, such as the

Hamming weight ϕ : z �→ wH(z) =
∑n

i=1 zi.

2.3 Absence of Countermeasures

The optimal distinguisher is the key guess k̂ which maximizes the success prob-
ability, that is the probability that k̂ is actually k∗.

When there is no protection, all the uncertainty resides in the measurement
noise. Thus, as the attacker knows T , he also knows Y = Y (T, k) (for all key
guess k).

Theorem 1 ([24, Theorem 4]). In the AWGN setup, the optimal distinguisher
is demonstrated to be equal to:

Dopt(x, t) = argmink ‖x − y(t, k)‖22 = argmaxk〈x|y(t, k)〉 − 1
2

‖y(t, k)‖22 , (2)

where ‖·‖2 is the Euclidean norm and 〈·|·〉 is the canonical scalar product.

2.4 Multivariate and Multimodel Setting

In the multivariate and multimodel case, the attacker is able to collect:

– not only one sample, but D (dimensionality) samples, and
– each function of the bits (e.g., z �→ 1, z �→ zi for 1 ≤ i ≤ n, but also any

selection of z �→ ∧
i∈I zi where I ⊆ F

n
2) has a different contribution.

We call S the number of models, and α the D × S matrix of the leakages, such
that Eq. (1) is generalized as:

X = αy(T, k∗) + N, where N ∼ N (0, Σ), (3)

Codes for Side-Channel Attacks and Protections 39

where N is multivariate normal of D×D covariance matrix Σ, and Y = y(T, k∗)
is set of S models (e.g., S = 1 if the leakage model is the Hamming weight, or
S = n+1 if there is a non-zero offset (such offset is modeled by z �→ 1) and each
bit 1 ≤ i ≤ n of the leakage model leaks differently). In this case also, boldface
variables are vectorial (either multivariate or multimodel).

We have a generalization of Theorem 1:
Theorem 2 ([7, Theorem 1]). Let us define x′ = Σ−1/2x and α′ = Σ−1/2α.
Then, in the multivariate and multimodel AWGN setup, the optimal distinguisher
is demonstrated to be equal to:

DD,S
opt (x, t) = argmink

D∑

d=1

‖x′
d − α′

dy((t, k)‖22

= argmaxk tr
(
x′(α′y(t, k))T

)
− 1

2
‖α′y(t, k)‖2F ,

where tr (·) is the trace operator of a square matrix and ‖ · ‖F is the Frobenius
normal of a (rectangular) matrix.

2.5 Collision

In some situations, the attacker does not know the leakage function y = ϕ ◦ f ,
but knows that it is reused several times for different bytes, say L > 1. We denote
by x(·) = (x(1), . . . , x(�), . . . , x(L)) the L leakages. Therefore, the optimal attack
consists in a collision attack where all the coefficients of the leakage function are
regressed.

Theorem 3 ([5, Theorem 2.5]). The optimal collision attack is:

DL
opt(x

(·), t(·)) = argmaxk(·)∈(Fn
2)

L

∑

u∈F
n
2

(∑
�

∑
q/t

(�)
q ⊕k(�)=u

x
(�)
q

)2

∑
�

∑
q/t

(�)
q ⊕k(�)=u

1
.

Notice that in general, this attack allows to recover (L − 1) n-bit keys when the
collision is involving L samples with identical leakage model.

2.6 General Setting, with Countermeasures

In general, the device defends itself, by the implementation of protections. Mask-
ing is one of them. In the expression of y, in addition to T and k, another random
variable M is introduced, called the mask, unknown to the attacker. It is usually
assumed that it is uniformly distributed.

Theorem 4 ([8, Proposition 8]). The optimal attack in case of masking coun-
termeasure is:

DM ;L
opt (x(·), t(·)) = argmaxk

Q∑

q=1

log

{
∑

m

exp
{ D∑

d=1

1
σ(d)2

(
x(d)

q y(d)
q − 1

2
y(d)

q

2)}
}

,

assuming that the noise at each sample d is normal of variance σ(d)2 .

40 S. Guilley et al.

2.7 Link Between Success Probability, SNR and Leakage Function

The optimal distinguishers Dopt given in various scenarios (Dopt for nominal
case in Sect. 2.3, DD,S

opt for multivariate and multimodel case in Sect. 2.3, DL
opt for

the collision case in Sect. 2.5, and DM ;L
opt for the masked case in Sect. 2.6) allow

to recover the secret key with the largest success rate (denoted as SR), but do
not help in predicting the number of traces to reach a given success rate (or
vice-versa).

Such relationship can be easily derived from the analysis of so-called first-
order exponents [23]. Let us denote Aopt(x, t, k) the argument of maximization
in either of Dopt, DD,S

opt , DL
opt or DM ;L

opt . We have:

Theorem 5 ([23, Corollary 1]).

1 − SR(D) ≈ e−Q·SE(D) (4)

where the first-order success exponent SE(D) is equal to:

SE(D) =
1
2

min
k �=k∗

(Aopt(x, t, k∗) − Aopt(x, t, k)
)2

Var
(Aopt(x, t, k∗) − Aopt(x, t, k)

) . (5)

For the sake of the introduction of a signal-to-noise, we rewrite Eq. (1) as:

X = αy(T, k∗) + N, where E(y(T, k∗)) = 0, Var(y(T, k∗)) = 1 and N ∼ N (0, σ2).

