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1 Introduction

For given positive integers n and m, a function F from the finite field F2n to the
finite field F2m is called a vectorial Boolean function or an (n,m)-function, and
in the case when m = 1 it is simply called a Boolean function. When m = n an
(n, n)-function has a unique representation as a univariate polynomial over F2n

of the form

F (x) =
2n−1∑

i=0

aix
i, ai ∈ F2n .

Boolean and vectorial Boolean functions have many applications in mathematics
and information theory. In particular, they play an important role in cryptography.

In modern society, exchange and storage of information in an efficient, reliable
and secure manner is of fundamental importance. Cryptographic primitives are
used to protect information against eavesdropping, unauthorized changes and
other misuse. In the case of symmetric cryptography ciphers are designed by
appropriate composition of nonlinear Boolean functions. For example, the secu-
rity of block ciphers depends on S-boxes which are (n,m)-functions. For most
of cryptographic attacks on block ciphers there are certain properties of func-
tions which measure the resistance of the S-box to these attacks. The differential
attack introduced by Biham and Shamir is one of the most efficient cryptanaly-
sis tools for block ciphers [2]. It is based on the study of how differences in an
input can affect the resulting difference at the output. An (n,m)-function F is
called differentially δ-uniform if the equation F (x + a) − F (x) = b has at most δ
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solutions for every nonzero element a of F2n and every b in F2m . Functions with
the smallest possible differential uniformity contribute an optimal resistance to
the differential attack [34]. In this sense differentially 2n−m-uniform functions,
called perfect nonlinear (PN), are optimal. However, PN functions exist only
for n even and m ≤ n/2 [35]. An important case are differentially 2-uniform
functions with n = m, called almost perfect nonlinear (APN), which have the
smallest possible differential uniformity.

Another powerful attack on block ciphers is linear cryptanalysis by Matsui
which is based on finding affine approximations to the action of a cipher [33]. The
nonlinearity NL(F ) of an (n,m)-function F is the minimum Hamming distance
between all the component functions of F (that is, the functions trm

1 (vF (x))
where

trm
1 (x) = x + x2 + · · · + x2m−1

denotes the absolute trace function of F2m and v is any nonzero element of F2m)
and all affine Boolean functions over F2n . The nonlinearity quantifies the level
of resistance of the function to the linear attack: the higher is the nonlinearity
NL(F ) the better is the resistance of F [21]. The functions achieving the upper
bound on nonlinearity are called bent functions. All bent functions are also PN
and vice versa, that is, these functions have optimal resistance against both
linear and differential attacks. As mentioned above, PN (or bent) functions do
not exist when m = n. In this case, when also n is odd, functions with the best
possible nonlinearity are called almost bent (AB). When n is even the upper
bound on nonlinearity is still to be determined. All AB functions are APN,
but the converse is not true in general. However, for n odd all quadratic APN
functions are also AB.

The nonlinearity NL(F ) of an (n,m) function F can be expressed by means
of the Walsh transform. The Walsh transform of F at (α, β) ∈ F2n × F2m is
defined by

WF (α, β) =
∑

x∈F2n

(−1)tr
m
1 (βF (x))+trn

1 (αx),

and the Walsh spectrum of F is the set

{WF (α, β) : α ∈ F2n , β ∈ F
∗
2m}.

Then
NL(F ) = 2n−1 − 1

2
max

α∈F2n ,β∈F
∗
2m

|WF (α, β)|.

The Walsh spectrum of AB functions consists of three values 0,±2
n+1
2 . The

Walsh spectrum of a bent function is {±2
n
2 }.

There are several equivalence relations of functions for which differential uni-
formity and nonlinearity are invariant. Due to these equivalence relations, having
only one APN (respectively, AB) function, one can generate a huge class of APN
(respectively, AB) functions.
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Two functions F and F ′ from F2n to F2m are called

• affine equivalent (or linear equivalent) if F ′ = A1 ◦F ◦A2, where the mappings
A1 and A2 are affine (resp. linear) permutations of F2m and F2n , respectively;

• extended affine equivalent (EA-equivalent) if F ′ = A1 ◦ F ◦ A2 + A, where the
mappings A : F2n → F2m , A1 : F2m → F2m , A2 : F2n → F2n are affine, and
where A1, A2 are permutations;

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine permu-
tation L of F2n × F2m the image of the graph of F is the graph of F ′, that is,
L(GF ) = GF ′ where GF = {(x, F (x)) | x ∈ F2n} and GF ′ = {(x, F ′(x)) | x ∈
F2n}.

