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Preface

This volume contains the papers accepted for presentation at C2SI-Carlet 2017, in
honor of Professor Claude Carlet, from the University of Paris 8, France. C2SI-Carlet is
an international conference on the theory and applications of cryptographic techniques,
coding theory, and information security. One aim of this conference is to pay homage
to Claude Carlet for his valuable contribution in teaching and disseminating knowledge
in coding theory and cryptography worldwide, especially in Africa. The other aim
of the conference is to provide an international forum for researchers from academia
and practitioners from industry from all over the world for discussion of all forms of
cryptology, coding theory, and information security.

The initiative of organizing C2SI-Carlet 2017 was initiated by the Moroccan Lab-
oratory of Mathematics, Computing Sciences and Applications (LabMIA) at the Fac-
ulty of Sciences of the Mohammed V University in Rabat and performed by an active
team of researchers from Morocco and France. The conference was organized in
cooperation with the International Association for Cryptologic Research (IACR), and
the proceedings are published in Springer’s Lecture Notes in Computer Science series.

The first conference in this series was held at the same university during May 26–28,
2015, for which the proceedings were published in Springer’s Lecture Notes in
Computer Sciences as volume 9084.

The C2SI-Carlet 2017 Program Committee consisted of 49 members. There were 72
papers submitted to the conference. Each paper was assigned to two or three members
of the Program Committee and was reviewed anonymously. The review process was
challenging and the Program Committee, aided by reports from 26 external reviewers,
produced a total of 164 reviews in all. After this period, 19 papers were accepted on
January 28, 2017. Authors then had the opportunity to update their papers until
February 6, 2017. The present proceedings include all the revised papers. We are
indebted to the members of the Program Committee and the external reviewers for their
diligent work.

The conference was honored by the presence of the invited speakers Mohammed
Essaaidi, Caroline Fontaine, Maria Isabel Garcia Planas, Sylvain Guilley, and Tor
Helleseth. They gave talks on various topics in cryptography, coding theory, and
information security and contributed to the success of the conference.

We had the privilege to chair the Program Committee. We would like to thank all
committee members for their work on the submissions, as well as all external reviewers
for their support. We thank the authors of all submissions and all the speakers as well
all the participants. They all contributed to the success of the conference.

We also would like to thank Professor Saaid Amzazi, Head of Mohammed V
University in Rabat, for his unwavering support to research and teaching in the areas of
cryptography, coding theory, and information security. We also want to thank Pro-
fessor Mourad El Belkacemi, Dean of Faculty of Sciences in Rabat.



We are deeply grateful to Professor Claude Carlet for the great service in con-
tributing to the establishment of a successful research group in coding theory, cryp-
tography, and information security at the Faculty of Sciences of Mohammed V
University in Rabat. We would like to take this opportunity to acknowledge his pro-
fessional work.

Along with these individuals, we wish to thank our local colleagues and students
who contributed greatly to the organization and success of the conference.

Finally, we heartily thank all the local Organizing Committee members, all spon-
sors, and everyone who contributed to the success of this conference. We are also
thankful to the staff at Springer for their help with producing the proceedings and to the
staff of EasyChair for the use of their conference management system.

April 2017 S. El Hajji
A. Nitaj

E.M. Souidi
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Biography of Claude Carlet

Claude Carlet received in 1990 the Ph.D. degree from the University of Paris 6, France
and in 1994 the Habilitation to Direct theses from the University of Amiens, France. He
was associate professor in the Department of Computer Science at the University of
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University of Caen, France, from 1994 to 2000 and in the department of Mathematics at
the University of Paris 8, France, from 2000 to 2017. His research interests include
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functions (APN, etc.), cryptography (in particular, stream ciphers, block ciphers and
side-channel attacks) finite fields and coding theory (in relationship with the domains
above). He has participated as chapter author or editor to 11 books, (co-)written 100
journal papers, 60 papers in proceedings and 20 shorter international papers. He has been
member of 70 program committees (7 as co-chair). He has been in charge of the French
research group “codage-cryptographie C2” during ten years. He has been Associate Editor
of IEEE Transactions on Information Theory and is currently editor in chief of the journal
Cryptography and Communications (SPRINGER) and editor in the 4 journals DCC
(SPRINGER), AMC (American Institute of Mathematical Sciences), IJCM-TCOM
(Taylor & Francis) and IJOCT (Inderscience Publishers). He has supervised 13 students
and is currently supervising 5. He has been plenary invited speaker in 20 international
conferences and invited speaker in 25 other conferences and workshops.
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Some Results on the Known Classes
of Quadratic APN Functions

Lilya Budaghyan, Tor Helleseth, Nian Li(B), and Bo Sun

Department of Informatics, University of Bergen,
Postboks 7803, 5020 Bergen, Norway

{Lilya.Budaghyan,Tor.Helleseth,Nian.Li,Bo.Sun}@uib.no

Abstract. In this paper, we determine the Walsh spectra of three classes
of quadratic APN functions and we prove that the class of quadratic
trinomial APN functions constructed by Göloğlu is affine equivalent to
Gold functions.

Keywords: APN function · Quadratic function · Walsh spectrum

1 Introduction

For given positive integers n and m, a function F from the finite field F2n to the
finite field F2m is called a vectorial Boolean function or an (n,m)-function, and
in the case when m = 1 it is simply called a Boolean function. When m = n an
(n, n)-function has a unique representation as a univariate polynomial over F2n

of the form

F (x) =
2n−1∑

i=0

aix
i, ai ∈ F2n .

Boolean and vectorial Boolean functions have many applications in mathematics
and information theory. In particular, they play an important role in cryptography.

In modern society, exchange and storage of information in an efficient, reliable
and secure manner is of fundamental importance. Cryptographic primitives are
used to protect information against eavesdropping, unauthorized changes and
other misuse. In the case of symmetric cryptography ciphers are designed by
appropriate composition of nonlinear Boolean functions. For example, the secu-
rity of block ciphers depends on S-boxes which are (n,m)-functions. For most
of cryptographic attacks on block ciphers there are certain properties of func-
tions which measure the resistance of the S-box to these attacks. The differential
attack introduced by Biham and Shamir is one of the most efficient cryptanaly-
sis tools for block ciphers [2]. It is based on the study of how differences in an
input can affect the resulting difference at the output. An (n,m)-function F is
called differentially δ-uniform if the equation F (x + a) − F (x) = b has at most δ

This work was supported by the Norwegian Research Council.

c© Springer International Publishing AG 2017
S. El Hajji et al. (Eds.): C2SI 2017, LNCS 10194, pp. 3–16, 2017.
DOI: 10.1007/978-3-319-55589-8 1



4 L. Budaghyan et al.

solutions for every nonzero element a of F2n and every b in F2m . Functions with
the smallest possible differential uniformity contribute an optimal resistance to
the differential attack [34]. In this sense differentially 2n−m-uniform functions,
called perfect nonlinear (PN), are optimal. However, PN functions exist only
for n even and m ≤ n/2 [35]. An important case are differentially 2-uniform
functions with n = m, called almost perfect nonlinear (APN), which have the
smallest possible differential uniformity.

Another powerful attack on block ciphers is linear cryptanalysis by Matsui
which is based on finding affine approximations to the action of a cipher [33]. The
nonlinearity NL(F ) of an (n,m)-function F is the minimum Hamming distance
between all the component functions of F (that is, the functions trm

1 (vF (x))
where

trm
1 (x) = x + x2 + · · · + x2m−1

denotes the absolute trace function of F2m and v is any nonzero element of F2m)
and all affine Boolean functions over F2n . The nonlinearity quantifies the level
of resistance of the function to the linear attack: the higher is the nonlinearity
NL(F ) the better is the resistance of F [21]. The functions achieving the upper
bound on nonlinearity are called bent functions. All bent functions are also PN
and vice versa, that is, these functions have optimal resistance against both
linear and differential attacks. As mentioned above, PN (or bent) functions do
not exist when m = n. In this case, when also n is odd, functions with the best
possible nonlinearity are called almost bent (AB). When n is even the upper
bound on nonlinearity is still to be determined. All AB functions are APN,
but the converse is not true in general. However, for n odd all quadratic APN
functions are also AB.

The nonlinearity NL(F ) of an (n,m) function F can be expressed by means
of the Walsh transform. The Walsh transform of F at (α, β) ∈ F2n × F2m is
defined by

WF (α, β) =
∑

x∈F2n

(−1)tr
m
1 (βF (x))+trn

1 (αx),

and the Walsh spectrum of F is the set

{WF (α, β) : α ∈ F2n , β ∈ F
∗
2m}.

Then
NL(F ) = 2n−1 − 1

2
max

α∈F2n ,β∈F
∗
2m

|WF (α, β)|.

The Walsh spectrum of AB functions consists of three values 0,±2
n+1
2 . The

Walsh spectrum of a bent function is {±2
n
2 }.

There are several equivalence relations of functions for which differential uni-
formity and nonlinearity are invariant. Due to these equivalence relations, having
only one APN (respectively, AB) function, one can generate a huge class of APN
(respectively, AB) functions.
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Two functions F and F ′ from F2n to F2m are called

• affine equivalent (or linear equivalent) if F ′ = A1 ◦F ◦A2, where the mappings
A1 and A2 are affine (resp. linear) permutations of F2m and F2n , respectively;

• extended affine equivalent (EA-equivalent) if F ′ = A1 ◦ F ◦ A2 + A, where the
mappings A : F2n → F2m , A1 : F2m → F2m , A2 : F2n → F2n are affine, and
where A1, A2 are permutations;

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine permu-
tation L of F2n × F2m the image of the graph of F is the graph of F ′, that is,
L(GF ) = GF ′ where GF = {(x, F (x)) | x ∈ F2n} and GF ′ = {(x, F ′(x)) | x ∈
F2n}.

Although different, these equivalence relations are connected to each other.
It is obvious that linear equivalence is a particular case of affine equivalence, and
that affine equivalence is a particular case of EA-equivalence. As shown in [20],
EA-equivalence is a particular case of CCZ-equivalence and every permutation
is CCZ-equivalent to its inverse. The algebraic degree of a function (if it is not
affine) is invariant under EA-equivalence but, in general, it is not preserved by
CCZ-equivalence.

There are six known infinite families of power APN functions. They are pre-
sented in Table 1. There are also eleven known infinite families of quadratic APN
polynomilas CCZ-inequivalent to power functions. They are given in Table 2.
Families 3, 4 and 11 in Table 2 are proven to be a part of a general binary
construction of APN functions [18].

Classification of APN functions is complete for n ≤ 5 [9]: for these values of
n the only APN functions, up to CCZ-equivalence, are power APN functions,
and up to EA-equivalence, are power APN functions and those APN functions
constructed in [16]. For n = 6 classification is complete for quadratic APN
functions: 13 quadratic APN functions are found in [10] and, as proven in [26],
up to CCZ-equivalence, these are the only quadratic APN functions. The only
known APN function CCZ-inequivalent to power functions and to quadratic
functions was found in [9,27] for n = 6. For n = 7 and n = 8, as shown in a
recent work [37], there are, respectively, more than 470 and more than a thousand

Table 1. Known APN power functions xd on F2n .

Functions Exponents d Conditions d◦(xd) Proven

Gold 2i + 1 gcd(i, n) = 1 2 [28,34]

Kasami 22i − 2i + 1 gcd(i, n) = 1 i + 1 [31,32]

Welch 2t + 3 n = 2t + 1 3 [23]

Niho 2t + 2
t
2 − 1, t even n = 2t + 1 (t + 2)/2 [22]

2t + 2
3t+1

2 − 1, t odd t + 1

Inverse 22t − 1 n = 2t + 1 n − 1 [1,34]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i + 3 [24]
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Table 2. Known classes of quadratic APN polynomials CCZ-inequivalent to power
functions on F2n .

N◦ Functions Conditions References

1–2 x2s+1 + α2k−1x2ik+2mk+s
n = pk, gcd(k, p) = gcd(s, pk) = 1,

p ∈ {3, 4}, i = sk mod p, m = p − i,

n ≥ 12, α primitive in F
∗
2n

[13]

3 x22i+2i
+ bxq+1 + cxq(22i+2i) q = 2m, n = 2m, gcd(i, m) = 1,

gcd(2i + 1, q + 1) �= 1, cbq + b �= 0,

c �∈ {λ(2i+1)(q−1), λ ∈ F2n}, cq+1 = 1

[12]

4 x(x2i
+ xq + cx2iq)

+x2i
(cqxq + sx2iq) + x(2i+1)q

q = 2m, n = 2m, gcd(i, m) = 1,

c ∈ F2n , s ∈ F2n \Fq ,

X2i+1 + cX2i
+ cqX + 1

is irreducible over F2n

[12]

5 x3 + a−1trn1 (a
3x9) a �= 0 [14,15]

6 x3 + a−1trn3 (a
3x9 + a6x18) 3|n, a �= 0 [14]

7 x3 + a−1trn3 (a
6x18 + a12x36) 3|n, a �= 0 [14]

8–10 ux2s+1 + u2k
x2−k+2k+s

+ vx2−k+1 + wu2k+1x2s+2k+s
n = 3k, gcd(k, 3) = gcd(s, 3k) = 1,

v, w ∈ F2k , vw �= 1,

3|(k + s), u primitive in F
∗
2n

[3]

11 αx2s+1 + α2k
x2k+s+2k

+ βx2k+1 +
∑k−1

i=1 γix
2k+i+2i

n = 2k, gcd(s, k) = 1, s, k odd,

β /∈ F2k , γi ∈ F2k ,

α not a cube

[3,4]

CCZ-inequivalent quadratic APN functions. For n odd all power APN functions
and the known APN binomials are permutations (see [13,19]). For n even the
only known APN permutation is constructed in [11] for n = 6. Existence of APN
permutations for even n ≥ 8 is an open problem.

A class of APN functions over F2n

x3 + trn
1 (x9)

was constructed by Budaghyan, Carlet and Leander in [14]. Later, they gener-
alized this result in [15] to the APN function F0(x) of the form

F0(x) = x3 + a−1trn
1 (a3x9) (1)

for any positive integer n and any nonzero element a in F2n , and they also
obtained two other classes of APN functions over F2n

F1(x) = x3 + a−1trn
3 (a3x9 + a6x18) (2)

F2(x) = x3 + a−1trn
3 (a6x18 + a12x36) (3)

for any positive integer n divisible by 3 and any nonzero element a in F2n and
where trn

3 (x) =
∑n/3−1

i=0 x23i

is the trace function from F2n to its subfield F23 .
When n is even each of the functions F0, F1 and F2 defines two CCZ-inequivalent
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functions one for a = 1 and one for any a �= 1, that is, all together they give six
different functions. When n is odd each of the functions F0, F1 and F2 defines
only one function, up to CCZ-inequivalence, that is, all together they give three
different functions [15]. In Table 2 the functions F0, F1 and F2 correspond to
families 5, 6 and 7, respectively. In the present paper we determine the Walsh
spectra of the functions F0, F1 and F2. The Walsh spectra of the remaining
functions in Tables 1 and 2 have been determined in [6–8,17,28,30,36]. Note
that the Walsh spectrum of the function F0 with a = 1 was previously found in
[5] and we generalize this result to any a �= 0. The results on the Walsh spectra
show that all the known families of quadratic APN functions have Gold like
Walsh spectra. Note that there exists a quadratic APN function for n = 6 with
Walsh spectrum different from Gold [10].

In 2015 a family of quadratic APN trinomials on F2n

G(x) = x2k+1 +
(
trn

m(x)
)2k+1

, (4)

with gcd(k, n) = 1 and n = 2m = 4t, was constructed in [29]. It was claimed
there to be CCZ-inequivalent to power functions. However, in the present paper
we prove that this family is in fact affine equivalent to Gold power functions.

2 Walsh Spectra of F1 and F2

In this section, we determine the Walsh spectra of the APN functions F1 and
F2. According to the definition, for any b, c ∈ F2n , one gets

gi(x) = trn
1 (bFi(x) + cx) = trn

1 (bx3 + ba−1trn
3 (a3x9 + a6x18)i + cx)

= trn
1 (bx3 + cx) + trn

1 (ba−1trn
3 (a3x9 + a6x18)i)

= trn
1 (bx3 + cx) + tr31tr

n
3 (ba−1trn

3 (a3x9 + a6x18)i)
= trn

1 (bx3 + cx) + tr31tr
n
3 (trn

3 (ba−1)(a3x9 + a6x18)i)
= trn

1 (bx3 + cx + trn
3 (ba−1)(a3x9 + a6x18)i)

for i ∈ {1, 2}. For simplicity, denote trn
3 (ba−1) = δ2. By a direct calculation, one

obtains that

gi(x) + gi(x + u) + gi(u)
= trn

1 (bx2u + bxu2 + δ2(a3x8u + a3xu8 + a6x2u16 + a6x16u2)i)

= trn
1

(
x((bu)2

−1
+ bu2 + (δ2/ia3u)2

−3
+ δ2/ia3u8 + δ1/ia3u8 + (δ1/ia3u)2

−3
)
)

= trn
1

(
x((δ2/i + δ1/i)a3u8 + bu2 + (bu)2

−1
+ ((δ2/i + δ1/i)a3u)2

−3
)
)
, (5)

which implies that

|WFi
(b, c)|2 =

∑

x∈F2n

∑

u∈F2n

(−1)gi(x)+gi(x+u)

=
∑

u∈F2n

(−1)gi(u)
∑

x∈F2n

(−1)tr
n
1 (xLi

a,b,δ(u)),
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where Li
a,b,δ(u) is defined as

Li
a,b,δ(u) = (δ2/i + δ1/i)a3u8 + bu2 + (bu)2

−1
+ ((δ2/i + δ1/i)a3u)2

−3
. (6)

Note that gi(u) + gi(u + v) + gi(v) = trn
1 (vLi

a,b,δ(u)) due to (5) and (6). This
means that for any u satisfying Li

a,b,δ(u) = 0 and any v ∈ F2n we have

gi(u + v) = gi(u) + gi(v)

which implies that

|WFi
(b, c)|2 = 0, or 2n · |{x ∈ F2n : Li

a,b,δ(u) = 0}|. (7)

In what follows, we discuss the number of solutions u ∈ F2n to Li
a,b,δ(u) = 0

by adopting Dobbertin’s method [25], which also was used by Bracken et al. in
[5] to determine the Walsh spectrum of F0(x) for the case of a = 1.

For simplicity, define θi = (δ2/i + δ1/i)a3 for i = 1, 2. Then Li
a,b,δ(u) = 0 can

be written as θiu
8 + bu2 + (bu)2

−1
+ (θiu)2

−3
= 0 and it can be readily verified

that

uLi
a,b,δ(u) = φi(u) + φi(u)2

−1
,

where φi(u) is given as

φi(u) = bu3 + θiu
9 + θ

1
2
i u

9
2 + θ

1
4
i u

9
4 . (8)

Then, if Li
a,b,δ(u) = 0, we must have φi(u) ∈ F2.

Proposition 1. Let a, b ∈ F2n with ab �= 0 and δ2 = trn
3 (ba−1). If δ2/i+δ1/i �= 0,

then Li
a,b,δ(u) = 0 if and only if φi(u) = 0 for i = 1, 2.

Proof. If φi(u) = 0, we have Li
a,b,δ(u) = 0; and if Li

a,b,δ(u) = 0, we have φi(u) ∈
F2. Thus, to complete the proof, we need to show that Li

a,b,δ(u) = 0 implies
that φi(u) = 0 for i = 1, 2. Suppose that φi(u) = 1, one then gets b = θiu

6 +
θ
1/2
i u3/2 + θ

1/4
i u−3/4 + u−3 which together with θi = (δ2/i + δ1/i)a3 leads to

b

a
= (δ

2
i + δ

1
i )a2u6 + (δ

2
i + δ

1
i )

1
2 a

1
2 u

3
2 + (δ

2
i + δ

1
i )

1
4 a− 1

4 u− 3
4 + a−1u−3. (9)

For convenience, define trn
3 (a2u6) = t and trn

3 (a−1u−3) = r. Notice that δ
1
2 = δ4

and δ
1
4 = δ2 since δ ∈ F23 . Then by trn

3 (ba−1) = δ2 and (9) one has that

δ2 = trn
3 (

b

a
) = (δ

2
i + δ

1
i )t + (δ

1
i + δ

1
2i )t

1
4 + (δ

1
2i + δ

1
4i )r

1
4 + r. (10)

Rewrite (10) with respect to the variable r we have

(δ
1
2i + δ

1
4i )r2 + r + (δ

2
i + δ

1
i )t + (δ

1
i + δ

1
2i )t2 + δ2 = 0.
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Note that δ
1
2i + δ

1
4i �= 0 due to δ

2
i + δ

1
i �= 0. Then the above equation has

solution r ∈ F23 if and only if

tr31((δ
1
2i + δ

1
4i )((δ

2
i + δ

1
i )t + (δ

1
i + δ

1
2i )t2 + δ2)) = 0. (11)

It can be readily verified that for i = 1, 2 we have

(δ
1
2i + δ

1
4i )2(δ

2
i + δ

1
i )2 = (δ

1
2i + δ

1
4i )(δ

1
i + δ

1
2i ),

which implies that (11) holds if and only if

tr31((δ
1
2i + δ

1
4i )δ2) = 0.

Observe that (δ
1
2i + δ

1
4i )δ2 = (δ4 + δ2)δ2 = δ6 + δ4 if i = 1, and it equals

(δ2+δ)δ2 = δ4+δ3 if i = 2. Thus, no matter which case we arrive at tr31(δ
3+δ) =

0. By tr31(δ
3) = tr31(δ) and δ7 = 1 we have δ3 + δ6 + δ5 = δ + δ2 + δ4 which leads

to δ = 0, 1, a contradiction with δ2/i +δ1/i �= 0. Therefore, if δ2/i +δ1/i �= 0, then
there is no solution r ∈ F23 to (10) and Li

a,b,δ(u) = 0 if and only if φi(u) = 0.
This completes the proof.

Proposition 2. Let a, b ∈ F2n with ab �= 0 and δ2 = trn
3 (ba−1). Then

Li
a,b,δ(u) = 0 defined by (6) has at most four roots in F2n for any i ∈ {1, 2}.

Proof. If θi = 0, i.e., δ2/i + δ1/i = 0, then (6) is reduced to bu2 + (bu)2
−1

= 0
which has at most four roots in F2n for any nonzero b. Next we consider the
case θi �= 0. By Proposition 1, for this case we have Li

a,b,δ(u) = 0 if and only if
φi(u) = 0. Thus, to complete the proof, it suffices to show that φi(u) = 0 has at
most four roots in F2n for any i ∈ {1, 2}. If φi(u) = 0 has no nonzero solution
for some θi and b, then the desired result follows. Now let v be any fixed nonzero
solution of φi(u) = 0, then for any u satisfying φi(u) = 0 we have

u(u + v)φi(v) + v(u + v)φi(u) + uvφi(u + v) = 0.

A direct calculation based on (8) gives

θ
1
2
i (u2v

9
2 + v2u

9
2 + u5v

3
2 + v5u

3
2 ) = θ

1
4
i (u2v

9
4 + v2u

9
4 + u3v

5
4 + v3u

5
4 ),

which can be written as

θ
1
4
i (u4v + uv4)(u

1
2 v + uv

1
2 ) = (u2v + uv2)(u

1
4 v + uv

1
4 ) (12)

since θi �= 0. Then, let u = vz, one obtains that

θ
1
4
i v

9
4 (z4 + z)(z

1
2 + z) = (z2 + z)(z

1
4 + z). (13)

Note that v is a fixed nonzero element which means that z is uniquely determined
by u. Thus, one can conclude that the number of solutions z ∈ F2n to (13) is no
less than that of u ∈ F2n to φi(u) = 0. Let w = z2 + z and rewrite (13) as

wΩi(w) := θ
1
4
i v

9
4 (w2 + w)w

1
2 + w(w

1
2 + w

1
4 ) = 0. (14)
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Observe that (12) holds for any u satisfying φi(u) = 0 and the solution set of
φi(u) = 0 is an F2-linear space due to Proposition 1. Then, one can conclude
that the solution sets of both (13) and (14) are F2-linear spaces. Assume that
w1, w2 and w1 + w2 are solutions of (14), then we have

0 = Ωi(w1) + Ωi(w2) + Ωi(w1 + w2) = θ
1
4
i v

9
4 (w

1
2
1 w2 + w

1
2
2 w1)

since (14) holds if and only if Ωi(w) = 0, which leads to w1w
2
2 + w2

2w1 =
w1w2(w1 + w2) = 0, i.e., w1 = 0, w2 = 0 or w1 = w2. This means that (14)
has at most two distinct solutions in F2n and then (13) has at most four solu-
tions in z since w = z2 + z. This completes the proof.

Theorem 1. The Walsh spectra of both functions F1 and F2 defined by (2)
and (3) respectively are {0,±2(n+1)/2} if n is odd and {0,±2n/2,±2(n+2)/2}
otherwise.

Proof. The Walsh transform of Fi, i = 1, 2, takes values from {0,±2(n+1)/2} if
n is odd and takes values from {0,±2n/2,±2(n+2)/2} if n is even. This follows
from (7) and Proposition 2.

The Walsh transform takes all three values for n odd and all 5 values for n
even since quadratic functions are plateaud and there exists no bent function
from F2n to itself, while in case of n even quadratic APN functions have some
bent components.

3 Walsh Spectrum of F0

Bracken et al. in [5] had determined the Walsh spectrum of the APN function
F0 for the case of a = 1. In this section, we determine its Walsh spectrum for
any nonzero element a ∈ F2n by using the same techniques. By the definition,
for any b, c ∈ F2n , one gets

trn
1 (bF0(x) + cx) = trn

1 (bx3 + ba−1trn
1 (a3x9) + cx)

= trn
1 (bx3 + cx + trn

1 (ba−1)a3x9).

For simplicity, let trn
1 (ba−1) = δ and g0(x) = trn

1 (bF0(x)+ cx). Then, by a direct
calculation, one obtains that

g0(x) + g0(x + u) + g0(u)
= trn

1 (bx2u + bxu2 + δa3x8u + δa3xu8)

= trn
1

(
x((bu)2

−1
+ bu2 + (δa3u)2

−3
+ δa3u8)

)
, (15)

which implies that

|WF0(b, c)|2 =
∑

x∈F2n

∑

u∈F2n

(−1)g0(x)+g0(x+u)

=
∑

u∈F2n

(−1)g0(u)
∑

x∈F2n

(−1)tr
n
0 (xL0

a,b,δ(u)),
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where L0
a,b,δ(u) is defined as

L0
a,b,δ(u) = (bu)2

−1
+ bu2 + (δa3u)2

−3
+ δa3u8. (16)

Note that g0(u) + g0(u + v) + g0(v) = trn
1 (vL0

a,b,δ(u)) due to (15) and (16). This
means that for any u satisfying L0

a,b,δ(u) = 0 and any v ∈ F2n we have

g0(u + v) = g0(u) + g0(v)

which implies that

|WF0(b, c)|2 = 0, or 2n|{x ∈ F2n : L0
a,b,δ(u) = 0}|. (17)

Next we aim to determine the number of solutions to L0
a,b,δ(u) = 0 in order

to determine the possible values of the Walsh spectrum of F0(x). First, if δ =
trn

1 (ba−1) = 0, then L0
a,b,δ(u) = 0 is reduced to L0

a,b,0(u) = (bu)2
−1

+ bu2 = 0
which has at most 4 roots in F2n . Now we assume that δ = trn

1 (ba−1) = 1, then
L0

a,b,δ(u) = 0 is reduced to L0
a,b,1(u) = (bu)2

−1
+ bu2 + (a3u)2

−3
+ a3u8 = 0, and

it is straightforward to verify that

uL0
a,b,1(u) = φ0(u) + φ0(u)2

−1
, (18)

where φ0(u) is defined by

φ0(u) = bu3 + a3u9 + a
3
2 u

9
2 + a

3
4 u

9
4 .

Proposition 3. Let a, b ∈ F2n with δ = trn
1 (ba−1) = 1. Then L0

a,b,1(u) = 0 if
and only if φ0(u) = 0.

Proof. According to (18), we have L0
a,b,1(u) = 0 if φ0(u) = 0; and φ0(u) ∈ F2 if

L0
a,b,1(u) = 0. Thus, to complete the proof, we need to show that L0

a,b,1(u) = 0
implies that φ0(u) = 0. Suppose that φ0(u) = 1, one then gets b = a3u6 +
a3/2u3/2 + a3/4u−3/4 + u−3 which leads to

ba−1 = a2u6 + a
1
2 u

3
2 + a− 1

4 u− 3
4 + a−1u−3.

This contradicts with the condition that trn
1 (ba−1) = 1. This completes the

proof.

Proposition 4. Let a, b ∈ F2n with ab �= 0 and δ = trn
1 (ba−1). Then L0

a,b,δ(u) =
0 defined by (16) has at most four roots in F2n .

Proof. This can be proved completely the same as Proposition 2.

Theorem 2. The Walsh spectrum of the function F0 defined by (1) is
{0,±2(n+1)/2} if n is odd and {0,±2n/2,±2(n+2)/2} otherwise.

Proof. The Walsh transform of F0 takes values from {0,±2(n+1)/2} if n is odd
and takes values from {0,±2n/2,±2(n+2)/2} if n is even. This follows from (17)
and Proposition 4. The Walsh transform takes all three values for n odd and all
5 values for n even by the same reasons as in Theorem 1.
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4 Equivalence of Göloğlu’s APN Trinomial to Gold
Functions

In this section we prove that the function G defined by (4) is affine equivalent
to the Gold function x2m−k+1. Note first that

G(x) = x2m(2k+1) + x2k+2m

+ x2m+k+1,

and it is affine equivalent to the function

G′(x) =
(
G(x)

)2m

= x2k+1 + x2k+2m

+ x2m+k+1.

Linear functions

L1(x) = γ2k

x2m+k

+ γx2k

,

L2(x) = γx2m

+ γ2k

x,

where γ is a primitive element of F22 , are permutations. Indeed, it is easy to see
that the equations L1(x) = 0 and L2(x) = 0 have only 0 as a solution. Note that
L1(x) = 0 implies L1(x)2

m

= 0 which give

γ2k

x2m+k

= γx2k

,

γ2m+k

x2k

= γ2m

x2m+k

.

Hence, assuming x �= 0 and multiplying both sides of the equalities above gives
γ2k+2m+k

= γ2m+1 or γ = γ2 (see explanation below) contradicting that γ is
primitive in F22 . The proof for L2 being a permutation is similar.

Further we have
(
L1(x)

)2m−k+1
= γ2m+2k

x2m+k+1+γ2m−k+1x2m+2k
+γ2m−k+2k

x2m+k+2m
+ γ2m+1x2k+1

= x2m+k+1 + x2m+2k
+ γx2m+k+2m

+ γ2x2k+1

and

L2 ◦ G′(x) = γ
(
x2k+1 + x2k+2m

+ x2m+k+1
)2m

+γ2k(
x2k+1 + x2k+2m

+ x2m+k+1
)

=
(
γ + γ2k)(

x2m+k+1 + x2m+2k)
+ γx2m+k+2m

+ γ2k

x2k+1

= x2m+k+1 + x2m+2k

+ γx2m+k+2m

+ γ2x2k+1

since gcd(k, n) = 1, n = 2m = 4t, and then

γ + γ2k

= γ + γ2 = 1,

γ2m+2k

= γ2m−k+1 = γ3 = 1,

γ2m−k+2k

= γ2k+2m+k

= γ4 = γ,

γ2m+1 = γ2.

Hence
(
L1(x)

)2m−k+1 = L2 ◦ G′(x) = L′
2 ◦ G(x) where L′

2(x) = L2(x2m

) is,
obviously, a linear permutation. Therefore x2m−k+1 and G are affine equivalent.
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Table 3. CCZ-inequivalent APN functions over F2n from the known APN classes
(6 ≤ n ≤ 11 and a primitive in F2n).

n N◦ Functions Families from Tables 1 and 2 Relation to [27]

6 6.1 x3 Gold Table 5: N◦1.1

6.2 x6 + x9 + a7x48 N◦3 5: N◦1.2

6.3 ax3 + a4x24 + x17 N◦8-10 5: N◦2.3

7 7.1 x3 Gold Table 7 : N◦1.1

7.2 x5 Gold 7 : N◦3.1

7.3 x9 Gold 7 : N◦4.1

7.4 x13 Kasami 7 : N◦5.1

7.5 x57 Kasami 7 : N◦6.1

7.6 x63 Inverse 7 : N◦7.1

7.7 x3 + tr71(x
9) N◦5 7 : N◦1.2

8 8.1 x3 Gold Table 9 : N◦1.1

8.2 x9 Gold 9 : N◦1.2

8.3 x57 Kasami 9 : N◦7.1

8.4 x3 + x17 + a48x18 + a3x33 + ax34 + x48 N◦4 9 : N◦2.1

8.5 x3 + tr81(x
9) N◦5 9 : N◦1.3

8.6 x3 + a−1tr81(a
3x9) N◦5 9 : N◦1.5

9 9.1 x3 Gold

9.2 x5 Gold

9.3 x17 Gold

9.4 x13 Kasami

9.5 x241 Kasami

9.6 x19 Welch

9.7 x255 Inverse

9.8 x3 + tr91(x
9) N◦5

9.9 x3 + tr93(x
9 + x18) N◦6

9.10 x3 + tr93(x
18 + x36) N◦7

10 10.1 x3 Gold

10.2 x9 Gold

10.3 x57 Kasami

10.4 x339 Dobbertin

10.5 x6 + x33 + a31x192 N◦3

10.6 x72 + x33 + a31x258 N◦3

10.7 x3 + tr101 (x9) N◦5

10.8 x3 + a−1tr101 (a3x9) N◦5

11 11.1 x3 Gold

11.2 x5 Gold

11.3 x9 Gold

11.4 x17 Gold

11.5 x33 Gold

11.6 x13 Kasami

11.7 x57 Kasami

11.8 x241 Kasami

11.9 x993 Kasami

11.10 x35 Welch

11.11 x287 Niho

11.12 x1023 Inverse

11.13 x3 + tr111 (x9) N◦5
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Proposition 5. Let k, n,m, t be positive integers such that gcd(k, n) = 1, n =
2m = 4t. Then the function G defined by (4) and the function x2m−k+1 over F2n

are affine equivalent.

Remark 1. For k = 1 the APN function G and its equivalence to Gold functions
were known from [14].

We note that it is possible to check CCZ-equivalence of functions with a
computer for n up to 12. However, since most of the known families of APN
functions are defined for many different parameters and coefficients it becomes
extremely difficult to check CCZ-equivalence of a given function to all of them.
For this reason we tested all possible parameters and coefficients to produce
Table 3 of all CCZ-inequivalent functions arising from the known infinite families
of APN functions for n ≤ 11.
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Abstract. The goal of this work is to give explicit interconnections
between control theory and coding. It is well-known the existence of a
closed relation between linear systems over finite fields and convolutional
codes that allow to understand some properties of convolutional codes
and to construct them. The connection between convolutional codes and
linear systems permit to consider control as well as analyze observability
of convolutional codes under linear systems point of view.

An accurate look at the algebraic structure of convolutional codes
using techniques of linear systems theory as well a study of input-state-
output representation control systems. A particular property considered
in control systems theory called output-controllability property is ana-
lyzed and used for solve the decoding process of this kind of codes.

1 Introduction

At the origin, coding theory has been devoted mainly to information theory. In
coding theory had, in fact, emerged from the need for better communication and
better computer data storage. Concretely, convolutional codes are used on many
occasions to transfer data with high demands on speed. To this end, we require
potent codes of high rates. These codes are frequently implemented in composite
with a hard-decision code, particularly Reed Solomon. Before turbo codes, such
constructions were the most efficient, coming closest to the Shannon limit.

The convolutional codes are an alternative to the block codes because of
their simplicity of generation with a little shift register. The main difference
between them is the introduction of the concept of memory, that is, the coding
at any given time will not depend only on the word to be coded, also on those
previously coded. These codes have a great advantage over those of blocks in
channels with high noise (high probability of error). Wireless communications
or satellite communications stand out among their uses.

Convolutional codes were introduced by Elias [3] which suggests using a
polynomial matrix G(z) in the encoding process and allow the generation of the
code line without using a previous buffer. G.D. Forney in [4] explained that the
term “convolutional” is used because the output sequences can be regarded as
the convolution of the input sequence with the sequences in the encoder.

There is a considerable amount of literature on the theory of convolutional
codes over finite fields, see [1,3,5,9–11,13–17] or [21], for example. In particular,
c© Springer International Publishing AG 2017
S. El Hajji et al. (Eds.): C2SI 2017, LNCS 10194, pp. 17–34, 2017.
DOI: 10.1007/978-3-319-55589-8 2
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in [16] the author find an overview of the different approaches to the subject of
convolutional code. In this work we use the definition of convolutional code as
submodule of F[z]n being interesting ir order to obtain a realization as linear
system. First order and input-state-output representations can be found in [18,
19,22,23].

2 Convolutional Codes over Finite Fields

Let Fq be the finite field of q = pr elements, the set of the input alphabet channel.
In the sequel, and if the confusion is not possible, we denote Fq simply as F.

Definition 1. A rate (n, k) convolutional code C, over a finite field F is a finitely
generated F[z]-submodule of Fn[z] of rank k.

A convolutional code C can be expressed in a matrix form (called generator
matrix) as follows.

G(z) : F[z]� −→ F[z]n

u(z) −→ v(z) = G(z)u(z)

of order n× �, � ≥ k, whose columns collect a system of generators of the finitely
generated submodule representing the code, that is to say C = Im G(z).

Note that F[z] is a principal ideal domain and then a convolutional code C
has a well-defined rank k and there exists a full-rank matrix G(z) (of rank k)
such that C = colsp

F[z]G(z).
So, it is possible to refine the definition of generator matrix considering the

notion of encoder, (see [23], for more details).

Definition 2. An encoder to C is a matrix

G(z) :F[z]k −→ F[z]n

u(z) −→ v(z) = G(z)u(z)

such that Im G(z) = C and G(z) is injective.

If we assume that G(z) is a n × k matrix with entries in F[z], the set

C = {v(z) ∈ F
n[z] | ∃u(z) ∈ F

k[z] such that v(z) = G(z)u(z)}

defines a submodule of Fn[z]. Note that Im (G) is a finitely generated submodule.
The above definition implies that a n × k polynomial matrix is an encoder

of C if its columns form a basis of the free module C. In particular, an encoder
is a generator matrix which l = k and G(z) is injective.

We denote by νi the maximum of all degrees of each of the polynomials of
each column and we can assume that ν1 ≥ ν2 ≥ ... ≥ νk up to realignment. The
number ν1 is called the memory of the code and the collection of numbers νi are
known as Forney’s indices.
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Remember that in convolutional codes, the coding of a word varies accord-
ing to the words transmitted previously. And just the memory of the code ν1
corresponds to the number of previous words on which the encoding depends.
Notice that if ν1 = 0 the convolutional code is a block code.

Moreover, there exists another parameter related with convolutional codes
and their encoders; that is, the complexity of both objects. The relation between
these complexities is the key of the definition of a minimal encoder.

Definition 3.(a) The complexity of the encoder (also called constraint length)
is c =

∑k
i=0 νi.

(b) The degree or complexity of a convolutional code C is the highest degree of
the full size minors of any encoder, and it is denoted by δ(C).

We ask if these two numbers ever coincide, the answer is “in general no”, and
for the case where they coincide we have the following definition.

Definition 4. Let C ⊂ F[z]n be a (n, k)-convolutional code. An encoder matrix
G(z) of C is called minimal if and only if the complexity of the encoder coincides
with the complexity of the code. That is to say c = δ(C)

It is well known that if we apply a basis change in F[z]k, it does not change
the path of the map G(z). Then, we have the following results relating minimal
encoders:

Lemma 1. Let G(z) be an n × k polynomial matrix of rank k defining a convo-
lutional code C = colspF[z]G(z). Let Ĝ(z) be an n × k polynomial matrix of rank
k over F[z]. The following statements are verified:

1. G(z) and Ĝ(z) define the same behaviour if and only if there exists a k × k

unimodular matrix U(z) such that Ĝ(z) = G(z)U(z)
2. There exists an unimodular matrix U(z) such that Ĝ(z) = G(z)U(z) is a

minimal encoder.
3. If G(z) and Ĝ(z) are minimal encoders of C then they have the same column

degrees.

Definition 5. The column degrees (κ1, ..., κk) of any minimal encoder Ĝ(z) of C
are known as the Kronecker or controllability indices of the code. We can reorder

them if it is necessary such that κ1 ≥ . . . ≥ κk. The invariant δ =
∑k

i=1
κi is

the degree of complexity of the code C.
(In some coding literature, δ is called the complexity of the code).

Note that the controllability indices of a convolutional code are unique and
invariant of the code. If we consider a minimal encoder of a convolutional code
then the controllability indices and Forney’s indices are equal, and in this case,
κ1 = ν1 is the memory of the encoder.

We give some notions about observable convolutional codes that are useful
in the following Chapter.
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Definition 6. Let G(z) be an encoder of a (n, k) convolutional code C over F.
A syndrome former for the code C is a homomorphism of modules given by

ψ : F[z]n → F[z]n−k

with the property that Im G(z) ⊆ Ker ψ.

Definition 7. Let G(z) be an encoder of a (n, k) convolutional code C over F.
The convolutional code C is observable if and only if G(z) is right-prime, i.e. all
k × k-minors are non-zero and they have non trivial common factors (z�, � ∈ N

are trivial).

Proposition 1. Let G(z) be an encoder of a (n, k) convolutional code C over F.
The convolutional code C is observable if and only if there exits an encoder G(z)
and a syndrome Former ψ such that the following sequence is exact

0 → F[z]k
G(z)−→ F[z]n

ψ−→ F[z]n−k → 0

in other words, if a convolutional code C is observable there exists a polynomial
matrix H(z) (a syndrome former) with the property that v ∈ C if and only if
H(z)v(z) = 0.

The representation of a code among relatively different representations
by means of a polynomial matrix is not unique, but we have the following
proposition.

Proposition 2. Two n×k rational encoders G1(z), and G2(z) define the same
convolutional code, if and only if there exists a k × k unimodular matrix U(z)
such that G1(z)U(z) = G2(z).

Remember that a polynomial matrix P (z) ∈ F[z] is unimodular if there exists
another matrix Q(z) such that P (z)Q(z) = I.

After a suitable permutation of the rows, we can assume that the generator
matrix G(z) is in the form

G(z) =
(
P (z)
Q(z)

)
(1)

with right coprime polynomial factors (block of polynomials) P (z) ∈ F(n−k)×k

and Q(z) ∈ Fk×k, respectively.
It is possible to consider the equivalent rational encoder where Q(z) �= 0

(
P (z)
Q(z)

)
Q−1(z) =

(
P (z)Q−1(z)

I

)
. (2)

In the convolutional codes the Hamming distance can be defined as in block
codes, the number of symbols in which two encoded bit sequences differ.

In convolutional codes the free distance dfree(C) of a code C is defined as the
minimum Hamming distance between two encoded bit sequences. This depends
on the number of errors that the code is able to correct. As in block codes, the
Hamming distance is calculated by comparing the outputs with the null input.
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In a more formal form

Definition 8.

dfree(C) = min {wt(v(z)) | v(z) ∈ C with v(z) �= 0}.

where the weight wt(v(z)) of v(z) = v0 + v1z + . . . + vlz
l ∈ F

nq[z] (with l ≥ 0)
is defined as the sum of the Hamming weights of all their coefficients, that is,

wt(v(z)) =
l∑

i=0

wt(vi).

and Hamming weight wt(v) of a vector vi ∈ F
n, is the number of its nonzero

components.
The importance of free distance is because it determines the corrective capac-

ity of the code.

3 Convolutional Codes and Linear Systems

In this section, we recall the systems theory tools by introducing the input-
state-output representation; then, we will talk about convolutional codes using
the linear systems theory; and also introduce the realization for the transition
between codes and linear systems.

A discrete linear time-invariant system is described by the equations
{

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (3)

where A ∈ Mδ(F), B ∈ Mδ×k(F), C ∈ Mp×δ(F), D ∈ Mp×k(F) (in our particular
setup p = n−k) are constant matrices over the field F, and u(t) ∈ F

k, x(t) ∈ F
δ,

y(t) ∈ F
p are the input, state and output vectors, respectively.

We will denote a system simply as the quadruple of matrices (A,B,C,D).
With initial condition x(0) = 0, a solution of the Eq. (3) can be obtained

by making use of the Z-transform. Let u(z), x(z), y(z) be the Z-transforms of
the variables u, x, y of a time-invariant linear system. Then by applying the
Z-transform to the equations of the system we obtain

{
zx(z) = Ax(z) + Bu(z)
y(z) = Cx(z) + Du(z) (4)

and as a result we have

y(z) = (C(zIδ − A)−1B + D)u(z), (5)

called the transfer function of the system, and the rational matrix

C(zIδ − A)−1B + D =
1

det(zIA)
Cadj(zIA)B + D,
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where adj(M) represents the adjoint matrix of M , is called the transfer matrix,
(notice that the transfer matrix will always be a rational matrix).

The values z0 ∈ F (where F denotes the algebraic closure of the field F) such
that det(z0Iδ − A) = 0 are called eigenvalues of A and the set of all eigenvalues
is called spectrum of A and is denoted by Spec(A).

The bridge between linear systems theory and convolutional codes is given
by a duality between codes and sets input/state/output representations that are
controllable state space systems.

Given a convolutional code, with a specific encoding matrix G(z), we can
find four matrices (A,B,C,D) of adequate sizes, corresponding to the size of
the encoder, defining the system

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

v(t) =
(

y(t)
u(t)

)

x(0) = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (6)

where x(t) is called state vector, u(t) information vector, y(t) parity vector and
v(t) the code vector or codeword. The linear system (A,B,C,D) associated to
the encoder G(z) is called a realization of G(z). We are interested in minimal
realizations.

In terms of the input-state-output representation of a convolutional code, we
have the following characterization of the free distance.

Definition 9.

dfree(C) = min

{ ∞∑

t=0

wt(ut) +
∞∑

t=0

wt(yt)

}

Where the minimum is considered over all non-null code words.
Due to algebraic reasons, we assume throughout the paper that the code

words are of finite weight.
Another well-studied concept in convolutional codes theory is that of column

distances. The jth column distance of the code C is defined as the following
manner

Definition 10.

dj = min

{
j∑

t=0

wt(ut) +
j∑

t=0

wt(yt)

}
,

where the minimum is taken over all trajectories (ut, yt) of the system (6) with
initial vector u0 �= 0.

It is clear that
d0 ≤ d1 ≤ d2 ≤ . . .

and hence there exists an integer r such that dr = dr+j for all j ≤ 0. This largest
possible column distance is of central importance in coding theory.
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Proposition 3.
dfree = lim

j→∞
dj

Codes with a large free distance and the largest possible column distances are
very desirable.

3.1 Realization

Linear systems for convolutional codes represent a mechanism to work on every
little sub-piece of the encoding process. If we try to understand the physical con-
trol process, that goes along with the coding, the state of our encoding machine
is modified by both the dynamics matrix and the input matrix.

Now, we present a method to obtain a realization.
Let G(z) be a matrix generator of (n, k) convolutional code, in which we

consider that is in the form
(

P (z)
Q(z)

)
with Q(z) invertible and the degree δ of the

polynomial detQ(z) being maximal among all minors of order k.
We decompose P (z)Q(z)−1 into a polynomial matrix and a strictly proper

matrix.
Let p(z) = zδ +aδ−1z

δ−1+ . . .+a1z+a0 the monic polynomial deduced from
det Q(z). So, the matrix P (z)Q(z)−1 is written in the form

⎛

⎜⎜⎜⎜⎜⎝

d11 +
q11(z)
p(z)

. . . d1k +
q1k(z)
p(z)

...
...

dn−k1 +
qn−k1(z)

p(z)
. . . dn−kk +

qn−kk(z)
p(z)

⎞

⎟⎟⎟⎟⎟⎠

qij = cij
0 + cij

1 z + . . . + cij
δ−1z

δ−1

(by construction dij ∈ F and degree qij < δ).
First of all and for simplicity, we analyze the case where k = 1.
We consider the following matrices

D =

⎛

⎜⎝
d11
...

dn−k1

⎞

⎟⎠ ∈ M(n−k)×1(F).

A =

⎛

⎜⎜⎜⎝

−aδ−1 −aδ−2 . . . −a1 −a0

1 0 . . . 0 0
. . .

0 0 . . . 1 0

⎞

⎟⎟⎟⎠ ∈ Mδ(F)

B =

⎛

⎜⎜⎜⎝

1
0
...
0

⎞

⎟⎟⎟⎠ ∈ Mδ×1(F)
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C =

⎛

⎜⎝
c11δ−1 . . . c110

...
...

cn−k1
δ−1 . . . cn−k1

0

⎞

⎟⎠ ∈ M(n−k)×δ.

A simple calculation shows that C(zIδ − A)−1B + D = P (z)Q(z)−1.

Example 1. We consider the following code

G(z) =

⎛

⎝
1 + z + z2

α + z + α2z2

α2 + z + αz2

⎞

⎠

over the field F4,

G(z) =

⎛

⎝
1 + z + z2

α + z + α2z2

α2 + z + αz2

⎞

⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 + z + z2

α2 + z + αz2

α + z + α2z2

α2 + z + αz2

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

α2 + z + αz2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 + z + z2

α2 + z + αz2

α + z + α2z2

α2 + z + αz2

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

α + 1 +
1 + α + αz

α2 + z + αz2

α +
(1 + α) + (1 + α)z

α2 + z + αz2

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

;

P (z)Q(z)−1 =

⎛

⎜⎜⎜⎝

1 + α +
α + z

α + (α + 1)z + z2

α +
α + αz

α + (α + 1)z + z2

⎞

⎟⎟⎟⎠ .

Following as before we obtain the following realization (A,B,C,D) of the
convolutional code where

D =
(

α + 1
α

)
, B =

(
1
0

)
,

q11 = α + z = c110 + c111 z
q21 = α + αz = c210 + c211 z

C =
(

c111 c110
c211 c210

)
=

(
1 α
α α

)

p(z) = a0 + a1z + z2 = α + (1 + α)z + z2

A =
(−a1 −a0

1 0

)
=

(
1 + α α

1 0

)
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A similar result holds for k > 1 case, the single input state-space models that
correspond to the individual transfer functions from each input to each output,
could be stacked into one large k > 1 state-space model.

Example 2. Let G(z) be the following encoder matrix

G(z) =

⎛

⎜⎜⎝

1 + z 1
z 1 + z

1 + z + z2 0
0 1 + z + z2

⎞

⎟⎟⎠ =
(

P (z)
Q(z)

)

So,

C(zI − A)−1B + D = P (z)Q(z)−1 =

⎛

⎜⎝

1 + z

1 + z + z2
1

1 + z + z2
z

1 + z + z2
1 + z

1 + z + z2

⎞

⎟⎠

In this case D = 0 and A =

⎛

⎜⎜⎝

−1 0 −1 0
0 −1 0 −1
1 0 0 0
0 1 0 0

⎞

⎟⎟⎠, B =

⎛

⎜⎜⎝

1 0
0 1
0 0
0 0

⎞

⎟⎟⎠, C =
(

1 1 0 1
1 0 1 1

)
.

An important concept in realization theory is the minimality.

Definition 11. A realization (A,B,C,D) of a transfer matrix G(z) is said to
be minimal if no other realization of G(z) has smaller dimension.

In order to know the minimality of the realization we have the following result

Theorem 1. Let (A,B,C,D) be a realization of G(z). The following statements
are equivalent:

(1) (A,B,C,D) is minimal.
(2) The poles of G(z) are the eigenvalues of A

Theorem 2. Given a transfer matrix G(z), all the minimal realizations of G(z)
are algebraically equivalent.

The equivalence is in the following sense.

Definition 12. Two systems (A,B,C,D) and (A′, B′, C ′,D′) are equivalent if
and only if there exist an invertible matrix P such that

(
A′ B′

C ′ D′

)
=

(
P

Ip

)(
A B
C D

)(
P−1

Ik

)

Notice that this equivalence relation preserve the transfer matrix associate to
the system:

C ′(zI − A′)−1B′ + D′ = CP−1(zI − PAP−1)−1PB + D
= CP−1(P (zI − A)P−1)−1PB + D = CP−1P (zI − A)−1P−1PB + D
= C(zI − A)−1B + D
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3.2 Control Properties of Convolutional Codes

We review the standard conditions about reachability (controllability from the
origin) over the input-state-output representation of a convolutional code C
over F. First, we recall some results.

Definition 13. Let (A,B,C,D) be matrices over F describing a linear system
as in (3). The controllability (reachability) matrix was defined by

C(A,B) =
(
B AB . . . Aδ−2B Aδ−1B

)
(7)

It is well-Known that, a linear system (A,B,C,D) over a field F is reachable
if its controllability matrix has full row rank; that is, rankΦδ(A,B) = δ. Or,
equivalently, the Hautus test is verified.

rank C(A,B) = δ if and only if rank (z0I + A | B) = δ, ∀z0 ∈ F

Remark 1. The controllability depends only on the state equation of the system.

Remark 2. Note that by construction, realization constructed is controllable.

Duality between convolutional codes and reachable state space realization is
useful to construct observable convolutional codes: an input-state-output real-
ization is always a reachable dynamical linear system. If it is also observable,
then the following results allow us to get an associated observable convolutional
code.

Rosenthal and York in [19] show that, starting from a minimal representation
of a convolutional code, then this code is non-catastrophic if and only if the pair
(A,C) is observable.

In terms of linear systems, let (A,B,C,D) be matrices over F describing a
system. The observability matrix is defined by

O(A,C) =

⎛

⎜⎜⎜⎜⎜⎝

C
CA
CA2

...
CAδ−1

⎞

⎟⎟⎟⎟⎟⎠
(8)

Lemma 2. The system (A,B,C,D) is observable if and only rank O(A,C) = δ
or equivalently, by the Hautus Test, ∀ z0 ∈ F,

rank
(−z0I + A

C

)
= δ

There are multiple realizations (A,B,C,D) for a given linear system. In
particular, δ, the size of matrix A is not constant in the set of all realizations.
Since δ is always a positive integer, it must reach a minimum value for certain
realization. This minimum value of δ is called the McMillan degree of the system.
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A realization (A,B,C,D) for which δ is equal to the degree of McMillan, we say
that is a minimal realization. It is well known that the minimality property of
a realization is related to the concepts of controllability and observability in the
following sense.

Theorem 3 ([2]). The realization (A,B,C,D) of a linear system is minimal if
and only if (A,B) is a controllable pair and (A,C) is an observable pair.

It is important to note that while in linear systems theory, a realization is
minimal if and only if the pair (A,B) is controllable and the pair (A,C) is
observable, for input-state-output representation of a convolutional code we do
not have the same result. In fact, it is enough that the pair (A,B) be controllable
so that the representation is minimal.

Related to the decodification of the encoders is the output-observability
property.

Output-observability represents the possibility of an internal state, to be only
defined by a finite set of outputs, for a finite number of steps. There are some
literature about this topic, as for example [6–8].

Definition 14. A system (A,B,C,D) is said to be output observable if the state
sequence x(0), . . . , x(�) is uniquely determined by the knowledge of the output
sequence y(0), . . . ,y(�) for a finite number of steps � ∈ N.

Observe that x(1), . . . ,x(�) are determined by the knowledge of x(0) and
u(0), . . . , u(� − 1) and the elements x(0), u(0), . . . , and u(�) can be obtained
solving the following system of matrix equations.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y(0) = Cx(0) + Du(0)
y(1) = Cx(1) + Du(1)

= CAx(0) + CBu(0) + Du(1)
...

y(�) = Cx(�) + Du(�)
= CA�x(0) + CA�−1Bu(0) + . . . + CBu(� − 1) + Du(�).

(9)

Calling T�(A,B,C,D) (that we simply write T� if no confusion is possible)
the matrix

T� =

⎛

⎜⎜⎜⎜⎜⎝

C D
CA CB D
CA2 CAB CB D

...
. . . . . .

CA� CA�−1B CA�−2B . . . CB D

⎞

⎟⎟⎟⎟⎟⎠
. (10)
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We have the following.

Proposition 4. A system (A,B,C,D) is output observable if and only if the
matrix T� has full row rank for all � ∈ N.

Remark 3. If the number of rows is bigger than the number of columns, there
are values of y(0), . . . ,y(�), for which (y(0), . . . ,y(�)) is not a parity vector.

Corollary 1. A necessary condition for output-observability of the system
(A,B,C,D) is that the matrix

(
C D

)
has full row rank.

Therefore, we assume that the number of rows is less than or equal to the
number of columns. It is well known that in this case and for each �, the systems
(9) have solution for all y(0), . . . ,y(�), if and only if the systems have full rank.

Fixing the initial state x(s) = 0, the output-observability matrix allows us
to describe a sequence of trajectories {vs, . . . ,vs+�} in the following manner.

Theorem 4. Let (A,B,C,D) be a representation of a convolutional code. Sup-
pose that the initial state of the system is x(s) = 0, then

{vs, . . . ,vs+�} = Ker T�,

where

T� =

⎛

⎜⎜⎜⎜⎜⎝

D −I
CB 0 D −I

CAB 0 CB 0 D −I
...

. . . . . .
CA�−1B 0 CA�−2B 0 . . . CB 0 D −I

⎞

⎟⎟⎟⎟⎟⎠

The output observability matrix is related with the syndrome former matrix
used by Rosenthal and York [20], solving the decoding problem.

Let (A,B,C,D) be a realization of a convolutional code.
From the system

⎛

⎜⎜⎜⎜⎜⎝

C D
CA CB D
CA2 CAB CB D

...
. . . . . .

CA� CA�−1B CA�−2B . . . CB D

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

x(s)
u(s)

...
u(s + �)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

y(s)
y(s + 1)

...
y(s + �)

⎞

⎟⎟⎟⎠ (11)

we can deduce the syndrome former matrix for the given code.

Proposition 5. Suppose that � ≥ δ. By making elementary transformations to
matrix Eq. (11) we can deduce the syndrome former matrix for the convolutional
code.
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Proof. The system (11) can be rewritten as

⎛
⎜⎜⎜⎜⎜⎝

C
CA
CA2

...

CA�

⎞
⎟⎟⎟⎟⎟⎠

x(s) =

⎛
⎜⎜⎜⎜⎜⎝

D I
CB D I

CAB CB D I
...

. . .
. . .

. . .

CA�−1B CA�−2B . . . CB D I

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u(s)
−u(s + 1)

...
−u(s + �)

y(s)
y(s + 1)

...
y(s + �)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

and making row elementary transformations, we obtain

(O(A,B)
0

)
(x(s)) =

(
M1 M2

M3 M4

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u(s)
...

−u(s + �)
y(s)

...
y(s + �)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

Then,
(
M3 M4

)
is the syndrome former matrix.

Example 3. In F2, we consider the system (A, b, C,D) with

A =
(

0 1
1 0

)
, B =

(
1
0

)
, C =

(
1 0

)
, D =

(
1
)
.

Then, the system (12) for this particular case is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
1 0
0 1
1 0
0 1
1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(x(s)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 0 0 0 1 0 0
1 0 1 0 1 1 0 0 0 0 0 0 1 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u(0)
−u(1)
−u(2)
−u(3)
−u(4)
−u(5)
−u(6)
y(0)
y(1)
y(2)
y(3)
y(4)
y(5)
y(6)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Now, taking

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0

−1 0 1 0 0 0 0
0 −1 0 1 0 0 0

−1 0 0 0 1 0 0
0 −1 0 0 0 1 0

−1 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

The system is reduced to

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0
0 0
0 0
0 0
0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(x(s)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0

−1 1 1 0 0 0 0 −1 0 1 0 0 0 0
0 −1 1 1 0 0 0 0 −1 0 1 0 0 0

−1 1 0 1 1 0 0 −1 0 0 0 1 0 0
0 −1 1 0 1 1 0 0 −1 0 0 0 1 0

−1 1 0 1 0 1 1 −1 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u(0)
−u(1)
−u(2)
−u(3)
−u(4)
−u(5)
−u(6)
y(0)
y(1)
y(2)
y(3)
y(4)
y(5)
y(6)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

So, the syndrome former matrix is
⎛

⎜⎜⎜⎜⎝

−1 1 1 0 0 0 0 −1 0 1 0 0 0 0
0 −1 1 1 0 0 0 0 −1 0 1 0 0 0

−1 1 0 1 1 0 0 −1 0 0 0 1 0 0
0 −1 1 0 1 1 0 0 −1 0 0 0 1 0

−1 1 0 1 0 1 1 −1 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
.

On the other hand, the following L-order block Toeplitz submatrix of the
output-observability matrix

TL =

⎛

⎜⎜⎜⎜⎜⎝

D
CB D

CAB CB D
...

. . . . . .
CAL−1B CAL−2B . . . CB D

⎞

⎟⎟⎟⎟⎟⎠
. (14)

allows us to obtain a characterization of the convolutional codes with maximum
distance profile, in terms of its input-state-output representation.

Remember that (see [12]), an (n, k)-code �, with column distances dj and
free distance dfree. has a maximum distance profile if

dj = (n − k)(j + 1) + 1 for j = 0, . . . , L =
⌊

δ

k

⌋
+

⌊
δ

n − k

⌋
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Maximum distance profile convolutional codes are characterized by the prop-
erty that two trajectories which start in the same state and proceed to a different
state will have the maximum possible distance from each other relative to any
other convolutional code of the same rate and degree.

Theorem 5 ([12]). The matrices (A,B,C,D) generate a (n, k)-code with of
maximum distance profile, (in terms of the input-state-output representation), if
and only if the matrix TL, verifies that any minor that is not trivially zero, is
non-zero.

Minor not trivially zero is understood in the following sense. We consider In
this definition, we think of the nonzero entries of the block Toeplitz matrix
TL as indeterminates of the polynomial ring R = Fq[x1,1, . . . ,x1,(L+1)k, . . . ,
x(L+1)p,1, . . . ,x(L+1)p,(L+1)k]. Specifically, if the entry (i, j) of the matrix is
nonzero, we set it equal to xi,j ; otherwise, we leave it zero. So, a minor of TL is
called trivially zero if it is zero viewed as an element of the ring R.

Example 4. In F4, the convolutional code (A,B,C,D) with

A =
(

α
1

)
, B =

(
1
1

)
, C =

(
α + 1 α

)
, D =

(
α + 1

)

where δ = 2, k = 1, p = 1 then L = 1 and

TL =
(

α + 1
1 α + 1

)

So, the convolutional code has maximum distance profile.

4 Families of Convolutional Codes over Finite Fields

We are interested in convolutional codes where the matrices (A,B,C,D) or one
of them, are not entirely defined having in certain positions parameters that can
take any value from the field. So we can consider this parametric code as a family
of convolutional codes.

These families of codes may be of interest when attempting to protect or
hide certain information.

Anyway, we can not place parameters anywhere if we want to maintain certain
properties of the code. In particular the structure of the matrix A, in this case
and taking into account that the equivalence relation given in Definition 12
preserves this structure of matrices, we can consider classes of systems, and as
representative of each class we find a system in which the matrix A is in some
reduced form.

Example 5. In F5, we consider the following family of systems (A(a), B(a), C(a),
D(a)) with

A(a) =

⎛

⎝
1 a 0
0 2 0
0 0 3

⎞

⎠ , B(a) =

⎛

⎝
1 2
1 1
1 0

⎞

⎠ , C(a) =
(

1 1 1
2 0 1

)
, D(a) =

(
1 2
2 0

)
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Taking the family of invertible matrices P =

⎛

⎝
1 a 0
0 1 0
0 0 1

⎞

⎠, this family is equiva-

lent to (A1(a), B1(a), C1(a),D1(a)) with

A1(a) =

⎛
⎝
1 0 0
0 2 0
0 0 3

⎞
⎠ , B1(a) =

⎛
⎝
1− a 2− a
1 1
1 0

⎞
⎠ , C1(a) =

(
1 a + 1 1
2 2a 1

)
, D1(a) =

(
1 2
2 0

)

So, for each a ∈ F5 we have a different system but all matrices A(a) have the
same structure. Obviously is not the same for the family (Ā(a), B̄(a), C̄(a), D̄(a))
with

Ā(a) =

⎛

⎝
1 + a 0 0

0 2 0
0 0 3

⎞

⎠ , B̄(a) =

⎛

⎝
1 2
1 1
1 0

⎞

⎠ , C̄(a) =
(

1 1 1
2 0 1

)
, D̄(a) =

(
1 2
2 0

)

where the matrix A in each member of the family has a different structure.

In Fq there are exactly qδ2 × qkδ × qpδ × qpk different systems. In particular,
if the matrix A is in such a way that in its reduced form is diagonal, we have

(δ + q − 1)!
δ!(q − 1)!

× qkδ × qpδ × qpk.

Taking into account that the cardinal of the set of invertible matrices
Gl(δ,Fq) is

∏δ−1
k=0(q

δ − qk), it is possible to count the number of elements of
each equivalent class and the number of classes.

For that, it suffices to define an action of the linear group over the set of
systems M = {(A,B,C,D)}:

ϕ : Gl(δ,Fq) × M −→ M
(P, (A,B,C,D)) −→ (P−1AP,P−1B,CP,D)

Then, after to compute the stabilizer S(A,B,C,D) of a fixed point (A,B,C,D) ∈
M defined as S(A,B,C,D) = {P ∈ Gl(δ,Fq) | α(P, (A,B,C,D)) = (A,B,C,D) =
{P ∈ Gl(δ,Fq) | AP − PA = 0, PB − B = 0, CP − C = 0}
and now, it is easy to prove that there is a bijection between the set of equivalent
systems to (A,B,C,D) and the quotient group Gl(δ,Fq)/S(A,B,C,D).

Given a convolutional code (A,B,C,D), we are interested in to perturb it
in order to improve their behaviour and control properties. That is, to find the
values of the parameters for which our code has the appropriate or expected
properties.

Example 6. In F4, let (A,B,C,D) be a convolutional code with

A =
(

α α + 1
α + 1 1

)
, B =

(
α + 1

α

)
, C =

(
α + 1 1

)
, D =

(
1
)



Families of Convolutional Codes over Finite Fields: A Survey 33

This code is no controllable because of:

rank
(

z − α −(α + 1) α + 1
−(α + 1) z − 1 α

)
= 1 for z = α + 1

And not observable because of:

rank

⎛

⎝
z − α −(α + 1)

−(α + 1) z − 1
α + 1 1

⎞

⎠ = 1 for z = 0

Considering the family of convolutional codes (A(a), B(a), C(a),D(a)) be a
convolutional code with

A =
(

α + a α + 1
α + 1 1

)
, B =

(
α + 1

α

)
, C =

(
α + 1 1

)
, D =

(
1
)

The codes of the family are controllable and observable if and only if a �= 0.
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Abstract. This article revisits side-channel analysis from the stand-
point of coding theory. On the one hand, the attacker is shown to apply
an optimal decoding algorithm in order to recover the secret key from the
analysis of the side-channel. On the other hand, the side-channel protec-
tions are presented as a coding problem where the information is mixed
with randomness to weaken as much as possible the sensitive information
leaked into the side-channel. Therefore, the field of side-channel analysis
is viewed as a struggle between a coder and a decoder. In this paper,
we focus on the main results obtained through this analysis. In terms of
attacks, we discuss optimal strategy in various practical contexts, such
as type of noise, dimensionality of the leakage and of the model, etc.
Regarding countermeasures, we give a formal analysis of some masking
schemes, including enhancements based on codes contributed via fruitful
collaborations with Claude Carlet.

1 Introduction

Digital information is handled by electronic devices, such as smartphones or
servers. Some information, such as keys, is sensitive, in the sense that it shall
remain confidential. In general, information is present in three states within
devices: at rest, in transit, and in computation. The protection of information at
rest can be ensured by on-chip encryption in the memories. The same technique
applies to the data in transit: the buses can be encrypted (e.g., in a lightweight
way, in which case one uses the term scrambling). Therefore, the protection of
information during computation is the big issue to be dealt with. It is a real
challenge, as a computing devices inadvertently leak some information about
the data they manipulate. In this context, three questions are of interest:

1. How does an attacker best exploit the leaked information? The situation is
similar to that of a decoding problem, and one aims at finding the optimal
decoder.

2. Second, the designer (and the end user) aim at being protected against such
attacks. Their goal is thus to try and weaken the side-channel. Randomization
is one option, referred to as masking in the literature. We will illustrate that
it can be seen as the use of code to optimally mix some random bits into
the computations, with the possibility to eventually get rid off this entropy,
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e.g., at the end of the computation. Another interesting usage of codes is
to detect faults in circuits. This dual use of codes is of interest in general
security settings, where attacks can choose to be either passive or active. It is
also very relevant in the case the circuit is trapped with a Hardware Trojan
Horse.

3. Third, it is interesting to know in which respect the circuit leakage favors or
not attacks. In particular, we will investigate the effect of glitches as a threat
to masking schemes.

Outline. We start with the adversarial strategies in Sect. 2. Protection strate-
gies, especially masking, are presented in Sect. 3. We will show how the circuit
itself can contribute to the attack, through the analysis of glitches, in Sect. 4.
Conclusions are in Sect. 5. Eventually, AppendixA gives some computation evi-
dences why masking protection can be seen as reducing the signal-to-noise ratio,
by increasing the noise.

2 Side-Channel Analysis as a Decoding Problem

In this section, we first describe the setup and the objective of the attacker.
Second, we solve the objective of the attacker in various different setups.

2.1 Setup

We assume the device manipulates some data known by the attacker, such as a
plaintext or a ciphertext, called T . This data is mixed with some secret, say a
key k∗. The attacker manages to capture some noisy function of T and k∗, and
attempts to extract k∗. For this purpose, he will enumerate (manageable) parts
of the key (e.g., bytes), denoted k, and choose the key candidate k̂ which is the
most likely. Therefore, the attack resembles a communication channel, where the
input is k∗ and the output is k̂. The attack is termed successful if k̂ = k∗.

Two kinds of leakage models are realistic in practice:

1. direct probing model, where the attacker uses some kind of probes, each
being able to measure one bit,

2. indirect measurement of an aggregated function of the bits, using for
instance an electromagnetic probe.

These two ways of capturing the signal are, by nature, very different. They are
illustrated in Fig. 1.

The first one is noiseless. However, the bits in integrated circuits are nano-
metric, whereas probes are mesometric. Therefore, only few such probes can be
used simultaneously. The security parameter is thus linked to the ability for the
attacker to recover some useful information out of d probes (where d is typically
1, 2, 3 or 4). Besides, the probing requires a physical access to the wires, which
is challenging, since it is possible that the contact breaks the bit to be probed.
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Fig. 1. Settings for side-channel analysis. In the probing model (a), a few bits (here,
d = 3) are measured with dedicated probes. In the bounded moments model (b), the
attacker measures an integrated quantity of several bits.

Such attack is termed semi-invasive, since it leaves an evidence that the circuit
has been tampered with (an opening is necessity to insert the probe).

The second one is noisy and also leaks some function of the bits. Therefore,
the attacker needs to capture more than one trace to extract some information.
This is why we model, in the sequel, traces by random variables. By conven-
tion, the variables are printed with capital letters, such as X, when designat-
ing a random variable, and with small letters, such as x, when designating the
realization of random variables. We also denote by Q the number of queries
(= of measurements), and by x = (x1, . . . , xQ) the vector of measurements. This
attack will require a statistical analysis, which in general consists in the study
of the leakage probability distribution. This starts in general by the analysis of
the leakage moments.

We will link the two models in the case of RSM countermeasure (Sect. 3.5).
The next Sect. 2.2 discusses the channel k� → k̂, for the second case.

2.2 Example of AWGN Channel

The key recovery setup is illustrated in Fig. 2 (see Fig. 1 in [24]). When the noise
is Gaussian and independent from one measurement to others, it is referred to
as AWGN (Additive white Gaussian noise). We write:

X = y(T, k∗) + N, where N ∼ N (0, σ2). (1)

The random variable y(T, k∗) is the aggregated leakage model, and N is the
noise (independent from Y ). Let n the bitwidth of the key k and of the texts
T . The function y : F

n
2 × F

n
2 → R is, in practice, the composition two functions

y = ϕ ◦ f , where:

– f is an algorithmic function called sensitive variable, such as f(T, k∗) = S(T ⊕
k∗), where S is a substitution box, and
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Fig. 2. Side-channel analysis as a communication channel

– ϕ : F
n
2 → R accounts for the way the sensitive variable leaks, such as the

Hamming weight ϕ : z �→ wH(z) =
∑n

i=1 zi.

2.3 Absence of Countermeasures

The optimal distinguisher is the key guess k̂ which maximizes the success prob-
ability, that is the probability that k̂ is actually k∗.

When there is no protection, all the uncertainty resides in the measurement
noise. Thus, as the attacker knows T , he also knows Y = Y (T, k) (for all key
guess k).

Theorem 1 ([24, Theorem 4]). In the AWGN setup, the optimal distinguisher
is demonstrated to be equal to:

Dopt(x, t) = argmink ‖x − y(t, k)‖22 = argmaxk〈x|y(t, k)〉 − 1
2

‖y(t, k)‖22 , (2)

where ‖·‖2 is the Euclidean norm and 〈·|·〉 is the canonical scalar product.

2.4 Multivariate and Multimodel Setting

In the multivariate and multimodel case, the attacker is able to collect:

– not only one sample, but D (dimensionality) samples, and
– each function of the bits (e.g., z �→ 1, z �→ zi for 1 ≤ i ≤ n, but also any

selection of z �→ ∧
i∈I zi where I ⊆ F

n
2 ) has a different contribution.

We call S the number of models, and α the D × S matrix of the leakages, such
that Eq. (1) is generalized as:

X = αy(T, k∗) + N, where N ∼ N (0, Σ), (3)
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where N is multivariate normal of D×D covariance matrix Σ, and Y = y(T, k∗)
is set of S models (e.g., S = 1 if the leakage model is the Hamming weight, or
S = n+1 if there is a non-zero offset (such offset is modeled by z �→ 1) and each
bit 1 ≤ i ≤ n of the leakage model leaks differently). In this case also, boldface
variables are vectorial (either multivariate or multimodel).

We have a generalization of Theorem 1:
Theorem 2 ([7, Theorem 1]). Let us define x′ = Σ−1/2x and α′ = Σ−1/2α.
Then, in the multivariate and multimodel AWGN setup, the optimal distinguisher
is demonstrated to be equal to:

DD,S
opt (x, t) = argmink

D∑

d=1

‖x′
d − α′

dy((t, k)‖22

= argmaxk tr
(
x′(α′y(t, k))T

)
− 1

2
‖α′y(t, k)‖2F ,

where tr (·) is the trace operator of a square matrix and ‖ · ‖F is the Frobenius
normal of a (rectangular) matrix.

2.5 Collision

In some situations, the attacker does not know the leakage function y = ϕ ◦ f ,
but knows that it is reused several times for different bytes, say L > 1. We denote
by x(·) = (x(1), . . . , x(�), . . . , x(L)) the L leakages. Therefore, the optimal attack
consists in a collision attack where all the coefficients of the leakage function are
regressed.

Theorem 3 ([5, Theorem 2.5]). The optimal collision attack is:

DL
opt(x

(·), t(·)) = argmaxk(·)∈(Fn
2 )

L

∑

u∈F
n
2

(∑
�

∑
q/t

(�)
q ⊕k(�)=u

x
(�)
q

)2

∑
�

∑
q/t

(�)
q ⊕k(�)=u

1
.

Notice that in general, this attack allows to recover (L − 1) n-bit keys when the
collision is involving L samples with identical leakage model.

2.6 General Setting, with Countermeasures

In general, the device defends itself, by the implementation of protections. Mask-
ing is one of them. In the expression of y, in addition to T and k, another random
variable M is introduced, called the mask, unknown to the attacker. It is usually
assumed that it is uniformly distributed.

Theorem 4 ([8, Proposition 8]). The optimal attack in case of masking coun-
termeasure is:

DM ;L
opt (x(·), t(·)) = argmaxk

Q∑

q=1

log

{
∑

m

exp
{ D∑

d=1

1
σ(d)2

(
x(d)

q y(d)
q − 1

2
y(d)

q

2)}
}

,

assuming that the noise at each sample d is normal of variance σ(d)2 .
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2.7 Link Between Success Probability, SNR and Leakage Function

The optimal distinguishers Dopt given in various scenarios ( Dopt for nominal
case in Sect. 2.3, DD,S

opt for multivariate and multimodel case in Sect. 2.3, DL
opt for

the collision case in Sect. 2.5, and DM ;L
opt for the masked case in Sect. 2.6) allow

to recover the secret key with the largest success rate (denoted as SR), but do
not help in predicting the number of traces to reach a given success rate (or
vice-versa).

Such relationship can be easily derived from the analysis of so-called first-
order exponents [23]. Let us denote Aopt(x, t, k) the argument of maximization
in either of Dopt, DD,S

opt , DL
opt or DM ;L

opt . We have:

Theorem 5 ([23, Corollary 1]).

1 − SR(D) ≈ e−Q·SE(D) (4)

where the first-order success exponent SE(D) is equal to:

SE(D) =
1
2

min
k �=k∗

(Aopt(x, t, k∗) − Aopt(x, t, k)
)2

Var
(Aopt(x, t, k∗) − Aopt(x, t, k)

) . (5)

For the sake of the introduction of a signal-to-noise, we rewrite Eq. (1) as:

X = αy(T, k∗) + N, where E(y(T, k∗)) = 0, Var(y(T, k∗)) = 1 and N ∼ N (0, σ2).

Let us introduce generalized confusion coefficients [20]:

Definition 6 (General 2-way confusion coefficients [23, Definitions 8
and 10]). For k = k∗ we define

κ(k∗, k) = E

{(Y (k∗) − Y (k)
2

)2}
, (6)

κ′(k∗, k) = E

{(Y (k∗) − Y (k)
2

)4}
. (7)

For example, for the optimal distinguisher in the nominal case, the success expo-
nent expression is:

Lemma 7 (SE for the optimal distinguisher, [23, Proposition 5]). The
success exponent for the optimal distinguisher takes the closed-form expression

SE(D) =
1
2

min
k �=k∗

α2κ2(k∗, k)
σ2κ(k∗, k) + α2(κ′(k∗, k) − κ(k∗, k)2

. (8)

This closed-form expression simplifies for high noise σ � α in a simple equation:

Corollary 8 ([23, Corollary 2]).

SE(D) ≈ 1
2

min
k �=k∗

α2κ2(k∗, k)
σ2κ(k∗, k)

=
1
2

· SNR · min
k �=k∗

κ(k∗, k), (9)

where SNR = α2/σ2 is the signal-to-noise ratio (see [6] for the definition of SNR
in the multivariate case).
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3 Side-Channel Protection

Side-channel attacks threaten the security of cryptographic implementations.
Protections against such attacks can be devised using the coding theory. We
illustrate in this section several techniques which randomize leakages in a view
to decorrelate them from the internally manipulated data, and that (in some
cases) also allow to detect malicious fault injections.

3.1 Strategies to Thwart Side-Channel Attacks

As discussed in Sect. 2.7 (especially in (9)), the success of an attack is all the
larger as the leakage function has a higher confusion (6) and the SNR is high.
However, the input of confusion is limited, since 0 ≤ mink �=k∗ κ(k∗, k) ≤ 1/2
is bounded. Moreover, the defender cannot always change the algorithm nor its
leakage model, that is mink �=k∗ κ(k∗, k) is fixed. Thus, the defender is better off
focusing on the reduction of the SNR.