Let us introduce generalized confusion coefficients [20]:

Definition 6 (General 2-way confusion coefficients [23, Definitions 8
and 10]). For k = k∗ we define

κ(k∗, k) = E

{(Y (k∗) − Y (k)
2

)2}
, (6)

κ′(k∗, k) = E

{(Y (k∗) − Y (k)
2

)4}
. (7)

For example, for the optimal distinguisher in the nominal case, the success expo-
nent expression is:

Lemma 7 (SE for the optimal distinguisher, [23, Proposition 5]). The
success exponent for the optimal distinguisher takes the closed-form expression

SE(D) =
1
2

min
k �=k∗

α2κ2(k∗, k)
σ2κ(k∗, k) + α2(κ′(k∗, k) − κ(k∗, k)2

. (8)

This closed-form expression simplifies for high noise σ � α in a simple equation:

Corollary 8 ([23, Corollary 2]).

SE(D) ≈ 1
2

min
k �=k∗

α2κ2(k∗, k)
σ2κ(k∗, k)

=
1
2

· SNR · min
k �=k∗

κ(k∗, k), (9)

where SNR = α2/σ2 is the signal-to-noise ratio (see [6] for the definition of SNR
in the multivariate case).

Codes for Side-Channel Attacks and Protections 41

3 Side-Channel Protection

Side-channel attacks threaten the security of cryptographic implementations.
Protections against such attacks can be devised using the coding theory. We
illustrate in this section several techniques which randomize leakages in a view
to decorrelate them from the internally manipulated data, and that (in some
cases) also allow to detect malicious fault injections.

3.1 Strategies to Thwart Side-Channel Attacks

As discussed in Sect. 2.7 (especially in (9)), the success of an attack is all the
larger as the leakage function has a higher confusion (6) and the SNR is high.
However, the input of confusion is limited, since 0 ≤ mink �=k∗ κ(k∗, k) ≤ 1/2
is bounded. Moreover, the defender cannot always change the algorithm nor its
leakage model, that is mink �=k∗ κ(k∗, k) is fixed. Thus, the defender is better off
focusing on the reduction of the SNR.

This can be achieved in two flavors:

1. reduce the signal, as done in strategies aiming at flattening the leakage. This
is easily achieved for some side-channels, such as timing: the execution time
is made constant, e.g., by inserting dummy instructions or by balancing the
code in each branch when the control flow forks. However, balancing an ana-
logue quantity (such as power or electromagnetic field) is more challenging, let
alone because of process variations, two identical gates or structures behave
differently after fabrication. For instance, this is the working factor of phys-
ically unclonable functions (PUFs). Therefore, the quality of the protection
depends on the ability of the fabrication plant to produce reproducible pat-
terns. This fact naturally limits the quality of the designer’s work, hence does
not encourage to reach very high levels of security. In case this case, the
second option is preferred;

2. increase the noise, by resorting to some extra random variables independent
of that involved in the leakage function. Obviously, some artificial noise can
be easily produced: one practical example consists in running an algorithm
known to produce a lot of leakage (such as an asymmetrical engine, e.g.,
RSA) in parallel to the algorithm to protect. However, there remains the risk
that the attacker manages, by a subtle placement of the probes, to limit or
completely avoid the externally added noise; imagine an attacker with a very
selective electromagnetic probe which would place its probe over the targetted
algorithm, which is micrometers apart from the noise source (RSA). There-
fore, it sounds wiser to entangle the computation and the random variables.
This is what is achieved by so-called masking schemes. Appendix A explains
why masking reduces the SNR.

Notice that the two strategies are orthogonal, that is, it is beneficial to employ
them at the same time. Still, in the sequel, we will focus on masking, since it
allows (at least in theory) to increase the noise at the maximal extent.

42 S. Guilley et al.

3.2 Masking Schemes

Masking schemes have been introduced to obfuscate the internals of a computa-
tion, in a view to make it more difficult to be attacked. The strategy in masking
is based on randomization:

– for data (e.g., in algorithms with constant-execution flow, such as AES), and
– for operations (e.g., in algorithms where the sequence of operations leak some

secrets, such as RSA).

In practice, a masking scheme consists in four algorithms, as depicted in Fig. 3.

Data masking
algorithm

Operation masking
algorithm

Masks refresh
algorithm

Data demasking
algorithm

entropy source

number of iterations for the given

cryptographic operation(e
.g
.,
pl
ai
nt
ex
t
+

ke
y)

in
pu

ts

ou
tp
ut
s

(e
.g
.,
ci
ph

er
te
xt
)

Fig. 3. Masking schemes

Initially, the input data must be masked, thanks to a first algorithm. Second,
the masked data is manipulated, so as to implement the intended cryptographic
operation. Many techniques exist. One way to envision masking is to see all the
operations making up the cryptographic function as look-up tables. In this case,
the masked look-up tables can be implemented as [37, Table 1]:

– new larger look-up tables, where the masking material is now part of the
addressing strategy,

– table recomputation specifically for the current mask, or
– computation style which is able to operate on masked data.

After the operation has been computed, it can be necessary to refresh the masks.
Indeed, if the value is intended to be used more than once, then some masks
would be duplicated during the computation. It is thus wise to re-randomize
the current masks. Eventually, at the end of the computation, the masked data
shall be freed from its mask. Hence a demasking step. The first three algorithms
require entropy, whereas the last one destroys entropy.

3.3 Security of Masking Schemes

It is easy to measure the amount of entropy consumed by a masking scheme (see
top of Fig. 3). However, this does not obviously reflect its actual security level.
Indeed, the entropy can be wasted, e.g., by being badly used: XORing together
entropy reduces it, while bringing no additional difficulty for the attacker.