Although different, these equivalence relations are connected to each other.
It is obvious that linear equivalence is a particular case of affine equivalence, and
that affine equivalence is a particular case of EA-equivalence. As shown in [20],
EA-equivalence is a particular case of CCZ-equivalence and every permutation
is CCZ-equivalent to its inverse. The algebraic degree of a function (if it is not
affine) is invariant under EA-equivalence but, in general, it is not preserved by
CCZ-equivalence.

There are six known infinite families of power APN functions. They are pre-
sented in Table 1. There are also eleven known infinite families of quadratic APN
polynomilas CCZ-inequivalent to power functions. They are given in Table 2.
Families 3, 4 and 11 in Table 2 are proven to be a part of a general binary
construction of APN functions [18].

Classification of APN functions is complete for n ≤ 5 [9]: for these values of
n the only APN functions, up to CCZ-equivalence, are power APN functions,
and up to EA-equivalence, are power APN functions and those APN functions
constructed in [16]. For n = 6 classification is complete for quadratic APN
functions: 13 quadratic APN functions are found in [10] and, as proven in [26],
up to CCZ-equivalence, these are the only quadratic APN functions. The only
known APN function CCZ-inequivalent to power functions and to quadratic
functions was found in [9,27] for n = 6. For n = 7 and n = 8, as shown in a
recent work [37], there are, respectively, more than 470 and more than a thousand

Table 1. Known APN power functions xd on F2n .

Functions Exponents d Conditions d◦(xd) Proven

Gold 2i + 1 gcd(i, n) = 1 2 [28,34]

Kasami 22i − 2i + 1 gcd(i, n) = 1 i + 1 [31,32]

Welch 2t + 3 n = 2t + 1 3 [23]

Niho 2t + 2
t
2 − 1, t even n = 2t + 1 (t + 2)/2 [22]

2t + 2
3t+1

2 − 1, t odd t + 1

Inverse 22t − 1 n = 2t + 1 n − 1 [1,34]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i + 3 [24]
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Table 2. Known classes of quadratic APN polynomials CCZ-inequivalent to power
functions on F2n .

N◦ Functions Conditions References

1–2 x2s+1 + α2k−1x2ik+2mk+s
n = pk, gcd(k, p) = gcd(s, pk) = 1,

p ∈ {3, 4}, i = sk mod p, m = p − i,

n ≥ 12, α primitive in F
∗
2n

[13]

3 x22i+2i
+ bxq+1 + cxq(22i+2i) q = 2m, n = 2m, gcd(i, m) = 1,

gcd(2i + 1, q + 1) �= 1, cbq + b �= 0,

c �∈ {λ(2i+1)(q−1), λ ∈ F2n}, cq+1 = 1

[12]

4 x(x2i
+ xq + cx2iq)

+x2i
(cqxq + sx2iq) + x(2i+1)q

q = 2m, n = 2m, gcd(i, m) = 1,

c ∈ F2n , s ∈ F2n \Fq ,

X2i+1 + cX2i
+ cqX + 1

is irreducible over F2n

[12]

5 x3 + a−1trn1 (a
3x9) a �= 0 [14,15]

6 x3 + a−1trn3 (a
3x9 + a6x18) 3|n, a �= 0 [14]

7 x3 + a−1trn3 (a
6x18 + a12x36) 3|n, a �= 0 [14]

8–10 ux2s+1 + u2k
x2−k+2k+s

+ vx2−k+1 + wu2k+1x2s+2k+s
n = 3k, gcd(k, 3) = gcd(s, 3k) = 1,

v, w ∈ F2k , vw �= 1,

3|(k + s), u primitive in F
∗
2n

[3]

11 αx2s+1 + α2k
x2k+s+2k

+ βx2k+1 +
∑k−1

i=1 γix
2k+i+2i

n = 2k, gcd(s, k) = 1, s, k odd,

β /∈ F2k , γi ∈ F2k ,

α not a cube

[3,4]

CCZ-inequivalent quadratic APN functions. For n odd all power APN functions
and the known APN binomials are permutations (see [13,19]). For n even the
only known APN permutation is constructed in [11] for n = 6. Existence of APN
permutations for even n ≥ 8 is an open problem.