This can be achieved in two flavors:

1. reduce the signal, as done in strategies aiming at flattening the leakage. This
is easily achieved for some side-channels, such as timing: the execution time
is made constant, e.g., by inserting dummy instructions or by balancing the
code in each branch when the control flow forks. However, balancing an ana-
logue quantity (such as power or electromagnetic field) is more challenging, let
alone because of process variations, two identical gates or structures behave
differently after fabrication. For instance, this is the working factor of phys-
ically unclonable functions (PUFs). Therefore, the quality of the protection
depends on the ability of the fabrication plant to produce reproducible pat-
terns. This fact naturally limits the quality of the designer’s work, hence does
not encourage to reach very high levels of security. In case this case, the
second option is preferred;

2. increase the noise, by resorting to some extra random variables independent
of that involved in the leakage function. Obviously, some artificial noise can
be easily produced: one practical example consists in running an algorithm
known to produce a lot of leakage (such as an asymmetrical engine, e.g.,
RSA) in parallel to the algorithm to protect. However, there remains the risk
that the attacker manages, by a subtle placement of the probes, to limit or
completely avoid the externally added noise; imagine an attacker with a very
selective electromagnetic probe which would place its probe over the targetted
algorithm, which is micrometers apart from the noise source (RSA). There-
fore, it sounds wiser to entangle the computation and the random variables.
This is what is achieved by so-called masking schemes. Appendix A explains
why masking reduces the SNR.

Notice that the two strategies are orthogonal, that is, it is beneficial to employ
them at the same time. Still, in the sequel, we will focus on masking, since it
allows (at least in theory) to increase the noise at the maximal extent.
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3.2 Masking Schemes

Masking schemes have been introduced to obfuscate the internals of a computa-
tion, in a view to make it more difficult to be attacked. The strategy in masking
is based on randomization:

– for data (e.g., in algorithms with constant-execution flow, such as AES), and
– for operations (e.g., in algorithms where the sequence of operations leak some

secrets, such as RSA).

In practice, a masking scheme consists in four algorithms, as depicted in Fig. 3.

Data masking
algorithm
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algorithm

Masks refresh
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Fig. 3. Masking schemes

Initially, the input data must be masked, thanks to a first algorithm. Second,
the masked data is manipulated, so as to implement the intended cryptographic
operation. Many techniques exist. One way to envision masking is to see all the
operations making up the cryptographic function as look-up tables. In this case,
the masked look-up tables can be implemented as [37, Table 1]:

– new larger look-up tables, where the masking material is now part of the
addressing strategy,

– table recomputation specifically for the current mask, or
– computation style which is able to operate on masked data.

After the operation has been computed, it can be necessary to refresh the masks.
Indeed, if the value is intended to be used more than once, then some masks
would be duplicated during the computation. It is thus wise to re-randomize
the current masks. Eventually, at the end of the computation, the masked data
shall be freed from its mask. Hence a demasking step. The first three algorithms
require entropy, whereas the last one destroys entropy.

3.3 Security of Masking Schemes

It is easy to measure the amount of entropy consumed by a masking scheme (see
top of Fig. 3). However, this does not obviously reflect its actual security level.
Indeed, the entropy can be wasted, e.g., by being badly used: XORing together
entropy reduces it, while bringing no additional difficulty for the attacker.
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The first attempt to measure security arise from [1, Definition 1]. The order is
defined as the minimum number of intermediate values an attacker must collect
to recover part of the secret. In this framework, the overall security is that of
the weakest link.

Still, the exact definition of an intermediate variable is unclear. The difficulty
arises from the fact the designer would like to link the security to properties
of its design. However, the intermediate variables encompass different notions
depending on the refinement stage: after compilations, variables are mapped
to internal resources. Thus, the granularity [1, Sect. 3] can change between the
cryptographic algorithm specification, the source code, the machine code, and
what is actually executed on the device.

Some early works considered intermediate values are bits, such as in private
circuits [25,26]. This makes sense for hardware circuits, for which (in general
CMOS processes) an equipotential has only two licit values, that is carries one
bit. However, private circuits have been extended to software implementations
(see e.g. [40]), where intermediate variables become bitvectors of the machine
word length. But after considering some new threats, such as glitches, a new
trend has consisted in looking back to bit-oriented masking. This is typically the
case of threshold implementations [35], where the granularity is again the bit.

In this article, we are interested with the lowest possible level of security
analysis, hence we consider that intermediate variables are bits.

3.4 Orthogonal Direct Sum Masking (ODSM), a Masking Scheme
Based on Codes

We illustrate in this section several masking schemes, and show in which respect
they relate to coding theory.

We will show that the two security notions related to masking (probing and
bounded-moment models) are equivalent when conducting analyses at bit-level.
We model a circuit as a parallel composition of bits, seen as elements of F2. The
exemple, when there are n wires in the circuit, we model the circuit state as an
element of F

n
2 , that is the Cartesian product F2 × . . . × F2.

At this stage, we use the following new notations. Let X a k-bit information
word to be concealed. Let Y an (n−k)-bit mask used to protect X. The protected
variable is Z = XG + Y H, where:

• G is an k × n generating matrix of a code,
• H is an (n − k) × n generating matrix of a code of dual distance d + 1,
• + is the bitwise addition in F

n
2 , sometimes also denoted by ⊕.

The random variable Y H is the mask. In practice, the bits making up Z can be
manipulated in whatever order, i.e., they can even be scheduled to be manipu-
lated one after the other, like in a bitslice implementation. We call Z an encoding
with codes, or ODSM [3].

Then, we have the following twain theorems.

Theorem 9. Encoding with codes is secure against probing of order d.
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Proof. By definition of a code of dual distance d + 1, any tuple of less than
d coordinates is uniformly distributed [9]. Thus, if the attacker probes up to
d (inclusive) wires, this word seen as an element of F

d
2 is perfectly masked.

Therefore, no information on X can be recovered. ��
Theorem 10. (Masking with codes is d-th order secure in the bounded-
moments model). For all pseudo-Boolean function ψ : F

n
2 → R (leakage func-

tion, denoted y = ϕ ◦ f in Sect. 2.2) of degree d◦(ψ) ≤ d, we have

Var(E(ψ(XG + Y H|X))) = 0. (10)

Proof. Let ψ′ the indicator of the code generated by H. Since H has dual-
distance d + 1, we have that for all z ∈ F

n
2 , 0 < wH(z) ≤ d, ψ̂′(z) = 0, where

ψ̂′(z) =
∑

z′∈F
n
2

ψ′(z)(−1)z′·z. Now, owing to Lemma 1 in [4], we also know that

for all z ∈ F
n
2 , wH(z) > d◦(ψ), ψ̂(z) = 0.

Now, we must prove that Var(E(ψ(XG + Y H|X))) = 0, that for all x ∈ F
k
2 ,∑

y∈F
n−k
2

ψ(xG + yH) =
∑

z∈F
n
2

ψ(xG + z)ψ′(z) = (ψ ⊗ ψ′)(xG) is the same,
where ⊗ is the convolution product.

Actually, we can prove more than that, namely that ψ ⊗ ψ′ is constant on
the full F

n
2 . This is equivalent to proving that ψ̂ ⊗ ψ′ = ψ̂ψ̂′ is equal to zero on

F
n
2\{0}. Indeed, let z ∈ F

n
2 , z = 0. If wH(z) > d◦(ψ), then ψ̂(z) = 0. And if

wH(z) ≤ d◦(ψ) ≤ d, then ψ̂′(z) = 0. So, in both cases, we have ψ̂(z)ψ̂′(z) = 0. ��
Notice that the function ψ : F

n
2 → R such that ψ(x) =

∑n−1
i=0 xi2i, has degree

one. It is sometimes (abusively) referred to as the identity function. Obviously,
if the attacker gets to know ψ(Z), then he can recover Z, hence deduce X by
projection on subspace vector C. But this is not our security hypothesis. Our
result from Theorem 10 (and in particular its Eq. (10)) is that the inter-class
variance of ψ(Z) knowing X is equal to zero, for all d◦(ψ) ≤ d.

In Eq. (10), the degree of ψ can be accounted by two reasons:

1. High-order leakage in y = ϕ ◦ f , owing to glitches (see Sect. 4), capacitive
coupling, IR drop, etc. (refer to [18, Sect. 4.2]);

2. Combination function from the attacker, which can be: multivariate (which
involved a product of shares), monovariate (hence necessarily high-order zero-
offset).

As another remark, we notice that, although it is not strictly mandatory, the
randomized variable Z can be manipulated by subwords, a bit like for classical
masking, where the subwords coincide with shares.

Let us give the example of the look-up table, in the case k = 8 and n = 16.
We know that we can reach 4-th order security [4]. But we can decide not to
manipulate only Z as such, but to cut it into two parts, Z = (ZH , ZL), where
ZH , ZL ∈ F

8
2. This cut is motivated by the adequation between the masking

scheme and the machine architecture, where maybe the basic register size is 8
bits. Then, we also cut the T-table(s) into two tables, namely TH and TL, both
of 256 bytes. The Algorithm 1 allows to evaluate the T-table using bytes only,
i.e., without placing ZH and ZL side-by-side for all data Z.



Codes for Side-Channel Attacks and Protections 45

Input :

– (zH , zL) ∈ F
8
2 × F

8
2

– TH , TL, two tables of size 216 bytes

Output : The result of the lookup (TH [zH × 28 + zL], TL[zH × 28 + zL])

1 Initialize z′
H ∈ F

8
2 and z′

L ∈ F
8
2 to zero

2 for h = 0 to 28 − 1 do
3 for l = 0 to 28 − 1 do
4 z′

H ← z′
H ⊕ TH [h × 28 + l] ∧ (h = zH) ∧ (l = zL)

5 z′
L ← z′

L ⊕ TL[h × 28 + l] ∧ (h = zH) ∧ (l = zL)

6 end

7 end
8 return (z′

H , z′
L)

Algorithm 1. S-box evaluation by block, without ever using a 16-bit word

3.5 Illustration for Some Coding-Based Masking Schemes

In the previous section, we have shown with Theorems 9 and 10 that the two
models (bit-level probing and bounded moments) are equivalent, which motivates
to consider the probing model at bit level (as opposed to at word level, as done
in many papers (to cite a few: [16,19]). We give hereafter some examples of
masking with codes at bit-level.

Perfect Masking. The masks M1, M2, etc. are chosen uniformly in F
k
2 . We

assume here that k|n. It is possible to see perfect masking as a special case of
ODSM [3], where:

G =
(
Ik 0 0 . . . 0

)
and H =

⎛

⎜⎜⎜⎝

Ik Ik 0 . . . 0
Ik 0 Ik . . . 0
... 0 0

. . . 0
Ik 0 0 . . . Ik

⎞

⎟⎟⎟⎠ . (11)

Rotating Substitution-Box Masking (RSM [32]). Let us illustrate RSM
on n = 8 bits. The mask M is chosen uniformly in:

– the set C0 = {0x00} for no resistance,
– the set C1 = {0x00, 0xff} for resistance to first-order attacks,
– the set C2, a non-linear code of length 8, size 12 and dual distance d⊥

C2
= 3,

– the set C3, a linear code of length 8, dimension 4 and dual distance d⊥
C3

= 4.
This code is fully described in [15]. It is a self-dual code of parameters [8, 4, 4].

The case C3 is interesting since there are sixteen masks, hence (in hardware),
the sixteen Substitution-boxes (S) of an algorithm such as AES can be imple-
mented masked. When ϕ = wH and Z = f(T, k∗) = S(T ⊕ k∗), then the leakage
distributions X = ϕ(Z ⊕ M) are represented in Fig. 4.
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F
8
2=Z1�Z2�Z3, with |Z1|=16, |Z2|=128, |Z3|=112.

=
=

=
=

=
=

=
=

Let z be the
sensitive
variable
(z ∈ F

n
2 ,

with n = 8)

E[w1
H(z ⊕ M)]:

E[w2
H(z ⊕ M)]:

E[w3
H(z ⊕ M)]:

E[w4
H(z ⊕ M)]:

4
18
88
480

4
18
88
459

4
18
88
456

0 8 0 08 8
z ∈ Z1 z ∈ Z2 z ∈ Z3Moments:

Fig. 4. Leakage distribution of RSM using M ∼ U(C3) on n = 8 bits

0 0 0 0 0 00 1 0 0 0 0 0 0 0 0

Fig. 5. Example of one-hot counter (out of 16), used to designate the round index
position

RSM involves a random index, that is the choice of the initial codeword in
Cd, for a protection order of d. This choice can be done in a leak-free manner
by using a one-hot representation. In the case of C3, sixteen such indices can
be selected. The one-hot representation is given in Fig. 5. The random index is
selected at random initially; then, from round to round, it is simply shifted.

Leakage Squeezing (LS). In leakage squeezing, the shares are like for perfect
masking, except that some bijective functions are applied to the them, thereby
mixing bits better [10,12,13,17].

Results. For the illustration of the bounded moment model, we use for our
illustrations the Hamming weight leakage model. Notice that any other first-
order leakage model would yield comparable results.

Also, we illustrate the leakage based on two extreme plaintexts, that is 0x00
and 0xff. However, in some situations, these two plaintexts lead to the same
leakage (e.g., for symmetry reasons).

In all the presented schemes, security holds only provided there is no high-
order leakage. Said differently, it is possible to consider that there is a high-order
leakage. For instance, in recap Fig. 6, the indicated security order is the attack
total order. The total attack order is the sum of multiplicative contribution
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1st 2nd 3rd 4th

Z

M1Z ⊕ M1

Z ⊕ ⊕2
i=1 Mi

Z ⊕ ⊕3
i=1 Mi

M1

M1

M2

M2 M3

Perfect masking z = 0x00 z = 0xff

1st 2nd 3rd 4th

Z

M ∼ U({0x00, 0xff})Z ⊕ M

Rotating Substitution-box Masking (RSM) z = 0x00 z = 0xff

Z ⊕ M

Z ⊕ M

M ∼ U(C2), with d⊥
C2

= 3

M ∼ U(C3), with d⊥
C3

= 4

1st 2nd 3rd 4th

Z

Z ⊕ M

Leakage Squeezing (LS) z = 0x00 z = 0xff

Z ⊕ M

Z ⊕ M

F1(M)

F2(M)

F3(M)

F1 = Id : z ∈ F
8
2 → z ∈ F

8
2

etc. continues up to order 6

...

Fig. 6. Security level of several masking schemes. The order d = 1, 2, 3, 4 corresponds
both to the number of probes (see Fig. 1(a)) used by the attacker and to the moment
of leakage when the attacker uses an integrating probe (see Fig. 1(b))

from the hardware and the operations carried out by the attacker. That is, poor
hardware which couples bits contributes to facilitates attacks by combining bits.

3.6 Masking and Faults Detection

Codes are also suitable tools when both side-channel leakage must be masked and
faults must be detected. This need is general in cryptography, and has specific
applications when thwarting Hardware Trojan Horses (HTH) [11,33,34]. Indeed,
the activation part of a HTH is impeded by masking, whereas the payload part
is caught red-handed by a detection code.

4 Leakage Model, and Glitches

The term glitch refers to a non-functional transition(s) occurring in combina-
tional logic. They exist because combinational gates are non-synchronizing, i.e.,
they evaluate as soon as one input arrive. In terms of hardware description lan-
guages (VHDL, Verilog, etc.), they are modelled as processes where all inputs
belong to the sensitivity list. Thus, for the vast majority of gates with many
inputs, there is the possibility of a race between the inputs. Therefore, some
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gates can evaluate several times within one clock period. Actually, the deeper
the combinational gates, the more likely it is that:

– there is a large timing difference between the inputs, thereby generating new
glitches, and

– some input is already the output of a glitching gate, thereby amplifying the
number of glitches.

It is known that glitches can defeat masking schemes [28–30]. Some masking
schemes which somehow tolerate [21,22,35,39] or avoid glitches [27,31] have
been put forward. However, the real negative effect of glitches on security is
usually perceived in a qualitative manner.

Therefore, we would like to account quantitatively for the effect of glitches.
Let us start by an illustrative example, provided in Fig. 7. The upper part of
this figure represents a pipeline, where some combinational gates (AND gates
represented by and XOR gate represented by ) form a partial netlist

between two barriers of flip-flops (DFF gates represented by ). For the sake
of this explanation, all the gates are assumed to have the same propagation
time, namely 1 ns. The lower part of this figure gives the chronograms of the

y1

y2

y3

y4

x0

x1

x2

x3

x4

y0

time0 ns 1 ns 2 ns 3 ns 4 ns

x0

x1

x2

x3

x4

y0

Fig. 7. Example of 4th-order glitch occurring upon 4th-order conjunction
∧i=4

i=1 xi
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execution of this netlist, when initially all signals are set to zero. It appears
that, owing to the difference of paths between the two inputs of the final XOR
gate, this gate generates a glitch, highlighted with symbol , which lasts 3 ns,
between time 1 and 4 ns within the depicted clock period. The condition for this
glitch to appear is the following: x1 ∧ x2 ∧ x3 ∧ x4. This means that this glitch
is a 4th-order leakage. So, if the masking scheme is only 3rd-order resistant, the
setup of Fig. 7 would generate a glitch which compromises the security in a 1st-
order side-channel attack. That is, the circuit itself contributes to the attack, in
combining the bits on behalf of the attacker.

Assume now a setup slightly more simple than that of Fig. 7, where there
is only one AND gate behind the second input of the XOR gate. However, we
assume such pattern is present twice, once computing y0 = x0 ⊕ (x1 ∧ x2), and
another time computing y5 = x5⊕(x4∧x3). Then, in this case depicted in Fig. 8,

y1

y2

y3

y4

x0

x1

x2

x3

x5

y0

0 ns 1 ns 2 ns

y5

time

x0

x1

x2

x3

x4

x5

y0

y5

Fig. 8. Example of two 2nd-order glitches occurring upon 2th-order conjunctions∧i=2
i=1 xi and

∧i=4
i=3 xi
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the leakage incurred by the glitches at the output of the XOR gates would only
combine two bits amongst the xi (namely x1 & x2, and x3 & x4). Therefore, it
suffices for the attacker to conduct a 2nd-order attack on the glitchy traces to
succeed a 2 × 2 = 4th order attack on the masking scheme. The circuit and the
attacker collaborate in the objective of realizing a 4th-order attack: half of the
combination is carried out by the circuit ((x1 ∧ x2) and (x3 ∧ x4)), while the
other half is left remaining to the attacker. Indeed, by raising the traces to the
second power, the attacker obtains a term (x1 ∧ x2) × (x3 ∧ x4), which coincides
with the leakage condition of Fig. 7, that is

∧i=4
i=1 xi.

To conclude on the leakage model complexification, we underline that it has
a negative impact on two situations:

– on low-entropy masking schemes, where the individual shares are not protected
at the maximum order (see for instance RSM in Sect. 3.5), and

– on any masking schemes, where shares interact between themselves by some
combinational logic.

In those two cases, a great care must be taken; tools as that described in [18]
can help check the design is secure (or not).

5 Conclusion

Throughout this paper, we have seen how coding and side-channel analysis can
benefit one from another, for attack as well as for protection.

This is a nice example of cross fertilization between disciplines, in which
Claude Carlet played a decisive role. Thanks to you, Claude!

Acknowledgements. Part of this work has been funded by the ANR CHIST-ERA
project SECODE (Secure Codes to thwart Cyber-physical Attacks).

A SNR in the Presence of First Order Masking

Let us consider a first-order masking scheme [1]. By design, a first-order side-
channel attack fails. However, a second-order side-channel attack, combining two
samples, can succeed. The setup is the following: the leakage is:

(
X1

X2

)
=

(
α1Y

�
1

α2Y
�
2

)
+

(
N1

N2

)
,

where:

– N1 ∼ N (0, σ2
1) and N2 ∼ N (0, σ2

2) are two independent noise sources,
– α1 and α2 are the amount of leakage,
– Y �

1 and Y �
2 are leakage functions (assumed normalized, that is E(Y �

i ) = 0 and
Var(Y �

i ) = 1, for i ∈ {1, 2}).

https://secode.enst.fr/
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In the Boolean masking where the attacker target the pair (mask, masked sub-
stitution box S), the leakage model is:

– Y1 = 2√
n

(
wH(S(T ⊕ k) ⊕ M) − n

2

)
= − 1√

n

∑n
b=1(−1)Sb(T⊕k)⊕Mb and

– Y2 = 2√
n

(
wH(M) − n

2

)
= − 1√

n

∑n
b=1(−1)Mb .

The notation Mb means bit b ∈ {1, . . . , n} in bitvector M ∈ F
n
2 .

As the masking is first-order perfect, we indeed have that E(Yi|T = t) does
not depend on the key, for each share i ∈ {1, 2}. However, the attacker is inclined
to combine the two leakages by a centered product, since the expectation of this
combination Yc = Y1Y2 depends on the key, despite the masking with the uniform
M ∼ U(Fn

2 ). Precisely, let t ∈ F
n
2 one realization of T . We have that:

E(Yc|T = t) =
1
2n

∑

m∈F
n
2

1
n

∑

b,b′
(−1)Sb(T⊕k)⊕mb⊕mb′

=
1

n2n

∑

m∈F
n
2

∑

b

(−1)Sb(T⊕k) (because m is uniform on F
n
2 )

= − 1
2
√

n

(
wH(S(T ⊕ k)) − n

2

)
, (12)

which happens to be proportional to the leakage model of the substitution box
when the masking is disabled (M = 0). Indeed, one can derive from Eq. (12)
that:

E(Yc|T = t) = − 1
2
√

n
E(Y1|T = t,M = 0).

The second-order attack thus consists in applying the regular correlation
power analysis (CPA [2]):

– targeting Xc = X1X2 instead of X1 or X2,
– using as leakage model E(Yc|T ), where we recall that Yc = Y1Y2 [38].

Thus, the new leakage to analyse is:

Xc = X1X2 = (α1Y
�
1 + N1)(α2Y

�
2 + N2)

= α1α2Y
�
1 Y �

2︸ ︷︷ ︸
signal

+α1Y
�
1 N2 + α2Y

�
2 N1 + N1N2︸ ︷︷ ︸

noise

.

Indeed, the term Y �
1 Y �

2 conditionally to the known plaintext T depends on the
key (recall Eq. (12)), whereas the other terms α1Y

�
1 N2 + α2Y

�
2 N1 + N1N2 do

not.
Therefore, the SNR in the case of the second-order attack is:

SNR(2o) =
Var(α1α2Y

�
1 Y �

2 )
Var(α1Y �

1 N2 + α2Y �
2 N1 + N1N2)

. (13)
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Proposition 11. The SNR in the case of the second-order attack is:

SNR(2o) =
SNR1 · SNR2

1 + SNR1 + SNR2
,

where SNRi = α2
i /σ2

i for i ∈ {1, 2}.
Proof. We have:

ET,M (Y �
1 Y �

2 ) =
1

22n

∑

t∈F
n
2 ,m∈F

n
2

Y �
1 Y �

2

=
1

22n

(
2√
n

)2 ∑

m

(
wH(m) − n

2

)∑

t

(
wH(S(t ⊕ k�) ⊕ m) − n

2

)

=
1

22n

(
2√
n

)2 ∑

m

(
wH(m) − n

2

)∑

z

(
wH(z) − n

2

)
(14)

= 0 × 0 = 0.

At line (14), we used the fact that S is a bijection of F
n
2 (as is SubBytes in

AES [36]).
Besides, we also have:

ET,M

(
(Y �

1 Y �
2 )2
)
=

1

22n

∑

t∈F
n
2 ,m∈F

n
2

(Y �
1 )2(Y �

2 )2

=
1

22n

(
2√
n

)4∑

m

(
wH(m) − n

2

)2∑

t

(
wH(S(t ⊕ k�) ⊕ m) − n

2

)2

=
1

22n

(
2√
n

)4∑

m

(
wH(m) − n

2

)2∑

z

(
wH(z) − n

2

)2
(15)

= 1 × 1 = 1 (as per the normalization of Y �
1 and Y �

2 ).

Therefore, the variance of the signal is equal to α2
1α

2
2.

Regarding the noise part, we have:

E(α1Y
�
1 N2 + α2Y

�
2 N1 + N1N2) = 0,

by independence between N1, N2 and Y �
i for i ∈ {1, 2}. We also have:

Var(α1Y
�
1 N2 + α2Y

�
2 N1 + N1N2) = E

(
(α1Y

�
1 N2 + α2Y

�
2 N1 + N1N2)2

) − 0

= α2
1σ

2
2 + α2

2σ
2
1 + σ2

1σ
2
2 .

As a result, we have:

SNR(2o) =
α2
1α

2
2

α2
1σ

2
2 + α2

2σ
2
1 + σ2

1σ
2
2

=
SNR1 · SNR2

1 + SNR1 + SNR2
.

��
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Corollary 12 (Limit of SNR(2o) in the presence of large noise). When
the noise is large, that is SNRi � 1 for i ∈ {1, 2}, then

SNR(2o) ≈ SNR1 · SNR2 ≈ SNR2 (if SNR1 ≈ SNR2 = SNR). (16)

Proof. Immediate first-order simplification of SNR(2o) as given in
Proposition 11. ��
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Abstract. We presented an overview of the state-of-the-art of cloud
computing security which covers its essential challenges through the
main different cyber-security threats, the main different approaches,
algorithms and techniques developed to address them, as well as the
open problems which define the research directions in this area. The
bottom line is that the state of maturity of cloud computing security
is very promising and there are many research directions still open and
which promise continued improvements of cloud security and privacy.

1 Introduction

Cloud computing is the use of computing resources that are delivered as a service
via Internet [1] to provide a secure, and on demand network access to shared
pool of configurable resources and different kind of services, such as, Software as
a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a service
(IaaS). During the last decade, there has been an increasing demand and adop-
tion of cloud computing systems, technologies, applications and services. This
is owing mainly to the many advantages this technology offers for businesses
and organizations such as its high resources elasticity and scalability which pro-
vide important savings in terms of investment and manpower. However, Cyber-
security is still considered among the most important issues and concerns limiting
the widespread adoption of cloud computing. Among the major issues related
with Cloud Computing security we can mention data security, intrusions attacks,
confidentiality and data integrity Cloud computing provides several advantages
allowing to have new business opportunities. However, it also involves potential
cyber-security risks and vulnerabilities. For instance, storing data in the cloud
may expose them to serious cyber-security attacks. The main objective of this
paper is to present an up-to-date overview of cloud computing cyber-security
issues. This will allow to identify the major research challenges in this increas-
ingly important area. The remainder of this paper is organized as follows. In
Sect. 2 we provide an overview of cloud computing, Sect. 3 is dedicated to the
state of the art of cloud computing challenges, the current approaches used to
circumvent them and a comparative study of related approaches.
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2 Cloud Computing

A. Definition
According to the National Institute of Standards and Technology (NIST) [2]:
“Cloud Computing is a model for enabling ubiquitous, convenient, on demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction.
B. Cloud Computing Characteristics
The main characteristics and features of Cloud Computing can be summarized
in the following:

(1) Multi-Tenancy [3] which refers to having more than one occupants of the
cloud, living and sharing other occupants of the provider’s infrastructures,
including computational resources, storage, services, and applications. By
multi-tenancy, clouds provide simultaneous, secure hosting of services for
various clients or customers using the same cloud infrastructure resources.
It is an exclusive characteristic to resource sharing in clouds.

(2) Elasticity [4] is another important feature of cloud computing and it implies
that the user is able to scale up or down resources assigned to services or
resources based on the current demand. For providers, scaling up and down
of a tenant’s resources give a prospect to other tenants to use the tenant
previously assigned resources.

(3) Availability of Information based on the Service level Agreement (SLA) [6]
which is a trust bond between the cloud provider and the customer. This
defines the maximum time for which the network resources or applications
may not be available for the customer. Due to the complex nature of the
customer demands, a simple measure and trigger process may not work for
SLA enforcement.

(4) Multiple Stakeholder in the cloud Computing model means that there are
different Stakeholders involved [5], such as the cloud provider (an entity that
delivers infrastructures to the cloud’s customers), the service provider (an
entity that uses the cloud infrastructure to deliver applications/services to
end users), and the customer (an entity that uses services hosted in the
cloud infrastructure). Each stakeholder has its own security management
systems/processes and its own requirements and capabilities distributed
from/to other stakeholders.

(5) Third-Party Control [7] which is considered to be the major security chal-
lenge, that is, the owner of the data has no control on their processing. The
biggest change for Information Technology (IT) department of an organiza-
tion using cloud computing will be reduced control even as it is being tasked
to tolerate increased responsibility for the confidentiality and compliance of
computing practices in the organization.

C. Service Models
Cloud Computing offers services that can be grouped into three categories, as
shown in Fig. 1
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Fig. 1. Cloud computing service model

(1) Infrastructure-as-a-Service (IaaS) [1] through which the cloud providers
deliver computation, storage and network resources. In this model, customers
do not need to maintain huge servers; they just need to choose their required
infrastructure using a web browser and they will be provided with all sorts of
hardware infrastructure by the cloud service provider (CSP). As an examples
of IaaS vendors, we can cite Citrix, 3tera, VMware, HP, and Dell.

(2) Platform-as-a-service (PaaS) [1] for which Cloud providers deliver platform,
tools and business services to develop, deploy and manage their applications.
PaaS facilitates the customer organization in developing software applica-
tions, without investing huge amounts of money on infrastructure, which will
be delivered to the users over Internet on-demand and rent basis (i.e. pay-
as-you-use). Web servers, application servers, development environment, and
runtime environment are some example components with respect to PaaS. In
this model, customers need not maintain underlying infrastructure includ-
ing servers, cooling, operating systems, storage, etc. As examples of PaaS
vendors, we can mention Google AppEngine, force.com, Microsoft Windows.

(3) Software-as-a-Service (SaaS) [1] for which Cloud computing providers offer
applications hosted in the cloud infrastructures for application implementa-
tion. Example components for SaaS are office suites (docs), online games,
email applications, online readers, online movie players, etc. In this model,
customers need not maintain heavy investment on system configuration
to run all these applications; they just require Internet access and a web
browser. Salesforce.com, Amazon, Zoho, Microsoft Dynamics CRM, and
Google are some examples of SaaS vendors.

D. Service Deployement
A cloud deployment model means a specific type of cloud computing environ-
ment, characterized by several features such as ownership, size, and access mode.
As shown in Fig. 2, there are three common cloud deployment models, namely,
private cloud, public cloud, and hybrid cloud.

(1) Private cloud [1] is for the only use of a single company/organization and its
customers. This setup may reside inside or outside the customer’s premises.
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Fig. 2. Cloud computing deployment models

This cloud setup could be controlled, maintained or maneuvered by a third
party or the organization itself or a combination of them.

(2) Public cloud [1] is for open use by the general public i.e. individuals or orga-
nizations. It resides on the premises of the CSP. This cloud setup could
be controlled, maintained or maneuvered by different government organi-
zations, corporate organizations, academic institutions or a combination of
them to the extent permitted by the CSP.

(3) Hybrid cloud [1] is a combination of two or more distinct and unique cloud
setups (private, community, or public) which are tied together by standard-
ized or registered technology that ensures and allows data and application
portability.

E. Cloud Actors
There are five cloud actors which are concisely explained below.

(1) Cloud consumer [8] is a person or an organization that maintains a business
relationship with the cloud providers and uses their services.

(2) Cloud provider [8] is a person or an organization that is in charge for making
a service available to other parties.

(3) Cloud auditor [8] is a party that performs independent evaluation of cloud
services, information system operations, performance, and security.

(4) Cloud broker [8] is an entity that supervises the use, performance, and deliv-
ery of cloud services and which negotiates the relationships between cloud
providers and cloud consumers.

(5) Cloud carrier [8] is an intermediary that provides connectivity and transport
of cloud services from cloud providers to cloud consumers.

3 Cloud Computing Cyber-Security

Cloud computing attracts different users owing to its high resources elastic-
ity and scalability which provide important savings in terms of investment and
manpower. Cloud minimizes the need for user involvement by masking technical
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details such as software upgrades, licenses, and maintenance from its customers.
However, the new concepts introduced by cloud computing, such as compu-
tation outsourcing, resource sharing, and external data warehousing, increase
security and privacy concerns and create new security challenges. This section
gives a thorough presentation and discussion of cloud computing cyber-security
challenges, a review of security threats, and a comparative study of the latest
different approaches and techniques used against them.

A. Cyber-security challenges

(1) Data Security: Ensuring data security and privacy in the cloud means the
ability to ensure the principle key features of security, namely, confidentiality,
integrity and availability. The main requirements for information security is
data integrity that refers to the guarantee that users’ data are not modified
without authorization [10,13], in other words, data can be modified only by
authorized users. In order to provide data integrity from both the provider
and subscriber perspectives, secure encryption algorithms are generally used.
However, encryption alone does not guarantee that data are not maliciously
modified [12]. Due to the dynamic, shared and distributed nature of the cloud
there is another important challenge for cloud users, namely, confidentiality.
This refers to data privacy and accuracy which allows protecting private and
sensitive data. To provide data confidentiality, one simple approach consists
to save encrypted data in the cloud servers. As regards data availability,
it refers to the ability of cloud users to access and use data any time and
from anywhere. This means that the cloud system should be accessible and
useful to authorized users anytime and anywhere [12,13]. There are several
cyber-security threats that may face the cloud services availability. These are
network based attacks such as Distributed Denial of Service (DDoS) attacks
[10]. To ensure the safety and the availability of data, cloud providers should
maintain an appropriate action plan for risk management to deal efficiently
with these threats and to guarantee the cloud based services continuity [9].

(2) Cloud Network Infrastructure Security: A cloud service provider should be
able to accept trustful network traffic, and to block malicious network traffic
[9]. The cloud network infrastructure security should be able to block and
protect against Denial of Service (DoS) attacks, to detect and prevent intru-
sions and to allow logging and notification. DoS defenses are based on net-
work security, which should effectively filter queries and identify invaders to
prevent malicious attacks [14]. The IDS/IPS systems detect or block known
malware attacks, virus signatures and spam signatures but are also subject
to false positives. Logging and notification allows cloud users to have some
insight into the network’s cyber-security health [9].

(3) Cloud Applications Security: Businesses and organizations should protect
their cloud based applications from all sorts of cyber-security threats. More-
over, cloud applications security is similar to web applications security when
hosted in data centers. Many organizations propose single sign on (SSO) as
a solution to allow users to access multiple individual cloud services [14].
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However, it is hard to implement SSO solutions correctly. In addition, many
authentication methods require a secure software layer. To ensure cloud
applications (APIs) security, there are different action items proposed in [9],
namely:

• A design phase is used to carefully plan how the components of the cloud
service will interact. Determine if the APIs can be restricted so that only
trusted hosts can call them. Ensure that inter-service communication is
securely authenticated.

• Ensure that the tools used are appropriate for APIs and can target the
deployed technologies.

• Use testing to validate security monitoring and alerting capabilities.
Ensure that any successfully exploited vulnerability was logged and appro-
priate alerting occurred.

B. Cyber-security threats
In this section, a classification of cloud computing cyber-security threats are
detailed. In 2013, cloud security Alliance organized a panel of industry experts
in order to present the Nine Cloud Computing Top Threats. Table presents a
summary of Cloud security threats, proposed approaches to circumvent them,
and a comparison with other approaches.
C. Cloud Cyber-security Techniques
In this section, we are going to make a zoom on some of the cloud cyber-security
techniques presented in Table 1 above. These techniques may be classified into
three categories:

• Data Integrity
• Authentication & Authorization
• Denial Of Service

Data Integrity (Data Loss & Data Breaches): In Table 1 above, several techniques
have been proposed in order to deal with data integrity threats. These techniques
use data encryption algorithms to give the data owner verifiable guarantees that
their data remain trustful.

(1) Encryption algorithms: Plain RSA, AES, FDE, and Fully Homomorphic
encryption (FHE).

(a) Fully Homomorphic Encryption is the most widely used encryption tech-
nique [22] in the literature. It means that the cloud provider can run the
corresponding code a client requests, while not obtaining access neither to
the argument data nor to the result data. Homomorphic encryption is an
encryption algorithm proposing cloud computing data security scheme based
on cloud data security problem. This encryption scheme includes four algo-
rithms, namely, key generation algorithm, encryption algorithm, decryption
algorithm and Additional Evaluation algorithm. The main idea behind this
encryption scheme is the conversion of data into cipher-text that can be
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analyzed and worked with as if it were still in its original form [23]. FHE
ensures the transmission of data between the cloud and the user safely, while
the data stored in the cloud is still protected. However, FHE suffers so far
from a problem related with huge computation requirements. This is still an
open problem.

(b) Field Programmable Gate Array (FPGA) [24]: This is another approach
which can also be used to ensure data integrity. FPGA is an integrated
circuit designed to be configured by a customer or a designer after man-
ufacturing - hence “field-programmable”. J. M. Mondol proved that with
the use of FPGA, four different types of solutions are given to ensure user
authentication and user data security [25], namely:

• Trusted cloud computing platform ensuring computational trust.
• User enabled security groups for data collaboration.
• Data Security.
• Verifiable Attestation.

All these solutions guarantee that cyber-security is enabled by the Client
who is the owner of the data. However, FPGA suffers from huge implementation
complexity.

(2) Authentication and Authorization: Account hijacking, malicious intruders,
and insecure Applications, are all threats resulting from authentication and
authorization problems in cloud computing. As solutions to these cyber-security
threats, we present in Table 1 above the approaches and algorithms, such as
Message Authentication code (MAC), key-hashed Message Authentication code
(HMAC), Federated identity management (FIDM), Kerberos, Transport Layer
Security (TLS), Trusted Third Party, Service Level Agreement (SLA) and cloud
Security Management Framework. All these solutions could mitigate cloud com-
puting security threats.

The most widely used approaches, namely, Kerberos and the Service Level
Agreement are explained below

(a) Service Level Agreement (SLA) [21] is a document that identifies the terms,
conditions and it is able to create negotiations between the user and the
provider. SLA is characterized by the following features.

• Minimum of performance level that the provider should provide
• Counteractive actions
• Consequences in case of breach of the agreement between user and

provider.

The users have to be very obvious about security requirements for their
property and all the requirement should be methodically agreed upon in the
SLA. In case of doubts, it is harder to declare the defeat at a provider. In order
to manage SLAs in a cloud computing environment, references [30,32] suggest
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Table 1. Summary of threats to cloud and solution directions
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Web Service Level Agreement (WSLA), a very flexible architecture for managing
SLAs between providers and users. WSLA is designed to capture service level
agreements in a formal way, but it suffers from some computation problems which
need more investigations. The other approach used to provide Authentication
and Authorization security is Kerberos [28].

(b) Kerberos is a computer network protocol which works on the basis of ‘tick-
ets’ to allow nodes communicating over a non-secure network to prove their
identity to one another in a secure manner. Cloud data storage security and
user’s data management in the cloud based upon Kerberos authentication
service is proposed in [29]. In order to ensure the correctness of users’ data in
cloud, data storage and the users who can access the Cloud server, an effec-
tive and flexible distributed scheme with explicit dynamic data support,
including Kerberos authentication service and third party, was proposed.
Kerberos provides a centralized authentication server whose function is to
authenticate the user to the cloud server and the cloud server to the user.
To access the cloud server, all users should make the profile and set a pass-
word, then they can use the cloud server with some restrictions imposed by
kerberos.

(3) Denial of Service: There are two main approaches proposed to deal with
this cyber-security threat, namely, Firewalls and Intrusion detection Systems
(IDPS).

(a) Firewalls [31] are utilized to reject or permit protocols, ports or IP addresses.
Since firewalls detect the network packets at the limit of a network, intrud-
ers’ attacks cannot be detected by traditional firewalls. Only some DoS or
Distributed DOS (DDoS) attacks are also too complex to detect using tra-
ditional firewalls. For instance, if there is an attack on port 80 (web service),
firewalls cannot distinguish good traffic from DoS attack traffic. Another
solution is to add in IDS or IPS to the Cloud.

(b) IDPS [26,31] provides a real-time intrusion detection method and system.
The IDS automatically and dynamically builds user profile data (known as
a signature) for each user (or alternatively, a class of users) that can be
used to determine normal actions for each user to reduce the occurrence of
false alarms and to improve detection. The user profile data (signature) is
saved and updated every time the user logs on and off Intrusion Prevention
system [31] with the help of IDS, monitors network traffic and system activ-
ities to detect possible intrusions and dynamically responds to intrusions by
blocking the traffic or quarantine it.

(c) Intrusion Detection and Prevention Systems [31]: Having their own
strengths and weaknesses, individual IDS and IPS are not able to provide
efficient security. It is very effective to use a combination of IDS and IPS,
which is called IDPS. Apart from identifying possible intrusions, IDPS stops
and reports them to security administrators. Proper configuration and man-
agement of IDS and IPS combination can improve Cloud security. NIST
explained how intrusion detection and prevention can be used together to
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strengthen security, and it also proposed different ways to design, configure,
and manage IDPS. However, IDPS drawbacks are still an open problem.

(d) Reputation-Based Voting (RBV) approach [33] for tolerating collusive com-
puting resources in large-scale grid computing systems, which can be seen
as a cloud computing service, which is used for business development has
a strong potential for other Cloud computing services. To overcome the
high overhead and the performance degradation by replication with voting
mechanisms in the presence of collusion attacks, the voting method has been
improved by combining it with reputation system. The voting decision of the
task is generated based on the reputation value of the computing resources
that participate in the computation of such task. This approach can provide
a lower error rate with better performance in terms of overhead compared
to the m-first voting and credibility-based voting techniques. This tolerance
scheme for detecting collusive computing resources is more accurate and
more reliable. Therefore, this approach can help improve the efficiency of
voting-based techniques, to tolerate collusive computing resources, and to
increase the security level of cloud computing. However, this approach con-
siders only the case of an attacks model which represents a single group of
collusive computing resources distributed in several Virtual Organizations
(VOs). Such resources always return the same wrong results with a fixed
collusion probability.

4 Conclusions

In this chapter, we presented an overview of the state-of-the-art of cloud com-
puting security which covers its essential challenges through the main differ-
ent cyber-security threats, the main different approaches, algorithms and tech-
niques developed to address them, as well as the open problems which define the
research directions in this area. The bottom line is that the state of maturity of
cloud computing security is very promising and there are many research direc-
tions still open and which promise continued improvements of cloud security and
privacy.
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Abstract. The proposed article aims, for readers, to learn about the
existing efforts to secure and implement Somewhat/Fully Homomorphic
Encryption ((S/F)HE) schemes and the problems to be tackled in order
to progress toward their adoption. For that purpose, the article provides,
at first, a brief introduction regarding (S/F)HE. Then, it focuses on some
practical issues related to the adoption of (S/F)HE schemes, i.e. the
security parameters, the existing implementations and their limitations,
and the management of the huge complexity caused by homomorphic
calculation. These issues are analyzed with the help of recent related
work published in the literature, and with the experience gained by the
authors through their experiments.
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1 Introduction

Homomorphic Encryption (HE) is a recent promising tool in modern cryp-
tography, that allows to carry out operations on encryptYAed data. The key
idea is that performing some operations on encrypted data will provide the
same result after decryption as if the computation would have been performed
on the original plain data. Then, with such a tool one could outsource stor-
age and/or computation without endangering data’s privacy. Figure 1 illustrates
different client/server scenario benefiting from homomorphic encryption. Some
examples of applications can be found in the literature, e.g. [NLV11,GLN12,
c© Springer International Publishing AG 2017
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LLN14,BPB09,CGGI16b]. While usual cryptographic schemes sometimes have
homomorphic properties, for addition [Pai99] or multiplication [ElG85] opera-
tions (see also [FG07] for a survey on such partially homomorphic schemes),
an important breakthrough has been made in 2009 according to the work of
Gentry [Gen09b,Gen09a]. Based on hard lattice problems, he proposed the first
Fully Homomorphic Encryption (FHE) scheme, enabling to perform an unlim-
ited number of additions and multiplications secretly. Unfortunately, this scheme
was too complex to be used in practice. Nevertheless, it introduced an interest-
ing structure as well as a nice trick called bootstrapping to reduce the inherent
noise that accompany the running of additions and multiplications. Following
this seminal work, several FHE have been proposed, but none of them were
usable in practice. It is interesting to notice that some FHE are related to more
practical schemes called Somewhat Homomorphic Encryption (SHE) schemes,
that enable an arbitrary number of additions but a bounded number of multi-
plications. In fact, with the help of bootstrapping, one can design FHE schemes
from SHE schemes. Nevertheless, this bootstrapping step adds an extra cost to
an already quite heavy process.

Fig. 1. A need for processing encrypted data, to ensure privacy in outsourced computa-
tion, outsourced storage and databases requests. Green areas show what is encrypted.
(Color figure online)

To address a particular use case, one must have in mind several constraints
that will be crucial for choosing the right homomorphic encryption solution.
First, using (S/F)HE schemes will lead to a huge ciphertext expansion (say
from 2.000 to 500.000 or even 1.000.000 according to the scheme and the tar-
geted security level). This is due to the fact that homomorphic schemes must
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be probabilistic to ensure semantic security, and to the particular underlying
mathematical structures. Second, as we will see later in this paper, we will need
to consider only worse case complexity for the algorithms that will be run on the
encrypted data; also considering that the underlying operations are intrinsically
expansive, this will drastically penalize the global running time. These are the
most important constraints we have to address. The underlying common point
behind these remarks concerns the targeted security level, as it determines the
parameters used to use the mathematical appropriate structure that will enable
a coherent computation, and then the ciphertext expansion and the running
time. Another important parameter concerns the strategy of the developer in
terms of flexibility.

Hence, two strategies can be followed to drive the choice. On one hand one
can fix a maximum multiplicative depth for the Boolean circuit to be evaluated
on the encrypted data. This may take into account a small or at least bounded
flexibility for future modifications of the circuit to be evaluated. In this case,
SHE is the best choice. On the other hand one may want to be able to use any
Boolean circuit and then to handle an unbounded multiplicative depth. In this
case, FHE is the only choice.

In this paper, we will focus on SHE schemes because they are the most
promising today, and we will discuss their implementations issues. We will also
provide some information on the state-of-the-art concerning the use of boot-
strapping to modify these schemes intro FHE ones. Our goal is to provide the
reader the best starting points to handle the complexity of the issues to address
and the efforts made to make these schemes become sufficiently efficient to be
used in practice.

2 Existing (F/S)HE Solutions

Due to lack of space, we do not provide any precise description and let the reader
refer to the mentioned papers to get all the mathematical details related to the
schemes.

2.1 SHE from Classical Crypto World

The first scheme that enabled to perform both additions and multiplications is
due to Boneh et al. [BGN05]. This pairing-based SHE enables to perform as
many additions as wanted, but only one multiplication. Hence, it is not really
flexible.

We have worked recently on the design of a variant of this scheme that allows
to handle multiplicative depth 2 (instead of 1). Our solution employs together
two improvements of the original scheme, based on [Fre10,CF15]. We will refer
to it as BGN2 in the rest of the document [HF17].
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2.2 Lattice-Based (S/F)HE

Whereas the first FHE scheme has been proposed by Gentry in [Gen09a], the
first SHE based on lattices has been propose by Aguilar et al. in [AMGH10].
These schemes have been followed by many others. First generation encom-
pass the older ones, like [vDGHV10,SV10,GHS12a,GH11]. Second generation
[BGV12,CNT12,BGV12,Bra12,FV12] started with leveled SHE schemes based
on modulus switching, which have then been improved to remain scale invari-
ant, etc. They were followed by third generation schemes like [GSW13,BLLN13,
BV14,KGV15,DS16]. In fact several of these schemes consist of improvement
of previous ones, and the genealogy in rich of cross-fertilization. For example,
SHIELD [GSW13] and F-NTRU [DS16] are the third generation schemes equiva-
lent to, respectively, FV [FV12] and YASHE’ [BLLN13]. With larger costs for the
first homomorphic multiplications, these schemes have a much better asymptotic
behavior.

3 Customization and Optimization
of Both Program and Data

The issues discussed in this section have been addressed in few papers
only [AMFF+13,FSF+13,CDS15] for the moment, but they are really important
to handle real deployment of this technology.

3.1 Program Management

To establish a proper link between the program we want to run and (S/F)HE
schemes, one must rely on the fact that any program can be expressed as a
Boolean circuit involving XOR and AND gates, and that XOR and AND are pre-
cisely the addition and multiplication operators over bits. This being said, the
game is to express the program through such a Boolean circuit, and to opti-
mize it. The last step will then be to evaluate this optimized Boolean circuit
over the encrypted data while replacing XOR and AND gates by the corresponding
encrypted operators provided by a (S/F)HE library.

The optimization step of the Boolean circuit is crucial, as it will give us the
multiplicative depth we will have to handle with the (S/F)HE scheme. This will
have an impact on the parameters of this scheme (e.g. size of the lattice, modulus,
etc.), and then on the ciphertexts size and on the resulting computation time.
Usually, we focus on this multiplicative depth, but we also have to be careful
that a very large amount of additions may also lead to heavy computations.
Also, sometimes additions following multiplications may have a different impact
than additions occurring at lower multiplicative depth. Also, when using leveled
(S/F)HE using modulus switching techniques like [BGV12], one has to optimize
at which level each ciphertext stands, to avoid any extra and costly modulus
switching. At last, the noise growth is usually symmetric between the left and
right operands, but for some particular recent schemes like [GSW13] the noise
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growth is asymmetric over the multiplications. In this case, it is important to
optimize which operand will be left or right. All these aspects should be taken
into account. This optimization issue has not been sufficiently addressed in the
literature, and a lot of work remains to be done to set theoretical bounds and
practical strategies to handle such an optimality.

Another issue related with the customization of the Boolean circuit is that it
may contain if-then-else or repeat. . . until expressions leading to branches
with dynamic size depending on the processed data. To handle such statements
properly, on must have in mind that the processed data they are depending on
are encrypted. Moreover, it is crucial that during the running process no infor-
mation about the real value of the underlying data may leak. To handle this is
easy but costly. In fact, the best approach is to rewrite such parts of the program
with the help of Boolean expressions. If we look at the if-then-else example,
one can rewrite if c then x=a else x=b as x = (c AND a) XOR ((NOT c)
AND b). The whole expression will then be evaluated over the encrypted data,
and the final encrypted result will be the good one without revealing anything
on the plain value of c. Unfortunately the price to be paid is high, as we always
have to evaluated the whole expression, meaning that we always need to evaluate
the deepest branch of the tree. Hence, computing over encrypted data always
requires the worse-case complexity. This means that when choosing an algorithm
to perform a particular computation over encrypted data, one must choose the
algorithm that provides the best worse-case complexity (whereas usually we look
for the best average-case complexity).

Finally, as (S/F)HE remain costly today, on must be really careful not to
perform non necessary heavy computations. According to a particular applicative
scenario, one must try to perform as much classical encryption as possible, and
to think of some pre-processing over the plaintexts that may help to enlight the
computation over the ciphertexts.

3.2 Data Management

Some schemes work only over integers, and some over bits. And some can manage
both. If the application scenario does not require data depend behavior, then
working over integers is usually the best choice. But if the application scenario
requires some if-then-else or repeat. . . until like statements, then we need
to work at the bit level to be able to perform <,> and = operators. In this
case, we have to provide home maid basic operators for integers additions and
multiplications, floats management,. . . but this is the price to pay to handle
such dynamic behaviors properly.

Some schemes may also be compliant with batching ability, then enabling to
group several pieces of data on the same plaintext, typically a polynomial, and
to process all these pieces of data at the same time. This drastically reduces the
costs in terms of space (memory) and running time, as several plaintexts (resp.
ciphertexts) are processed in one shot. In the literature, batching is usually
addressed through SIMD and RNS, see for example [SV14,BEHZ16].
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4 Flexibility of (S/F)HE Schemes in Terms
of Multiplicative Depth Management

4.1 SHE from Classical Crypto World

SHE schemes coming from classical crypto world are not flexible. Boneh-Goh-
Nissim [BGN05] scheme only enables the evaluation only of degree 2 polynomials,
whereas our extension BGN2 enables the evaluation of degree 4 polynomials.

4.2 Lattice-Based (S/F)HE Schemes

SHE schemes based on these lattice problems are generally much more flexi-
ble and can be turned into fully homomorphic schemes allowing computation
with arbitrary depth. The downside for this flexibility is the increased size of
ciphertexts and keys, leading to heavier computations. For these schemes, one
have to choose the maximum multiplicative depth we want to be able to han-
dle before deployment, as this multiplicative depth will drive the parameters
determining the underlying lattice. Once the scheme is deployed, it cannot be
modified. Moreover, as we have to handle “the higher the multiplicative depth,
the higher the memory and time costs” the parameters much be chosen very
carefully to maintain an acceptable cost while ensuring sufficient flexibility for
future process.

FHE schemes are generally heavier to deploy, as they need the bootstrapping
step to be sure to enhance the noise growth properly whatever the multiplicative
depth. Hence, they should be used only if one does not know in advance the mul-
tiplicative depth we would like to handle in the future in the targeted application
scenario. Good recent works to better understand the limits of this solution are
[PV15], which provides a way to optimize the bootstraps management (for any
FHE), and [CGGI16a] that proposes the more efficient current way to execute
bootstrapping (especially for FHE based on [GSW13]).

5 Security of (S/F)HE Schemes

By nature, these schemes have been designed to enhance privacy and security.
Hence, the analysis of their security is crucial. The best security level that has
been achieved for such schemes is IND-CPA. We know that IND-CCA2 in not
achievable, and the design of efficient schemes achieving IND-CCA1 is still open.
Now, we will split the security study according to the underlying mathematical
rationales.

5.1 SHE from Classical Crypto World

Schemes which are based on mathematical objects which have already been
deeply studied by the cryptographic community are better understood, and their
security is easier to manage. Among such schemes, one can mention partially
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homomorphic schemes as ElGamal, Paillier, and their variants, which are out of
the scope of this article as they cannot handle at the same time additions and
multiplications. As mentioned in Sect. 2.2, one can also mention Boneh-Goh-
Nissim scheme [BGN05], a pairing-based SHE scheme which enables to perform
as many additions as wanted, but only one multiplication, and our scheme BGN2
[HF17] which can handle one more multiplication depth.

The security of BGN2 is based on the generalized subgroup decision assump-
tion1. This problem is derived from the decision Diffie-Hellman assumption
[Bon98]. Two possible choices to instantiate groups are to select either an ellip-
tic curve or an hyperelliptic curve. We place ourselves in the first case, where
the security assumption reduces to the elliptic curve discrete logarithm problem.
The recommended group size is given by different academic and private organi-
zations at www.keylength.com according standard security levels. The order of
ciphertext expansion in BGN2 is thousands.

5.2 Lattice-Based (S/F)HE

The Learning With Errors problem is about solving a system of several noisy
linear equations. Its ring variant, Ring-LWE, allows to design more efficient
schemes with faster computations and smaller keys and ciphertexts. These prob-
lems attract large attention, beyond HE, because they are believed to be quan-
tum resistant: no known quantum algorithms perform better than the classical
ones against them.

These schemes were introduced in the previous decade, i.e. quite recently in
the time scale of cryptography, and one must tell that there is still a gap between
the theoretical hardness proofs and the practical behavior of the known attacks.

Formal Proofs. The first FHE scheme of Gentry [Gen09b] was based on two
assumptions, the Bounded Distance Decoding problem and the Sparse Subset
Sum problem which are not standard in lattice-based cryptography. The first
scheme proven secure under the LWE assumption is proposed by Brakerski and
Vaikuntanathan in 2011 [BV11]. This result was followed by numerous construc-
tions based on LWE and Ring-LWE (as [Bra12,BGV12]. . . ).

The LWE and Ring-LWE problem are proven to be at least as hard as well-
known hard problems (in their worst-case) on lattices (respectively on ideal-
lattices). Another advantage of recent lattice-based schemes is that their security
is proven under those assumptions.

Experimental Security Evaluation. Even at this point, concrete security
behind homomorphic encryption is still moving. Thus, extracting realistic para-
meters for a given security level is a main challenge of (S/F)HE scenario.

1 We choose to employ asymetric pairings to compute homomomorphic product of
fresh ciphertexts. The use of symmetric pairings would change the computational
hardness assumption [Fre10, p. 46].

https://www.keylength.com
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The standard approach so far is to focus on concrete attack means. Building
on surveys about existing attacks against LWE [APS15] and Ring-LWE [Pei16],
experiments must be pushed further to provide experimental results of secured
parameters for most promising homomorphic schemes.

Among these most promising schemes one can mention YASHE’ [BLLN13],
FV [FV12] and SHIELD [GSW13]. YASHE’ and FV have been published almost
at the same time, but YASHE’ took benefit from a strong lobby and became more
popular in the proposed implementations. However, confidence in this scheme
has been recently damaged by the subfield/sublattice attack [ABD16,KF16].
Making YASHE’ immune to these attacks would lead to oversize its parameters,
far too much for practical use [DGBL+15]. This is why among second generation
schemes FV is now the real challenger, and has received a lot of attention during
the past months [LCP16,Cry16,BEHZ16].

6 Existing Implementations of (S/F)HE Schemes

6.1 Software Implementations

We implemented BGN2, which have been presented and briefly discussed above.
In this cryptosystem, the homomorphic multiplication asks to compute pairings.
We chose to compute an optimal Ate pairing over an elliptic curve in the Barreto-
Naehrig curve family [BN05] using a program called DCLXVI [NNS10]. This
work is not yet published, but will be available soon both as an article and as a
software.

Concerning lattice-based (S/F)HE schemes, several implementations have
emerged since their introduction in 2009. Due to the pace of evolution in the
theoretical field, some are now outdated but served as good proof of concept in
the early days of (S/F)HE [Bre,Cor,Lep]. Other libraries [DGBL+15,Hal,Cry16,
LCP16] implement the latest techniques described in [SV10,FV12,BGV12,
BLLN13]. There are also private implementations like those used in [AMFF+13,
FSF+13,CDS15,BEHZ16]. Most of the libraries aim at providing tools for exper-
iments to the academic community, except [DGBL+15,LCP16,CDS15] which
can be used as building blocks for more industrialized developments.

Today, no complete benchmark is available to provide a fair and complete
overviews of the efficiency of all these schemes. The reader can refer to [LN14]
for a comparison of FV and YASHE’, and to [MBF16] for a first discussion
and comparison of FV, SHIELD and F-NTRU in terms of pros and cons, and
parameters setting.

6.2 Hardware Implementations

Hardware implementation is one of the two principal ways to accelerate
FHE/SHE schemes with dedicated components. The second one is the GPU
acceleration. Even if performances using GPU are very scheme-dependent, it
can be a good alternative to set up an homomorphic server quickly with accept-
able performances [KGV15].
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Hardware accelerators focus on accelerating the most complex operation
of Homomorphic Encryption Schemes, the multiplication of homomorphic
operands. Depending on the scheme, a million-bit integer multiplier or a poly-
nomial of degree n ∈ [4096, 32768] with coefficients of size log2 q ∈ [125, 1228]
is required. In [DOS13], an ASIC implementation of million-bits multiplier per-
forms the multiplication operation in 7.74 ms using NTT algorithm. This compu-
tation time corresponds to the computation time on a Xeon, but can be imple-
mented as a co-processor and thus requiring a much smaller area. For poly-
nomial based homomorphic encryption, due to the fact that one must address
various size of polynomials, different architectures have been investigated. To
our knowledge, all implementations are based on NTT algorithm too, except
in [MMRL+17] for small size polynomials which implements Karatsuba algo-
rithm instead. In [PNPM], a usual but optimized NTT implementation is pre-
sented for two parameter sets. The proposed accelerator performs an homomor-
phic multiplication in 6.5 ms for n = 4096 and log2 q = 125 bits, and 48 ms for
parameters n = 16384 and log2 q = 512 bits. Authors of [PNPM] implemented
512 × 512 bits multipliers with a small modular reduction by selecting a Solinas
prime modulus [Sol11]. Due to the size of polynomials and coefficients, a cache is
implemented to connect the external memory used to store intermediate coeffi-
cients. They also reported a bottleneck due to the divide and rounding required
by YASHE’ scheme, especially for large integers. That is why in [SRJV+] a pre-
computation is performed on polynomials to reduce the size of coefficients. They
split a ciphertext into a few polynomials by using the Chinese Reminder Theo-
rem (CRT) on each coefficient. The overall architecture is based on an array of
crypto-units, which gives some flexibility to process several residue polynomials
in parallel. For parameters n = 32768 and log2 q = 1228 bits, their accelerator
performs an homomorphic multiplication in 121 ms including 25 ms spent for
CRT.

Table 1. Timing results for the hardware implementation of Homomorphic Encryption.

Integer based Homomorphic encryption

Scheme Algorithm Size Homomorphic
Encryption

Homomorphic
Multiplication

Work

Gentry-Halevy NTT 1Mbits 2.09 s 7.74ms [DOS13]

DHGV 19Mbits 3.9 s no results [CMO+]

Polynomial based Homomorphic encryption

Scheme Algorithm n log2 q Homomorphic
Encryption

Homomorphic
Multiplication

Work

YASHE’ Karatsuba 2560 124 bits not
implemented

4.73ms [MMRL+17]

NTT 4096 125 bits 6.5ms [PNPM]

16384 512 bits 48ms

32768 1228 bits 121ms [SRJV+]
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Table 1 summarize the different hardware implementations available for both
integer based and polynomial based Homomorphic Encryption Schemes.

7 How to Handle Such a Huge Complexity
and Expansion?

(S/F)HE schemes defined on Elliptic Curves and Pairing present a smaller com-
plexity and expansion, and their security level is quite clear, but are very limited
in terms of multiplicative depth. For some applications this may be sufficient,
and particularly interesting, this is why we discussed them here.

Nevertheless, the biggest hope for the future comes from lattice-based
schemes, which promise to handle larger multiplicative depths processing. Once
their security will be better understood, their main drawbacks are their algorith-
mic complexity and the related ciphertext expansion. This is why it is impor-
tant to pursue designing new schemes and to look for lighter solutions. Current
ciphertext expansions can go from 10, 000 up to 1, 000, 000, depending on the
schemes and on the parameters that have been chosen (and which are directly
related with the targeted security level). The encrypted data must be uploaded
from the client device to the server, then processed on the server, and finally
the encrypted result must be downloaded from the server to the client device.
Hence, its size is critical.

To reduce the size of the uploaded data on the first step, [NLV11] proposed
to combine the (S/F)HE scheme with symmetric encryption schemes. The main
idea is that the data to be uploaded will be encrypted by the symmetric encryp-
tion scheme, and then sent to the server without any size expansion. Hence, the
server will trans-crypt this encrypted data to produce a new ciphertext which
corresponds to the encryption of the same data with the (S/F)HE that will
be used on the server to perform the desired computation. This trans-cryption
step will require the decryption circuit of the underlying symmetric encryption
scheme to be evaluated by the (S/F)HE scheme. This step’s complexity is critical,
and will lead the choice of the symmetric cipher to use. Following this idea, sev-
eral symmetric encryption schemes have been investigated. We will first mention
on-the-shelf block ciphers like AES [GHS12b,CCK+13,DHS14], and the light-
weight block ciphers Simon [LN14] and Prince [DSES14]. But the evaluation of
these ciphers by the (S/F)HE remains too complex, and recent papers proposed
new ciphers designed specifically for this purpose (i.e. with a low multiplicative
depth): the block cipher Low-MC [ARS+15], which has been broken [DLMW15]
and patched [Rec16]; the stream cipher Kreyvium [CCF+16], whose security is
the same as the well-studied stream cipher Trivium; and a more recent stream
cipher proposal called FLIP [MJSC16], which should be used carefully [DLR16].
These papers include experimental material and results. More exotic solutions
are discussed in [FHK16], but without experimental data in the paper.

The second way to reduce ciphertexts weight is to pack several inputs on the
same plaintext structure through batching. This has been briefly discussed in
Sect. 3.2
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8 Conclusion

There is still a lot of work to be done, but everything is moving fast and recent
progress are quite impressive. Hence, for some applications which are not too
critical in terms of memory and time costs it is time to adopt a practical app-
roach to make dream become reality. How to choose the good (S/F)HE scheme
for a given application scenario, and how to set it up in the best way? The
answer is not trivial at all, and this article provides some hints concerning the
implementation issues of these promising but still tricky and heavy schemes.
Our goal was to share our discussions and reflections about all the identified
issues, and to provide ad-hoc references to help the reader in his exploration of
a very prolific and dense literature. It is clear that more comparisons should be
performed between the most promising schemes. A few papers compared two
schemes at a time, like [LN14], and a first attempt to provide a wider analy-
sis can be found in [MBF16]. But it is clear that it should be pushed further,
and that fair benchmarks based on available implementations have to be driven.
Moreover, a fair and precise comparison should also be driven to properly com-
pare SHE schemes coming from classical crypto world with lattice-based ones
when targeting a small multiplicative depth, in terms of time and space com-
plexity. At the same time, open issues remain concerning a precise evaluation of
the practical security of lattice-based schemes, as well as on the optimization of
the Boolean circuits we want to evaluate over the encrypted data.
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Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp.
208–220. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44774-1 17

[ElG85] ElGamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

[FG07] Fontaine, C., Galand, F.: A survey of homomorphic encryption for non-
specialists. EURASIP J. Inf. Secur. 2007(1), 1–15 (2007)

[FHK16] Fouque, P.-A., Hadjibeyli, B., Kirchner, P.: Homomorphic evaluation of
lattice-based symmetric encryption schemes. In: Dinh, T.N., Thai, M.T.
(eds.) COCOON 2016. LNCS, vol. 9797, pp. 269–280. Springer, Cham
(2016). doi:10.1007/978-3-319-42634-1 22

[Fre10] Freeman, D.M.: Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13190-5 3

[FSF+13] Fau, S., Sirdey, R., Fontaine, C., Aguilar-Melchor, C., Gogniat, G.:
Towards practical program execution over fully homomorphic encryption
schemes. In: Eighth International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC), pp. 284–290. IEEE (2013)

http://dx.doi.org/10.1007/978-3-319-29360-8_16
http://dx.doi.org/10.1007/978-3-319-29360-8_16
http://dx.doi.org/10.1007/978-3-662-44774-1_14
http://dx.doi.org/10.1007/978-3-642-29011-4_27
http://dx.doi.org/10.1007/978-3-642-29011-4_27
https://github.com/coron/fhe
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/CryptoExperts/FV-NFLlib
http://dx.doi.org/10.1007/978-3-662-44774-1_17
http://dx.doi.org/10.1007/978-3-319-42634-1_22
http://dx.doi.org/10.1007/978-3-642-13190-5_3
http://dx.doi.org/10.1007/978-3-642-13190-5_3


Somewhat/Fully Homomorphic Encryption 81

[FV12] Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryp-
tion. IACR Cryptology ePrint Archive 2012:144 (2012)

[Gen09a] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stan-
ford University (2009)

[Gen09b] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
vol. 9, pp. 169–178 (2009)

[GH11] Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing
using depth-3 arithmetic circuits. In: IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS 2011), pp. 107–109. IEEE (2011)

[GHS12a] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with
polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29011-4 28

[GHS12b] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the
AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32009-5 49

[GLN12] Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learn-
ing on encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC
2012. LNCS, vol. 7839, pp. 1–21. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37682-5 1

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

[Hal] Halevi, S.: HElib. https://github.com/shaih/HElib
[HF17] Herbert, V., Fontaine, C.: Software Implementation of 2-Depth Pairing-

based Homomorphic Encryption Scheme, Cryptology ePrint Archive,
Report 2017/091 (2017). http://eprint.iacr.org/2017/091

[KF16] Kirchner, P., Fouque, P.-A.: Comparison between subfield and straightfor-
ward attacks on NTRU. Cryptology ePrint Archive, 2016/717 (2016)

[KGV15] Khedr, A., Gulak, G., Vaikuntanathan, V.: SHIELD: scalable homomor-
phic implementation of encrypted data-classifiers. IEEE Trans. Comput.
PP(99), 1 (2015)

[LCP16] Laine, K., Chen, H., Player, R.: Simple encrypted arithmetic library - seal
(v2.1). Technical report, September 2016

[Lep] Lepoint, T.: A proof-of-concept implementation of the homomorphic eval-
uation of SIMON using FV and YASHE. https://github.com/tlepoint/
homomorphic-simon
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Abstract. This paper studies the task of two-sources randomness
extractors for elliptic curves defined over finite fields K, where K can
be a prime or a binary field. In fact, we introduce new constructions
of functions over elliptic curves which take in input two random points
from two different subgroups. In other words, for a given elliptic curve E
defined over a finite field Fq and two random points P ∈ P and Q ∈ Q,
where P and Q are two subgroups of E(Fq), our function extracts the
least significant bits of the abscissa of the point P ⊕Q when q is a large
prime, and the k-first Fp coefficients of the abscissa of the point P ⊕ Q
when q = pn, where p is a prime greater than 5. We show that the
extracted bits are close to uniform.

Our construction extends some interesting randomness extractors for
elliptic curves, namely those defined in [7,9,10], when P = Q. The pro-
posed constructions can be used in any cryptographic schemes which
require extraction of random bits from two sources over elliptic curves,
namely in key exchange protocol, design of strong pseudo-random num-
ber generators, etc.

Keywords: Elliptic curves · Randomness extractor · Key derivation ·
Bilinear sums

1 Introduction

A deterministic randomness extractor for an elliptic curve is a function which
allows to produce close to uniform random bit-string from a random point of
the elliptic curve. The main difficulty of extracting randomness in elliptic curve
points is to find suitable and explicit constructions for such function, i.e. com-
putable in polynomial time by a Turing Machine.

The task of randomness extraction from a point of an elliptic curve has sev-
eral cryptographic applications. For example, it can be used in key derivation
functions, in key exchange protocols like Diffie-Hellman [11] and to design cryp-
tographically secure pseudorandom number generators [21].
c© Springer International Publishing AG 2017
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For instance, by the end of Diffie-Hellman key exchange protocol [11], Alice
and Bob agree on a common secret KAB ∈ G, where G is a cryptographic
cyclic group, which is indistinguishable from another element of G under the
decisional Diffie-Hellman assumption [6]. The secret key used for encryption or
authentication of data has to be indistinguishable from a uniformly random bit-
string. Hence, the common secret KAB cannot be directly used as a session key.

A classical solution is the use of a hash function to map an element of the
group G onto a uniformly random bit-string of fixed length. However, the indis-
tinguishability cannot be proved under the decisional Diffie-Hellman assumption.
In this case, it is necessary to appeal to the Random Oracle or to other technics.
Many results in this direction can be found in [12,16]. An alternative to hash
function is to use a deterministic extractor when G is the group of points of an
elliptic curve [7–10,13–15]. These constructions use exponential sums to bound
the statistical distance.

In this paper, we introduce two new constructions of two-sources randomness
extractors for elliptic curves defined over finite field. More precisely, we deal with
finite fields Fp for large prime p and finite fields Fq where q = pn. Consider an
elliptic curve E defined over a finite field Fp, with p > 5, and P and Q be two
distinct subgroups of E(Fq). For given two points P ∈ P and Q ∈ Q, the first
extractor outputs the k-least significant bits of the abscissa of the point P ⊕ Q.
We show that the extracted bits are indistinguishable from a random bit-string
of length k. In fact, we use bilinear exponential sums, recently proposed by
Ahmadi and Shparlinski [1] to bound the statistical distance.

We use the same technique to define a two-source randomness extractor for
elliptic curves defined over finite fields Fq, where q = pn. The proposed function
extracts the k-first Fp coefficients of the abscissa of the point P ⊕ Q.

We organize the paper as follows: the next section recalls some basic notion
on theory of randomness extraction, namely tools for measuring randomness: col-
lision probability, statistical distance, min-entropy, exponential character sums
over finite fields and elliptic curves, in particular we recall fundamental results
on bilinear exponential sums over elliptic curves we use in this paper. We also
give some previous results related to the randomness extraction in elliptic curves
when working only one subgroup. Section 3 introduces our first contribution, i.e.
a new construction of a two-source deterministic randomness extractor for ellip-
tic curves defined over prime fields. An analogue of this extractor for elliptic
curves defined over Fpn is given in Sect. 4.

2 Preliminaries

2.1 Deterministic Extractor

Definition 1 (Collision probability). Let S be a finite set and X be an S-
valued random variable. The collision probability of X, denoted by Col(X), is
the probability

Col(X) =
∑

s∈S

Pr[X = s]2
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If X and X ′ are identically distributed random variables on S, the collision
probability of X is interpreted as Col(X) = Pr[X = X ′]

Definition 2 (Statistical distance). Let X and Y be S-valued random vari-
ables, where S is a finite set. The statistical distance Δ(X,Y ) between X and Y
is

Δ(X,Y ) =
1
2

∑

s∈S

|Pr[X = s] − Pr[Y = s]|

Let US be a random variable uniformly distributed on S. Then a random variable
X on S is said to be δ-uniform if

Δ(X,US) ≤ δ

An equivalent definition is that |X(A)−Y (A)| ≤ δ for every event A ⊆ S, which
means that the two distributions are almost indistinguishable.

Lemma 1. Let S be a finite set and let (αx)x∈S be a sequence of real numbers.
Then,

(
∑

x∈S |αx|)2
|S| ≤

∑

x∈S

α2
x. (1)

Proof. This inequality is a direct consequence of Cauchy-Schwarz inequality:

∑

x∈S

|αx| =
∑

x∈S

|αx|.1 ≤
√∑

x∈S

α2
x

√∑

x∈S

12 ≤
√

|S|
√∑

x∈S

α2
x.

The result can be deduced easily.
If X is an S-valued random variable and if we consider that αx = Pr[X = x],

then
1

|S| ≤ Col(X), (2)

since the sum of probabilities is 1 and since Col(X) =
∑

x∈S

Pr[X = x]2.

The following lemma gives an explicit relation between the statistical distance
and collision probability.

Lemma 2. Let X be a random variable over a finite S of size |S| and δ =
Δ(X,US) be the statistical distance between X and US, the uniformly distributed
random variable over S. Then,

Col(X) ≥ 1 + 4δ2

|S|
Proof. If δ = 0, then the result is an easy consequence of Eq. 2. Let suppose that
δ �= 0 and define

qx = |Pr[X = x] − 1/|S||/2δ.
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Then
∑

x qx = 1 and by Eq. 1, we have

1
|S| ≤

∑

x∈S

q2x =
∑

x∈S

(Pr[X = x] − 1/|S|)2
4δ2

=
1

4δ2

(
∑

x∈S

Pr[X = x]2 − 1/|S|
)

≤ 1
4δ2

(Col(X) − 1/|S|).

The lemma can be deduced easily.

Definition 3 (Min-entropy). The min-entropy of a distribution X on a set
S denoted by H∞(x) is defined by :

H∞(x) = min
x∈S

log2
1

Pr[X = x]

In other words, a distribution has a min-entropy at least k if the probability
of each element is bounded by 2−k. Intuitively, such a distribution contains k
random bits.

Definition 4 (Extractor). Let S and T be two finite sets. A (k, ε)-extractor
is a function

Ext : S −→ T

such that for every distribution X on S with H∞(x) ≥ k the distribution Ext(X)
is ε-close to the uniform distribution on {0, 1}m

Definition 5 (Two-sources-extractor). Let R, S and T be finite sets. The
function Ext : R × S −→ T is a two-sources-extractor if the distribution
Ext(X1,X2) is δ-close to the uniform distribution UT for every uniformly dis-
tributed random variables X1 in R and X2 in S.

For more information on extractors, see [20].

2.2 Character Sums in Finite Fields

In the following, we denote by ep the character on Fp such that, for all x ∈ Fp

ep(x) = e
2iπx

p ∈ C
∗.

If I is an interval of integers, it’s well known [7] that

∑

x∈Fp

∣∣∣∣∣
∑

θ∈I

ep(θx)

∣∣∣∣∣ ≤ p log2(p).

Denote by Ψ =Hom(Fpn ,C∗), the group of additive characters on Fpn that can
be described by the set

Ψ = {ψ,ψ(z) = ep(Tr(αz)), for α ∈ Fpn}
where Tr(x) is the trace of x ∈ Fpn to Fp (see [19]).
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Lemma 3. Let V be an additive subgroup of Fpn . Then,

∑

ψ∈Ψ

∣∣∣∣∣
∑

z∈V

ψ(z)

∣∣∣∣∣ ≤ pn.

Proof. See [22] for the proof.

2.3 Character Sums with Elliptic Curves

Let q be a prime power and let E be an elliptic curve defined over a finite field
Fq of q elements of characteristic p ≥ 5 given by an affine Weierstrass equation

E : y2 = x3 + ax + b

with a, b ∈ Fq, see [18]. The set of all points on E forms an abelian group with
neutral element O. Let ⊕ denote the group law operation. For a point P �= O
on E we write P = (x(P ), y(P )). Let ψ be a nonprincipal additive character of
Fq and let P and Q be two subsets of E(Fq). For arbitrary complex functions
ρ(P ) and ϑ(Q) supported on P and Q we consider the bilinear sums of additive
type:

Vρ,ϑ(ψ,P,Q) =
∑

P∈P

∑

Q∈Q
ρ(P )ϑ(Q)ψ(x(P ⊕ Q)).

In the following, we write f 	 g if f = o(g) for given functions f and g and we
recall the following interesting result of [1].

Lemma 4. Let E be an elliptic curve defined over Fq and let
∑

P∈P
|ρ(P )|2 ≤ R and

∑

Q∈Q
|ϑ(Q)|2 ≤ T.

Then, uniformly over all nontrivial additive character ψ of Fq,

|Vρ,ϑ(ψ,P,Q)| 	
√

qRT .

Proof. See [1].

Previous Works. For q = p a prime number > 5 let’s recall the extractor of
Chevalier et al. in [7].

Definition 6. Let E be an elliptic curve defined over a finite field Fp, for a
prime p > 2. Let G be a subgroup of E(Fp) and let k be a positive integer. Define
the function

Lk : G −→ {0, 1}k

P 
−→ lsbk(x(P )),

where lsbk(n) is the function which outputs the k-least significant bits of the
integer n.
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The following lemmas state that Lk is a deterministic randomness extractor
for the elliptic curve E

Lemma 5. Let p be a n-bit prime, G a subgroup of E(Fp) of cardinality q gen-
erated by a point P0, q being an l-bit prime, UG a random variable uniformly
distributed in G and k a positive integer. Then

Δ(Lk(UG), Uk) ≤ 2(k+n+log2(n))/2+3−l,

where Uk is the uniform distribution in {0, 1}k.

Proof. See [7].

Corollary 1. Let e be a positive integer and suppose that

k ≤ 2l − (n + 2e + log2(n) + 6).

Then Lk is a (UG, 2−e)-deterministic extractor.

Consider now the finite field Fpn , where p > 5 is prime and n is a positive integer.
Then Fpn is a n-dimensional vector space over Fp. Let {α1, α2, . . . , αn} be a basis
of Fpn over Fp. That means, every element x of Fpn can be represented in the
form x = x1α1 + x2α2 + . . . + xnαn, where xi ∈ Fpn . Let E be the elliptic curve
over Fpn defined by the Weierstrass equation

y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6.

The extractor Dk, where k is a positive integer less than n, for a given point
P on E(Fpn), outputs the k first Fp-coordinates of the abscissa of the point P .

Definition 7. Let G be a subgroup of E(Fpn) and k a positive integer less than
n. Define the function Dk

Dk : G −→ Fpk

P = (x, y) 
−→ (x1, x2, . . . , xk)

where x ∈ Fpn is represented as x = x1α1 + x2α2 + . . . + xnαn, and xi ∈ Fpn .