Codes for Side-Channel Attacks and Protections 43

The first attempt to measure security arise from [1, Definition 1]. The order is
defined as the minimum number of intermediate values an attacker must collect
to recover part of the secret. In this framework, the overall security is that of
the weakest link.

Still, the exact definition of an intermediate variable is unclear. The difficulty
arises from the fact the designer would like to link the security to properties
of its design. However, the intermediate variables encompass different notions
depending on the refinement stage: after compilations, variables are mapped
to internal resources. Thus, the granularity [1, Sect. 3] can change between the
cryptographic algorithm specification, the source code, the machine code, and
what is actually executed on the device.

Some early works considered intermediate values are bits, such as in private
circuits [25,26]. This makes sense for hardware circuits, for which (in general
CMOS processes) an equipotential has only two licit values, that is carries one
bit. However, private circuits have been extended to software implementations
(see e.g. [40]), where intermediate variables become bitvectors of the machine
word length. But after considering some new threats, such as glitches, a new
trend has consisted in looking back to bit-oriented masking. This is typically the
case of threshold implementations [35], where the granularity is again the bit.

In this article, we are interested with the lowest possible level of security
analysis, hence we consider that intermediate variables are bits.

3.4 Orthogonal Direct Sum Masking (ODSM), a Masking Scheme
Based on Codes

We illustrate in this section several masking schemes, and show in which respect
they relate to coding theory.

We will show that the two security notions related to masking (probing and
bounded-moment models) are equivalent when conducting analyses at bit-level.
We model a circuit as a parallel composition of bits, seen as elements of F2. The
exemple, when there are n wires in the circuit, we model the circuit state as an
element of F

n
2 , that is the Cartesian product F2 × . . . × F2.

At this stage, we use the following new notations. Let X a k-bit information
word to be concealed. Let Y an (n−k)-bit mask used to protect X. The protected
variable is Z = XG + Y H, where:

• G is an k × n generating matrix of a code,
• H is an (n − k) × n generating matrix of a code of dual distance d + 1,
• + is the bitwise addition in F

n
2 , sometimes also denoted by ⊕.

The random variable Y H is the mask. In practice, the bits making up Z can be
manipulated in whatever order, i.e., they can even be scheduled to be manipu-
lated one after the other, like in a bitslice implementation. We call Z an encoding
with codes, or ODSM [3].

Then, we have the following twain theorems.

Theorem 9. Encoding with codes is secure against probing of order d.

44 S. Guilley et al.

Proof. By definition of a code of dual distance d + 1, any tuple of less than
d coordinates is uniformly distributed [9]. Thus, if the attacker probes up to
d (inclusive) wires, this word seen as an element of F

d
2 is perfectly masked.

Therefore, no information on X can be recovered. ��
Theorem 10. (Masking with codes is d-th order secure in the bounded-
moments model). For all pseudo-Boolean function ψ : F

n
2 → R (leakage func-

tion, denoted y = ϕ ◦ f in Sect. 2.2) of degree d◦(ψ) ≤ d, we have

Var(E(ψ(XG + Y H|X))) = 0. (10)

Proof. Let ψ′ the indicator of the code generated by H. Since H has dual-
distance d + 1, we have that for all z ∈ F

n
2 , 0 < wH(z) ≤ d, ψ̂′(z) = 0, where

ψ̂′(z) =
∑

z′∈F
n
2

ψ′(z)(−1)z′·z. Now, owing to Lemma 1 in [4], we also know that

for all z ∈ F
n
2 , wH(z) > d◦(ψ), ψ̂(z) = 0.

Now, we must prove that Var(E(ψ(XG + Y H|X))) = 0, that for all x ∈ F
k
2 ,∑

y∈F
n−k
2

ψ(xG + yH) =
∑

z∈F
n
2

ψ(xG + z)ψ′(z) = (ψ ⊗ ψ′)(xG) is the same,
where ⊗ is the convolution product.

Actually, we can prove more than that, namely that ψ ⊗ ψ′ is constant on
the full F

n
2 . This is equivalent to proving that ψ̂ ⊗ ψ′ = ψ̂ψ̂′ is equal to zero on

F
n
2\{0}. Indeed, let z ∈ F

n
2 , z = 0. If wH(z) > d◦(ψ), then ψ̂(z) = 0. And if

wH(z) ≤ d◦(ψ) ≤ d, then ψ̂′(z) = 0. So, in both cases, we have ψ̂(z)ψ̂′(z) = 0. ��
Notice that the function ψ : F

n
2 → R such that ψ(x) =

∑n−1
i=0 xi2i, has degree

one. It is sometimes (abusively) referred to as the identity function. Obviously,
if the attacker gets to know ψ(Z), then he can recover Z, hence deduce X by
projection on subspace vector C. But this is not our security hypothesis. Our
result from Theorem 10 (and in particular its Eq. (10)) is that the inter-class
variance of ψ(Z) knowing X is equal to zero, for all d◦(ψ) ≤ d.

In Eq. (10), the degree of ψ can be accounted by two reasons:

1. High-order leakage in y = ϕ ◦ f , owing to glitches (see Sect. 4), capacitive
coupling, IR drop, etc. (refer to [18, Sect. 4.2]);

2. Combination function from the attacker, which can be: multivariate (which
involved a product of shares), monovariate (hence necessarily high-order zero-
offset).