A class of APN functions over F2n

x3 + trn
1 (x9)

was constructed by Budaghyan, Carlet and Leander in [14]. Later, they gener-
alized this result in [15] to the APN function F0(x) of the form

F0(x) = x3 + a−1trn
1 (a3x9) (1)

for any positive integer n and any nonzero element a in F2n , and they also
obtained two other classes of APN functions over F2n

F1(x) = x3 + a−1trn
3 (a3x9 + a6x18) (2)

F2(x) = x3 + a−1trn
3 (a6x18 + a12x36) (3)

for any positive integer n divisible by 3 and any nonzero element a in F2n and
where trn

3 (x) =
∑n/3−1

i=0 x23i

is the trace function from F2n to its subfield F23 .
When n is even each of the functions F0, F1 and F2 defines two CCZ-inequivalent
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functions one for a = 1 and one for any a �= 1, that is, all together they give six
different functions. When n is odd each of the functions F0, F1 and F2 defines
only one function, up to CCZ-inequivalence, that is, all together they give three
different functions [15]. In Table 2 the functions F0, F1 and F2 correspond to
families 5, 6 and 7, respectively. In the present paper we determine the Walsh
spectra of the functions F0, F1 and F2. The Walsh spectra of the remaining
functions in Tables 1 and 2 have been determined in [6–8,17,28,30,36]. Note
that the Walsh spectrum of the function F0 with a = 1 was previously found in
[5] and we generalize this result to any a �= 0. The results on the Walsh spectra
show that all the known families of quadratic APN functions have Gold like
Walsh spectra. Note that there exists a quadratic APN function for n = 6 with
Walsh spectrum different from Gold [10].

In 2015 a family of quadratic APN trinomials on F2n

G(x) = x2k+1 +
(
trn

m(x)
)2k+1

, (4)

with gcd(k, n) = 1 and n = 2m = 4t, was constructed in [29]. It was claimed
there to be CCZ-inequivalent to power functions. However, in the present paper
we prove that this family is in fact affine equivalent to Gold power functions.

2 Walsh Spectra of F1 and F2

In this section, we determine the Walsh spectra of the APN functions F1 and
F2. According to the definition, for any b, c ∈ F2n , one gets

gi(x) = trn
1 (bFi(x) + cx) = trn

1 (bx3 + ba−1trn
3 (a3x9 + a6x18)i + cx)

= trn
1 (bx3 + cx) + trn

1 (ba−1trn
3 (a3x9 + a6x18)i)

= trn
1 (bx3 + cx) + tr31tr

n
3 (ba−1trn

3 (a3x9 + a6x18)i)
= trn

1 (bx3 + cx) + tr31tr
n
3 (trn

3 (ba−1)(a3x9 + a6x18)i)
= trn

1 (bx3 + cx + trn
3 (ba−1)(a3x9 + a6x18)i)

for i ∈ {1, 2}. For simplicity, denote trn
3 (ba−1) = δ2. By a direct calculation, one

obtains that

gi(x) + gi(x + u) + gi(u)
= trn

1 (bx2u + bxu2 + δ2(a3x8u + a3xu8 + a6x2u16 + a6x16u2)i)

= trn
1

(
x((bu)2

−1
+ bu2 + (δ2/ia3u)2

−3
+ δ2/ia3u8 + δ1/ia3u8 + (δ1/ia3u)2

−3
)
)

= trn
1

(
x((δ2/i + δ1/i)a3u8 + bu2 + (bu)2

−1
+ ((δ2/i + δ1/i)a3u)2

−3
)
)
, (5)

which implies that

|WFi
(b, c)|2 =

∑

x∈F2n

∑

u∈F2n

(−1)gi(x)+gi(x+u)

=
∑

u∈F2n

(−1)gi(u)
∑

x∈F2n

(−1)tr
n
1 (xLi

a,b,δ(u)),
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where Li
a,b,δ(u) is defined as

Li
a,b,δ(u) = (δ2/i + δ1/i)a3u8 + bu2 + (bu)2

−1
+ ((δ2/i + δ1/i)a3u)2

−3
. (6)

Note that gi(u) + gi(u + v) + gi(v) = trn
1 (vLi

a,b,δ(u)) due to (5) and (6). This
means that for any u satisfying Li

a,b,δ(u) = 0 and any v ∈ F2n we have

gi(u + v) = gi(u) + gi(v)

which implies that

|WFi
(b, c)|2 = 0, or 2n · |{x ∈ F2n : Li

a,b,δ(u) = 0}|. (7)

In what follows, we discuss the number of solutions u ∈ F2n to Li
a,b,δ(u) = 0

by adopting Dobbertin’s method [25], which also was used by Bracken et al. in
[5] to determine the Walsh spectrum of F0(x) for the case of a = 1.