Lemma 6. Let E be an elliptic curve defined over Fq, whit q = pn and let G be
a subgroup of E(Fpn). Let Dk be the function defined above. Then,

Col(Dk(UG) ≤ 1
pk

+
4
√

q

|G|2

and

Δ(Dk(UG), UF
pk

) ≤ 2
√

pn+k

|G|
where UG is uniformly distributed in G and UF

pk
is the uniform distribution

in Fpk .
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Proof. See [10].
In the following, |i| represents the bit size of the integer i.

Lemma 7. Let p > 2 be a prime and E(Fpn) be an elliptic curve over Fpn and
G ⊂ E(Fpn) be a multiplicative subgroup of order r with |r| = t bits and |p| = m
bits and let UG be the uniform distribution in G. If e > 1 is an integer and k > 1
is an integer such that

k ≤ 2t − 2e − nm − 4
m

,

then Dk is a (Fk
p, 2−e)-deterministic randomness extractor over the elliptic curve

E(Fpn).

Proof. See [10].

3 Randomness Extractors for E(Fp)

Definition 8. Let E be an elliptic curve defined a finite field Fq, with q = p a
prime greater than 5, and let P and Q be two subgroups of E(Fq) with #P = r
and #Q = t. Define the function

Ext1 : P × Q −→ {0, 1}k

(P,Q) 
−→ lsbk(x(P ⊕ Q))

Theorem 1. Let E be an elliptic curve defined over Fp and let P and Q be two
subgroups of E(Fp), with #P = r and #Q = t. Let UP and UQ be two random
variables uniformly distributed in P and Q respectively and let Uk be the uniform
distribution in {0, 1}k. Then,

Δ(Ext1(UP , UQ), Uk) 	
√

2k−1p log(p)
rt

Proof. Let α = 2k and let θ0 = msbn−k(p − 1). Define the set

A = {(P,Q), (R,S) ∈ P × Q | ∃ θ ≤ θ0, x(P ⊕ Q) − x(R ⊕ S) − αθ = 0 mod p}.

Consider the double character sum Vρ,ϑ(ψ,P,Q), with ρ(P ) = 1 ∀ P and
ϑ(Q) = 1 ∀ Q. Then,

Col(Ext1(UP , UQ)) =
#A
(rt)2

=
1

r2t2p

∑

P ∈P

∑

Q∈Q

∑

R∈P

∑

S∈Q

∑

θ≤θ0

∑

ψ∈Ψ

ψ(x(P ⊕ Q) − x(R ⊕ S) − αθ)

=
1

2k
+

1

r2t2p

∑

P ∈P

∑

Q∈Q

∑

R∈P

∑

S∈Q

∑

θ≤θ0

∑

ψ �=ψ0

ψ(x(P ⊕ Q) − x(R ⊕ S) − αθ)

≤ 1

2k
+

1

r2t2p

∣∣∣∣∣∣

∑

P ∈P

∑

Q∈Q
ψ(x(P ⊕ Q))

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

R∈P

∑

S∈Q
ψ(−x(R ⊕ S)

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

θ≤θ0

∑

ψ �=ψ0

ψ(−αθ))

∣∣∣∣∣∣

� 1

2k
+

V 2

r2t2p

∑

θ≤θ0

∣∣∣∣∣∣

∑

ψ �=ψ0

ψ(−αθ))

∣∣∣∣∣∣

� 1

2k
+

p log(p)

rt
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Therefore,

Δ(Ext1(UP , UQ), Uk) 	
√

2k−1p log(p)
rt

Corollary 2. Let m and l be the bit size of r and t respectively and let e be a
positive integer. If k is a positive integer such that

k ≤ m + l − (n + 2e + log2(n) + 1),

then Ext1 is a (k,O(2−e))-deterministic extractor for P × Q.

Corollary 3. Let P = Q, m be the bit size of r and let e be a positive integer.
If k is a positive integer such that

k ≤ 2m − (n + 2e + log2(n) + 1),

then Ext1 is a (k,O(2−e))-deterministic extractor for P × P.

4 Randomness Extractor for E(Fpn), with p > 5

Definition 9. Let E be an elliptic curve defined over the finite field Fpn , where
p is a prime greater than 5 and n > 1. Consider two subgroups P and Q of
E(Fq). Define the function

Ext2 : P × Q −→ F
k
p

(P,Q) 
−→ (x1, x2, . . . , xk)

where x(P ⊕ Q) = (x1, x2, . . . , xk, xk+1, . . . , xn). In other words, the function
Ext2 output the k first Fp-coefficients of the point P ⊕ Q.

Theorem 2. Let E be an elliptic curve defined over Fpn and let P and Q be
two subgroup of E(Fpn) with #P = r and #Q = t. Denote by UP and UQ two
random variables uniformly distributed on P and Q respectively. Then,

Δ(Ext2(UP , UQ), UFk
p
) 	

√
pn+k

4rt

Sketch of Proof. Consider the sets

M = {(xk+1αk+1 + xk+2αk+2 + . . . + xnαn), xi ∈ Fp} ⊂ Fpn

and

A = {(P,Q), (R,S) ∈ P × Q | ∃λ ∈ M, x(P ⊕ Q) − x(R ⊕ S) = λ}.

Then,

Col(Ext2(UP , UQ)) =
#A
(rt)2

.

Use the technique of the proof of Theorem1 and Lemmas 3 and 4 to complete
the proof.
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5 Application to Key Agreement

In this section, we give an application of our new extractor to key agreement
schemes.

The unified model (UM) proposed by Ankney et al. in [2] is an authenti-
cated key agreement in the standards ANSI X9.63 [3], ANSI X9.42 [4] and the
IEEE P1363-2000 [17]. The UM has a very simple design and interesting security
properties such as forward secrecy and key confirmation. It relies on the Diffie-
Hellman key exchange. At the end of the protocol, the two parties involved agree
on a shared session key which is the concatenation of two Diffie-Hellman keys.

More precisely, Alice and Bob share two points Zs and Ze on the elliptic
curve from a two-pass Diffie-Hellman key exchange. The session key K is then
obtained by applying K = kdf(Zs||Ze), where kdf is a key derivation function.
In the following, we show how to use Ext1 as the kdf; i.e. K = Ext1(Ze, Zs).

In practice, the following parameters the base can be used at the 80 bit-
security level. Note that the prime sizes indicated in Table 1 are those recom-
mended by the NIST [5] for Elliptic Curves Cryptography.

Table 1. Parameters for Ext1(Ze, Zs)

Symmetric key size Bit size of the finite field : |p|2 Bit size of P : |m|2
|k|2 = 64 : DES-64 521 378

384 309

256 245

|k|2 = 128 : AES-128 521 410

384 340

|k|2 = 256 : AES-256 521 474

6 Conclusion

We have successfully introduced new randomness extractors for elliptic curves,
namely two-source extractors. The proposed functions take in input two random
points from two different subgroups and output the k-least significant bits of
the abscissa of the sum of these two points. We have shown that the bit-string
extracted is close to uniform. These results extend also some interesting ran-
domness extractors for elliptic curves in the literature, namely those defined in
[7,9,10]. Future works includes extension of the proposed extractors to Jacobian
of hyperelliptic curves.

Acknowledgments. The authors acknowledge support from the Simons Foundation
through the Pole of Research in Mathematics and their Applications to Information
Security in Subsaharan Africa (PRMAIS) and the LIRIMA-MACISA project.
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Abstract. The security of McEliece cryptosystem heavily relies on the
hardness of decoding a random linear code. The best known generic
decoding algorithms are derived from the Information-Set Decoding
(ISD) algorithm. The ISD algorithm was proposed in 1962 by Prange and
improved in 1989 by Stern and later in 1991 by Dumer. Since then, there
have been numerous works improving and generalizing the ISD algo-
rithm: Peters in 2009, May, Meurer and Thomae in 2011, Becker, Joux,
May and Meurer in 2012, May and Ozerov in 2015, and Hirose in 2016.
Among all these improvement and generalization only those ofPeters and
Hirose are over Fq with q an arbitrary prime power. In Hirose’s paper,
he describes the May-Ozerov nearest-neighbor algorithm generalized to
work for vectors over the finite field Fq with arbitrary prime power q.
He also applies the generalized algorithm to the decoding problem of
random linear codes over Fq. And he observed by a numerical analysis of
asymptotic time complexity that the May-Ozerov nearest-neighbor algo-
rithm may not contribute to the performance improvement of Stern’s
ISD algorithm over Fq with q ≥ 3. In this paper, we will extend the
Becker, Joux, May, and Meurer ’s ISD using the May-Ozerov algorithm
for Nearest-Neighbor problem over Fq with q an arbitrary prime power.
We analyze the impact of May-Ozerov algorithm for Nearest-Neighbor
Problem over Fq on the Becker, Joux, May and Meurer ’s ISD.

Keywords: Code-based cryptography · Information-Set Decoding
(ISD) algorithm · Linear code · Nearest neighbor

1 Introduction

Code-based cryptography introduced by McEliece [29] is one of the most promis-
ing solution for designing secure cryptosystems against quantum attacks. The
McEliece public-key encryption scheme, based on binary Goppa codes, has so far
successfully resisted all cryptanalysis efforts. But it is not used in real life because
c© Springer International Publishing AG 2017
S. El Hajji et al. (Eds.): C2SI 2017, LNCS 10194, pp. 96–109, 2017.
DOI: 10.1007/978-3-319-55589-8 7
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of the key length problem. In order to decrease the public-key size, some variants
were proposed by concentrating on subclasses of alternant/Goppa codes which
admit very compact public matrices, typically quasi-cyclic (QC), quasi-dyadic
(QD), or quasi-monoidic (QM) matrices [2,14,18,27,28,30,36]. The security of
the McEliece cryptosystem relies on the fact that the public key does not have
any known structure. The attacker is faced with the problem of decoding a ran-
dom code. A way to do this decoding is to use the Information-Set Decoding
(ISD) algorithm. The ISD algorithm was introduced by Prange in 1962 [38]. Its
principle is to find an information set where there are no errors positions. Its
target is to answer to the Computational Syndrome Decoding (CSD) Problem.

In this paper, we will extend the best version of the ISD attack algorithm
to arbitrary code over Fq and analyze the security of such codes to this new
improved version. It is important to note that Peters used the ISD attack to
prove the security of arbitrary codes over Fq [37], later Ayoub et al. introduced
a polynomial attack against Wild McEliece over quadratic extensions and their
attack is a structural attack [9]. Recently, Hirose applied the May-Ozerov algo-
rithm for Nearest-Neighbor problem over Fq to generalize Stern’s ISD version
and he observed that the May-Ozerov algorithm for Nearest-Neighbor problem
may not contribute to improve Stern’s ISD [19]. The contribution of our paper is
the generalization of Becker, Joux, May, and Meurer’s ISD using the May-Ozerov
algorithm for Nearest-Neighbor problem [32] over Fq with q an arbitrary prime
power. We analyze the contribution of the May-Ozerov algorithm for Nearest-
Neighbor problem over an arbitrary finite field Fq to the performance of Becker,
Joux, May, and Meurer ’s ISD. And we analyze the security over an arbitrary
finite field Fq.

q-ary Computational Syndrome Decoding (CSD) Problem
Input: H ∈ F

(n−k)×n
q , s ∈ F

n−k
q and an integer ω > 0.

Output: Find e ∈ F
n
q of weight ≤ ω such that HeT = s

Information-Set Decoding (ISD) Algorithm. The best known attacks
against the classical McEliece code-based cryptosystem are generic decoding
attacks that treat McEliece’s hidden binary Goppa codes as random linear codes.
Introduced by Prange in 1962 (see [38]), the ISD algorithm is a generic decoding
attack algorithm. Its target is to solve the CSD problem taking only as inputs a
basis of the code and a noisy codeword. Improvements of this form of ISD were
developed by Lee and Brickell [25], Stern [40], May, Meurer and Thomae [31],
Becker, Joux, May and Meurer (BJMM-ISD) [4], later by May and Ozerov [32]
used the nearest neighbor algorithm to improve the BJMM-ISD.

Organisation of Paper. The paper is organized as follows: in Sect. 2, we give
some definitions and notations on coding theory, in Sect. 3 we give a summary of
previous and recent results on ISD algorithm over an arbitrary finite fields Fq.
In Sect. 4, we give the version of BJMM-ISD using the May-Ozerov Nearest
Neighbor algorithm. And in Sect. 5, we give the asymptotic complexity of our
algorithm.
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2 Coding Theory Background

2.1 Definitions and Notations

Let Fq be a finite field (q = pm, p is prime). A q-ary linear code C of length n and
dimension k over Fq is a vectorial subspace of dimension k of the full vectorial
space F

n
q . It can be specified by a full rank matrix G ∈ F

k×n
q called generator

matrix of C whose rows span the code. Namely, C =
{
xG such that x ∈ F

k
q

}
.

A linear code can be also defined by the right kernel of matrix H called
parity-check matrix of C as follows:

C =
{
x ∈ F

n
q such that HxT = 0

}
.

The Hamming distance between two codewords is the number of positions
(coordinates) where they differ. The minimal distance of a code is the minimal
distance of all codewords. The weight of a word x ∈ F

n
q denote by wt (x ) is the

number of its nonzero positions. Then the minimal weight of a code C is the
minimal weight of all codewords. If a code C is linear, the minimal distance is
equal to the minimal weight of the code.

Let C be a q-ary linear code of length n, dimension k and generator
matrix G =

(
g0, g1, ..., gn−1

)
with g i ∈ F

n
q for all i ∈ {0, 1, . . . , n − 1}. Let

I ⊂ {0, 1, . . . , n − 1} with |I| = k. We call I an information set if and only if
the matrix GI = (g)i∈I is inversible.

A vector u ∈ F
�
q is called a balanced vector if the number of its coordinates

equal to x is �/q for all x ∈ Fq.
For x = (x1, ..., xn) ∈ F

n
q and a non zero integer j < n, let x[j] = (x1, ..., xj)

and x [j] = (xn−j+1, ..., xn).
We denote the q-ary entropy function by:

Hq(x) = x log (q − 1) − x log (x) − (1 − x) log (1 − x)

For all integer n, let [n] = {1, . . . , n}. If I is a subset of [n], for all vector
x = (x1, ..., xn), let x I = (xi)i∈I .

2.2 McEliece’s Cryptosystem

McEliece’s cryptosystem is a public-key encryption scheme introduced in 1978 by
McEliece. The original version used the Goppa binary code remained unbroken.
It can also be used with any class of codes which has an efficient decoding
algorithm.

Secret keys: A matrix G ∈ F
k×n
2 , S ∈ F

k×k
2 (an invertible matrix), P ∈ F

n×n
2

(a random permutation matrix).
Public keys: The matrix G̃ = SGP and the corrector capacity t.
Encryption: Let m be a plaintext then the ciphertext c is given by:

c = mG̃ + e

with e a q-ary vector of length n and weight t.
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Decryption: Compute
c̃ = mG̃P−1 + eP−1

and use the decoding algorithm to find m̃ = mS and finally find m by computing
m = m̃S−1.

2.3 Nearest-Neighbor Problem

The nearest-neighbor (NN) problem over the binary field defined in [32] is gen-
eralized over other finite fields in [19].

Neartest Neighbor Problem over Fq: Let q be a prime power. Let m be a positive
integer. Let 0 < γ < 1/2 and 0 < λ < 1. Then (m, γ, λ)-NN problem is defined
by:

Input: The constant γ and two lists U ⊂ F
m
q , V ⊂ F

m
q of size |U | = |U | = qλn

with uniform and pairwise independent vectors.
Output: C ⊂ U ×V which has (u , v) such that wt(u−v) = γm with wt (u − v)
is the weight of u − v .

3 Preview Work on Information-Set Decoding over Fq

We denote in the rest of the paper the concatenation of two vectors x and y
(respectively of two matrices A and B) by (x |y) (respectively (A|B)).

In this section we give a survey of the generalization of ISD algorithm over
an arbitrary finite field.

Peters: In 2009, Peters was the first to propose a generalization of the ISD
algorithm over an arbitrary finite field Fq. In her paper [37], she proposed the
generalization of Stern-ISD which all of the ISD improvements are based on.

Cayrel et al.: In 2010 just few months after Peters’s paper, Cayrel et al. [34]
improved the performance of the ISD over an arbitrary finite field by giving a
lower bound of ISD algorithm and they generalized the formula of the lower
bound introduced by Finiasz et al. in [15].

Meurer: In 2012 just after their ISD algorithm in the binary case in [4,31],
Meurer proposed a new generalization of the ISD algorithm over an arbitrary
finite field in his dissertation thesis [33] based on these two papers.

Hirose: In 2016 Hirose gave a generalization of the nearest-neighbor algorithm
introduced by May-Ozerov [32] to generalize the Stern-ISD algorithm. And he
analyzed the contribution of the May-Ozerov ’s nearest-neighbor algorithm over
an arbitrary finite field to the performance of Stern-ISD algorithm over an arbi-
trary finite field.

The following tables give us a summary complexity results on the ISD algo-
rithm generalization previous work. We denote the ISD algorithm generaliza-
tion given byPeters by q-Stern-ISD, Hirose’s generalization by q-Hirose-ISD.
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Table 1. Complexity of ISD algorithm over an arbitrary finite field given in [19].

q q-Stern-ISD q-Hirose-ISD

Half distance Half distance

2 0.05563 0.05498

3 0.05217 0.05242

4 0.04987 0.05032

5 0.04815 0.04864

7 0.04571 0.04614

8 0.04478 0.04519

8 0.04266 0.04299

Table 2. Complexity of ISD algorithm over an arbitrary finite field given by Meurer
in [33].

q q-Meurer-ISD

BReps XBReps

2 0.1053 -

4 0.1033 0.1014

8 0.0989 0.0969

16 0.0929 0.0918

32 0.0867 0.0863

64 0.0808 0.0806

In Meurer ’s dissertation thesis, he gave two variants of ISD algorithm general-
ization then we denote the basic variant by BReps and the extended variant by
XBReps.

4 Becker, Joux, May and Meurer ISD Using May-Ozerov
Nearest-Neighbor Algorithm over Fq

The Becker, Joux, May and Meurer ISD using May-Ozerov Nearest-Neighbor
algorithm over an arbitrary finite field Fq is presented in Algorithm 1.

In this algorithm we construct Base Lists over Fq like in [4]. For all j = 0, 1
we denote the Base Lists by BLj

j,1, BLj

j,2, BRj

j,1 and BRj

j,2 . We define BLj

j,1 as follows:

Let PLj

j,1 and PLj

j,2 be be a partition of [k + �] = {1, ..., k + �} such that
∣∣∣PLj

j,1

∣∣∣ =
∣∣∣PLj

j,2

∣∣∣ =
k + �

2
then

BLj

j,1 =

{
x ∈ F

k+�
q ×

{
0n−k−�

}
s.t wt (x ) =

p

8
+

ε1
4

+
ε2
2

with x
P

Lj
j,2

= (0, 0, ..., 0)

}
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Where p, ε1 and ε2 are the parameters of the algorithm such that 0 ≤ p <

k + �, 0 < ε1 < k + � − p, 0 < ε2 < k + � − p

2
− ε1. The construction of BLj

j,2, BRj

j,1

and BRj

j,2 is similar.
We use these Base Lists to compute a vector e ∈ F

k+�
q × {

0n−k−�
}

such
that wt

(
e [k+�]

)
= p and e = e1 − e2 with e1, e2 ∈ F

k+�
q × {

0n−k−�
}

and

wt (e1) = wt(e2) =
p

2
+ ε1.

Proposition 1 [33]. Let 0 ≤ p ≤ k + � be an integer and e ∈ F
k+�
q × {

0n−k−�
}

be a vector such that wt (e) = p. For all integer ε such that 0 ≤ ε < k + � − p,
denote ϑ (k, �, ε, p, q) the number of pairs (e1, e2) such that e = e1 − e2 with e1,
e2 ∈ F

k+�
q × {

0n−k−�
}
and wt (e1) = wt(e2) =

p

2
+ ε. It holds

ϑ (k, �, ε, p, q) =
min( p

2 ,ε)∑

i=0

(
p − 2i
p
2 − i

)
(q − 2)2i

(
k + � − p

ε − i

)
(q − 1)ε−i

Then ϑ (k, �, ε, p, q) ≥ (
p
p
2

)(
k+�−p

ε

)
(q − 1)ε.

And asymtopticalLy by using the inequality logq 2 < Hq

(
1
2

)
, we implicity

lower bound logq ϑ (k, �, ε, p, q) ≥ p logq 2 + (k + � − p) Hq

(
ε

k+�−p

)
[33]. This

brief analysis will allow us to give a constraint on some parameters of our algo-
rithm.

Algorithm 1. q-BJMM-MO algorithm over Fq

Constants: Let n, k, d and ω be nonzero integers such that k ≤ n and ω = �d−1
2 �

with d = H−1
q

(
1 − k

n

)

Parameters: Integers p, �, r1, ε1 and ε2 such that 0 ≤ p ≤ min {k + �, ω},
0 < r1 < � ≤ min {n − k − ω + p, n − k}, 0 < ε1 < k + � − p and 0 < ε2 <
k + � − p

2 − ε1.
Input: two nonzero integers n and k, a matrix H ∈ F

(n−k)×n
q , and a nonzero

vector x ∈ F
n
q .

Output: A vector e ∈ F
n
q of weight wt (e) = ω such that HeT = HxT .

1 : Procedure: BJMM-MO(n, k, H, x )
2 : s ←− HxT

3 : d ←− nH−1
(
1 − k

n

)

4 : ω ←− �d−1
2 �

5 : Choose parameters p, ε1, ε2, 0 < r1 < � < n − k.
6 : Repeat:
7 : π ←− a random permutation on {1, 2, ..., n}.
8 : (Q1|Q2) ←− π (H) with Q2 ∈ F

(n−k)×(n−k)
q and Q1 ∈ F

(n−k)×k
q

9 : While Q2 is not invertible:
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10 : π ←− a random permutation on {1, 2, ..., n}.
11 : (Q1|Q2) ←− π (H)
12 : H̃ ←− Q−1

2 π (H) and s̃ ←− Q−1
2 s

13 : Choose randomly tL ∈ F
�
2 and tL0 , tR0 ∈ F

r1
q

14 : Compute tR = tL − s̃ [�], tL1 = tL0 − (tL)[r1]
and

tR1 = tR0 − (tR)[r1]
.

15 : Compute Base Lists BLi
i,1, BLi

i,2, BRi
i,1 and BRi

i,1 , with i = 0, 1 and:
16 : Li ←−

{
u = a − b s.t a ∈ BLi

i,1, b ∈ BLi
i,2 with wt (u) = p

4 +
ε1
2 + ε2,

and
(
H̃uT

)

[r1]
= tLi

}

17 : Ri ←−
{
u = a − b s.t a ∈ BRi

i,1 , b ∈ BRi
i,2 with wt (u) = p

4 +
ε1
2 + ε2,

and
(
H̃uT

)

[r1]
= tRi

}

18 : L ←−
{(

H̃zT
)[n−k−�]

s.t z = u − v and (u , v) ∈ L0 × L1

with
(
H̃zT

)

[�]
= tL

}

19 : R ←−
{(

H̃zT + s̃
)[n−k−�]

s.t z = u − v and (u , v) ∈ R0 × R1

with
(
H̃zT

)

[�]
= tR

}

20 : In 18 and 19 we keep only elements with wt(z ) = p
2 + ε1

21 : C ←− MO-NN
(
L,R, ω−p

n−k−�

)

22 : For all (u , v) ∈ C ∩ L × R :

23 : Find (e1, e2) s.t u =
(
H̃eT

1

)[n−k−�]

and

v =
(
H̃eT

2 + s̃
)[n−k−�]

24 : If wt (e1 − e2) = p:
25 : Return π−1

(
e1 − e2 − (

0 k+�|u − u
))

26 : End Procedure

The complexity the q-BJMM-MO is given by:

Theorem 1. Let ε > 0 be a real. The q-BJMM-MO algorithm solves the Syn-
drome Decoding problem of random [n, k]-linear code over Fq with overwhelming
probability in time

τ (q, n, k, p, ω, hx, ε) = Õ
(
qnτ1

(
qnτ2 + q2nτ2−r1 + q4nτ2−r1−� + qnμ + q(y+ε)(n−k−�)

))

where

τ1 =
(

H
(ω

n

)
−

(
k + �

n

)
H

(
p

k + �

)
−

(
1 − k + �

n

)
H

(
ω − p

n − k − �

))
logq 2,

τ2 =
k + �

2n
Hq

( p
4 + ε1

2 + ε2

k + �

)
and μ =

k + �

n
Hq

( p
2 + ε1

k + �

)
− �

n
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with

y = (1 − γ)

⎛

⎝Hq (β) − 1
q

∑

x∈Fq

Hq

(
qhx − γ

1 − γ
β

)⎞

⎠ , γ =
ω − p

n − k − p
, 0 < β < 1,

max {0, ω + k + � − n} ≤ p ≤ min {k + �, ω) ,
∑

x∈Fq

hx = 1,

γ

q
< hx <

γ

q
+

1 − γ

qβ
for each x ∈ Fq,

� = p logq 2+(k + � − p) Hq

(
ε1

k + � − p

)
and � ≤ min {n − k − ω + p, n − k}

r1 =
(p

2
+ ε1

)
logq 2 +

(
k + � − p

2
− ε1

)
Hq

(
ε2

k + � − p
2 − ε1

)

λ =
nμ

n − k − �
≤ Hq (β) − 1

q

∑

x∈Fq

Hq (qhxβ) .

Proof. Recall that

T (q, n, k, p, ω, hx, ε) =
1

P(πsucc)
Cin

where P(πsucc) is a the probability to have the good permutation (permutation
allowing to have a success decoding) and Cin is the cost of each iteration with:

P(πsucc) = Õ
((

k+�
p

)(
n−k−�

ω−p

)
(

n
ω

)
)

=⇒ 1
P(πsucc)

= Õ
( (

n
ω

)
(
k+�

p

)(
n−k−�

ω−p

)
)

.

Using the equality (
n

k

)
= 2nH( k

n )

with H the binary entropie function.

P(πsucc) = Õ
(
2n(H(ω

n )− k+�
n H( p

k+� )−(1− k+�
n )H( ω−p

n−k−� ))
)

= Õ
(
qn(H(ω

n )− k+�
n H( p

k+� )−(1− k+�
n )H( ω−p

n−k−� )) logq 2
)

= Õ (qnτ1) .

Let us examine the complexity of each iteration. First we construct Base
Lists and the cardinality of each Base List is given by, for each i = 1, 2 and
j = 1, 2

|BLj

j,i | =
( k+�

2
p
8 + ε1

4 + ε2
2

)
(q − 1)

p
8+

ε1
4 +

ε2
2 .
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Then by using the equality
(

n

k

)
(q − 1)k = Õ

(
qnHq(

k
n )

)
,

the complexity to compute Base Lists is given by

Õ
(

q
n

(
k+�
2n Hq

( p
4 +

ε1
2 +ε2

k+�

)))
= Õ (qnτ2) .

Second we use Base Lists to make a filtering to compute Li and Ri for each
i = 1, 2 and the cost of this filtering is given by:

Õ
(

|BLi
i,1||BLj

i,2 |
qr1

)
= Õ (

q2nτ2−r1
)
.

Third we compute the lists L and R with a filtering and the cost of this
filtering is given by

Õ
( |Li||Lj |

q�−r1

)
= Õ (

q4nτ2−r1−�
)
.

Line 20 only gives the upper bound on |L| = |R|.

Õ
((

k+�
p
2+ε1

)
(q − 1)

p
2+ε1

q�

)
= Õ

(
q

n

(
k+�

n Hq

( p
2 +ε1
k+�

)
− �

n

))
= Õ (qμn) .

And finally we make a last filtering using the May-Ozerov Nearest Neighbor
algorithm and the cost of this filtering is given by:

Õ
(
q(y+ε)(n−k−�)

)
.

We have |L| = |R| = qμn. Thus MO-NN is given an instance of (m, γ, λ)-NN
problem with:

m = n − k − �, γ =
ω − p

n − k − �

and
λ =

μn

n − k − �
.

According to Lemma 3 in [19] we must have

λ ≤ Hq(β) − 1
q

∑

x∈Fq

Hq (qhxβ) .

5 Numerical Analysis of Time Complexity

We give in this section a optimization numerical time complexity of our algorithm
in the half distance decoding using the code’s parameters given in [19] and in the
full distance decoding using the code’s parameters given in [33]. We give these
complexities for q ≥ 3 because the case q = 2 is already done in [4,31–33]
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Table 3. Complexity of the q-BJMM-MO algorithm in the half distance decoding for
parameters in [19].

q q-BJMM-MO

ck c� cp h β Half dist.

3 0.4545 0.06273 0.015678 0.104457 0.081899 0.04427

4 0.4625 0.05936 0.012787 0.109280 0.065891 0.04194

5 0.4727 0.05664 0.010710 0.119404 0.059101 0.03955

7 0.4812 0.05383 0.009768 0.103261 0.042989 0.03706

8 0.4891 0.05232 0.008728 0.116760 0.039019 0.03593

11 0.4959 0.05045 0.009829 0.093971 0.029929 0.03335

Table 4. Complexity of the q-BJMM-MO algorithm in the full distance decoding for
parameters in [33].

q q-BJMM-MO

ck c� cp h β Full dist.

4 0.4259 0.047749 0.015721 0.113254 0.058929 0.09951

8 0.4529 0.036823 0.009021 0.123717 0.019890 0.09388

16 0.4729 0.029908 0.008021 0.049354 0.021199 0.09012

32 0.4829 0.025151 0.007521 0.031235 0.014109 0.08264

64 0.4929 0.021496 0.006521 0.012637 0.013109 0.07861

6 Conclusion

The May-Ozerov ’s Nearest Neighbor algoritm allows us to improve the general-
ization of BJMM-ISD. We show in the Tables 1 and 3 that our generalization is
faster than Hirose’s generalization in the half distance decoding and in addition
by comparing the Tables 2 and 4 we show that is faster than Meurer ’s general-
ization.
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Appendix

Nearest-Neighbor Algorithm over an Arbitrary Finite
Field Fq

We give in this section the May-Ozerov Nearest-Neighbor algorithm over Fq

proposed by Hirose in [19]
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Algorithm 2. May-Ozerov Nearest-Neighbor algorithm over Fq

1: Procedure:MO-NN(L, R, γ )

2: y ←− (1 − γ)

(
Hq(β) − 1

q

∑
x∈Fq

Hq

(
qhx−γ
1−γ β

))

3: Choose ε > 0
4: t ←− � log2(y−λ+ ε

2 )−log2(
ε
2 )

log2(y)−log2(λ)
�

5: α1 ←− y−λ+ ε
2

y

6: αj ←− λ
y αj−1 for 2 ≤ j ≤ t

7: For mO(1) times:
8: Choose a permutation π on F

m
q uniformly at random

10: Choose a vector r = (r1, . . . , rt) ∈ F
α1m
q × . . . × F

αtm
q =

F
m
q uniformly at random s.t ri is balanced for all

1 ≤ i ≤ t
11: L̃ ←− {ũ = (ũ1, . . . , ũt) s.t ũ = π(u) + r with u ∈ L

and ũj is balanced for every 1 ≤ j ≤ t}
12: R̃ ←− {ṽ = (ṽ1, . . . , ṽt) s.t ṽ = π(v) + r with u ∈ R

and ṽj is balanced for every 1 ≤ j ≤ t}
13: Return MO-NNR(L̃, R̃, m, t, γ, λ, α1,. . ., αt,y, ε, 1 )
14: End Procedure

The complexity of May-Ozerov Nearest Neighbor algorithm is given by:

Theorem 2 [19]. Let q be a prime power. Let γ, β, ε > 0 and λ be reals such
that 0 < γ < 1

2 , 0 < β < 1, ε > 0 and λ ≤ Hq(β) − 1
q

∑
x∈Fq

Hq(qβhx) with
∑

x∈Fq

hx = 1 and for each x ∈ Fq, γ
q < hx < γ

q + 1−γ
qβ .

Let y = (1−γ)

(
Hq(β) − 1

q

∑
x∈Fq

Hq

(
qhx−γ
1−γ β

))
. Then the MO-NN algorithm

solves the (m, γ, λ)NN problem over Fq with overwhelming probability in time

Õ
(
q(y+ε)m

)
.

Algorithm 3. May-Ozerov NearestNeighborRec algorithm over Fq

1: Procedure:MO-NNR(L, R, m, t, γ, λ, α1,. . ., αt, y, ε, i )
2: If i = t + 1:
3: C ←− {(u,v) ∈ L × R s.t wt(u − v) = γm}
4: For O(qyαim) times:
5: Choose Ai ⊂ {(α1 + · · · + αi−1)m + 1, . . . , (α1 + · · · + αi)m}

uniformly at random s.t |Ai| = βαim with
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(α1 + · · · + αi−1)m = 0 if i = 1
6: L′ ←− {u ∈ L s.t the number of each x ∈ Fq on

Ai is hxβαim}
7: R′ ←− {v ∈ L s.t the number of every x ∈ Fq on

Ai is hxβαim}

8: If |L′| = |R′| = Õ
⎛

⎝q

(
λ

(
1−

i∑
j=1

αj

)
+ ε

2

)
m

⎞

⎠:

9: C ←− C ∪ MO-NNR(L′,R′,m,t,γ,λ, α1,. . .,αt,y,ε, i + 1)
10 Return C
11: End Procedure
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Abstract. It has been known for decades that the codewords of a fixed
weight in a code may hold a t-design. However, only a small amount of
progress on the construction of t-designs from codes has been made so far.
It was also proven that the automorphism groups of the extended codes
of the narrow-sense primitive BCH codes over finite fields are doubly
transitive and these extended codes hold 2-designs. But little is known
about the parameters of these 2-designs. The objective of this extended
abstract is to present the parameters of some 2-designs held in these
extended codes of some classes of narrow-sense primitive BCH codes.

Keywords: BCH codes · Cyclic codes · t-designs · Weight distribution

1 Introduction

Let P be a set of v ≥ 1 elements, and let B be a set of k-subsets of P, where k
is a positive integer with 1 ≤ k ≤ v. Let t be a positive integer with t ≤ k. The
pair D = (P,B) is called a t-(v, k, λ) design, or simply t-design, if every t-subset
of P is contained in exactly λ elements of B. The elements of P are called points,
and those of B are referred to as blocks. We usually use b to denote the number
of blocks in B. A t-design is called simple if B does not contain repeated blocks.
In this extended abstract, we consider only simple t-designs. A t-design is called
symmetric if v = b. It is clear that t-designs with k = t or k = v always exist.
Such t-designs are trivial. In this extended abstract, we consider only t-designs
with v > k > t. A t-(v, k, λ) design is referred to as a Steiner system if t ≥ 2 and
λ = 1, and is denoted by S(t, k, v).

The interplay between codes and t-designs has gone in two directions. In one
direction, the incidence matrix of any t-design generates a linear code over any
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finite field GF(q). A lot of progress in this direction has been made and docu-
mented in the literature (see, for examples, [1,6,20,21]). In the other direction,
the codewords of a fixed Hamming weight in a linear or nonlinear code may hold a
t-design. Some linear and nonlinear codes were employed to construct t-designs
[1,11,13,15,17,19–21]. Binary and ternary Golay codes of certain parameters
give 4-designs and 5-designs with fixed parameters. However, the largest t for
which an infinite family of t-designs is derived directly from codes is t = 3 [20,21],
to the best of our knowledge. According to [1,14,20,21], not much progress on
the construction of t-designs from codes has been made so far, while many other
constructions of t-designs are documented in the literature ([4,5,14,18]).

It was known for a long time that the extended codes of narrow-sense primi-
tive BCH codes hold 2-designs. But little is known about the parameters of these
2-designs. The objective of this extended abstract is to document the parame-
ters of some of the 2-designs held in the extended codes of several families of
narrow-sense primitive BCH codes. The total number of 2-designs presented in
this extended abstract are exponential. In addition, the block size of the designs
can vary in a large range.

2 The Classical Construction of t-Designs from Codes

We assume that the reader is familiar with the basics of linear codes and cyclic
codes, and proceed to introduce the classical construction of t-designs from codes
directly. Let C be a [v, κ, d] linear code over GF(q). Let Ai := Ai(C), which
denotes the number of codewords with Hamming weight i in C, where 0 ≤
i ≤ v. The sequence (A0, A1, · · · , Av) is called the weight distribution of C, and∑v

i=0 Aiz
i is referred to as the weight enumerator of C. For each k with Ak �= 0,

let Bk denote the set of the supports of all codewords with Hamming weight k
in C, where the coordinates of a codeword are indexed by (0, 1, 2, · · · , v −1). Let
P = {0, 1, 2, · · · , v − 1}. The pair (P,Bk) may be a t-(v, k, λ) design for some
positive integer λ, which is called a support design of the code. In such a case, we
say that the code C holds a t-(v, k, λ) design. Throughout this paper, we denote
the dual code of C by C⊥, and the extended code of C by C.

2.1 Designs from Linear Codes via the Assmus-Mattson Theorem

The following theorem, developed by Assumus and Mattson, shows that the pair
(P,Bk) defined by a linear code is a t-design under certain conditions, [2,10,
p. 303].

Theorem 1 (Assmus-Mattson Theorem). Let C be a [v, k, d] code over
GF(q). Let d⊥ denote the minimum distance of C⊥. Let w be the largest integer
satisfying w ≤ v and

w −
⌊

w + q − 2
q − 1

⌋
< d.
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Define w⊥ analogously using d⊥. Let (Ai)v
i=0 and (A⊥

i )v
i=0 denote the weight

distribution of C and C⊥, respectively. Fix a positive integer t with t < d, and
let s be the number of i with A⊥

i �= 0 for 0 ≤ i ≤ v − t. Suppose s ≤ d − t. Then

– the codewords of weight i in C hold a t-design provided Ai �= 0 and d ≤ i ≤ w,
and

– the codewords of weight i in C⊥ hold a t-design provided A⊥
i �= 0 and d⊥ ≤

i ≤ min{v − t, w⊥}.
The Assmus-Mattson Theorem is a very useful tool in constructing t-designs

from linear codes, and has been recently employed to construct infinitely many
2-designs and 3-designs in [7,9].

2.2 Designs from Linear Codes via the Automorphism Group

In this section, we introduce the automorphism approach to obtaining t-designs
from linear codes. To this end, we have to define the automorphism group of
linear codes. We will also present some basic results about this approach.

The set of coordinate permutations that map a code C to itself forms a group,
which is referred to as the permutation automorphism group of C and denoted by
PAut(C). If C is a code of length n, then PAut(C) is a subgroup of the symmetric
group Symn.

A monomial matrix over GF(q) is a square matrix having exactly one nonzero
element of GF(q) in each row and column. A monomial matrix M can be written
either in the form DP or the form PD1, where D and D1 are diagonal matrices
and P is a permutation matrix.

The set of monomial matrices that map C to itself forms the group MAut(C),
which is called the monomial automorphism group of C. Clearly, we have

PAut(C) ⊆ MAut(C).

The automorphism group of C, denoted by Aut(C), is the set of maps of the
form Mγ, where M is a monomial matrix and γ is a field automorphism, that
map C to itself. In the binary case, PAut(C), MAut(C) and Aut(C) are the same.
If q is a prime, MAut(C) and Aut(C) are identical. In general, we have

PAut(C) ⊆ MAut(C) ⊆ Aut(C).

By definition, every element in Aut(C) is of the form DPγ, where D is
a diagonal matrix, P is a permutation matrix, and γ is an automorphism of
GF(q). The automorphism group Aut(C) is said to be t-transitive if for every
pair of t-element ordered sets of coordinates, there is an element DPγ of the
automorphism group Aut(C) such that its permutation part P sends the first
set to the second set.

A proof of the following theorem can be found in [10, p. 308].

Theorem 2. Let C be a linear code of length n over GF(q) where Aut(C) is
t-transitive. Then the codewords of any weight i ≥ t of C hold a t-design.
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This theorem gives another sufficient condition for a linear code to hold t-
designs. To apply Theorem 2, we have to determine the automorphism group
of C and show that it is t-transitive. It is in general very hard to find out the
automorphism group of a linear code. Even if we known that a linear code
holds t-(v, k, λ) designs, determining the parameters k and λ could be extremely
difficult. This difficulty will be seen later. All the 2-designs presented in this
extended abstract are obtained from this automorphism group approach.

3 The Parameters of Some 2-Designs from the Extended
Codes of Some Narrow-Sense Primitive BCH Codes

Let b denote the number of blocks in a t-(v, k, λ) design. It is easily seen that

b = λ

(
v
t

)
(
k
t

) . (1)

In this section, we determine the parameters of some 2-designs from the extended
codes of several families of narrow-sense primitive BCH codes.

We will need the following lemma in subsequent sections, which is a variant
of the MacWilliam Identity [22, p. 41].

Theorem 3. Let C be a [v, κ, d] code over GF(q) with weight enumerator A(z) =∑v
i=0 Aiz

i and let A⊥(z) be the weight enumerator of C⊥. Then

A⊥(z) = q−κ
(
1 + (q − 1)z

)v

A
( 1 − z

1 + (q − 1)z

)
.

3.1 General Results About 2-Designs from the Extended Codes of
Some Narrow-Sense Primitive BCH Codes

Let Zn denote the set {0, 1, 2, · · · , n − 1}. Let s be an integer with 0 ≤ s < n.
The q-cyclotomic coset of s modulo n is defined by

Cs = {s, sq, sq2, · · · , sq�s−1} mod n ⊆ Zn,

where �s is the smallest positive integer such that s ≡ sq�s (mod n), and is the
size of the q-cyclotomic coset. The smallest integer in Cs is called the coset leader
of Cs. Let Γ(n,q) be the set of all the coset leaders. We have then Cs ∩ Ct = ∅
for any two distinct elements s and t in Γ(n,q), and

⋃

s∈Γ(n,q)

Cs = Zn. (2)

Hence, the distinct q-cyclotomic cosets modulo n partition Zn.
Let m = ordn(q), and let α be a generator of GF(qm)∗. Put β = α(qm−1)/n.

Then β is a primitive n-th root of unity in GF(qm). The minimal polynomial
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Mβs(x) of βs over GF(q) is the monic polynomial of the smallest degree over
GF(q) with βs as a root. It is straightforward to see that this polynomial is
given by

Mβs(x) =
∏

i∈Cs

(x − βi) ∈ GF(q)[x], (3)

which is irreducible over GF(q). It then follows from (2) that

xn − 1 =
∏

s∈Γ(n,q)

Mβs(x) (4)

which is the factorization of xn − 1 into irreducible factors over GF(q). This
canonical factorization of xn − 1 over GF(q) is crucial for the study of cyclic
codes.

Let δ be an integer with 2 ≤ δ ≤ n and let h be an integer. A BCH code over
GF(q) of length n and designed distance δ, denoted by C(q,n,δ,h), is a cyclic code
with generator polynomial

g(q,n,δ,h) = lcm(Mβh(x),Mβh+1(x), · · · ,Mβh+δ−2(x)) (5)

where the least common multiple is computed over GF(q).
It may happen that C(q,n,δ1,h) and C(q,n,δ2,h) are identical for two distinct δ1

and δ2. The maximum designed distance of a BCH code is also called the Bose
distance.

When h = 1, the code C(q,n,δ,h) with the generator polynomial in (5) is
called a narrow-sense BCH code. If n = qm − 1, then C(q,n,δ,h) is referred to as
a primitive BCH code.

We have the following conclusion [3].

Theorem 4. The automorphism group of the code C(q, qm−1, δ, 1) is 2-transitive.

Theorem 5. Let δ ≥ 2 be an integer. The codewords of each weight in the
extended narrow-sense primitive BCH code C(q,qm−1,δ,1) form a 2-design.

Proof. The desired conclusion follows from Theorems 2 and 4.

Theorem 6. Let δ ≥ 2 be an integer. The codewords of each weight in the dual
code C(2,2m−1,δ,1)

⊥
form a 2-design.

Proof. Since C(2,2m−1,δ,1) is binary, we have

PAut(C(2,2m−1,δ,1)) = MAut(C(2,2m−1,δ,1)) = Aut(C(2,2m−1,δ,1)).

It is also known that PAut(C⊥
(2,2m−1,δ,1)) = PAut(C(2,2m−1,δ,1)) [10, p. 22]. It

follows from Theorem 4 that the automorphism group PAut(C(2,2m−1,δ,1)
⊥

) is
doubly transitive. The desired conclusion then follows from Theorem 2.



Parameters of 2-Designs from Some BCH Codes 115

Table 1. Weight distribution of C(2, 2m−1, δ2, 1) for odd m.

Weight w No. of codewords Aw

0 1

2m−1 − 2(m−1)/2 (2m − 1)2m−1

2m−1 2(2m − 1)(2m−1 + 1)

2m−1 + 2(m−1)/2 (2m − 1)2m−1

2m 1

Table 2. Weight distribution of C(2, 2m−1, δ2) for even m.

Weight w No. of codewords Aw

0 1

2m−1 − 2(m−2)/2 (2m/2 − 1)2m

2m−1 2(2m − 1)

2m−1 + 2(m−2)/2 (2m/2 − 1)2m

2m 1

Theorem 5 tells us that C(q,qm−1,δ,1) holds 2-designs for every δ with 2 ≤ δ ≤
qm − 1. However, it is very hard to determine the parameters of the 2-designs,
as the weight distribution of C(q,qm−1,δ,1) and C(q,qm−1,δ,1) are in general very
difficult to settle. In the next sections, we will determine the parameters of some
of the 2-designs held in C(q,qm−1,δ,1) and C⊥

(2,2m−1,δ,1) for some special values
of δ.

3.2 Designs held in C(2, 2m−1, δ2, 1) with δ2 = 2m−1 − 1 − 2�(m−1)/2�

With the help of Theorem 5, we now describe several families of 2-designs from
the narrow-sense primitive binary codes C(2, 2m−1, δ2, 1), where δ2 = 2m−1 − 1 −
2�(m−1)/2�.

Theorem 7. Let m ≥ 3 be an integer. Then for odd m, C(2,2m−1,δ2,1) holds
2-(2m, k, λ) designs with the following pairs of (k, λ):

– (k, λ) =
(
2m−1 − 2(m−1)/2, (2m−2 − 2(m−3)/2)(2m−1 − 2(m−1)/2 − 1)

)
.

– (k, λ) =
(
2m−1, 22(m−1) − 1

)
.

– (k, λ) =
(
2m−1 + 2(m−1)/2, (2m−2 + 2(m−3)/2)(2m−1 + 2(m−1)/2 − 1)

)
.

For even m, it holds 2-(2m, k, λ) designs with the following pairs of (k, λ):

– (k, λ) =
(
2m−1 − 2(m−2)/2, (2m−1 − 2(m−2)/2)(2(m−2)/2 − 1)

)
.

– (k, λ) =
(
2m−1, 2m−1 − 1

)
.

– (k, λ) =
(
2m−1 + 2(m−2)/2, 2(m−2)/2(2m−1 + 2(m−2)/2 − 1)

)
.
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Proof. We present an outline of the proof. One can settle the weight distribution
of C(2,2m−1,δ2,1) with that of the code C(2,2m−1,δ2,0) given in [8]. One can then
prove that the code C(2,2m−1,δ2,1) has length 2m, and dimension

k =
{

2m + 1 for odd m,
3m
2 + 1 for even m.

(6)

With the weight distribution of C(2,2m−1,δ2,1) settled before, one can prove that
the weight distribution of C(2,2m−1,δ2,1) is given in Tables 1 and 2 for odd m
and even m, respectively. The desired conclusions then follow from the weight
distribution of the code, Theorem 5 and (1).

Theorem 6 tells us that the code C(2,2m−1,δ2,1)
⊥

holds also 2-designs for
both even and odd m. One can prove that the support designs of the code
C(2,2m−1,δ2,1)

⊥
are in fact 3-designs for odd m. We omit the detail here.

To determine the parameters of some of the 2-designs held in C(2,2m−1,δ2,1)
⊥

for even m, we need to determine the weight distribution of the code for even m.

Lemma 1. Let m ≥ 4 be even. Then the weight distribution of C(2,2m−1,δ2,1)
⊥

is given by

2(3m+2)/2A
⊥
k

= (1 + (−1)k)
(

2m

k

)
+

1 + (−1)k

2
(−1)�k/2�

(
2m−1


k/2�
)

v

+u
∑

0≤i≤2m−1−2(m−2)/2

0≤j≤2m−1+2(m−2)/2

i+j=k

[(−1)i + (−1)j ]
(

2m−1 − 2(m−2)/2

i

)(
2m−1 + 2(m−2)/2

j

)

for 0 ≤ k ≤ 2m, where

u = (2m/2 − 1)2m and v = 2m+1 − 2.

In addition, C(2,2m−1,δ2,1)
⊥

has parameters [2m, 2m − 1 − 3m/2, 4].

Proof. With the weight distribution of C(2,2m−1,δ2,1) given in Table 2, one can
prove the desired conclusions with the help of Theorem 3. We omit the lengthy
details.

Theorem 8. Let ≥ 4 be an even integer. Let A
⊥
i denote the number of codewords

with weight i in C(2,2m−1,δ2,1)
⊥
for all 0 ≤ i ≤ 2m. Then for every i with A

⊥
i �= 0,

the supports of the codewords with weight i in this code form a 2-(2m, i, λ) design
with

λ =
A

⊥
i

(
i
2

)
(
2m

2

) ,

where these A
⊥
i are given in Lemma 1.
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Proof. The desired conclusions follow from Theorem 6 and (1).

Corollary 1. Let m ≥ 4 be an even integer. Then the supports of all codewords
of weight 4 in C(2,2m−1,δ2,1)

⊥
give a 2-(2m, 4, 2(m−2)/2 − 1) design.

Proof. By Lemma 1, we have

A
⊥
4 =

2m−2(2(m−2)/2 − 1)(2m − 1)
3

.

The desired conclusions then follow from Theorem 8.

Corollary 2. Let m ≥ 4 be an even integer. Then the supports of all codewords
of weight 6 in C(2,2m−1,δ2,1)

⊥
give a 2-(2m, 6, λ) design, where

λ =
(2m−1 − 2)(2(3m−4)/2 − 5 × 2(m−2)/2 + 4)

3
.

Proof. By Lemma 1, we have

A
⊥
6 =

2m(2m − 1)(2m−2 − 1)(2(3m−4)/2 − 5 × 2(m−2)/2 + 4)
45

.

The desired conclusions then follow from Theorem 8.

Corollary 3. Let m ≥ 4 be an even integer. Then the supports of all codewords
of weight 8 in C(2,2m−1,δ2,1)

⊥
give a 2-(2m, 8, λ) design, where

λ =
(h2 − 1)(32h7 − 184h5 + 406h3 − 132h2 − 308h + 213)

45

and h = 2(m−2)/2.

Proof. By Lemma 1, we have

A
⊥
8 =

h2(h2 − 1)(4h2 − 1)(32h7 − 184h5 + 406h3 − 132h2 − 308h + 213)
630

,

where h = 2(m−2)/2. The desired conclusions follow from Theorem 8.

3.3 Designs Held in C(q, Qm−1, δ2, 1) for odd q

With the help of Theorem 5, we now describe several families of 2-designs from
the narrow-sense primitive nonbinary codes C(q, qm−1, δ2, 1), where δ2 = (q −
1)qm−1 − 1 − q�(m−1)/2� and q is an odd prime.

Theorem 9. Let m ≥ 2 be an integer and let q be an odd prime. Then for odd
m, C(q,qm−1,δ2,1) holds 2-(qm, k, λ) designs with the following pairs of (k, λ):

– (k, λ) =
(

(q − 1)qm−1 − q
m−1

2 , ((q−1)qm−1−q
m−1

2 )((q−1)qm−1−q
m−1

2 −1)
2

)
.
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Table 3. Weight distribution of C(q, qm−1, δ2, 1) for odd m ≥ 3 and odd q.

Weight w No. of codewords Aw

0 1

(q − 1)qm−1 − q(m−1)/2 (q − 1)qm(qm − 1)/2

(q − 1)qm−1 (qm + q)(qm − 1)

(q − 1)qm−1 + q(m−1)/2 (q − 1)qm(qm − 1)/2

qm q − 1

Table 4. Weight distribution of C(q, qm−1, δ2,1) for even m ≥ 2 and odd q.

Weight w No. of codewords Aw

0 1

(q − 1)qm−1 − q(m−2)/2 (q − 1)(q3m/2 − qm)

(q − 1)qm−1 qm+1 − qm

(q − 1)qm−1 + (q − 1)q(m−2)/2 q3m/2 − qm

qm q − 1

– (k, λ) =
(
(q − 1)qm−1, (qm−1 + 1)((q − 1)qm−1 − 1)

)
.

– (k, λ) =
(

(q − 1)qm−1 + q
m−1

2 , ((q−1)qm−1+q
m−1

2 )((q−1)qm−1+q
m−1

2 −1)
2

)
.

For even m ≥ 2, it holds 2-(qm, k, λ) designs with the following pairs of (k, λ):

– (k, λ) =
(
(q − 1)qm−1 − q

m−2
2 , ((q − 1)qm−1 − q

m−2
2 )(q

m
2 − q

m−2
2 − 1)

)
.

– (k, λ) =
(
(q − 1)qm−1, (q − 1)qm−1 − 1

)
.

– (k, λ) =
(
(q − 1)(qm−1 + q

m−2
2 ), q

m−2
2

(
(q − 1)(qm−1 + q

m−2
2 ) − 1

))
.

Proof. We sketch a proof below. The details of the proof are omitted. One can
determine the weight distribution of the code C(q,qm−1,δ2,1) from that of the
subcode C(q,qm−1,δ2,0), which was described in [8]. With the derived weight dis-
tribution of C(q,qm−1,δ2,1), one can prove that the code C(q,qm−1,δ2,1) has the
weight distribution in Tables 3 and 4 for odd and even m, respectively.

One can then prove that in the code C(q,qm−1,δ2,1) the number of supports
of all codewords with weight k �= 0 is equal to Ak/(q − 1) for each k, where Ak

denotes the total number of codewords with weight k in C(q,qm−1,δ2,1). Then the
desired conclusions follow from the weight distribution of the code, Theorem 5
and (1).

Experimental data indicates that the code C(q,qm−1,δ2,1)
⊥

holds also 2-designs
for both even and odd m. However, the Assmus-Mattson Theorem may not give
a proof of the 2-design property, as C(q,qm−1,δ2,1)

⊥
has minimum distance 4 in
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some cases. To settle this problem in general, we need find out the automorphism
group of the code C(q,qm−1,δ2,1)

⊥
.

Problem 1. Determine the automorphism group Aut(C(q,qm−1,δ2,1)
⊥

). Prove or

disprove that Aut(C(q,qm−1,δ2,1)
⊥

) is doubly transitive.

3.4 Designs Held in C(2, 2m−1, δ3, 1) with δ3 = 2m−1 − 1 − 2�(m+1)/2�

With the help of Theorem 5, we now describe several families of 2-designs from
the narrow-sense primitive binary code C(2, 2m−1, δ3, 1), where δ3 = 2m−1 − 1 −
2�(m+1)/2�.

Theorem 10. Let m ≥ 4 be an integer. Then for odd m, C(2,2m−1,δ3,1) holds
2-(2m, k, λ) designs with the following pairs of (k, λ):

–
(
2m−1 − 2

m+1
2 , (2m−1 − 1)(2m−4 − 2

m−5
2 )(2m−1 − 2

m+1
2 − 1)/3

)
.

–
(
2m−1 − 2

m−1
2 , (5 · 2m−1 + 4)(2m−2 − 2

m−3
2 )(2m−1 − 2

m−1
2 − 1)/3

)
.

–
(
2m−1, (2m−1 − 1)(9 · 22m−4 + 3 · 2m−3 + 1)

)
.

Table 5. The weight distribution of C(2, 2m−1, δ3, 1) for odd m.

Weight w No. of codewords Aw

0 1

2m−1 − 2(m+1)/2 (2m − 1)2m−3(2m−1 − 1)/3

2m−1 − 2(m−1)/2 (2m − 1)2m−1(5 · 2m−1 + 4)/3

2m−1 2(2m − 1)(9 · 22m−4 + 3 · 2m−3 + 1)

2m−1 + 2(m−1)/2 (2m − 1)2m−1(5 · 2m−1 + 4)/3

2m−1 + 2(m+1)/2 (2m − 1)2m−3(2m−1 − 1)/3

2m 1

Table 6. The weight distribution of C(2, 2m−1, δ3, 1) for even m.

Weight w No. of codewords Aw

0 1

2m−1 − 2m/2 (2m/2 − 1)2m−2(2m+1 + 2m/2 − 1)/3

2m−1 − 2(m−2)/2 (2m/2 − 1)2m(2m + 2(m+2)/2 + 4)/3

2m−1 2(2m/2 − 1)(22m−1 + 2(3m−4)/2 − 2m−2 + 2m/2 + 1)

2m−1 + 2(m−2)/2 (2m/2 − 1)2m(2m + 2(m+2)/2 + 4)/3

2m−1 + 2m/2 (2m/2 − 1)2m−2(2m+1 + 2m/2 − 1)/3

2m 1
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–
(
2m−1 + 2

m−1
2 , (5 · 2m−1 + 4)(2m−2 + 2

m−3
2 )(2m−1 + 2

m−1
2 − 1)/3

)
.

–
(
2m−1 + 2

m+1
2 , (2m−1 − 1)(2m−4 + 2

m−5
2 )(2m−1 + 2

m+1
2 − 1)/3

)
.

For even m, it holds 2-(2m, k, λ) designs with the following pairs of (k, λ):

–
(
2m−1 − 2

m
2 , (2

m+2
2 − 1)(2m−3 − 2

m−4
2 )(2m−1 − 2

m
2 − 1)/3

)
.

–
(
2m−1 − 2

m−2
2 , (2m + 2

m+2
2 + 4)(2m−1 − 2

m−2
2 )(2

m−2
2 − 1)/3

)
.

–
(
2m−1, ((2

m+2
2 − 1)2m−2 + 1)(2m−1 − 1)

)
.

–
(
2m−1 + 2

m−2
2 , (2m + 2

m+2
2 + 4)(2m−1 + 2

m−2
2 − 1)2

m−2
2 /3

)
.

–
(
2m−1 + 2

m
2 , (2

m+2
2 − 1)(2m−3 + 2

m−4
2 )(2m−1 + 2

m
2 − 1)/3

)
.

Proof. We give an outline of the proof. The weight distribution of C(2,2m−1,δ3,0)

was settled in [8], and can be employed to determine the weight distribution of
C(2,2m−1,δ3,1), which contains C(2,2m−1,δ3,0) as a subcode. Employing the weight
distribution of C(2,2m−1,δ3,1) obtained, one can prove that the weight distribution
of C(2,2m−1,δ3,1) is given in Tables 5 and 6 for odd m and even m, respectively.
It then follows that C(2,2m−1,δ3,1) has length 2m and dimension

k =
{

3m + 1 for odd m,
5m
2 + 1 for even m.

(7)

The desired conclusions then follow from the weight distribution of the code,
Theorem 5 and (1).

If m is odd, C(2,2m−1,δ3,1)
⊥

holds 3-designs, which are documented in [7].

If m is even, C(2,2m−1,δ3,1)
⊥

does not hold 3-designs. Below we determine the

parameters of some of the 2-designs held in C(2,2m−1,δ3,1)
⊥

. To this end, we need
the following lemma.

Lemma 2. Let m ≥ 6 be even. Then the weight distribution of C(2,2m−1,δ3,1)
⊥

is given by

2(5m+2)/2A
⊥
k

=
(
1 + (−1)k

) (
2m

k

)
+ wE0(k) + uE1(k) + vE2(k),

where

u = (2m/2 − 1)2m−2(2m+1 + 2m/2 − 1)/3,

v = (2m/2 − 1)2m(2m + 2(m+2)/2 + 4)/3,

w = 2(2m/2 − 1)(22m−1 + 2(3m−4)/2 − 2m−2 + 2m/2 + 1),
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and

E0(k) =
1 + (−1)k

2
(−1)�k/2�

(
2m−1


k/2�
)

,

E1(k) =
∑

0≤i≤2m−1−2m/2

0≤j≤2m−1+2m/2

ı+j=k

[(−1)i + (−1)j ]
(

2m−1 − 2m/2

i

)(
2m−1 + 2m/2

j

)
,

E2(k) =
∑

0≤i≤2m−1−2
m−2

2

0≤j≤2m−1+2
m−2

2

ı+j=k

((−1)i + (−1)j)
(

2m−1 − 2
m−2

2

i

)(
2m−1 + 2

m−2
2

j

)
,

and 0 ≤ k ≤ 2m.
In addition, C(2,2m−1,δ3,1)

⊥
has parameters [2m, 2m − 1 − 5m/2, 6].

Proof. With the weight distribution of C(2,2m−1,δ3,1) given in Table 6, one can
prove the desired conclusions with the help of Theorem 3. We omit the very
lengthy details.

Theorem 11. Let m ≥ 4 be an even integer. Let A
⊥
i denote the number of

codewords with weight i in C(2,2m−1,δ3,1)
⊥

for all 0 ≤ i ≤ 2m. Then for every

i with A
⊥
i �= 0, the supports of the codewords with weight i in this code form a

2-(2m, i, λ) design with

λ =
A

⊥
i

(
i
2

)
(
2m

2

) ,

where these A
⊥
i are given in Lemma 2.

Proof. The desired conclusions follows from Theorems 6 and (1).

Corollary 4. Let m ≥ 4 be an even integer. Then the supports of all codewords
of weight 6 in C(2,2m−1,δ3,1)

⊥
give a 2-(2m, 6, λ) design, where

λ =
(2(m−2)/2 − 2)(2m−2 − 1)

3
.

Proof. By Lemma 2, we have

A
⊥
6 =

2m−1(2(m−2)/2 − 2)(2m−2 − 1)(2m − 1)
45

.

The desired conclusions then follow from Theorem 11.
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Table 7. The weight distribution of C⊥
(2, 2m−1, 5, 1) for even m.

Weight w No. of codewords Aw

0 1

2m−1 − 2m/2 (2m − 1)(2m−3 + 2(m−4)/2)/3

2m−1 − 2(m−2)/2 (2m − 1)(2m + 2m/2)/3

2m−1 (2m − 1)(2m−2 + 1)

2m−1 + 2(m−2)/2 (2m − 1)(2m − 2m/2)/3

2m−1 + 2m/2 (2m − 1)(2m−3 − 2(m−4)/2)/3

Corollary 5. Let m ≥ 4 be an even integer. Then the supports of all codewords
of weight 8 in C(2,2m−1,δ3,1)

⊥
give a 2-(2m, 8, λ) design, where

λ =
(h2 − 1)(8h5 − 46h3 + 50h2 + 56h − 95)

45

and h = 2(m−2)/2.

Proof. By Lemma 2, we have

A
⊥
8 =

h2(h2 − 1)(4h2 − 1)(8h5 − 46h3 + 50h2 + 56h − 95)
630

,

where h = 2(m−2)/2. The desired conclusions then follow from Theorem 11.

3.5 Designs Held in C(2,2m−1,5,1) and C(2,2m−1,5,1)
⊥

for even m ≥ 4

In this section, we will determine the parameters of some of the 2-designs held
in both C(2,2m−1,5,1) and C(2,2m−1,5,1)

⊥
for even m ≥ 4. Before doing this, we

need to settle the weight distribution of of the two codes.
A proof of the following theorem can be found in [12]

Theorem 12. C⊥
(2,2m−1,5,1) has dimension 2m, and the weight distribution of

Table 7 for even m.

Lemma 3. Let m ≥ 4 be even. The code C(2,2m−1,5,1)
⊥

has length 2m, dimen-
sion 2m + 1 and the weight distribution in Table 8.

Proof. The conclusion on the dimension of the code follows from Theorem 7. The
desired conclusion on the weight distribution of C(2,2m−1,5,1)

⊥
follows from the

weight distribution of C⊥
(2,2m−1,5,1) in Table 7. We omit the very lengthy details

of the proof.

Theorem 13. Let m ≥ 4 be even. Then C(2,2m−1,5,1)
⊥
holds 2-(2m, k, λ) designs

with the following pairs of (k, λ):
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Table 8. Weight distribution of C(2, 2m−1, 5, 1)
⊥

for even m ≥ 4.

Weight w No. of codewords A
⊥
w

0 1

2m−1 − 2m/2 (2m − 1)2m−2/3

2m−1 − 2(m−2)/2 (2m − 1)2m+1/3

2m−1 (2m − 1)(2m−1 + 2)

2m−1 + 2(m−2)/2 (2m − 1)2m+1/3

2m−1 + 2m/2 (2m − 1)2m−2/3

2m 1

–
(
2m−1 − 2

m
2 , (2m−3 − 2(m−4)/2)(2m−1 − 2m/2 − 1)/3

)
.

–
(
2m−1 − 2

m−2
2 , (2m − 2m/2)(2m−1 − 2(m−2)/2 − 1)/3

)
.

–
(
2m−1, (2m−2 + 1)(2m−1 − 1)

)
.

–
(
2m−1 + 2

m−2
2 , (2m + 2m/2)(2m−1 + 2(m−2)/2 − 1)/3

)
.

–
(
2m−1 + 2

m
2 , (2m−3 + 2(m−4)/2)(2m−1 + 2m/2 − 1)

)
/3.

Proof. The desired conclusions then follow from the weight distribution of the
code in Table 8, Theorem 5 and (1).

Lemma 4. Let m ≥ 4 be even. Then the weight distribution of C(2,2m−1,5,1) is
given by

22m+1Ak =
(
1 + (−1)k

) (
2m

k

)
+ wE0(k) + uE1(k) + vE2(k),

where

u = (2m − 1)2m−2/3,

v = (2m − 1)2m+1/3,

w = (2m − 1)(2m−1 + 2),

and

E0(k) =
1 + (−1)k

2
(−1)�k/2�

(
2m−1


k/2�
)

,

E1(k) =
∑

0≤i≤2m−1−2m/2

0≤j≤2m−1+2m/2

ı+j=k

((−1)i + (−1)j)
(

2m−1 − 2m/2

i

)(
2m−1 + 2m/2

j

)
,
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E2(k) =
∑

0≤i≤2m−1−2(m−2)/2

0≤j≤2m−1+2(m−2)/2

ı+j=k

((−1)i + (−1)j)
(

2m−1 − 2
m−2

2

i

)(
2m−1 + 2

m−2
2

j

)
,

and 0 ≤ k ≤ 2m.
In addition, C(2,2m−1,5,1) has parameters [2m, 2m − 1 − 2m, 6].

Proof. With the weight distribution of C(2,2m−1,5,1)
⊥

given in Table 8, one can
prove the desired conclusions with the help of Theorem 3. The very lengthy
details are omitted.

Theorem 14. Let ≥ 4 be an even integer. Let Ai denote the number of code-
words with weight i in C(2,2m−1,5,1) for all 0 ≤ i ≤ 2m. Then for every i with
Ai �= 0, the supports of the codewords with weight i in this code form a 2-(2m, i, λ)
design with

λ =
Ai

(
i
2

)
(
2m

2

) ,

where these Ai are given in Lemma 4.

Proof. The desired conclusions follows from Theorem 6 and (1).

Corollary 6. Let m ≥ 4 be an even integer. Then the supports of all codewords
of weight 6 in C(2,2m−1,5,1) give a 2-(2m, 6, λ) design, where

λ =
2 × (2m−2 − 1)2

3
.

Proof. By Lemma 4, we have

A6 =
2m(2m − 1)(2m−2 − 1)2

45
.

The desired conclusions then follow from Theorem 14.

Corollary 7. Let m ≥ 4 be an even integer. Then the supports of all codewords
of weight 8 in C(2,2m−1,5,1) give a 2-(2m, 8, λ) design, where

λ =
(h2 − 1)(16h6 − 92h4 + 162h2 − 95)

630
,

where h = 2(m−2)/2.

Proof. By Lemma 4, we have

A8 =
h2(h2 − 1)(4h2 − 1)(16h6 − 92h4 + 162h2 − 95)

630
.

The desired conclusions then follow from Theorem 14.
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Corollary 8. Let m ≥ 4 be an even integer. Then the supports of all codewords
of weight 10 in C(2,2m−1,5,1) give a 2-(2m, 10, λ) design, where

λ =
2(h2 − 1)(16h10 − 160h8 + 666h6 − 1401h4 + 1498h2 − 679)

315
,

where h = 2(m−2)/2.

Proof. By Lemma 4, we have

A10 =
4h2(4h2 − 1)(h2 − 1)(16h10 − 160h8 + 666h6 − 1401h4 + 1498h2 − 679)

14175
.

The desired conclusions then follow from Theorem 14.

4 Concluding Remarks

It was known that the extended code of a narrow-sense primitive code over GF(q)
holds 2-designs. But little is known about the parameters of these 2-designs.
The contribution of this extended abstract is to determine the parameters of
some of the 2-designs held in the extended codes of a few families of narrow-
sense primitive codes over GF(q). Even for the special families of narrow-sense
primitive BCH codes treated in this extended abstract, we were able to find
the parameters of only a small number of the 2-designs held in their extended
codes. As seen before, it is a very difficult problem to determine the parameters
of these 2-designs. The weight distribution of narrow-sense primitive BCH codes
is known only in a few special cases. This partially explains the difficulty in
determining the parameters of the 2-designs.

Another difficulty lies in the fact that many codewords of the same Hamming
weight in a code GF(q) may have the same support when q ≥ 3. The following
problem is also very hard.

Problem 2. Let C be a linear code of length n over GF(q), where q ≥ 3. Given
i with Ai �= 0, what is the relation between the total number of supports of all
codewords of weight i in C and Ai?

Only when i = d is the minimum distance of the code, the answer to this
problem is known. Problem 2 is challenging, but very useful in the theory of
t-designs.

We inform the reader that some of the narrow-sense primitive BCH codes
dealt with in this extended abstract were employed in [7,9] for constructing
2-designs and 3-designs. But the parameters of the 2-designs in this extended
abstract and those of the 2-designs in [7,9] are different. In fact, this extended
abstract complements [7,9]. For all of the 2-(2m, k, λ) designs presented in this
extended abstract, m is mostly even. For all the 2-(2m − 1, k, λ) designs and 2-
(2m, k, λ) designs documented in [7,9], m must be odd. Another major difference
is that all the 2-designs of this paper are obtained via the automorphism groups
of the underlying codes, and their design property cannot be proved with the
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Assmus-Mattson Theorem when m is even, while all the designs in [7,9] are
obtained via the Assmus-Mattson Theorem.

Since this is an extended abstract, we omitted all the very lengthy proofs.
We will give detailed proofs of these results elsewhere in the future.
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Abstract. The Linear Discriminant Analysis (LDA) is a powerful lin-
ear feature reduction technique. It often produces satisfactory results
under two conditions. The first one requires that the global data struc-
ture and the local data structure must be coherent. The second concerns
data classes distribution nature. It should be a Gaussian distribution.
Nevertheless, in pattern recognition problems, especially network anom-
alies detection, these conditions are not always fulfilled. In this paper, we
propose an improved LDA algorithm, the median nearest neighbors LDA
(median NN-LDA), which performs well without satisfying the above two
conditions. Our approach can effectively get the local structure of data
by working with samples that are near to the median of every data class.
The further samples will be essential for preserving the global structure
of every class. Extensive experiments on two well known datasets namely
KDDcup99 and NSL-KDD show that the proposed approach can achieve
a promising attack identification accuracy.

Keywords: LDA · median NN-LDA · Network anomaly detection ·
NSL-KDD · KDDcup99

1 Introduction

The linear discriminant analysis (LDA) [1] is a family of techniques whose role
is dimensionality reduction and feature extraction. Fishers LDA is one of the
most known LDA methods. It has been used successfully in a variety of pattern
recognition problems including network anomalies detection [2–4]. The key pro-
cedure behind Fishers LDA or LDA is to employ the well-known Fisher criterion
to extract a linearly independent discriminant vectors and exploit them as basis
by which samples are projected into a new space. These vectors contribute in
maximizing the ratio of the inter-class distance to intra-class distance in the
obtained space.

In literature, many works have been proposed to ameliorate the performance
and the accuracy of the classical LDA. These works can be generally divided into
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two categories. The first category tries to solve the small sample size (SSS) prob-
lem, which always happens when the data dimension is greater than the number
of training samples. As noticed in previous contributions, to overcome the SSS
problem, direct linear discriminant analysis (Direct LDA) [5] eliminates the null
space of the inter-class scatter matrix as a first step. After that, it extracts the
discriminant information from the null space of the intra-class scatter matrix. In
the same way, Null space LDA [6] exploited the valuable discriminant vectors of
the null space of the intra-class scatter matrix with the help of PCA [7]. These
vectors are used rather than the eigenvectors of the classical LDA. The authors
of the last method also demonstrated that the extracted vectors are equivalent
to the optimal LDA discriminant vectors obtained in the original space.

In [8] we can see an exponential discriminant analysis algorithm that derive
the most discriminant information which exists in the intra-class scatter matrix’s
null space. However, the procedures employed by the aforementioned algorithms
destroy a big part of discriminant information essential for classification. Another
technique to overcome the (SSS) problem is presented in [9]. It employed an opti-
mization criterion which used a generalized singular value decomposition. This
technique is operational regardless of whether the dimension of data is greater
than the number of training samples. Alternatively, an ensemble learning frame-
work was developed by Wang and Tang [10] in order to preserve the significant
discriminant information by random sampling on feature vectors and training
samples. In [11], three LDA approaches were proposed to solve the SSS problem:
regularized discriminant analysis [12], discriminant common vectors [13], and
Maximum Margin Criterion (MMC) [14]. Another famous approach to address
the SSS consists in using PCA + LDA to get the discriminant features (i.e.,
apply PCA on data before LDA). Nevertheless, this method may lose valuable
discriminant information in PCAs stage.

The second part of works deals with the incremental versions of the LDA.
This kind of LDA is very useful for online learning tasks. One of their main advan-
tages is that the feature extraction method does not need to save the entire data
matrix in the memory. In [15], QR decomposition with a LDA-based incremen-
tal algorithm were proposed. In [16], the authors developed many incremental
LDAs which have a common point. The algorithms have to update in every step
the between-class and within-class scatter matrices. Another incremental LDA
is presented in [17]. Here, the authors showcase a good mechanism to update
the scatter matrices. Besides the above two kind of improvements of LDA, there
are also some LDA-based algorithms such as R1 LDA [18], L1 LDA [19], Median
LDA [20] and pseudo LDA [21].

Unfortunately, all these aforementioned LDA methods pay more attention to
the global structure of classes. As a result, the produced discriminant vectors
are often skewed. Before going through the explanation of this fact, we give an
overview of class distribution types. In general, there is two kind of complemen-
tary distributions. One is local and the other is global. The first one represents a
portion of samples that defines in a certain manner the real distribution nature
of every class. In the other hand, the global distribution determines the class
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boundaries and helps us to separate as much as possible the classes. However,
in reality, the last distribution is in most of cases not Gaussian and has a more
complex structure. In addition, it is often incoherent with the first type of dis-
tribution. All these assumptions lead to an inaccurate discriminant vectors.

In order to address this matter, previous works [22–24] exploited local infor-
mation to obtain optimal discriminant vectors. Nonetheless, in these works, it is
necessary to calculate a matrix where each of it element is a distance between
two data samples, in addition, we have to do an eigen decomposition of a huge
matrix generated by the entire training set. For network intrusion detection field
it will be a time consuming and even an infeasible task. As a result, it is difficult
to implement these approaches.

In this paper, to deal with the drawback of the global LDA, we propose a
kind of local LDA namely Median Nearest Neighbors LDA. The method takes
into account also preserving the global structure. Our approach consists of two
parts. The first part is to find a proper number of nearest neighbors to the
median of every class training set. The determined nearest neighbors will be
used to compute the within-class scatter matrix. In the second part, the rest
of samples which are further from the median will determine the between-class
scatter matrix.

The rest of this paper is organized as follows. In Sect. 2, we outline the clas-
sical LDA. Section 3 presents in details the proposed approach. Section 4 intro-
duces the two well known network datasets KDDcup99 and NSL-KDD. In Sect. 5
we give the experimental results and illustrate the effectiveness of the algorithm
and compare it to some of the above LDA approaches. Finally, Sect. 6 offers our
conclusions.

2 Linear Discriminant Analysis

The conventional LDA aims to reduce dimensionality while keeping the maxi-
mum of class-discriminatory information. This operation is realized by projecting
original data onto a lower dimensional space with taking into account maximiz-
ing separation of different classes on the one hand, and minimizing dispersion of
samples of the same class on the other hand. Mathematically speaking, suppose
we have a data matrix X = [x1, . . . , xn] ∈ R

d×n composed of n samples, our
purpose is to find a linear transformation G ∈ R

d×l that transforms each vector
xi to a new vector xl

i in the reduced l-dimensional space as follows:

xl
i = GTxi ∈ R

l(l < d)

The data matrix X can be rewritten as X = [X1, . . . , Xk] such that k is the
number of classes and Xi ∈ R

d×ni represents samples of the ith class, ni is the

sample size of the ith class and
k∑

i=1

ni = n. LDA operates on three important

matrices namely within-class, between-class and total-scatter matrices which are
defined as follows:
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Sw = (1/n)
k∑

i=1

∑

x∈Xi

(x − ci)(x − ci)T (1)

Sb = (1/n)
k∑

i=1

ni(ci − c)(ci − c)T (2)

St = (1/n)
n∑

i=1

(xi − c)(xi − c)T (3)

ci is the mean of the ith class, and c is the general mean. It can be proved that
St = Sw + Sb [1]. It follows from (1) and (2) that:

trace(Sw) = (1/n)
k∑

i=1

∑

x∈Xi

||x − ci||2 (4)

trace(Sb) = (1/n)
k∑

i=1

ni||ci − c||2 (5)

The trace of Sw gives us an idea on how every sample is close to its class mean.
The trace of Sb shows us how each class is far from the global mean. In the dimen-
sionality reduced space transformed by G, the three scatter matrices become:

Sl
w = GTSwG

Sl
b = GTSbG

Sl
t = GTStG

The optimal projection matrix can be gained by maximizing the following objec-
tive function:

G = arg max
trace(Sb)
trace(Sw)

(6)

When Sw is invertible, the solutions to (6) can be obtained by performing
the following generalized eigenvalue decomposition:

S−1
w Sbgi = λigi (7)

where G = [g1, . . . , gl].
Setting aside the famous (SSS) problem, LDA suffers from another matter. It

uses the global structure information of the total training samples to determine
the linear discriminant vectors. In general, the use of these vectors to extract
features from the samples may lead to erroneous classification. The potential
reason behind this phenomenon seems to be that the global distribution of the
data does not represent the real distribution nature of every class. In other
words, the global distribution is not always consistent with the local distribution.
Moreover, the non Gaussian nature of data might cause a nonlinear boundaries
between the classes. So it becomes difficult to use global linear discriminant
vectors to separate the data.
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3 The Proposed Method

To overcome the aforementioned LDA drawbacks, we propose to exploit the local
distribution of every class. To do that we were based on the concept of median. In
probability theory and statistics, the median is defined as a sample that separates
the higher half of a probability distribution from the lower half. It is the middle
value in a distribution, above and below which lie an equal number of samples.
From this assumption, we observe that the samples which are close to the median
represent the central distribution of every class and match logically with the
local distribution. In the other hand we can assimilate the further samples to
the global distribution, since they exist naturally in the boundaries of the class
and facilitate the separation of classes. With this concept we dissociate the two
distributions. Therefore, we resolve the matter of distribution’s consistency.