As another remark, we notice that, although it is not strictly mandatory, the
randomized variable Z can be manipulated by subwords, a bit like for classical
masking, where the subwords coincide with shares.

Let us give the example of the look-up table, in the case k = 8 and n = 16.
We know that we can reach 4-th order security [4]. But we can decide not to
manipulate only Z as such, but to cut it into two parts, Z = (ZH , ZL), where
ZH , ZL ∈ F

8
2. This cut is motivated by the adequation between the masking

scheme and the machine architecture, where maybe the basic register size is 8
bits. Then, we also cut the T-table(s) into two tables, namely TH and TL, both
of 256 bytes. The Algorithm 1 allows to evaluate the T-table using bytes only,
i.e., without placing ZH and ZL side-by-side for all data Z.

Codes for Side-Channel Attacks and Protections 45

Input :

– (zH , zL) ∈ F
8
2 × F

8
2

– TH , TL, two tables of size 216 bytes

Output : The result of the lookup (TH [zH × 28 + zL], TL[zH × 28 + zL])

1 Initialize z′
H ∈ F

8
2 and z′

L ∈ F
8
2 to zero

2 for h = 0 to 28 − 1 do
3 for l = 0 to 28 − 1 do
4 z′

H ← z′
H ⊕ TH [h × 28 + l] ∧ (h = zH) ∧ (l = zL)

5 z′
L ← z′

L ⊕ TL[h × 28 + l] ∧ (h = zH) ∧ (l = zL)

6 end

7 end
8 return (z′

H , z′
L)

Algorithm 1. S-box evaluation by block, without ever using a 16-bit word

3.5 Illustration for Some Coding-Based Masking Schemes

In the previous section, we have shown with Theorems 9 and 10 that the two
models (bit-level probing and bounded moments) are equivalent, which motivates
to consider the probing model at bit level (as opposed to at word level, as done
in many papers (to cite a few: [16,19]). We give hereafter some examples of
masking with codes at bit-level.

Perfect Masking. The masks M1, M2, etc. are chosen uniformly in F
k
2 . We

assume here that k|n. It is possible to see perfect masking as a special case of
ODSM [3], where:

G =
(
Ik 0 0 . . . 0

)
and H =

⎛

⎜
⎜
⎜
⎝

Ik Ik 0 . . . 0
Ik 0 Ik . . . 0
... 0 0

. . . 0
Ik 0 0 . . . Ik

⎞

⎟
⎟
⎟
⎠

. (11)

Rotating Substitution-Box Masking (RSM [32]). Let us illustrate RSM
on n = 8 bits. The mask M is chosen uniformly in:

– the set C0 = {0x00} for no resistance,
– the set C1 = {0x00, 0xff} for resistance to first-order attacks,
– the set C2, a non-linear code of length 8, size 12 and dual distance d⊥

C2
= 3,

– the set C3, a linear code of length 8, dimension 4 and dual distance d⊥
C3

= 4.
This code is fully described in [15]. It is a self-dual code of parameters [8, 4, 4].

The case C3 is interesting since there are sixteen masks, hence (in hardware),
the sixteen Substitution-boxes (S) of an algorithm such as AES can be imple-
mented masked. When ϕ = wH and Z = f(T, k∗) = S(T ⊕ k∗), then the leakage
distributions X = ϕ(Z ⊕ M) are represented in Fig. 4.

46 S. Guilley et al.

F
8
2=Z1�Z2�Z3, with |Z1|=16, |Z2|=128, |Z3|=112.

=
=

=
=

=
=

=
=

Let z be the
sensitive
variable
(z ∈ F

n
2 ,

with n = 8)

E[w1
H(z ⊕ M)]:

E[w2
H(z ⊕ M)]:

E[w3
H(z ⊕ M)]:

E[w4
H(z ⊕ M)]:

4
18
88
480

4
18
88
459

4
18
88
456

0 8 0 08 8
z ∈ Z1 z ∈ Z2 z ∈ Z3Moments:

Fig. 4. Leakage distribution of RSM using M ∼ U(C3) on n = 8 bits

0 0 0 0 0 00 1 0 0 0 0 0 0 0 0

Fig. 5. Example of one-hot counter (out of 16), used to designate the round index
position

RSM involves a random index, that is the choice of the initial codeword in
Cd, for a protection order of d. This choice can be done in a leak-free manner
by using a one-hot representation. In the case of C3, sixteen such indices can
be selected. The one-hot representation is given in Fig. 5. The random index is
selected at random initially; then, from round to round, it is simply shifted.

Leakage Squeezing (LS). In leakage squeezing, the shares are like for perfect
masking, except that some bijective functions are applied to the them, thereby
mixing bits better [10,12,13,17].

Results. For the illustration of the bounded moment model, we use for our
illustrations the Hamming weight leakage model. Notice that any other first-
order leakage model would yield comparable results.

Also, we illustrate the leakage based on two extreme plaintexts, that is 0x00
and 0xff. However, in some situations, these two plaintexts lead to the same
leakage (e.g., for symmetry reasons).