For simplicity, define θi = (δ2/i + δ1/i)a3 for i = 1, 2. Then Li
a,b,δ(u) = 0 can

be written as θiu
8 + bu2 + (bu)2

−1
+ (θiu)2

−3
= 0 and it can be readily verified

that

uLi
a,b,δ(u) = φi(u) + φi(u)2

−1
,

where φi(u) is given as

φi(u) = bu3 + θiu
9 + θ

1
2
i u

9
2 + θ

1
4
i u

9
4 . (8)

Then, if Li
a,b,δ(u) = 0, we must have φi(u) ∈ F2.

Proposition 1. Let a, b ∈ F2n with ab �= 0 and δ2 = trn
3 (ba−1). If δ2/i+δ1/i �= 0,

then Li
a,b,δ(u) = 0 if and only if φi(u) = 0 for i = 1, 2.

Proof. If φi(u) = 0, we have Li
a,b,δ(u) = 0; and if Li

a,b,δ(u) = 0, we have φi(u) ∈
F2. Thus, to complete the proof, we need to show that Li

a,b,δ(u) = 0 implies
that φi(u) = 0 for i = 1, 2. Suppose that φi(u) = 1, one then gets b = θiu

6 +
θ
1/2
i u3/2 + θ

1/4
i u−3/4 + u−3 which together with θi = (δ2/i + δ1/i)a3 leads to

b

a
= (δ

2
i + δ

1
i )a2u6 + (δ

2
i + δ

1
i )

1
2 a

1
2 u

3
2 + (δ

2
i + δ

1
i )

1
4 a− 1

4 u− 3
4 + a−1u−3. (9)

For convenience, define trn
3 (a2u6) = t and trn

3 (a−1u−3) = r. Notice that δ
1
2 = δ4

and δ
1
4 = δ2 since δ ∈ F23 . Then by trn

3 (ba−1) = δ2 and (9) one has that

δ2 = trn
3 (

b

a
) = (δ

2
i + δ

1
i )t + (δ

1
i + δ

1
2i )t

1
4 + (δ

1
2i + δ

1
4i )r

1
4 + r. (10)

Rewrite (10) with respect to the variable r we have

(δ
1
2i + δ

1
4i )r2 + r + (δ

2
i + δ

1
i )t + (δ

1
i + δ

1
2i )t2 + δ2 = 0.
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Note that δ
1
2i + δ

1
4i �= 0 due to δ

2
i + δ

1
i �= 0. Then the above equation has

solution r ∈ F23 if and only if

tr31((δ
1
2i + δ

1
4i )((δ

2
i + δ

1
i )t + (δ

1
i + δ

1
2i )t2 + δ2)) = 0. (11)

It can be readily verified that for i = 1, 2 we have

(δ
1
2i + δ

1
4i )2(δ

2
i + δ

1
i )2 = (δ

1
2i + δ

1
4i )(δ

1
i + δ

1
2i ),

which implies that (11) holds if and only if

tr31((δ
1
2i + δ

1
4i )δ2) = 0.

Observe that (δ
1
2i + δ

1
4i )δ2 = (δ4 + δ2)δ2 = δ6 + δ4 if i = 1, and it equals

(δ2+δ)δ2 = δ4+δ3 if i = 2. Thus, no matter which case we arrive at tr31(δ
3+δ) =

0. By tr31(δ
3) = tr31(δ) and δ7 = 1 we have δ3 + δ6 + δ5 = δ + δ2 + δ4 which leads

to δ = 0, 1, a contradiction with δ2/i +δ1/i �= 0. Therefore, if δ2/i +δ1/i �= 0, then
there is no solution r ∈ F23 to (10) and Li

a,b,δ(u) = 0 if and only if φi(u) = 0.
This completes the proof.

Proposition 2. Let a, b ∈ F2n with ab �= 0 and δ2 = trn
3 (ba−1). Then

Li
a,b,δ(u) = 0 defined by (6) has at most four roots in F2n for any i ∈ {1, 2}.