Our approach (median NN-LDA) also performs well even if the data is not
Gaussian or has nonlinear boundaries. Since it can extract the global structures
of the data through determining the samples which are far from the median, the
method can obtain a number of local linear discriminant vectors which approx-
imate the nonlinear boundary between the classes.

In mathematical terms, Xi will be divided into Xw
i and Xb

i .
Let Xw

i = [x1, . . . , xp] ∈ R
d×p represents the p median nearest neighbors of

every class.
Let Xb

i = [xp+1, . . . , xni
] ∈ R

d×(ni−p) contains the ni − p samples which are
far from the median of every class.

The local distribution Xw
i will be exploited by the new within class scatter

matrix S′
w, since it measures the intra-class compactness. In the other hand, the

global distribution represented by Xb
i is required to compute the new between-

class scatter matrix S′
b and more specifically the general mean c.

Then the Eqs. (1) and (2) will be rewritten as follow:

S′
w = (1/p)

k∑

i=1

∑

x∈Xw
i

(x − cwi )(x − cwi )T (8)

S′
b = (1/p)

k∑

i=1

(cwi − c)(cwi − c)T (9)

Where cwi is the mean of Xw
i , cbi is the mean of Xb

i and c = 1
k

k∑
i=1

(cbi ) is the

general mean.
As a consequence, Eqs. (4) and (5) will be replaced by:

trace(S′
w) = (1/p)

k∑

i=1

∑

x∈Xw
i

||x − cwi ||2 (10)

trace(S′
b) = (1/p)

k∑

i=1

ni||cwi − c||2 (11)
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We obtain the discriminant vectors by maximizing the following objective
function:

G′ = arg max
trace(S′

b)
trace(S′

w)
(12)

The solution can be reached by performing:

(S′
w)−1S′

bg
′
i = λ′

ig
′
i (13)

where G′ = [g′
1, . . . , g′

l].
In order to deal with the singularity problem, we propose to apply an inter-

mediate dimensionality reduction stage, such as principal component analysis
(PCA) [7] to reduce the data dimensionality before applying median NN-LDA.

4 The Simulated Databases and Its Transformation

4.1 KDDcup99

The KDDcup99 [25] intrusion detection datasets relies on the 1998 DARPA ini-
tiative, which offers to researchers in intrusion detection field a benchmark where
to evaluate various approaches. This dataset is composed of many connections.

A connection is a sequence of TCP packets which begins and ends at some
well defined times. In this laps of time, a data flows from a source IP address to
a target IP address under a defined protocol.

Every connection is composed of 41 features and it is labeled as normal or
malicious. If the connection is malicious, it falls into one of four categories:

1. Probing: surveillance and other probing, e.g., port scanning;
2. U2R: unauthorized access to local superuser (root) privileges, e.g., various

buffer overflow attacks;
3. DOS: denial-of-service, e.g. syn flooding;
4. R2L: unauthorized access from a remote machine, e.g. password guessing.

We have worked with “kddcup.data 10 percent” as training dataset and “cor-
rected” as testing dataset. The training set contains 494,021 records which is
divided as follow: 97,280 are normal connection records, the rest corresponds
to attacks. In the other side, the test set contains 311,029 records composed of
60,593 normal connections. It is important to note that:

1. the test data probability distribution is not like that of the training data;
2. the test data contains some new kind of attacks which are dispersed as follow:

4 U2R attack types, 4 DOS attack, 7 R2L attack and 2 Probing attacks. All
these attacks do not belong to the training dataset, a fact that makes the
IDS’s work more challenging.
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4.2 NSL-KDD

NSL-KDD [26] is a new version of KDDcup99 dataset. This dataset has some
advantages over the old one and has addressed some of it critical problems. Here
are the important ones:

1. Duplicate records from the training set are removed.
2. Redundant records from the test set are eliminated to improve the intrusion

detection performance.
3. Each difficulty level group contains a number of records which is inversely

proportional to the percentage of records in the original KDD data set. As
a consequence, we will have a more precise evaluation of different machine
learning techniques.

4. It is possible to exploit the complete dataset without selecting a random small
portion of data because the number of records in the train and test sets are
acceptable. Consequently, evaluation results of different research works will
be consistent and comparable.

4.3 Transformation Process

In order to successfully apply the approach on the datasets, as a crucial step, we
have converted all the discrete attributes values of the datasets to continuous
values. To accomplish that, we applied the following procedure: every discrete
attribute i which takes k different values will be represented as k coordinates com-
posed of ones and zeros. For example, we know that the protocol type attribute
has three values tcp, udp or icmp. According to the procedure, all these values
will be transformed to the corresponding coordinates (1, 0, 0), (0, 1, 0) or (0, 0, 1).

5 Experiments and Discussion

In this section, in order to demonstrate the effectiveness of the proposed method,
we conduct a series of experiments with KDDcup99 and NSL-KDD. Meanwhile,
we also compare median NN-LDA performance with LDA, direct LDA, null
space LDA, R1 LDA, pseudo LDA in an all-round way.

We can employ the following measures to evaluate these methods:

DR =
TP

TP + FN
× 100 (14)

FPR =
FP

FP + TN
× 100 (15)

In network security jargon, (DR) refers to Detection Rate and (FPR) is
False Positive Rate. True positives (TP) are attacks correctly predicted. False
negatives (FN) represent intrusions classified as normal instances, false positive
(FP) refer to normal instances wrongly classified, and true negatives (TN) are
normal instances classified as normal. Therefore, the most performant feature
extraction method, is the one which produces a high DR and a low FPR.
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In our experiments, we varied the size of training samples and kept test
dataset intact with the following composition (100 normal data, 100 DOS data,
50 U2R data, 100 R2L data, and 100 PROBE). To reduce the variation of the
detection rate (DR), we adopt the mean of twenty runs. Since our aim is to
evaluate the efficacy of feature extraction method, we use a simple classifier, the
nearest neighbor classifier.

The first experiment consists in defining the adequate number of samples p
which represent the local structure of every class. In theory, it is difficult to do
that. The most suitable p is affected by several factors such as the total number

Fig. 1. Detection rate of different K for KDDcup99

Fig. 2. Detection rate of different K for NSL-KDD
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of training samples, the number of total classes, the distribution of the samples.
Therefore, the value of p often needs to be empirically determined. For instance,
we consider p as ni

K and we varied K from 2 to 10. Figures 1 and 2 show us
that p = ni

2 is the value which obtains the highest average detection rate (DR)
for KDDcup99 and NSL-KDD. Consequently, we set p to this value in the next
experiments.

In the second experiment we compare our proposed method to the follow-
ing algorithms: LDA, median LDA, null space LDA, Direct LDA and pseudo
LDA. To avoid the (SSS) problem, PCA is used as the first stage of the LDA,

Fig. 3. Training data vs. detection rate for KDDcup99

Fig. 4. Training data vs. detection rate for NSL-KDD
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median LDA and median NN-LDA algorithms. Hence, these algorithms can also
be viewed as the PCA + LDA, PCA + median LDA, PCA + median NN-LDA.
We have chosen 3 principal components in the first stage of these methods. In the
second stage we have chosen 3top features. The rest of LDA algorithms exploit
the 4 top discriminant vectors. Having said that, we increased the number of
training data and we visualized it influence on DR and FPR of every method.

Figures 3, 4, 5 and 6 illustrate the results we found when we compare our app-
roach to LDA, median LDA and null space LDA for the two datasets. According
to the first two figures, we observe that our approach takes the lead in attacks

Fig. 5. Training data vs. FPR for KDDcup99

Fig. 6. Training data vs. FPR for NSL-KDD
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detection as the training data grows up. The reason behind this phenomenon
seems to be that more we have training samples, the easier the local structure
around every class median can be captured. In addition, when we increase the
number of training samples, the boundaries of every class become more struc-
tured and separable. This truth helps as much as possible in preserving the
global distribution. The rest of figures depict the relationship between training
samples and FPR. It is clear that median NN-LDA produces the lowest false
positive rate compared to the other methods. This fact proves the high ability
of our approach to recognize the normal network instances regardless of training
samples size.

Fig. 7. Training data vs. detection rate for KDDcup99

Fig. 8. Training data vs. FPR for KDDcup99



A Median Nearest Neighbors LDA for Anomaly Network Detection 139

To further evaluate the performance of our approach, we compare it to other
LDA methods such as Direct LDA and pseudo LDA. Figures 7, 8, 9 and 10 expose
the obtained results while using KDDcup99 and NSL-KDD. As we have done in
the previous experiments, we varied the number of training samples from 1350
to 9150 and illustrate DR and FPR behaviors.

As regards the first dataset, we observe from Fig. 7 that median NN-LDA
overcomes the two approaches once the size of training data is superior than 2000.
In the other hand, Fig. 8 shows that Pseudo LDA and the proposed approach
give the fewest number of false positives.

Fig. 9. Training data vs. detection rate for NSL-KDD

Fig. 10. Training data vs. FPR for NSL-KDD
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In case we use NSL-KDD, it is shown from Fig. 9 that in term of DR, median
NN-LDA surpasses Direct LDA and Pseudo LDA when the training dataset size
is less than 8000. Once this value is exceeded, Direct LDA starts to compete
with median NN-LDA. Concerning FPR, Fig. 10 asserts that our approach still
gives satisfactory results.

6 Conclusion

In this paper, a novel feature extraction method called median NN-LDA is pro-
posed. In this LDA approach we exploit the median of every class to compute
the within and between scatter matrices. There are two advantages of median
NN-LDA, one is that it preserves the local and the global distributions, the other
is it insensitivity to non Gaussian data. Therefore, the proposed method is more
robust than traditional linear discriminant analysis. We conduct the experiments
on two popular Network data sets (KDDcup99 and NSL-KDD), using many LDA
approaches. The experimental results indicate that the proposed method has a
promising performance.
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and Johannes Buchmann

Technische Universität Darmstadt, Darmstadt, Germany
patrick.struck@stud.tu-darmstadt.de,

{lschabhueser,ddemirel,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. In this work the first linearly homomorphic authenticated
encryption scheme with public verifiability and provable correctness,
called LEPCoV, is presented. It improves the initial proposal by avoiding
false negatives during the verification algorithm. This work provides a
detailed description of LEPCoV, a comparison with the original scheme, a
security and correctness proof, and a performance analysis showing that
all algorithms run in reasonable time for parameters that are currently
considered secure. The scheme presented here allows a user to outsource
computations on encrypted data to the cloud, such that any third party
can verify the correctness of the computations without having access
to the original data. This makes this work an important contribution
to cloud computing and applications where operations on sensitive data
have to be performed, such as statistics on medical records and tallying
of electronically cast votes.

Keywords: Authenticated encryption · Public verifiability · Cloud
computing

1 Introduction

In this work the first “Linearly homomorphic authenticated Encryption with
Provable Correctness and public Verifiability” (LEPCoV) scheme is presented.
It improves Catalano et al.’s instantiated scheme [12] by avoiding false negatives
during the verification algorithm.

Outsourcing data and computations to the cloud has become an increasingly
important aspect of IT. These new techniques provide a higher level of efficiency
and flexibility and are therefore very valuable for private and commercial users.
However, they also pose new risks for data security. Thus, secure outsourcing is a
highly relevant research field. Cloud technologies must ensure that no malicious
party gets access to the outsourced data and that no unauthorized modifications
can be performed, i.e. the solutions must provide confidentiality and integrity.
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Both security goals can be provided by encrypting and, respectively, signing the
data before outsourcing it to the cloud.

To allow for computations on the outsourced data, encryption and signature
schemes with homomorphic properties were developed. However, so far most
works focused on improving either of these schemes. Thus, Catalano et al. [12]
developed a framework called “linearly homomorphic authenticated encryption
with public verifiability” (LAEPuV) that allows to combine both primitives into
one unified solution. They show that their framework can be instantiated with
the Paillier cryptosystem and any linearly homomorphic signature scheme sup-
porting the same message space. Furthermore, they provide a concrete instanti-
ation using a variant of the linearly homomorphic signature scheme by Catalano
et al. [11]. Since their primitive is linearly homomorphic, operations can be per-
formed directly on the signed encrypted data and the correctness of the outcome
can be verified. However, their concrete instantiation leads to false negatives, i.e.
there are many functions for which the verification algorithm rejects correct com-
putations on honestly generated ciphers. Thus, their solution does not provide
correctness for all functions to be evaluated. Note that this affects the proposed
instantiation rather than the generic construction. Furthermore, so far no work
has tested the efficiency of their solution in practice.

Our Contribution. In this paper we propose an instantiation for LAEPuV, called
LEPCoV, based on [12] that does not lead to false negatives. Besides a detailed
description of LEPCoV, we also present a comparison with the scheme proposed
by Catalano et al. highlighting our improvements. Furthermore, we prove that
our solution is secure and ensures correctness when evaluating functions over
authenticated encrypted data. Another shortcoming of the work by Catalano
et al. is that an efficiency evaluation is missing. Measuring the runtime of an
instantiation is important before putting it into practice. Thus, we run a perfor-
mance analysis for different security parameters and dataset sizes. The tests show
that our algorithms run in reasonable time for parameters that are currently
considered secure. In addition, further efficiency improvements are possible and
highlighted at the end of this work.

Structure. Our work is structured as follows. After providing the relevant defi-
nitions and the framework for LAEPuV in Sect. 2, we describe the instantiated
scheme by Catalano et al. [12] in Sect. 3. Based on this, in Sect. 4 we point out
the shortcomings of the scheme particularly with respect to correctness. Follow-
ing this, in Sect. 5 we show how the correctness of the original solution can be
improved, present our revised scheme LEPCoV, and prove its security and cor-
rectness. Finally, in Sect. 6 we demonstrate the practical use of our instantiation
by providing the average runtimes of the algorithms based on our implementa-
tion and conclude in Sect. 7 with a summary of our contribution and possible
future work.
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1.1 Related Work

There are several homomorphic encryption schemes, like Paillier [19],
ElGamal [14], and Benaloh [6], which allow computations on messages by per-
forming a corresponding computation on the ciphers. Anyhow, none of these
schemes address authenticity nor integrity of the data encrypted.

A general definition of homomorphic signature schemes is given by Johnson
et al. [17], as a redefined version of the concept by Desmedt [13]. Linearly homo-
morphic signature schemes have been defined by Boneh et al. [7]. Based on this,
other works [2–4,9–11,15,16], which provide either frameworks or realizations,
have been proposed. However, these schemes keep neither the input data nor the
output data confidential.

Authenticated encryption schemes aim at providing both privacy and authen-
ticity. An and Bellare, for instance, introduced in [1] a new paradigm called
encryption with redundancy achieving both security goals by adding some redun-
dant information to the data to be encrypted. Later, Bellare and Namprempre [5]
defined the term authenticated encryption together with corresponding security
aspects. However, both works consider symmetric encryption and do not provide
a solution for asymmetric encryption. Thus, closer to the setting described in
this paper is the term homomorphic authenticated encryption defined by Joo
and Yun [18]. While their scheme allows more functionalities, it is neither prac-
tical nor does it provide public verifiability. Thus, Catalano et al. [12] proposed
a framework and an instantiation for a linearly homomorphic authenticated
encryption scheme providing public verifiability. In this work we further improve
their instantiation by providing provable correctness and a higher level of
efficiency.

2 Notation and Preliminaries

In this section we provide the notation and preliminaries needed for our con-
struction. We also give an intuition to the setup proposed by Catalano et al. [12]
followed by the definition for Linearly Homomorphic Authenticated Encryp-
tion with Public Verifiability (LAEPuV). Afterwards, we present the hardness
assumptions on which the security of the instantiation proposed by Catalano
et al. and correspondingly our solution is based on.

2.1 Notation

Throughout this work we write [k] = {1, 2, ..., k} for the natural number less or
equal than k. For two integers a, b ∈ Z, we write

⌊
a
b

⌋
for the integer division of

a and b, a | b if a is a factor of b, and a � b if a is not a factor of b.

For a set S we write s
$← S to indicate that s is chosen uniformly at random

from S. We use H to describe a family of collision resistant hash functions which
images can be interpreted as elements of ZN2

E
, where NE = p · q for two primes

p, q of equal size.
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The i-th unit vector of Z
k is denoted by ei. We denote functions as vectors

of coefficients, i.e. f = (f1, ..., fk). Note that for f = ei function evaluation
f(m1, . . . ,mk) returns mi.

2.2 Setup

Catalano et al. [12] introduced a cryptographic primitive called LAEPuV that
allows a user Alice to outsource encrypted data and computations on this data to
the cloud. For this to be secure the cloud must keep the data received confiden-
tial and provide measures that allow verifying the integrity of the computation
results. Optimally, the results are publicly verifiable enabling third parties such
as external auditors to perform these checks.

To ensure confidentiality Alice could encrypt her data using a homomorphic
encryption scheme. Due to its homomorphic properties, functions can be evalu-
ated over the messages by evaluating corresponding functions over the ciphers.
This allows Alice to outsource the computations to a cloud such that it nei-
ther learns the input nor the result. However, Alice has to trust that the cloud
evaluates the functions correctly.

To ensure integrity of the result Alice could sign her data using a homomor-
phic signature scheme before outsourcing it to the cloud. This allows Alice to
delegate computations such that Alice, or any third party on behalf of Alice, can
verify the correctness of the computations. However, without using an encryption
scheme to encrypt the data, the cloud would learn the input and the output of
the computations. Thus, both schemes must be combined. More precisely, Alice
encrypts her data, signs the ciphers, and asks the cloud to evaluate the function
over the ciphers. When Alice receives the resulting cipher along with its (homo-
morphically computed) signature from the cloud, she can verify the computation
using the signature and obtain the message by decrypting the cipher.

A naive combination of these primitives requires that the cipher space of
the encryption scheme and the message space of the homomorphic signature
scheme are equal. The message space of the Paillier cryptosystem is ZN , where
N = pq for two primes p, q of equal size while the corresponding cipher space is
ZN2 . This leads to a performance problem as the homomorphic signature scheme
has to support a significantly larger message space than the Paillier cryptosys-
tem. Thus, Catalano et al. [12] proposed a method which allows combining the
Paillier cryptosystem with a homomorphic signature scheme in a more efficient
manner. Instead of signing the ciphers, the scheme masks the ciphers and signs
the decrypted masked ciphers which have the same size as the original messages.
The framework for the combination of both schemes will be presented in the
next subsection. Details regarding the instantiated scheme by Catalano et al.
follow in Sect. 3.

2.3 LAEPuV

Catalano et al. [12] introduced a cryptographic primitive called linearly homo-
morphic authenticated encryption with public verifiability (LAEPuV). These



146 P. Struck et al.

schemes allow Alice to outsource encrypted data to the cloud such that the
cloud can do computations for Alice which are publicly verifiable. Below, we
formally define LAEPuV schemes.

Definition 1 (Linearly Homomorphic Authenticated Encryption with
Public Verifiability (LAEPuV) [12]). A linearly homomorphic authenticated
encryption with public verifiability (LAEPuV) scheme is a tuple of five PPT
algorithms L = (AKeyGen, AEncrypt, AVerify, ADecrypt, AEval):

AKeyGen(1κ, k): The input is a security parameter κ and the maximum number
k of encrypted messages in each dataset. The output is a key pair (sk, pk),
where sk is the secret key for decrypting and signing and pk is the public key
used for verification and evaluation. The message space M, the cipher space
C, and dataset identifier space D are implicitly defined by the public key pk.

AEncrypt(sk, τ, i,m): The input is a secret key sk, a dataset identifier τ , an index
i ∈ [k], and a message m. The output is a cipher c.

AVerify(pk, τ, c,f): The input is a public key pk, a dataset identifier τ , a cipher
c, and a linear function f . The output is either 1, i.e. the cipher is valid, or
0, i.e. the cipher is invalid.

ADecrypt(sk, τ, c,f): The input is a secret key sk, a dataset identifier τ , a cipher
c, and a linear function f . The output is a message m if c is valid and ⊥ if
c is invalid, respectively.

AEval(pk, τ,f , {ci}i∈[k]): The input is a public key pk, a dataset identifier τ , a
linear function f , and k ciphers {ci}i∈[k]. The output is a cipher c.

In the following we provide the definitions for both the security and the
correctness of linearly homomorphic authenticated encryption with public veri-
fiability (LAEPuV) schemes.

Definition 2. We call a linearly homomorphic authenticated encryption with
public verifiability scheme L = (AKeyGen, AEncrypt, AVerify, ADecrypt, AEval)
LH-IND-CCA secure, if the advantage of an adversary in the LH-IND-CCA
game [12] is negligible in the security parameter κ.

Definition 3. We call a linearly homomorphic authenticated encryption with
public verifiability scheme L = (AKeyGen, AEncrypt, AVerify, ADecrypt, AEval)
correct, if for any key pair (sk, pk) ← AKeyGen(1κ, k) the three conditions below
are satisfied.

Condition 1. For any message m ∈ M, any dataset identifier τ ∈ D, and any
index i ∈ [k] it holds that

ADecrypt(sk, τ,AEncrypt(sk, τ, i,m),ei) = m.

Condition 2. For any cipher c ∈ C, any dataset identifier τ ∈ D, and any
linear function f = (f1, ..., fk) ∈ Z

k
NE

it holds that

AVerify(pk, τ, c,f) = 1 ⇔ ∃m ∈ M : ADecrypt(sk, τ, c,f) = m.
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Condition 3. For any dataset identifier τ ∈ D, any messages m1, ...,mk ∈ M
with corresponding ciphers c1, ..., ck ∈ C such that ci ← AEncrypt(sk, τ, i,mi) for
i ∈ [k], and any linear function f = (f1, ..., fk) ∈ Z

k
NE

it holds that

ADecrypt(sk, τ,AEval(pk, τ,f , {ci}i∈[k]),f) = f(m1, ...,mk).

2.4 Hardness Assumptions

Below we define the hardness assumptions needed for [12] and our construction,
i.e. the decisional composite residuosity assumption (DCRA) and the strong
RSA assumption.

Definition 4 (Decisional Composite Residuosity Assumption [12]). We
say the decisional composite residuosity assumption (DCRA) holds if there exists
no PPT A that can distinguish between a random element from Z

∗
N2 and one

from the set {zN : z ∈ Z
∗
N2} (i.e. the set of N -th residues modulo N2), when N

is the product of two random primes proper size.

Definition 5 (Strong RSA Assumption [11]). Let N be a random RSA
modulus of length κ, where κ ∈ N is the security parameter, and z be a random
element in ZN . Then we say that the strong RSA assumption holds if for any
PPT adversary A it holds that

Pr[(y, e) ← A(N, z) : ye = z mod N ∧ e �= 1] ≤ negl(κ).

3 LAEPuV Scheme CMP14 by Catalano et al.

Catalano et al. [12] proposed the first linearly homomorphic authenticated
encryption with public verifiability scheme, henceforth referred to as CMP14.
The scheme is based on the Paillier cryptosystem [19] and a variant of the lin-
early homomorphic signature scheme by Catalano et al. [11].

Instead of simply signing the cipher, the idea of the scheme is as follows.
It encrypts the message contained in a dataset using the Paillier cryptosystem.
The resulting cipher is masked by multiplying it with the hash of the dataset
identifier concatenated with the index of the message within the dataset. This
masked cipher is decrypted and the resulting message is signed using the lin-
early homomorphic signature scheme. Hereby, the message space of the linearly
homomorphic signature scheme can be of size ZNE

, where ZNE
is the message

space of the Paillier cryptosystem, instead of the larger cipher space ZN2
E
. We

describe the scheme below.

AKeyGen(1κ, k): On input a security parameter κ and an integer k, the algorithm
samples four (safe) primes pE , qE , pS and qS of size κ/2 such that for NE =
pEqE and NS = pSqS it holds that ϕ(NS) = (pS − 1)(qS − 1) and NE

are coprime, i.e. gcd(NE , ϕ(NS)) = 1. Subsequently, it samples an element
g ∈ Z

∗
N2

E
of order NE and k+2 elements g0, g1, h1, ..., hk uniformly at random
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from Z
∗
NS

. Then, it chooses an (efficiently computable) injective function Hp

which maps arbitrary strings to prime numbers of length l < κ/2 and a
hash function H ← H. The algorithm returns the key pair (sk, pk), where
sk = (pE , qE , pS , qS) and pk = (NE , g,NS , g0, g1, h1, ..., hk,H,Hp).

AEncrypt(sk, τ, i,m): On input a secret key sk, a dataset identifier τ , an index
i ∈ [k], and a message m, the algorithm computes the Paillier encryption

C ← gmβNE mod N2
E of m, where β

$← Z
∗
NE

, and the masking R ← H(τ ||i).
It computes a tuple (a, b) ∈ ZNE

× Z
∗
NE

such that gabNE = CR mod N2
E by

invoking the following steps [19]:

– Obtain a by decrypting CR using the Paillier cryptosystem [19].
– Compute c∗ ← CRg−a mod NE .

– Set b ← c
N−1

E mod λ
∗ mod NE , where λ = lcm(pE − 1, qE − 1).

Then, it obtains the prime e ← Hp(τ), chooses a random element s ∈ ZeNE
,

and computes x such that

xeNE = gs
0hig

a
1 mod NS

Finally, it returns the cipher c = (C, a, b, e, s, τ, x).
AVerify(pk, τ, c,f): On input a public key pk, a dataset identifier τ , a cipher

c = (C, a, b, e, s, τ, x), and a linear function f = (f1, ..., fk), the algorithm
computes e ← Hp(τ), f ′ = f−(f mod eNE)

eNE
, and x̂ = x

∏k
i=1 h

f′
i

i

. It checks if

a, s ∈ ZeNE
(1)

x̂eNE = gs
0

k∏

i=1

hfi

i ga
1 mod NS (2)

gabNE = C

k∏

i=1

H(τ ||i)fi mod N2
E (3)

If all checks pass, the algorithm returns 1, i.e. c is a valid cipher. Otherwise,
it returns 0, i.e. c is an invalid cipher.

ADecrypt(sk, τ, c,f): On input a secret key sk, a dataset identifier τ , a cipher
c = (C, a, b, e, s, τ, x), and a linear function f = (f1, ..., fk), the algo-
rithm runs AVerify(pk, τ, c,f) to check if c is a valid cipher, i.e. whether
AVerify(pk, τ, c,f) = 1. If true, the algorithm returns the message m obtained
by decrypting C using the Paillier cryptosystem. Otherwise, it returns ⊥.

AEval(pk, τ,f , {ci}i∈[k]): On input a public key pk, a dataset identifier τ , a lin-
ear function f = (f1, ..., fk), and k ciphers ci = (Ci, ai, bi, ei, si, τi, xi), the
algorithm first checks if there exists i ∈ [k] such that τ �= τi or Hp(τ) �= ei.
If true, the algorithm aborts. Otherwise, the algorithm computes e ← Hp(τ)
and
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C ←
k∏

i=1

Cfi

i mod N2
E a ←

k∑

i=1

fiai mod NE

b ←
k∏

i=1

bfi

i mod N2
E s ←

k∑

i=1

fisi mod eNE

s′ ←
(

k∑

i=1

fisi − s

)
/(eNE) x =

∏k
i=1 xfi

i

gs′
0

mod NS

Then, it returns the cipher c = (C, a, b, e, s, τ, x).

4 Shortcomings of CMP14

In this section we describe the shortcomings of CMP14. First, we show that
there is a restriction regarding the functions which can be evaluated as most
functions lead to false negatives during the verification algorithm, i.e. the ver-
ification algorithm rejects ciphers although they were generated honestly and
correctly. It follows that CMP14 is not correct according to Definition 3 since
these functions violate Condition 3. Following this, we describe a practical issue
regarding the injective function Hp which makes the encryption infeasible in
some datasets.

4.1 Restricted Function Evaluation

On a high level, CMP14 rejects honestly generated ciphers if the value a is
reduced modulo NE during AEval. In other words for a function f = (f1, ..., fk)
and ciphers ci = (Ci, ai, bi, e, si, τ, xi), where f(a1, ..., ak) =

∑k
i=1 fiai ≥ NE ,

the verification of the cipher c ← AEval(pk, τ,f , {ci}i∈[k]) fails. However, there
are a few exceptions for which the verification of the cipher does not fail, namely
the functions f = (f1, ..., fk) for which f(a1, ..., ak) is a multiple of the order
of g1, i.e. f(a1, ..., ak) = q · ord(g1), where q ∈ N. Note that this is unlikely to
happen, especially if using safe primes while generating keys.

We emphasize that Alice has no control over the values ai, because they are
obtained by decrypting the masked cipher CR, where C is the cipher of the
message and R ← H(τ ||i) is the masking. It follows that Alice can not simply
adjust the functions f to ensure that f(a1, ..., ak) < NE .

To show this more formally, we first provide a lemma which specifies the
type of functions which leads to the modulo operation during AEval and show
an inequality that holds for this type of functions. Then, we show that for this
type of functions the verification algorithm of CMP14 fails even though the
ciphers were computed honestly and correctly, which violates Condition 3.

Lemma 1. Let (sk, pk) ← AKeyGen(1κ, k), where sk = (pE , qE , pS , qS) and
pk = (NE , g,NS , g0, g1, h1, ..., hk,H,Hp) be a key pair and a1, ..., ak ∈ ZNE

be the
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decrypted masked (Paillier) ciphers of ciphers c1, ..., ck. Then, any linear func-

tion f = (f1, ..., fk) with ord(g1) � q, where q =
⌊
f(a1,...,ak)

NE

⌋
=

⌊∑k
i=1 fiai

NE

⌋
∈ N,

leads to a modulo operation during AEval, i.e. it holds that

g
∑k

i=1 fiai

1 �= g
∑k

i=1 fiai mod NE

1 mod NS .

Proof. In order to prove the statement, it suffices to show that the exponents
modulo the order of g1 are not equal. Note that gcd(ord(g1), NE) = 1. This
follows directly from the fact that, during AKeyGen, NE and NS are generated
such that gcd(NE , ϕ(NS)) = 1 and ord(g1) | ϕ(NS).

Write f(a1, ..., ak) =
∑k

i=1 fiai = qNE + r, where r ∈ {0, ..., NE − 1} and
q ∈ N such that ord(g1) � q. It holds that

k∑

i=1

fiai = qNE + r mod ord(g1)

�= r mod ord(g1)
= qNE + r mod NE mod ord(g1)

=
k∑

i=1

fiai mod NE mod ord(g1)

Hence, g
∑k

i=1 fiai

1 �= g
∑k

i=1 fiai mod NE

1 mod NS . ��
Proposition 1. Let (sk, pk) ← AKeyGen(1κ, k) be an honestly generated key
pair, ci = (Ci, ai, bi, e, si, τ, xi) ← AEncrypt(sk, τ, i,mi) be ciphers of messages
mi ∈ ZNE

for i ∈ [k], where τ is an arbitrary dataset identifier. For any linear
function f = (f1, ..., fk), where f(a1, ..., ak) leads to a modulo operation during
AEval as defined in Lemma 1, it holds that

ADecrypt(sk, τ,AEval(pk, τ,f , {ci}i∈[k]),f) �= f(m1, ...,mk)

which violates Condition 3 of Definition 3.

Proof. Let (sk, pk) ← AKeyGen(1κ, k) be an honestly generated key pair, τ be
an arbitrary dataset identifier, m1, ...,mk ∈ ZNE

be arbitrary messages, and
ci = (Ci, ai, bi, e, si, τ, xi) ← AEncrypt(sk, τ, i,mi) be the resulting ciphers. Let
f = (f1, ..., fk) be a linear function such that f(a1, ..., ak) satisfies Lemma 1 and
c ← AEval(pk, τ,f , {ci}i∈[k]) be the cipher that is obtained by evaluating the
function f over the ciphers ci. It holds that
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x̂eNE =

(
x

∏k
i=1 h

f ′
i

i

)eNE

=

( ∏k
i=1 xfi

i

gs′
0

∏k
i=1 h

f ′
i

i

)eNE

=
∏k

i=1(g
si
0 hig

ai
1 )fi

(
g

∑k
i=1 fisi−s

eNE
0

∏k
i=1 h

fi−(fi mod eNE)
eNE

i

)eNE

=
g
∑k

i=1 fisi

0

∏k
i=1(h

fi

i )g
∑k

i=1 fiai

1

g
∑k

i=1 fisi−s
0

∏k
i=1 h

fi−(fi mod eNE)
i

= gs
0

k∏

i=1

hfi mod eNE

i g
∑k

i=1 fiai

1

Lemma 1

�= gs
0

k∏

i=1

hfi

i g
∑k

i=1 fiai mod NE

1

= gs
0

k∏

i=1

hfi

i ga
1

This yields AVerify(pk, τ,AEval(pk, τ,f , {ci}i∈[k]),f) = 0, hence, it holds that
ADecrypt(sk, τ,AEval(pk, τ,f , {ci}i∈[k]),f) = ⊥ �= f(m1, ...,mk) which violates
Condition 3. ��

Proposition 1 proves that CMP14 is not correct according to Definition 3 as
there occur false negatives. However, it does not state whether this shortcom-
ing affects the practical use of the scheme, i.e. whether Alice can prevent false
negatives by choosing the messages and functions carefully.

Hence, we implemented and tested CMP14. The results show that CMP14 is
impractical since, regardless of the security parameter κ and the dataset size k,
even small functions, e.g. adding two messages, mainly lead to false negatives.
Below we provide an example which illustrates this.

Table 1 shows a 16 bit key pair (the relevant values) and four messages mi

along with their random encryption values βi and the maskings Ri, which allow
to compute the values ai. While the addition of m4 and either m2 or m3 works,
the addition of m1 and any other message mi as well as the addition of m2 and m3

lead to a false negative. We stress that, regardless of the actual function values,
combining three or four of these messages, i.e. at most one function value is 0,
always yields a false negative. We further emphasize that the values in Table 1
are generated arbitrarily and not specially constructed for this shortcoming.
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Table 1. Example values for false negatives.

Key pair

Secret key sk Public key pk

pE = 151 qE = 149 NE = 22499 N2
E = 506205001 g = 457224679

Encryption values

m β R m β R

m1 = 17 β1 = 14296 R1 = 64489750 m3 = 19 β3 = 1576 R3 = 157182719

m2 = 4 β2 = 17791 R2 = 18170490 m4 = 92 β4 = 6190 R4 = 365721887

4.2 Infeasible Encryption in Some Datasets

CMP14 also suffers from a minor practical issue regarding the function Hp which
binds a unique prime to each dataset. There is no check whether the prime and
the order of the group ZNS

are coprime. If that is not the case, computing the
signature value x during AEncrypt is equivalent to breaking the RSA assumption,
which is assumed to be infeasible.

More formally, let e be a prime such that gcd(eNE , ϕ(NS)) �= 1. Under the
strong RSA assumption (see Definition 5) one can not compute x such that
xeNE = gs

0hig
a
1 mod NS in polynomial time. Hence, for the dataset identified

by τ , where Hp(τ) = e, AEncrypt can not be executed efficiently.

5 Our Improved Scheme LEPCoV

In this section we describe our improved scheme LEPCoV based on CMP14.
We start with a high-level description of the changes followed by a detailed
description of the scheme. Finally, we show that our scheme is both secure and
correct according to Definitions 2 and 3, respectively.

5.1 High-Level Description of Our Changes

First, we simplify the verification of ciphers. We require that all functions to
be evaluated are described as vectors of coefficients where each coefficient is a
value smaller than NE . Note that this restriction still allows to express all linear
functions. More precisely, let m ∈ ZNE

be a message, β ∈ Z
∗
NE

be a random
encryption value, and C = gmβNE ∈ ZN2

E
be a Paillier cipher of this message.

For any integer f , it holds that

Decrypt(Cf ) = fm mod NE

= (f mod NE)m mod NE

= Decrypt(Cf mod NE )

where Decrypt(C) is the Paillier decryption of C. This allows us to simplify the
verification algorithm as the values f ′ and x̂ are no longer necessary.
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To address the shortcoming that efficient encryption is not feasible in some
datasets, as described in Sect. 4.2, we do not use the function Hp. Instead, Alice
generates the prime for each dataset by herself and binds the prime to the
dataset by signing the dataset identifier and the prime using a signature scheme
S = (KeyGen,Sign,Verify). Hence, for each dataset, Alice can generate a unique
prime e such that gcd(eNE , ϕ(NS)) = 1, which guarantees that Alice can encrypt
messages in this dataset.

The other core problem of CMP14 is the evaluation of functions for which
the value a is reduced during AEval, as descried in Sect. 4.1. Note that due
to gcd(NE , ϕ(NS)) = 1, one can not generate g1 of order NE to trivially fix
this shortcoming. Thus, to avoid this problem, we change the computation of
x during AEval. We stress that, in CMP14, the problem if a is reduced during
AEval does not occur if s is reduced during AEval, because x is multiplied with
the inverse of gs′

0 . Hence, similar to s′ we compute a new value a′. Note however
that simply multiplying x also with the inverse of ga′

1 does not suffice as a and s
are not elements within the same group. Instead, we multiply x with the inverse
of ga′e−1

1 , where e−1 is the inverse element of e modulo ϕ(NS). Since the efficient
computation of e−1 requires the factorization of NS , Alice has to compute and
publish e−1.

Based on the changes described above, a cipher c = (C, a, b, e, e−1, σe, s, τ, x)
of a message m in LEPCoV, contains the Paillier encryption C of m, the decrypted
masked cipher a along with its random encryption value b, the prime e and its
inverse element e−1, the signature σe of τ ||e, the random signature value s, the
dataset identifier τ , and the signature x of a. Since a LAEPuV scheme does not
require the complete dataset to verify a cipher, we have to address that Alice
might not store the ciphers locally. Note that the values e, e−1, σe are the same
for each cipher within the same dataset. Thus, it is sufficient to assume that Alice
keeps record of these values, i.e. she has access to a list L which contains tuples of
dataset identifiers τ and the values e, e−1, σe. If Alice runs AEncrypt with dataset
identifier τ the first time, she computes e, e−1, σe and stores (τ, e, e−1, σe) in the
list L. Otherwise, Alice takes the values from the list L. We emphasize that the
list L allows Alice to generate a unique prime for each dataset.

5.2 Description of the Scheme

Below we provide a detailed description of LEPCoV and highlight the differences
compared to CMP14. In the description, S = (KeyGen, Sign, Verify) describes a
signature scheme used to bind primes to datasets.

AKeyGen(1κ, k): On input a security parameter κ and an integer k, the algo-
rithm samples the four (safe) primes pE , qE , pS , qS , the group elements
g0, g1, h1, ..., hk ∈ Z

∗
NS

and g ∈ Z
∗
N2

E
of order NE , and the hash function

H ∈ H as described for the original approach. In addition, it runs KeyGen(1κ)
to obtain a key pair (skS , pkS) of S and returns the key pair (sk, pk), where
sk = (pE , qE , pS , qS , skS) and pk = (NE , g,NS , g0, g1, h1, ..., hk,H, pkS) along
with an empty list L.
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AEncrypt(sk, τ, i,m): On input a secret key sk, a dataset identifier τ , an index
i ∈ [k], and a message m, the algorithm computes R, the Paillier encryption
C of the message m, and (a, b) as described for CMP14. In addition, if τ
is used the first time, it chooses a not yet used prime e of length l < κ/2
such that gcd(eNE , ϕ(NS)) = 1, computes its inverse e−1 mod ϕ(NS) and
its signature σe ← Sign(skS , τ ||e), and stores (τ, e, e−1, σe) in the list L.

Otherwise, it takes (τ, e, e−1, σe) from the list L. Then, it chooses s
$←

ZeNE
, computes the value x such that xeNE = gs

0hig
a
1 mod NS , and returns

the cipher c = (C, a, b, e, e−1, σe, s, τ, x).
AVerify(pk, τ, c,f): On input a public key pk, a dataset identifier τ , a cipher c =

(C, a, b, e, e−1, σe, s, τ, x), and a linear function f = (f1, .., fk), the algorithm
checks if

Verify(pkS , τ ||e, σe) = 1
a, s ∈ ZeNE

xeNE = gs
0

k∏

i=1

hfi

i ga
1 mod NS

gabNE = C

k∏

i=1

H(τ ||i)fi mod N2
E

If all four checks pass, the algorithm returns 1, i.e. c is a valid cipher. Other-
wise, it returns 0, i.e. c is an invalid cipher.

ADecrypt(sk, τ, c,f): On input a secret key sk, a dataset identifier τ , a cipher
c = (C, a, b, e, e−1, σe, s, τ, x), and a linear function f = (f1, ..., fk), the algo-
rithm runs AVerify(pk, τ, c,f) to check if c is a valid cipher. If true, the algo-
rithm returns the message m obtained by decrypting C using the Paillier
cryptosystem. Otherwise, it returns ⊥.

AEval(pk, τ,f , {ci}i∈[k]): On input a public key pk, a dataset identifier τ , a linear
function f , and k ciphers ci = (Ci, ai, bi, ei, e

−1
i , σei

, si, τi, xi), the algorithm
checks if there exists an index l ∈ [k] such that τ �= τl, like in CMP14, or
Verify(pkS , τ ||el, σel

) = 0. Furthermore, the algorithm checks if there are two
indexes i �= j ∈ [k] such that ei �= ej . If one of the checks is true, the algorithm
aborts. Otherwise, the algorithm sets e = e1, e−1 = e−1

1 , σe = σe1 , computes
C, a, b, s, and s′ like in the original approach, and

a′ ←
(

k∑

i=1

fiai − a

)
/NE x =

∏k
i=1 xfi

i

gs′
0 ga′e−1

1

mod NS

Then, it returns the cipher c = (C, a, b, e, e−1, σe, s, τ, x).
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5.3 Security

The security of our improved scheme LEPCoV, according to Definition 2, is given
in the theorem below.

Theorem 1. The linearly homomorphic authenticated encryption with public
verifiability scheme LEPCoV, described above, is secure according to Definition 2.

Proof. For lack of space, we only sketch the proof. In CMP14, the injective
function Hp ensures that each dataset is associated with a unique prime e. In
LEPCoV, these primes are generated by Alice, hence, she can generate a unique
prime for each dataset. The signature scheme S = (KeyGen, Sign, Verify) is used
to bind primes to datasets, thus, the security of S guarantees that only the prime
numbers chosen by Alice are accepted.

In case of the original scheme, an adversary A has to compute the eNE-th root
to forge a signature, which, under the strong RSA assumption (see Definition 5),
is infeasible for the parameters chosen. In LEPCoV, Alice publishes the inverse
of e, hence, the adversary has only to compute the NE-th root in order to forge
a signature. However, under the strong RSA assumption, this remains infeasible
for the parameters chosen.

Based on these changes, the following statement by Catalano et al. [12]
applies to the linearly homomorphic signature scheme used in LEPCoV: The sig-
nature scheme is an unforgeable signature scheme under chosen message attacks
according to the definition by Boneh and Freeman [8], if the strong RSA assump-
tion (see Definition 5) holds [12, Theorem31].

Based on this, the following statement proves the security of LEPCoV: In
the random oracle model, if (1) the DCRA (see Definition 4) holds, (2) H is a
random oracle and (3) the linearly homomorphic signature scheme over ZNE

is
unforgeable (under chosen message attacks), the scheme LEPCoV, described in
Sect. 5, is LH-IND-CCA secure [12, Theorem6]. ��

5.4 Correctness

The correctness of LEPCoV, described above, follows from the following theorem
which is proven below.

Theorem 2. The linearly homomorphic authenticated encryption with public
verifiability scheme LEPCoV, described above, is correct according to Definition 3.

Proof. In the following, we show that each condition described in Definition 3
holds. Throughout this proof, let (sk, pk) ← AKeyGen(1κ, k) be a key pair, where
sk = (pE , qE , pS , qS , skS) and pk = (NE , g,NS , g0, g1, h1, ..., hk,H, pkS).

Condition 1: Let m ∈ ZNE
be an arbitrary message, τ be an arbitrary dataset

identifier, i ∈ [k], c = (C, a, b, e, e−1, σe, s, τ, x) ← AEncrypt(sk, τ, i,m) be the
encryption of m, and f = ei.
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By construction we have a, s ∈ ZeNE
and Verify(pkS , τ ||e, σe) = 1. It holds

that

xeNE = gs
0hig

a
1 = gs

0hi

k∏

j=1
j �=i

h0
jg

a
1 = gs

0

k∏

j=1

h
fj

j ga
1

and

gabNE = CR = CH(τ ||i) = CH(τ ||i)
k∏

j=1
j �=i

H(τ ||j)0 = C

k∏

j=1

H(τ ||j)fj

which yields AVerify(pk, τ,AEncrypt(sk, τ, i,m),f) = 1. Thus, ADecrypt
returns the Paillier decryption of C, i.e. ADecrypt(sk, τ,AEncrypt(sk, τ,
i,m),ei) = m.

Condition 2: We prove the equivalence by showing that both implications are
satisfied.

⇐: Let m ∈ M = ZNE
be a message, f = (f1, ..., fk) be a linear function

with fi < NE for i ∈ [k], and c be a cipher such that ADecrypt(sk, τ, c,f) = m.
The fact that ADecrypt(sk, τ, c,f) �= ⊥ directly leads to AVerify(pk, τ, c,f) = 1.

⇒: Let c = (C, a, b, e, e−1, σe, s, τ, x) ∈ C be a cipher, τ be a dataset identifier,
and f be a linear function such that AVerify(pk, τ, c,f) = 1. Since ord(g) = NE ,
this guarantees that the Paillier decryption of C yields m ∈ M = ZNE

. Thus,

∃m ∈ M : ADecrypt(sk, τ, c,f) = m.

Condition 3: Let τ be an arbitrary dataset identifier, m1, ...,mk ∈ ZNE
be

messages, and ci = (Ci, ai, bi, e, e
−1, σe, si, τ, xi) ← AEncrypt(sk, τ, i,mi) be the

cipher obtain by encrypting the message mi for i ∈ [k].
Let f = (f1, ..., fk) be a linear function such that fi < NE for all i ∈ [k] and

c = (C, a, b, e, e−1, σe, s, τ, x) ← AEval(pk, τ,f , {ci}i∈[k]) be the cipher obtained
by evaluating the function f over the ciphers ci.

By construction it holds that Verify(pkS , τ ||e, σe) = 1. During AEval, s and
a are reduced modulo eNE and NE , respectively. Thus, s, a ∈ ZeNE

. In order to
show that AVerify(pk, τ, c,f) = 1, it remains to show that

xeNE = gs
0

k∏

i=1

hfi

i ga
1 mod NS (4)

gabNE = C
k∏

i=1

H(τ ||i)fi mod N2
E (5)
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For Eq. (4) we have

xeNE =
(
∏k

i=1 xfi

i )eNE

(gs′
0 ga′e−1

1 )eNE
=

∏k
i=1(g

si
0 hig

ai
1 )fi

(gs′
0 ga′e−1

1 )eNE

=
g
∑k

i=1 fisi

0

∏k
i=1 hfi

i g
∑k

i=1 fiai

1(
g
(
∑k

i=1 fisi−s)/(eNE)
0 g

((
∑k

i=1 fiai−a)/(NE))e−1

1

)eNE

=
g
∑k

i=1 fisi

0

∏k
i=1 hfi

i g
∑k

i=1 fiai

1

g
∑k

i=1 fisi−s
0

(
g
(
∑k

i=1 fiai−a)/(eNE)
1

)eNE

=
g
∑k

i=1 fisi

0

∏k
i=1 hfi

i g
∑k

i=1 fiai

1

g
∑k

i=1 fisi−s
0 g

∑k
i=1 fiai−a

1

= gs
0

k∏

i=1

hfi

i ga
1

For Eq. (5) we obtain

C

k∏

i=1

H(τ ||i)fi =
k∏

i=1

Cfi

i

k∏

i=1

H(τ ||i)fi =
k∏

i=1

(CiH(τ ||i))fi

=
k∏

i=1

(gaibNE
i )fi = g

∑k
i=1 fiai

k∏

i=1

bfiNE

i = gabNE

Thus, it holds that AVerify(pk, τ, c,f) = 1. Finally, we have

C =
k∏

i=1

Cfi

i =
k∏

i=1

(gmiβNE
i )fi = g

∑k
i=1 fimi

k∏

i=1

βfiNE

i

hence Paillier decryption yields
∑k

i=1 fimi = f(m1, ...,mk), which leads to

ADecrypt(sk, τ,AEval(pk, τ,f , {ci}i∈[k]),f) = f(m1, ...,mk)

Thus, LEPCoV satisfies Conditions 1–3 which proves the statement. ��
We stress that g is an element of order NE . Thus, the verification check in
Eq. (5) does not fail if a is reduced during AEval. Also keep in mind that due
to gcd(NE , ϕ(NS)) = 1, one can not generate g1 of order NE to trivially fix the
shortcoming of CMP14 described in Sect. 4.1.

6 Implementation

We implemented LEPCoV in Java and measured the average runtimes of the
algorithms on an Intel R© Core M-5Y71 CPU @ 1.20 GHz with 8 GB RAM. We run
our experiments for different security parameters κ ∈ {1024, 2048, 3072, 4096}
and dataset sizes k ∈ {50, 100, 500}. Note that AVerify is not considered in the
experiments as its runtime is similar to ADecrypt.
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Table 2. Average runtimes (in ms) of AKeyGen, AEncrypt, ADecrypt, and AEval for
different security parameters κ and dataset sizes k.

κ = 1024 bits κ = 2048 bits

k = 50 k = 100 k = 500 k = 50 k = 100 k = 500

AKeyGen 285 299 346 2501 2686 2862

AEncrypt 65 62 69 502 537 560

ADecrypt 86 109 403 571 724 1925

AEval 57 112 1042 297 854 19995

κ = 3072 bits κ = 4096 bits

k = 50 k = 100 k = 500 k = 50 k = 100 k = 500

AKeyGen 10038 9994 10190 25279 25755 26040

AEncrypt 1804 1787 1791 4029 4040 4078

ADecrypt 1945 2290 9679 4199 4645 16810

AEval 737 1953 43211 1255 3250 67233

Table 2 summarizes the average runtimes of AKeyGen, AEncrypt, ADecrypt,
and AEval. It shows that AKeyGen and AEval are, as expected, the most expen-
sive algorithms followed by ADecrypt and AEncrypt. Note that AKeyGen is only
performed once and AEval is outsourced to the cloud. Thus, Alice only has two
run the two less expensive algorithms AEncrypt and ADecrypt. The runtime of
AEncrypt depends only on the security parameter κ. Therefore, the constant and
relatively cheap costs of the encryption allow executing it on a device with less
computation power. The runtime of ADecrypt (and AVerify) depends, besides the
security parameter κ, also on the dataset size k and can be executed on a more
powerful device. For a security parameter of κ = 2048 bits, which is currently
assumed secure, and dataset size k ≤ 100, AEncrypt and ADecrypt take less
than a second. Note that for growing dataset size k, ADecrypt becomes faster
than AEval. It follows that the size of the datasets processed must be taken into
account when considering this scheme for an application. However, further effi-
ciency improvements, e.g. using the Chinese remainder theorem to speed up the
Paillier cryptosystem, and implementation-based optimizations, like parallelized
code, are still possible.

Summarized the tests show that for parameters that are currently considered
secure all algorithms run in a reasonable amount of time.

7 Conclusion

In this paper we proposed the first provable correct linearly homomorphic
authenticated encryption with public verifiability (LAEPuV) scheme LEPCoV
that is based on the CMP14 scheme by Catalano et al. [12]. We showed to what
extent our scheme improves the original approach, proved our scheme secure, and
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showed that all algorithms run in reasonable time for currently recommended
security parameters.

For future work we plan to further improve the efficiency of our implemen-
tation by implementing additional optimizations. Furthermore, we aim at con-
structing homomorphic authenticated encryption schemes with public verifiabil-
ity for a wider class of supported functions.
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Abstract. In this paper, we study constacyclic codes over finite prin-
cipal ideal rings. An isomorphism between constacyclic codes and cyclic
codes over finite principal ideal rings is given. Further, an open question
is partially answered by giving necessary and sufficient conditions for the
existence of non-trivial cyclic self-dual codes over finite principal ideal
rings. As an example of codes over a finite principal ideal ring, we study
constacyclic codes over R+vR where v2 = v and R is a finite chain ring.

Keywords: Codes over principal ideal rings · Self-dual codes · Cyclic
codes · Constacyclic codes

1 Introduction

Although codes over rings are not new, they have attracted significant atten-
tion from the research community only since 1994 when Hammons et al. [10]
established a fundamental connection between non-linear binary codes and lin-
ear codes over Z4.

The link between self-dual codes and unimodular lattices was given by Bannai
et al. [1] and Bonnecaze et al. [5]. These results created a great deal of interest
in self-dual codes over a variety of rings (see [15] and the references therein).
Dougherty et al. [7,8] used the Chinese Remainder Theorem to generalize the
structure of codes over principal ideal rings. They gave conditions on the exis-
tence of self-dual codes over principal ideal rings in [8]. Batoul et al. [3] gave
conditions on the existence of self-dual and isodual cyclic codes over Fq + vFq

where v2 = v. In [2], conditions were given on the existence of cyclic self-dual
codes over finite chain rings.

The class of constacyclic codes over rings was introduced as an extension
of the class of cyclic codes over rings. Guenda and Gulliver [9] extended the
c© Springer International Publishing AG 2017
S. El Hajji et al. (Eds.): C2SI 2017, LNCS 10194, pp. 161–175, 2017.
DOI: 10.1007/978-3-319-55589-8 11
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structure of cyclic codes given in [6] to constacyclic codes over principal ideal
rings. More recently, constacyclic codes over various commutative rings have
been considered. Batoul et al. [2,4] proved that under some conditions several
constacyclic codes are equivalent to cyclic codes.

In this paper, we study constacyclic codes over finite principal ideal rings.
The Chinese Remainder Theorem is used to reduce the study of these codes to
the study of constacyclic codes over finite chain rings. This allows us to provide
conditions on the isomorphism between constacyclic codes and cyclic codes over
these rings. Further, necessary and sufficient conditions are given on the existence
of self-dual cyclic codes over principal ideal rings. Examples are given throughout
the paper to illustrate our results, and to show that some recent results in the
literature are special cases of the results presented here.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
some basic results on Frobenius rings, principal rings, and finite chain rings
that will be useful later in the paper. The results in [2,4] are generalized to
constacyclic codes over finite principal ideal rings in Sect. 3. In Sect. 4, we give
necessary and sufficient conditions on the existence of self-dual cyclic codes over
finite principal ideal rings. As an example of codes over a finite principal ideal
ring, in Sect. 5 we study constacyclic codes over R + vR where v2 = v and R is
a finite chain ring. Finally, some conclusions are given in Sect. 6.

2 Preliminaries

We assume that all rings are commutative and with identity. For unexplained
terminology and more details we refer the reader to [13]. Let R be a finite ring.
A code C is a subset of Rn and a linear code over R is an R-submodule of
Rn, in which case the code is said to have length n. We attach the standard
inner product to the ambient space, i.e. [u, v] =

∑
uivi. The dual code of C is

defined by
C⊥ = {u ∈ Rn | [u, v] = 0 for all v ∈ C}. (1)

We say that a code is self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥. The
Hamming weight of a vector from Rn is the number of nonzero coordinates in
the vector. The minimum weight of a code is the smallest Hamming weight of
all nonzero codewords in the code. A code C ⊂ Rn is called a free code if C is a
free R-module, that is if C is isomorphic to the R-module Rk for some k.

A finite commutative ring with identity is a principal ideal ring if each proper
ideal I ⊂ R is principal. A code C over a finite principal ideal ring R and its
dual satisfy the properties

|C||C⊥| = |R|n and (C⊥)⊥ = C. (2)

2.1 Finite Chain Rings

In this subsection, we summarize some results from [6,14]. A finite chain ring is
a finite, commutative, local, principal ideal ring R with unity 1 �= 0 whose ideals
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are ordered by inclusion. Let m = 〈γ〉 be the maximal ideal of the finite chain
ring R. Then γ is nilpotent with nilpotency index some integer e.

The nilradical of R is 〈γ〉, so all elements of 〈γ〉 are nilpotent. Hence the
elements of R \ 〈γ〉 are units. Since 〈γ〉 is a maximal ideal, the residue ring R

〈γ〉
is a field which we denote by K. The natural surjective ring morphism is given
by (−) as follows

− : R −→ K

a 	−→ a = a mod γ
(3)

The set R∗ denotes the multiplicative group of units in R.
We define the characteristic of the finite chain ring as the prime number p

which is the characteristic of the residue field K of R. Note that this is not the
usual definition of the characteristic of a ring.

Let n be a positive integer and q a prime power. We denote by ordn(q) the
multiplicative order of q modulo n, which is the smallest integer nonzero l such
that ql ≡ 1 mod n.

2.2 Finite Principal Ideal Rings

In this subsection, we recall some of the basic facts about finite principal ideal
rings. The smallest e ≥ 1 such that Ie = Ie+1 = · · · in the chain I ⊃ I2 ⊃ I3 ⊃
· · · is called the index of stability of I. If I is nilpotent, then the smallest e ≥ 1
such that Ie = 0 is called the index of nilpotency of I and is the same as the
index of stability of I. Note that if R is local with maximal ideal M then we
necessarily have Me = Me+1 = · · · = 0. This is not the case for non local rings.

Let m1,m2, . . . ,mk be the maximal ideals of a finite principal ideal ring R with
e1, . . . , ek the corresponding indices of stability. Then the ideals me1

1 ,me2
2 , . . . ,mek

k

are relatively prime and satisfy

k∏

i=1

mei
i =

k⋂

i=1

mei
i = {0}.

From the ring version of the Chinese Remainder Theorem, the canonical ring
homomorphism

Ψ : R −→
k∏

i=1

R/mei
i ,

defined by x 	−→ (x+me1
1 , . . . , x+mek

k ) is an isomorphism. Denote the local rings
R/mei

i by Ri, i = 1, . . . , k. The maximal ideal of Ri has nilpotency index ei.
For a code C ⊂ Rn over R and the maximal ideal mi of R, the mi-projection

of C is defined by Ci = Ψi(C), where Ψi : Rn −→ Rn
i is the canonical map. We

extend the map Ψ to Rn as follows

Ψ : Rn −→
k∏

i=1

Rn
i ,

defined by Ψ(u) = (Ψ1(u), . . . , Ψk(u)) for u ∈ Rn.
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Using the canonical map defined above the code defined by

C = {Ψ−1(u1, . . . , uk); ui ∈ Ci, i = 1, . . . , k}
= {u ∈ Rn; Ψi(u) ∈ Ci, i = 1, . . . , k}

is called the Chinese Remainder Theorem product of the codes Ci and denoted
by C = CRT (C1, . . . , Ck). As a special case, we have for any finite principal
ideal ring R

Rn = CRT (Rn
1 , Rn

2 , . . . , Rn
k ),

where the Ri are finite chain rings, and R =
∏k

i=1 Ri or R = ⊕k
i=1Ri, which

is called the canonical decomposition of the finite principal ideal ring or the
Chinese Remainder Theorem product of the local components Ri, 1 ≤ i ≤ k.

3 Constacyclic Codes over Finite Principal Ideal Rings

This section considers codes over finite commutative rings which are finite prin-
cipal ideal rings. Let R be a commutative ring with unity. For a given unit
λ ∈ R, a code C is said to be constacyclic, or more specifically, λ-constacyclic,
if (λcn−1, c0, c1, . . . , cn−2) ∈ C whenever (c0, c1, . . . , cn−1) ∈ C. As special cases,
cyclic and negacyclic codes correspond to λ = 1 and −1, respectively. The main
goal of this section is to prove the existence of an isomorphism between consta-
cyclic codes and cyclic codes over finite principal ideal rings. We first recall some
results given in [2].

3.1 Constacyclic Codes over Finite Chain Rings

We begin with the following definition.

Definition 1. Let R be a finite chain ring with residue field Fq. A polynomial
f(x) ∈ R[x] is called basic irreducible if f(x) is irreducible in R[x] = Fq[x].

Two polynomials f(x) and g(x) in R[x] are called coprime if

R[x] = 〈f(x)〉 + 〈g(x)〉.
Let λ be a unit in a finite chain ring R. If a polynomial f(x) divides xn −λ, e.g.
xn − λ = f(x)g(x), we refer to g(x) = xn−λ

f(x) as f̂(x).

Theorem 1 ([9, Theorem 4.14]). Let R be a finite chain ring and C be a λ-
constacyclic code over R[x] of length n such that (n, p) = 1, where p is the char-
acteristic of R. Then there exists a unique set of pairwise coprime polynomials
F0, . . . , Fe in R[x] such that F0 · · · Fe = xn − λ and C = 〈F̂1, γF̂2, . . . , γ

e−1F̂e〉,
where F̂j = xn−1

Fj
for 0 < j ≤ e. Moreover, we have that

|C| = |K|
∑e−1

j=0(e−j) deg Fj+1 , (4)

where R[x]/〈xn − λ〉 is a principal ideal ring.
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In some cases, a constacyclic code is equivalent to a cyclic code as given in the
following corollary.

Corollary 1 ([4, Corollary 3.5]). Let R be a finite chain ring and λ, δ units in
R such that λ = δn. A subset I in R[x] is an ideal in R[x]/〈xn − 1〉 if and only
if μ(I) is an ideal in R[x]/〈xn − λ〉.

3.2 Constacyclic Codes over Finite Principal Ideal Rings

In this section, we generalize the above results to finite principal ideal rings. We
fist give some results that will be useful later.

Lemma 1. Let R be a finite principal ideal ring with canonical decomposition

R = CRT (R1, R2, . . . , Rk)

Then any unit λ ∈ R∗ is equal to CRT (λ1, λ2, . . . , λk), where λi ∈ R∗
i .

Proof. The proof is a direct consequence of the decomposition R∗ =
CRT (R∗

1, R
∗
2, . . . , R

∗
k). ��

Lemma 2. Let R be a finite principal ideal ring and
∏k

i=1 Ri its direct decom-
position, i.e. R = CRT (R1, R2, . . . , Rk). R has units λ and δ such that λ = δn

if and only if each finite chain ring Ri has units λi and δi such that λi = δn
i .

Proof. If there exist units λi, δi ∈ Ri such that λi = δn
i for 1 ≤ i ≤ k, then

λ = CRT (λ1, λ2, . . . , λk) and δ = CRT (δ1, δ2, . . . , δk) satisfy λ = δn. From
Lemma 1 we have that δ and λ are units in R. Conversely if R has units λ and δ
such that λ = δn, then from Lemma 1 λi = Ψi(λ) = Ψi(δn) = Ψi(δ)n = δn

i , hence
the result follows. ��
Theorem 2. Let R be a finite principal ideal ring,

∏k
i=1 Ri its direct decompo-

sition, and λ be a unit in R such that λ = CRT (λ1, λ2, . . . , λk) with λi ∈ R∗
i .

Further, let C = CRT (C1, C2, . . . , Ck) be a code over R of length n with local
component codes Ci of length n over Ri, 1 ≤ i ≤ k. Then C is λ-constacyclic
code over R if and only if each Ci is a λi-constacyclic code over Ri.

Proof. For i ∈ {1, . . . , k}, let Fqi
be the residue field of Ri. Define the following

ring homomorphism

φi : R[x]/〈xn − λ〉 −→ Ri[x]/〈xn − λi〉
a0 + a1x + · · · an−1x

n−1 	−→ ψi(a0) + ψi(a1)x + · · · + ψi(an−1)xn−1

so then

φ : R[x]/〈xn −λ〉 −→ R1[x]/〈xn −λ1〉×R2[x]/〈xn −λ2〉× · · ·×Rk[x]/〈xn −λk〉,

where
φ(f(x)) = (φ1(f(x)), φ2(f(x)), · · · , φk(f(x))).
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If I is an ideal of R[x]/〈xn − λ〉, then φi(I) is an ideal of Ri[x]/〈xn − λi〉.
Conversely, for ideals Ii in Ri[x]/〈xn − λi〉 define

φ−1(I1, I2, . . . , Ik) = I = CRT (I1, I2, . . . , Ik),

which is an ideal in R[x]/〈xn − λ〉. Associating the λ-constacyclic codes with
their corresponding ideals, we have that

CRT (C1, C2, . . . , Ck),

is a λ-constacyclic code over R if and only if each Ci is a λi-constacyclic code
over Ri. ��
Corollary 2. With the above assumptions R[x]/〈xn−λ〉 is a principal ideal ring
if and only if Ri[x]/〈xn − λi〉 is a principal ideal ring for all 1 ≤ i ≤ k.

Proof. Let C be the λ-constacyclic code of length n over R generated by
f(x) ∈ R[x]/〈xn − λ〉. Since C = CRT (C1, C2, . . . , Ck), from Theorem 2 Ci

is generated by φi(f(x)) which is a polynomial in Ri[x]/〈xn − λi〉, so Ci is
principal. Conversely, let Ci be a cyclic code of length n over Ri generated
by fi(x) ∈ Ri[x]/〈xn − λi〉, and let f(x) ∈ R[x]/〈xn − λ〉 be such that
f(x) = φ−1(f1(x), f2(x), · · · , fk(x)). Since φ is a ring isomorphism, f(x) is
unique. If D the cyclic code generated by f(x), then D = CRT (C1, C2, . . . , Ck).
By the Chinese Remainder Theorem CRT (C1, C2, . . . , Ck) is unique, and thus
C = D. ��
Example 1. Let Fp be the finite field of order p and R = Fp[x]/〈v2 − v〉 =
Fp + vFp. Since 〈v〉 and 〈1 − v〉 are the only maximal ideals of index of stability
1, then R = Fp/〈v〉⊕Fp/〈1 − v〉 � Fp×Fp is the direct decomposition of R. Note
that any element c of Rn can be expressed as c = a + vb = v(a + b) + (1 − v)a
where a, b ∈ F

n
p . Now let

ψ : Rn −→ F
n
p × F

n
p

a + bv 	→ ψ(a + bv) = (ψ1(a + bv), ψ2(a + bv)) = (a + b, a), (5)

be the canonical R-module isomorphism. For i = 1, 2, let Ci be a code over Fp

of length n and let

C = CRT (C1, C2) = ψ−1(C1 × C2) = {ψ−1(v1,v2) | v1 ∈ C1,v2 ∈ C2}.

Then C is the Chinese product of codes C1 and C2. By Theorem2, C is a λ-
constacyclic code over R if and only if each Ci is a λi-constacyclic code over Fp

with λ = CRT (λ1, λ2). Let λ = 1 − 2v = −v + (1 − v) so that λ = CRT (−1, 1).
Then any (1 − 2v)-constacyclic code C over R has the form C = CRT (C1, C2)
where C1 is a negacyclic code over Fp and C2 is a cyclic code over Fp.

These codes have also been studied in [3,16].
We now generalize the results given above for finite chain rings to finite

principal ideals rings.
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Proposition 1. Let n be a positive integer, and λ = CRT (λ1, . . . , λk) and δ =
CRT (δ1, . . . , δk) be units such that λ = δn. Then the map μ defined as

μ : R[x]/〈xn − 1〉 −→ R[x]/〈xn − λ〉
c(x) 	→ μ(c(x)) = (c(δ−1

1 x), . . . , c(δ−1
k x)), (6)

is a ring isomorphism.

Proof. Since R[x]/〈xn − 1〉 � Πk
i=1Ri[x]/〈xn − 1〉, by Lemma 2 we deduce that

λ = δn ⇐⇒ λi = δn
i , ∀i ∈ {1, . . . , k}. Then by Corollary 1, Πk

i=1Ri[x]/〈xn −
1〉 � Πk

i=1Ri[x]/〈xn − λi〉 ∀i ∈ {1, . . . , k}, and so R[x]/〈xn − λ〉 � Πk
i=1Ri[x]/

〈xn − λi〉. ��
If (n, qi) = 1 for all i ∈ {1, . . . , k} with Fqi

the residue field of the finite chain
ring Ri, then Ri[x]/〈xn − λi〉 is a principal ideal ring. Therefore the ideals in
R[x]/〈xn − λ〉 are principal ideals, so the following result is a straightforward
consequence of Corollary 1.

Corollary 3. Let R be a finite principal ideal ring and λ, δ be units in R such
that λ = δn. A subset I in R[x] is an ideal in R[x]/〈xn − 1〉 if and only if μ(I)
is an ideal in R[x]/〈xn −λ〉. Equivalently, the subset is a cyclic code C of length
n over R if and only if μ(C) is a λ-constacyclic code of length n over R.

Example 2. Let R = Fp[x]/〈v2 − v〉 � Fp + vFp and n be an odd integer. From
Proposition 1, any (1 − 2v)-constacyclic code over R is isomorphic to a cyclic
code over R.

These codes have also been studied in [3,16].

4 Self-dual Cyclic Codes over Finite Principal Ideal Rings

Since any finite principal ideal ring is a direct product of finite chain rings, we
start by giving some results on the latter.

4.1 Cyclic Self-dual Codes over Finite Chain Rings

Here we consider cyclic self-dual codes over finite chain rings. For a polyno-
mial f(x) of degree r, let f∗(x) denote its reciprocal polynomial xrf(x−1). The
following lemma is easy to obtain.

Lemma 3. Let f(x) and g(x) be polynomials in R[x] with deg f(x) ≥ deg g(x)
and with constants terms are units. Then the following holds.

(i) [f(x)g(x)]∗ = f(x)∗g(x)∗.
(i) [f(x) + g(x)]∗ = f∗(x) + xdeg f−deg gg∗(x).
(ii) If f(x) is monic, then f∗(x) = f(x)

∗
.

The following theorem gives the structure of the dual of a cyclic code over a
finite chain ring.
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Theorem 3. ([6, Theorem 3.8]). Let R be a finite chain ring with characteristic
p, maximal ideal γ, and index of nilpotency e. Let n be an integer such that
(p, n) = 1 and f1f2 . . . fl be the representation of xn − 1 as a product of basic
irreducible pairwise coprime polynomials in R[x]. If C is a cyclic code of length
n over R, then C⊥ = 〈F̂ ∗

0 , γF̂ ∗
e , . . . , γe−1F̂ ∗

2 〉 where F0, F1, . . . , Fe−1 are pairwise
coprime polynomials which are divisors of xn − 1 as given in Theorem1.

Theorem 4. ([6, Theorem 4.3]). Let R be a finite chain ring with even index of
nilpotency e and maximal ideal γ. Then there exists a non-trivial self-dual cyclic
code over R if and only if there exists a basic irreducible factor f(x) ∈ R[x] of
xn − 1 such that f(x) and f∗(x) are not associate.

The following theorem was first given first by Kanwar and López-Permouth
[11] and later by Dinh and López-Permouth [6], but with an incorrect proof, so
it is given here with a new proof. In [6,11], it was stated that all cyclotomic
coset modulo n must be non-reversible to have (pr)i ≡ −1 mod n for a positive
integer i. However, only C1, the cyclotomic coset containing 1, needs to be non-
reversible. Denote by Ci the cyclotomic coset modn that contains i. First, we
give a lemma that will be used in proving the theorem.

Lemma 4.

If C1 is reversible then Cj is reversible ∀j ∈ Zn.

Proof. If C1 is reversible, then there exists a k, 1 ≤ k ≤ ordn(q), such that
qk ≡ −1 mod n. This means that jqk ≡ −j mod n, and hence Cj = C−j . ��
Theorem 5. Let R be a finite chain ring with maximal ideal γ, even index of
nilpotency e, and residue field K where |R| = per and |K| = pr. Then non-trivial
cyclic self-dual codes of length n over R exist if and only if (pr)i �= −1 mod n
for all positive integers i.

Proof. Let f(x) be a monic basic irreducible polynomial which divides xn − 1.
Then f(x) is a minimal irreducible polynomial over K = Fpr [x]. Hence there
exists a cyclotomic cosest Cu associated with f(x), and therefore f(x) =∏

i∈Cu
(x − αi), where α is a primitive nth root of unity. The reciprocal polyno-

mial of f(x) is the polynomial f(x)
∗

= (
∏

i∈Cu
(x−αi))∗ = xr

∏
i∈Cu

(x−1−αi) =
∏

i∈Cn−u
(x−αi). By Lemma 3, we have that f∗(x) = f(x)

∗
. Then by Theorems 3

and 4, a non-trivial cyclic self-dual code exists if and only if there is a basic irre-
ducible polynomial f(x) which is a factor of xn − 1 such that f(x) and f∗(x)
are not associate. We show that this can occur if and only if (pr)i �= −1 mod n
for all positive integers i.

Let f̄(x) ∈ Fpr [x] be irreducible and f(x)|(xn − 1). Then f̄(x) =
∏

i∈Cu
(x −

αi) where Cu is the cyclotomic coset of n that contains u (and u is the smallest
element in its class), and α is a primitive n-th root of unity. Now if (pr)i �=
−1 mod n for all positive integers i, then C1 �= C−1. Hence f(x) �= f∗(x) where
f̄(x) =

∏
i∈C1

(x − αi), and the code (f(x)g(x), γ
e
2 f(x)f∗(x)) is a non-trivial
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self-dual code where f(x)f∗(x)g(x) = xn − 1. Conversely, if a non-trivial cyclic
self-dual code exists then by Theorem 4 there exists a factor f(x)|(xn − 1) with
f(x) �= f∗(x). Hence Cu �= C−u, and then by Lemma4 C1 �= C−1 where f̄(x) =∏

i∈Cu
(x − αi). Therefore (pr)i �= −1 mod n for all positive integers i, because

otherwise Cu = C−u for all cyclotomic coset, and then f(x) = f∗(x) for any
f(x)|(xn − 1). ��
Lemma 5. Let n and s be positive integers and q a prime power. Then the
following holds.

(i) If qs ≡ −1 mod n, then ordn(q) is even.
(ii) If n is prime, then ordn(q) is even if and only if there exists an i such that

qi ≡ −1 mod n.

Proof. Part (i) is easy to verify. For Part (ii), assume that ordn(q) = 2w is
even, so that q2w ≡ 1 mod n, and hence n|(qw − 1)(qw + 1). Since n is prime
and cannot divide qw − 1 (because of the order), we have qw = −1 mod n. The
converse follows from Part (i). ��
The following result answers the question posed in [6, p. 1734] by providing a
simple criterion for the existence of cyclic self-dual codes.

Theorem 6. Let R be a finite chain ring with maximal ideal γ, even index of
nilpotency e, and |R| = per where |K| = pr. If n is an odd prime power, then
there exists a non-trivial cyclic self-dual code of length n over R if and only if
ordn(pr) is odd.

Proof. If there are no non-trivial self-dual codes, then by Theorem5 there exists
an integer i such that (pr)i ≡ −1 mod n. Then by Part (i) of Lemma5, we have
that ordn(pr) is even.

Conversely, assume that there exists a non-trivial cyclic self-dual code. Then
from Theorem 5 there is no integer i such that pri ≡ −1 mod n. We need to show
that in this case ordn(pr) is odd. For this, consider the following cases.

(i) If n is an odd prime, then by Part (ii) of Lemma5, we have that ordn(pr)
is odd.

(ii) For n = qα, assume that ordqα(pr) is even. We first prove the implication

ordqα(pr) is even ⇒ ordq(pr) is even.

If ordqα(pr) is even and ordq(pr) is odd, then there exist odd i > 0 such that
pri ≡ 1 mod q ⇔ pri = 1 + kq. Hence priqα−1

= (1 + kq)qα−1 ≡ 1 mod qα,
because (1 + kq)qα−1 ≡ 1 + kqα mod q(α+1), and so

priqα−1 ≡ 1 mod qα. (7)

If i is odd and qα−1 is odd, then ordqα(pr) is odd (because ordqα(pr)|iqα−1),
which is a contradiction. Hence ordq(pr) is even, so there exists some integer
j such that 0 < j < ordq(pr), and prj ≡ −1 mod q. Then from (7), we
have that prjqα−1 ≡ −1 mod qα. This gives that the cyclotomic coset C1 is
reversible, which by Theorem 5 is impossible. ��
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Remark 1. If n is not a prime power then the condition ordn(pr) being odd is
a sufficient condition for the existence of a self-dual code of length n over R.

For the remainder of the paper, the notation q = � mod n means that q is a
quadratic residue modulo n.

Corollary 4 [2, Corollary 4.8]. Let R be a finite chain ring with maximal ideal
γ, even index of nilpotency e, and residue field K such that |K| = pr. Then if
p1 . . . ps is the prime factorization of an odd integer n such that pr = � mod pi

and pi ≡ −1 mod 4 for 1 ≤ i ≤ s, then there exists a non-trivial cyclic self-dual
code of length n over R.

Corollary 5 [2, Corollary 4.9]. With the previous notation, if n is an odd
prime such that n ≡ −1 mod 4, then there exists a cyclic self-dual code if and
only if p = � mod n.

For a cyclic code of length n with (n, p) = 1, we have the following results
for the free codes. We will generalizes theses results to the finite principal ideal
ring in the next Section.

Theorem 7 ([9, Theorem 4.20]). Let C be a cyclic code of length n over a
finite chain ring R with characteristic p such that (p, n) = 1. Then C is a free
cyclic code with rank k if and only if there is a polynomial f(x) ∈ R[x] such that
f(x)|(xn − 1) and f(x) generates C. In this case, we have k = n − deg(f(x)).

Theorem 8 ([2, Theorem 4.13]). Let R be a finite chain ring with maximal
ideal 〈γ〉, index of nilpotency e, and characteristic p. Then if p is odd and (p, n) =
1, there is no free cyclic self-dual code of length n over R.

4.2 Self-dual Cyclic Codes over Finite Principal Ideal Rings

Let R be a finite principal ideal ring and (Ri)k
i=1 be a direct decomposition of

R. Further, let Ψ : Rn → ∏k
i=1 Rn

i be the canonical R-module isomorphism. For
i = 1, . . . , k, let Ci be a code over Ri of length n and

C = CRT (C1, C2, . . . , Ck) = Ψ−1(C1 × · · · × Ck) = {Ψ−1(v1,v2, . . . ,vk); vi ∈ Ci}.

Theorem 9. With the above notation, We have the following.

(i) C is a cyclic code if and only if each Ci is a cyclic code.
(ii) C1, C2, . . . , Ck are self-dual codes if and only if C is a self-dual code.

Proof. Part (i) is a particular case of Theorem 2, and Part (ii) follows from the
identity

CRT (C1, C2, . . . , Ck)⊥ = CRT (C⊥
1 , C⊥

2 , . . . , C⊥
k ).

��
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The results of Theorem 9 allow us to generalize some results on finite chain rings
to finite principal ideal rings, as given by the next result:

Theorem 10. Let R � ∏k
i=1 R/mti

i =
∏k

i=1 Ri, be a finite principal ideal ring,
Fqi

the residue field of Ri, 1 ≤ i ≤ k, n be an odd prime power, and C a cyclic
code of length n over R. Then C is a self-dual code if and only if ordn(qi) is odd
for 1 ≤ i ≤ k.

Proof. Let n a power of an odd prime such that (n, qi) = 1 and C =
CRT (C1, C2, . . . , Ck) be a cyclic self-dual code over R. Then by Theorem9,
Ci is a cyclic self-dual code over Ri for all 1 ≤ i ≤ k, and by Theorem 6 ordn(qi)
is odd. On the other hand, if ordn(qi) is odd then there exists a cyclic self-
dual code Ci over Ri for all 1 ≤ i ≤ k. Then by Theorem 2, the cyclic code
C = CRT (C1, C2, . . . , Ck) is a self-dual cyclic code over R. ��
We now generalize Corollary 4 to finite principal ideal rings.