In all the presented schemes, security holds only provided there is no high-
order leakage. Said differently, it is possible to consider that there is a high-order
leakage. For instance, in recap Fig. 6, the indicated security order is the attack
total order. The total attack order is the sum of multiplicative contribution

Codes for Side-Channel Attacks and Protections 47

1st 2nd 3rd 4th

Z

M1Z ⊕ M1

Z ⊕ ⊕2
i=1 Mi

Z ⊕ ⊕3
i=1 Mi

M1

M1

M2

M2 M3

Perfect masking z = 0x00 z = 0xff

1st 2nd 3rd 4th

Z

M ∼ U({0x00, 0xff})Z ⊕ M

Rotating Substitution-box Masking (RSM) z = 0x00 z = 0xff

Z ⊕ M

Z ⊕ M

M ∼ U(C2), with d⊥
C2

= 3

M ∼ U(C3), with d⊥
C3

= 4

1st 2nd 3rd 4th

Z

Z ⊕ M

Leakage Squeezing (LS) z = 0x00 z = 0xff

Z ⊕ M

Z ⊕ M

F1(M)

F2(M)

F3(M)

F1 = Id : z ∈ F
8
2 → z ∈ F

8
2

etc. continues up to order 6

...

Fig. 6. Security level of several masking schemes. The order d = 1, 2, 3, 4 corresponds
both to the number of probes (see Fig. 1(a)) used by the attacker and to the moment
of leakage when the attacker uses an integrating probe (see Fig. 1(b))

from the hardware and the operations carried out by the attacker. That is, poor
hardware which couples bits contributes to facilitates attacks by combining bits.

3.6 Masking and Faults Detection

Codes are also suitable tools when both side-channel leakage must be masked and
faults must be detected. This need is general in cryptography, and has specific
applications when thwarting Hardware Trojan Horses (HTH) [11,33,34]. Indeed,
the activation part of a HTH is impeded by masking, whereas the payload part
is caught red-handed by a detection code.

4 Leakage Model, and Glitches

The term glitch refers to a non-functional transition(s) occurring in combina-
tional logic. They exist because combinational gates are non-synchronizing, i.e.,
they evaluate as soon as one input arrive. In terms of hardware description lan-
guages (VHDL, Verilog, etc.), they are modelled as processes where all inputs
belong to the sensitivity list. Thus, for the vast majority of gates with many
inputs, there is the possibility of a race between the inputs. Therefore, some

48 S. Guilley et al.

gates can evaluate several times within one clock period. Actually, the deeper
the combinational gates, the more likely it is that:

– there is a large timing difference between the inputs, thereby generating new
glitches, and

– some input is already the output of a glitching gate, thereby amplifying the
number of glitches.

It is known that glitches can defeat masking schemes [28–30]. Some masking
schemes which somehow tolerate [21,22,35,39] or avoid glitches [27,31] have
been put forward. However, the real negative effect of glitches on security is
usually perceived in a qualitative manner.

Therefore, we would like to account quantitatively for the effect of glitches.
Let us start by an illustrative example, provided in Fig. 7. The upper part of
this figure represents a pipeline, where some combinational gates (AND gates
represented by and XOR gate represented by) form a partial netlist

between two barriers of flip-flops (DFF gates represented by). For the sake
of this explanation, all the gates are assumed to have the same propagation
time, namely 1 ns. The lower part of this figure gives the chronograms of the

y1

y2

y3

y4

x0

x1

x2

x3

x4

y0

time0 ns 1 ns 2 ns 3 ns 4 ns

x0

x1

x2

x3

x4

y0

Fig. 7. Example of 4th-order glitch occurring upon 4th-order conjunction
∧i=4

i=1 xi

Codes for Side-Channel Attacks and Protections 49

execution of this netlist, when initially all signals are set to zero. It appears
that, owing to the difference of paths between the two inputs of the final XOR
gate, this gate generates a glitch, highlighted with symbol , which lasts 3 ns,
between time 1 and 4 ns within the depicted clock period. The condition for this
glitch to appear is the following: x1 ∧ x2 ∧ x3 ∧ x4. This means that this glitch
is a 4th-order leakage. So, if the masking scheme is only 3rd-order resistant, the
setup of Fig. 7 would generate a glitch which compromises the security in a 1st-
order side-channel attack. That is, the circuit itself contributes to the attack, in
combining the bits on behalf of the attacker.

Assume now a setup slightly more simple than that of Fig. 7, where there
is only one AND gate behind the second input of the XOR gate. However, we
assume such pattern is present twice, once computing y0 = x0 ⊕ (x1 ∧ x2), and
another time computing y5 = x5⊕(x4∧x3). Then, in this case depicted in Fig. 8,

y1

y2

y3

y4

x0

x1

x2

x3

x5

y0

0 ns 1 ns 2 ns

y5

time

x0

x1

x2

x3

x4

x5

y0

y5

Fig. 8. Example of two 2nd-order glitches occurring upon 2th-order conjunctions∧i=2
i=1 xi and

∧i=4
i=3 xi

50 S. Guilley et al.

the leakage incurred by the glitches at the output of the XOR gates would only
combine two bits amongst the xi (namely x1 & x2, and x3 & x4). Therefore, it
suffices for the attacker to conduct a 2nd-order attack on the glitchy traces to
succeed a 2 × 2 = 4th order attack on the masking scheme. The circuit and the
attacker collaborate in the objective of realizing a 4th-order attack: half of the
combination is carried out by the circuit ((x1 ∧ x2) and (x3 ∧ x4)), while the
other half is left remaining to the attacker. Indeed, by raising the traces to the
second power, the attacker obtains a term (x1 ∧ x2) × (x3 ∧ x4), which coincides
with the leakage condition of Fig. 7, that is

∧i=4
i=1 xi.