Proof. If θi = 0, i.e., δ2/i + δ1/i = 0, then (6) is reduced to bu2 + (bu)2
−1

= 0
which has at most four roots in F2n for any nonzero b. Next we consider the
case θi �= 0. By Proposition 1, for this case we have Li

a,b,δ(u) = 0 if and only if
φi(u) = 0. Thus, to complete the proof, it suffices to show that φi(u) = 0 has at
most four roots in F2n for any i ∈ {1, 2}. If φi(u) = 0 has no nonzero solution
for some θi and b, then the desired result follows. Now let v be any fixed nonzero
solution of φi(u) = 0, then for any u satisfying φi(u) = 0 we have

u(u + v)φi(v) + v(u + v)φi(u) + uvφi(u + v) = 0.

A direct calculation based on (8) gives

θ
1
2
i (u2v

9
2 + v2u

9
2 + u5v

3
2 + v5u

3
2 ) = θ

1
4
i (u2v

9
4 + v2u

9
4 + u3v

5
4 + v3u

5
4 ),

which can be written as

θ
1
4
i (u4v + uv4)(u

1
2 v + uv

1
2 ) = (u2v + uv2)(u

1
4 v + uv

1
4 ) (12)

since θi �= 0. Then, let u = vz, one obtains that

θ
1
4
i v

9
4 (z4 + z)(z

1
2 + z) = (z2 + z)(z

1
4 + z). (13)

Note that v is a fixed nonzero element which means that z is uniquely determined
by u. Thus, one can conclude that the number of solutions z ∈ F2n to (13) is no
less than that of u ∈ F2n to φi(u) = 0. Let w = z2 + z and rewrite (13) as

wΩi(w) := θ
1
4
i v

9
4 (w2 + w)w

1
2 + w(w

1
2 + w

1
4 ) = 0. (14)
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Observe that (12) holds for any u satisfying φi(u) = 0 and the solution set of
φi(u) = 0 is an F2-linear space due to Proposition 1. Then, one can conclude
that the solution sets of both (13) and (14) are F2-linear spaces. Assume that
w1, w2 and w1 + w2 are solutions of (14), then we have

0 = Ωi(w1) + Ωi(w2) + Ωi(w1 + w2) = θ
1
4
i v

9
4 (w

1
2
1 w2 + w

1
2
2 w1)

since (14) holds if and only if Ωi(w) = 0, which leads to w1w
2
2 + w2

2w1 =
w1w2(w1 + w2) = 0, i.e., w1 = 0, w2 = 0 or w1 = w2. This means that (14)
has at most two distinct solutions in F2n and then (13) has at most four solu-
tions in z since w = z2 + z. This completes the proof.

Theorem 1. The Walsh spectra of both functions F1 and F2 defined by (2)
and (3) respectively are {0,±2(n+1)/2} if n is odd and {0,±2n/2,±2(n+2)/2}
otherwise.

Proof. The Walsh transform of Fi, i = 1, 2, takes values from {0,±2(n+1)/2} if
n is odd and takes values from {0,±2n/2,±2(n+2)/2} if n is even. This follows
from (7) and Proposition 2.

The Walsh transform takes all three values for n odd and all 5 values for n
even since quadratic functions are plateaud and there exists no bent function
from F2n to itself, while in case of n even quadratic APN functions have some
bent components.

3 Walsh Spectrum of F0

Bracken et al. in [5] had determined the Walsh spectrum of the APN function
F0 for the case of a = 1. In this section, we determine its Walsh spectrum for
any nonzero element a ∈ F2n by using the same techniques. By the definition,
for any b, c ∈ F2n , one gets

trn
1 (bF0(x) + cx) = trn

1 (bx3 + ba−1trn
1 (a3x9) + cx)

= trn
1 (bx3 + cx + trn

1 (ba−1)a3x9).