Corollary 6. Let R � ∏k
i=1 R/mti

i =
∏k

i=1 Ri be a finite principal ideal ring,
Fqi

the residue field of Ri, and n an integer such that (n, qi) = 1 for 1 ≤ i ≤ k.
Then if p1 . . . ps is the prime factorization of an odd integer n such that qi =
� mod pj and pj ≡ −1 mod 4 for 1 ≤ j ≤ s, then there exists a non-trivial cyclic
self-dual code of length n over R.

Proof. Let n = p1 . . . ps be such that qi = � mod pj , and pj ≡ −1 mod 4 for
1 ≤ j ≤ s. By Corollary 4, there exists a non-trivial cyclic self-dual code Ci over
Ri. Then by Theorem 2, the cyclic code C = CRT (C1, C2, . . . , Ck) is a self-dual
code over R. ��
In the following, we generalize Corollary 5 to finite principal ideal rings.

Corollary 7. With the previous notation, if n is an odd prime such that n ≡
−1 mod 4, then there exists a cyclic self-dual code over R if and only if pj =
� mod n, where qj = pr

j .

Proof. Let n be an odd prime such that n ≡ −1 mod 4. If pj = � mod n, then
by Corollary 5 there exist a self-dual cyclic code Cj of length n over Rj . Thus,
by Theorem 2 the cyclic code C = CRT (C1, C2, . . . , Ck) is a self-dual cyclic code
over R. ��
In the following, we generalize Theorem 8 to finite principal ideal rings.

Theorem 11. Let R � ∏k
i=1 R/mti

i =
∏k

i=1 Ri be a finite principal ideal ring,
Fqi

the residue field of Ri, n an integer such that (n, qi) = 1 for 1 ≤ i ≤ k, and
C = CRT (C1, C2, . . . , Ck) a cyclic code over R. If there exists i ∈ {1, . . . , k}
such that qi is odd and Ci is free, then C is not self-dual.

Proof. Let C = CRT (C1, C2, . . . , Ck) be a cyclic code of length n over R such
that (n, qi) = 1 for 1 ≤ i ≤ k. Then by Theorem 8, if qi is odd and Ci is free,
Ci cannot be self-dual, so by Theorem2 C cannot be a self-dual cyclic code of
length n over R. ��
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4.3 Cyclic Codes over Finite Principal Ideal Rings
with Odd Index of Stability

In this section, we prove that there are no simple root cyclic self-dual codes over
finite chain rings when the nilpotency index of the generator of the maximal
ideal is odd. This result is generalized to finite principal ideal rings when the
index of stability of the generator of one of the maximal ideals is odd.

Theorem 12. Let R be a finite chain ring where 〈γ〉 is the maximal ideal with
nilpotency index e. If e is odd and q is a prime power, then there are no nontrivial
self-dual cyclic codes of length n over R such that (n, q) = 1.

Proof. If q = 2k, then (n, q) = 1 and so n must be odd. Let C be a non-
trivial cyclic code of length n over R so that there exist monic and coprime
polynomials F0, F1, . . . , Fe−1, Fe such that xn − 1 = F0F1 . . . Fe−1Fe and C =
〈F̂1, γF̂2, . . . , γ

e−1F̂e〉. If C is self-dual, then from [6, Proposition 4.1] Fi is asso-
ciate with Fj for i, j ∈ {0, 1, . . . e} and i + j ≡ 1 mod (e + 1). Then Fi = εF ∗

j for
all i, j ∈ {0, . . . , e}, i+ j ≡ 1 mod (e+1), and ε a unit in R. Then Fi �= F ∗

j since
e is odd and so it cannot be that i + i ≡ e + 2, and therefore

xn − 1 = F0F
∗
0 F2F

∗
2 F3F

∗
3 . . . F e+1

2
F ∗

e+1
2

.

Thus none of the Fi are self-reciprocal. The polynomial (x − 1) is a factor of
xn −1, so there is an 0 ≤ i0 ≤ e such that Fi0 = (x−1)g(x) for some polynomial
g(x). Hence

F ∗
i0 = (x − 1)∗g(x)∗ = (x − 1)g(x)∗ = F1−i0 mod (1+e),

which is impossible since the Fi are coprime for all 0 ≤ i ≤ e, and xn − 1 has no
repeated roots since (n, q) = 1. ��

Theorem 13. Let R � ∏k
i=1 R/mti

i be a finite principal ideal ring, and C be a
cyclic code over R. Then if one of the ti is odd, C cannot be a self-dual code.

Proof. By Theorem 2, C is cyclic and self-dual if and only if Ci, 1 ≤ i ≤ k, is
also cyclic and self-dual. However from Theorem 12, if there exists an i such that
ti is odd, then Ci cannot be self-dual. ��

5 Constacyclic Codes over R + vR

Let R be a finite commutative chain ring with maximal ideal 〈γ〉, nilpotency
index e and residue field Fq. Further, let R+vR = {a+vb : a, b ∈ R} with v2 = v.
This ring is an example of a finite commutative principal ideal ring, and has two
coprime ideals 〈v〉 = {av : a ∈ R} and 〈1− v〉 = {a(1− v) : a ∈ R} with index of
stability 1. Both R1 = R/〈v〉 and R2 = R/〈1 − v〉 are isomorphic to R. By the
Chinese Remainder Theorem, we have that R+vR � R1×R2 � 〈v〉⊕〈1−v〉. The
motivation for considering this ring as a specific example is that the elements v
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and 1−v are nilpotent elements such that v+1−v = 1, so that by [7, Proposition
2.4], any submodule N of a module M over R + vR is a direct decomposition of
N1 ⊕N2 where N1 = vN and N2 = (1−v)N . In particular, for a positive integer
n, (R + vR)n = v(R + vR)n ⊕ (1 − v)(R + vR)n. Since R + vR � 〈v〉 ⊕ 〈1 − v〉,
let xi ∈ R + vR be such that xi = aiv + bi(1 − v), ai, bi ∈ R. Then

x = (x1, x2, . . . , xn) = (a1v+b1(1−v), a2v+b2(1−v), . . . , anv+bn(1−v)) ∈ (R+vR)n,

and

x = v(a1, a2, . . . , an) + (1 − v)(b1, b2, . . . , bn) ∈ vRn ⊕ (1 − v)Rn,

so that (R + vR)n = vRn ⊕ (1 − v)Rn.
Let C be a code of length n over R+vR. Since C is a submodule of (R+vR)n

over R + vR such that

C = CRT (C1, C2) = Ψ−1(C1, C2) = {Ψ−1(v1,v2) | v1 ∈ C1 v2 ∈ C2}, (8)

where C1 and C2 are codes of length n over R and the idempotent elements v
and 1 − v. Since 1 + 1 − v = 1, then C = vC ⊕ (1 − v)C � C1 × C2, which shows
that vC � vC1 and (1 − v)C � (1 − v)C2. The next result is then a particular
case of Theorem 2.

Theorem 14. Let λ = CRT (λ1, λ2) = λ1v + λ2(1 − v) be a unit in R + vR
such that λ1, λ2 are units in R. Further, let C be a linear code of length n over
R + vR. Then C is a λ-constacyclic code over R + vR if and only if C1 is a λ1-
constacyclic code of length n over R and C2 is a λ2-constacyclic code of length
n over R.

Example 3. Let λ = 1 − 2v = −v + (1 − v) so that λ = CRT (−1, 1). By
Theorem2, any (1−2v)-constacyclic code C over R+ vR is the Chinese product
of a negacyclic code C1 over R and a cyclic code C2 over R such that C =
CRT (C1, C2).

These codes have also been studied in [12].
In the following we give the structure of the generator polynomial of a con-

stacyclic code over R + vR.

Theorem 15. Let R be a finite commutative chain ring with maximal ideal
〈γ〉, nilpotency index e, and residue field Fq. Further, let n be a positive integer
such that (n, q) = 1, and λ = λ1v + λ2(1 − v) be a unit in R + vR such that
λ1, λ2 are units in R. If C = CRT (C1, C2) is a λ-constacyclic code of length
n over R + vR, then there are polynomials f1(x), f2(x) ∈ R[x] such that C =
〈vf1(x), (1−v)f2(x)〉, where C1 = 〈f1(x)〉 ⊆ R[x]/〈xn −λ1〉 and C2 = 〈f2(x)〉 ⊆
R[x]/〈xn − λ2〉.
Proof. Since (n, q) = 1, by Theorem 1 R[x]/(xn − λ1) and R[x]/(xn − λ2) are
both principal ideal rings, so there exist polynomials f1(x), f2(x) ∈ R[x] such
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that C1 = 〈f1(x)〉 ⊆ R[x]/〈xn − λ1〉 and C2 = 〈f2(x)〉 ⊆ R[x]/〈xn − λ2〉.
For any c(x) ∈ C there exist polynomials c1(x), c2(x) ∈ R[x] such that c(x) =
vc1(x)+(1−v)c2(x) with c1(x) ∈ C1 and c2(x) ∈ C2. Then there are polynomials
k1(x), k2(x) ∈ R[x] such that

c1(x) = k1(x)f1(x) mod (xn − λ1),
c2(x) = k2(x)f2(x) mod (xn − λ2).

Thus, there are r1(x), r2(x) ∈ R[x] such that c1(x) = k1(x)f1(x)+r1(x)(xn−λ1)
and c2(x) = k2(x)f2(x) + r2(x)(xn − λ2).

Since v(xn −λ) = v(xn −λ1) and (1−v)(xn −λ) = (1−v)(xn −λ2), we have
that

c(x) = vc1(x) + (1 − v)c2(x)
= v(k1(x)f1(x) + r1(x)(xn − λ1)) + (1 − v)(k2(x)f2(x) + r2(x)(xn − λ2))
= vk1(x)f1(x) + (1 − v)k2(x)f2(x) + (vr1(x) + (1 − v)r2(x))(xn − λ).

Hence, c(x) = vk1(x)f1(x) + (1 − v)k2(x)f2(x) mod (xn − λ), so c(x) is in
〈vf1(x), (1 − v)f2(x)〉 ⊆ (R + vR)/〈xn − λ〉. On the other hand, for any
d(x) ∈ 〈vf1(x), (1 − v)f2(x)〉 ⊆ (R + vR)/〈xn − λ〉, there are polynomials
k1(x), k2(x) ∈ (R + vR)[x] such that

d(x) = k1(x)f1(x)v + k2(x)f2(x)(1 − v) mod (xn − λ).

Then there are r1(x), r2(x) ∈ R[x] such that vk1(x) = vr1(x) and (1−v)k2(x) =
(1 − v)r2(x). Let r(x) = vr1(x) + (1 − v)r2(x) and

d(x) = vd1(x) + (1 − v)d2(x)
= vf1(x)r1(x) + (1 − v)f2(x)r2(x) + r(x)(xn − λ),

so that
vd1(x) = v(f1(x)r1(x) + r1(x)(xn − λ1)),

(1 − v)d2(x) = (1 − v)(f2(x)r2(x) + r2(x)(xn − λ2)).

This means that d1(x) ∈ 〈f1(x)〉 ⊆ R[x]/〈xn − λ1〉 and d2(x) ∈ 〈f2(x)〉 ⊆
R[x]/〈xn − λ2〉. Hence d1(x) ∈ C1, d2(x) ∈ C2, and d(x) ∈ C, and therefore
〈vf1(x), (1 − v)f2(x)〉 ⊆ C, so that C = 〈vf1(x), (1 − v)f2(x)〉. ��
Theorem 16. With the above assumptions, let C be a λ-constacyclic over R +
vR. Then there is a polynomial f(x) ∈ (R + vR)[x] such that C = 〈f(x)〉.
Proof. By Theorem 15, there are polynomials f1(x) and f2(x) over R + vR
such that C = 〈vf1(x), (1 − v)f2(x)〉. Let f(x) = vf1(x) + (1 − v)f2(x), so then
〈f(x)〉 ⊆ C. We have that

vf(x) = vf1(x)
(1 − v)f(x) = (1 − v)f2(x),

and hence C = 〈f(x)〉. ��
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6 Conclusion

In this paper, an isomorphism between constacyclic codes and cyclic codes over
finite principal ideal rings was established. In addition, necessary and sufficient
conditions were given for the existence of cyclic self-dual codes over finite prin-
cipal ideals rings.
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8. Dougherty, S.T., Harada, M., Solé, P.: Self-dual codes over rings and the Chinese
remainder theorem. Hokkaido Math. J. 28, 253–283 (1999)

9. Guenda, K., Gulliver, T.A.: MDS and self-dual codes over rings. Finite Fields Appl.
18(6), 1061–1075 (2011)

10. Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The Z4
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Abstract. In this work, cyclic isodual codes over finite chain rings are
investigated. These codes are monomially equivalent to their duals. Exis-
tence results for cyclic isodual codes are given based on the generator
polynomials, the field characteristic, and the length. Several construc-
tions of isodual and self-dual codes are also presented.

Keywords: Isodual codes · Self-dual codes · Cyclic codes · Finite chain
rings · Codes over rings

1 Introduction

A code which is equivalent to its dual is called an isodual code. Several kinds of
equivalence exist [12], but here we only consider monomial equivalence, which
is the most important. For some parameters, one can prove that there are no
cyclic self-dual codes over finite chain rings [2,6], whereas isodual codes can
exist. Isodual codes are important because they are related to lattices. Recently,
isodual cyclic codes over finite fields were constructed from duadic codes in [3].
The purpose of this paper is to extend the concept of duadic codes to finite chain
rings and to extend the construction of isodual codes [3,4] to finite chain rings.
Note that duadic codes over Z4 were presented by Langevin et al. [13], over
F2 + uF2 by Ling et al. [15], over Fq + vFq by Batoul et al. [4] and over Z2k by
Bachoc et al. [1], but the general concept of duadic codes as well as the existence
of isodual cyclic codes over general finite rings has not yet been examined.

The remainder of this paper is organized as follows. In Sect. 2, some prelimi-
nary results are presented. In Sect. 3, the structure of cyclic codes of length 2am
over finite chain rings is given. In Sect. 4, conditions are given on the existence
of isodual cyclic codes over finite chain rings, and several constructions are pre-
sented. In Sect. 5, using the lifts of duadic codes over the residue field, we give
some constructions of isodual cyclic codes over finite chain rings.
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2 Preliminaries

In this section, we summarize some necessary results from [7,10,14]. A finite
chain ring R is a finite commutative ring with identity 1 �= 0 and maximal prin-
cipal ideal generated by an element γ ∈ R. Then γ is nilpotent with nilpotency
index some integer e. So ideals of R form the following chain

〈0〉 = 〈γe〉 � 〈γe−1〉 � . . . � 〈γ〉 � R.

The residue field of R is R
〈γ〉 which is denote by K.

The natural surjective ring morphism (−) is given by

− : R −→ K

b �−→ b = b mod γ.
(1)

Recall that a block code C of length n is called a linear code over a finite
chain ring R if it is a submodule of Rn. Here, all codes are assumed to be linear.
C ⊂ Rn is called a free code if C is a free R-module, that is if C is isomorphic
to the R-module Rk for some positif integer k. C is said to be cyclic if

(cn−1, c0, . . . , cn−2) ∈ C, whenever (c0, c1, . . . , cn−1) ∈ C.

We follow the usual convention of representing vectors as polynomials. And with
this representation, it is well known that every cyclic code is view as an ideal
of the finite ring R[x]/(xn − 1). Then C is a free cyclic code with rank k over
R with characteristic p such that (p, n) = 1 if and only if there is a polynomial
f(x) in R[x] which divides (xn − 1) and generates C.

We attach the standard inner product to Rn

[v, w] =
∑

viwi; for v = (v0, v1, . . . , vn−1), w = (w0, w1, . . . , wn−1) ∈ Rn.

The dual code C⊥ of C is defined as

C⊥ = {v ∈ Rn | [v, w] = 0 for all w ∈ C}. (2)

If C ⊆ C⊥, the code is said to be self-orthogonal and if C = C⊥, the code is
self-dual.

In this paper, the notation q = � mod n means that q is a quadratic residue
modulo n. For a prime power q and integer n such that gcd(q, n) = 1, we denote
by ordn(q) the multiplicative order of q modulo n. This is the smallest integer l
such that ql ≡ 1 mod n.

The function μb defined on Zn = {0, 1, . . . , n − 1} by μb(i) ≡ ib mod n is
a permutation of the coordinate positions {0, 1, 2, . . . , n − 1} and is called a
multiplier. Multipliers also act on polynomials in R[x] and this gives the following
ring automorphism.

μb : R[x]/(xn − 1) −→ R[x]/(xn − 1)
f(x) �→ μb(f(x)) = f(xb). (3)
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Suppose that f(x) = a0 + a1x + . . . + arx
r is a polynomial of degree r with

f(0) = a0 a unit in R. Then the monic reciprocal polynomial of f(x) is

f∗(x) = f(0)−1xrf(x−1) = f(0)−1xr(μ−1(f(x))) = a−1
0 (ar +ar−1x+. . .+a0x

r).

If a polynomial is equal to its reciprocal, then it is called a self-reciprocal poly-
nomial over R.

The following lemma is easily deduced.

Lemma 1. Let f(x) and g(x) be two polynomials in R[x] with deg f(x) ≥
deg g(x) and with constants terms are units. Then the following holds.

(i) [f(x)g(x)]∗ = f(x)∗g(x)∗.
(ii) [f(x) + g(x)]∗ = f(x)∗ + xdeg f−deg gg(x)∗.
(iii) If f(x) is monic, then f(x)∗ = f(x)

∗
.

The following theorem gives the structure of a cyclic code (not necessarily free)
and its dual over a finite chain ring.

Theorem 1 ([7]). Let R be a finite chain ring with maximal ideal γ and index
of nilpotency e. Let C be a cyclic code over R of length n such that (n, p) = 1,
where p is the characteristic of R. Then there exists a unique family of pairwise
coprime polynomials Fi, 0 ≤ i ≤ e in R[x] such that F0 . . . Fe = xn − 1,

C = 〈F̂1, γF̂2, . . . , γ
e−1F̂e〉 and C⊥ = 〈F̂ ∗

0 , γF̂ ∗
e , . . . , γe−1F̂ ∗

2 〉,
where F̂j = xn−1

Fj
for 0 < j ≤ e. Moreover, we have that the ring R[x]/(xn − 1)

is a principal ideal ring.

2.1 Isometries and Monomial Maps

Let R∗ = R\〈γ〉. A monomial transformation over Rn is an R-linear homo-
morphism τ such that there exist units λ1, . . . , λn in R∗, and a permutation
σ ∈ Sn such that for all (x1, x2, . . . , xn) ∈ Rn, we have τ(x1, . . . , xn) =
(λ1xσ(1), λ2xσ(2), . . . , λnxσ(n)). Two linear codes C and C ′ of length n are called
monomially equivalent if there exists a monomial transformation over Rn such
that τ(C) = C ′. Wood [16] proved that there exists a monomial permutation
between two codes over a finite chain ring if and only if there exists a linear
Hamming isometry.

Several weights can be defined over rings. A weight on a code C over a finite
chain ring is called homogeneous if it satisfies the following conditions:

(i) ∀x ∈ C, ∀u ∈ R∗ : w(x) = w(ux), and
(ii) there exists a constant ξ = ξ(w) ∈ R such that

∑

x∈U

w(x) = ξ|U |, and

where U is any subcode of C.
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Honold and Nechaev [11] proved that for codes over a finite chain ring there exists
a homogeneous weight. A linear morphism f : R �−→ R is called a homogeneous
isometry if it is a linear homomorphism which preserves the homogeneous weight.

Lemma 2 ([8]). Let R be a finite chain ring, C a linear code over R and φ :
C �−→ Rn an embedding. Then the following are equivalent:

(i) φ is a homogeneous isometry
(ii) C and φ(C) are equivalent.

Here whenever two codes are said to be equivalent it is meant that they are
monomially equivalent.

2.2 Galois Extensions of Finite Chain Rings

Let R be a finite chain ring with residue field Fq where Fqs is the splitting field
of xn − 1 over Fq with s = ordn(q). Further, let f(x) ∈ Fq[x] be a primitive
polynomial of degree s. Then since (qs − 1, q) = 1, there exists a unique basic
irreducible polynomial g(x) ∈ R[x] such that g(x) = f(x).

Consider the Galois extension of R denoted by S � R[x]
(g(x)) . Since g is irre-

ducible and square free, S is separable and local. Then from [9, Theorem 4.2] S
has a primitive element ξ which is a root of g(x) such that ξ = α is a root of
f(x) in Fqs . Let u ∈ S then

u = a0 + a1ξ + a2ξ
2 + · · · + as−1ξ

s−1

where ξ is a root of g(x) such that ξ = α is a root of f(x) in Fqs . Thus any
element u ∈ S can be written as

u = a0 + a1ξ + a2ξ
2 + · · · + as−1ξ

s−1

where ai ∈ R. The map
σ : S −→ S

ξ �→ σ(ξ) = ξq,
(4)

is a generator of GR(S), the Galois group of S over R, which is isomorphic to
GFq

(Fqs), the Galois group of Fqs over Fq. Since GFq
(Fqs) is a cyclic group, the

elements of R are fixed by σ and all its powers. Let β = ξ
qs−1

n , hence the Galois
extension S of R contains a primitive n-th root of unity. Denote β = α so α is
a primitive n-th root of unity in Fqs .

Lemma 3. With the above assumptions, let p(x) = Πi∈T (x − αi) be a monic
divisor of xn − 1 in Fq[x], where T is the defining set of the cyclic code 〈p(x)〉.
Then there is a unique monic factor q(x) of xn − 1 in R[x] such that

q(x) = Πi∈T (x − βi),

and q(x) = p(x)
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Proof. Let q(x) be the unique monic Hensel lift of p(x) which is a divisor of
xn − 1 in Fq[x], and define

q̃(x) = Πi∈T (x − βi), i ∈ Zn.

From (4) we have that σ(q̃(x)) = q̃(x), so q̃(x) has coefficients from R. Further
q̃(x) = Πi∈T (x − βi) = Πi∈T (x−αi) = p(x) = q(x) and since q(x) is unique, we
have that

q(x) = Πi∈T (x − βi). ��

3 Cyclic Codes of Length 2am over R

Let R be a finite chain ring with residue field Fq such that q is an odd prime
power, and m an odd integer such that (m, q) = 1. In the following we give the
structure of cyclic codes of length 2am where a ≥ 1.

We begin with the following lemma.

Lemma 4. There exists a primitive 2a-th root of the unity α in R∗ if and only
if q ≡ 1 mod 2a. Further, x2a − 1 =

∏2a

k=1(x − αk) in R[x].

Proof. Since q is an odd prime power, by [5, Proposition 4.2], there exists a
primitive 2a-th root of the unity in R∗ if and only if there exists a primitive
2a-th root of unity in Fq. If there exists a primitive 2a-th root of unity α in F

∗
q ,

then α2a = 1, so that 2a divides q − 1. Conversely, if 2a divides q − 1 then there
exists an integer k such that q = k2a + 1. If α is a primitive element of F

∗
q , then

1 = αq−1 = (αk)2
a

and ord(αk) = ord(α)
(k,ord(α)) = q−1

(k,q−1) = k2a

(k,k2a) = 2a.
Let α be a primitive 2a-th root of the unity in R∗. Since (2a, q) = 1, it must be

that α is a primitive 2a-th root of unity in F
∗
q so that x2a −1 =

∏2a

k=1(x−αk) in
Fq[x]. By Lemma 4, the monic polynomial x2a−1 factors uniquely as a product of
monic basic irreducible pairwise coprime polynomials over R. Furthermore, there
is a one-to-one correspondence between the set of basic irreducible polynomial
divisors of x2a − 1 in R[x] and the set of irreducible divisors of x2a − 1 in Fq[x].
If x2a − 1 =

∏2a

k=1(x − ak), then (x − ak) = (x − ak) = (x − (α)k). Since
(x − αk) = (x − αk) = (x − (α)k), from the unique decomposition of x2a − 1 in
R[x], the result follows. ��
Lemma 5

(1) If there exists a primitive 2a-th root of unity α in R∗, then α2i is a primitive
2a−i-th root of unity in R∗; for all i ≤ a.

(2) Let α be a primitive 2a-th root of the unity in R∗. Then αm is also a primitive
2a-th root of the unity in R∗.

(3) If a ≥ 2, then
∏2a

k=1 αk = 1.
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Proof. By [5, Proposition 4.2], there exists a primitive 2a-th root of the unity
in R∗ if and only if there exists a primitive 2a-th root of unity in Fq and using [3,
Lemma 3.2] we have: For (1) Let i, i ≤ a. In the cyclic group F

∗
q ,then ord(α2i) =

ord(α)
(2i,ord(α)) = 2a

(2i,2a) = 2a

2i = 2a−i.

For part (2), since (2a,m) = 1, ord(αm)= ord((α)m) = ord(α)
(m,ord(α)) = 2a

(m,2a)
= 2a.

For part (3), since (x2a − 1) =
∏2a

k=1(x − αk),
∏2a

k=1 αk = (−1)2
a−1

. ��
Lemma 6. There exist a unique monic basic irreducible pairwise coprime fac-
tors gi(x), i ∈ {1, 2, . . . , r} of xm − 1 such that

xm − 1 = (x − 1)
r∏

i=1

gi(x), (5)

in R[x].

Proof. Let m be an integer such that (p,m) = 1. Since Fq[x] is a unique fac-
torization domain (UFD), there exist unique monic irreducible pairwise coprime
factors fi(x), i ∈ {1, 2, . . . , r} which satisfy xm − 1 = (x − 1)

∏r
i=1 fi(x) over

Fq. Thus, there exist unique monic pairwise coprime polynomials x − a, gi(x),
i ∈ {1, 2, . . . , r} which are factors of xm−1 in R[x] such that x − a = x−a = x−1,
gi(x) = fi(x) for all i ∈ {1, 2, . . . , r}. This gives that

xm − 1 = (x − a)
r∏

i=1

gi(x), (6)

in R[x]. Substituting x = 1 into (6), we obtain

(1 − a)
r∏

i=1

gi(1) = 0.

Since (m, q) = 1, xm − 1 has simple roots. Then gi(1) = fi(1) �= 0 for all
i ∈ {1, 2, . . . , r}. This means that for all i ∈ {1, 2, . . . , r} gi(1) are invertible
elements of R. Therefore a = 1 and

xm − 1 = (x − 1)
r∏

i=1

gi(x),

in R[x]. ��

3.1 Free Cyclic Codes of Length 2am over R

For thereafter, R is a finite chain ring with residue field Fq, q = pt be an odd
prime power and n = 2am a positive integer such that m is an odd integer, a ≥ 1
and (m, p) = 1 such that q ≡ 1 mod 2a.

Before giving the structure of free cyclic codes of length 2am over R, we need
the following proposition.
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Proposition 1. If R∗ contains a primitive 2a-root of unity and x − 1, gi(x),
1 ≤ i ≤ r, are the monic basic irreducible pairwise coprime factors of xm − 1 in
R[x], then

x2am − 1 = (x2a − 1)
r∏

i=1

gi(α−kx).

Proof. Assume that xm −1 = (x−1)
∏r

i=1 gi(x) (so that g0(x) = (x−1)). Since
(m, p) = 1, by [10, Theorem 4.3] and Lemma 6 this is the unique factorization
of xm − 1 into monic basic irreducible pairwise coprime polynomials over R. Let
α ∈ R∗ be a primitive 2a-th root of unity and let 1 ≤ k ≤ 2a. Then

(α−kx)m − 1 = (α−kx − 1)
∏r

i=1 gi(α−kx)
(α−k)m(xm − (αk)m) = α−k(x − αk)

∏r
i=1 gi(α−kx)

(xm − αkm) = αk(m−1)(x − αk)
∏r

i=1 gi(α−kx)
(xm − (αm)k) = αk(m−1)(x − αk)

∏r
i=1 gi(α−kx),

and by Lemma 4 αm is also a primitive 2a-th root of unity in R∗. We have that

∏2a

k=1(x
m − (αm)k) =

∏2a

k=1 αk(m−1)(x − αk)
∏r

i=1 gi(α−kx)
=

∏2a

k=1 αk(m−1)
∏2a

k=1(x − αk)
∏2a

k=1

∏r
i=1 gi(α−kx)

=
∏2a

k=1
αkm

αk

∏2a

k=1(x − αk)
∏2a

k=1

∏r
i=1 gi(α−kx)

= (x2a − 1)
∏2a

k=1

∏r
i=1 gi(α−kx).

Since (x2am − 1) = ((xm)2
a − (αm)2

a

) =
∏2a

k=1(x
m − αkm), the result follows. ��

We now give the structure of free cyclic codes of length 2am over R.

Corollary 1. If R∗ contains a primitive 2a-root of unity α and (x − 1), gi(x),
1 ≤ i ≤ r are the monic basic irreducible factors of xm − 1 in R[x], then a free
cyclic code C of length n = 2am is generated by

∏2a

k=1((x−αk)lk
∏r

i=1 gji
i (α−kx))

with 0 ≤ lk, ji ≤ 1.

Proof. By [10, Theorem 4.16], any free cyclic code of length 2am is generated
by a divisor of x2am − 1, and by Proposition 1 we have that

(x2am − 1) =
2a∏

k=1

((x − αk)
r∏

i=1

gi(α−kx)),

and the result follows. ��
Next, the structure of cyclic codes (not necessarily free) of length 2am over R
are examined.

Theorem 2. Let C be a code of length 2am over R. Then C is a cyclic code of
length 2am over R if and only if C � ⊕

1≤i≤2a Ci, where Ci are cyclic codes of
length m over R.
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Proof. Since q ≡ 1 mod 2a, by Lemma 4 there exists a primitive 2a-th root of
unity α ∈ R∗ such that α2a = 1. By Lemma 4, αm is also a primitive 2a-th root
of unity in R∗ (note that m is odd), and thus

(x2am − 1) =
2a∏

i=1

(xm − (αm)i).

Since (2am, p) = 1, there are no repeated roots so the polynomials (xm − αi),
i ∈ {1, . . . , 2a} are coprime. Then by the Chinese remainder Theorem we have
the following ring isomorphism

R[x]
(x2am − 1)

�
2a∏

i=1

R[x]
(xm − (αi)m)

.

From Theorem 4.3 in [5], we have that R[x]
(xm−αi) � R[x]

(xm−1) , ∀i ∈ {1, . . . , 2a}, so
then

R[x]
(x2am − 1)

�
2a∏

i=1

R[x]
(xm − 1)

.

Thus any ideal I of R[x]
(x2am−1)

is equivalent to a direct sum of 2a ideals Ii of
R[x]

(xm−1) . Therefore, a cyclic code over R is a direct sum of 2a cyclic codes of
length m over R. ��

4 The Existence of Cyclic Isodual Codes over Finite
Chain Rings

In this section, conditions are given on the existence of cyclic isodual codes over
finite chain rings. Explicit constructions of monomial isodual cyclic free codes
for odd characteristics are also presented. We begin with the following result.

Theorem 3. Let C be a cyclic code of length n over R generated by the poly-
nomial g(x), and λ a unit in R such that λn = 1. Then the following holds:

(i) C is equivalent to the cyclic code generated by g∗(x).
(ii) C is equivalent to the cyclic code generated by g(λx).

Proof. Let μ−1 defined as in (3) it is a weight preserving linear transformation
for codes over finite chain rings. Let c(x) = c0+c1x+c2x

2+ . . .+ckxk ∈ C, then
μ−1(c(x)) = c(x−1) = xn−k(ck+ck−1x+ck−2x

2+. . .+c0x
k). This shows that the

multiplier μ−1 is weight preserving, so from [16] C and μ−1(C) are monomially
equivalent codes. Let g(x) and g′(x) be the generator polynomials of C and
μ−1(C), respectively. Since μ−1 is a ring automorphism, C and μ−1(C) have the
same dimension, so the polynomials g(x) and g′(x) have the same degree.

From the definition of the reciprocal polynomial of g(x), g∗(x) ∈ μ−1(C) so
that g′(x) divides g∗(x). For g(0) ∈ R∗, g∗(x) and g(x) have the same degree
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so that g∗(x) and g′(x) also have the same degree, and thus generate the same
cyclic code. Therefore the free cyclic code generated by g(x) is equivalent to the
cyclic code generated by g∗(x). Let

φ : R[x]
(xn−1) −→ R[x]

(xn−1)

f(x) �−→ φ(f(x)) = f(λx).

For polynomials f(x), g(x) ∈ R[x] we have that f(x) ≡ g(x) mod (xn − 1) if and
only if there exists a polynomial h(x) ∈ R[x] such that

f(x) − g(x) = h(x) (xn − 1).

Thus it must be that

f(λx) − g(λx) = h(λx)((λx)n − 1)
= h(λx)((λ)nxn − 1)
= h(λx)(xn − 1),

which is true if and only if f(λx) ≡ g(λx) mod (xn − 1). Thus for f(x), g(x) ∈
R[x]/(xn − 1)

φ(f(x)) = φ(g(x)),

if and only if
g(x) = f(x),

where φ is well defined and one-to-one. It is obvious that φ is onto, and it is easy
to verify that φ is a ring homomorphism. Therefore φ is a ring isomorphism. If
C = 〈g(x)〉, then φ(C) = 〈g(λx)〉. Furthermore, φ is a weight preserving linear
transformation for codes over finite chain rings. Let c(x) = c0 + c1x + c2x

2 +
. . . + ckxk ∈ C. Since ci = 0 is equivalent to λici = 0 (λi �= 0), we have that
φ(c(x)) = c0+λc1x+λ2c2x

2+. . .+λkckxk. Then the Hamming weights wt(c(x))
and wt(φ(c(x))) are equal, so from [16], C and φ(C) are monomially equivalent
codes. ��
Remark 1. With the same assumptions as in Theorem3:

– C is equivalent to the cyclic code generated by g∗(λx).
– C is equivalent to the cyclic code generated by (g(λx))∗.

In the following we take q an odd prime power such that q ≡ 1 mod 2a, with
a ≥ 1 an integer and m an odd integer with (m, q) = 1. We obtain these next
results:

Theorem 4. Let f(x) be a polynomial such that xm −1 = (x−1)f(x). The free
cyclic codes of length 2am generated by

(x2a−1 − 1)
2a−1−1∏

k=0

f(α−2k−1x),
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and

(x2a−1
+ 1)

2a−1∏

k=1

f(α−2kx),

are isodual codes of length 2am.

Proof. By Lemma 4, if q ≡ 1 mod 2a, there exists a primitive 2a-th root of unity
α ∈ R∗ such that α2a = 1. Suppose that xm − 1 = (x − 1)f(x), then

(x2am − 1) = (x2a − 1)
2a∏

k=1

f(α−kx).

Further, we have (x2a − 1) = (x2a−1 − 1)(x2a−1
+ 1), so that

(x2am − 1) = (x2a−1 − 1)(x2a−1
+ 1)

2a∏

k=1

f(α−kx)

(x2am − 1) = (x2a−1 − 1)(x2a−1
+ 1)

2a−1∏

k=1

f(α−2kx)
2a−1−1∏

k=0

f(α−2k−1x).

Let

g(x) = (x2a−1 − 1)
2a−1−1∏

k=0

f(α−2k−1x),

so that

h(x) = (x2a−1
+ 1)

2a−1∏

k=1

f(α−2kx)

and h∗(x) = g∗(αx) By Theorem 3(i), C is equivalent to the cyclic code generated
by g∗(x), and by Theorem 3(ii), the cyclic code generated by g∗(x) is equivalent
to the cyclic code generated by g∗(αx) = h∗(x). As the latter code is C⊥, C is
isodual. Then the cyclic code generated by g(x) is isodual. The same result is
obtained for

g(x) = (x2a−1
+ 1)

2a−1∏

k=1

f(α−2kx).
��

Example 1. Let R = Z9, a = 1 and m = 5 so that n = 10. The polynomial
f(x) in Theorem4 is f(x) = x4 + x3 + x2 + x + 1.

Both of the polynomials

g1(x) = x5 + 7x4 + 2x3 + 7x2 + 2x + 8

and
g2(x) = x5 + 2x4 + 2x3 + 2x2 + 2x + 1

generate isodual codes. Both codes have minimum weight 4.
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Theorem 5. Let g1(x) and g2(x) polynomials in R[x] such that xm − 1 = (x −
1)g1(x)g2(x). The free cyclic codes of length 2am generated by

(x2a−1 − 1)
2a−1∏

k=1

gi(α−2kx)
2a−1−1∏

k=0

gj(α−2k−1x),

and

(x2a−1
+ 1)

2a−1∏

k=1

gi(α−2kx)
2a−1−1∏

k=0

gj(α−2k−1x),

i, j ∈ {1, 2}, i �= j, are isodual codes of length 2am over R where α ∈ R∗ a
primitive 2a-th root of unity.

Proof. By Lemma 4, since q ≡ 1 mod 2a, there exists a primitive 2a-th root of
unity α ∈ R∗ such that α2a = 1. Suppose that xm − 1 = (x − 1)g1(x)g2(x), then

(x2am − 1) = (x2a − 1)
2a∏

k=1

g1(α−kx)g2(α−kx).

Since (x2a − 1) = (x2a−1 − 1)(x2a−1
+ 1), we have

(x2am − 1) = (x2a−1 − 1)(x2a−1
+ 1)

2a∏

k=1

g1(α−kx)g2(α−kx),

(x
2am − 1) = (x

2a−1 − 1)(x
2a−1

+ 1)
2a−1∏

k=1

g1(α
−2k

x)g2(α
−2k

x)

2a−1−1∏

k=0

g1(α
−2k−1

x)g2(α
−2k−1

x).

Let

g(x) = (x2a−1 − 1)
2a−1∏

k=1

gi(α−2kx)
2a−1−1∏

k=0

gj(α−2k−1x), i �= j,

then the free cyclic code generated by g(x) is isodual. We then have

h(x) = (x2a−1
+ 1)

2a−1−1∏

k=0

gi(α−2k−1x)
2a−1∏

k=1

gj(α−2kx),

and h∗(x) = g∗(αx) from Theorem 3, so the cyclic code 〈g(x)〉 is isodual. The
same result is obtained for

g(x) = (x2a−1
+ 1)

2a−1∏

k=1

gi(α−2kx)
2a−1−1∏

k=0

gj(α−2k−1x), i �= j.

��
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Example 2. Let R = Z9, a = 1,m = 11, so that n = 22. The polynomials that
appear in the factorization of x11−1 over Z9 are g1 = x5+3x4+8x3+x2+2x+8
and g2 = x5 + 7x4 + 8x3 + x2 + 6x + 8. There are four possible isodual codes of
length 22. Two of these codes are given by the following generator polynomials
g1(x) = 8x11 + 5x10 + x9 + 5x7 + 4x6 + 3x5 + 6x4 + 8x3 + 6x + 8 and
g2(x) = 8x11 + 3x10 + x8 + 6x7 + 6x6 + 4x5 + 4x4 + 8x2 + 5x + 1.
The minimum Hamming weight of each code is 7.

Remark 2. If

g(x) = (x2a−1 − 1)
2a−1∏

k=1

gi(α−2kx)
2a−1∏

k=1

gj(α−2kx), i �= j,

then g(x) = (x2a−1m − 1) = (x
n
2 − 1), and the free cyclic code generated by g(x)

is isodual.

In the following we give construction of isodual codes as a direct sum of
isoduals codes. Before we need the following lemma.

Lemma 7. Let C1 and C2 be linear codes of lengths n1 and n2, respectively over
R, and define the direct sum as C1 ⊕ C2 = {(c1|c2), c1 ∈ C1, c2 ∈ C2}. Then
the following holds

(i) (C1 ⊕ C2)⊥ = C⊥
1 ⊕ C⊥

2 .
(ii) If C1 and C2 are isodual codes with minimum weights d1 and d2, respectively,

then C1 ⊕ C2 is an isodual code of length n1 + n2 with minimum weight
min(d1, d2).

Proof. It is easy to verify the inclusion C⊥
1 ⊕ C⊥

2 ⊆ (C1 ⊕ C2)⊥. From [16], we
have |C⊥

1 ⊕ C⊥
2 | = |(C1 ⊕ C2)⊥|, and part (i) follows.

For part (ii), let τ1 and τ2 be monomial permutations such that τ1(C1) = C⊥
1 and

τ2(C2) = C⊥
2 . Let τ1(C1)⊕ τ1(C1) = C ′ then C ′ = σ(C1 ⊕C2), with σ(i) = τ1(i)

for 1 ≤ i ≤ n and σ(i) = τ2(i) for n + 1 ≤ i ≤ 2n. Then τ1(C1) ⊕ τ2(C2) =
C⊥

1 ⊕ C⊥
2 . Since (C1 ⊕ C2)⊥ = C⊥

1 ⊕ C⊥
2 , C1 ⊕ C2 is equivalent to (C1 ⊕ C2)⊥.

The minimum weight follows from the direct sum of linear codes. ��
The direct sum of two cyclic codes over R in Lemma 7 may not be a cyclic

code. The following theorem gives conditions for this direct sum to be a cyclic
code over R.

Theorem 6. Let R be a finite chain ring with residue field Fq, q an odd prime
power and m an odd integer such that (m, q) = 1. Let Ci, 1 ≤ i ≤ 2a (a ≥ 1 an
integer), be cyclic isodual codes over R of length m. We then have

(i) Ci ⊕ Cj, ∀i, j, 1 ≤ i, j ≤ 2a, are cyclic isodual codes of length 2m over R.
(ii) If q ≡ 1 mod 2a,(a ≥ 2) then the direct sum

⊕
i∈{1,...,2a} Ci is a cyclic

isodual code of length 2am over R.

Proof. The results follow from Lemma 7. ��
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5 Isodual Cyclic Codes over Finite Chain Rings
from Duadic Codes

The previous section gave conditions on the existence of isodual cyclic codes over
finite chain rings and constructions for these codes. However, a more straightfor-
ward means of finding these codes is desirable. Further, determining codes with
good minimum distance is important. We recall some results about duadic codes
which will be used in this section. Of course isodual codes cannot be duadic since
their length is even. Let q be a prime power and let m be a positive odd integer
such that (m, q) = 1. Then for 0 ≤ i < m, the q-cyclotomic coset of i (mod m)
is defined as

Cl(i) = {iql (mod m)|l ∈ N}.

Let α be a primitive m-th root of unity in an extension field of Fq, and C be a
cyclic code over Fq of length m generated by a polynomial f(x). C is uniquely
determined by its defining set T = {0 ≤ i < m | f(αi) = 0}. Hence the defining
set of a cyclic code over Fq is the union of some q-cyclotomic cosets.

Let S1 and S2 be unions of cyclotomic cosets modulo m such that S1∩S2 = ∅,
S1 ∪ S2 = Zm\{0}, and μaSi mod n = S(i+1) mod 2. Then the triple μa, S1, S2

is called a splitting modulo m. The odd-like duadic codes D1 and D2 are the
cyclic codes over Fq with defining sets S1 and S2 and generator polynomials
f1(x) = Πi∈S1(x − αi) and f2(x) = Πi∈S2(x − αi), respectively. The even-like
duadic codes C1 and C2 are the cyclic codes over Fq with defining sets {0} ∪ S1

and {0} ∪ S2, respectively.

5.1 Lifts of Duadic Codes over Finite Chain Rings

In this section R is a finite chain ring with maximal ideal 〈γ〉, nilpotency index
e, and residue field Fq, q = pt.

Lemma 8. Let n be an odd integer such that (p, n) = 1 and q ≡ � mod n. Then
there exists a pair of monic factors of xn − 1, gi(x), i ∈ {1, 2}, such that

xn − 1 = (x − 1)g1(x)g2(x),

in R[x].

Proof. Let n be an odd integer such that (p, n) = 1 and q ≡ � mod n. Then
there exists a pair of odd-like duadic codes over Fq generated by f1(x) and f2(x),
respectively, with xn−1 = (x−1)f1(x)f2(x) over Fq. Since x−1, f1(x) and f2(x)
are monic coprime factors of xn − 1 over Fq, there exist, by Hensel’s Lemma,
unique monic pairwise coprime polynomials x−a, g1(x), g2(x) which are factors
of xn − 1 in R[x] such that x − a = x − 1, g1(x) = f1(x) and g2(x) = f2(x). This
gives

xn − 1 = (x − a)g1(x)g2(x), (7)

in R[x]. Substituting x = 1 into (7) we obtain

(1 − a)g1(1)g2(1) = 0.
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Since (n, q) = 1, xn − 1 has simple roots. Then g1(1) = f1(1) �= 0 and g2(1) =
f2(1) �= 0. This gives that g1(1) and g2(1) are both invertible elements of R.
Therefore a = 1 and

xn − 1 = (x − 1)g1(x)g2(x),

in R[x]. ��
Let n be an odd integer such that (p, n) = 1 and q ≡ � mod n. Let gi,

i ∈ {1, 2}, be the lifted polynomials of fi, where the fi are generator polynomials
of the duadic codes over Fq. Then we define the following cyclic codes over R
by:

Definition 1. Let the free cyclic codes over R defined by

D′
1 = 〈g1(x)〉,D′

2 = 〈g2(x)〉, C ′
1 = 〈(x − 1)g1(x)〉, andC ′

2 = 〈(x − 1)g2(x)〉, (8)

and if e is even let the non free cyclic codes over R defined by

E1 = 〈(x − 1)g1(x), γ
e
2 g1(x)g2(x)〉, andE2 = 〈(x − 1)g2(x), γ

e
2 g1(x)g2(x)〉. (9)

In the following we give some proprieties of duadic codes given by the
Definition 1.

Proposition 2. Let D′
i, and C ′

i i ∈ {1, 2} be the codes given by Definition 1

(i) If the splitting is given by μ−1, then D
′⊥
1 = C ′

1 and D
′⊥
2 = C ′

2.
(ii) If the splitting is not given by μ−1, then D

′⊥
1 = C ′

2 and D
′⊥
2 = C ′

1.

Proof. We know that if g(x) is a generator polynomial of a free cyclic code C
of length n over R, then the dual code C⊥ of C is the free cyclic code whose
generator polynomial is h∗(x) where h∗(x) is the monic reciprocal polynomial of
h(x) = (xn − 1)/g(x). By Lemma 1 and [Lemma 5.1 [3]] we have the result. ��
Proposition 3. With the assumptions given in Definition 1 D′

1 = 〈g1(x)〉 and
D′

2 = 〈g2(x)〉 are equivalent cyclic codes over R.

Proof. Let f1(x) = Πi∈S1(x − αi) where α is a primitive n-th root of unity in
Fq. By Lemma 3, there exists β ∈ S, where S is a Galois extension of R, such
that β = α and g1(x) = Πi∈S1(x − βi). Then μb(g1(x)) = Πi∈S1(x − βbi) =
εΠj∈S2(x − βj) where ε is a unit in R since the splitting is given by μb. Thus
from [16], D′

1 and D′
2 are monomially equivalent cyclic codes over R. ��

Lemma 9. Let G be a generator matrix of C ′
1 (resp. C ′

2). Then the following
hold:

(i)
(

1 1 . . . 1
G

)
(10)

is a generator matrix of D′
1 (resp. D′

2).
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(ii)
(

G
γ

e
2 γ

e
2 . . . γ

e
2

)
(11)

is a generator matrix of E1 (resp. E2).

Proof. For part (i), we know that D′
1 and C ′

1 are cyclic codes of length n over
R with generator polynomials g1(x) and (x−1)g1(x), respectively. Since (x−1),
g1(x) and g2(x) are pairwise coprime over R, there are polynomials a(x) and
b(x) in R[x] such that

a(x)g2(x)g1(x) + b(x)(x − 1)g1(x) = g1(x).

Therefore,

a(x)(xn−1 + xn−2 + · · · + x + 1) + b(x)(x − 1)g1(x) = g1(x),

so (10) is a generator matrix of D′
1. A similar result holds for D′

2, with G a
generator matrix of C ′

2.
For part (ii), we first prove that 〈γ e

2 〉 � C ′
1, where C ′

1 is the cyclic code of
length n generated by (x−1)g1(x) over R. The codeword γ

e
2 (1n) can be expressed

as the polynomial γ
e
2 + γ

e
2 x + γ

e
2 x2 + · · · + γ

e
2 xn−1. Substituting x = 1 into

this polynomial, we obtain nγ
e
2 �= 0 since the characteristic of R is prime to n.

Therefore γ
e
2 + γ

e
2 x + γ

e
2 x2 + · · · + γ

e
2 xn−1 is not a multiple of x − 1, so that

〈γ e
2 〉 � C ′

1. It follows that E1 has generator matrix (11), where G is a generator
matrix of C ′

1. A similar result holds for E2, with G a generator matrix of C ′
2. ��

Remark 3. Since D′
1 and D′

2 are monomially equivalent codes, from Proposi-
tion 3, E1 and E2 are also monomially equivalent cyclic codes.

Theorem 7. With the previous notation the following hold:

(i) If the splitting is given by μ−1, then E1, E2 and E1 ⊕ E2 are self-dual.
(ii) If the splitting is left invariant by μ−1, then E1 and E2 are isodual cyclic

codes over R.

Proof. Let fi, i ∈ {1, 2}, be the generator polynomials of the odd-like duadic
codes over Fq of length n. Then we have xn − 1 = (x − 1)f1(x)f2(x) over Fq.
If the splitting is given by μ−1 then f∗

1 (x) = εf2(x) and f∗
2 (x) = εf1(x). Hence

by Lemma 1 their lifts have the same properties so that

g∗
1(x) = αg2(x) and g∗

2(x) = αg1(x),

with α a unit in R such that α = ε. Then for

E1 = 〈(x − 1)g1(x), γ
e
2 g1(x)g2(x)〉,

by Theorem 1 we have that

E⊥
1 = 〈(x − 1)∗g∗

2(x), γ
e
2 g∗

1(x)g∗
2(x)〉 = 〈(x − 1)g1(x), γ

e
2 g1(x)g2(x)〉.



On Isodual Cyclic Codes over Finite Chain Rings 191

This means E1 is self dual. A similar proof shows that E2 is also self dual over
R. Since (E1 ⊕ E2)⊥ = E⊥

1 ⊕ E⊥
2 = E1 ⊕ E2, E1 ⊕ E2 is self-dual.

If the splitting is not given by μ−1, then f∗
1 (x) = εf1(x) and f∗

2 (x) = εf2(x).
Hence by Lemma 1 their lifts have the same properties, so that g∗

1(x) = αg1(x)
and g∗

2(x) = βg2(x), where α and β are units in R. Then for

E1 = 〈(x − 1)g1(x), γ
e
2 g1(x)g2(x)〉,

by Theorem 1 we have that

E⊥
1 = 〈(x − 1)∗g�

2(x), γ
e
2 g∗

1(x)g∗
2(x)〉 = 〈(x − 1)g2(x), γ

e
2 g1(x)g2(x)〉 = E2.

Then E1 and E2 are duals of each other over R. Since they are monomially
equivalent, they are isodual cyclic codes over R. ��
Example 3. For n = 11 ≡ −1 mod 4 and q = 3 ≡ � mod 11, there exists a
pair of odd-like duadic codes over F3 generated by f1(x) and f2(x), respectively.
Let g1(x) and g2(x) be the corresponding Hensel lifts over Z9. We have the
factorization

x11 − 1 = (x − 1)(x5 + 3x4 + 8x3 + x2 + 2x − 1)(x5 − 2x4 − x3 + x2 − 3x − 1),

over Z9, so for g1(x) = x5 + 3x4 + 8x3 + x2 + 2x − 1, we have g∗
1(x) = −(x5 −

2x4 − x3 + x2 − 3x − 1) = −g2(x). Therefore

C = 〈(x − 1)gi(x), 3gi(x)g∗
j (x)〉,

is a self-dual code.

Example 4. For n = 31 ≡ −1 mod 4 and q = 2 ≡ � mod 31, there exists a
pair of odd-like duadic codes over F2 generated by f1(x) and f2(x), respectively.
Let g1(x) and g2(x) be the corresponding Hensel lifts over Z4. We have the
factorization

x31 − 1 = (x − 1)(x5 + 3x2 + 2x + 3)(x5 + 2x4 + 3x3 + x2 + 3x + 3)
(x5 + 3x4 + x2 + 3x + 3)(x5 + 2x4 + x3 + 3)
(x5 + x4 + 3x3 + x + 3)(x5 + x4 + 3x3 + x2 + 2x + 3).

over Z4, so for g1(x) = (x5 + 3x2 + 2x + 3)(x5 + 2x4 + 3x3 + x2 + 3x + 3)(x5 +
3x4 + x2 + 3x + 3), we have g∗

1(x) = −(x5 + 2x4 + x3 + 3)(x5 + x4 + 3x3 + x +
3)(x5 + x4 + 3x3 + x2 + 2x + 3) = −g2(x) Therefore

C = 〈(x − 1)gi(x), 2gi(x)g∗
j (x)〉,

is a self-dual code.
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5.2 Construction of Free Isodual Cyclic Codes over Finite Chain
Rings Using Lifts of Duadic Codes

Let n be an integer such that (n, q) = 1 so that R[x]/(xn −1) is a principal ideal
ring. The free cyclic codes over R are generated by factors of xn − 1 [10], hence
from Theorems 3 and 4 we obtain the following Theorem.

Theorem 8. Let R be a finite chain ring with residue field Fq, and suppose
there exists a pair of odd-like Duadic codes Di = 〈fi(x)〉, i = 1, 2, of length m.
Further, let gi(x) ∈ R[x] be the Hensel lift of fi(x) ∈ Fq[x]. We then have the
following:

(i) The cyclic codes Cij and C ′
ij over R generated by

(x2a−1 − 1)
2a−1∏

k=1

gi(α−2kx)
2a−1−1∏

k=0

gj(α−2k−1x),

and

(x2a−1
+ 1)

2a−1∏

k=1

gi(α−2kx)
2a−1−1∏

k=0

gj(α−2k−1x),

i, j ∈ {1, 2}, i �= j, respectively, where α ∈ R∗ is a primitive 2a-th root of
unity, are isodual codes of length 2am.

(ii) If the splitting is given by μ−1, then the cyclic codes Cii and C ′
ii over R

generated by

(x2a−1 − 1)
2a∏

k=1

gi(α−kx),

and

(x2a−1
+ 1)

2a∏

k=1

gi(α−kx),

respectively, where α ∈ R∗ is a primitive 2a-th root of unity, are isodual
codes of length 2am.

(iii) If the splitting is not given by μ−1, then the dual of the cyclic code generated
by

(x2a−1 − 1)
2a∏

k=1

gi(α−kx),

is equivalent to the cyclic code generated by

(x2a−1
+ 1)

2a∏

k=1

gj(α−kx).
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Proof. For part (i), we use Theorem 5.
Let Cii = 〈gii(x)〉 = 〈(x2a−1 − 1)

∏2a

k=1 gi(α−kx)〉. If the splitting is given by
μ−1 then f∗

1 (x) = εf2(x) and f∗
2 (x) = εf1(x). Then by Lemma 1, g∗

1(x) = βg2(x)
and g∗

2(x) = αg1(x), so

C⊥
ii = 〈h∗

ii(x)〉 = 〈(x2a−1
+1)

2a∏
k=1

gi(α
−kx)∗〉 = 〈(x2a−1 −1)

2a∏
k=1

gi(α
−kx) = 〈βgii(αx)〉,

where α and β are units in R. Therefore, Cii � C⊥
ii . The proof for the codes

generated by gii(x) = (x2a−1
+ 1)

∏2a

k=1 gi(α−kx) is similar.
If the splitting is not given by μ−1, by Lemma 1 g∗

1(x) = βg1(x) and g∗
2(x) =

αg2(x). Then

C⊥
ii = 〈h∗

ii(x)〉 = 〈(x2a−1
+1)

2a∏
k=1

gi(α
−kx)∗〉 = 〈(x2a−1 −1)

2a∏
k=1

gi(α
−kx) = 〈βgjj(αx)〉,

where α and β are units in R. Therefore Cii � C⊥
jj . The proof for the codes

generated by gii(x) = (x2a−1
+ 1)

∏2a

k=1 gi(α−kx) is similar. ��
Example 5. For R = Z25, q = 5 and m = 11, 5 ≡ 16 mod 11, so there exist
duadic codes generated by fi, 1 ≤ i ≤ 2. Since 11 ≡ −1 mod 4, all splittings are
given by μ−1 and we have

(x11 − 1) = (x− 1)(x5 + 17x4 + 24x3 + x2 + 16x+ 24)(x5 + 9x4 + 24x3 + x2 + 8x+ 24)

= (x− 1)g1(x)g2(x)

〈(x − 1)gi(x)gj(−x)〉, 1 ≤ i, j ≤ 2, i �= j, is an isodual cyclic code of length 22
with minimum distance 8.

〈(x + 1)gi(x)gi(−x)〉, 1 ≤ i ≤ 2, is an isodual cyclic code with minimum
distance 6.

Example 6. For R = Z289, q = 17 ≡ 1 mod 24, α24 = 202
4

= 1, m = 19
and 17 ≡ 36 mod 19. (x19 − 1) = (x − 1)f1(x)f2(x) where f1(x) = (x9 +
208x8 + 287x7 + 83x6 + 210x5 + 205x4 + 80x3 + 2x2 + 207x + 288) and f2(x) =
(x9 + 82x8 + 287x7 + 209x6 + 84x5 + 79x4 + 206x3 + 2x2 + 81x + 288)

Since 19 ≡ −1 mod 4, all the splittings are given by μ−1

(x8 − 1)
16∏

k=1

gi(20−kx), and (x8 + 1)
∏

k=1

gi(20−kx), 1 ≤ i ≤ 2

1 ≤ i ≤ 2, generate isodual codes of length 2419, over R.
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Abstract. ZHFE, proposed by Porras et al. at PQCrypto’14, is one of
the very few existing multivariate encryption schemes and a very promis-
ing candidate for post-quantum cryptosystems. The only one drawback
is its slow key generation. At PQCrypto’16, Baena et al. proposed an
algorithm to construct the private ZHFE keys, which is much faster
than the original algorithm, but still inefficient for practical parame-
ters. Recently, Zhang and Tan proposed another private key generation
algorithm, which is very fast but not necessarily able to generate all the
private ZHFE keys. In this paper we propose a new efficient algorithm for
the private key generation of the ZHFE scheme. Our algorithm reduces
the complexity from O(n2ω+1) by Baena et al. to O(nω+3), where n is
the number of variables and 2 < ω < 3 is a linear algebra constant.
We also estimate the number of possible keys generated by all existing
private key generation algorithms for ZHFE. Our algorithm generates as
many private ZHFE keys as the original and Baena et al.’s ones. This
makes our algorithm be the best appropriate for the ZHFE scheme.

Keywords: Post quantum cryptography · Multivariate cryptography ·
Encryption schemes · ZHFE

1 Introduction

In 1997, P. Shor [21] gave polynomial time quantum algorithms to factor large
integers and to solve discrete logarithms. Thus, as soon as large-scale quantum
computer are built, almost all public key cryptosystems currently used in practice
such as RSA, DSA and ECC will become insecure. Post-Quantum Cryptography
(PQC) stands for the study of cryptosystems that have the potential to resist
such quantum computer attacks [1].

Recently, PQC has taken a lot of attention and become more and more impor-
tant in the cryptographic research community, including also some authorities
such as the American National Security Agency (NSA), who recommended gov-
ernmental organizations to switch their security infrastructures from schemes
such as RSA and ECC [9] to post quantum cryptosystems, and the National
Institute of Standards and Technology (NIST), which is preparing to develop
standards for these schemes [14]. Among all possible candidates for PQC, multi-
variate public key cryptography (MPKC) [7] is one of the main candidates for the
c© Springer International Publishing AG 2017
S. El Hajji et al. (Eds.): C2SI 2017, LNCS 10194, pp. 195–212, 2017.
DOI: 10.1007/978-3-319-55589-8 13
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Table 1. Complexity of key generation algorithms for ZHFE scheme. Here n is the
number of variables, D is the degree chosen for efficient decryption.

Algorithm Complexity q = 2 q = 3 q = 5 q = 7

Original [20] O(n3ω) 100% 100% 100% 100%

Baena et al. [2] O(n2ω+1) 99.9% 99.9% 99.9% 99.9%

Ours O(nω+3) 99.5% 99.9% 99.9% 99.9%

Zhang-Tan [24] O(logq D) 28.9% 56.0% 76.0% 83.7%

standardization. Multivariate schemes are in general very fast and require only
modest computational resources, which makes them attractive for the use on
low cost devices like smart cards and RFID chips [3,5]. In the area of digital sig-
natures, there exists a large number of practical multivariate schemes [8,11,18].
The great difficulty for MPKC is encryption.

The C∗ scheme introduced by Matsumoto and Imai [13], hence the name
MI scheme, was considered to be the first encryption scheme. After MI was
broken by Patarin [15], many encryption schemes have been proposed but then
efficiently broken. Notably, Patarin invented the Hidden Field Equation cryp-
tosystem (HFE) [16] which replaces the central map of the MI scheme by a
low degree univariate polynomial. However, using low degree polynomials in the
central map makes HFE be broken [6,12]. In order to thwart the attack, Porras
et al. [19,20] cleverly proposed at PQCrypto’14 an interesting encryption scheme
called ZHFE, which uses two high degree HFE polynomials in the central map,
but a chosen low degree D polynomial for efficient decryption; see Sect. 2.2 for
more details.

The ZHFE scheme [19,20] is one of the few existing multivariate encryption
schemes at the moment, among ABC [22], SRP [25] and EFC [23]. However,
what makes ZHFE important and attractive is its efficiency and thorough secu-
rity analysis, see [17,20]. One drawback of ZHFE is its super slow key generation
process, which involves solving large linear systems; the original method [20] for
generating the private key needs to solve a linear system of about n3 variables,
resulting in a complexity of O(n3ω), where 2 < ω < 3 is a linear algebra con-
stant. At PQCrypto’16, Baena et al. [2] proposed an improved algorithm which
reduces the complexity of this step to O(n2ω+1). Their idea is to re-arrange the
HFE polynomials (see Proposition 1). As a result, the matrix associated to the
large linear system forms a shape close to a block diagonal matrix. For prac-
tical parameters, this algorithm is much faster than the original one but still
inefficient. Recently, Zhang and Tan [24] proposed an algorithm which requires
very little computation; their algorithm reduces the complexity to O(logq D)
which makes their algorithm very fast; here D is the degree of the secret poly-
nomial (see Sect. 2.2 for more details). However, their algorithm is based on the
invertibility condition of some linear map, which is not necessarily fulfilled, and
this prevents their algorithm from generating all the private ZHFE keys; see
Sect. 2.3 for more details. Therefore, their structured key generation algorithm
may possibly weaken the security of the scheme.
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Our contribution. In this paper, we propose a new private key generation
algorithm of the ZHFE scheme. The complexity of our algorithm is O(nω+3)
which improves the one by Baena et al. [2]; for example, for 96-bit security para-
meters (q = 7,D = 105, n = 55) and 111-bit security parameters (q = 17,D =
595, n = 55), our algorithm is around 15 and 256 times faster than that of Baena
et al. [2] respectively (see our implementation results in Table 3). Moreover, our
algorithm generates as many private ZHFE keys as that of Baena et al. [2]. Our
method is as follows: we first analyze again the algebraic structure of the central
map in ZHFE scheme, following the route of Baena et al. [2]. At some stage,
instead of working in the base field, we lift our problem to the extension field
and use the properties of the extension field to construct an algorithm which
is simpler and more efficient than that of Baena et al. [2]; see Sect. 3 for more
details.

We also estimate the number of private ZHFE keys that all existing algo-
rithms generate in Table 2. Zhang and Tan’s algorithm [24] generates only those
private ZHFE keys, for which the corank of a given linear map L is 0. As Table 2
shows, this condition is, in the case of q = 2, fulfilled by only 28.9% of all possible
keys, which means that the algorithm of [24] generates only a small part of the
keys. In contrast to this, our algorithm generates nearly 100% of the keys, since
it can deal with linear maps L of corank < 3. This, together with its efficiency,
makes our algorithm to be the most appropriate private key generation algo-
rithm of the ZHFE scheme.

Organization. Our paper is organized as follows: we briefly recall the ZHFE
scheme and the various private key generation of Porras et al. [20], Baena
et al. [2] and Zhang and Tan [24] in Sect. 2. Our algorithm is explicitly intro-
duced and analyzed in Sect. 3. In Sect. 4 we present a MAGMA implementation
of our algorithm and compare it with Baena’s algorithm with respect to running
time and memory consumption. Finally, we conclude our paper in Sect. 5.

2 The ZHFE Scheme and Its Key Generation Algorithms

In this section, we briefly recall the basic concepts of multivariate encryption
schemes and the ZHFE scheme [20]. We also recall the key generation process in
the ZHFE scheme and the improved algorithms by Baena et al. [2] and Zhang
and Tan [24].

2.1 Multivariate Public Key Cryptography

The basic objects of multivariate public key cryptography are systems of multi-
variate quadratic polynomials over a finite field F. The security of multivariate
schemes is based on the MQ-Problem which asks for a solution of a given sys-
tem of multivariate quadratic polynomials over the field F. The MQ-Problem is
proven to be NP-Hard even for quadratic polynomials over the field GF(2) [10].
To build a public key cryptosystem on the basis of the MQ-Problem, one starts
with an easily invertible quadratic map F : F

n → F
m (central map). To hide the
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Decryption

w ∈ F
m z ∈ F

m y ∈ F
n x ∈ F

n

P

T −1 F−1 S−1

Encryption

Fig. 1. General workflow of multivariate encryption schemes

structure of F in the public key, one composes it with two invertible affine (or
linear) maps T : F

m → F
m and S : F

n → F
n. The public key is therefore given

by P = T ◦ F ◦ S. The private key consists of T ,F and S. In this paper we
consider multivariate encryption schemes. For these schemes, we require n ≤ m.

Encryption: to encrypt a message x ∈ F
n, one simply computes w = P(x) from

the public key.

Decryption: to decrypt a given ciphertext w ∈ F
m, one computes recursively

z = T −1(w),y = F−1(z) and x = S−1(y). Here y is the preimage of z under
the easy to invert central map F . The condition n ≤ m guarantees that this pre
image and therefore the recovered plaintext will be unique.

Figure 1 shows a graphical illustration of the encryption and decryption
process of multivariate schemes.

2.2 The ZHFE Encryption Scheme

Let F be a finite field with q elements and K a degree n extension of F. Let
φ : K → F

n be an F-isomorphism between K and the vector space F
n. Consider

two HFE polynomials F1 and F2:

F1 =
∑

ai,jX
qi+qj

+
∑

a′
iX

qi

+a′′, F2 =
∑

bi,jX
qi+qj

+
∑

b′
iX

qi

+ b′′, (1)

where the coefficients of F1 and F2 are undetermined. Next randomly choose 4n
scalars α1, ..., α2n, β1, ..., β2n of K. Define four linear polynomials:

L00(X) =
n∑

i=1

αiX
qi−1

, L01(X) =
n∑

i=1

αn+iX
qi−1

,

L10(X) =
n∑

i=1

βiX
qi−1

, L11(X) =
n∑

i=1

βn+iX
qi−1

. (2)

We construct the following polynomial with q-Hamming weight three:

Ψ(X) := X (L00(F1) + L01(F2)) + Xq (L10(F1) + L11(F2)) . (3)

Fix a positive integer D. This D must be chosen such that each univariate
polynomial equation over K of degree less than or equal to D can be solved
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efficiently by Berlekamp’s algorithm. In order to generate a ZHFE key, we have
to determine the coefficients of F1, F2 such that

deg Ψ(X) ≤ D.

In this paper, we propose an efficient algorithm to choose such coefficients of
F1, F2; cf. Sect. 3. Once such coefficients are given, the ZHFE scheme [19,20] is
constructed as follows. Randomly choose invertible affine transformations S and
T on F

n (resp. F
2n). Then the public key P : F

n → F
2n is given by

P = T ◦ (φ × φ) ◦ (F1, F2) ◦ φ−1 ◦ S.

This is a 2n-tuple of quadratic polynomials over F in n variables.

Public Key: The field F and the map P.

Private Key: α1, . . . , α2n, β1, . . . , β2n, F1, F2, Ψ , S and T .

Encryption: For a plaintext message x ∈ F
n with redundant information, the

ciphertext is w = P(x) ∈ F
2n.

Decryption: For a given ciphertext w ∈ F
2n, we first compute (W0,W1) = (φ−1×

φ−1)(T −1(w)) ∈ K × K. Next we consider the equation of degree max{D, q}:

Ψ(X) − X(L00(W0) + L01(W1)) − Xq(L10(W0) + L11(W1)) = 0.

We can solve this equation efficiently by our choice of D. For each solution X0

of this equation, we compute x0 = S−1 ◦ φ(X0). Then we can find the plaintext
among the resulting x0 thanks to the added redundant information.

2.3 Algorithms for the Private Key Generation of ZHFE Scheme

As seen above, the central part of the private key generation of ZHFE scheme
is the computation of suitable coefficients of F1 and F2 and of Ψ for given
α1, . . . , α2n, β1, . . . , β2n. In this section we introduce the known algorithms for
this step.

The Original Algorithm. In the original papers [19,20], F1 and F2 were
computed by solving a large linear system over the small field F obtained from
vanishing coefficients of Ψ . The size of this linear system is about n3. Thus
the complexity of this private key generation is O(n3ω), where 2 < ω < 3 is a
linear algebra constant. In fact, this algorithm is very inefficient for practical
parameters (See [2, Table 3, Old method]).

Table 2. Ratio of linear map L in Eq. (4) over all possible linear maps M2n(F) with
respect to the corank of L

q n corank L = 0 corank L ≤ 1 corank L ≤ 2 corank L ≤ 3

q = 2 n ≥ 35 28.9% 86.6% 99.5% 99.9%

q = 3 n ≥ 35 56.0% 98.0% 99.9 % 99.9 %

q = 5 n ≥ 35 76.0 % 99.8 % 99.9 % 99.9 %

q = 7 n ≥ 35 83.7% 99.9 % 99.9 % 99.9%
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Baena et al.’s Algorithm. At PQCrypto’16, Baena et al. [2] proposed a new
improved algorithm for the private key generation of ZHFE scheme. Their idea is
to re-arrange the HFE polynomials (see Proposition 1). As a result, the matrix
associated to the large linear system forms a shape close to a block diagonal
matrix. Then the complexity of this algorithm is O(n2ω+1). This algorithm is
much faster than the original one, but still inefficient for practical parameters. We
obtain our algorithm by improving this one. Thus we will explain this algorithm
in our language in Sect. 3.1.

Zhang and Tan’s Algorithm. Recently, Zhang and Tan proposed [24] the
algorithm that constructs the central map (F1, F2) and Ψ so that Ψ := XF1 +
XqF2 has degree D at most. Thus the algorithm requires only very little com-
putation. In fact, the complexity is O(logq D). But this algorithm does not nec-
essarily give all private ZHFE keys. Strictly speaking, if we define a linear map
L over F on K

2 by

L : K
2 � (X,Y ) �→ (L00(X) + L01(Y ), L10(X) + L11(Y )) ∈ K

2, (4)

then this algorithm can generate all private keys with L nonsingular. L can be
represented as a matrix in M2n(F) due to K ∼= F

n. We stress that the corank of
L is crucial for the efficient construction of private ZHFE keys, where the corank
of L is 2n−Rank L. In particular, if L is singular (corank of L ≥ 1), the private
keys is not necessarily generated by this algorithm. To be more precise, assume
that we have found polynomials F1, F2 such that Ψ = XF1 + XqF2 is of degree
less than or equal to D. In order to find another α′

1, . . . , α
′
2n, β′

1, . . . , β
′
2n ∈ K

such that the corresponding polynomial

Ψ ′ = X (L′
00(F1) + L′

01(F2)) + Xq (L′
10(F1) + L′

11(F2))

is of degree less than or equal to given D, then one needs to solve about n2

equations in 4n variables α′
1, . . . , α

′
2n, β′

1, . . . , β
′
2n. For recommended parameters

(q = 7,D = 105, n = 55) one has a system of 3016 equations in 220 variables,
which has at most one solution. Hence the linear map L′ corresponding to the
later private keys has corank 0. Hence, Zhang and Tan’s algorithm does not
work for corank L ≥ 1. The ratio of L with respect to the corank of L is given
by Table 2 if the linear map L is randomly distributed in M2n(F) and n is large
enough, for example n ≥ 35.

3 Our New Key Generation Algorithm for ZHFE

In this section, we propose our new private key generation algorithm of ZHFE
scheme. Here, we assume that n is odd, say n = 2l + 1, and q > 2. The reason
why we assume n odd will be explained in Remark 1.
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3.1 Baena et al.’s Algorithm

Since our new algorithm is obtained by improving Baena et al.’s one [2], we
explain it here in our language.

Let F be an HFE polynomial. If F is a linear combination of Xqi−1+qj−1
,

(1 ≤ i, j ≤ n) over K, then it is called a quadratic HFE polynomial. For 1 ≤ d ≤
l + 1 and 1 ≤ i ≤ n, set Xd,i := Xqi−1+qi−1+d−1

.

Proposition 1. ([2, Sect. 3.1]). Every quadratic HFE polynomial F can be
uniquely written as

F =
∑

1≤d≤l+1

∑

1≤i≤n

ad,iXd,i, (ad,i ∈ K).

In Proposition 1, we call ad,i the (d, i)-coefficient of F , and write Fd,i = ad,i.
We represent the two quadratic HFE polynomials F1, F2 of Eq. (1) according

to Proposition 1 as follows:

F1 =
∑

1≤d≤l+1

∑

1≤i≤n

ad,iXd,i, F2 =
∑

1≤d≤l+1

∑

1≤i≤n

bd,iXd,i. (5)

Here the coefficients are to be determined. Randomly choose 4n scalars
α1, ..., α2n, β1, ..., β2n of K and set

F̄1 := L00(F1) + L01(F2), F̄2 := L10(F1) + L11(F2), (6)

where the Lij is defined as in Eq. (2). Thus

Ψ = XF̄1 + XqF̄2. (7)

Our goal is to determine the coefficients ad,i, bd,i of Eq. (5) such that deg Ψ ≤ D.
First we compute the (d, i)-coefficients F̄1,d,i, F̄2,d,i of the two quadratic HFE

polynomials F̄1, F̄2. For n scalars z1, z2, . . . , zn ∈ K, we define an n × n matrix
by

L1(z1, z2, . . . , zn) := (zqi−1

j−i+1)i,j =

⎛

⎜⎜⎜⎜⎜⎜⎝

z1 z2 z3 · · · zn

zq
n zq

1 zq
2 · · · zq

n−1

zq2

n−1 zq2

n zq2

1 · · · zq2

n−2
...

...
...

. . .
...

zqn−1

2 zqn−1

3 zqn−1

4 · · · zqn−1

1

⎞

⎟⎟⎟⎟⎟⎟⎠
. (8)

Here j − i + 1 is calculated modulo n. By using this notation, we can represent
the n-tuple (F̄i,d,1, F̄i,d,2, . . . , F̄i,d,n) as follows:

Lemma 1 ([2, Corollary 1]). (i) For any d, we have

(F̄1,d,1, F̄1,d,2, ..., F̄1,d,n) = (α1, ..., αn) · L1(ad,1, ..., ad,n)
+ (αn+1, ..., α2n) · L1(bd,1, ..., bd,n).

(9)
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(ii) For any d, we have

(F̄2,d,1, F̄2,d,2, ..., F̄2,d,n) = (β1, ..., βn) · L1(ad,1, ..., ad,n)
+ (βn+1, ..., β2n) · L1(bd,1, ..., bd,n).

(10)

Lemma 2 ([2, Lemma1]).

X · Xd,i = Xq · Xd′,i′ ⇐⇒

⎧
⎪⎨

⎪⎩

d = d′ = l + 1, i = 2, i′ = l + 2,

d′ = d − 1, i = i′ = n + 3 − d, (2 ≤ d ≤ l + 1),
d′ = d + 1, i = 2, i′ = 1, (1 ≤ d ≤ l).

(11)

If X ·Xd,i = Xq ·Xd′,i′ then we write (d, i) � (d′, i′). By this lemma, we can
describe the conditions for F1, F2 so that deg Ψ ≤ D.

Corollary 1. If the coefficients ad,i, bd,i of F1, F2 satisfy the following three con-
ditions, then we have deg Ψ ≤ D.

(i) F̄1,d,i = −F̄2,d′,i′ for any (d,i)� (d’,i’) such that deg X ·Xd,i > D.
(ii) F̄1,d,i = 0 if (d,i) is not in Lemma 2 and satisfies deg X · Xd,i > D.
(iii) F̄2,d′,i′ =0 if (d’,i’) is not in Lemma2 and satisfies deg Xq ·

Xd′,i′ > D.

Proof. By Lemmas 1 and 2, it is easy to compute the coefficients of degree > D
in Ψ . Then the conditions of F1, F2 so that deg Ψ ≤ D are equivalent to (i),(ii)
and (iii).

Note that deg(X · Xd,i) = 1 + qi−1 + q(i−1+d−1 mod n). Also deg(Xq · Xd′,i′) =
q + qi′−1 + q(i

′−1+d′−1 mod n).
Finally, it follows from Lemma 1 and Corollary 1 that:

Theorem 1. Randomly choose 4n scalars α1, . . . , β2n of K. Also we take any
scalars cj,d,i ∈ K, (1 ≤ j ≤ 2, 1 ≤ d ≤ l + 1, 1 ≤ i ≤ n) with the assumptions
(i),(ii),(iii) in Corollary 1. If ad,i and bd,i are solutions of equations

(c1,d,1, c1,d,2, . . . , c1,d,n) = (α1, . . . , αn) · L1(ad,1, . . . , ad,n)
+ (αn+1, . . . , α2n) · L1(bd,1, . . . , bd,n) (Ad),

(c2,d,1, c2,d,2, . . . , c2,d,n) = (β1, . . . , βn) · L1(ad,1, . . . , ad,n)
+ (βn+1, . . . , β2n) · L1(bd,1, . . . , bd,n) (Bd),

for any 1 ≤ d ≤ l + 1, then F1, F2 satisfy that deg Ψ ≤ D. Also we have

Ψ =
∑

1≤d≤l+1

⎛

⎝
∑

1≤i≤n

c1,d,iX · Xd,i +
∑

1≤i≤n

c2,d,iX
q · Xd,i

⎞

⎠ .

The equations (Ad), (Bd) in Theorem 1 are not linear systems in ad,i, bd,i.
They can be reduced to linear systems over the small field F. Baena et al. [2]
obtained F1, F2 and Ψ by solving such linear systems over the small field F.
Our strategy in obtaining F1, F2 and Ψ is to lift equations (Ad), (Bd) to linear
systems over the big field K; cf. Sect. 3.2.
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3.2 Main Idea

Here we explain the main idea of the proposed algorithm for efficient private key
generation of ZHFE scheme.

For any 1 ≤ d ≤ l + 1, set

xd,i := aqi−1

d,n+2−i, yd,i := bqi−1

d,n+2−i.

Then
ad,i = xqi−1

d,n+2−i, bd,i = yqi−1

d,n+2−i.

Also we have

L1(ad,1, ad,2, . . . , ad,n) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

xd,1 xq
d,n xq2

d,n−1 · · · xqn−1

d,2

xd,2 xq
d,1 xq2

d,n · · · xqn−1

d,3

xd,3 xq
d,2 xq2

d,1 · · · xqn−1

d,4
...

...
...

. . .
...

xd,n xq
d,n−1 xq2

d,n−2 · · · xqn−1

d,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

By using these, the equation (Ad) is equivalent to the following (A′
d):

(c1,d,1, c1,d,2, ..., c1,d,n) = (α1, ..., αn, αn+1, ..., α2n)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xd,1 xq
d,n · · · xqn−1

d,2

xd,2 xq
d,1 · · · xqn−1

d,3
...