To conclude on the leakage model complexification, we underline that it has
a negative impact on two situations:

– on low-entropy masking schemes, where the individual shares are not protected
at the maximum order (see for instance RSM in Sect. 3.5), and

– on any masking schemes, where shares interact between themselves by some
combinational logic.

In those two cases, a great care must be taken; tools as that described in [18]
can help check the design is secure (or not).

5 Conclusion

Throughout this paper, we have seen how coding and side-channel analysis can
benefit one from another, for attack as well as for protection.

This is a nice example of cross fertilization between disciplines, in which
Claude Carlet played a decisive role. Thanks to you, Claude!

Acknowledgements. Part of this work has been funded by the ANR CHIST-ERA
project SECODE (Secure Codes to thwart Cyber-physical Attacks).

A SNR in the Presence of First Order Masking

Let us consider a first-order masking scheme [1]. By design, a first-order side-
channel attack fails. However, a second-order side-channel attack, combining two
samples, can succeed. The setup is the following: the leakage is:

(
X1

X2

)

=
(

α1Y
�
1

α2Y
�
2

)

+
(

N1

N2

)

,

where:

– N1 ∼ N (0, σ2
1) and N2 ∼ N (0, σ2

2) are two independent noise sources,
– α1 and α2 are the amount of leakage,
– Y �

1 and Y �
2 are leakage functions (assumed normalized, that is E(Y �

i) = 0 and
Var(Y �

i) = 1, for i ∈ {1, 2}).

https://secode.enst.fr/

Codes for Side-Channel Attacks and Protections 51

In the Boolean masking where the attacker target the pair (mask, masked sub-
stitution box S), the leakage model is:

– Y1 = 2√
n

(
wH(S(T ⊕ k) ⊕ M) − n

2

)
= − 1√

n

∑n
b=1(−1)Sb(T⊕k)⊕Mb and

– Y2 = 2√
n

(
wH(M) − n

2

)
= − 1√

n

∑n
b=1(−1)Mb .

The notation Mb means bit b ∈ {1, . . . , n} in bitvector M ∈ F
n
2 .

As the masking is first-order perfect, we indeed have that E(Yi|T = t) does
not depend on the key, for each share i ∈ {1, 2}. However, the attacker is inclined
to combine the two leakages by a centered product, since the expectation of this
combination Yc = Y1Y2 depends on the key, despite the masking with the uniform
M ∼ U(Fn

2). Precisely, let t ∈ F
n
2 one realization of T . We have that:

E(Yc|T = t) =
1
2n

∑

m∈F
n
2

1
n

∑

b,b′
(−1)Sb(T⊕k)⊕mb⊕mb′

=
1

n2n

∑

m∈F
n
2

∑

b

(−1)Sb(T⊕k) (because m is uniform on F
n
2)

= − 1
2
√

n

(
wH(S(T ⊕ k)) − n

2

)
, (12)

which happens to be proportional to the leakage model of the substitution box
when the masking is disabled (M = 0). Indeed, one can derive from Eq. (12)
that:

E(Yc|T = t) = − 1
2
√

n
E(Y1|T = t,M = 0).

The second-order attack thus consists in applying the regular correlation
power analysis (CPA [2]):

– targeting Xc = X1X2 instead of X1 or X2,
– using as leakage model E(Yc|T), where we recall that Yc = Y1Y2 [38].

Thus, the new leakage to analyse is:

Xc = X1X2 = (α1Y
�
1 + N1)(α2Y

�
2 + N2)

= α1α2Y
�
1 Y �

2︸ ︷︷ ︸
signal

+α1Y
�
1 N2 + α2Y

�
2 N1 + N1N2

︸ ︷︷ ︸
noise

.

Indeed, the term Y �
1 Y �

2 conditionally to the known plaintext T depends on the
key (recall Eq. (12)), whereas the other terms α1Y

�
1 N2 + α2Y

�
2 N1 + N1N2 do

not.
Therefore, the SNR in the case of the second-order attack is:

SNR(2o) =
Var(α1α2Y

�
1 Y �

2)
Var(α1Y �

1 N2 + α2Y �
2 N1 + N1N2)

. (13)

52 S. Guilley et al.

Proposition 11. The SNR in the case of the second-order attack is:

SNR(2o) =
SNR1 · SNR2

1 + SNR1 + SNR2
,

where SNRi = α2
i /σ2

i for i ∈ {1, 2}.
Proof. We have:

ET,M (Y �
1 Y �

2) =
1

22n

∑

t∈F
n
2 ,m∈F

n
2

Y �
1 Y �

2

=
1

22n

(
2√
n

)2 ∑

m

(
wH(m) − n

2

)∑

t

(
wH(S(t ⊕ k�) ⊕ m) − n

2

)

=
1

22n

(
2√
n

)2 ∑

m

(
wH(m) − n

2

)∑

z

(
wH(z) − n

2

)
(14)

= 0 × 0 = 0.

At line (14), we used the fact that S is a bijection of F
n
2 (as is SubBytes in

AES [36]).
Besides, we also have:

ET,M

(
(Y �

1 Y �
2)2
)
=

1

22n

∑

t∈F
n
2 ,m∈F

n
2

(Y �
1)2(Y �

2)2

=
1

22n

(
2√
n

)4∑

m

(
wH(m) − n

2

)2∑

t

(
wH(S(t ⊕ k�) ⊕ m) − n

2

)2

=
1

22n

(
2√
n

)4∑

m

(
wH(m) − n

2

)2∑

z

(
wH(z) − n

2

)2
(15)

= 1 × 1 = 1 (as per the normalization of Y �
1 and Y �

2).