For simplicity, let trn
1 (ba−1) = δ and g0(x) = trn

1 (bF0(x)+ cx). Then, by a direct
calculation, one obtains that

g0(x) + g0(x + u) + g0(u)
= trn

1 (bx2u + bxu2 + δa3x8u + δa3xu8)

= trn
1

(
x((bu)2

−1
+ bu2 + (δa3u)2

−3
+ δa3u8)

)
, (15)

which implies that

|WF0(b, c)|2 =
∑

x∈F2n

∑

u∈F2n

(−1)g0(x)+g0(x+u)

=
∑

u∈F2n

(−1)g0(u)
∑

x∈F2n

(−1)tr
n
0 (xL0

a,b,δ(u)),
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where L0
a,b,δ(u) is defined as

L0
a,b,δ(u) = (bu)2

−1
+ bu2 + (δa3u)2

−3
+ δa3u8. (16)

Note that g0(u) + g0(u + v) + g0(v) = trn
1 (vL0

a,b,δ(u)) due to (15) and (16). This
means that for any u satisfying L0

a,b,δ(u) = 0 and any v ∈ F2n we have

g0(u + v) = g0(u) + g0(v)

which implies that

|WF0(b, c)|2 = 0, or 2n|{x ∈ F2n : L0
a,b,δ(u) = 0}|. (17)

Next we aim to determine the number of solutions to L0
a,b,δ(u) = 0 in order

to determine the possible values of the Walsh spectrum of F0(x). First, if δ =
trn

1 (ba−1) = 0, then L0
a,b,δ(u) = 0 is reduced to L0

a,b,0(u) = (bu)2
−1

+ bu2 = 0
which has at most 4 roots in F2n . Now we assume that δ = trn

1 (ba−1) = 1, then
L0

a,b,δ(u) = 0 is reduced to L0
a,b,1(u) = (bu)2

−1
+ bu2 + (a3u)2

−3
+ a3u8 = 0, and

it is straightforward to verify that

uL0
a,b,1(u) = φ0(u) + φ0(u)2

−1
, (18)

where φ0(u) is defined by

φ0(u) = bu3 + a3u9 + a
3
2 u

9
2 + a

3
4 u

9
4 .

Proposition 3. Let a, b ∈ F2n with δ = trn
1 (ba−1) = 1. Then L0

a,b,1(u) = 0 if
and only if φ0(u) = 0.

Proof. According to (18), we have L0
a,b,1(u) = 0 if φ0(u) = 0; and φ0(u) ∈ F2 if

L0
a,b,1(u) = 0. Thus, to complete the proof, we need to show that L0

a,b,1(u) = 0
implies that φ0(u) = 0. Suppose that φ0(u) = 1, one then gets b = a3u6 +
a3/2u3/2 + a3/4u−3/4 + u−3 which leads to

ba−1 = a2u6 + a
1
2 u

3
2 + a− 1

4 u− 3
4 + a−1u−3.

This contradicts with the condition that trn
1 (ba−1) = 1. This completes the

proof.

Proposition 4. Let a, b ∈ F2n with ab �= 0 and δ = trn
1 (ba−1). Then L0

a,b,δ(u) =
0 defined by (16) has at most four roots in F2n .

Proof. This can be proved completely the same as Proposition 2.

Theorem 2. The Walsh spectrum of the function F0 defined by (1) is
{0,±2(n+1)/2} if n is odd and {0,±2n/2,±2(n+2)/2} otherwise.

Proof. The Walsh transform of F0 takes values from {0,±2(n+1)/2} if n is odd
and takes values from {0,±2n/2,±2(n+2)/2} if n is even. This follows from (17)
and Proposition 4. The Walsh transform takes all three values for n odd and all
5 values for n even by the same reasons as in Theorem 1.
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4 Equivalence of Göloğlu’s APN Trinomial to Gold
Functions

In this section we prove that the function G defined by (4) is affine equivalent
to the Gold function x2m−k+1. Note first that

G(x) = x2m(2k+1) + x2k+2m

+ x2m+k+1,

and it is affine equivalent to the function

G′(x) =
(
G(x)

)2m

= x2k+1 + x2k+2m

+ x2m+k+1.

Linear functions

L1(x) = γ2k

x2m+k

+ γx2k

,

L2(x) = γx2m

+ γ2k

x,

where γ is a primitive element of F22 , are permutations. Indeed, it is easy to see
that the equations L1(x) = 0 and L2(x) = 0 have only 0 as a solution. Note that
L1(x) = 0 implies L1(x)2

m

= 0 which give

γ2k

x2m+k

= γx2k

,

γ2m+k

x2k

= γ2m

x2m+k

.

Hence, assuming x �= 0 and multiplying both sides of the equalities above gives
γ2k+2m+k

= γ2m+1 or γ = γ2 (see explanation below) contradicting that γ is
primitive in F22 . The proof for L2 being a permutation is similar.