...
. . .

...
xd,n xq

d,n−1 · · · xqn−1

d,1

yd,1 yq
d,n · · · yqn−1

d,2

yd,2 yq
d,1 · · · yqn−1

d,3
...

...
. . .

...
yd,n yq

d,n−1 · · · yqn−1

d,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is equivalent to the following equation (A′′
d):

(c1,d,1, c
qn−1

1,d,2 , ..., cq
1,d,n) = (xd,1, ..., xd,n, yd,1, ..., yd,n)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 αqn−1

2 · · · αq
n

α2 αqn−1

3 · · · αq
1

α3 αqn−1

4 · · · αq
2

...
...

. . .
...

αn αqn−1

1 · · · αq
n−1

αn+1 αqn−1

n+2 · · · αq
2n

αn+2 αqn−1

n+3 · · · αq
n+1

...
...

. . .
...

α2n αqn−1

n+1 · · · αq
2n−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Remark 1. If we assume that n is even, then we can not obtain a linear system
as above. In fact, if n is even, then in the case d = n/2 + 1, xqj−1

d,i and xqj−1+n/2

d,i

appear on each j-column in the matrix in (A′
d). Thus we can not have a linear

system as the linear system (A′′
n/2+1). That is the reason why we consider n odd

in this paper.

Similarly, the equation (Bd) is equivalent to the following equation (B′′
d ):

(c2,d,1, c
qn−1

2,d,2 , ..., cq
2,d,n) = (xd,1, ..., xd,n, yd,1, ..., yd,n)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 βqn−1

2 · · · βq
n

β2 βqn−1

3 · · · βq
1

β3 βqn−1

4 · · · βq
2

...
...

. . .
...

βn βqn−1

n+1 · · · βq
n−1

βn+1 βqn−1

n+2 · · · βq
2n

βn+2 βqn−1

n+3 · · · βq
n+1

...
...

. . .
...

β2n βqn−1

n+1 · · · βq
2n−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For n scalars z1, z2, . . . , zn of K, define an n × n matrix by

L2

⎛

⎜⎜⎜⎝

z1
z2
...

zn

⎞

⎟⎟⎟⎠ := (zqn−j+1

i )i,j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

z1 zqn−1

2 zqn−2

3 · · · zq
n

z2 zqn−1

3 zqn−2

4 · · · zq
1

z3 zqn−1

4 zqn−2

5 · · · zq
2

...
...

...
. . .

...
zn zqn−1

1 zqn−2

2 · · · zq
n−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

By using this notation, set

L :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L2

⎛

⎜⎜⎜⎝

α1

α2

...
αn

⎞

⎟⎟⎟⎠ L2

⎛

⎜⎜⎜⎝

β1

β2

...
βn

⎞

⎟⎟⎟⎠

L2

⎛

⎜⎜⎜⎝

αn+1

αn+2

...
α2n

⎞

⎟⎟⎟⎠ L2

⎛

⎜⎜⎜⎝

βn+1

βn+2

...
β2n

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ M2n(K). (12)

Remark 2. It is easy to prove that RankL = RankL, where L is defined in
Sect. 2.3.

Now we can restate Theorem 1 by using this L as follows:
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Theorem 2. Randomly choose 4n scalars α1, . . . β2n of K. Also we take any
scalars cj,d,i ∈ K (1 ≤ j ≤ 2, 1 ≤ d ≤ l + 1, 1 ≤ i ≤ n) with the assumptions
(i),(ii),(iii) in Corollary 1. Let xd,i and yd,i be solutions of the linear system

(c1,d,1, cqn−1

1,d,2 , ..., cq
1,d,n, c2,d,1, cqn−1

2,d,2 , ..., cq
2,d,n) = (xd,1, ..., xd,n, yd,1, ..., yd,n) · L (�)

for any 1 ≤ d ≤ l + 1. If we set

F1 =
∑

1≤d≤l+1

∑

1≤i≤n

xqi−1

d,n+2−iXd,i, F2 =
∑

1≤d≤l+1

∑

1≤i≤n

yqi−1

d,n+2−iXd,i,

then F1, F2 satisfy deg Ψ ≤ D. Also we have

Ψ =
∑

1≤d≤l+1

⎛

⎝
∑

1≤i≤n

c1,d,iX · Xd,i +
∑

1≤i≤n

c2,d,iX
q · Xd,i

⎞

⎠ .

Proof. Solving (Ad) is equivalent to solving (A′′
d). Similarly, solving (Bd) is equiv-

alent to solving (B′′
d ). Also solving (A′′

d) and (B′′
d ) is equivalent to solving (�).

Thus we have the theorem.

Thus we can reduce the equations (Ad), (Bd) in Theorem 1 to the linear system
(�) over the big field K.

3.3 Our Proposed Algorithm

Here, we explain an algorithm to solve the linear systems in Theorem 2. This is
our new algorithm to generate F1, F2 and Ψ ; see Algorithm 2 in AppendixA for
overview of our algorithm in this section.

Set
cd,i := c1,d,i, cd,n+i := c2,d,i for d, i.

Take a sequence 1 ≤ i1 < i2 < · · · < im−1 < im ≤ 2n, where 1 ≤ m ≤ 2n. We
denote by L[i1, i2, . . . , im] the 2n × m matrix that is obtained by leaving each
ij-column of L. Similarly, we define

(c1, c2, . . . , cn, cn+1, cn+2, . . . , c2n)[i1, i2, . . . , im] := (ci1 , ci2 , . . . , cim).

Now, we explain our algorithm that gives solutions of the linear systems (�)
for well chosen scalars cd,i.
d = l + 1

S′
l+1 := {i |1 ≤ i ≤ n,degX · Xl+1,i ≤ D} ∪ {n + i′| 1 ≤ i′ ≤ n, degXq · Xl+1,i′ ≤ D},

Sl+1 := {1, . . . , 2n} � (S′
l+1 ∪ {l + 3, n + 1}).

Randomly choose a scalar z in K. For any i ∈ Sl+1, set

cl+1,i :=

⎧
⎪⎨

⎪⎩

z if i = 2 and 2 ∈ Sl+1,

−z if i = n + l + 2 and 2 ∈ Sl+1,

0 otherwise.
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Then we consider the following linear system:

(cl+1,1, c
qn−1

l+1,2, . . . , c
q
l+1,n, cl+1,n+1, c

qn−1

l+1,n+2, . . . , c
q
l+1,2n)[Sl+1]

= (xl+1,1, . . . , xl+1,n, yl+1,1, . . . , yl+1,n) · L[Sl+1].

Note that since the scalars cl+1,i (i /∈ Sl+1) do not occur in this system, this sys-
tem is well-defined. After we find a solution (xl+1,1, . . . , xl+1,n, yl+1,1, . . . , yl+1,n)
of this system, the other scalars cl+1,i, (i /∈ Sl+1) are given by the formula

(cl+1,1, c
qn−1

l+1,2, . . . , c
q
l+1,n, cl+1,n+1, c

qn−1

l+1,n+2, . . . , c
q
l+1,2n)

= (xl+1,1, . . . , xl+1,n, yl+1,1, . . . , yl+1,n) · L.

1 < d < l + 1

S′
d := {i| 1 ≤ i ≤ n, deg X ·Xd,i ≤ D}∪{n+ i′| 1 ≤ i′ ≤ n, deg Xq ·Xd,i′ ≤ D},

Sd := {1, . . . , 2n} � (S′
d ∪ {(n + 2 − d mod n) + 1, n + 1}).

For any i ∈ Sd, we set

cd,i :=

⎧
⎪⎨

⎪⎩

−cd+1,n+1 if i = 2 and 2 ∈ Sd,

−cd+1,n+2−d if i = 2n + 2 − d and 2n + 2 − d ∈ Sd,

0 otherwise.

Then we consider the following linear system:

(cd,1, c
qn−1

d,2 , . . . , cq
d,n, cd,n+1, c

qn−1

d,n+2, . . . , c
q
d,2n)[Sd]

= (xd,1, . . . , xd,n, yd,1, . . . , yd,n) · L[Sd].

After we find a solution (xd,1, . . . , xd,n, yd,1, . . . , yd,n) of this system, the other
scalars cd,i, (i /∈ Sd) are given by the formula

(cd,1, c
qn−1

d,2 , . . . , cq
d,n, cd,n+1, c

qn−1

d,n+2, . . . , c
q
d,2n)

= (xd,1, . . . , xd,n, yd,1, . . . , yd,n) · L.

d = 1

S′
1 := {i| 1 ≤ i ≤ n, deg X ·X1,i ≤ D}∪{n+ i′| 1 ≤ i′ ≤ n, deg Xq ·X1,i′ ≤ D},

S1 := {1, . . . , 2n} � S′
1.

For any i ∈ S1, we set

c1,i :=

⎧
⎪⎨

⎪⎩

−c2,n+1 if i = 2 and 2 ∈ S1,

−c2,1 if i = n + 1 and n + 1 ∈ S1,

0 otherwise.
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Then we consider the following linear system:

(c1,1, c
qn−1

1,2 , . . . , cq
1,n, c1,n+1, c

qn−1

1,n+2, . . . , c
q
1,2n)[S1]

= (x1,1, . . . , x1,n, y1,1, . . . , y1,n) · L[S1].

After we find a solution (x1,1, . . . , x1,n, y1,1, . . . , y1,n) of this system, the other
scalars c1,i, (i /∈ S1) are given by the formula

(c1,1, c
qn−1

1,2 , . . . , cq
1,n, c1,n+1, c

qn−1

1,n+2, . . . , c
q
1,2n)

= (x1,1, . . . , x1,n, y1,1, . . . , y1,n) · L.

Finally, we have quadratic HFE polynomials F1, F2 and Ψ such that deg Ψ ≤ D:

F1 =
∑

1≤d≤l+1

∑

1≤i≤n

xqi−1

d,n+2−iXd,i, F2 =
∑

1≤d≤l+1

∑

1≤i≤n

yqi−1

d,n+2−iXd,i,

Ψ =
∑

1≤d≤l+1

⎛

⎝
∑

i∈S′
d,i≤n

cd,iX · Xd,i +
∑

i∈S′
d,i>n

cd,iX
q · Xd,i−n

⎞

⎠ .

Remark 3. If corank L ≤ 2, then each L[Sd] has the full rank. Thus all the above
linear systems have solutions. Therefore, if corank L ≤ 2, then our algorithm
terminates. Also if corank L ≥ 3, then our algorithm failed in our experiments.
But Table 2 implies that the class of L with corank ≥ 3 is very small in total.
Thus we may take L to be corank L ≤ 2. Notice that Baena et al.’s algorithm [2]
succeeds for corank L ≤ 5. For L with higher corank, their algorithm also works,
but produces Ψ = 0 making the corresponding ZHFE scheme insure under lin-
earization attack. However, it suffices to only consider linear maps L of corank
less than 3 for their majority, cf. Table 2.

Algorithm 1. Generating Matrix L of Corank r (Section 4.2)
Input : a field F with q elements, integers n and r, K the extension field of

degree n over F, an F-basis (θ1, . . . , θn) of K

Output: α1, . . . , α2n, β1, . . . , β2n, L with corank r (See (12) for L)

M ← (θqj−1

i )1≤i,j≤n;
A, B ← Random(GL2n(F));

L′ ←
(

M−1

M−1

)
· A ·

(
12n−r

0r

)
· B ·

(
M

M

)
, 2n × 2n matrix;

αi ← L′
i,1 : the (i, 1)-entry of L′, (1 ≤ i ≤ 2n);

βi ← L′
i,n+1 (1 ≤ i ≤ 2n);

L ← (L′
1, L

′
n, L′

n−1, . . . , L
′
2, L

′
n+1, L

′
2n, L′

2n−1, . . . , L
′
n+2);

where L′
i is the i-th column of L′
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4 Complexity and Implementation Results

In this section, we give the complexity and implementation results for our private
key generation algorithm of ZHFE scheme.

4.1 The Complexity of the Proposed Algorithm

We can easily prove the complexity of our proposed algorithm (Algorithm2)
discussed in Sect. 3.3 in the following theorem.

Theorem 3. The complexity of our algorithm in Sect. 3.3 is given by O(nω+3).

Proof. In our algorithm proposed in Sect. 3.3, we obtain a private ZHFE key by
solving l + 1 linear systems over the big field K. Here each linear system has at
most 2n variables and at most 2n equations. Thus the complexity is

(l+1)×(2n)ω ×(log qn)2 = O(nω+3). �
Thus our algorithm improves the original algorithm of O(n3ω) and Baena et al.’s
algorithm of O(n2ω+1) (See Table 1).

4.2 Our Experiments

In order to perform the experiments of generating the private ZHFE keys, we
need to decide the matrix L ∈ M2n(K) in Eq. (12), where L is generated by
α1, . . . , α2n, β1, . . . , β2n in Eq. (2). Note that our proposed algorithm works only
for matrices L with corank 0, 1 and 2 (cf. Remark 3), and thus we have to investi-
gate how to generate such a matrix. In the following we describe an algorithm for

generating the matrix L of any corank 0 ≤ r ≤ 2n. For the matrix
(

12n−r

0r

)
in

M2n(K) of corank r, we multiply random invertible matrices A,B ∈ GL2n(F)

and matrices
(

M−1

M−1

)
,

(
M

M

)
from both sides. The resulting matrix of

corank r implies α1, . . . , α2n, β1, . . . , β2n used for the private ZHFE keys. The
explicit algorithm is described in Algorithm1.

On the other hand, as can be seen in Table 2, in most cases the corank L is
0 or 1 for randomly chosen α1, . . . , α2n, β1, . . . , β2n. Note that the corank of L
is equal to the corank L in Eq. (4) (cf. Remark 2). Therefore if we generate the
matrix L by Algorithm 1 with r ≤ 2, then we can generate almost all instances
L for the key generation algorithms of ZHFE scheme.

4.3 Comparison of Timings

The implementation results and the comparison between our algorithm and
Baena et al.’s algorithm [2] are presented in Table 3. All the experiments in
this section were performed using Magma V2.20-10 [4] with a processor Intel(R)
Core(TM) i5-4300U CPU @ 1.90 GHz, running Windows 7 Professional SP1.
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Table 3. The comparison of timings between Baena et al.’s algorithm [2] and our
algorithm.

Our algorithm Baena et al.’s

q D n CPU time [s] Max Memory [MB] CPU time [s] Max Memory [MB]

7 105 15 0.09 10 0.59 11

7 105 31 3.47 11 22.27 43

7 105 55 39.19 18 607.06 338

17 105 15 0.13 9 3.06 14

17 105 31 3.91 11 348.57 81

17 595 55 62.91 22 15350.79 683

Notice that according to the estimation of Zhang and Tan [24], the parame-
ters (q = 7, n = 55,D = 105), which is recommended in the original paper [20],
and (q = 17, n = 55,D = 595) are for 96-bit and 111-bit security level respec-
tively. In Table 3 we present the timings of our experiments using these parame-
ters and in addition we run experiments under other parameters n = 15, 31.

Our algorithm in Table 3 presents timing to generate a private ZHFE key,
that is, α1, . . . , α2n, β1, . . . , β2n, L, F1, F2 and Ψ . Here, we used Algorithm 1
to generate α1, . . . , α2n, β1, . . . , β2n and L with corank L ≤ 2. For example, for
the recommended parameters (q = 7,D = 105, n = 55) at 96-bit security, our
algorithm takes 39.19 s and the max memory is 18 mega bytes.1 For comparison,
we also present timing to generate such a private ZHFE key by Baena et al.’s
algorithm. For the recommended parameters (q = 7,D = 105, n = 55), our
algorithm is around 15 times faster than that of Baena et al. [2].

5 Conclusion

In this paper, we proposed a new efficient algorithm for generating private keys of
the ZHFE scheme [20]. Our algorithm has complexity O(nω+3) which improves
the original [19] and Baena’s [2] algorithm whose complexities are O(n3ω) and
O(n2ω+1) respectively. Here n is the number of variables and 2 < ω < 3 is
a linear algebra constant. Our algorithm is in practice very fast compared to
that of Baena et al.: for recommended parameter (q = 7, n = 55,D = 105) at
96-bit security, our algorithm is around 15 times faster than that of Baena et
al.; cf. Table 3. Moreover, in contrast to Zhang and Tan’s algorithm [24], our
algorithm generates as many private ZHFE keys as the previous ones [2,20],
as estimated in Table 2. Although our algorithm works for linear maps L with
corank L ≤ 2 (cf. Remark 3), it already generates around 99% private keys
in total (cf. Table 2). This makes our algorithm to be the most appropriate for
generating private ZHFE keys.
1 Here we used the Magma’s command GetMaximumMemoryUsage to measure max

memory. Note also that we used the Magma’s command Solution to solve linear
systems in the algorithm.
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A Our Algorithm in Sect. 3.3

The expression f
R←− W denotes that f is an element chosen uniformly at random

from the set W .

Algorithm 2. Our Proposed Algorithm (Section 3.3)
Input : F: field with q elements, n = 2l + 1: odd integer, K: extension field of degree n,

L: the 2n × 2n matrix chosen by Algorithm 1, D: interger
Output: F1, F2, Ψ : private key

cd ← (0, 0, . . . , 0), length 2n, 1 ≤ d ≤ l + 1;
if 2 ∈ Sl+1 then

cl+1,2 ← Random(K);
cl+1,n+l+2 ← −cl+1,2;

c′
l+1 ← (cl+1,1, cq

n−1

l+1,2 , cq
n−2

l+1,3 , . . . , cql+1,n, cl+1,n+1, cq
n−1

l+1,n+2, . . . , cql+1,2n);

f
R←− W := {f ∈ K

2n | f · L[Sl+1] = c′
l+1[Sl+1]};

g ← f · L;

cl+1 ← (g1, gq
2 , . . . , gqn−1

n , gn+1, gq
n+2, . . . , gqn−1

2n );

xl+1 ← (f1, . . . , fn), yl+1 ← (fn+1, . . . , f2n);
d ← l;
while d > 1 do

if 2 ∈ Sd then
cd,2 ← −cd+1,n+1;

if 2n + 2 − d ∈ Sd then
cd,2n+2−d ← −cd+1,n+2−d;

c′
d ← (cd,1, cq

n−1

d,2 , cq
n−2

d,3 , . . . , cqd,n, cd,n+1, cq
n−1

d,n+2, . . . , cqd,2n);

f
R←− W := {f ∈ K

2n | f · L[Sd] = c′
d[Sd]};

g ← f · L;

cd ← (g1, gq
2 , . . . , gqn−1

n , gn+1, gq
n+2, . . . , gqn−1

2n );

xd ← (f1, . . . , fn), yd ← (fn+1, . . . , f2n);
d ← d − 1;

if 2 ∈ S1 then
c1,2 ← −c2,n+1;

if n + 1 ∈ S1 then
c1,n+1 ← −c2,1;

c′
1 ← (c1,1, cq

n−1
1,2 , cq

n−2
1,3 , . . . , cq1,n, c1,n+1, cq

n−1

1,n+2, . . . , cq1,2n);

f
R←− W := {f ∈ K

2n | f · L[S1] = c′
1[S1]};

g ← f · L;

c1 ← (g1, gq
2 , . . . , gqn−1

n , gn+1, gq
n+2, . . . , gqn−1

2n );

x1 ← (f1, . . . , fn), y1 ← (fn+1, . . . , f2n);

F1 ←∑
1≤d≤l+1

∑
1≤i≤n xqi−1

d,n+2−iXd,i;

F2 ←∑
1≤d≤l+1

∑
1≤i≤n yqi−1

d,n+2−iXd,i;

Ψ ←∑
1≤d≤l+1

(∑
i∈S′

d
,i≤n cd,iX · Xd,i +

∑
i∈S′

d
,i>n cd,iX

q · Xd,i−n

)
;
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elisandro@ciencias.unam.mx

Abstract. The purpose of this work is to present new advances on the
weight distribution of the duals of some cyclic codes with two zeros. More
specifically, our contribution improves the sufficient numerical conditions
that determine the weight distribution for the class of reducible cyclic
codes that were studied in [19] and in [17]. Furthermore, as will be shown
later, a conclusion here will be that thanks to these previous works and
the present contribution, we can determine the weight distribution for an
extended family of reducible cyclic codes. More specifically, we are going
to determine the weight distribution for all the elements of an extended
family of reducible cyclic codes that fully covers one of the open cases
suggested in [20]. In addition, as will be seen further on, through our
results we obtain an alternative description for one of the families of
cross-correlation functions studied in [8].

Keywords: Weight distribution · Reducible cyclic codes · Gaussian
periods · Cross-correlation functions

1 Introduction

It is said that a cyclic code is reducible if its parity-check polynomial is factor-
izable in two or more irreducible factors. Since the number of zeros of a cyclic
code is the number of non-conjugated zeros of its generator polynomial (see for
example [12, p. 199]), it should become clear that a reducible cyclic code whose
parity-check polynomial is factorizable in s > 1 irreducible factors, is nothing
but a cyclic code whose dual code has s zeros (non-conjugated).

Over a number of years, several authors have dedicated their efforts to solving
the problem of determining the weight distribution of families of reducible or
irreducible cyclic codes (see for example [3,7,9,15,18]), and this has been so
because the weight distribution determines the capabilities of error detection
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Fig. 1. All (3, s, N)-polygon cyclic codes with s = 1, 2, 3.

and correction of a given code. On the other hand, the family of cyclic codes is
important because it possesses a rich algebraic structure that can be utilized in
a variety of ways, particularly, in the design of very efficient coding and decoding
algorithms. A recent classification of some of the families of cyclic codes that has
been used by several authors (see particularly [20], and alternatively [5,6,11,21])
has shown to be a guide that helps to clarify these efforts.

In order to explain such classification, let p, t, q, k and Δ be five positive
integers, such that p is a prime number, q = pt, and Δ = (qk − 1)/(q − 1).
Assume that γ is a fixed primitive element of Fqk and, for any integer a, denote
by ha(x) ∈ Fq[x] the minimal polynomial of γ−a. Also, for any integers a, e and
N such that e > 1, e|(qk − 1) and N = gcd(Δ, ea), consider I to be the set of e

integers given by I := {a+ qk−1
e i|0 ≤ i < e}. Thus, for any subset {a1, . . . , as} ⊆

I, with 1 ≤ s ≤ e, we are interested in the weight distribution of the cyclic
code C(a1,··· ,as), whose parity-check polynomial is

∏s
i=1 hai

(x). Throughout this
work, and for simplicity, a cyclic code constructed in such a way will be called
a polygon cyclic code that belongs to the (e, s,N) class. Alternatively, we refer
to it simply as an (e, s,N)-polygon cyclic code. Since the index a1 of any finite
field element γa1 , in Fqk , is taken modulo qk − 1, we now use Fig. 1 to illustrate
“geometrically”, all the possible polygon cyclic codes with e = 3, s = 1, 2, 3,
and under the assumption that N = gcd(Δ, 3a1). Clearly, for a class of (e, s,N)-
polygon cyclic codes, the challenge will be to determine the sufficient numerical
conditions over the integers in I, in order to give the weight distribution for
some or, preferably, for all subclasses of such cyclic codes.

In this work, we are interested in polygon cyclic codes for which e = N = 3.
In that sense, it is worth noting that the problem of determining the weight
distribution for all possible (3, 3, 3)-polygon cyclic codes was completely solved
in [20], while the class of (3, 2, 3)-polygon cyclic codes was recently studied in
[19] and in [17]. It is important to note that, unlike [17], the study in [19] was
made by considering the two possible cases: p ≡ 1 (mod 3), and p ≡ 2 (mod 3)
(the semiprimitive case). However, it is also important to note that the study
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in [19] was limited to those (3, 2, 3)-polygon cyclic codes whose dimensions are of
the form 2k, where 3|k (see page 512, therein), and this, in turn, means that such
study was restricted to (3, 2, 3)-polygon cyclic codes that satisfy the condition
9|(qk − 1). In contrast to this, the study in [17] was limited to the semiprimitive
case and just for these (3, 2, 3)-polygon cyclic codes where the condition 9|(qk−1)
must not be satisfied. Therefore, as a consequence of this, it is important to stress
that the subclasses of (3, 2, 3)-polygon cyclic codes obtained in those two works
are incomplete and disjoint, despite that some of the weight distribution tables
can be interchanged between them.

Thus, by considering only the semiprimitive case, one of the goals for this
work is to present an improvement on the sufficient numerical conditions that
determine the weight distribution of the class of (3, 2, 3)-polygon cyclic codes,
that includes the two disjoint subclasses studied in [19] and in [17]. Clearly, this
improvement will result in a more relaxed description for these class of polygon
cyclic codes. A second goal is to consider this relaxed description, along with the
subclass of (3, 2, 3)-polygon cyclic codes belonging to the p ≡ 1 (mod 3) case, in
order to determine the weight distribution for all the possible (3, 2, 3)-polygon
cyclic codes, achieving in this way a solution that fully covers one of the open
cases suggested in [20]. That is, we will show that by means of some of the
weight distribution tables in [19] (see Tables 3 and 4 therein) and some of the

Table 1. Weight distribution

Weight Frequency

0 1
2(q−1)
3dq

(qk + 2(−1)kt/2qk/2) qk − 1
2(q−1)
3dq

(qk − (−1)kt/2qk/2) 2(qk − 1)
q−1
dq

(qk + 2(−1)kt/2qk/2) 1
27

(qk − 1)(qk − 2(−1)kt/2qk/2 − 8)
q−1
dq

(qk + (−1)kt/2qk/2) 2
9
(qk − 1)(qk + (−1)kt/2qk/2 − 2)

q−1
d

qk−1 2
9
(qk − 1)(2qk − (−1)kt/2qk/2 − 1)

q−1
dq

(qk − (−1)kt/2qk/2) 2
27

(qk − 1)(4qk + (−1)kt/2qk/2 − 14)

Table 2. Weight distribution

Weight Frequency

0 1
2(q−1)
3dq

(qk − (−1)kt/2qk/2) qk − 1
(q−1)
3dq

(2qk + (−1)kt/2qk/2) 2(qk − 1)
q−1
dq

(qk + 2(−1)kt/2qk/2) 1
27

(qk − 1)(qk/2 − (−1)kt/2)2

q−1
dq

(qk + (−1)kt/2qk/2) 2
9
(qk − 1)(qk + (−1)kt/2qk/2 − 2)

q−1
d

qk−1 1
9
(qk − 1)(4qk − 2(−1)kt/2qk/2 − 11)

q−1
dq

(qk − (−1)kt/2qk/2) 2
27

(qk − 1)(4qk + (−1)kt/2qk/2 − 5)
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tables that we are going to present here (see Tables 1 and 2), it is now possible to
obtain the weight distribution of any (3, 2, 3)-polygon cyclic code over any finite
field, excluding, of course, the trivial case when qk = 4. Thus, our first goal is
accomplished through the following:

Theorem 1. Let p, t, q, k and Δ be as before, and suppose that 3|(p + 1), 3|Δ
and qk �= 4. Let also a1, a2, a3, d and n be integers such that a2 = a1 + qk−1

3 ,

a3 = a1 − qk−1
3 , d = gcd(qk − 1, a1, a2, a3) and n = qk−1

d . Then gcd(Δ, 3a1) =
gcd(Δ, 3a2) = gcd(Δ, 3a3). In particular, if gcd(Δ, 3a1) = 3, then the following
conditional statements are true:

(A) If gcd(Δ, ai) = 1, for some i = 1, 2, 3, then C(ai) is an [n, k] one-weight
irreducible cyclic code, whose nonzero weight is q−1

d qk−1. On the other hand,
if gcd(Δ, ai) = 3, then C(ai) is an [n, k] semiprimitive two-weight irreducible
cyclic code, whose weight enumerator polynomial is

A(z) = 1 +
2(qk − 1)

3
z

q−1
dq (qk−(−1)kt/2qk/2) +

(qk − 1)
3

z
q−1
dq (qk+2(−1)kt/2qk/2).

(1)
(B) If gcd(Δ, a1) = gcd(Δ, a2) = 1 and gcd(Δ, a3) = 3, then C(a1,a2) is an

[n, 2k] cyclic code, whose weight distribution is given in Table 1, whereas
C(a1,a3) and C(a2,a3) are [n, 2k] cyclic codes with the same weight distribution
given in Table 2.

(C) If gcd(Δ, a1) = gcd(Δ, a2) = gcd(Δ, a3), then C(a1,a2), C(a1,a3) and C(a2,a3)

are [n, 2k] cyclic codes with the same weight distribution which is given in
Table 1 if 3|a1, and in Table 2 otherwise.

It is interesting to note that the subclass of (3, 2, 3)-polygon cyclic codes
described in Part (C), of the previous theorem, contains completely the subclass
of cyclic codes studied in [19], under the semiprimitive case. On the other hand,
the cyclic codes studied in [17] are just an instance of the subclass of (3, 2, 3)-
polygon cyclic codes described in Part (B). And of course, all of this is in this way
because the sufficient numerical conditions in Theorem 1 are now more relaxed
than those in [19] and in [17] (see Example 1 and Remark 6 below).

This work is organized as follows: In Sect. 2 we establish the notation and the
main assumption that will be considered throughout this work unless otherwise
indicated (Sect. 6). We also recall, in this section, some important already known
results. Section 3 is devoted to presenting some preliminary results, while in
Sect. 4, we use these results in order to determine the value distribution of a
particular class of exponential sums. As we will see, this value distribution will
be important in order to present a formal proof of Theorem 1 in Sect. 5. In
Sect. 6 we use some of the results in [19], and Theorem 1, in order to show
that it is now possible to give the weight distribution of any (3, 2, 3)-polygon
cyclic code. In Sect. 7 we present alternative description for one of the families
of cross-correlation functions studied in [8]. Finally, Sect. 8 will be devoted to
conclusions.
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2 Definitions, Notation and Main Assumption

First of all, we set for this section and for the rest of this work, the following:

Notation. By using p, t, q, k and Δ, we will denote five positive integers such
that p is a prime number, q = pt and Δ = (qk − 1)/(q − 1). From now on, γ will
denote a fixed primitive element of Fqk , and for any integer a, the polynomial
ha(x) ∈ Fq[x] will denote the minimal polynomial of γ−a. For a set of l integers,
{a1, a2, · · · , al}, we will denote by C(a1,··· ,al) the cyclic code with parity-check
polynomial

∏l
i=1 hai

(x). With the notation “TrF
qk /Fq

”, we will mean the trace
mapping from Fqk to Fq. For any positive divisor m of qk −1 and for any integer
i, we define D(m)

i := γi〈γm〉, where 〈γm〉 denotes the subgroup of F
∗
qk generated

by γm (note that D(m)
i = D(m)

i+lm, for any integer l). The m cosets D(m)
i are called

the cyclotomic classes of order m in Fqk . In connection with these cyclotomic
classes, we recall the cyclotomic numbers of order m. Such cyclotomic numbers
are defined by

(i, j)(m,qk) := |(D(m)
i + 1) ∩ D(m)

j |,
where (D(m)

i + 1) = {x + 1 | x ∈ D(m)
i }, and 0 ≤ i, j ≤ m − 1.

Let p, q, k and γ be as before; then, the canonical additive character χ, of
Fqk , is defined as

χ(y) := ζTr(y)
p , for all y ∈ Fqk ,

where ζp := exp(2π
√−1
p ) and “Tr” is the absolute trace mapping from Fqk to Fp.

There are several interesting properties about the canonical additive character,
and, fortunately for us, these properties are perfectly well explained in Chap. 5
of [10].

Now, we set for this section and for the rest of this work, the following:

Main assumption. Through this work we assume that 3|(p + 1) and that 3|Δ.
Thus, since qk − 1 = Δ(q − 1), in what follows we will reserve the Greek letter

τ in order to fix τ = γ
qk−1

3 .

Remark 1. Note that if p ≡ −1 (mod 3) and pkt = qk ≡ 1 (mod 3), then neces-
sarily kt must be an even integer. Conversely, note also that if p is semiprimitive
modulo 3 (see for example [14, p. 9]), then necessarily p ≡ −1 (mod 3). Lastly,
note also that the finite field element τ is a primitive third root of unity satisfying
τ2 + τ + 1 = 0, and since 3|Δ, F

∗
q ⊂ D(3)

0 .

Let χ be as before, and let i be any integer. Since 3|(qk − 1), it follows that:
∑

x∈F
qk

χ(γix3) = 1 + 3
∑

z∈D(3)
i

χ(z).

We are particularly interested in the kind of exponential sums that appear in
the RHS of the previous equality. These exponential sums are known as the
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Gaussian periods of order 3. The following result, which is an instance of the
main result in [13], gives us useful information about such Gaussian periods.

Theorem 2. With our notation and main assumption, let η0 and η1 be the two
integers given by:

η0 =
−2(−1)kt/2q

k
2 − 1

3
, and η1 =

(−1)kt/2q
k
2 − 1

3
. (2)

Then, for any integer i, the i-th Gaussian period of order 3 is:

∑

z∈D(3)
i

χ(z) =
{

η0 if i ≡ 0 (mod 3),
η1 otherwise.

Since we will be dealing with the Gaussian periods of order 3, we will also need
the cyclotomic numbers of order 3. The following lemma gives us information
about such cyclotomic numbers (see [1] for the general result).

Lemma 1. Let us consider the same notation and hypotheses as in the previous
theorem. Then

(0, 0)(3,qk) =
(qk/2 − (−1)kt/2)2

9
− 1,

(i, 0)(3,qk) = (0, i)(3,qk) = (i, i)(3,qk)

=
(qk/2 − (−1)kt/2)(qk/2 + 2(−1)kt/2)

9
, for i = 1, 2,

(1, 2)(3,qk) = (2, 1)(3,qk) =
(qk/2 − (−1)kt/2)2

9
.

Remark 2. Note that if 3|(p + 1), then 3 will be a common divisor of both
(qk/2 − (−1)kt/2) and (qk/2 + 2(−1)kt/2).

3 Some Preliminary Results

The following result, that was proved in [20] (see Lemma 6 therein), gives a
really smart and insightful criterion by which it is possible to determine, in a
straightforward manner, the dimension of the kind of cyclic codes studied here.

Lemma 2. With our notation, let e be any integer such that e > 1 and e|(qk−1).
Also let ai, for i = 1, · · · , e, be integers such that ai+1 = a1 + qk−1

e i, for i =
1, · · · , e − 1. If gcd(Δ, ea1) ≤ qk/2 then deg(hai

(x)) = k, and hai
(x) �= haj

(x),
for any 1 ≤ i �= j ≤ e.

Remark 3. We already said that under our main assumption, tk must be an
even integer, therefore note that if e = 3 and gcd(Δ, 3a1) = 3, then, owing
to the previous lemma, all the possible pairs (q, k) will satisfy the condition
3 ≤ qk/2, except for the one where we get qk = 4.
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Lemma 3. With our notation and main assumption, let d be a divisor of q − 1.
Also let i be any integer. If gcd(Δ, 3d) = 3, then

{xy | x ∈ D(3d)
i and y ∈ F

∗
q} =

(q − 1)
d

∗ D(3)
i ,

where (q−1)
d ∗ D(3)

i is the multiset in which each element of D(3)
i appears with

multiplicity (q−1)
d .

Proof. Since 3|Δ, F
∗
q ⊂ D(3)

0 . But D(3d)
0 ⊆ D(3)

0 , gcd(Δ, 3d) = 3 and (3d)|(qk −1),

therefore the result comes from the fact that |D(3d)
i | |F∗

q |/|D(3)
i | = (q−1)

d , and

D(l)
i = γiD(l)

0 , for any integer i and for any divisor l of qk − 1. �

Lemma 4. Let a1, a2, a3, and d be integers such that a2 = a1+ qk−1
3 , a3 = a1−

qk−1
3 and d = gcd(qk − 1, a1, a2, a3). Then the following conditional statements

are true:

(i) If gcd(Δ, a1) = gcd(Δ, a2) = 1, then gcd(qk − 1, a1) = gcd(qk − 1, a2) = d.
(ii) If gcd(Δ, a1) = gcd(Δ, a2) = gcd(Δ, a3), then there exists an element a ∈

{a1, a2, a3} such that d = gcd(qk − 1, a) = gcd(qk − 1, a + qk−1
3 ).

Proof. Part (i): Let di = gcd(qk − 1, ai), for i = 1, 2. Since gcd(Δ, a1) =
gcd(Δ, a2) = 1 and qk − 1 = Δ(q − 1), we have that d1|(q − 1) and d2|(q − 1).
But a2 = a1 + qk−1

3 , therefore d1|a2 and d2|a1, thus d1 = d2. Now, clearly d|d1.
On the other hand, since d1|a1 and d1|(q − 1), we have that d1|ai, for i = 1, 2, 3,
and therefore d1|d. Thus d1 = d.

Part (ii): Let di = gcd(qk − 1, ai), for i = 1, 2, 3. Without loss of generality,
suppose that d3 = max{d1, d2, d3}. Observe that d = gcd( qk−1

3 , ai), for all i =
1, 2, 3, and therefore either di = d or di = 3d. Now, if d1 = 3d, then d3 = 3d,
which implies that 3d| gcd(qk−1, a1, a2, a3). But this last condition is impossible,
thus d1 = d. In a similar way we have d2 = d. The proof is now complete by
taking a = a1. �

For our last result in this section, we want to recall that τ = γ
qk−1

3 .

Lemma 5. With our notation and main assumption in mind, let b1, b2 and ε

be integers such that b2 = b1 + ε qk−1
3 , and ε = ±1. Let d = gcd(qk − 1, b1, b2)

and assume that gcd(Δ, 3b1) = 3. Then the following two assertions are true:

(i) d|(q − 1), and therefore if n = qk−1
d then 3|n.

(ii) d = min{gcd(qk − 1, b1), gcd(qk − 1, b2)}, and assuming d = gcd(qk − 1, b1),
we have that 3|(b1 + b2) if and only if γντ2 ∈ D(3)

0 , where ν = dεm and m
is any integer such b1m ≡ d (mod qk − 1).
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Proof. Part (i): Since d|b1 and d|b2, we have d| qk−1
3 . But qk−1

3 = Δ
3 (q − 1) and

gcd(Δ
3 , d) = 1 (due that d|b1 and gcd(Δ

3 , b1) = 1), therefore d|(q − 1).
Part (ii): Let di = gcd(qk − 1, bi), with i = 1, 2. Clearly, either d1 = d2 or d1

and d2 differ by a multiple of 3, therefore d = min{d1, d2}. Now, note that 3 � m,
and this is so because if 3|m, then 3d divides both qk − 1 and b1m, which in
turn implies that 3d|d, and clearly this is impossible. Now, since 3|(qk − 1) and
ν = dεm, we have that ν ≡ εb1m

2 ≡ εb1 (mod 3). But τ = γε(b2−b1), therefore
γντ2 ∈ D(3)

0 if and only if 3|ε(2b2 − b1), and this will happen if and only if
3|(b1 + b2). �

4 The Value Distribution of a Class of Exponential Sums

Let ν be an integer. Then, for any α, β ∈ Fqk , we are interested in determining
the value distribution of the exponential sum of the form:

Fν(α, β) :=
2∑

i=0

∑

z∈D(3)
0

χ(zγνi(α + βτ i)). (3)

As we will see later, in order to obtain the value distribution of Fν(α, β), it will
be important to determine in which of three cyclotomic classes of order 3, the
finite field element γντ2 is contained. Consequently, throughout this section, we
reserve the letter r to denote the integer in {0, 1, 2} such that γντ2 ∈ D(3)

r .
Another key component in order to achieve our goal in this section is to

define the following ten sets:

Ei,j := {(α,−ατ−j) | γν(j+1)(α − τα) ∈ D(3)
i }, for i, j = 0, 1, 2, and

G := {(α,−β) ∈ Fqk × Fqk | (α − τ jβ) �= 0, for j = 0, 1, 2 }.

Remark 4. By the previous definition, note that (α,−ατ−j) ∈ Ei,j if and only if
γν(j+1)(1 − τ)α ∈ D(3)

i . In consequence we have that these ten sets are pairwise
disjoint, and their cardinalities are |Ei,j | = |D(3)

0 | = qk−1
3 , for all i, j = 0, 1, 2,

and |G| = q2k −1−9|E0,0| = (qk −1)(qk −2). Furthermore, due to Remark 1, note
that if γν(j+1)(α − τα) ∈ D(3)

i , for some i, j = 0, 1, 2, then γν(j+2)(α − τ2α) =
γν(j+2)(τ + 1)(α − τα) = −γντ2γν(j+1)(α − τα) ∈ γντ2D(3)

i . Therefore, by
considering the Gaussian periods of order 3, in Theorem 2 we have

Fν(α,−ατ−j) =
qk − 1

3
+ ηi + ηi+r,

where the subscripts of η, in the previous equation, are reduced modulo 3, and
where, in addition, we are defining η2 := η1.

Now, for each (α,−β) ∈ G, we define the function fα,β : {0, 1, 2} → {0, 1, 2},
given by the rule fα,β(i) = j if and only if γνi(α− τ iβ) ∈ D(3)

j . With the help of
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these functions we induce a partition of the set G into the following four disjoint
subsets:

Sl := {(α,−β) ∈ G | WH(fα,β(0), fα,β(1), fα,β(2)) = l }, for l = 0, 1, 2, 3,

where WH(·) stands for the usual Hamming weight function.

Remark 5. For any α, β ∈ Fqk , we define ui := γνi(α + τ iβ), for i = 0, 1, 2. Note
that if (α, β) ∈ G then, owing to Theorem 2, we have

Fν(α, β) =

⎧
⎪⎪⎨

⎪⎪⎩

3η0 if (α, β) ∈ S0,
2η0 + η1 if (α, β) ∈ S1,
η0 + 2η1 if (α, β) ∈ S2,

3η1 if (α, β) ∈ S3 .

(4)

On the other hand, it is not difficult to see that these ui’s values satisfy: u0 +
γ−ντu1 + γ−2ντ2u2 = 0. Also note that if we arbitrarily choose the values of,
say, u1 and u2, then there must exist a unique vector (α, β) ∈ F

2
qk , such that

u1 = γν(α+τβ), u2 = γ2ν(α+τ2β) and u0 = −(γ−ντu1+γ−2ντ2u2). Therefore,
if we want to calculate, for example |S0|, then we can assume, without loss of
generality, that u2 can take any value in D(3)

0 . This leads us to qk−1
3 possible

choices for u2. But γντ2 ∈ D(3)
r , u0 = − u1

γντ2 ( u2
γντ2u1

+ 1) and −1 ∈ D(3)
0 (in

fact, recall that F
∗
q ⊂ D(3)

0 ), thus, in order that u0 and u1 also belong to D(3)
0 ,

it is necessary that ( u2
γντ2u1

+ 1) ∈ D(3)
r , and due to Lemma 1, the number of

such instances is given by the cyclotomic number (r,−r)(3,qk). Consequently, we
have |S0| = qk−1

3 (r,−r)(3,qk). In a quite similar way, one can obtain |S1|, |S2|
and |S3|.

Keeping in mind the previous definitions and their remarks, we now present
the following:

Lemma 6. With our current notation and main assumption, we have that

|S0| =
qk − 1

3
(r,−r)(3,qk),

|S1| = 2(qk − 1)(0, 1)(3,qk),

|S2| = (qk − 1)(qk − (r,−r)(3,qk) − 4(0, 1)(3,qk) − 2),

|S3| = 2(qk − 1)(0, 1)(3,qk) +
2(qk − 1)

3
(r,−r)(3,qk).
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Furthermore, if χ denotes the canonical additive character of Fqk , and if η0 and
η1 are as in Theorem 2, then, for any α, β ∈ Fqk , we have

Fν(α, β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qk − 1 if (α, β) = (0, 0),
qk−1

3 + 2η1 − 2δ0,r(η1 − η0) if (α, β) ∈ ∪2
j=0Er,j ,

qk−1
3 + η0 + η1 + δ0,r(η1 − η0) if (α, β) ∈ ∪i�=r ∪2

j=0 Ei,j ,
3η0 if (α, β) ∈ S0,

2η0 + η1 if (α, β) ∈ S1,
η0 + 2η1 if(α, β) ∈ S2,

3η1 if (α, β) ∈ S3,

where δi,j is the Kronecker delta symbol (δi,j is equal to 1 if i = j, and 0 other-
wise).

Proof. The first assertion comes from Remark 5. On the other hand, the second
assertion comes directly from (4), Remark 4, and from the definitions of the sets
Ei,j and Sl, with i, j = 0, 1, 2, and l = 0, 1, 2, 3. �

Table 3. Value distribution of Fν(α, β) when γντ2 ∈ D(3)
0

Value Frequency

qk − 1 1
qk−1

3
+ 2η0 qk − 1

qk−1
3

+ 2η1 2(qk − 1)

3η0
1
27

(qk − 1)(qk − 2(−1)kt/2qk/2 − 8)

2η0 + η1
2
9
(qk − 1)(qk + (−1)kt/2qk/2 − 2)

η0 + 2η1
2
9
(qk − 1)(2qk − (−1)kt/2qk/2 − 1)

3η1
2
27

(qk − 1)(4qk + (−1)kt/2qk/2 − 14)

Considering the actual values of the cyclotomic numbers in Lemma 1, the
following result is an important consequence of the previous lemma.

Corollary 1. Consider the same hypotheses as in the previous lemma. Then
the value distribution of the character sum Fν(α, β) is given in Table 3 if γντ2 ∈
D(3)

0 , and in Table 4 otherwise.

5 A Formal Proof of Theorem 1

Let b1, b2 and d be integers in such a way that b2 = b1 ± qk−1
3 , whereas that

d = gcd(qk − 1, b1, b2). Then, the following result gives the sufficient numerical
conditions over the integers b1 and b2, which guarantee that C(b1,b2) is a cyclic

code of length qk−1
d and dimension 2k, whose weight distribution is given either

in Table 1 or in Table 2.
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Table 4. Value distribution of Fν(α, β) when γντ2 �∈ D(3)
0

Value Frequency

qk − 1 1
qk−1

3
+ 2η1 qk − 1

qk−1
3

+ η0 + η1 2(qk − 1)

3η0
1
27

(qk − 1)(qk/2 − (−1)kt/2)2

2η0 + η1
2
9
(qk − 1)(qk + (−1)kt/2qk/2 − 2)

η0 + 2η1
1
9
(qk − 1)(4qk − 2(−1)kt/2qk/2 − 11)

3η1
2
27

(qk − 1)(4qk + (−1)kt/2qk/2 − 5)

Lemma 7. With our notation and main assumption in mind, suppose also that
qk �= 4. Let b1, b2, ε, d and n be integers such that b2 = b1 + ε qk−1

3 , ε = ±1,

d = gcd(qk − 1, b1, b2) and n = qk−1
d . Let us assume that gcd(Δ, 3b1) = 3. Then

C(b1,b2) is an [n, 2k] cyclic code with the weight distribution given in Table 1 if
3|(b1 + b2), and given in Table 2 if 3 � (b1 + b2).

Proof. Clearly C(b1,b2) has length n. On the other hand, because qk �= 4,
and owing to Remark 3, we can conclude that C(b1,b2) has dimension
deg(hb1(x)hb2(x)) = 2k.

Before continuing with the proof, observe that, since C(b1,b2) = C(b2,b1) and
d = min{gcd(qk − 1, b1), gcd(qk − 1, b2)} (see Part (ii) of Lemma 5), we can
assume without loss of generality that d = gcd(qk − 1, b1).

Now, for each α, β ∈ Fqk , we define c(n, b1, b2, α, β) as the vector of length n
over Fq, given by:

(TrF
qk /Fq

(α(γb1)i + β(γb2)i))n−1
i=0 .

Thanks to Delsarte’s Theorem (see, for example, [2]), it is well known that

C(b1,b2) = {c(n, b1, b2, α, β) | α, β ∈ Fqk}.

Thus the Hamming weight of any codeword c(n, b1, b2, α, β) ∈ C(b1,b2) is equal to
n − Z(α, β), where

Z(α, β) = { i | 0 ≤ i < n, and TrF
qk /Fq

(αγb1i + βγb2i) = 0 }.

If χ′ and χ are, respectively, the canonical additive characters of Fq and Fqk ,
then

Z(α, β) =
1
q

n−1∑

i=0

∑

y∈Fq

χ′(TrF
qk /Fq

(y(αγb1i + βγb2i)))

=
n

q
+

1
q

n−1∑

i=0

∑

y∈F∗
q

χ(yγb1i(α + βτ εi)),
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where the last equality arises because χ(·) = χ′(TrF
qk /Fq

(·)), b2 = b1 + ε qk−1
3

and τ = γ
qk−1

3 . Since d|(b2 − b1), τ = γε(b2−b1) = γdl for some integer l. On the
other hand, since d = gcd(qk − 1, b1), mb1 ≡ d (mod qk − 1), for some integer
m. Therefore τ i = (γb1i)ml, and

Z(α, β) =
n

q
+

1
q

n−1∑

i=0

∑

y∈F∗
q

χ(yγdi(α + βτ εmi)).

But, owing to Part (i) of Lemma 5, we have that 3|n, thus

{γdi | 0 ≤ i < n} = D(d)
0 = D(3d)

0 ∪ D(3d)
d ∪ D(3d)

2d .

Therefore,

Z(α, β) =
n

q
+

1
q

2∑

i=0

∑

x∈D(3d)
di

∑

y∈F∗
q

χ(xy(α + βτ εmi)).

Now, d|(q−1) (see again Part (i) of Lemma 5), and clearly d|b1 and gcd(Δ
3 , b1) =

1, therefore gcd(Δ, 3d) = 3. Thus, after applying Lemma 3, we obtain

Z(α, β) =
n

q
+

q − 1
dq

2∑

i=0

∑

z∈D(3)
di

χ(z(α + βτ εmi)),

and because 3 does not divide neither m (see proof of Part (ii) of Lemma 5) nor
ε, we can apply the variable change i �→ εmi, and thereby obtaining

Z(α, β) =
n

q
+

q − 1
dq

2∑

i=0

∑

z∈D(3)
dεmi

χ(z(α + βτ i))

=
n

q
+

q − 1
dq

2∑

i=0

∑

z∈D(3)
0

χ(zγdεmi(α + βτ i))

=
n

q
+

q − 1
dq

Fν(α, β),

where, for the last equality, we are considering ν = dεm and we are also using
the notation for class of exponential sum defined in (3). Finally, the assertion
about the weight distribution of C(b1,b2) comes now from (2), Corollary 1, Part
(ii) of Lemma 5 and from the fact that the Hamming weight of any codeword
in C(b1,b2) is equal to n − Z(a, b). �

We are now able to present a formal proof of Theorem 1.

Proof. For the way in which the integers ai, i = 1, 2, 3, were defined, it must be
clear that gcd(Δ, 3a1) = gcd(Δ, 3a2) = gcd(Δ, 3a3).
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Part (A): Owing to Theorem 2 of [16], we know that gcd(Δ, ai) = 1 if and
only if C(ai) is an [n, k] one-weight irreducible cyclic code, whose nonzero weight
is q−1

d qk−1. On the other hand, if gcd(Δ, ai) = 3 then, since p ≡ −1 (mod 3),
we have that Ord3(p) = 2. Therefore, owing to Theorem 7 of [16], we know
that C(ai) is an [n, k] semiprimitive two-weight irreducible cyclic, whose weight
enumerator polynomial is given by (1).

Part (B): Due to Part (i) of Lemma 4, we know that d = gcd(qk − 1, a1) =
gcd(qk − 1, a2). Now, it is easy to see that 3|(a1 +a2) and that 3 does not divide
neither a1 +a3 nor a2 +a3. Thus, the two assertions follow as direct applications
of Lemma 7.

Part (C): If gcd(Δ, a1) = gcd(Δ, a2) = gcd(Δ, a3), then, thanks to Part (ii)
of Lemma 4 and since C(ai,aj) = C(aj ,ai), for all 1 ≤ i �= j ≤ 3, we can assume
that d = gcd(qk − 1, a1) = gcd(qk − 1, a2). Now, it is not difficult to see that
3|(ai + aj), for 1 ≤ i �= j ≤ 3, if and only if gcd(Δ, a1) = 3. Therefore, the
assertion follow as direct application of Lemma 7. �

The following are direct applications of Theorem 1.

Example 1. With our notation, let p = q = 5, k = 2 and a1 = 17. Then Δ = 6,
qk−1

3 = 8, a2 = 1, a3 = 9, d = 1 and n = 24. Clearly, 3|(p+1) and gcd(Δ, 3a1) =
3. Since gcd(Δ, 17) = gcd(Δ, 1) = 1, we can be sure that C(17) and C(1) are
one-weight irreducible cyclic codes of length 24 and dimension 2, whose nonzero
weight is 20. Meanwhile, since gcd(Δ, 9) = 3, C(9) is a semiprimitive two-weight
irreducible cyclic code of length 24 and dimension 2, whose weight enumerator
polynomial is A(z) = 1 + 8z12 + 16z24. On the other hand, we can also be sure
that C(17,1), C(17,9) and C(1,9) are cyclic codes of length 24 and dimension 4.
In addition, the weight enumerator polynomial for the code C(17,1) is A(z) =
1 + 24z8 + 24z12 + 144z16 + 288z20 + 144z24, whereas the weight enumerator
polynomial for the codes C(17,9) and C(1,9) is A(z) = 1+80z12+120z16+264z20+
160z24.

Remark 6. It is interesting to note that since 3 � k, all the (3, 2, 3)-polygon cyclic
codes, in the previous example are outside of the class of cyclic codes studied in
[19]. In a similar way, since gcd(Δ, qk−1

3 − 1) �= 3, all the (3, 2, 3)-polygon cyclic
codes, in the previous example are outside of the class of cyclic codes studied in
[17].

Example 2. With our notation, let p = 2, q = 4, k = 3 and a1 = 1. Then
Δ = qk−1

3 = 21, a2 = 22, a3 = 43, d = 1 and n = 63. Clearly, 3|(p + 1) and
gcd(Δ, 3a1) = 3. Since gcd(Δ, ai) = 1, for i = 1, 2, 3, we can be sure that C(1),
C(22) and C(43) are one-weight irreducible cyclic codes of length 63 and dimension
3, whose nonzero weight is 48. On the other hand, we can also be sure that
C(1,22), C(1,43) and C(22,43) are cyclic codes of length 63, dimension 6 and weight
enumerator polynomial A(z) = 1+126z30+252z36+756z42+1827z48+1134z54.

Example 3. With our notation, let p = 2, q = 4, k = 3 and a1 = 3. Then
Δ = qk−1

3 = 21, a2 = 24, a3 = 45, d = 3 and n = 21. Clearly, 3|(p + 1)



226 G. Vega and J.E. Cuén-Ramos

and gcd(Δ, 3a1) = 3. Since gcd(Δ, ai) = 3, for i = 1, 2, 3, we can be sure
that C(3), C(24) and C(45) are semiprimitive two-weight irreducible cyclic codes
of length 21 and dimension 3, whose weight enumerator polynomial is A(z) =
1 + 21z12 + 42z18. On the other hand, we can also be sure that C(3,24), C(3,45)

and C(24,45) are cyclic codes of length 21, dimension 6 and weight enumerator
polynomial A(z) = 1 + 63z8 + 294z12 + 756z14 + 1890z16 + 1092z18.

6 Determining the Weight Distribution of Any
(3, 2, 3)-Polygon Cyclic Code

It is relevant to note that the techniques employed in the study of the cyclic
codes in [19] and those employed here (in the semiprimitive case) are different.
And this is so because the former used some results on elliptic curves, and the
case p = 2 was treated separately. In contrast, as we already saw, the techniques
in this work are the standard ones, which basically rely on the availability of
some Gaussian periods. However, beyond these differences, the important issue
here is that by combining these two works it is now possible to give the weight
distribution of any (3, 2, 3)-polygon cyclic code. We formally state this result, by
means of the following:

Theorem 3. With our notation, suppose that qk �= 4 and let a be any integer
such that gcd(Δ, 3a) = 3. Then the weight distribution of C

(a,a+ε qk−1
3 )

, with
ε = ±1, can be determined either through Tables 1 and 2, or through Tables 3
and 4 in [19].

Proof. Clearly if p ≡ 0 (mod 3), then the condition gcd(Δ, 3a) = 3 cannot be
met.

If p ≡ 1 (mod 3), then pkti = qi ≡ 1 (mod 3), for any non negative integer
i. But observe that Δ = qk−1 + qk−2 + · · · + 1 and gcd(Δ, 3a) = 3, there-
fore 3|k. If d = gcd(qk − 1, a, a + ε qk−1

3 ), then, since d|a and gcd(Δ
3 , a) = 1,

we have that gcd(Δ, 3d) = 3. In addition, owing to Part (i) of Lemma 5,
d|(q − 1). Let h = q−1

d and observe that gcd(Δ, 3 q−1
h ) = 3 and 3| gcd(q − 1, hk).

Now, since C
(a,a+ε qk−1

3 )
= C

(a+ε qk−1
3 ,a)

, it is not difficult to see that the cyclic
codes C

(a,a+ε qk−1
3 )

and C
( q−1

h , q−1
h + qk−1

3 )
have the same weight distribution. Thus,

the whole picture here implies that we have p ≡ 1 (mod 3), 3|k, h|(q − 1),
gcd(Δ, 3 q−1

h ) = 3, 3| gcd(q − 1, hk), and note that 3| q−1
h ⇔ 3|a. Therefore, by

simply checking whether or not 3|a, we can determine the weight distribution of
C
( q−1

h , q−1
h + qk−1

3 )
through Theorem 2 in [19].

Finally, if p ≡ −1 (mod 3), then, by simply checking whether or not 3|(2a +
ε qk−1

3 ), we can determine the weight distribution of C
(a,a+ε qk−1

3 )
directly from

Lemma 7. �
Note that in accordance with the open cases that were suggested in the

Conclusion of [20], the previous result completely solves the case when t = 2 and
e = N = 3 (we are now using the same notation as in [20]).
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7 An Extended Family of Cross-Correlation Functions

With our notation, let χ be the canonical additive character of Fqk , then, for
any integer μ with 0 ≤ μ < qk − 1, the cross-correlation function, Cδ(μ), of
the maximum-length sequence {TrF

qk /Fq
(γi)}∞

i=0, of period qk − 1, and its δ-

decimated version {TrF
qk /Fq

(γδi)}∞
i=0, of period qk−1

gcd(qk−1,δ)
, is defined as:

Cδ(μ) =
∑

x∈F
∗
qk

χ(γ−μx − xδ).

Clearly if gcd(qk − 1, δ) = 1, then Cδ(μ) corresponds to a cross-correlation
function between two maximal linear recurring sequences. Finding the values
of the cross-correlation function between two different maximal linear recurring
sequences of period qk − 1, seems to be a very difficult problem [8]. However,
when δ −1 ≡ 0 (mod q −1), this problem is equivalent to that of the determina-
tion of the weight distribution of the reducible cyclic code C(1,δ) over Fq (see, for
example, [4, Subsect. 4.3]). More specifically, suppose that w1, w2, · · · , wN are
the nonzero weights of C(1,δ), and for 1 ≤ i ≤ N , let Ai be the number of words
of weight wi in C(1,δ). Thus, if gcd(qk −1, δ) = 1 and δ−1 ≡ 0 (mod q−1), then,
for each nonzero weight wi (1 ≤ i ≤ N), Cδ(μ) will take the value qk − 1 − qwi

q−1 ,
Ai

qk−1
times if wi �= (q − 1)qk−1, and Ai

qk−1
− 2 times if wi = (q − 1)qk−1. With

this discussion in mind, we now present an alternative description for one of the
families of cross-correlation functions studied in [8]:

Theorem 4. With our notation, assume p ≡ 2 (mod 3) and 3|Δ. Suppose also
that qk �= 4. For some ε = ±1 and some 0 ≤ i < k, let δ = 1

3ε(qk − 1) + qi, and
f = 1

3εq−i(qk − 1) �≡ 2 (mod 3). Then Cδ(μ) corresponds to a cross-correlation
function between two different maximal linear recurring sequences, and Cδ(μ)
takes on the following values. When f ≡ 0 (mod 3), then:

(i) −1 occurs 1
9 (4qk + 2(−1)kt/2+1qk/2 − 29) times,

(ii) −1 + (−1)kt/2+1qk/2 occurs 1
9 (2qk + 2(−1)kt/2qk/2 − 4) times,

(iii) −1 + (−1)kt/2qk/2 occurs 1
27 (8qk + 2(−1)kt/2qk/2 − 10) times,

(iv) −1 + 2(−1)kt/2+1qk/2 occurs 1
27 (qk + 2(−1)kt/2+1qk/2 + 1) times,

(v) −1 + 1
3 (qk + 2(−1)kt/2qk/2) occurs 1 time,

(vi) −1 + 1
3 (qk + (−1)kt/2+1qk/2) occurs 2 times.

When f ≡ 1 (mod 3), then:

(i) −1 occurs 1
9 (4qk + 2(−1)kt/2+1qk/2 − 20) times,

(ii) −1 + (−1)kt/2+1qk/2 occurs 1
9 (2qk + 2(−1)kt/2qk/2 − 4) times,

(iii) −1 + (−1)kt/2qk/2 occurs 1
27 (8qk + 2(−1)kt/2qk/2 − 28) times,

(iv) −1 + 2(−1)kt/2+1qk/2 occurs 1
27 (qk + 2(−1)kt/2+1qk/2 − 8) times,

(v) −1 + 1
3 (qk + 2(−1)kt/2qk/2) occurs 2 time,

(vi) −1 + 1
3 (qk + 4(−1)kt/2+1qk/2) occurs 1 times.
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Proof. Since 3 � (f + 1), gcd(qk − 1, δ) = 1, and therefore Cδ(μ) corresponds
to a cross-correlation function between two maximal linear recurring sequences.
Furthermore, due to Lemma 2 and Remark 3, these linear recurring sequences are
different (their recursion polynomials are different). On the other hand, observe
that δ − 1 = (εΔ

3 + qi−1
q−1 )(q − 1), and therefore δ − 1 ≡ 0 (mod q − 1). Now,

since γ−1 and γ−qi

are roots of the same minimal polynomial, we have C(1,δ) =
C
(qi,qi+ε qk−1

3 )
= C(qi,δ), and clearly, d = gcd(qk−1, qi, δ) = 1 and gcd(Δ, 3qi) = 3.

On the other hand, since f �≡ 2 (mod 3), it follows that f ≡ 1 (mod 3) if and
only if 3|(qi +δ). Thus, in accordance with Lemma 7, we can see now that C(qi,δ)

is a reducible cyclic code of length qk − 1 over Fq, whose weight distribution
is given either by Table 1 or by Table 2 (with d = 1 in these tables). Thus, the
remaining part of the proof follows directly from our previous discussion and
from such tables. �
Remark 7. Note that in the trivial case in which qk = 4 (that is, p = q = 2,
t = 1 and k = 2), Cδ(μ) gives the cross-correlation between the maximal linear
recurring sequence {TrF4/F2(γ

i)}∞
i=0 (with γ2 + γ + 1 = 0), and itself.

Remark 8. In the particular case when p ≡ 2 (mod 3), q = p (that is, t = 1),
and k ≡ 0 (mod 2), observe that necessarily 3|(pk −1), but recall that (pk −1) =
Δ(q−1), and because 3 � (q−1), we can then conclude that 3|Δ. In consequence,
this shows that the family of cross-correlation functions, in the previous theo-
rem, gives an alternative description for the family of cross-correlation functions
studied in Theorem 4.11 of [8].

Example 4. With the notation of Theorem 4, let p = 2, q = 4, k = 3, ε = 1 and
i = 0. Thus, δ = 22 and f = 21 �≡ 2 (mod 3). Furthermore, in accordance with
Example 2, C(1,22) is a cyclic code over F4 of length 63, dimension 6 and weight
enumerator polynomial A(z) = 1+126z30+252z36+756z42+1827z48+1134z54.
On the other hand, thanks to Theorem 4, we can be sure that C22(μ) corresponds
to a cross-correlation function between two maximal linear recurring sequences
of period 63 over F4, that takes the values −1, 7, −9, 15 and 23, and whose
corresponding frequencies of occurrence are 27, 12, 18, 4 and 2.

8 Conclusion

A recent topic of interest has been to obtain the weight distribution for the kind
of reducible cyclic codes whose parity-check polynomials are given by products of
the form ha(x)h

a+ qk−1
3

(x). A particular class of this kind of cyclic codes was the

main subject of study in [19] and in [17]. In this work we presented a complement
of these two works, and with it, we formally prove that one of the open cases
suggested in [20] has been now completely settled. In addition, as was shown
above, through our results we were able to present an alternative description for
one of the families of cross-correlation functions studied in [8]. Related with this
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last issue, we believe that it could be interesting to find the values of the cross-
correlation functions in Theorem 4, when f ≡ 2 (mod 3). Of course, under this
circumstance such functions will not correspond to cross-correlation functions
between two maximal linear recurring sequences.
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Abstract. It is easy to determine if a given code C is a subcode of
another known code D. For most of occurrences, it is easy to determine
if two codes C and D are equivalent by permutation. In this paper, we
show that determining if a code C is equivalent to a subcode of D is a
NP-complete problem. We give also some arguments to show why this
problem seems much harder to solve in practice than the Equivalence
Punctured Code problem or the Punctured Code problem proposed by
Wieschebrink [21]. For one application of this problem we propose an
improvement of the three-pass identification scheme of Girault and dis-
cuss on its performance.

Keywords: Code-based cryptography · Equivalence Subcode · Identi-
fication scheme

1 Introduction

There are some well-known NP-complete problems in Coding Theory [1,3,5,
6,13] that are related to the difficulty of correcting errors or determining the
minimum distance of a code. Most of Public Key Cryptosystems (PKC) using
Coding Theory are based on these problems [12,14]. However, a crucial point of
such PKC is to mask the structure of codes [4,12–14]. In this paper we study
the technique of permuted subcode: we want to mask the structure of a linear
code D of length n, dimension k and minimal distance d, having for example an
efficient decoding algorithm. To perform this, we choose a random subcode C′ of
D, and a random permutation σ of the support. The public key is C = σ(C′), and
the secret key is constituted of σ and a decoding algorithm for D. This method
is directly related to the following Decision Problem:

Definition 1 (Equivalence Subcode(ES)). Given two linear codes C and D of
length of n and respective dimension k′ and k, k′ ≤ k, over the same finite field
Fq, is there a permutation σ of the support such σ(C) be a subcode of D?
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The fact that a code C′ is a subcode of D can be easily checked using the
linear algebra. To decide if two codes C and C′ are equivalent by permutation in
practice, it can be done in most of cases using the Support Splitting Algorithm
SSA (see [16] for more details).

In order to mask the structure of a code, C. Wieschebrink presented In [21]
two new NP-complete problems in Coding Theory: The “Equivalence Punctured
Code” problem (EPC) and the “Punctured Code” problem (PC). These prob-
lems can be used to mask the structure of a code. However, comparing the results
of [21], it seems that the method of permuted subcode is more efficient than those
derived from EPC or PC.

The paper is structured as following: in Sect. 2 we give some definitions and
properties relative to coding theory, in Sect. 3 we prove that the Equivalence
Subcode problem(ES) is NP-complete, in Sect. 4 we give an application of the ES
precisely an improvement of Girault’s identification scheme using ES with its
analysis performance.

2 Coding Theory Background

Let Fq be a finite field (q = pm, p is prime). A q-ary linear code C of length n and
dimension k over Fq is a vectorial subspace of dimension k of the full vectorial
space F

n
q . It can be specified by a full rank matrix G ∈ F

k×n
q called generator

matrix of C whose rows span the code. Namely, C =
{
xG such that x ∈ F

k
q

}
.

A linear code can be also defined by the right kernel of matrix H called parity-
check matrix of C as follows:

C =
{
x ∈ F

n
q s.t. HxT = 0

}

The Hamming distance between two codewords is the number of posi-
tions(coordinates) where they differ. The minimal distance of a code is the min-
imal distance of all codewords.

The weight of a codeword x ∈ F
n
q denoted by wt (x) is the number of its

nonzero positions. Then the minimal weight of a code C is the minimal weight
of all nonzero codewords. If a code C is linear, the minimal distance is equal to
the minimal weight of the code.

Let C be a linear code C over an arbitrary finite field Fqm of length n, dimen-
sion k and minimal distance d. A subcode C′ of C is one of its vector subspace
of dimension k′ ≤ k. Then we see that minimal distance of a subcode is great
than the minimal distance of the code.

Let C be a linear code C over an arbitrary finite field Fqm of length n, dimen-
sion k and minimal distance d, generator matrice G and parity cheikh matrix
H. We can construct an arbitrary subcode C′ of dimension k′ ≤ k of the code
by two ways as following:

1. First by choosing arbitrary a k′ × k matrix S of rank k′ then the generator
matrix G′ of the subcode C′ is given by:

G′ = SG
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2. Second by extending the rows of the parity check matrix H of the code by
adding arbitrary k − k′ vectors linearly independant to its rows vectors.

3 Equivalence Subcode(ES) Is NP-Complete

The main result of this paper is the fact that ES is a NP-complete problem.
To prove this, we will use a reduction of the 3-Dimensional Matching problem;
which is a well known NP-complete problem (cf. [8]). This proof is similar to
the proof of Petrank et al. [15]. Contrary to the Petrank et al. who have used
a reduction to the Graph Isomorphism problem which is not NP-complete, our
reduction is a reduction to a NP-complete problem.

Definition 2 (3-Dimensional Matching (3DM)). Let N = {1, ..., n} and K ⊂
N × N × N . Does K contain a matching, i.e. a subset K ′ of size n such that no
two elements of K ′ agree in any coordinate?

Theorem 1. The Equivalence Subcode(ES) is NP-Complete

Clearly, ES is a NP-problem, since it is sufficient to give the permutation and
to verify that the permuted code σ(C) is a subcode of D, which can be done in
polynomial time.

Suppose an instance (n,K) of 3DM is given. We can assume that |K| ≥ n+1.
Set r = |K|. To any element x = (x1, x2, x3) in K we associate the incidence
vector l(x) = (y1, ..., y3n) such that yi = 0 for all i except yx1 = yn+x2 =
y2n+x3 = 1. Fixing an order on K, we can construct a r × 3n incidence matrix
M by keeping the incidence vectors l(x) of the ordered elements of K. Let GD
be a r × (3r + 3n) matrix defined as follows:

GD = (Ir|Ir|Ir|M)

Let D be the [3r + 3n, r] linear code over Fq generated by the matrix GD.
Note that a change in the order of K, i.e. a permutation of the rows of M
corresponds to a same permutation on r elements applied simultaneously to the
three Ir matrices. In that case, we obtain a code C′ equivalent to D.

Lemma 1. The minimum distance of D is exactly 6. Moreover, the minimum
codewords are exactly the rows of GD.

Proof. The rows of GD correspond to codewords of weight 6. Since all the rows
of M are distinct, the weight of the sum of two rows of GD is at least 8. Finally,
the weight of the sum of s distinct rows is at least 3s, which is greater than 9
for s ≥ 3. Now we consider the n × (3r + 3n) matrix GC defined by

GC =
(
In|0n×(r−n)|In|0n×(r−n)|In|0n×(r−n)|In|In|In

)

where 0n×(r−n) is the n×(r−n) null matrix. Let C be the linear code generated by
GC . Note that the codewords corresponding to the rows of GC have no common
coordinates. Suppose first that the instance (n,K) satisfies 3DM. Let K ′ ⊂ K
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be the matching. Without loss of gen- erality, we order K in such a way that the
n first elements are those of K ′. It is possible to permute the 3n last columns of
GC in such a way the matrix GC corresponds to the n first rows of GD. Then
the code C is equivalent by permutation to a subcode of D.

Reciprocally, suppose that C is equivalent by permutation to a subcode of D.
Let σ be a permutation such that σ(C) ⊂ D. The image of any row of GC by σ
is a codeword of D of weight exactly 6. From Lemma 1, this element is a row of
D. By this mean, we obtain n distinct rows of D with the particularity that no
two rows agree on any coordinate. This leads directly to a matching K ′ of K.

Since all operations in this process are polynomial, we obtain a reduction of
3DM to ES, and then ES is a NP-complete problem.

4 Application of ES to the Code Based Cryptography

The zero-knowledge is a central concept in cryptographie. It allows to a prover
to convince a verifer that it knows a secret without the verifer learning any
information about the secret.

The code based identification scheme is due to Harari [11] in 1989, followed
by Stern [23] in 1990 who introduced the first protocol (a five-pass identification
protocol) and at the same moment Girault [9] proposed another identification
scheme (a Three-pass identification scheme). All of those identifications schemes
are non-practical or broken or severely weakened (example [9]). Then there are
since some improvement of the code based identification protocols: by Stern [25]
in 1993, Véron [24] in 1996, Gaborit et al. [10] in 2007, Cayrel et al. [7] in 2011,
and recently in 2016 by Sendrier et al. [17].

Then for an application of the ES we propose an improvement of the code
based identification protocol.

4.1 The Girault Identification Scheme

In this subsection we give briefly the description of Giralt ’s three-pass identifica-
tion protocol. The Girault ’s protocol is following: let H be a (n − k) × n binary
matrix common to all users. Each prover choose randomly and keeps a binary
vector e of length n and of weight ω then compute the public identifer s = He.
It is clear that to find the binary e knowing the identifer s is a NP-hard problem
in coding theory called Syndrome Decoding problem.

Definition 3 (Syndrome Decoding problem). Given an m × n binary matrix H
over F2, a target vector s ∈ F

m
2 and an integer ω > 0 does there exist a vector

e ∈ F
n
2 of weight ≤ ω such that He = s?

When the prover P wants to convince a verifier V that he is the owner of s
without revealing any additional information, then they must interact through
the following scheme:
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Girault Identification Scheme

Key generation: Random [n, k]-linear code with a (n − k) × n parity-check
matrix H.

– Private key: A word e ∈ F
n
qm of weight ω.

– Public key: A public identifer s ∈ F
n−k
qm such that s = He

Commitments:

– P chooses randomly a non singular (n − k) × (n − k) binary matrix S and a
n × n permutation matrix P.

– P compute s′ = Ss and H′ = SHP
– P sends s′ and H′ to V.

Challenge: V chooses randomly c ∈ {0, 1}
Response:

– If c = 0 then P answer by delivering the non singular matrix S and the
permutation matrix P

– If c = 1 then P replies by delivering e′ = P−1e

Verification

– If c = 0 then V checks that H′ = SHP and s′ = Ss
– If c = 1 then V checks that the weight of e′ is equal to ω, s′ = H′e′

The Girault ’s identification protocol is based on two problems in coding
theory: Syndrome Decoding problem and Equivalence code problem over the
binary field. The first one is proved NP -complete in worst case in [5] and the
second was severely weakened for some variants [15,19].

For reach a high security level in order of 1− 1
2t

this protocol is a multi-round
and it has to be repeated t times.

4.2 Version of the Girault Identification Scheme Using ES

The improvement Girault ’s identification protocol that we proposed is given by:
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Girault Identification Scheme using ES

Key generation: Random [n, k]-linear code with a (n − k) × n parity-check
matrix H.

– Private key: A word e ∈ F
n
qm of weight ω.

– Public key: A public identifer s ∈ F
n−k
qm such that s = He

Commitments:

– P choose randomly an integer � < km an arbitrary (n−k−�)× (n−k) matrix
S of rank n − k − � and a permutation matrix P.

– P compute s′ = Ss and H′ = SHP
– P send s′ and H′ to V.

Challenge: V choose randomly c ∈ {0, 1}
Response:

– If c = 0 then P replies by delivering the non singular matrix S and the
permutation matrix P.

– If c = 1 then P replies by delivering e′ = P−1e

Verification

– If c = 0 then V check that H′ = SHP and s′ = Ss
– If c = 1 then V check that the weight of e′ is equal to ω, s′ = H′e′

4.3 Performance of the Scheme

This improvement of Girault ’s identification protocol is too a three-pass iden-
tification protocol. The proof of the completeness, the soundness and the zero-
knowlege of this improvement protocol is similar to the proof given by Girault
in the original version [9], with a reduced commitment H′.

We see that the security of this improvement is based on two coding theory
problems, the first is a well-known problem called Syndorme decoding problem
and the second is the Equivalence Subcode problem which we introduce in this
paper and prove that it is NP -complete. By reducing the size of the matrix H′

in the commitments, we see that this technique allows us to reduce the cost of
the communication and space cost at each round.

One of the important performance of this improvement is that it allows us
to enhance the security of the Girault ’s identification protocol which has been
weakened [15]. Compared to the last improvement given in [17] which can be
used just for random linear code over a finite field with cardinality q ≥ 5, this
new improvement of Girault’s identification protocol can be used for random
linear code over an arbitrary finite fields. In addition it can be used by choosing
a random subcode of the initial dual code over the same arbitrary finite field.

For reach a security level 1 − 1/2t this improvement protocol is too multi-
round and it has to be repeated t times.
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5 Conclusion

In this paper we introduce a new hard problem in coding theory then we called
Equivalence Subcode problem and we prove that it is NP -complete. We improve
the Girault ’s identification protocol based on this new problem and the Syndrome
Decoding problem.
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7. Cayrel, P.-L., Véron, P., Yousfi Alaoui, S.M.: A zero-knowledge identification
scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19574-7 12

8. Garey, E., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York (1979)

9. Girault, M.: A (non-practical) three-pass identification protocol using coding the-
ory. In: Seberry, J., Pieprzyk, J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp.
265–272. Springer, Heidelberg (1990). doi:10.1007/BFb0030367

10. Gaborit, P., Girault, M.: Lightweight code-based authentication and signature. In:
ISIT (2007)

11. Harari, S.: A new authentication algorithm. In: Cohen, G., Wolfmann, J. (eds.)
Coding Theory 1988. LNCS, vol. 388, pp. 91–105. Springer, Heidelberg (1989).
doi:10.1007/BFb0019849

12. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jet
Propulsion Lab. DSN Progress Report, Technical report (1978)

13. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In:
Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 376–392. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05445-7 24

14. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl.
Control Inf. Theor. 15(2), 159–166 (1986)

http://dx.doi.org/10.1007/978-3-642-02384-2_6
http://dx.doi.org/10.1007/978-3-642-19574-7_12
http://dx.doi.org/10.1007/BFb0030367
http://dx.doi.org/10.1007/BFb0019849
http://dx.doi.org/10.1007/978-3-642-05445-7_24


A NP-Complete Problem in Coding Theory with Application 237

15. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Trans. Inf.
Theory 43(5), 1602–1604 (1997)

16. Sendrier, N.: Finding the permutation between equivalent codes: the support split-
ting algorithm. IEEE Trans. Inf. Theor. 46(4), 1193–1203 (2000)

17. Sendrier, N., Simos, D.E.: The hardness of code equivalence over Fq and its applica-
tion to code-based cryptography. In: Proceeding of Post-Quantum Cryptography,
5th International Workshop PQcrupto 2013, Limoges, France (2013)

18. Sidel’nikov, V.M., Shestakov, S.O.: On cryptosystems based on generalized Reed-
Solomon codes. Discrete Math. 4(3), 57–63 (1992)

19. Sendrier, N., Simos, D.E.: How easy is code equivalence over Fq? In: Proceedings of
the 8th International Workshop on Coding and Cryptography, WCC 2013 (2013, to
appear). https://www.rocq.inria.fr/secret/PUBLICATIONS/codeq3.pdf. Preprint
(2012)

20. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE
Trans. Inf. Theor. 43(6), 1757–1766 (1997)

21. Wieschebrink, C.: Two NP-complete problems in coding theory with an application
in code based cryptography. In: Proceedings of IEEE ISIT 2006, Seattle, USA, pp.
1733–1737 (2006)

22. Wieschebrink, C.: An attack on a modified niederreiter encryption scheme. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 14–26. Springer, Heidelberg (2006). doi:10.1007/11745853 2

23. Stern, J.: An alternative to the Fiat-Shamir protocol. In: Quisquater, J.-J., Van-
dewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 173–180. Springer,
Heidelberg (1990). doi:10.1007/3-540-46885-4 19
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Abstract. This paper provides a new approach to perform Correlation
Power Analysis (CPA) attack. Power analysis attacks are side channel
attacks based on power consumption measures on a device running a
cryptographic algorithm with a CMOS technology based circuitry. Unlike
most of CPA attacks that are based on statistical attacks, this paper
proposes a new approach based on spectral analysis. The interest lies in
the reduction of the attack complexity. The complexity is quasi linear
in the size of the table of values of the S-box whereas it is quadratic
with statistical attacks. It is shown that it can be easily extended to a
so-called multidimensional attack. The attack is experimented on a AES
S-box.