Therefore, the variance of the signal is equal to α2
1α

2
2.

Regarding the noise part, we have:

E(α1Y
�
1 N2 + α2Y

�
2 N1 + N1N2) = 0,

by independence between N1, N2 and Y �
i for i ∈ {1, 2}. We also have:

Var(α1Y
�
1 N2 + α2Y

�
2 N1 + N1N2) = E

(
(α1Y

�
1 N2 + α2Y

�
2 N1 + N1N2)2

) − 0

= α2
1σ

2
2 + α2

2σ
2
1 + σ2

1σ
2
2 .

As a result, we have:

SNR(2o) =
α2
1α

2
2

α2
1σ

2
2 + α2

2σ
2
1 + σ2

1σ
2
2

=
SNR1 · SNR2

1 + SNR1 + SNR2
.

��

Codes for Side-Channel Attacks and Protections 53

Corollary 12 (Limit of SNR(2o) in the presence of large noise). When
the noise is large, that is SNRi � 1 for i ∈ {1, 2}, then

SNR(2o) ≈ SNR1 · SNR2 ≈ SNR2 (if SNR1 ≈ SNR2 = SNR). (16)

Proof. Immediate first-order simplification of SNR(2o) as given in
Proposition 11. ��

References

1. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30564-4 5

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

3. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct
sum masking: a smartcard friendly computation paradigm in a code, with Builtin
protection against side-channel and fault attacks. In: Naccache, D., Sauveron, D.
(eds.) WISTP 2014. LNCS, vol. 8501, pp. 40–56. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-43826-8 4

4. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct
sum masking: a smartcard friendly computation paradigm in a code, with Builtin
protection against side-channel and fault attacks. Cryptology ePrint Archive,
Report 2014/665 (2014). http://eprint.iacr.org/2014/665/

5. Bruneau, N., Carlet, C., Guilley, S., Heuser, A., Prouff, E., Rioul, O.: Stochastic
Collision Attack. In: IEEE Transactions on Information Forensics and Security
(2016)

6. Bruneau, N., Guilley, S., Heuser, A., Marion, D., Rioul, O.: Less is more: dimen-
sionality reduction from a theoretical perspective. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 22–41. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48324-4 2

7. Bruneau, N., Guilley, S., Heuser, A., Marion, D., Rioul, O.: Optimal side-channel
attacks for multivariate leakages and multiple models. J. Crypt. Eng. (2016, to
appear). http://www.proofs-workshop.org/program.html

8. Bruneau, N., Guilley, S., Heuser, A., Rioul, O.: Masks will fall off : higher-
order optimal distinguishers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8874, pp. 344–365. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45608-8 19

9. Carlet, C.: Boolean functions for cryptography and error correcting codes, chapter
of the monography. In: Crama, Y., Hammer, P. (eds.) Boolean Models and Meth-
ods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cam-
bridge University Press, Cambridge (2010). Preliminary version, http://www.
math.univ-paris13.fr/∼carlet/chap-fcts-Bool-corr.pdf

10. Carlet, C.: Correlation-immune boolean functions for leakage squeezing and rotat-
ing S-Box masking against side channel attacks. In: Gierlichs, B., Guilley, S.,
Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol. 8204, pp. 70–74. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41224-0 6

http://dx.doi.org/10.1007/978-3-540-30564-4_5
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-662-43826-8_4
http://eprint.iacr.org/2014/665/
http://dx.doi.org/10.1007/978-3-662-48324-4_2
http://www.proofs-workshop.org/program.html
http://dx.doi.org/10.1007/978-3-662-45608-8_19
http://dx.doi.org/10.1007/978-3-662-45608-8_19
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf
http://dx.doi.org/10.1007/978-3-642-41224-0_6

54 S. Guilley et al.

11. Carlet, C., Daif, A., Danger, J.-L., Guilley, S., Najm, Z., Ngo, X.T., Porteboeuf,
T., Tavernier, C.: Optimized linear complementary codes implementation for hard-
ware Trojan prevention. In: European Conference on Circuit Theory and Design,
ECCTD, Trondheim, Norway, pp. 1–4. IEEE, 24–26 August 2015

12. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage squeezing of order
two. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp.
120–139. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34931-7 8

13. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage squeezing: optimal
implementation and security evaluation. J. Math. Crypt. 8(3), 249–295 (2014)

14. Carlet, C., Guilley, S.: Side-channel indistinguishability. In: HASP, pp. 9:1–9:8.
ACM, New York, 13–14 June 2013

15. Carlet, C., Guilley, S.: Side-channel indistinguishability. On HAL, 19 July
2014. Extended version of [14] with more results in appendix, http://hal.
archives-ouvertes.fr/hal-00826618

16. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 25

17. Danger, J.-L., Guilley, S.: Protection des modules de cryptographie contre les
attaques en observation d’ordre élevé sur les implémentations à base de masquage.
Brevet Français FR09/50341, assigné à l’Institut TELECOM, 20 January 2009

18. Danger, J.-L., Guilley, S., Nguyen, P., Nguyen, R., Souissi, Y.: Analyzing security
breaches of countermeasures throughout the refinement process in hardware design
flow. In: DATE, Lausanne, Switzerland, 27–31 March 2017

19. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete: or
how to evaluate the security of any leaking device. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46800-5 16

20. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic
confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 233–250. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8 14