Further we have
(
L1(x)

)2m−k+1
= γ2m+2k

x2m+k+1+γ2m−k+1x2m+2k
+γ2m−k+2k

x2m+k+2m
+ γ2m+1x2k+1

= x2m+k+1 + x2m+2k
+ γx2m+k+2m

+ γ2x2k+1

and

L2 ◦ G′(x) = γ
(
x2k+1 + x2k+2m

+ x2m+k+1
)2m

+γ2k(
x2k+1 + x2k+2m

+ x2m+k+1
)

=
(
γ + γ2k)(

x2m+k+1 + x2m+2k)
+ γx2m+k+2m

+ γ2k

x2k+1

= x2m+k+1 + x2m+2k

+ γx2m+k+2m

+ γ2x2k+1

since gcd(k, n) = 1, n = 2m = 4t, and then

γ + γ2k

= γ + γ2 = 1,

γ2m+2k

= γ2m−k+1 = γ3 = 1,

γ2m−k+2k

= γ2k+2m+k

= γ4 = γ,

γ2m+1 = γ2.

Hence
(
L1(x)

)2m−k+1 = L2 ◦ G′(x) = L′
2 ◦ G(x) where L′

2(x) = L2(x2m

) is,
obviously, a linear permutation. Therefore x2m−k+1 and G are affine equivalent.
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Table 3. CCZ-inequivalent APN functions over F2n from the known APN classes
(6 ≤ n ≤ 11 and a primitive in F2n).

n N◦ Functions Families from Tables 1 and 2 Relation to [27]

6 6.1 x3 Gold Table 5: N◦1.1

6.2 x6 + x9 + a7x48 N◦3 5: N◦1.2

6.3 ax3 + a4x24 + x17 N◦8-10 5: N◦2.3

7 7.1 x3 Gold Table 7 : N◦1.1

7.2 x5 Gold 7 : N◦3.1

7.3 x9 Gold 7 : N◦4.1

7.4 x13 Kasami 7 : N◦5.1

7.5 x57 Kasami 7 : N◦6.1

7.6 x63 Inverse 7 : N◦7.1

7.7 x3 + tr71(x
9) N◦5 7 : N◦1.2

8 8.1 x3 Gold Table 9 : N◦1.1

8.2 x9 Gold 9 : N◦1.2

8.3 x57 Kasami 9 : N◦7.1

8.4 x3 + x17 + a48x18 + a3x33 + ax34 + x48 N◦4 9 : N◦2.1

8.5 x3 + tr81(x
9) N◦5 9 : N◦1.3

8.6 x3 + a−1tr81(a
3x9) N◦5 9 : N◦1.5

9 9.1 x3 Gold

9.2 x5 Gold

9.3 x17 Gold

9.4 x13 Kasami

9.5 x241 Kasami

9.6 x19 Welch

9.7 x255 Inverse

9.8 x3 + tr91(x
9) N◦5

9.9 x3 + tr93(x
9 + x18) N◦6

9.10 x3 + tr93(x
18 + x36) N◦7

10 10.1 x3 Gold

10.2 x9 Gold

10.3 x57 Kasami

10.4 x339 Dobbertin

10.5 x6 + x33 + a31x192 N◦3

10.6 x72 + x33 + a31x258 N◦3

10.7 x3 + tr101 (x9) N◦5

10.8 x3 + a−1tr101 (a3x9) N◦5

11 11.1 x3 Gold

11.2 x5 Gold

11.3 x9 Gold

11.4 x17 Gold

11.5 x33 Gold

11.6 x13 Kasami

11.7 x57 Kasami

11.8 x241 Kasami

11.9 x993 Kasami

11.10 x35 Welch

11.11 x287 Niho

11.12 x1023 Inverse

11.13 x3 + tr111 (x9) N◦5
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Proposition 5. Let k, n,m, t be positive integers such that gcd(k, n) = 1, n =
2m = 4t. Then the function G defined by (4) and the function x2m−k+1 over F2n

are affine equivalent.

Remark 1. For k = 1 the APN function G and its equivalence to Gold functions
were known from [14].

We note that it is possible to check CCZ-equivalence of functions with a
computer for n up to 12. However, since most of the known families of APN
functions are defined for many different parameters and coefficients it becomes
extremely difficult to check CCZ-equivalence of a given function to all of them.
For this reason we tested all possible parameters and coefficients to produce
Table 3 of all CCZ-inequivalent functions arising from the known infinite families
of APN functions for n ≤ 11.
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