Keywords: Correlation Power Analysis · Spectral analysis · Fourier
transform

1 Introduction

The Correlation Power Analysis (CPA) is a method that allows to recover the
secret information (usually the secret key) embedded in the silicon of an elec-
tronic component [3]. It consists in measuring the power consumption while
running operations that involve the secret information. This method has been
introduced in 2004 by researchers of Gemplus Company (Eric Brier, Christophe
Clavier and Francis Olivier) in [3]. The attack follows the work of Paul Kocher
proposed in 1999 [7]. The electric circuits that perform the computation in the
processor are designed from a technology known as CMOS (Complementary
Metal Oxide Semiconductor) [2]. A general description of this technology is pro-
vided in [9]. The outcome of CMOS architectures lies in fast transitions but,
on the other hand, they are sensitive to power consumption or electromagnetic
leakage.
c© Springer International Publishing AG 2017
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Power analysis attacks are based on the general principle that the instan-
taneous power consumption of a cryptographic device depends on the data it
processes and on the operation it performs [10]. During a symmetric protocol,
those operations are in general processed by a nonlinear function called S-box
parametrized by a secret parameter [1,5]. Usually, CPA attacks rely on statis-
tical analysis and have a quadratic complexity when resorting, for example, to
Pearson correlation coefficients computation [12,13]. In this paper we present a
method that relies on spectral analysis. The complexity is quasi linear in the
size of the table of values of the S-box whereas it is quadratic with statistical
attacks.

The article is organized as follows. In Sect. 2, having in mind the spectral
analysis, preliminaries on Fourier analysis are given. In Sect. 3, the main physical
principles on which the attack is based are recalled. Then, the principle of the
attack is presented for a general nonlinear Boolean function implemented as an
S-box. Section 4 is devoted to a so-called multidimensional attack. In Sect. 5,
the spectral-based attack is experimented on a AES S-box. Finally, some future
prospects are given in the conclusion of Sect. 6.

2 Preliminaries on Spectral Analysis

Having in mind a CPA attack based on spectral considerations, preliminaries on
Fourier analysis must be recalled. It is worth pointing out that the suggested
attack is based on a power consumption measurement on a component that
processes binary data as input. Hence, the measurement can be modeled as a
real valued function over the set of binary words. This section is devoted to
prerequisites on Fourier analysis of this class of functions.

Let Φ be the set of real valued functions over the set of n-dimensional binary
words:

Φ =
{
ϕ : {0, 1}n → R

}

For any two functions ϕ and ψ in Φ, let us define the scalar product of ϕ and
ψ as:

〈ϕ,ψ〉 =
∑

x∈{0,1}n

ϕ(x)ψ(x).

This scalar product is a symmetric bilinear form that confers to this set the
structure of a 2n dimensional Euclidean vector space over R.

The norm associated to this scalar product is:

‖ϕ‖ =
√

〈ϕ,ϕ〉 =
√ ∑

x∈{0,1}n

ϕ(x)2

The norm of a function ϕ in Φ is called the energy of ϕ.



240 P. Guillot et al.

The well known Cauchy-Schwarz inequality holds:

∀ϕ,ψ ∈ Φ,
∣∣〈ϕ,ψ〉∣∣ ≤ ‖ϕ‖ × ‖ψ‖

where
∣∣·∣∣ stands for the absolute value.

The canonical basis of the space Φ is the family of characteristic functions
of singletons which are by definition, for all vectors u ∈ {0, 1}n, the functions
denoted by δu and defined by:

δu : x 	→
{

1 if x = u

0 else

This basis is clearly orthonormal according to the above scalar product.
Each function ϕ ∈ Φ can be expressed in this basis as:

ϕ =
∑

u∈{0,1}n

ϕ(u)δu.

Another basis of the space Φ is the basis of the so-called Walsh functions.

Definition 1 (Walsh functions). The Walsh functions are the functions of Φ
defined for any u ∈ {0, 1}n by:

χu : x 	→ 1√
2n

(−1)u·x

where x · u = u1x1 + u2x2 + · · · + unxn is the dot product over the space {0, 1}n

of n–dimensional binary words over the two elements field F2.

The Walsh functions are pairwise orthogonal. They are presented here with a
normalization coefficient equal to 1/

√
2n such that they provide an orthonormal

basis as stated in the following proposition.

Proposition 1. The family (χu)u∈{0,1}n of Walsh functions is an orthonormal
basis of Φ.

Proof. Let u and v be two n-dimensional binary vectors. One has:

〈χu, χv〉 =
1
2n

∑

x∈{0,1}n

(−1)x·(u+v).

If u = v then u + v = 0. The above sum has 2n terms, all equal to 1. Then
〈χu, χu〉 = 1.

If u+v �= 0, there exists a non-zero component. Let ui+vi be this component.
Then, the sum over all the vectors x for which xi = 0 is the opposite of the sum
over all the vectors x for which xi = 1. It results that if u �= v then 〈χu, χv〉 = 0.
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This family allows to express any function ϕ ∈ Φ in the basis of Walsh
functions

ϕ =
∑

u∈{0,1}n

〈ϕ, χu〉χu.

Definition 2 (Fourier Transform). The Fourier spectrum of ϕ ∈ Φ is the
family of coefficients

(〈ϕ, χu〉)
u∈{0,1}n , of the expression of f in the basis of

Walsh functions, and the Fourier transform of f is the function of Φ defined on
{0, 1}n as:

u 	→ ϕ̂(u) = 〈ϕ, χu〉 =
1√
2n

∑

x∈{0,1}n

ϕ(x)(−1)u·x.

The Fourier transform expresses a change of basis. Thus, the transformation
is linear. Moreover, it is isometric as stated in the following proposition.

Proposition 2. For any functions ϕ and ψ in Φ, one has:

〈ϕ,ψ〉 = 〈ϕ̂, ψ̂〉.

Proof.

〈ϕ̂, ψ̂〉 =
∑

x∈{0,1}n

1√
2n

∑

u∈{0,1}n

ϕ(u)(−1)u·x 1√
2n

∑

v∈{0,1}n

ψ(v)(−1)v·x

By inverting the summation order, it follows that

〈ϕ̂, ψ̂〉 =
1
2n

∑

u∈{0,1}n

∑

v∈{0,1}n

ϕ(u)ψ(v)
∑

x∈{0,1}n

(−1)(u+v)·x.

As this latter sum equals 2n if u = v and equals 0 elsewhere, the result holds.

As a direct consequence of this proposition, it follows that for all functions ϕ
in Φ, the so-called Parseval equality holds and expresses the energy conservation
law: ‖ϕ‖ = ‖ϕ̂‖.

Proposition 3 (Effect of a translation). For any vector a in {0, 1}n, let
τa : t 	−→ t + a be the translation of vector a. Let ϕ be a function in Φ, then for
all vectors u ∈ {0, 1}n, one has:

ϕ̂ ◦ τa(u) = (−1)u·aϕ̂(u).

Proof.

ϕ̂ ◦ τa =
1√
2n

∑

x∈{0,1}n

ϕ(x + a)(−1)u·x =
1√
2n

∑

y∈{0,1}n

ϕ(y)(−1)u·(y+a)

= (−1)u·aϕ̂(u) (1)
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Proposition 4 (Fourier Transform of a constant). Let k ∈ {0, 1}n.
The Fourier transform of the constant function x 	−→ k is:

k̂ = k
√

2nδ0.

Proof. By definition,

k̂(u) =
1√
2n

∑

x∈{0,1}n

k(−1)u·x =
k√
2n

∑

x∈{0,1}n

(−1)u·x.

The latter sum equals 2n if u = 0 and 0 elsewhere, and the result holds.

3 Modelling the Attack

3.1 Physical Principles

Nowadays, digital circuits are often designed with CMOS (Complementary Metal
Oxide Semiconductor) technology. The main characteristic lies in the output
stage of the logical gates that involves a pair of Field Effect Transistors (FET)
with opposite polarity. The transistors are combined symmetrically (push-pull
architecture) such that they switch between two states: on and off. The outcome
of such architecture is that in a steady state mode, the current consumption
is almost null. On the other hand, when the output state of a gate changes,
a parasitic capacitor discharges in the complementary parasitic capacitor. This
leads to power consumption while a transition occurs. As a consequence, the
following assumption, which is the core idea of CPA is well-admitted:

Assumption 1. The power consumption of CMOS circuit is proportional to the
number of logic gates that switch [2].

From this assumption, two models of consumption can be considered: the
Hamming weight model and the Hamming distance model [3]. For a given calcu-
lus, the first model assumes that the gates switch from the state 0 to the result
of the calculus. It turns out that the model is well suited for software implemen-
tations. The second model assumes that the gates switch from an initial state
that corresponds to the former calculus result to the state corresponding to the
result of the current calculus. It turns out that this model is more suitable for
hardware implementations.

3.2 Target of the Attack

Many symmetric ciphering algorithms such as DES [5] or AES [1] for instance
are based on alternate stages of linear and nonlinear calculations. The nonlinear
stage is most often implemented in the form of S-boxes, each of one corresponding
to a nonlinear function f from {0, 1}n to {0, 1}m, whose input is the exclusive or
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of a data x ∈ {0, 1}n and of an unknown secret subkey k� ∈ {0, 1}n, and returns
a quantity y ∈ {0, 1}m, that is

y = f(x + k�).

This being the case, the attack consists in performing ciphering operations
with various inputs x chosen by the adversary, then, measuring the power con-
sumption during the calculation and finally, trying to infer the values of the secret
subkey k�. Having in mind a smart card software implementation, according to
the discussion in Sect. 3.1, the first model of leakage will be hereafter considered
and Assumption 1 applies. Let us notice that this is not restrictive because it is
easy to adapt the proposed attack to the second model.

Thus, for a given calculus of an S-box with input x and secret subkey k�,
the power consumption is proportional to the quantity ϕ(x) which admits the
following expression:

ϕ(x) =
m∑

i=1

fi(x + k�) + ε(x) + C, (2)

where:

– the first term is the model leakage, i.e. the Hamming weight of f(x+k�), with
fi the Boolean i-th component of the function f .

– the second term is a random noise denoted by ε(x).
– the third term is a constant C that corresponds to the power consumption of

the system which does not depend on x.

Let g be the function x 	→ ∑m
i=1 fi(x). Equation (2) is rewritten as:

ϕ(x) = g(x + k�) + ε(x) + C.

However, the subkey k assumed by the adversary may not be equal to the
right secret k� and the leakage model may not be the exact one. Hence, we must
introduce an error depending in particular on k. It is denoted by εk(x) and is
defined as:

εk(x) = ϕ(x) − g(x + k) − C. (3)

In an ideal situation, that is no noise, no mismatch, and in particular when
k = k�, it should be zero for any x ∈ {0, 1}n. Hence, we can define the objective
of the attack as finding k which minimizes the quadratic error

E(k)2 = ‖εk‖2 =
∑

x∈{0,1}n

εk(x)2.

In the following, it is shown that a spectral approach to solve Eq. (4) will be
relevant in terms of complexity of the underlying attack.



244 P. Guillot et al.

Based on Parseval’s Equality, the problem is equivalent to find k which is
solution to:

arg min
k

E(k)2 =
∑

u∈{0,1}n

ε̂k(u)2 (4)

By applying the Fourier transform to Eq. (3), it comes, for all vectors u ∈
{0, 1}n:

ε̂k(u) = ϕ̂(u) − (−1)u·kĝ(u) − C
√

2nδ0(u). (5)

The interest of considering the Fourier transform is that discarding the value
at the zero vector eliminates the last term which corresponds to the consumption
that does not depend on the value of x.

Hence, we define the functions ϕ̂� and ĝ� by zeroing the value at the zero
vector, that is:

ϕ̂�(u) =

{
ϕ̂(u) if u �= 0
0 else

and ĝ�(u) =

{
ĝ(u) if u �= 0
0 else

(6)

then finding k solution of Eq. (4) is equivalent to finding k solution of

arg min
k

E(k)2 =
∑

u∈{0,1}n

(
ε̂k

�(u)
)2 (7)

with
ε̂k

�(u) = ϕ̂�(u) − (−1)u·kĝ�(u).

Expansing the terms in E(k)2 yields

E(k)2 =
∑

u∈{0,1}n

ϕ̂�(u)2 +
∑

u∈{0,1}n

ĝ�(u)2 − 2
∑

u∈{0,1}n

ϕ̂�(u)ĝ�(u)(−1)u·k (8)

In the right hand side, only the last term depends on k. Hence and finally,
the problem is to find k solution to

arg max
k

F (k) (9)

with

F (k) =
∑

u∈{0,1}n

ϕ̂�(u)ĝ�(u)(−1)u·k. (10)

Remark 1. The function F is, up to a factor 1/
√

2n, nothing but the Fourier
transform of the function:

u 	→ ϕ̂�(u)ĝ�(u).
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3.3 Assessing the Estimation Reliability

From the above section, we assume that the attacker can choose any x ∈ {0, 1}n

and knows the exact instant when the operation f(x + k) is performed. To
circumvent such a difficulty which arises in practice, an enhancement of the
attack should be proposed. We must memorize the consumption ϕ(x) during a
sufficient large time window Δt to guarantee that the computation of f(x + k�)
will be actually performed. The resulting signal is called a trace. A trace has
to be measured for all 2n value of x. Let us denote by ϕt(x) the consumption
at time t for the input value x. For a finite number of sample times t in the
time window Δt, an estimation k of the secret subkey k� is computed from (9).
However, if k� is not involved in the operation performed at this time or if k� is
actually involved but k is not equal to k�, the estimation of the right subkey k�,
that is the result of (9) will not be reliable. Thus, it is required to find a way of
assessing this reliability.

To this end, similarly as in Subsect. 3.2, let us introduce the quantity
defined as:

Ft(k) =
∑

u∈{0,1}n

ϕ̂�
t (u)ĝ�(u)(−1)u·k. (11)

where

ϕ̂t
�(u) =

{
ϕ̂t(u) if u �= 0
0 else

(12)

For brevity, let us denote by gk the function x 	→ g(x+k). It is recalled that this
function stands for the leakage model. Let us denote by ĝk the Fourier transform
of gk and with the same motivation as in Subsect. 3.2, let us introduce ĝk

� as
the Fourier transform of g�

k defined as:

ĝk
�(u) =

{
ĝk(u) if u �= 0
0 else

(13)

which allows to disregard the zero vector. According to Proposition 3, for all
n–dimensional binary vectors u, we have that ĝk

�(u) = (−1)u·kĝ�(u). Hence,
Eq. (11) can be rewritten as

Ft(k) = 〈ϕ̂�
t , ĝk

�〉 (14)

Hence, for every sample times t in Δt, it is aimed at finding k, that is finding
the solution of

arg max
k

Ft(k) (15)

Thus, k may depend on t. The scalar product Ft(k) being computed for all
sample times t in Δt, we must detect peaks. The more the matching between
the measure and the model, including the key k, the higher the peaks. Hence,
the orthogonality is a way of assessing the matching. However, since the detec-
tion of the peaks requires a comparison of Ft(k) for all sample times t in Δt,
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a normalization must be done. To this end, we introduce the following quantity
which will be called reliability coefficient.

rt(k) =
Ft(k)

‖ϕ̂�
t ‖ · ‖ĝk

�‖ =
〈ϕ̂�

t , ĝk
�〉

‖ϕ̂�
t ‖ · ‖ĝk

�‖
Noticing that ‖ĝ�

k‖ = ‖ĝ�‖, the reliability coefficient turns into

rt(k) =
Ft(k)

‖ϕ̂�
t ‖ · ‖ĝ�‖ , (16)

with a normalization which is independent from k. According to Cauchy-Schwarz
inequality it follows that rt(k) ∈ [0, 1]

Finally, the attack consists in the following steps:

Steps 1: for every sample times t in Δt, finding the solution k of (15);
Steps 2: for every solution k associated to a given sample time t in Δt, compute

rt(k) (see Eq. (16)) and detect the peaks among all the rt(k) with t ∈ Δt.
Those peaks correspond to the times where the key k� match with the solution
k of Steps 1.

Remark 2. If the time where f(x + k�) is computed is exactly known, there is
no need to perform Steps 2.

Let us comment on the complexity of the attack. The Fourier Transform
of the function u 	→ g�(u) can be computed off-line once and for all from the
S-box table of the leakage model. The Fourier transform ϕ̂�

t must be computed
from experimental data for every time t in Δt. For every time t in Δt, according
to Remark 1, Ft(k) is computed with the Fourier transforms of the function
u 	→ ϕ̂�

t (u)ĝ�(u) and searching for the maximum among the Ft(k). Finally, the
peaks are detected by computing rt(k) (see Eq. (16)). The Fourier transforms
calculation can be carried out by using a fast algorithm. Such an algorithm
exists, with a complexity equal to n 2n, which is quasi linear in the size of the
table of values of the related function (see for example [4]). As a result, the
overall complexity of the attack is quasi linear in the size of the S-box table.

Remark 3. It is worth pointing out that the quantity in Eq. (16) is related to the
usual Pearson correlation coefficient. This coefficient is widely used to evaluate
relationship between data. Hence, it is a popular choice for statistical analysis
when it comes to perform CPA attacks. Let us recall that the Pearson correlation
coefficient of two functions ϕ and ψ in Φ is by definition:

c(ϕ,ψ) =

∑
x∈{0,1}n

(
ϕ(x) − mϕ

) × (
ψ(x) − mψ

)
√∑

x∈{0,1}n

(
ϕ(x) − mϕ

)2 ×
√∑

x∈{0,1}n

(
ψ(x) − mψ

)2 , (17)
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where mϕ and mψ are the means of functions ϕ and ψ, given by:

mϕ =
1
2n

∑

x∈{0,1}n

ϕ(x) and mψ =
1
2n

∑

x∈{0,1}n

ψ(x)

In other words, Pearson coefficient c(ϕ,ψ) can be expressed as:

c(ϕ,ψ) =
〈ϕ − mϕ, ψ − mψ〉

‖ϕ − mϕ‖ · ‖ψ − mψ‖

As it can be noticed that ϕ̂ − mϕ = ϕ̂�, and as the Fourier transform is
isometric, it follows that the coefficient given by Eq. (16) is nothing but the
Pearson correlation coefficient of the functions ϕt and gk. Thus, it results that
the value of k given by maximizing F (k) in Eq. (10) is the same value that
maximizes the Pearson correlation coefficient of ϕ and gk.

The interest of the spectral analysis is that it can be easily extended to a
so-called multidimensional attack as explained in next section.

4 Multidimensional Attack

When computing the value of f(x + k�) in a software device, the processor
computes sequentially: first x + k� and later the value of f(x + k�). Thus, the
unknown k� is involved at least twice within a sufficient time window Δt. We call
multidimensional attacks, the attacks that take into account the consumption at
several instants. It can be expected that more reliable results can be obtained.

The two-dimensional attack is presented thereafter because it is the one which
will be used in the experiments presented in Sect. 5 but it is straightforward to
generalize it to any higher finite dimension.

Let us consider two instants t1 and t2. Let us denote by f1(x + k�) and
f2(x + k�) the values computed respectively at times t1 and t2. In our case, the
function f1 is the identity since the computation x + k� is considered and the
function f2 is the S-box implementing f(x+k�). Let ϕ1 the chip consumption at
time t1 and ϕ2 at time t2. We consider the two dimensional vector of functions−→ϕ = (ϕ1, ϕ2) in a set Φ2 of functions {0, 1}n → R

2. Let E1 the error value given
by Eq. (8) at time t1 and E2 be the error value at time t2. The most likely value
of k is the one minimizing the Euclidean norm of the two-dimensional vector−→
E = (E1, E2). A direct computation shows that the value that minimizes this
norm is the one maximizing the value of

F (k) =
∑

u�=0

(
ϕ̂1(u)ĝ1(u) + ϕ̂2(u)ĝ2(u)

)
(−1)u·k,

where g1 and g2 are the sum of the components of f1 and f2. The leakage model
at time t1 is g1k(x) = g1(x + k) and at time t2 is g2k(x) = g2(x + k).
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The scalar product to consider in Φ2 is the following:

∀−→ϕ = (ϕ1, ϕ2),
−→
ψ = (ψ1, ψ2) ∈ Φ2, 〈−→ϕ ,

−→
ψ 〉 = 〈ϕ1, ψ1〉 + 〈ϕ2, ψ2〉.

The norm associated to this scalar product is:

∀−→ϕ = (ϕ1, ϕ2) ∈ Φ2, ‖−→ϕ ‖2 = ‖ϕ1‖2 + ‖ϕ2‖2.
Clearly, the multidimensional attack can be combined with the estimation

approach described above. Let −→ϕt be the two-dimensional power consumption
vector at time t. Then −→ϕt = (ϕ1

t , ϕ
2
t ), where ϕ1

t is the consumption at time t
and ϕ2

t is the consumption at time t+ t2 − t1. The reliability coefficient between
the power consumption (ϕ1

t , ϕ
2
t ) and the model (g1k, g2k) is required to assess the

quality of the estimation. This reliability coefficient for the estimated value k at
time t is computed as:

rt(k) =
〈(ϕ̂1

t

�
, ϕ̂2

t

�
), (ĝ1k

�
, ĝ2k

�
)〉

‖(ϕ̂1
t

�
, ϕ̂2

t

�
)‖ · ‖(ĝ1

�
, ĝ2

�
)‖

,

where, for i ∈ {1, 2}, ϕ̂i
t

�

and ĝi
k

�
are obtained by discarding the value at the

zero vector, as in (6).
By using fast Fourier transform algorithm, the multidimensional attack com-

plexity still remains quasi linear in the size of the S-box.

5 Experimental Results

The Challenge. An ATMega 163 smart card, involving an 8-bit AVR type proces-
sor, has been programmed to process the operation f(xi + ki), where f is the
AES S-Box, the ki’s are 8-bit secret key elements previously introduced in the
card, the xi’s are 8-bit parameters introduced in the card by the adversary. The
operation + denotes the bitwise xor of bytes. The challenge of the adversary is
to retrieve the secret values ki by measuring the smart card consumption during
calculations. For this purpose, the adversary uses a test bench.

Fig. 1. Test bench.
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22Ω–

+

Fig. 2. Schematic of the power consumption measurement.

Fig. 3. Whole data exchanges (up) and the corresponding consumption signal (down).

The Test Bench. The test bench (see Fig. 1) involves the smart card, a smart card
reader and an oscilloscope. The oscilloscope is a picoscope 5444b with a 200 MHz
bandwidth and a sample rate of 1GS per second. The pins of the smart card are
connected to the oscilloscope via an adapter. The chip consumption is measured
through the potential drop at a resistor connected between the Vss of the card
and the ground (see Fig. 2). All these devices are driven by a computer that
implements the attack algorithm.

Experimental Protocol. The attack consists in recovering four secret keys k1, k2,
k3 and k4 during a time window when the card processes sequentially f(x+k1),
f(x + k2), f(x + k3) and f(x + k4) for 256 values of x ranging from 0 to 255.

In all subsequent figures, the upper signal is the I/O signal corresponding to
the data exchanges and the lower signal is the chip consumption.

Figure 3 is an example of consumption trace and the corresponding consump-
tion signal. The time window Δt during the computation of the four successive
operations f(x + ki) (i = 1, . . . , 4) is the range of time when the 256 traces of
consumption are memorized in the oscilloscope. The 256 trace records are each
composed of 40.000 samples.



250 P. Guillot et al.

Fig. 4. Zoom on the time range Δt highlighting the first falling edge of the card
response used for the synchronization of the traces.

Fig. 5. Correlation peaks that correspond to scenario (i).

It is crucial to synchronize properly the 256 consumption traces. For this
purpose, the consumption traces are synchronised with the instant given by the
first falling edge of the I/O signal that follows the calculation (Fig. 4).

For every sample t, t ∈ {1, . . . , 40.000} of each 256 traces, the values ϕt(x),
x ∈ {0, . . . , 255} are extracted. Then, for every t, t ∈ {1, . . . , 40.000}, the Fourier
transform of ϕt is computed. The secret key ki is evaluated by maximizing
the function F given by Eq. (10). Finally, for this value of ki, the correlation
coefficient is computed according to Eq. (16).

Experimental Results. Three distinct scenarios has been considered:

(i) an attack when the card computes the exclusive or of the secret k and the
data x, that is the operation x + k
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Fig. 6. Correlation peaks that correspond to scenario (ii).

Fig. 7. Correlation peaks that correspond to scenario (iii). The two-dimensional attack
considers the times instants t and t + 4.2µs.

(ii) an attack when the card computes the output of the S-box, that is the
operation f(x + k)

(iii) a two dimensional attack that combines the operation x + k followed by
f(x + k)

Figures 5, 6 and 7 show the reliability coefficient rt(k) given by Eq. (16) with
respect to the time t, for the three respective situations. The attack is successful.
Indeed, the correlation peaks correspond to the instants when the operations are
actually performed and with the right secret key ki. Let us notice that in Figs. 5
and 7, there are ghost peaks. However, they can be easily disregarded since they
correspond to k = 0. One possible explanation is that the value of x is loaded in
a register previously containing the zero value.
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6 Conclusion

A new approach of CPA attack has been proposed. Unlike usual approaches
based on statistical analysis, a spectral approach has been provided. It is based
on a correlation quantity derived from the Fourier transform of the power con-
sumption signals. The attack can be applied to any algorithms that involve
S-boxes whose input is the exclusive or of data with a secret subkey. A Ham-
ming weight leakage model has been used. The interest is the complexity of the
attack is quasi linear in the size of the S-box table. Furthermore, it has been
shown that it can be easily extended to a so-called multidimensional attack.

As future prospects, it remains to check how these improvements behave
with counter measure that has been proposed to resist such attack [6,8,11,14].
Furthermore, it would be interesting to see whether the number of traces could be
reduced. It would mean that the attack could be achieved with an approximate
value of the Fourier transform. In this case, the multidimensional attack would
have a further interest.
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Abstract. In this work we present an efficient implementation of the
Hybrid Encryption scheme based on the Niederreiter PCKS proposed by
E. Persichetti.

To achieve IND-CCA2 security (in the random oracle model), we use
an HMAC function of the message and the symmetric key, and then
apply AES128-CBC as the data encapsulation part of this hybrid scheme.
The HMAC function is based on SHA3-512. In addition, we introduce a
modification in the decapsulation algorithm, to resist a reaction attack
first proposed by Bernstein et al.

The implementation is done in C on Intel core i3 CPU and 4 GB RAM
and 64 bit OS. The code is running Debian/Linux 3.5.2, where the source
has been compiled with gcc 4.7.

Keywords: KEM-DEM · Niederreiter PKCS · Code-based cryptogra-
phy · Random oracle

1 Introduction

Hybrid encryption, also known as the KEM-DEM paradigm, takes its name from
its characteristic integration of public-key and symmetric algorithms. Thanks to
its particular structure, this paradigm combines the advantages of both systems
and overcomes some disadvantages. In fact, a hybrid encryption scheme is fast
and shows no weaknesses at the key level.

A hybrid encryption scheme usually operates as follows. First of all, the
recipient generates a key pair for a public-key “key encapsulation” mechanism
(KEM). The public key is used to encrypt a (usually randomly-generated) key for
a symmetric “data encapsulation” scheme (DEM). The DEM is used to encrypt
the plaintext, and the ciphertext transmitted contains both this encryption, and
an encapsulation of the symmetric key. At the other hand, the recipient can use
c© Springer International Publishing AG 2017
S. El Hajji et al. (Eds.): C2SI 2017, LNCS 10194, pp. 254–264, 2017.
DOI: 10.1007/978-3-319-55589-8 17
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the private key to decapsulate the symmetric key and use that to recover the
plaintext.

The paradigm was first introduced by Cramer and Shoup in [3].
In 1994, P.W. Shor [8] showed that quantum computers can break most clas-

sical cryptosystems, e.g. those based on the integer factorization problem or on
the discrete logarithm problem. It is, therefore, crucial to develop cryptosystems
that are resistant to quantum computer attacks. Cryptography based on error-
correcting codes is a very promising candidate for post-quantum cryptography
since code-based cryptographic schemes are usually fast and do not require spe-
cial hardware, specifically no cryptographic co-processor.

Related Work

Code-based cryptography has been intensively studied since McEliece’s seminal
work in 1978 [5], and schemes have been implemented on several platforms, both
software and hardware. Unfortunately, these systems [5,6] suffer from critical
attacks that compromise their semantic security.

To solve this problem, a hybrid encryption system based on coding theory
was proposed for the first time by E. Persichetti in [7]. In the scheme, a low-
weight word (i.e. below the error correction capability of the considered code) is
randomly generated. In the KEM, this word is used to generate the symmetric
key using a key derivation function. The Niederreiter scheme is used to encrypt
the random word with the recipient’s public key. Then, the DEM uses this key
to encrypt the plaintext. Upon receipt of the ciphertext, the recipient uses the
Niederreiter private key to decode and recover the low-weight word, from which
it is possible to recover the symmetric key and therefore the plaintext.

Some variants of this scheme were later proposed. The McBits scheme [1] was
introduced by Bernstein et al. to provide constant-time encryption: the scheme
uses a stream cipher instead of the One-Time Pad used in the original ver-
sion. Recently, von Maurich et al. [10] provided a hardware implementation of
another modification of the scheme based on QC-MDPC instance of Niederre-
iter for ARM Cortex. This variant uses AES128CBC as the symmetric scheme
underlying the DEM, and SHA-256 for data integrity.

Our Contributions

In this work, we revisit Persichetti’s KEM/DEM scheme [7] and present a soft-
ware implementation of this new hybrid scheme. Our implementation is based
on a binary Goppa code and it is done in C. As opposed to Persichetti’s original
work, we propose to use SHA3-512 for the integrity check and AES128-CBC
instead of the One-Time Pad. Furthermore, we introduce a modification in the
decapsulation algorithm: in case of a decoding failure, we apply a random per-
mutation to the ciphertext before extracting the “mock” symmetric key via the
key derivation function. This extra step allows the hybrid scheme to resist the
attack given in [2].
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Organization of the Paper

The paper is organized as follows: in Sect. 2, we briefly introduce the Niederreiter
PKCS as well as the basic hybrid encryption structure. In Sect. 3, we present
in detail the hybrid scheme with a description of the various algorithms. In
Sect. 4 we present the C implementation of the new Hybrid Niederreiter scheme.
Section 5 focuses on the security of the scheme, including a comparison with
previous work. Finally we conclude the paper in Sect. 6.

2 Preliminaries

Notation. Throughout the paper we use the following notation:

– ENe(x) the encryption algorithm of the Niederreiter PKC, where x is a plain-
text of length at most �log2

(
n
t

)�
– DNe(z) the decryption algorithm of the Niederreiter PKC, return the plaintext

x corresponding to the ciphertext z.
– ϕ : Fl

2 �→ Wn,t a constant-weight encoding function, where l = �log2
(
n
t

)� and
Wn,t is the set of vectors of length n and weight t.

– Len(x), for the bit-Length of x.
– H : F

k
2 �→ F

l
2, where l < k and l = �log2

(
n
t

)�, a One-Way compression
function.

– G : Fk0
2 �→ F

k
2 , where k0 < k and k0 the length of the plaintext, a Crypto-

graphically secure pseudorandom sequences generator.
– CCA2: Adaptive Chosen Ciphertext Attack Model
– KDF: Key Derivation Function

2.1 Niederreiter PKCS

This cryptosystem was introduced by H. Niederreiter in 1985 [6]. Since it makes
use of the parity-check matrix rather than the generator matrix, it is often
considered as a “dual” version of the McEliece cryptosystem [5].

Let H be an r×n parity-check matrix for a (n, k, t) binary Goppa code, where
r = n − k, P an n × n random permutation matrix, S an r × r invertible matrix
and γH a decoding algorithm for the code defined by H. Since the underlying
Goppa code can only correct a certain number t < n of errors, the Niederreiter
scheme uses a function ϕ to map the message to a word of length n and weight
t (detailed above). The private key is (S,H, P, γH), while Ĥ = SHP , the value
of t and ϕ are made public.

Encryption: Let x ∈ F
l
2 be the plaintext, then the ciphertext c is computed as

c = Ĥϕ(x)T .

Decryption: The recipient receives a ciphertext c and computes ĉ = S−1c =
HPϕ(x)T . Since P is a permutation, wt(Pϕ(x)T ) = wt(ϕ(x)T ), so γH can
be used to decode it: Pϕ(x)T = γH(ĉ). Finally, the receiver computes x =
ϕ−1(P−1P (ϕ(x))T )T .
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3 Hybrid Encryption

A hybrid cryptosystem combines the convenience of a public-key cryptosystem
with the efficiency of a symmetric-key cryptosystem. Public-key cryptosystems
are convenient in that they do not require the sender and receiver to share a
common secret in order to communicate securely (among other useful proper-
ties). However, they often rely on complicated mathematical computations and
are thus generally much more inefficient than comparable symmetric-key cryp-
tosystems. In many applications, the high cost of encrypting long messages in a
public-key cryptosystem can be prohibitive. This is addressed by hybrid systems
by using a combination of both. A hybrid cryptosystem is constructed using the
two mechanisms presented below.

3.1 Key Encapsulation Mechanism (KEM)

A key encapsulation mechanism is essentially a public-key encryption scheme
(PKE), with the exception that the encryption algorithm takes no input apart
from the public key, and returns a pair (K,ψ0). The string K has fixed length
and it is usually obtained via a KDF, while ψ0 is an encryption of K in the
sense that Decsk(ψ0) = K. Formally, a KEM consists of the following three
algorithms.

– KeyGen. A probabilistic key generation algorithm that takes as input a secu-
rity parameter 1λ and outputs a public key pk and a private key sk.

– EncKEM . A probabilistic encryption algorithm that receives as input a public
key pk and returns a key/ciphertext pair (K,ψ0).

– DecKEM . A deterministic decryption algorithm that receives as input a pri-
vate key sk and a ciphertext ψ0 and outputs either a key K or the failure
symbol ⊥.

A KEM is required to be sound for at least all but a negligible portion of
public key/private key pairs, that is, if Encpk() = (K,ψ0) then Decsk(ψ0) = K
with overwhelming probability.

Definition 31. The adaptive chosen-ciphertext attack game for a KEM proceeds
as follows:

1. Query a key generation oracle to obtain a public key pk.
2. Make a sequence of calls to a decryption oracle, submitting any string ψ0 of

the proper length. The oracle will respond with DecKEM
sk (ψ0).

3. Query an encryption oracle. The oracle runs EncKEM
pk to generate a pair

(K̂, ψ̂0), then chooses a random b ∈ {0, 1} and replies with the”challenge”
ciphertext (K∗; ψ̂0) where K∗ = K̂ if b = 1 or K∗ is a random string of
length �K otherwise.

4. Keep performing decryption queries. If the submitted ciphertext is ψ∗
0 , the

oracle will return ⊥.
5. Output b∗ ∈ {0, 1}.
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The adversary succeeds if b∗ = b. More precisely, we define the advantage of A
against KEM with security parameter λ as:

AdvKEM (A, λ) =
∣∣∣Pr[b∗ = b] − 1

2

∣∣∣ (1)

We say that a KEM is secure if the advantage AdvKEM of any polynomial-time
adversary A in the above CCA attack model is negligible.

3.2 Data Encapsulation Mechanism (DEM)

The data encapsulation mechanism is a (possibly labeled) symmetric encryption
scheme (SE) that uses as a key the string K output by the KEM. In what follows
we only discuss, for simplicity, un-labeled DEMs. Formally, a DEM consists of
the following two algorithms.

– EncDEM . A deterministic encryption algorithm that receives as input a key
K and a plaintext ϕ and returns a ciphertext ψ1.

– DecDEM . A deterministic decryption algorithm that receives as input a key K
and a ciphertext ψ1 and outputs either a plaintext ϕ or the failure symbol ⊥.

3.3 Key Derivation Function

Definition 32. A Key Derivation Function (KDF) is a function that takes as
input a string x of arbitrary length and an integer � ≥ 0 and outputs a bit string
of length � (see [7]).

Key derivation functions are also used in applications to derive keys from
secret passwords or passphrases, which typically do not have the desired proper-
ties to be used directly as cryptographic keys. In such applications, it is generally
recommended that the key derivation function be made deliberately slow so as to
frustrate brute-force attack or dictionary attack on the password or passphrase
input value.

Modern password-based key derivation functions, such as PBKDF2 (specified
in RFC 2898), use a cryptographic hash, such as SHA-2, more salt (e.g. 64 bits
and greater) and a high iteration count (often 1000 or more). NIST requires
at least 128 bits of random salt and a NIST-approved cryptographic function,
such as the SHA series or AES (functions such as MD5, for instance, are not
approved) [9]. There have been proposals to use algorithms that require large
amounts of computer memory and other computing resources to make custom
hardware attacks more difficult to mount.

Definition 33. A Message Authentication Code (MAC) is an algorithm that
produces a short piece of information (tag) used to authenticate a message. A
MAC is defined by a function Ev that takes as input a key K of length �MAC

and an arbitrary string T and returns a tag to be appended to the message, that
is, a string τ of fixed length �TAG. A MAC that makes use of a hash function is
commonly known as HMAC.
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4 Hybrid Scheme from Coding Theory

In this section we present our variant of the scheme presented in [7]. We present
the hybrid scheme as a whole rather than describing the individual mechanisms.
The scheme uses the Niederreiter encryption scheme as the KEM. This KEM
addresses the key generation step, as well as the first portion of the encryption
and decryption algorithms. At the DEM level, the hash function SHA3-512 is
used as a key derivation function (KDF) to construct the key used for symmetric
encryption (AES128-CBC) as well as the integrity check (via the HMAC). The
same hash function is at the base of our HMAC.

Key Generation

Following the key generation process in Sect. 2.1, choose a binary Goppa code
with parity-check matrix H and special description. Return the public-key M
and the private key 	.

Encryption

Input: M ∈ Kpub and the plaintext ϕ.
Output: the ciphertext ψ.

Choose a random word e ∈ Wn,t. Set H := (M |In−k), then compute ψ0 :=
HeT and a key K := KDF (e, �DEM + �MAC). Parse the symmetric key as
K := (K1||K2). Compute ψ′ := EncDEM

K1
(ϕ), then set T := ψ′ and evaluate

τ := Ev(K2, T ). Return ψ := (ψ0||ψ′||τ).

Decryption

Input: a private key Δ and the ciphertext ψ.
Output: the plaintext ϕ.

Parse the ciphertext as ψ := (ψ0||ψ′||τ), then compute e := DecodeΔ(ψ0):
if decoding succeeds compute K := KDF (e, �DEM + �MAC), else sample
a random permutation σ and compute K := KDF (σ(ψ0), �DEM + �MAC).
Parse the symmetric key as K := (K1||K2) and set T = ψ′, then compute
τ ′ := Ev(K2, T ): if (τ 
= τ ′) the verification fails and return ⊥. Otherwise,
compute ϕ := DecDEM

K1
(ψ′). Return ϕ.

Note that, as we anticipated, in the case of a decoding failure in the decryp-
tion phase, we added a step featuring a random permutation σ, which we apply
to the ciphertext ψ0 to compute a pseudorandom K. This simple modification
allows us to resist the attack proposed by Bernstein et al. in [2], which we describe
later in this paper.
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5 Implementation

5.1 Description

In this part, we present an efficient implementation of the Hybrid scheme
described above. As hardware platform, we used a PC with 1.80 GHz, Intel
core i3 CPU and 4 GB RAM on a 64 bit OS. The code is running Debian/Linux
3.5.2, where the source has been compiled with gcc 4.7.

5.2 Overview of Functions

In this part, we describe the functions used in this implementation.

Key Generation. The key generation step features the original functions of
the Niederreiter algorithm. We have a keypair(sk, pk) function to generate
the public and private key. The keypair function outputs a Goppa polynomial
that will be used to construct both keys. These two keys will be stored in the
files (pk.pem and sk.pem). The symmetric key is instead computed in the
encryption and decryption phase (as per KEM-DEM paradigm).

Hybrid Encryption. The encryption step is composed of Niederreiter encryp-
tion for KEM, symmetric encryption AES128-CBC for the DEM and also the
SHA3-512 hash function for the KDF and HMAC. We present the list of func-
tions used:

– Mat-from-pk(): This function transforms the public matrix H in system-
atic form. This form plays a very important role on the completeness of the
implementation.

– sponge(): This function is used in the key derivation function (KDF) as well
as the HMAC. This sponge is the hash function SHA3-512. We chose this
function because of its speed and security.

– AES128-CBC-encrypt-DEM(): It handles AES128-CBC symmetric
encryption. This function represents the DEM part of Hybrid Encryption.

– encrypt-Nied(): This function is used as part of Niederreiter’s encryption.
– Encrypt-HyNe(): In this function, we have implemented the encryption of

the hybrid scheme. It uses the functions defined above and takes as input the
plaintext, the public key and returns the ciphertext (ψ:=(ψ0||ψ′||τ):=Encrypt-
HyNe(pk.pem, plainText)).

Hybrid Decryption. Hybrid decryption is composed of Niederreiter decryp-
tion for KEM, symmetric decryption AES128-CBC for the DEM and also the
SHA3-512 hash function for the KDF and HMAC. By analogy to Hybrid encryp-
tion, decryption uses the same functions in similar decryption functions. For the
implementation of the Hybrid decryption, we used the decrypt-HyNe() func-
tion which takes as input the private key (sk.pem) and the ciphertext (ψ) and
returns the plaintext(ϕ:=decrypt-HyNe(sk.pem, ψ )).
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6 Security and Performance

6.1 KEM-DEM Security

The KEM-DEM paradigm introduced by Cramer and Shoup in [3] provides IND-
CCA2 security for the encryption scheme, provided that both components are
IND-CCA2 secure (in their own sense). In [7], Persichetti details a full security
proof that follows closely the paradigm; however, the proof required to introduce
a modification in the scheme in order to guarantee the integrity of the simulator.
In fact, since it is not possible to decide a priori whether a given word is decodable
or not, it is necessary that the KEM decryption always output something. A
natural suggestion was to use a pseudorandom function of the ciphertext, i.e.
KDF (ψ0). Unfortunately, this choice makes the scheme vulnerable to a simple
attack, which we will detail below.

Malleability. Malleability is a property of some cryptographic algorithms. An
encryption algorithm is malleable if it is possible for an adversary to transform
a ciphertext into another ciphertext which is decrypted to a related plaintext.
That is, given an encryption of the plaintext e, it is possible to generate another
ciphertext which is decrypted as f(e), for a known function f , without necessarily
knowing or learning e.

In the basic Niederreiter scheme, ψ0 := HeT with wt(e) = t, the adversary
may take randomly the ith column of H denoted H[i] and send to the decryption
oracle ψ′

0 = ψ0 ⊕ H[i]. The decryption will succeed if we had ”1” on the ith bit
of the message e. Let e1 be a vector of length n with only the ith bit non zero.
Then the oracle returns the vector e′ of weight t − 1 such that:

ψ′
0 = He′T = ψ0 ⊕ H[i] = HeT ⊕ HeT

1 = H(e ⊕ e1)T

Then
e = e′ ⊕ e1

The success probability of this attack is:

Pr = P (e[i] = 1) =
(t
1)

(n
1 )

=
t

n

for n = 1024 and t = 50, Pr = 0.05 and for n = 2048 and t = 81, Pr = 0.04 i.e.
it succeeds at most 25 times.

It is clear then that Niederreiter’s scheme is malleable.

Bernstein’s Attack. Bernstein et al. in [2] managed to adapt the technique
above to attack the full hybrid scheme.

Let the challenge ciphertext be (ψ0, ψ
′, τ). The adversary can compute the

ciphertext (ψ′′
0 , ψ′′, τ ′′), where:

– ψ′′
0 = ψ0 ⊕ H[i] ⊕ H[j], for i 
= j
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– ψ′′ is a random string of the appropriate length
– τ ′′ = Ev(K ′′

2 , ψ′′) where K ′′ = (K ′′
1 ,K ′′

2 ) = KDF (ψ′′
0 , �DEM + �MAC)

As we have seen above, psi′′0 = H(e′′)T for a vector e′′ that is essentially e
with the two bits in positions i and j flipped. Now, if e′′ has weight t or less,
decoding will succeed, and the KEM will output K = KDF (e′′,m + �MAC).
This leads to a decryption failure, since the tag will fail the verification step.
On the other hand, if the weight of e′′ is greater than t decoding will fail and
the KEM will output exactly K ′′; in this case the tag passes the verification and
decryption succeeds. Thus the scheme is malleable and an adversary has a way
of recovering the secret vector e, and from that the plaintext m.

The attack is possible because the choice of pseudorandom function makes
it too predictable for an attacker to calculate the string output by the KEM in
case of a decoding failure. With our modification, instead, the KEM calculates
KDF on a randomly permuted version of ψ0, thus thwarting this simple attack.

6.2 Performance and Comparison

HyNe vs. Niederreiter PKCS. Here we present a simulation of the HyNE
(Hybrid Niederreiter Encryption) algorithm versus the original Niederreiter
PKCS, implemented on Intel core i3 CPU 1.80 GHz, 4 GB RAM and 64 bit
OS. This comparison is based on the running time of various algorithms (key
generation, data encryption and data decryption) depending on the size sym-
metric keys, which can be either 512, 256 or 128 bits.

The running times are listed in Table 1, for codes of length n = 2m and error
correction capacity t. We measure the speed of our implementation (number of
cycles of processor required to process one byte) as execution time (s)* processor
frequency (Hz)/test file size (bytes).

HyNe vs. Hybrid RSA. In the same environment, we present in Table 2 the
running time of a Hybrid RSA, as presented in [4], for two different exponent
(i.e. RSA keys) sizes.

Discussion. In terms of comparison, we evaluate the size of the parameters and
the ratio between our speeds and those obtained for Hybrid RSA [4].

As one well knows, RSA keys size are small than the ones of code-based
cryptography. However, for a similar security level, the encryption is 3 time
faster in HyNe than in Hybrid RSA. Nevertheless, the decryption process is still
faster in the RSA.

We can also measure of our implementation by comparing it with the original
Niederreiter (with no IND-CCA2 security), as reported on the first table. It is
possible to see that the key generation process doesn’t change, while the ratio
of the full hybrid scheme to the plain scheme is respectively (1.16, 1.19, 1.26) for
message size �DEM = (128, 256, 512).
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Table 1. Running Times of HyNe and Niederreiter PKCS

Scheme (m, t) or Scheme (m, t, �DEM ) Cycles Security (bit ops.)

KeyGen Encrypt Decrypt

Nied(10, 28) 142060394 111014 3053326 60

Nied(11, 32) 384089214 170121 3224981 88

Nied(12, 48) 2613209726 322965 6095783 128

HyNe(10, 28, 128) 142060394 128909 3148128 60

HyNe(11, 32, 128) 384089214 176429 3575968 88

HyNe(12, 48, 128) 2613209726 349012 6196288 128

HyNe(10, 28, 256) 142060394 132245 3213051 60

HyNe(11, 32, 256) 384089214 198890 3876063 88

HyNe(12, 48, 256) 2613209726 434950 7969412 128

HyNe(10, 28, 512) 142060394 140306 3465572 60

HyNe(11, 32, 512) 384089214 201690 4993159 88

HyNe(12, 48, 512) 2613209726 492826 8860359 128

Table 2. Running Times of Hybrid RSA

Exponents (bits) Keygen Cycles (Enc) Cycles (Dec) Security (bit ops.)

1024 986400 482400 463200 80

2048 4735200 2402400 2320800 112

7 Conclusion

As a first contribution, we have presented an efficient implementation of the
hybrid scheme proposed by Persichetti in [7]. The implementation is fast and
practical, as shown by the comparison against an “equivalent” version of the par-
adigm using RSA. Moreover, we have introduced a variant that fixes the security
flaw highlighted by Bernstein et al. [2]. Thanks to a simple tweak (introducing
a random permutation), we are able to preserve the IND-CCA2 security of the
scheme.
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Abstract. In this paper, we propose a novel technique, called multi-
output filtering model, to study the non-randomness property of a cryp-
tographic algorithm such as message authentication codes and block
ciphers. A multi-output filtering model consists of a linear feedback shift
register and a multi-output filtering function. Our contribution in this
paper is twofold. First, we propose an attack technique under IND-CPA
using the multi-output filtering model. By introducing a distinguishing
function, we theoretically determine the success rate of this attack. In
particular, we construct a distinguishing function based on the distrib-
ution of the linear complexity of component sequences, and apply it on
studying TUAK’s f1 algorithm, AES, KASUMI, PRESENT and PRINT-
cipher. We demonstrate that the success rate of the attack on KASUMI
and PRESENT is non-negligible, but f1 and AES are resistant to this
attack. Second, we study the distribution of the cryptographic proper-
ties of component functions of a random primitive in the multi-output
filtering model. Our experiments show some non-randomness in the dis-
tribution of algebraic degree and nonlinearity for KASUMI.

Keywords: Randomness · Distinguishing attack · TUAK · Linear com-
plexity

1 Introduction

Let C be a cryptographic scheme (keyed or non-keyed) with n-bit input and
m-bit output. Clearly it can be regarded as a vectorial Boolean function from
F

n
2 to F

m
2 . When C involves a key K, we should write CK for strictness, but

we prefer to use C for simplicity if the context is clear. In most circumstances,
the cryptographic properties of C, such as algebraic degree and nonlinearity, are
difficult to be exploited due to the large values of n and m. A natural idea to
overcome this difficulty is to restrict the inputs of C on a subspace S of F

n
2 .

For instance, the subspace S can be generated by an �-stage linear feedback
shift register. Then we obtain a function C′ from S to its image set C(S). By
adapting the size of S, we can study the cryptographic properties of C′. If C has
good randomness properties, it should be difficult to find a subspace S such that
C′ has bad randomness properties. We must mention that the above method
c© Springer International Publishing AG 2017
S. El Hajji et al. (Eds.): C2SI 2017, LNCS 10194, pp. 265–281, 2017.
DOI: 10.1007/978-3-319-55589-8 18
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for analyzing the cryptographic scheme C lies in a more general notion called
subset cryptanalysis [19], which tries to track the statistical evolution of a certain
subset of values through various operations in the cryptographic schemes. One
is referred to [12] for a successful application of the subset cryptanalysis to find
a 5-round collision on Keccak. More analysis of the Keccak permutation can be
found in [1,6,9,11,13,22–24].

We achieve the above idea by proposing a new technique, called multi-output
filtering model. This model aims to exploit the non-randomness property of
a cryptographic algorithm C such as message authentication codes and block
ciphers. A multi-output filtering model consists of a linear feedback shift regis-
ter (LFSR) and a multi-output filtering function. The LFSR is used to generate
an input subspace of C and C is used as a multi-output filtering function. This
multi-output model is a generalization of the classic filtering model in stream
ciphers [27] as it outputs multiple bits, instead of only one bit, for the set of
inputs to C generated by an LFSR. Under this model, we obtain a number of
component sequences and component functions. This paper is devoted to study-
ing the randomness properties of C by investigating its component sequences and
component functions. In this paper we restrict C to MACs and block ciphers,
but this model can also be generalized to study other cryptographic primitives.

Recently, TUAK [31] is proposed to the 3rd Generation Partnership Project
(3GPP) for providing authenticity and key derivation functionalities in mobile
communications. The design of TUAK is based on the Keccak permutation [4]
with 1600-bit internal state. The TUAK algorithm set contains seven differ-
ent algorithms, namely f1 to f5 and f∗

1 and f∗
5 . The f1 (or f∗

1 used for re-
synchronisation) algorithm ensures the authenticity of messages, f2 is used for
generating responses and f3 to f5 and f∗

5 are used as key derivation functions.
The security evaluation for TUAK is essential for guaranteeing the authentic-
ity in mobile communications. An analysis of the resistance of TUAK to many
known attacks has been presented in [16]. In this paper, we restrict ourselves to
the analysis of the MAC generation algorithm f1 in the multi-output filtering
model. We also consider the block ciphers PRINTcipher [18], AES [8], KASUMI
[30], and PRESENT [5] in the multi-output filtering model.

Our contributions in this paper are as follows. We introduce the multi-output
filtering model for analyzing non-randomness of cryptographic primitives. We
consider a generic distinguishing attack framework on C under the indistin-
guishability under chosen-plaintext attack model (IND-CPA for short), which
is a variant of indistinguishability of encryptions proposed by Goldwasser and
Micali [14] in public-key cryptography settings. We theoretically determine the
success rate of the attack. In the multi-output filtering model, we present the
construction of a new type of distinguishing function based on the distributions
of the linear complexity of the component sequences for IND-CPA. Applying
the new distinguishing function on f1, AES, KASUMI, PRESENT and PRINTci-
pher, we can distinguish the output of KASUMI and PRESENT with that of a
random primitive with a non-negligible success rate. Our study shows that f1
and AES is immune to this attack. Moreover, we study the distribution of the
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algebraic degree and nonlinearity of the component functions. We determine the
distribution of these two properties for the component functions of a random
multi-output filtering function. We perform an experiment on f1,AES,KASUMI
and PRESENT, and our experimental result shows that for KASUMI, the den-
sity of its component functions with algebraic degree less than � − 2 is greater
than the random case, where � is the length of the LFSR. While the degree
distributions of the other primitives are similar to that of the random case.

2 Preliminaries

In this section, we present a list of notations and provide some definitions that
will be used in this paper.

Notations

– F2: the Galois field with two elements {0, 1};
– F2n : a finite field with 2n elements, defined by a primitive element α;
– F

n
2 : a vector space with 2n elements;

– NL(f): the nonlinearity of a Boolean function;
– LC(s): the linear complexity of a binary sequence s with period N ;
– Bn: the set of all Boolean functions with n variables.

2.1 Basic Definitions on Sequences and Boolean Functions

Let s = {si} be a sequence generated by a linear feedback shift register (LFSR)
whose recurrence relation is defined as

s�+i =
�−1∑

j=0

cjsi+j , si, ci ∈ F2, i = 0, 1, ... (1)

where p(x) =
�∑

i=1

cix
i ∈ F2[x] is the characteristic polynomial of degree � of

the LFSR. A binary sequence s in Eq. (1) with period 2� − 1 generated by an
LFSR is called an m-sequence. Let s = {si} be an m-sequence of period 2� − 1
and f(x0, ..., x�−1) be a Boolean function in � variables. We define a sequence
a = {ai} as

ai = f(sr1+i, sr2+i, ..., srt+i), si, ai ∈ F2, i ≥ 0

where r1 < r2 < . . . < rt < � are tap positions. Then the sequence a is called a
filtering sequence and the period of a equals 2� − 1.

The linear complexity or linear span of a sequence is defined as the length of
the shortest LFSR that generates the sequence. For an m-sequence, the linear
complexity of an m-sequence is equal to the length of its LFSR [15]. The linear
complexity of a nonlinear filtering sequence lies in the range of � and 2� − 1 [17].
If a filtering sequence has linear complexity 2� − 1, then we say it has optimal
linear complexity.
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Definition 1. Let f be a Boolean function from F
n
2 to F2. Then f can

be uniquely represented by its algebraic normal form (ANF) as f(x) =∑
I∈P({0,...,n−1})

aIx
I , where aI ∈ F2, x

I =
∏

i∈I xi and P({0, . . . , n − 1}) is the

power set of {0, . . . , n − 1}. The algebraic degree of f , denoted by d(f), is the
maximal size of I in the ANF of f such that aI �= 0.

One of the most important properties of Boolean functions is its nonlinear-
ity, which was proposed to measure the distance of it to all affine functions.
A cryptographically strong Boolean function should have high nonlinearity to
resist linear attacks [20].

Definition 2. The Walsh transform of a Boolean function f to a point a ∈ F
n
2 ,

denoted by Wf (a), is defined by Wf (a) =
∑

x∈F
n
2
(−1)f(x)+a·x where a · x is the

inner product of a and x. The nonlinearity of f can be defined in terms of the
Walsh transform as NL(f) = 2n−1 − maxa∈F

n
2

|Wf (a)|
2 .

When n is an even positive integer, it is known that the maximum value of the
nonlinearity of a Boolean function f is NL(f) ≥ 2n−1 − 2n/2−1 [7]. A Boolean
functions achieving this bound is called a bent function.

Let m and n be two positive integers. A function F , from F
n
2 to F

m
2 , defined by

F (x) = (f1(x), f2(x), ..., fm(x)) is called a (n,m)-function, multi-output Boolean
functions, or vectorial Boolean functions, where fi’s are called coordinate func-
tions [7]. For a well-rounded treatment of sequences and Boolean functions, the
reader is referred to [7,15].

3 Multi-output Filtering Model

In this section, we provide a detailed description of the multi-output filtering
model of a cryptographic primitive.

3.1 Description of the Multi-output Filtering Model

Let a = {ai}i≥0 be a binary sequence generated by an �-stage linear feedback
shift register whose recurrence relation is

a�+i =
�−1∑

j=0

cjai+j , cj ∈ F2, i ≥ 0, (2)

where p(x) = x� +
∑�−1

i=0 cix
i is a primitive polynomial of degree � over F2 and

STATEj = (aj , aj+1, ..., a�−1+j) is called the j-th state of the LFSR. Using this
LFSR, from the above sequence a, we generate a set of messages of n bits as
R = {Rj : 0 ≤ j ≤ 2� − 2} where

Rj = (aj , aj+1, · · · , aj+n−1), j = 0, 1, ..., 2� − 2, (3)
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where modulo (2� − 1) is taken over the indices of ai’s. Note that the elements
in R are in the sequential order. We now define the multi-output filtering model
on F : {0, 1}k × {0, 1}n → {0, 1}m. For a fixed key K ∈ {0, 1}k and for each
Rj ∈ {0, 1}n with 0 ≤ j ≤ 2� − 2, we obtain

Cj = F (K,Rj) = (g0 (K,Rj) , . . . , gm−1 (K,Rj))
� (yj,0, yj,1, . . . , yj,m−1) ∈ {0, 1}m.

(4)

Using a matrix, we can represent the above Cj as
⎛

⎜⎜⎜⎝

C0

C1

...
C2�−2

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

y0,0 y0,1 · · · y0,m−1

y1,0 y1,1 · · · y1,m−1

...
...

...
y2�−2,0 y2�−2,1 · · · y2�−2,m−1

⎞

⎟⎟⎟⎠ . (5)

We study the cryptographic properties of F using the matrix (5).

I. Sequence point of view: Each column in the above can be considered as
a sequence of period 2� − 1 for a nonzero initial state of the LFSR. Each
sequence of period 2� − 1 is called a component sequence. We denote the i-
th component sequence by si and si = {y0,i, y1,i, ..., y2�−2,i}. si can also be
considered as a filtering sequence with filter function gi, 0 ≤ i ≤ m − 1.

II. Boolean function point of view: From (4) and (5), we see the following
process

gi :
{
STATEj ∈ F

�
2 of LFSR

} → {Rj ∈ F
n
2} → i-th comp. sequence.

Thus, each component sequence can also be regarded as a Boolean function on
F

�
2. Note that, for a nonzero initial state, the LFSR cannot generate all-zero

state, we need to query F to get the output value F (K, 0n) for all-zero input
for all component Boolean functions. With a fixed K in F , using an �-stage
LFSR, we obtain m Boolean functions on F

�
2. Mathematically, m Boolean

functions gi : F�
2 → F2 (0 ≤ i ≤ m − 1) are defined as

gi(K,STATEj) = yj,i, (0 ≤ j ≤ 2� − 2). (6)

We call each Boolean function gi a component or coordinate function of F .

3.2 Application to TUAK’s f1,AES, KASUMI and PRESENT

For the sake of clarity on the input assignment, we briefly explain how we apply
the multi-output filtering model on TUAK’s f1, and block ciphers AES, PRESENT
and KASUMI. Recall that f1 takes K, RAND, and SQN as inputs. We fix a key
K and a sequence number SQN for f1. Table 1 shows the input assignments to
the primitives in the multi-output filtering model where Rj is defined in the
previous section. For details about block ciphers, see [5,8,18,30].

Remark 1. For TUAK’s f1 function, in Eq. (5), recovering the last bit y2�−2,i

for each component sequence si from the previous 2� − 2 bits is equivalent to
recovering C2�−2 from {C0, ..., C2�−3}. This leads to a MAC forgery attack on f1.
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Table 1. Input assignments to the primitives in the multi-output filtering model.

Primitives (yj,0, . . . , yj,m−1) = Cj Block size n Key size |K| |SQN|
f1 Cj = f1 (K,Rj , SQN) 128 128 48

PRINTcipher Cj = PRINTcipher (K,Rj) 48 80 –

AES 128 Cj = AES 128 (K,Rj) 128 128 –

AES 256 Cj = AES 256 (K,Rj) 128 256 –

PRESENT Cj = PRESENT (K,Rj) 64 80 –

KASUMI Cj = KASUMI (K,Rj) 64 80 –

4 Distinguishing Attack Model

In this section, we describe the attack model of our distinguishing attack on a
message authentication code and a block cipher. The attack model is based on
indistinguishability (IND) of encryptions under chosen-plaintext attack (CPA)
(IND-CPA), which was first proposed by Goldwasser and Micali [14] in public-
key settings. In [3], Bellare et al. studied the indistinguishability of encryptions
under chosen-plaintext attack in the symmetric key setting. Here, we use the
same attack model to distinguish MACs (or ciphertexts) in the symmetric-key
setting. However, we develop a new distinguishing function based on the linear
complexity of component sequences in the multi-output filtering model.

Let F : {0, 1}k × {0, 1}n → {0, 1}m be a cryptographic algorithm which
accepts two inputs, a key of length k and a message of length n and produces an
output of length m. Assume that P0 and P1 are two messages of chosen by the
adversary and ci = F (K,Pi), i = 0, 1 for the key K. The aim of the distinguishing
attack is to distinguish c0 and c1 for P0 and P1, resp. with a high probability. We
denote the random oracle by O and the adversary by A. The indistinguishability
game [2,14] between the random oracle and the adversary is played as follows.

(1) Fixing a key K and generating the set of messages R = {R0, R1, ..., RN−1}
using an LFSR with a primitive polynomial of degree �, N = 2� − 1;

(2) The adversary A randomly picks up P0 ∈ R and P1 �∈ R and sends both
{P0, P1} to O.

(3) The random oracle picks up Pb
$←− {P0, P1}, b = 0 or 1 and computes c =

F (K,Pb). O sends c to the adversary A.
(4) Once A receives c as a challenge, the adversary performs a technique and

decides b′ and returns b′ to O where b′ = 0 or 1;
(5) If b = b′, then adversary A succeeds; otherwise she fails.

5 Distinguishing Attack Based on Linear Complexity

In this section, we first present a general technique to build a distinguisher
of a cryptographic primitive, followed by the theoretical determination of the
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success probability of the distinguishing attack. In particular, we make use of
the distribution of the linear complexity of component sequences of a primitive
to develop a new distinguisher. Finally, we apply this technique on f1, AES,
KASUMI, and PRESENT.

5.1 A Generic Framework to Build a Distinguisher

We start this section by the following definition.

Definition 3. Let R and S be two subsets of U , where S = U \ R. Let Ω be a
subset of R × S. Let C be a cryptographic scheme from U to some set V . For
any P0 ∈ R and P1 ∈ S, define a distinguishing function h : {C(P0), C(P1)} →
{0, 1}. We say that C is distinguishable with respect to R,S, h,Ω if the average
probability ∑

i∈{0,1}
Pr

(
h(c) = i ∧ c = C(Pi)

)

is non-negligible compared with 1/2, when (P0, P1) is randomly chosen from Ω.

Now we state the main theorem below and, due to the page limit, the proof
is provided in the full paper [29].

Theorem 1. Let the notations be the same as above. Now we define a subset
CS of U , which is called the condition set. Let S ′ ⊂ S and Ω = R × S ′. For any
P0 ∈ R, P1 ∈ S ′, let us define the distinguishing function h : {C(P0), C(P1)} →
{0, 1} as

h(y) =

{
0 if y = C(x) and x ∈ CS,

1 otherwise.
(7)

Define the following two probabilities

q0 = Pr (x0 ∈ R ∧ x0 ∈ CS) , q1 = Pr (x1 ∈ S ′ ∧ x1 ∈ CS) (8)

where (x0, x1)
$←− Ω. Then the average probability is

∑

i∈{0,1}
Pr (h(c) = i ∧ c = C(Pi) ) =

1 + (q0 − q1)
2

. (9)

Several remarks on Theorem 1 are as follows:

(i) An attacker will expect the probability value in (9) to be as large as pos-
sible so that she can distinguish the cryptographic scheme C with a high
probability.

(ii) The difficulty of finding the distinguishing attack described in Theorem 1
is to find a proper condition set CS such that (q0 − q1) is large.

(iii) The value of (q0 − q1) could be negative. If the attacker uses CS to replace
CS, (q0 − q1) will be positive, and the probability will be greater than 0.5.
Thus, the problem of finding a condition set such that q0 − q1 is large
becomes the problem of finding the condition set such that |q0−q1| is large.
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5.2 Distribution of the Linear Complexity of Component Sequences

We use f1,AES,KASUMI and PRESENT as multi-output filtering functions and
study the distribution of the linear complexities of their component sequences.
Meidl and Niederreiter studied the expectation of the linear complexity of ran-
dom binary periodic sequences in [21]. According to our experimental results,
the average values of the linear complexities of the component sequences of AES,
f1, KASUMI, PRESENT are very close to the theoretical value determined in
[21]. This motivates us to look at the whole distribution of the linear complexity
of the component sequences instead of considering only the average value.

Testing of the Distribution of Linear Complexity. We test the distrib-
ution of the linear complexity of component sequences by choosing two (large)
subsets of inputs and by comparing the distributions of the linear complexity of
their component sequences. In particular, we choose one subset LI of the inputs
generated by an �-stage LFSR and the other subset RI = (LI \ {P0}) ∪ {P1},

where P0
$←− LI and P1

$←− LI. Note that the elements in LI are ordered accord-
ing to Eq. (3). It is clear that if the C has very good random property, it should
not be easy to distinguish two distributions for LI and RI. Our method consists
of the following three steps. Now fixing a primitive C and an �-stage LFSR:

Step 1 (Generating component sequences). We randomly choose Nkey

keys.

1. For all keys, using LI as the set of inputs and C as a multi-output filter, we
obtain m · Nkey component sequences. This set of component sequences is
denoted by Q1.

2. Similarly, using RI as the inputs, we generate another set of m · Nkey com-
ponent sequences, which is denoted by Q2.

Step 2 (Computing linear complexity). We compute the linear complexities
of the sequences in Q1 and Q2 and count the number of component sequences in
Qi with the linear complexity 2� − 2 and 2� − 1, denoted by N i

2�−1 and N i
2�−2,

where i = 1 or 2.

Step 3 (Comparing the distributions). Now we compare two distributions
by computing the slopes sli of the line between two points (2� − 2, N i

2�−2) and

(2� − 1, N i
2�−1), where sli =

Ni

2�−1
−Ni

2�−2
(2�−1)−(2�−2)

= N i
2�−1 − N i

2�−2. If the difference
between sl1 and sl2 is non-negligible, we can make use of it to build a distin-
guisher of C, which is described in the next section. The worst case computational
complexity for exhausting all �-stage LFSRs of the above three steps is

φ(2� − 1)
�

× Nkey × 2� × (2� − 1) × m, (10)

where φ is the Euler phi function. Below we perform the experiment using these
parameters on f1, AES, KASUMI and PRESENT.
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Fig. 1. Linear complexity distribution

Distribution of f 1, AES, Kasumi and Present. In our experiment, we choose
� = 8 and Nkey = 108. By Eq. (10), the worst case complexity for the primitive
f1 is 250.27 (some computation can be performed in a parallel way). We present
the distribution of the linear complexity in which the solid (resp. dashed) line
represents the distribution of sequences in Q1 (resp. Q2).

From Figs. 1a and b, one can observe that, for KASUMI and PRESENT, the
difference of the distributions of the linear complexity for sequences in Q1 and Q2

is non-negligible. While Figs. 1c and d show this is not the case for AES and f1.

5.3 The New Distinguishing Attack

We now present the details of our distinguishing attack, which is achieved
through constructing a distinguishing function h based on the linear complexity
distribution of the component sequences. The steps for the distinguishing attack
are as follows.

1. Choosing an �-stage LFSR with a primitive polynomial to generate the inputs
of length n in R (see Eq. (3)). Constructing S = F

n
2 \ R;

2. Randomly choosing a message P0 ∈ R and P1 ∈ S;
3. Let NLC be the number of component sequences with linear complexity LC

where � ≤ LC ≤ 2� − 1;
4. Defining the condition set

CS =

⎧
⎪⎪⎨

⎪⎪⎩
y ∈ F

n
2

∣∣∣∣∣

using (R \ {P0}) ∪ {y} as the inputs of a primitive
in the multi-output filtering model, the slope of the
the points line between (2� − 2, N2�−2) and (2� − 1,
N2�−1) is less than t.

⎫
⎪⎪⎬

⎪⎪⎭
;

5. The distinguishing function h is defined in Eq. (7) using the condition set CS;
q0, q1 are the probability values defined in Definition 3.
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5.4 An Example of the Distinguishing Attack

We now apply the attack with our distinguishing function defined in Sect. 5.3
on f1, AES, KASUMI, and PRESENT. For simplicity, we use an 8-stage LFSR
to conduct our attack. However, one can use any length LFSR. The set R is
constructed using the 8-stage LFSR. We randomly chose 210 keys. For each key,
a message P0 ∈ R and a message P1 ∈ S are chosen randomly. We use the linear
complexity based distinguishing function h to execute the attack. To test that the
average success rate is stable, we repeated the experiment 20 times by choosing
different groups of 210 keys and found similar results for all experiments. We
present the average success rate for an experiment in Table 2, where we use the
upper bound of the slope t and the 8-stage LFSR the same as those in Table 6
in Appendix A.

Table 2. Average success rate of our attack on f1, AES, KASUMI and PRESENT

Primitive t q0 q1 Avg. Succ. Rate

f1 2 0.20398 0.194458 50.476%

AES 2 0.193848 0.20044 50.329%

KASUMI 4 0.421875 0.454103 51.612%

PRESENT 5 0.5686 0.540285 51.416%

Theorem 1 and the observations in Figs. 1a and b enable us to gain a non-
negligible success rate of the attack on KASUMI and PRESENT. One can observe
from the average success rate in Table 2 that the outputs of both KASUMI and
PRESENT can be distinguished from a random primitive with a non-negligible
probability. On the other hand, the performance of the attack on f1 and AES is
very similar to the random one.

6 Distribution of the Linear Complexity of PRINTcipher
Under the Multi-output Filtering Model

In [19], the authors pointed out a weakness of PRINTcipher that when the input
and key have some particular patterns, the output has the same pattern as the
input. Since the input and the output have the same pattern, the subspace of F48

2

formed by the inputs and outputs is called invariant subspace. Table 3 shows one
example of such patterns and the invariant subspace. Each asterisk in Table 3
represents one variant bit, which can be either 0 or 1. The bits that are fixed to
0 or 1 are called invariant bits. We use I to denote the invariant subspace shown
in Table 3, and K to denote the key (composed by XOR and permute key) space
shown in Table 3. The invariant subspace attack is addressed as follows. If the
input and key are selected from I and K respectively, the output must be in I.
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Table 3. Patterns of input, key, and output

Input 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***

XOR Key 01* *01 *** *** 01* *01 *** *** 01* *01 *** *** 01* *01 *** ***

Permute Key 0* 11 ** ** 10 01 ** ** 11 *0 ** ** *0 11 ** **

Output 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***

6.1 Directly Applying Multi-output Filtering Model to PRINTcipher

We apply the multi-output filtering model to PRINTcipher with the weak keys in
K. We choose an 8-stage LFSR with primitive feedback polynomial, and initialize
the LFSR with 0x01. Let v0, · · · , v7 denote the first 8 variant bits of the input,
and LFSRi denote the i-th bit of the LFSR’s internal state. The experiment is
done as follows.

(1) Fix all invariant bits of the input to input patterns in Table 3.
(2) Randomly generate variant bits except for the first 8 variant bits.
(3) Run the LFSR once.
(4) Assign the internal state of the LFSR to the first 8 variant bits of the input,

i.e. vi = LFSRi, for 0 ≤ i < 8.
(5) Randomly generate a key, with the key pattern shown in Table 3.
(6) Compute the output of the input, and put each bit of the output into the

corresponding component sequence.
(7) Repeat from Step (3) 254 times.
(8) Compute linear complexity for each component sequence.

By repeating this procedure N times, we can get the linear complexity distri-
bution of each component sequence. Obviously, the component sequences that
are composed by the invariant bits are either all 0 sequences or all 1 sequences.
Thus, the linear complexity of such component sequence is either 0 or 1. The
distribution of the linear complexity of each component sequence can be found
in the full paper [29]. For each component sequence composed by invariant bit
of the output, the linear complexity is a constant. Thus, the distribution is far
away from the ideal one. Such difference shows non-randomness in PRINTcipher.

6.2 Applying Multi-output Filtering Model to PRINTcipher with
Recurrent Input

A more challenging experiment is letting one invariant bit change. Denote the
i-th bit of the input by bi. The steps of this experiment are the same as above
except steps (1), (2) and (4). The modified three steps are given below.

(1) Fix all invariant bits of the input to the input pattern shown in Table 3
except for b5.

(2) Randomly generate the variant bits except for b2, b3, b6, b7, b8, and b9.
(4) Assign the internal state as follows.
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Fig. 2. Distributions of component sequence’s linear complexity with recurrent inputs:
AES and PRINTcipher

b2 = LFSR0, b3 = LFSR1, b5 = LFSR3, b6 = LFSR4,
b7 = LFSR5, b8 = LFSR6, b9 = LFSR7

Note that since b4 is fixed to 1, in one period of the LFSR, each possible
input occurs twice. We call this recurrent input.

After running the above procedure for N times, we have the linear complexity
distribution of each component sequence. Since the ideal distribution of each
component sequence with recurrent input is hard to compute, we run the above
procedure on both PRINTcipher and AES, and use the distribution of AES as
a reference. The results are shown in Fig. 2. The blue curve marked with cross
represents the distribution of AES’ 74th component sequence; the red curve
marked with horizontal bars represents PRINTcipher’s 12th component sequence,
and the brown curve marked with vertical bars represents the 20th component
sequence. For all AES’s component sequences, the distributions of linear complex-
ity are almost the same. However, we find the distribution of the 12th component
sequence of PRINTcipher is quite different from AES. We can see that the red
curve jumps dramatically.

7 Distribution of the Algebraic Degree and Nonlinearity
of the Component Functions

In this section, we investigate the distribution of the algebraic degree and the
nonlinearity of the component functions of f1, AES, KASUMI, and PRESENT
in the multi-output filtering model. To measure the randomness property, we
first determine the distribution of the algebraic degree and the nonlinearity of
component functions using a random primitive as the multi-output filter and
compare this ideal distribution with that of f1, AES, KASUMI and PRESENT
obtained by performing experiments.
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7.1 Algebraic Degree Distribution

The following result states the number of Boolean functions with a given alge-
braic degree. The first part of the result can also be found in [7].

Theorem 2. Let f be a Boolean function on F
n
2 . Then the number of Boolean

functions with algebraic degree at most d is 2
∑d

i=0(n
i ), and the number of Boolean

functions with algebraic degree exactly d is
(
2(n

d ) − 1
)

· 2
∑d−1

i=0 (n
i ).

Corollary 1. Let C be a random cryptographic primitive and L be an n-stage
LFSR whose characteristic polynomial is a primitive polynomial of degree n. We
use C as a multi-output filtering function and L to generate the inputs of C. Then

the probability of the component functions having degree at most d is 2
∑d

i=0(n
i )

22n .
In particular, Pr(d ≤ n − 2) = 1

2n+1 .

For a more detailed discussion about Theorem 2, we refer the reader to
[29]. For f1,AES,KASUMI and PRESENT, we perform the following test on the
distribution of the algebraic degree of their component functions.

Statistical Test 1. By Corollary 1, using an LFSR with a primitive polynomial
of degree 8, the probability that the degree of the component functions is smaller
than 7 is 1

29 = 19.53125× 10−4. For f1,AES,KASUMI and PRESENT, we apply
the multi-output filtering model as in Sect. 3.1. We choose 50, 000 keys for these
primitives and compute the degree of the component functions. The probability
of the degree is smaller than 7 is listed in the following table. From Table 4, we
can see that for KASUMI, the probability Pr(d ≤ 6) is much higher than the one
for other ciphers. To confirm this, we test another 50000 keys and found the
probability is very close to it. This points out a distinguisher of KASUMI and
other ciphers in Table 4.

7.2 Nonlinearity Distribution

For a random Boolean function, we have the following result on the distribution
of its nonlinearity.

Table 4. Distribution of the degree smaller than 7

Cryptographic primitive Pr(d ≤ 6)

Random function 19.53125 × 10−4

f1 19.87 × 10−4

AES 19.77 × 10−4

KASUMI 20.16 × 10−4

PRESENT 19.58 × 10−4
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Theorem 3 ([7,26]). Let c be any strictly positive real number. The density of
the set {

f ∈ Bn, NL(f) ≥ 2n−1 − c
√

n2
n−1
2

}

is greater than 1 − 2n+1−c2n log2 e. If c2 log2 e > 1, then this density tends to 1
when n tends to infinity.

The reader is referred to Table 5 of [29] for the lower bound of the density
of Boolean functions in B8. The best nonlinearity we can expect for Boolean
functions in 8 variables is 27 −23 = 120. From Table 5 of [29], one can see that if
the component functions of f1 are random, the probability that the component
Boolean functions have nonlinearity smaller than 90 is very small, which is 1 −
0.993545113167509528277258485524 ≈ 0.00645. In view of this, we perform the
following statistical test for f1, AES, KASUMI and PRESENT.

Statistical Test 2. Let the LFSR and the other settings be the same as in
Statistical Test 1. We list the distribution of the nonlinearity of the compo-
nent functions of f1 and AES in Table 5. Since only the component functions
with smallest nonlinearity are important to us (as an attacker), we only list the
probability that a Boolean function has nonlinearity smaller than 90 or 91. The
notation Pr<W denotes the probability that the nonlinearity is smaller than W .
Unlike the distribution of the algebraic degree, from the above table we can not
see obvious difference among these four ciphers. However, one can still see that
the probability values Pr<90 and Pr<91 is still very different with the random
case (although they are only the upper bounds of the probability).

Table 5. The distribution of the nonlinearity of component sequences of f1, AES,
KASUMI and PRESENT

Cryptographic primitive Pr<90 Pr<91

Random Function 0.006455 0.011597

f1 0.000299 0.000690

AES 0.000306 0.000592

KASUMI 0.000299 0.000565

PRESENT 0.000308 0.000589

Although now we cannot derive attacks from Statistical Test 1 and Statistical
Test 2, it is interesting to observe some non-randomness in the aspect of the
distribution of cryptographic properties.