21. Fischer, W., Gammel, B.M.: Masking at gate level in the presence of glitches. In:
Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 187–200. Springer,
Heidelberg (2005). doi:10.1007/11545262 14

22. Gomathisankaran, M., Tyagi, A.: Glitch resistant private circuits design using
HORNS. In: IEEE Computer Society Annual Symposium on VLSI, ISVLSI,
Tampa, FL, USA, pp. 522–527, 9–11 July 2014

23. Guilley, S., Heuser, A., Rioul, O.: A key to success: success exponents for
side-channel distinguishers. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT
2015. LNCS, vol. 9462, pp. 270–290. Springer, Cham (2015). doi:10.1007/
978-3-319-26617-6 15

24. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough: deriving optimal
distinguishers from communication theory. In: Batina, L., Robshaw, M. (eds.)
CHES 2014. LNCS, vol. 8731, pp. 55–74. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 4

25. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006). doi:10.1007/11761679 19

26. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

http://dx.doi.org/10.1007/978-3-642-34931-7_8
http://hal.archives-ouvertes.fr/hal-00826618
http://hal.archives-ouvertes.fr/hal-00826618
http://dx.doi.org/10.1007/978-3-642-55220-5_25
http://dx.doi.org/10.1007/978-3-662-46800-5_16
http://dx.doi.org/10.1007/978-3-642-33027-8_14
http://dx.doi.org/10.1007/11545262_14
http://dx.doi.org/10.1007/978-3-319-26617-6_15
http://dx.doi.org/10.1007/978-3-319-26617-6_15
http://dx.doi.org/10.1007/978-3-662-44709-3_4
http://dx.doi.org/10.1007/978-3-662-44709-3_4
http://dx.doi.org/10.1007/11761679_19
http://dx.doi.org/10.1007/978-3-540-45146-4_27

Codes for Side-Channel Attacks and Protections 55

27. Lin, K.J., Fan, S.C., Yang, S.H., Lo, C.C.: Overcoming glitches, dissipation timing
skews in design of DPA-resistant cryptographic hardware. In: IEEE Computer
Society Proceedings of the Conference on Design, Automation and Test in Europe,
DATE 2007, Nice, France, pp. 1265–1270. EDA Consortium, San Jose, 16–20 April
2007. doi:10.1109/DATE.2007.364471

28. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30574-3 24

29. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005). doi:10.1007/11545262 12

30. Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES
hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 76–90. Springer, Heidelberg (2006). doi:10.1007/11894063 7

31. Moradi, A., Mischke, O.: Glitch-free implementation of masking in modern FPGAs.
In: HOST, pp. 89–95. IEEE Computer Society, Moscone Center, San Francisco, 2–3
June 2012. doi:10.1109/HST.2012.6224326

32. Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small and fast counter-
measure for aes, secure against first- and second-order zero-offset SCAs. In: DATE
(TRACK A: “Application Design”, TOPIC A5: “Secure Systems”), Dresden, Ger-
many, pp. 1173–1178. IEEE Computer Society, 12–16 March 2012

33. Ngo, X.T., Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z.: Linear complementary
dual code improvement to strengthen encoded circuit against hardware Trojan
horses. In: IEEE International Symposium on Hardware Oriented Security and
Trust, HOST 2015, Washington, DC, USA, pp. 82–87. IEEE, 5–7 May 2015

34. Ngo, X.T., Guilley, S., Bhasin, S., Danger, J.-L., Najm, Z.: Encoding the state of
integrated circuits: a proactive and reactive protection against hardware trojans
horses. In: Proceedings of the 9th Workshop on Embedded Systems Security, WESS
2014, pp. 7:1–7:10. ACM, New York (2014)

35. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Crypt. 24(2), 292–321 (2011)

36. NIST/ITL/CSD: Advanced Encryption Standard (AES). FIPS PUB 197, Novem-
ber 2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

37. Prouff, E., Rivain, M.: A generic method for secure SBox implementation. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-77535-5 17

38. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

39. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES
using secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23951-9 5

40. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

http://dx.doi.org/10.1109/DATE.2007.364471
http://dx.doi.org/10.1007/978-3-540-30574-3_24
http://dx.doi.org/10.1007/11545262_12
http://dx.doi.org/10.1007/11894063_7
http://dx.doi.org/10.1109/HST.2012.6224326
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://dx.doi.org/10.1007/978-3-540-77535-5_17
http://dx.doi.org/10.1007/978-3-642-23951-9_5
http://dx.doi.org/10.1007/978-3-642-23951-9_5
http://dx.doi.org/10.1007/978-3-642-15031-9_28

	Codes for Side-Channel Attacks and Protections
	1 Introduction
	2 Side-Channel Analysis as a Decoding Problem
	2.1 Setup
	2.2 Example of AWGN Channel
	2.3 Absence of Countermeasures
	2.4 Multivariate and Multimodel Setting
	2.5 Collision
	2.6 General Setting, with Countermeasures
	2.7 Link Between Success Probability, SNR and Leakage Function

	3 Side-Channel Protection
	3.1 Strategies to Thwart Side-Channel Attacks
	3.2 Masking Schemes
	3.3 Security of Masking Schemes
	3.4 Orthogonal Direct Sum Masking (ODSM), a Masking Scheme Based on Codes
	3.5 Illustration for Some Coding-Based Masking Schemes
	3.6 Masking and Faults Detection

	4 Leakage Model, and Glitches
	5 Conclusion
	A SNR in the Presence of First Order Masking
	References