8 Conclusions

In this paper, we introduced the multi-output filtering model for analyzing the
security of a cryptographic primitive. We proposed a general distinguish attack
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technique under IND-CPA and developed a new object, called a distinguishing
function, to characterize the success rate of our new attack method. The impor-
tance of this new distinguishing function is demonstrated by launching attacks
on KASUMI and PRESENT with non-negligible success rates. Furthermore, we
studied the cryptographic properties of the component functions. By comparing
the distribution of the algebraic degree and nonlinearity properties with that of
a random one, we discovered that, for KASUMI, its distribution of the algebraic
degree is very different, while the distributions of f1, AES and PRESENT are
not. We could not propose any immediate attack based on this observation, but
it is worth to pointing it out for future research.

Acknowledgement. The authors would like to thank the reviewers of the C2SI-Carlet
2017 conference for their insightful comments to improving the quality of the paper.
The authors sincerely thank Reviewer 3 for pointing out an error in Corollary 1 and
also mentioning a connection between Statistical test 1 and the saturation attack.

A Appendix

We describe the slope of the linear complexity distribution of f1 and AES,
KASUMI and PRESENT. The slope in Table 6 is the average slope over 108 sam-
ples. The column “Slope (L)” contains the slopes computed from the LFSR
input, and the column “Slope (R)” contains the slopes computed from the
random input. The last column shows the absolute value of the difference
between “Slope(L)” and “Slope(R)”. We can see the “Difference” of KASUMI
and PRESENT are much greater than f1 and AES.

Table 6. The slope of f1, AES, KASUMI and PRESENT on average

Primitive Polynomial of the LFSR Slope (L) Slope (R) | Difference |
f1 x8 + x6 + x4 + x3 + x2 + x1 + 1 −0.125 −0.124 2.210 × 10−4

AES x8 + x7 + x6 + x3 + x2 + x1 + 1 −0.088 −0.087 5.190 × 10−4

KASUMI x8 + x7 + x6 + x5 + x4 + x2 + 1 0.130 0.015 0.115

PRESENT x8 + x6 + x5 + x3 + 1 −0.057 0.036 0.093
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Abstract. Starting from the secondary construction originally intro-
duced by Carlet [“On Bent and Highly Nonlinear Balanced/Resilient
Functions and Their Algebraic Immunities”, Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, 2006], that we shall call “Car-
let‘s secondary construction”, Mesnager has showed how one can con-
struct several new primary constructions of bent functions. In particular,
she has showed that three tuples of permutations over the finite field F2m

such that the inverse of their sum equals the sum of their inverses give
rise to a construction of a bent function given with its dual. It is not
quite easy to find permutations satisfying such a strong condition (Am).
Nevertheless, Mesnager has derived several candidates of such permuta-
tions in 2015, and showed in 2016 that in the case of involutions, the
problem of construction of bent functions amounts to solve arithmetical
and algebraic problems over finite fields.

This paper is in the line of those previous works. We present new
families of permutations satisfying (Am) as well as new infinite families
of permutations constructed from permutations in both lower and higher
dimensions. Our results involve linear translators and give rise to new
primary constructions of bent functions given with their dual. And also,
we show that our new families are not in the class of Maiorana-McFarland
in general.

Keywords: Boolean functions · Bent functions · Linear translators ·
Permutations

1 Introduction

1.1 Preliminaries

Boolean functions of n variables are binary functions over the Galois field F2n .
For even values of n, a Boolean function f : F2n → F2 can be represented in
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-55589-8 19
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bivariate representation as a polynomial f(x, y) in two variables x, y ∈ F2m ,
where m = n/2. They are used in the pseudo-random generators of stream
ciphers and S-boxes of block ciphers, and the nonlinearity of such functions
represents a significant cryptographic criterion against attacks on stream and
block ciphers.

The nonlinearity of a function f : F2n → F2 is the minimum Hamming
distance between f and all affine functions, and it can be expressed as

Nf := 2n−1 − 1
2

max
ω∈F2n

|χ̂f (ω)| ,

where χ̂f (ω) denotes the Walsh transform of f of an element ω ∈ F2n defined
by χ̂f (ω) :=

∑
x∈F2n

(−1)f(x)+Trn
1 (ωx), and Trn

1 (x) denotes the absolute trace
function over F2 of an element x ∈ F2n defined by Trn

1 (x) :=
∑n−1

i=0 x2i . Because
of the Parseval’s relation

∑
ω∈F2n

(χ̂f (ω))2 = 22n, Nf must be bounded above
by 2n−1 − 2

n
2 −1, and this upper bound is tight for even values of n.

An n-variable Boolean function f is called bent if Nf = 2n−1 − 2
n
2 −1. So,

bent functions are maximally nonlinear functions, and they exist only with even
number of variables. Indeed, they are unbalanced and weak against fast algebraic
attacks. The highest possible algebraic degree of a 2m-variable bent function is
m. Because of the fact that the degree is too small, even after modifications to
balance them -which is sampled in [14]-, they still remain vulnerable against fast
algebraic attacks.

There exists a main characterization of the bentness of a Boolean func-
tion in terms of the Walsh transform as follows: A function f : F2n → F2

(n even) is bent if and only if χ̂f (ω) = ±2
n
2 for all ω ∈ F2n . If f is bent, then

χ̂f (ω) = 2n/2(−1)f̃(ω), for all ω ∈ F2n defines the dual function f̃ of f , and its a
known fact that bent functions always appear in pairs since their duals are also
bent functions. The reader willing to see the previous results on bent functions
significant for this paper may run an eye over the next subsection.

In this study, permutation polynomials and linear translators are used as the
building blocks of secondary constructions of several new bent functions.

Let f(x) be any polynomial in F2n [x]. Then f(x) defines a mapping F :
F2n → F2n via F (x) := f(x). This mapping F is called the associated mapping
of the polynomial f(x).

Definition 1. A polynomial f(x) ∈ F2n [x] is called a permutation polynomial
of F2n if its associated mapping is bijective.

Definition 2 ([6]). Let m, t ∈ Z
+ be such that t divides m. Let f be a map from

F2m to F2t and a ∈ F2t . An element α of F2m is said to be an a-linear translator
of f if and only if f(x + αu) = f(x) + au for every (x, u) ∈ F2m × F2t .

For a Boolean map, linear translators are not desirable. The functions with
linear translators are considered to be weak for some cryptographic applications.
For instance, a recent attack on hash functions proposed in [1] exploits a similar
weakness of the involved mappings. A classical property of linear translators is
the following.
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Proposition 1. Let m, t ∈ Z
+ be such that t divides m. Let a1, a2 ∈ F2t and

α1, α2 ∈ F2m . If α1 is an a1-linear translator and α2 is an a2-linear translator
of a mapping f : F2m → F2t , then

i. α1 + α2 is an (a1 + a2)-linear translator of f .
ii. cα1 is an (ca1)-linear translator of f , for any c ∈ F

∗
2t .

1.2 Previous Results and the Aim of the Paper

Bent functions were introduced by Rothaus [13] in 1976 but already studied
by Dillon [4] since 1974. They have attracted a lot of research for four decades
because of their own sake as interesting combinatorial objects, but also because
of their relations to coding theory and applications in cryptography, sequences
and other domains. A book devoted to bent functions (including variations,
generalizations and applications) is [11]. A jubilee survey paper on bent functions
giving an historical perspective, and making pertinent connections to designs,
codes and cryptography is [3].

Despite their simple and natural definition, bent functions turned out to
have a very complicated structure in general. Several constructions are known
(see [3,11]) and linear translators are also used in certain constructions (see
[5,6]).

Starting from a general secondary construction ([2], Theorem 3) known since
2006 that we shall call “Carlet‘s secondary construction”, Mesnager has refined
recently in ([7], Theorem 4) Carlet’s result and presented in [7–10] several new
ways to construct new primary bent functions in bivariate representation. In
this paper, instead of taking Carlet‘s secondary construction in its most general
form, we only consider this particular case of it. This method allows to construct
primary bent functions whose dual functions can be computed explicitly. This
feature is important because it is often not so easy to compute the dual function
of a bent function (especially in univariate representation). In particular, Mes-
nager has shown in [7,8] that one can construct easily such bent functions by
using three permutations defined over the finite field F2m satisfying a condition
that she denoted by (Am).

Definition 3. Let m ∈ Z
+. Three pairwise distinct permutations φ1, φ2 and φ3

of F2m are said to satisfy (Am) if the following conditions hold:

i. ψ = φ1 + φ2 + φ3 is a permutation of F2m ,
ii. ψ−1 = φ−1

1 + φ−1
2 + φ−1

3 .

Mesnager has exhibited explicit families of permutations satisfying (Am) in
[7,8]. Furthermore, using such a method, it has been shown in [9,10,12] that
constructing bent functions from involutions satisfying (Am) amounts to solve
arithmetical problems (using Fermat hypersurface and Lang-Weil estimations)
(see [12]) and algebraic problems (for instance, based on the resolution of systems
of equations over finite fields) (see [9,10]).
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In this paper, the main target is to exhibit new constructions of bent functions
in bivariate representation in the line of Mesnager’s works mentioned above.
More precisely, we are interested in pushing further the investigations initiated in
the previous works and exploring new families of permutations satisfying (Am).
This study is motivated by the below result given in [7,8] (see also [2]) presenting
a construction of bent functions from families of permutations satisfying (Am).

Proposition 2 ([7,8]). Let m ∈ Z
+. Let φ1, φ2 and φ3 be three pairwise distinct

permutations satisfying (Am). Then, the Boolean function H from F2m ×F2m to
F2 defined by

H(x, y) = Trm
1

(
xφ1(y)

)
Trm

1

(
xφ2(y)

)
+ Trm

1

(
xφ1(y)

)
Trm

1

(
xφ3(y)

)
+

Trm
1

(
xφ2(y)

)
Trm

1

(
xφ3(y)

)
, (1)

is bent. Furthermore, its dual function H̃ is given by

H̃(x, y) = Trm
1

(
φ−1
1 (x)y

)
Trm

1

(
φ−1
2 (x)y

)
+ Trm

1

(
φ−1
1 (x)y

)
Trm

1

(
φ−1
3 (x)y

)

+Trm
1

(
φ−1
2 (x)y

)
Trm

1

(
φ−1
3 (x)y

)
. (2)

To this end, we are going to construct bent functions using linear translators
of the functions of the form f : F2m → F2t , where t,m ∈ Z

+ are such that t
divides m.

1.3 The Organization of the Paper

The rest of the paper is organized as follows. All our results are wrapped in
Sect. 2. We start by presenting in Proposition 3 that one can construct 3-tuples
of permutations satisfying (Am), by selecting 3-tuples of a new family of per-
mutations of F2m obtained from a permutation of F2t with the help of linear
translators of a mapping from F2m to F2t . In Propositions 4 and 5, we show that
one can construct 3-tuples of permutations satisfying (Am) from other 3-tuples
of permutations (in lower dimension in Proposition 4 and from linear permuta-
tions in Proposition 5). All these results lead to three new infinite families of
bent functions (Theorems 1, 2 and 3). Next, we present a new infinite family of
permutations constructed from permutations in higher dimension. We show that
elements of this family are good candidates to construct 3-tuples of permutations
satisfying (Am). Finally, in Sect. 3.4, we show that the bent functions obtained
here are generally not in the Maiorana-McFarland Class.

2 Several New Constructions for Bent Functions

Proposition 3. Let m, t ∈ Z
+ such that t < m and t divides m. Let f be a

mapping from F2m to F2t . Let L : F2m → F2m be an F2t-linear permutation of
F2m . Let g : F2t → F2t be a permutation. Assume α ∈ F

∗
2m and a ∈ F

∗
2t such

that α is an a-linear translator of f with respect to F2t . Set φ : F2m → F2m as

φ(x) := L(x) + L(α)
[
g(f(x)) +

f(x)
a

]
. (3)
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Then φ is a permutation polynomial of F2m and

φ−1(x) = L−1(x) +
α

a

[
f(L−1(x)) + g−1

(
f(L−1(x))

a

)]
. (4)

Proof. Define h : F2m → F2m as

h(x) := x + α

(
g(f(x)) +

f(x)
a

)
. (5)

Note that the equality y = x + α
(
g(f(x)) + f(x)

a

)
leads to

f(y) = f

(
x + α

(
g(f(x)) +

f(x)
a

))
= f(x) + a

(
g(f(x)) +

f(x)
a

)
= ag(f(x))

from which one can obtain f(x) = g−1
(

f(y)
a

)
. Therefore

x = y + α

(
g(f(x)) +

f(x)
a

)
= y +

α

a

(
f(y) + g−1

(
f(y)

a

))
.

In other words, h is a permutation of F2m and its inverse map is

h−1(x) = x +
α

a

(
g−1

(
f(x)

a

)
+ f(x)

)
.

Finally, for any x ∈ F2m , expression (5) and the definition of L implies that

L(h(x)) = L

(
x + α

(
g(f(x)) +

f(x)
a

))
= L(x) + L(α)

(
g(f(x)) +

f(x)
a

)
,

which means φ = L◦h. Being a composition of two permutations of F2m , φ should
also be a permutation of F2m , and the inverse of φ should be φ−1 = h−1 ◦ L−1

which gives the result

φ−1(x) = L−1(x) +
α

a

(
g−1

(
f(L−1(x))

a

)
+ f(L−1(x))

)
.

��
Observe that expressions (3) and (4) depend linearly on α. Therefore, if we

define three permutations φ1, φ2 and φ3 in the form of the expression (3) by
using the same L, f and g, but three-many pairwise distinct a-linear translators
α1, α2, α3 of f , then ψ := φ1 + φ2 + φ3 would be

ψ(x) = L(x) + [L(α1) + L(α2) + L(α3)]
[
g(f(x)) +

f(x)
a

]
,

which is obviously a permutation by Propositions 1 and 3. Furthermore, for any
x ∈ F2m , φ1

−1(x) + φ2
−1(x) + φ3

−1(x) becomes

L−1(x) +
(α1

a
+

α2

a
+

α3

a

)[
f(L−1(x)) + g−1

(
f(L−1(x))

a

)]

which is equal to ψ−1(x). Thus we conclude that φ1, φ2, φ3 satisfy (Am).
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Theorem 1. Let m, t ∈ Z
+ such that t < m and t divides m. Let f be a mapping

from F2m to F2t . Let L : F2m → F2m be an F2t-linear permutation of F2m . Let
g : F2t → F2t be a permutation. Assume α1, α2, α3 ∈ F

∗
2m and a ∈ F

∗
2t such

that α1, α2, α3 are all pairwise distinct a-linear translators of f with respect to
F2t . Suppose α1 + α2 + α3 �= 0. Set ρ : F2m → F2m as ρ(x) := g(f(x)) + f(x)

a

and ρ̃ : F2m → F2m as ρ̃(x) := 1
a

(
g−1

(
f(x)

a

)
+ f(x)

)
. Then,

H(x, y) = Trm
1

(
xL(y)

)
+ Trm

1

(
L(α1)xρ(y)

)
Trm

1

(
L(α2)xρ(y)

)
+

Trm
1

(
L(α1)xρ(y)

)
Trm

1

(
L(α3)xρ(y)

)
+

Trm
1

(
L(α2)xρ(y)

)
Trm

1

(
L(α3)xρ(y)

)
(6)

is bent. Furthermore, its dual function H̃ is given by

H̃(x, y) = Trm
1

(
yL−1(x)

)
+ Trm

1

(
α1yρ̃(L−1(x))

)
Trm

1

(
α2yρ̃(L−1(x))

)
+

Trm
1

(
α1yρ̃(L−1(x))

)
Trm

1

(
α3yρ̃(L−1(x))

)
+

Trm
1

(
α2yρ̃(L−1(x))

)
Trm

1

(
α3yρ̃(L−1(x))

)
. (7)

Proof. Proposition 2 implies that the Boolean function H : F2m × F2m → F2

defined by (1) will be bent for any 3-tuples of φi satisfying (Am). Define φ1, φ2, φ3

in the same nature of (3) as follows:

φi(x) := L(x) + L(αi)
[
g(f(x)) +

f(x)
a

]
, for all i ∈ {1, 2, 3} .

Then these three permutations will satisfy (Am) as proven above, so they can
be used to define the bent function H(x, y) given in (1).
For any i ∈ {1, 2, 3}, we have

Trm
1

(
xφi(y)

)
= Trm

1 (xL(y)) + Trm
1 (L(αi)ρ(y))

and so for any distinct values of i, j ∈ {1, 2, 3}, Trm
1

(
xφi(y)

)
Trm

1

(
xφi(y)

)
will

be equal to the product

[Trm
1 (xL(y)) + Trm

1 (L(αi)ρ(y))] [Trm
1 (xL(y)) + Trm

1 (L(αj)ρ(y))]

which is equal to the sum

Trm
1 (xL(y)) + Trm

1 (xL(y)) Trm
1 (L(αj)ρ(y))

+Trm
1 (xL(y)) Trm

1 (L(αi)ρ(y)) + Trm
1 (L(αi)ρ(y)) Trm

1 (L(αj)ρ(y))

since Trm
1 : F2m → F2. Hence we directly obtain (6) from the expression (1), by

only defining φis as in (3). ��
Remark 1. It is easy to find non-trivial examples satisfying the conditions of
Theorem 1 for all large m. For example, let F2t be a fixed (small) finite field
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and a ∈ F
∗
2t . Let g : F2t → F2t be a fixed permutation of F2t . An obvious

choice would be g(x) = xj where gcd(j, 2t − 1) = 1. Let α1, α2, α3 be three
linearly independent elements of F2m over F2t , which only requires that m ≥ 3t.
Let W ⊆ F2m be the F2t -linear span of α1, α2 and α3. Let V be an F2t -linear
subspace of F2m such that F2m = V ⊕ W. Let μ : V → F2t be an arbitrary map.
For any x ∈ F2m there exist uniquely determined v ∈ V, c1, c2, c3 ∈ F2t such
that x = v + c1α1 + c2α2 + c3α3. Let f : F2m → F2t be the map defined as
f(x) = μ(v)+a(c1 + c2 + c3). It is not difficult to see that α1, α2, α3 are pairwise
distinct a-linear translators of f .

Example 1. Consider the special case of Proposition 3: m = 6 and t = 3. Let ω
be a primitive element of F8 satisfying the equation ω3 + ω + 1 = 0, and ξ be a
primitive element of F64 satisfying the equation ξ6 + ξ4 + ξ3 + ξ + 1 = 0. Define
f : F64 → F8, L : F64 → F64, g : F8 → F8, a, and αis as follows: f(x) = x + x8,
L(x) = x, g(x) = x, a = ω, α1 = ξ, α2 = ξ8 and α3 = ξ56. Then α1, α2, α3 are
all a-linear translators of f with respect to F8 satisfying α1 + α2 + α3 = ξ7 �= 0.
With this setup, φi : F64 → F64 becomes

φi(x) = x + ω2αif(x),

where i ∈ {1, 2, 3}. We know by Proposition 3 that these φis are permutation
polynomials of F64 satisfying (A4). So, by Theorem1, they can be used to define
a bent function H from F64 × F64 to F2.

Let us observe that φ defined by (3) depends linearly on g as well as its inverse
map depends linearly on g−1. Thus, one can deduce from this observation the
following secondary construction.

Proposition 4. Let m, t ∈ Z
+ such that t < m and t divides m. Let f be a

mapping from F2m to F2t . Let L : F2m → F2m be an F2t-linear permutation of
F2m . Let g1, g2 and g3 be three permutations on F2t satisfying (At). Assume that
α ∈ F

∗
2m and a ∈ F

∗
2t such that α is an a-linear translator of f with respect to

F2t . Set φi : F2m → F2m , i ∈ {1, 2, 3} as

φi(x) := L(x) + L(α)
[
gi(f(x)) +

f(x)
a

]
. (8)

Then φ1, φ2 and φ3 satisfies (Am).

Proof. Define ψ : F2m → F2m as ψ := φ1 + φ2 + φ3. Then

ψ(x) = L(x) + L(α)
[(

g1 + g2 + g3
)
(f(x)) +

f(x)
a

]
.

g1 + g2 + g3 is a permutation for hypothesis since they satisfy (At). So, by
Proposition 3, ψ must also be a permutation and

ψ−1(x) = L−1(x) +
α

a

[
f(L−1(x)) +

(
g1 + g2 + g3

)−1
(

f(L−1(x))
a

)]
.
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On the other hand, from the explicit formulas of the permutations φ1
−1, φ2

−1,
φ3

−1 given in Proposition 3, we obtain the equation

φ−1
1 (x) + φ−1

2 (x) + φ−1
3 (x) = L−1(x)+

α

a

[
f(L−1(x)) +

(
g−1
1 + g−1

2 + g−1
3

) (
f(L−1(x))

a

)]
.

Since g−1
1 + g−1

2 + g−1
3 = (g1 + g2 + g3)−1, we get the result ψ−1 = φ−1

1 +
φ−1
2 + φ−1

3 . ��
In the line of Theorem 1, one can then obtain from Proposition 2 the following

construction of bent function.

Theorem 2. Let m, t ∈ Z
+ such that t < m and t divides m. Let f be a mapping

from F2m to F2t . Let L : F2m → F2m be an F2t-linear permutation of F2m . Let
g1, g2 and g3 be three permutations of F2t satisfying (At). Let a ∈ F

∗
2t . Let

α ∈ F
∗
2m be an a-linear translator of f with respect to F2t . For i ∈ {1, 2, 3}, set

ρi : F2m → F2m as ρi(x) := gi(f(x)) + f(x)
a and ρ̃i : F2m → F2m as ρ̃i(x) :=

1
a

(
g−1

i

(
f(x)

a

)
+ f(x)

)
. Then,

H(x, y) = Trm
1

(
xL(y)

)
+ Trm

1

(
L(α)xρ1(y)

)
Trm

1

(
L(α)xρ2(y)

)
+

Trm
1

(
L(α)xρ1(y)

)
Trm

1

(
L(α)xρ3(y)

)
+ Trm

1

(
L(α)xρ2(y)

)
Trm

1

(
L(α)xρ3(y)

)

(9)

is bent. Furthermore, its dual function H̃ is given by

H̃(x, y) = Trm
1

(
yL−1(x)

)
+ Trm

1

(
αyρ̃1(L−1(x))

)
Trm

1

(
αyρ̃2(L−1(x))

)
+

Trm
1

(
αyρ̃1(L−1(x))

)
Trm

1

(
αyρ̃3(L−1(x))

)
+

Trm
1

(
αyρ̃2(L−1(x))

)
Trm

1

(
αyρ̃3(L−1(x))

)
. (10)

Example 2. Consider the special case m = 4 and t = 2 of Theorem 2. Let ω be
a root of the irreducible polynomial x2 + x + 1 ∈ F2[x] and ρ be a root of the
irreducible polynomial x4 + x + 1 ∈ F2[x]. Set L : F16 → F16, f : F16 → F4,
a ∈ F

∗
4 and α ∈ F

∗
16 as follows: L(x) = x, f(x) = x + x4, a = ω and α = ρ6.

Thus α is an a-linear translator of f with respect to F4. Also set gi : F4 → F4,
where i ∈ {1, 2, 3} as follows: g1(x) = x, g2(x) = x2 and g3(x) = x2 + 1.
(It is not hard to see that g1, g2, g3 satisfy (A2)). With this setup, φ1, φ2

and φ3 become permutations of F16 defined by φ1(x) = (1 + ωρ6)x + ωρ6x4,
φ2(x) = (1 + ω2ρ6)x + ρ6x2 + ω2ρ6x4 + ρ6x8 and φ3(x) = ρ6 + (1 + ω2ρ6)x +
ρ6x2 + ω2ρ6x4 + ρ6x8. By Proposition 4, we know that these φis are satisfying
(A4), so they can be used to define a bent function H from F16 ×F16 to F2 with
the construction defined in Theorem2.

Finally, observe that (3) depends linearly on L and (4) depends linearly on
L−1 when g is an automorphism and f is a linear map. Therefore, one obtains
the following result.
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Proposition 5. Let m, t ∈ Z
+ such that t < m and t divides m. Let f : F2m →

F2t be a linear mapping. Let g : F2t → F2t be an automorphism on F2t . Let
α ∈ F

∗
2m and a ∈ F

∗
2t such that α is an a-linear translator of f with respect to

F2t . For i ∈ {1, 2, 3}, let Li : F2m → F2m be an F2t-linear permutation of F2m

and φi : F2m → F2m be the mapping defined by

φi(x) := Li(x) + Li(α)
[
g(f(x)) +

f(x)
a

]
. (11)

Suppose that L1, L2 and L3 satisfies (Am). Then φ1, φ2 and φ3 satisfies (Am).

Proof. Define ψ : F2m → F2m as ψ := φ1 + φ2 + φ3. Then

ψ(x) =
(
L1 + L2 + L3

)
(x) +

[(
L1 + L2 + L3

)
(α)

] [
g(f(x)) +

f(x)
a

]
.

The fact that L1, L2 and L3 are all F2t -linear maps implies L1 +L2 +L3 is also
F2t -linear. And, L1 + L2 + L3 must be a permutation since L1, L2, L3 satisfy
(Am). Furthermore, as being an automorphism between finite fields, g must be
a permutation, too. Thus, we conclude that ψ is a permutation with inverse

ψ−1(x) = (L1 + L2 + L3)−1(x)+

α

a

[
f
(
(L1 + L2 + L3)−1(x)

)
+ g−1

(
f
(
(L1 + L2 + L3)−1(x)

)

a

)]
,

by Proposition 3. However, since (L1 + L2 + L3)−1 = L−1
1 + L−1

2 + L−1
3 , we get

ψ−1(x) = L−1
1 (x) + L−1

2 (x) + L−1
3 (x)+

α

a

[
f
(
L−1
1 (x) + L−1

2 (x) + L−1
3 (x)

)
+ g−1

(
f
(
L−1
1 (x) + L−1

2 (x) + L−1
3 (x)

)

a

)]
.

On the other hand,

φ−1
1 (x) + φ−1

2 (x) + φ−1
3 (x) = L−1

1 (x) + L−1
2 (x) + L−1

3 (x)+
α

a

[
f(L−1

1 (x)) + f(L−1
2 (x)) + f(L−1

3 (x))
]
+

α

a

[
g−1

(
f(L−1

1 (x))
a

)
+ g−1

(
f(L−1

2 (x))
a

)
+ g−1

(
f(L−1

3 (x))
a

)]
.

Since g is a bijective automorphism and f is linear, we get ψ−1 = φ−1
1 +

φ−1
2 + φ−1

3 . ��
Similarly, by using Proposition 2, the above proposition leads then to the

following construction of bent functions.
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Theorem 3. Let m, t ∈ Z
+ such that t < m and t divides m. Let f : F2m → F2t

be a linear mapping. Let g : F2t → F2t be an automorphism of F2t . Let α ∈ F
∗
2m

and a ∈ F
∗
2t such that α is an a-linear translator of f with respect to F2t .

For i ∈ {1, 2, 3}. Let Li : F2m → F2m be an F2t-linear permutation of F2m ,
i ∈ {1, 2, 3}. Suppose that L1, L2 and L3 satisfies (Am). Set ρ : F2m → F2m as
ρ(x) := g(f(x)) + f(x)

a and ρ̃ : F2m → F2m as ρ̃(x) := 1
a

(
g−1

(
f(x)

a

)
+ f(x)

)
.

Then,

H(x, y) = Trm
1

(
xL1(y)

)
Trm

1

(
xL2(y)

)
+ Trm

1

(
xL1(y)

)
Trm

1

(
xL3(y)

)
+

Trm
1

(
xL2(y)

)
Trm

1

(
xL3(y)

)
+ Trm

1

(
xL1(y)

)
Trm

1

(
(L2(α) + L3(α))xρ(y)

)
+

Trm
1

(
xL2(y)

)
Trm

1

(
(L1(α) + L3(α))xρ(y)

)
+

Trm
1

(
xL3(y)

)
Trm

1

(
(L1(α) + L2(α))xρ(y)

)
+

Trm
1 (L1(α)xρ(y))Trm

1 (L2(α)xρ(y))+
Trm

1 (L1(α)xρ(y))Trm
1 (L3(α)xρ(y))+

Trm
1 (L2(α)xρ(y))Trm

1 (L3(α)xρ(y)) (12)

is bent. Furthermore, its dual function H̃ is given by

H̃(x, y) = Trm1
(
yL−1

1 (x)
)
Trm1

(
yL−1

2 (x)
)

+ Trm1
(
yL−1

1 (x)
)
Trm1

(
yL−1

3 (x)
)
+

Trm1
(
yL−1

2 (x)
)
Trm1

(
yL−1

3 (x)
)
+

Trm1
(
yL−1

1 (x)
)
Trm1

(
αy(ρ̃(L−1

2 (x)) + L−1
3 (x))

)
+

Trm1
(
yL−1

2 (x)
)
Trm1

(
αy(ρ̃(L−1

1 (x)) + L−1
3 (x))

)
+

Trm1
(
yL−1

3 (x)
)
Trm1

(
αy(ρ̃(L−1

1 (x)) + L−1
2 (x))

)
+

Trm1
(
αyρ̃(L−1

1 (x))
)
Trm2

(
αyρ̃(L−1

2 (x))
)
+

Trm1
(
αyρ̃(L−1

1 (x))
)
Trm3

(
αyρ̃(L−1

3 (x))
)
+

Trm2
(
αyρ̃(L−1

2 (x))
)
Trm3

(
αyρ̃(L−1

3 (x))
)
. (13)

Example 3. Consider the special case of Theorem 3: m = 4 and t = 2. Let ρ be
a primitive element of F16 satisfying the equation ρ4 + ρ + 1 = 0 and ω be a
primitive element of F4 satisfying the equation ω2 + ω + 1 = 0. Set f : F16 →
F4, g : F4 → F4, a ∈ F

∗
4 and α ∈ F

∗
16 as follows: f(x) = x + x4, g(x) = x,

a = ω, and α = ρ. Thus α is an a-linear translator of f with respect to F4. Also,
for i ∈ {1, 2, 3}, set Li : F16 → F16 as L1(x) = ρ14x8 + ρ13x4 + ρ5x2 + ρ13x,
L2(x) = ρ13x8+ρ4x4+ρ7x2+ρ10x, and L3(x) = ρ5x8+ρ2x4+ρ3x2+ρ8x. (This
choice of L1, L2, L3 makes them to satisfy A4.) With this setup, for i ∈ {1, 2, 3},
φi : F16 → F16 defined as φ1(x) = ρ14x8 + ρ8x4 + ρ5x2 + ρ8x, φ2(x) = ρ13x8 +
ρ7x4 +ρ7x2 +ρ12x, and φ3(x) = ρ5x8 +ρ6x4 +ρ3x2 +ρ13x should satisfy A4, by
Proposition 5. Hence they can be used to define a bent function H from F16×F16

to F2 with the construction defined in Theorem 3.
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Proposition 6. Let m, t ∈ Z
+ be such that t < m and t divides m. Let both f

and h be mappings from F2m to F2t . Let α1, α2 ∈ F
∗
2m and a1, a2, b1, b2 ∈ F

∗
2t

be such that

i. α1 is an a1-linear translator of f and b1-linear translator of hwith respect to F2t ,
ii. α2 is an a2-linear translator of f and b2-linear translator of hwith respect to F2t .

Let g1 and g2 be both polynomials over F2t . Assume ψ : F2t × F2t → F2t × F2t

defined as

ψ(x, y) :=
(
x + a1g1(x) + a2g2(y), y + b1g1(x) + b2g2(y)

)

is a permutation. Set φ : F2m → F2m as

φ(x) := x + α1g1(f(x)) + α2g2(h(x)). (14)

Then φ is a permutation polynomial of F2m and

φ−1(x) = x + α1(g1 ◦ π1 ◦ ψ−1)(f(x), h(x))

+ α2(g2 ◦ π2 ◦ ψ−1)(f(x), h(x)), (15)

where π1 : F2t × F2t → F2t and π2 : F2t × F2t → F2t are projections defined as

π1(x, y) := x and π2(x, y) := y.

Proof. Let φ(x) = y for some y ∈ F2m . By definition,

x + α1g1(f(x)) + α2g2(h(x)) = y. (16)

Taking f of both sides and using the fact that α1 is an a1-linear translator of f
and α2 is an a2-linear translator of f , we obtain

f(x) + a1g1(f(x)) + a2g2(h(x)) = f(y). (17)

Similarly, taking h of both sides in the Eq. (16) and using the fact that α1 is an
b1-linear translator of h and α2 is an b2-linear translator of h, we also get

h(x) + b1g1(f(x)) + b2g2(h(x)) = h(y). (18)

Combining Eqs. (17) and (18) gives us

ψ
(
f(x), h(x)

)
=

(
f(y), h(y)

)
.

Since ψ is a permutation, ψ−1 exists and we have
(
f(x), h(x)

)
= ψ−1

(
f(y), h(y)

)
.

By definition of π1 and π2, the Eq. (16) gives us

x = y + α1g1(π1 ◦ ψ−1(f(y), h(y))) + α2g2(π2 ◦ ψ−1(f(y), h(y))),

proving that φ is a permutation whose compositional inverse φ−1 is given by the
above expression. ��
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Now, by a similar approach, one can obtain a new family of bent functions as
follows.

Theorem 4. Let m, t ∈ Z
+ such that t < m and t divides m. Let both f

and h be mappings from F2m to F2t . For i ∈ {1, 2, 3}, let α1i, α2i ∈ F
∗
2m and

a1, a2, b1, b2 ∈ F
∗
2t be such that

i. α1i is an a1-linear translator of f and b1-linear translator of h with respect
to F2t ,

ii. α2i is an a2-linear translator of f and b2-linear translator of h with respect
to F2t .

Let g1 and g2 be both polynomials over F2t . Assume ψ : F2t × F2t → F2t × F2t

defined as

ψ(x, y) := (x + a1g1(x) + a2g2(y), y + b1g1(x) + b2g2(y))

is a permutation. Then

H(x, y) = Trm1 (xy) + Trm1 (xα11g1(f(y)))Trm1 (xα12g1(f(y)))

+Trm1 (xα11g1(f(y)))Trm1 (xα13g1(f(y))) + Trm1 (xα11g1(f(y)))Trm1 (xα22g2(h(y)))

+Trm1 (xα11g1(f(y)))Trm1 (xα23g2(h(y))) + Trm1 (xα12g1(f(y)))Trm1 (xα13g1(f(y)))

+Trm1 (xα12g1(f(y)))Trm1 (xα21g2(h(y))) + Trm1 (xα12g1(f(y)))Trm1 (xα23g2(h(y)))

+Trm1 (xα13g1(f(y)))Trm1 (xα21g2(h(y))) + Trm1 (xα13g1(f(y)))Trm1 (xα22g2(h(y)))

+Trm1 (xα21g2(h(y)))Trm1 (xα22g2(h(y))) + Trm1 (xα21g2(h(y)))Trm1 (xα23g2(h(y)))

+Trm1 (xα22g2(h(y)))Trm1 (xα23g2(h(y))) (19)

is bent.

Proof. For i ∈ {1, 2, 3}, define φi : F2m → F2m as follows:

φi(y) = y + α1ig1(f(y)) + α2ig2(h(y)).

Then by Proposition 6, φ1, φ2 and φ3 are all permutations. Define φ := φ1+φ2+
φ3. Then easy to verify that φ is also a permutation. Moreover; by Proposition 1
and Proposition 6, one can prove that φ−1 = φ1

−1+φ2
−1+φ3

−1. So, these three
permutations satisfy (Am). By Proposition 2, we conclude that

H(x, y) = Trm
1 (xφ1(y))Trm

1 (xφ2(y)) + Trm
1 (xφ1(y))Trm

1 (xφ3(y))+
Trm

1 (xφ2(y))Trm
1 (xφ3(y))

is bent. The result follows after several computations. ��
Moreover, we shall see in the following examples that it is not hard to find

functions g1 and g2 leading to the construction of the permutation ψ of F2t ×F2t

defined as in Theorem 4.
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Example 4. For a1 = a2 = b1 = b2, let g1(x) = g2(x) = x2. So ψ(x, y) =
(x + cx2 + cy2, y + cx2 + cy2), for some c ∈ F2t . Assume that

(x1 + cx1
2 + cy1

2, y1 + cx1
2 + cy1

2) = (x2 + cx2
2 + cy2

2, y2 + cx2
2 + cy2

2),

for some (x1, y1), (x2, y2) ∈ F2t × F2t . Then we obtain the equation x1 + y1 =
x2 + y2, so x1

2 + y1
2 = x2

2 + y2
2 which gives the result (x1, y1) = (x2, y2).

Example 5. For a1 = a2 = b1 = b2 = 1, let g1(x) = x2 + cx and g2(x) = x2 + dx,
where c and d are two elements of F2t satisfying c+ d �= 1. Then, the ψ function
defined in Theorem 4 becomes

ψ(x, y) = ((c + 1)x + x2 + dy + y2, cx + x2 + (d + 1)y + y2),

and by a similar way used in the previous example, it easy to conclude that ψ
is a permutation.

3 Our New Families Are Not in the Maiorana-McFarland
Class

In the world of bent functions, within all primary constructions, the Maiorana-
McFarland gives the widest class by far. Therefore, to prove that several bent
functions constructed by using the idea presented in the previous section will not
be in the Maiorana-McFarland Class is quite important. Section 3.4 is reserved
mainly for this purpose.

First, recall that the first derivative of a Boolean function f in the direction
of a ∈ F2n is defined as Daf(x) = f(x)+f(x+a). A publicly know fact is stating
that a bent function H : F2m×F2m → F2 is in the class of Maiorana-McFarland if
and only if D(b,0)D(c,0)H(x, y) = 0, for all b, c ∈ F

∗
2m . Let’s start with the rough

sketch of the proof of this fact for the curious reader: let F : F2m ×F2m → F2 be
a Boolean function. Then F is in the Maiorana-McFarland class if and only if

F (x, y) = Trm
1 (x, π(y)) + h(y)

for some h : F2m → F2 and π : F2m → F2m . Fix y ∈ F2m , and let x1, x2 ∈ F2m .
Then

F (x1 + x2, y) = Trm
1 (x1, π(y)) + Trm

1 (x2, π(y)) + h(y),

which is equal to
F (x1, y) + F (x2, y) + h(y).

Therefore F ∈ M if and only if it is affine in x, for all y. Clearly, any affine func-
tion G : F2m → F2 can be defined by the property DbDcG(x)|x=0 = 0, ∀b, c ∈
F2m . Functions F : F2m × F2m → F2 belonging to the class M can be therefore
defined by the property

D(b,0)D(c,0)|x=0F (x, y) = 0, ∀y ∈ F2m .
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Consider one of the bent functions H : F2m × F2m → F2 constructed in the
previous section. All of these functions are of the following form:

H(x, y) = Trm
1

(
xφ1(y)

)
Trm

1

(
xφ2(y)

)
+ Trm

1

(
xφ1(y)

)
Trm

1

(
xφ3(y)

)
+

Trm
1

(
xφ2(y)

)
Trm

1

(
xφ3(y)

)
.

Taking the first derivative of H will result in

D(c,0)H(x, y) = Trm
1

(
xφ1(y)

)
Trm

1

(
cφ2(y)

)
+ Trm

1

(
cφ1(y)

)
Trm

1

(
xφ2(y)

)

+Trm
1

(
cφ1(y)

)
Trm

1

(
cφ2(y)

)
+ Trm

1

(
xφ1(y)

)
Trm

1

(
cφ3(y)

)

+Trm
1

(
cφ1(y)

)
Trm

1

(
xφ3(y)

)
+ Trm

1

(
cφ1(y)

)
Trm

1

(
cφ3(y)

)

+Trm
1

(
xφ2(y)

)
Trm

1

(
cφ3(y)

)
+ Trm

1

(
cφ2(y)

)
Trm

1

(
xφ3(y)

)

+Trm
1

(
cφ2(y)

)
Trm

1

(
cφ3(y)

)
,

and the second derivative of H at x = 0 will be equal to

D(b,0)D(c,0)H(x, y) = Trm
1

(
bφ1(y)

)
Trm

1

(
cφ2(y)

)
+ Trm

1

(
cφ1(y)

)
Trm

1

(
bφ2(y)

)

+ Trm
1

(
bφ1(y)

)
Trm

1

(
cφ3(y)

)
+ Trm

1

(
cφ1(y)

)
Trm

1

(
bφ3(y)

)

+ Trm
1

(
bφ2(y)

)
Trm

1

(
cφ3(y)

)
+ Trm

1

(
cφ2(y)

)
Trm

1

(
bφ3(y)

)
.

Therefore, in order to prove that H /∈ M, it is enough to find two elements
b, c ∈ F

∗
2m satisfying

Trm
1

(
bφ1(y)

)
Trm

1

(
cφ2(y)

)
+ Trm

1

(
cφ1(y)

)
Trm

1

(
bφ2(y)

)

+ Trm
1

(
bφ1(y)

)
Trm

1

(
cφ3(y)

)
+ Trm

1

(
cφ1(y)

)
Trm

1

(
bφ3(y)

)

+ Trm
1

(
bφ2(y)

)
Trm

1

(
cφ3(y)

)
+ Trm

1

(
cφ2(y)

)
Trm

1

(
bφ3(y)

) �= 0. (20)

3.1 Families Obtained by the Construction Defined in Theorem1

Recall the bent function H obtained in Example 1. A brief search on (b, c)-tuples
will show that there exist various choices for them satisfying the Eq. (20), and
(b, c) = (ξ4, ξ2) is just one of them.

3.2 Families Obtained by the Construction Defined in Theorem2

Consider the bent function H obtained in Example 2. Within a lot of (b, c)-tuples
satisfying the Eq. (20), one can take (b, c) = (ρ, ρ3).

3.3 Families Obtained by the Construction Defined in Theorem3

Recall the bent function H obtained in Example 3. One can see that the Eq. (20)
is satisfied for many (b, c)-tuples, where y = ρ3; and (b, c) =

(
ρ7, ρ5

)
is just one

of them.
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3.4 Families Obtained by the Construction Defined in Theorem4

Consider the special case of 4: m = 4 and t = 2. Let ρ be a primitive element
of F16 satisfying the equation ρ4 + ρ + 1 = 0 and ω be a primitive element of
F4 satisfying the equation ω2 + ω + 1 = 0. For i ∈ {1, 2, 3} and j ∈ {1, 2},
set f, h : F16 → F4, gj : F4 → F4, aj , bj ∈ F

∗
4 and αij ∈ F

∗
16 as follows:

f(x) = h(x) = x + x4, g1(x) = x2 + ωx, g2(x) = x2 + x, a1 = a2 = b1 =
b2 = 1, α11 = ρ, α12 = α31 = ρ2, α21 = α32 = ρ4, and α22 = ρ8. Thus all of
these αij ’s will be 1-linear translators of f with respect to F4. With this setup,
φi : F16 → F16 defined as φ1(x) = x + α11g1(x + x4) + α12g2(x + x4), φ2(x) =
x+α21g1(x+x4)+α22g2(x+x4) and φ3(x) = x+α31g1(x+x4)+α32g2(x+x4)
should satisfy A4, and so they can be used to define a bent function H from
F16 × F16 to F2, by using the construction given in Theorem 4. For this bent
function H, the choice (b, c) = (ρ, ρ3) satisfies the Eq. (20) within many (b, c)-
choices satisfying it.

4 Conclusion

In this paper, we present new infinite families of permutations. We show that
those families have the nice property that one can select three elements among
them which allow to use the construction proposed in [7,8]. To this end, we
have exploited the linear dependence of the expressions of those permutations on
some coefficients to obtain several new infinite families of bent functions together
with their dual functions. Furthermore, we show that our families are not in the
Maiorana-McFarland class in general. It remains obviously to check the affine
inequivalence of the proposed bent functions to the other known constructions.
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Abstract. Two new classes of bent functions derived from the
Maiorana-McFarland (M) class, so-called C and D, were introduced by
Carlet [2] two decades ago. However, apart from the subclass D0, some
explicit construction methods for these functions were not provided in
[2]. Assuming the possibility of specifying a bent function f that belongs
to one of these two classes (apart from D0), the most important issue
is then to determine whether f is still contained in the known primary
classes or lies outside their completed versions. In this article we partially
solve this question by providing sufficient conditions on the permutation
and related characteristic function (used to define f in these classes) so
that f is provably outside the completed M class. To give some exis-
tence results, we employ recent results in [12] where some instances of
bent functions in C were identified by providing specific permutations
and related characteristic functions. More precisely, using our sufficient
conditions that apply to both C and D, it is shown that these identified
classes of C functions described in [12] do not belong to the completed M
class, whereas the question (which is more difficult) whether these func-
tions are also outside the completed partial spread class remains open.
We also propose some generic methods for specifying bent functions in
D outside the completed Maiorana-McFarland class.

Keywords: Bent functions · C and D class · Maiorana-McFarland class

1 Introduction

Bent functions, as a particular subclass of Boolean functions, have many different
and regular characterizations thus giving many interesting connections to other
combinatorial objects such as difference sets, error correcting codes, sequences,
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and in general having a wide range of cryptographic applications. These discrete
mathematical objects were introduced by Rothaus [13] and then later elaborated
by Dillon [8] and McFarland [11]. The most significant impact of the latter
two works is that essentially generic primary classes of bent functions could be
deduced which is today known as partial spread (PS) class due to Dillon and
as Maiorana-McFarland (M) class stemming from [11]. In 1993, two additional
classes of bent functions derived by a suitable modification of bent functions
in the M class, named as C and D, were proposed by Carlet [2] and these
classes fall under the term secondary constructions. Another generic and primary
class H was proposed by Dobbertin [9] which includes both M and PS. Both
these primary classes and the secondary classes of Carlet greatly contribute to
enumeration and classification of bent functions even though a complete solution
to these problems seems to be elusive. In this context, it is worthy to emphasize
the importance and the need of better understanding of a general construction
method of bent functions due to Rothaus [13] because it is unclear to which
primary class these functions belong to and after all it might be the case that
the construction of Rothaus gives rise to provably new class of bent functions
assuming that the initial bent functions are suitably chosen. For further details
regarding the construction of Rothaus the interested reader is referred to [13].
For a survey of many other secondary constructions of bent functions the reader
is referred to [3] whereas an exhaustive survey on bent functions can be found
in [5].

The secondary classes of bent functions C and D are derived from the M
class (see (1), (2) and property (C) below) by adding the indicator functions of
suitably chosen vector subspaces to the functions in the M class. Nevertheless,
apart from an explicit subclass denoted by D0, the bent conditions in terms of
the selection of a vector subspace L and permutation π (used to define the initial
function f(x, y) = x ·π(y) in M, where x, y ∈ F

n
2 ) are rather hard to satisfy. This

problem was recently addressed in [12] and the hardness of satisfying the prop-
erty (C) (thus identifying a suitable permutation and related vector subspace)
was confirmed true since for some classes of permutation polynomials there are
no suitable linear subspaces of certain dimension for which the modification of
f ∈ M would give a bent function f∗ ∈ C. On the other hand, for some other
classes of permutations and associated linear subspaces of the same dimension
it could be verified that indeed we get a bent function f∗ ∈ C. Thus, given the
existence of bent functions f∗ ∈ C the most fundamental issue is to determine
whether these functions are essentially contained in the known primary classes
(which gives nothing new in that case) or these functions potentially lie outside
the known classes. It should be remarked that certain choices of the indicator
functions used to define f∗ from f ∈ M are provably non-efficient in this context,
thus giving rise to bent functions f∗ within the class M.

In this article we provide sufficient conditions on the choice of the permu-
tation π and the corresponding linear subspace so that a bent function f∗ that
belongs either to C or D is outside the completed M class. This is the first
step towards a better understanding of classification of bent functions in these
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secondary classes which also opens up for further investigation concerning a
more refined classification in terms of determining whether these functions are
also outside the completed PS and H class (which is intrinsically more difficult
due to the absence of efficient indicators for these classes). The derived sufficient
conditions are relatively simple and they roughly speaking correspond to the
existence of permutations without linear structures. Then, using the sufficient
conditions that the bent functions in C or D do not belong to the completed M
class we could show that some instances of bent functions in C identified in [12]
are indeed outside the completed M class, thus answering positively the classi-
fication issue raised in [12]. Furthermore, some generic methods for specifying
suitable monomial permutations are given for the purpose of generating bent
functions in D outside the completed M class.

The rest of this article is organized as follows. In Sect. 2 we provide some basic
definitions related to Boolean (and in particular bent) functions along with the
exact definitions of C and D classes. Sufficient conditions that bent functions in
C or D do not belong to the completed M class are given in Sect. 3. In Sect. 4,
we demonstrate that some instances of bent functions in C, identified in [12], do
not belong to the completed M class. Sufficient conditions ensuring that bent
functions in D are outside the completed M class are shown to be relatively
easily satisfied in Sect. 5. Some concluding remarks are given in Sect. 6.

2 Preliminaries

Let F2 denote the binary field and let the n-dimensional vector space spanned
over F2 be denoted by F

n
2 = {x = (x1, . . . , xn) : xi ∈ F2, for i = 1, . . . , n}. The

extended Galois field of degree n over F2 is denoted by F2n . Any function from
F

n
2 to F2 (or, equivalently from F2n to F2) is called a Boolean function on n

variables and the set of all Boolean functions on n variables is denoted by Bn.
For a detailed study of Boolean functions we refer to Carlet [3,4], and Cusick

and Stănică [7]. For the convenience of the reader, we recall some basic notions
below. For any x ∈ F

n
2 , the (Hamming) weight of x is defined as the number of

nonzero entries of x. The algebraic normal form (ANF) of a Boolean function
f ∈ Bn is

f(x1, . . . , xn) =
∑

a=(a1,...,an)∈F
n
2

μaxa1
1 · · · xan

n ,

where μa ∈ F2, for all a ∈ F
n
2 . The algebraic degree of f is deg(f) =

maxa∈F
n
2
{wt(a) : μa �= 0}. The standard inner (dot) product of two vectors

u, x ∈ F
n
2 is defined as u · x :=

∑n
i=1 uixi, for all. Once the basis of F2n over F2

is fixed we isomorphically identify F
n
2 with F2n .

We denote by Tr(·) the absolute trace on F2n and by Tn
k (·) the trace function

from F2n to F2k , where k divides n:

Tn
k (β) = β + βpk

+ · · · + βp(n/k−1)k
.
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The Walsh-Hadamard transform of f ∈ Bn at u ∈ F
n
2 is

Wf (u) =
∑

x∈F
n
2

(−1)f(x)(−1)u·x,

and the multiset [Wf (u) : u ∈ F
n
2 ] is said to be the Walsh-Hadamard spectrum

of f . The derivative of f ∈ Bn at a ∈ F
n
2 , denoted by Daf , is a Boolean function

defined by
Daf(x) = f(x + a) + f(x), for all x ∈ F

n
2 .

Higher order derivatives of a Boolean function refer to k-dimensional vector
subspaces, where k > 1. Suppose {a1, a2, . . . , ak} is a basis of a k-dimensional
subspace V of Fn

2 (we write dim(V ) = k). The k-th derivative of f with respect
to V , denoted by DV f , is a Boolean function defined by

DV f(x) = Dak
Dak−1 . . . Da1f(x), for all x ∈ F

n
2 .

It is to be noted that DV f is independent of the choice of the basis of V .
A Boolean function f ∈ Bn, where n is an even positive integer, is said to

be a bent function if Wf (u) ∈ {−2n/2, 2n/2}, for all u ∈ F
n
2 .

2.1 Bent Functions in C and D
The Maiorana-McFarland class M is the set of m-variable (m = 2n) Boolean
functions of the form

f(x, y) = x · π(y) + g(y), for all x, y ∈ F
n
2 ,

where π is a permutation on F
n
2 , and g is an arbitrary Boolean function on F

n
2 .

From this class Carlet derived the C class of bent functions that contains all
functions of the form

f(x, y) = x · π(y) + 1L⊥(x) (1)

where L is any linear subspace of Fn
2 , 1L⊥ is the indicator function of the space

L⊥, and π is any permutation on F
n
2 such that:

(C) φ(a + L) is a flat (affine subspace), for all a ∈ F
n
2 , where φ := π−1.

The permutation φ and the subspace L are then said to satisfy property (C),
for short (φ,L) has property (C).

Another class introduced by Carlet, called D, is defined similarly as

f(x, y) = x · π(y) + 1E1(x)1E2(y) (2)

with π a permutation on F
n
2 and E1, E2 two linear subspaces of F

n
2 such that

π(E2) = E⊥
1 .

Definition 1. A class of bent functions {f} ∈ Bn is complete if it is globally
invariant under the action of the general affine group (the group of all invertible
matrices of size n × n over F2) and under the addition of affine functions. The
completed class is the smallest possible class that properly includes the class
under consideration.
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3 Sufficient Conditions for Functions in C and D
to Be Outside M#

A useful indicator for the purpose of establishing whether a given bent function
belongs to the completed Maiorana-McFarland class (M#) is given below.

Lemma 1 [8, p. 102]. An m-variable bent function f , m = 2n, belongs to M#

if and only if there exists an n-dimensional linear subspace V of Fm
2 such that

the second order derivatives

DαDβf(x) = f(x) ⊕ f(x ⊕ α) ⊕ f(x ⊕ β) ⊕ f(x ⊕ α ⊕ β)

vanish for any α, β ∈ V .

Using this criterion we firstly address the problem of deciding whether bent
functions in C are outside the completed M class.

Theorem 1. Let m = 2n > 4 be an even integer and let f(x, y) = π(y) · x ⊕
1L⊥(x), where L is any linear subspace of Fn

2 and π is a permutation on F
n
2 such

that (π, L) has property (C). If π satisfies:

1. dim(L) ≥ 2;
2. π has no nonzero linear structure;

then f does not belong to M#.

Proof. Let a(1),b(1),a(2),b(2) ∈ F
n
2 . We prove that f does not belong to M#, by

using Lemma 1. We need to show that there does not exist an n-dimensional
subspace V such that

D(a(1),a(2))D(b(1),b(2))f = 0,

for any (a(1), a(2)), (b(1), b(2)) ∈ V .
The second derivative of f with respect to a and b can be written as,

D(a(1),a(2))D(b(1),b(2))f(x) = x · (Da(2)Db(2)π(y)) ⊕ a(1) · Db(2)π(y ⊕ a(2)) (3)

⊕ b(1) · Da(2)π(y ⊕ b(2)) ⊕ Da(1)Db(1)1L⊥(x)

We denote the set {(x, 0n) | x ∈ F
n
2} by Δ. We will distinguish two main

cases depending on whether V = Δ or V �= Δ.
For V = Δ, we can find two vectors (a(1), 0n), (b(1), 0n) ∈ Δ such that

Da(1)Db(1)1L⊥(x) �= 0

since dim(L) ≥ 2 (i.e., deg(1L⊥) ≥ 2). Further, we know

D(a(1),a(2))D(b(1),b(2))f(x) = Da(1)Db(1)1L⊥(x) �= 0.

Let now V �= Δ. We split the proof into three cases depending on the cardi-
nality of V ∩ Δ. We set V =

{
(v(1)

1 , v
(1)
2 ), (v(2)

1 , v
(2)
2 ), . . . , (v(2n)

1 , v
(2n)
2 )

}
,



Bent Functions in C and D Outside M# 303

1. For |V ∩ Δ| = 1, we have v
(i)
2 �= v

(j)
2 for any i �= j. If there exist two vectors

v
(i1)
2 , v

(j1)
2 such that v

(i1)
2 = v

(j1)
2 , then v

(i1)
1 = v

(j1)
1 , (or (v(i1)

1 ⊕ v
(j1)
1 , 0n) ∈

V ∩ Δ), that is, (v(i1)
1 , v

(i1)
2 ) = (v(j1)

1 , v
(j1)
2 ). Further, |{v(1)

2 , v
(2)
2 , . . . , v

(2n)
2 }| =

|V | = 2n, that is, {v
(1)
2 , v

(2)
2 , . . . , v

(2n)
2 } = F

n
2 (here, if v

(i1)
2 = v

(i2)
2 , they are

called one element).
Now, there are two cases to be considered.
(a) If there exists one vector v = (v(1), v(2)) ∈ V \{02n} such that v(1) = 0n,

we set a = v. We know

Da(1)1L⊥(x) = 0.

For the nonzero vector a, we have

deg(Da(2)π(y)) ≥ 1

since π has no nonzero linear structure (i.e., deg(π) ≥ 2). Further, since
{v

(1)
2 , v

(2)
2 , . . . , v

(2n)
2 } = F

n
2 , we are able to select b ∈ V \{02n, a} such

that
Da(2)Db(2)π(y) �= 0n.

Thus, D(a(1),a(2))D(b(1),b(2))f(x) = x · (Da(2)Db(2)π(y)) ⊕ b(1) · Da(2)π(y ⊕
b(2)) �= 0, since Da(2)Db(2)π(y) �= 0 implies that x · (Da(2)Db(2)π(y)) is
not constant, i.e. depends on x.

(b) If there does not exist a vector v = (v(1), v(2)) ∈ V \{02n} such that
v(1) = 0n, then we have |{v(1)

1 , v
(2)
1 , . . . , v

(2n)
1 }| = |V | = 2n (that is, {v

(1)
1 ,

v
(2)
1 , . . . , v

(2n)
1 } = F

n
2 ) since V is a subspace and |{v(1)

2 , v
(2)
2 , . . . , v

(2n)
2 }| =

|V | = 2n. We set a ∈ V \{02n} such that a(1) ∈ L⊥. From the definition
of indicator functions, we know

Da(1)1L⊥(x) = 0.

Further, we have
Da(1)Db(1)1L⊥(x) = 0.

Further, since {v
(1)
2 , v

(2)
2 , . . . , v

(2n)
2 } = F

n
2 , we are able to select b ∈

V \{02n, a} such that

Da(2)Db(2)π(y) �= 0n.

Thus, D(a(1),a(2))D(b(1),b(2))f(x) = x · (Da(2)Db(2)π(y)) ⊕ a(1) · Db(2)π(y ⊕
a(2)) ⊕ b(1) · Da(2)π(y ⊕ b(2)) �= 0, since Da(2)Db(2)π(y) �= 0 implies that
x · (Da(2)Db(2)π(y)) is not constant, i.e. depends on x.

Hence, we have
D(a(1),a(2))D(b(1),b(2))f(x) �= 0

for |V ∩ Δ| = 1.
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2. For |V ∩ Δ| ≥ 2, without loss of generality, let (a(1), 0n)(�= 02n) ∈ V ∩ Δ. Set
b ∈ V \{02n, a}, then b(2) �= 0n. Thus,

DaDbf(x) = a(1) · Db(2)π(y) ⊕ Da(1)Db(1)1L⊥(x) �= 0

since π has no nonzero linear structure.

Combining both cases V = Δ and V �= Δ we deduce that f does not belong
to M#. ��

A similar set of conditions on permutation π used in the definition of D class
of bent functions can be deduced.

Theorem 2. Let m = 2n > 6 be an even integer and let f(x, y) = π(y) ·
x ⊕ 1E1(x)1E2(x), where π is a permutation on F

n
2 , and E1, E2 are two linear

subspaces of Fn
2 such that π(E2) = E⊥

1 . If π satisfies:

1. dim(E1) ≥ 2 and dim(E2) ≥ 2;
2. π has no nonzero linear structure;
3. deg(π) ≤ n − dim(E2),

then f does not belong to M#.

The lengthy proof of Theorem 2 is given in the Appendix.

4 Some Examples of Bent Functions in C Outside M#

In this section we apply the criterion derived in the previous section to those bent
functions given in [12] that satisfy the property (C). Notice that the condition in
Theorem 1 regards the condition imposed on π(x) and not on φ(x) = π−1(x) but
this is of no relevance due the result of Charpin and Sarkar [6]. More precisely,
it was shown that if F is a permutation then linear structures of F and F−1

are closely related and in particular the non-existence of linear structures for F
implies the no-existence of linear structures for F−1, see Lemma 2 in [6]. For
convenience of the reader, we recall a few examples of bent functions satisfying
the property (C), cf. [12].

Theorem 3 [12]. Suppose φ(x) = x2r+1, for all x ∈ F2n , where gcd(r, n) = e,
n/e is odd and gcd(2n − 1, 2r + 1) = 1.

(i) Then (φ,L) (where L is a subspace of dim(L) = 2) satisfies the (C) property
if and only if L = 〈u, cu〉 where u ∈ F

∗
2n and 1 �= c ∈ F

∗
2e .

(ii) We assume that e = gcd(n, r) > 1 and L = 〈u1, c1u1, . . . , cs−1u1〉, dim(L) =
s, ci ∈ F

∗
2e , 1 ≤ i ≤ s− 1, s ≥ 2, and u1 ∈ F

∗
2n . Then (φ,L) satisfies the (C)

property.

The following example was also provided in [12], thus providing an infinite
class of bent functions in C other than D0.
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Example 1. Let n = 2p where p is any odd prime, r = 2 and e = gcd(n, r) = 2.
Since n/e is odd, it is known that gcd(2r + 1, 2n − 1) = 1. Therefore φ(x) =
x2r+1 is a permutation on F2n . Let ζ be a primitive element of F2n . Therefore,
λ = ζ

2n−1
2e−1 = ζ

2n−1
3 is a generator of F2e . Suppose that the permutation π(x) =

φ−1(x) = xγ where γ(2r + 1) ≡ 1 (mod 2n − 1). Given r and n, γ can be
computed easily by the Euclidean algorithm. Consider the Maiorana-McFarland
bent f(x, y) = x · π(y). According to Theorem 3 if we choose L = 〈1, λ〉, then
the function f∗(x, y) = x · π(y) + 1L⊥(x) is in C. The bent function f∗ can be
explicitly written as

f∗(x, y) = Trn
1 (xyγ) + (Trn

1 (x) + 1)(Trn
1 (λx) + 1)

= Trn
1 (xyγ) + Trn

1 (x)Trn
1 (λx) + Trn

1 ((1 + λ)x) + 1.
(4)

Using new tools presented in this article we can answer the question of
whether the function f∗ defined above is outside the completed M class.

Lemma 2. For r �= 0 the function f∗ from Example 1 does not belong to the
completed M class.

Proof. Using Theorem 1 we need to prove that dim(L) ≥ 2 and that the per-
mutation π(x) = xγ has no linear structures. Since L = 〈1, λ〉, where λ is the
generator of F2e = F22 , we have dim(L) = 2. By Lemma 2 in [6], instead of
considering π(x) we show the non-existence of linear structures of φ(x) = x2r+1.

Suppose the mapping φ(x) has a c-linear structure a, where a, c ∈ F
∗
2n . Then

(x + a)2
r+1 + x2r+1 = c,

which implies x2r + a2r−1x + a2r + a−1c = 0, for every x ∈ F2n . Taking x = 0
forces a2r + a−1c = 0 and taking x = 1 forces a2r−1 = 1. This leaves us with the
equation x2r + x = 0 for every x ∈ F2n , which implies 2r ≡ 1 mod (2n − 1) and
r = 0. It follows that for r = 2 the permutation π does not have linear structures
and thus the function f∗ from Example 1 does not belong to the completed M
class. ��
Remark 1. Note that when r = 0, the function φ(x) = x2r+1 = x2 obviously
has linear structures since it is a linear permutation, and is not covered by
Theorem 3.

Another class of so-called bilinear split permutations (considered originally in
[1,10]) of the form

φ(x) = x(Trn
l (x) + ax), (5)

where n = kl, l > 1, a ∈ F2l\F2 and Trn
l (x) =

k−1∑
i=0

x2li , was also analyzed in

[12]. It was shown that when k is odd these permutations also give rise to bent
functions satisfying (C).

Lemma 3. The above defined function φ(x) has a linear structure if and only
if l = n.
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Proof. Let b be a c-linear structure of φ(x) = x(Trn
l (x) + ax). Then

(x + b)(Trn
l (x + b) + a(x + b)) + x(Trn

l (x) + ax) = c

x(Trn
l (b) + ab) + b(Trn

l (x) + Trn
l (b) + ax + ab)) = c

xTrn
l (b) + bTrn

l (x) + bTrn
l (b) + ab2 = c

xTrn
l (b) + bTrn

l (x) + (bTrn
l (b) + ab2 + c) = 0,

for every x ∈ F
n
2 . Taking x = 0 forces (bTrn

l (b) + ab2 + c) = 0 and taking
x = 1, since k is odd, implies that Trn

l (b) = b. We are left with the equation
Trn

l (x) = x. This equation is valid for any x ∈ F2n if and only if l = n. ��
Thus the bilinear permutations defined by (5) can be used in constructions

of functions satisfying (C) and being outside the completed M class whenever
we have a nontrivial factorization n = kl.

5 Bent Functions in D Outside M∗

The set of sufficient conditions related to class D given in Theorem 2 is harder
to satisfy than those related to class C so we have limited ourselves to the study
of monomial permutations.

Proposition 1. Let n be even. Then any non-linear monomial permutation
π(y) = yd, where deg(π) ≤ n − 2, satisfies the required conditions in
Theorem 2 for the 2-dimensional vector subspace E2 = 〈ζ 2n−1

3 , ζ
2(2n−1)

3 〉, where
ζ is a primitive element of F2n .

Proof. Since n is even, 3 | 2n − 1 and furthermore E2 is not only a vector sub-
space but also corresponds to a subfield {0, 1, ζ

2n−1
3 , ζ

2(2n−1)
3 }. This is because

π is a monomial permutation and it must map every subfield to itself (multi-
plication being closed). Therefore, π(E2) = E2 = E⊥

1 . The permutation π is
a non-linear monomial, therefore it does not have a linear structure. The con-
dition deg(π) ≤ n − dim(E2) is satisfied as well since deg(π) ≤ n − 2 and
dim(E2) = 2. ��

We illustrate this approach by providing an example for n = 6.

Example 2. Let n = 6 and d = 11 (smaller d will be covered by Proposition 2
below). Since (26 − 1, 11) = 1 and the binary weight of 11 is 3, π(x) = xd is
a cubic permutation. Using the programming package Magma, the vector space
representation on F

6
2 of the subspace E2 = 〈ζ21, ζ42〉, where ζ is the generating

element of the field F26 , is :

E2 =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0, 0, 0, 0, 0)
(1, 0, 0, 0, 0, 0)
(1, 1, 1, 1, 0, 0)
(0, 1, 1, 1, 0, 0)

⎫
⎪⎪⎬

⎪⎪⎭
.
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Since 111 = 1, (ζ21)11 = ζ42, and (ζ42)11 = ζ21, the subspace E2 is indeed mapped
to itself. This gives us E2 = E⊥

1 and

E1 =

〈 (0, 1, 0, 1, 0, 0)
(0, 0, 1, 1, 0, 0)
(0, 0, 0, 0, 1, 0)
(0, 0, 0, 0, 0, 1)

〉
.

Thus, all the requirements of Theorem 2 are satisfied and the permutation π
gives rise to a bent function f(x, y) = π(y) · x ⊕ 1E1(x)1E2(x) contained in D
but outside the M∗ class.

The next result partially overlaps with Proposition 1 but, as shown in
Example 3, it also includes cases when n is odd.

Proposition 2. Let π(y) = yd be a quadratic permutation over F2n (n ≥ 4),
where d = 2i + 2j , i > j, and (2n − 1, 2i + 2j) = 1. Let also E2 = 〈ζa, ζb〉 be a
2-dimensional linear subspace of Fn

2 , where ζ is a primitive element of F2n . If

(a − b)(2i − 2j) ≡ 0 mod (2n − 1)

then π satisfies all the conditions in Theorem 2.

Proof. Since π is a quadratic permutation monomial it has no linear structures.
Because n ≥ 4 and deg(π) = 2, it also satisfies deg(π) ≤ n−dim(E2). It remains
to determine when the subspace E2 is mapped to a subspace. Noting that ζa →
ζad and ζb → ζbd, it is required that ζa + ζb is mapped to (ζa + ζb)d = ζad + ζbd.
Therefore

(ζa + ζb)2
i+2j = ζa(2i+2j) + ζb(2i+2j)

ζa(2i+2j) + ζa2i+b2j + ζb2i+a2j + ζb(2i+2j) = ζa(2i+2j) + ζb(2i+2j)

ζa2i+b2j = ζb2i+a2j .

It follows that

a2i + b2j ≡ b2i + a2j mod (2n − 1),

which implies (a − b)(2i − 2j) ≡ 0 mod (2n − 1), as stated. Thus, all three
conditions imposed by Theorem 2 are satisfied. ��
Remark 2. It should be noted that given the set of parameters a, b, i and j
satisfying the main condition in Proposition 2 we are still left with some freedom
in choosing the subspace E2 since the only constraint is on the fixed difference
a − b satisfying (a − b)(2i − 2j) ≡ 0 mod (2n − 1). This gives multiple choices
of a and b for specifying the elements ζa, ζb.
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It turns out that the conditions in Proposition 2 cannot be satisfied for
relatively small n. It was confirmed (using the programming package Magma)
that the smallest n for which a 2-dimensional subspace E2 in Proposition 2 can
be found is n = 6. Nevertheless, in order to also present a construction for odd
n, we give below an example for n = 9.

Example 3. Let n = 9 and π(y) = y9, thus i = 3, j = 0. Then π is a quadratic
permutation since (29−1, 9) = 1. Furthermore, (a−b) = (29−1)/(23−20) = 73.
We choose a = 74, b = 1 and use Magma to get the vector space representation
of the subspace E2 = 〈ζ, ζ74〉, where ζ is the generating element of the field F29 :

E2 =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0, 0, 0, 0, 0, 0, 0, 0)
(1, 1, 0, 0, 1, 1, 0, 1, 0)
(0, 1, 0, 0, 0, 0, 0, 0, 0)
(1, 0, 0, 0, 1, 1, 0, 1, 0)

⎫
⎪⎪⎬

⎪⎪⎭

E⊥
1 = π(E2) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0, 0, 0, 0, 0, 0, 0, 0)
(1, 1, 1, 0, 1, 1, 0, 0, 1)
(1, 0, 0, 0, 1, 0, 0, 0, 0)
(0, 1, 1, 0, 0, 1, 0, 0, 1)

⎫
⎪⎪⎬

⎪⎪⎭
.

One can readily check that all the requirements of Theorem 2 are satisfied.

Remark 3. Finding non-monomial permutations that satisfy the conditions of
Theorem 2 appears to be much harder and is still an open problem.

6 Conclusions

Two secondary classes of bent functions, that possibly provide instances of bent
functions outside the standard primary classes, was introduced by Carlet more
than two decades ago and a single class named D0 was shown to be outside
PS∗ and M∗. For the first time, by specifying sufficient conditions for these two
classes C and D to be outside M∗, we have been able to identify several infinite
subclasses of bent functions that do not belong to the completed M class. The
question whether these functions belong to other two primary classes remains
open.
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Appendix

Proof of Theorem 2:

Proof. Let a(1), b(1), a(2), b(2) ∈ F
n
2 . We prove that f does not belong to M#, by

using Lemma 1. We need to show that there does not exist an (n
2 )-dimensional

subspace V such that
D(a(1),a(2))D(b(1),b(2))f = 0,

for any (a(1), a(2)), (b(1), b(2)) ∈ V .
The second derivative of f with respect to a and b can be written as,

D(a(1),a(2))D(b(1),b(2))f(x)

= x · (Da(2)Db(2)π(y)) ⊕ a(1) · Db(2)π(y ⊕ a(2))
⊕b(1) · Da(2)π(y ⊕ b(2)) ⊕ DaDb1E1(x)1E2(y)

= x · (Da(2)Db(2)π(y)) ⊕ a(1) · Db(2)π(y ⊕ a(2)) ⊕ b(1) · Da(2)π(y ⊕ b(2)) (6)
⊕1E1(x)Da(2)Db(2)1E2(y) ⊕ 1E2(y ⊕ a(2))Da(1)1E1(x)
⊕1E2(y ⊕ b(2))Db(1)1E1(x) ⊕ 1E2(y ⊕ a(2) ⊕ b(2))Da(1)⊕b(1)1E1(x).

We denote the set {(x, 0n) | x ∈ F
n
2} by Δ, and consider two cases V = Δ

and V �= Δ.

1. For V = Δ, we can find two vectors (a(1), 0n), (b(1), 0n) ∈ Δ such that

Da(1)Db(1)1E1(x) �= 0

since dim(E1) ≥ 2. Further, we have

D(a(1),a(2))D(b(1),b(2))f(x) = 1E2(y)(Da(1)1E1(x) ⊕ Db(1)1E1(x)
⊕Da(1)⊕b(1)1E1(x))
= 1E2(y)Da(1)Db(1)1E1(x) �= 0.

2. For V �= Δ, we split the proof into three cases depending on the cardinality
of V ∩ Δ. We set V =

{
(v(1)

1 , v
(1)
2 ), (v(2)

1 , v
(2)
2 ), . . . , (v(2n)

1 , v
(2n)
2

}
,

(a) For |V ∩ Δ| = 1, we have v
(i)
2 �= v

(j)
2 for any i �= j. If there exist

two vectors v
(i1)
2 , v

(j1)
2 such that v

(i1)
2 = v

(j1)
2 , then v

(i1)
1 = v

(j1)
1 , (or

(v(i1)
1 ⊕ v

(j1)
1 , 0n) ∈ V ∩ Δ), that is, (v(i1)

1 , v
(i1)
2 ) = (v(j1)

1 , v
(j1)
2 ). Further,

|{v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 }| = |V | = 2n, that is, {v

(1)
2 , v

(2)
2 , . . . , v

(2n)
2 } = F

n
2

(here, if v
(i1)
2 = v

(i2)
2 , they are called one element). Thus, we can find

two vectors a, b ∈ V such that

Da(2)Db(2)1E2(y) �= 0

since dim(E2) ≥ 2.
Now, there are four cases to be considered.
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i. If a(1) = b(1) = 0n, from (6), we have

D(a(1),a(2))D(b(1),b(2))f(x)
= x · (Da(2)Db(2)π(y)) ⊕ 1E1(x)Da(2)Db(2)1E2(y) �= 0 (7)

since dim(E1)+ dim(E2) = n and dim(E2) ≥ 2, that is,
deg(1E1(x)) ≥ 2.

ii. If a(1) = 0n, b(1) �= 0n, from (6), we have

D(a(1),a(2))D(b(1),b(2))f(x)

= x · (Da(2)Db(2)π(y)) ⊕ b(1) · Da(2)π(y ⊕ b(2))
⊕1E1(x)Da(2)Db(2)1E2(y)

⊕ 1E2(y ⊕ b(2))Db(1)1E1(x) ⊕ 1E2(y ⊕ a(2) ⊕ b(2))Db(1)1E1(x)
= x · (Da(2)Db(2)π(y)) ⊕ b(1) · Da(2)π(y ⊕ b(2))
⊕ 1E1(x)Da(2)Db(2)1E2(y) ⊕ Db(1)1E1(x)Da(2)1E2(y ⊕ b(2)).

We know dim(E1)+ dim(E2) = n and dim(E2) ≥ 2, thus
deg(1E1(x)) ≥ 2. Further, deg(1E1(x)) > deg(Db(1)1E1(x)). Thus, we
have

D(a(1),a(2))D(b(1),b(2))f(x) �= 0.

iii. If a(1) �= 0n, b(1) = 0n, from (6), we have

D(a(1),a(2))D(b(1),b(2))f(x)

= x · (Da(2)Db(2)π(y)) ⊕ a(1) · Db(2)π(y ⊕ a(2)) (8)
⊕ 1E1(x)Da(2)Db(2)1E2(y) ⊕ Da(1)1E1(x)Db(2)1E2(y ⊕ a(2)).

We know dim(E1)+ dim(E2) = n and dim(E2) ≥ 2, thus
deg(1E1(x)) ≥ 2. Further, deg(1E1(x)) > deg(Da(1)1E1(x)). Thus,
we have

D(a(1),a(2))D(b(1),b(2))f(x) �= 0.

iv. If a(1) �= 0n, b(1) �= 0n, from (6), we have

D(a(1),a(2))D(b(1),b(2))f(x) �= 0.

Since dim(E1)+ dim(E2) = n and dim(E2) ≥ 2, then deg(1E1(x)) ≥
2. Furthermore, deg(1E1(x)) > deg(Db(1)1E1(x)), deg(1E1(x)) >
deg(Da(1)1E1(x)) and deg(1E1(x)) > deg(Da(1)⊕b(1)1E1(x)).

Hence, we have
D(a(1),a(2))D(b(1),b(2))f(x) �= 0

for |V ∩ Δ| = 1.
(b) For |V ∩ Δ| = 2, without loss of generality, let (a(1), 0n) ∈ V ∩ Δ,

a(1) �= 0n.
We know {v

(1)
2 , v

(2)
2 , . . . , v

(2n)
2 } is a subspace of Fn

2 which is denoted by V ′.
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We first prove dim(V ′) = n−1 by showing that |{v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 }| =

2n−1, where we only count distinct vectors (e.g. if v
(i1)
2 = v

(i2)
2 only one

vector is counted). If |{v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 }| = 2n, then it is clear that

V is not a subspace. If |{v(1)
2 , v

(2)
2 , . . . , v

(2n)
2 }| < 2n−1, there must exist

three vectors v
(i1)
2 = v

(i2)
2 = v

(i3)
2 , where i1 �= i2 �= i3. Thus, we will have

(v(i1)
1 , v

(i1)
2 ) ⊕ (v(i2)

1 , v
(i2)
2 ) ∈ V ∩ Δ, (v(i1)

1 , v
(i1)
2 ) ⊕ (v(i3)

1 , v
(i3)
2 ) ∈ V ∩ Δ

and (v(i3)
1 , v

(i3)
2 ) ⊕ (v(i2)

1 , v
(i2)
2 ) ∈ V ∩ Δ, which contradicts the fact that

|V ∩ Δ| = 2.
We now show that |E2 ∩ V ′| ≥ 1 by using a well-known fact that

dim(E2 ∩ V ′) = dim(E2)+ dim(V ′) − dim(E2 � V ′),

where E2�V ′ = {α⊕β|α ∈ E2, β ∈ V ′}. Since by assumption dim(E2) ≥
2 and we have shown that dim(V ′) = n − 1, then dim(E2 ∩ V ′) ≥ 1.
We now choose one vector b(2) from (V ′ ∩ E2)\{0n}, then b(2) �= 0n and
1E2(y) = 1E2(y ⊕ b(2)) (since b(2) ∈ E2). Set b = (b(1), b(2)) ∈ V . From
(6), we have

D(a(1),a(2))D(b(1),b(2))f(x)

= a(1) · Db(2)π(y) ⊕ 1E2(y)Da(1)1E1(x) (9)
⊕ 1E2(y ⊕ b(2))Db(1)1E1(x) ⊕ 1E2(y ⊕ b(2))Da(1)⊕b(1)1E1(x)

= a(1) · Db(2)π(y) ⊕ 1E2(y)Da(1)Db(1)1E1(x).

Now, there are three cases to be considered. If Da(1)Db(1)1E1(x) �= const.
or Da(1)Db(1)1E1(x) = 0, then it is clear that

D(a(1),a(2))D(b(1),b(2))f(x) �= 0

since π has no nonzero linear structure and b(2) �= 0n.

If Da(1)Db(1)1E1(x) = 1, then it is clear that

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) · Db(2)π(y) ⊕ 1E2(y) �= 0

since deg(π) ≤ n−dim(E2), that is, deg(a(1) ·Db(2)π(y)) < n−dim(E2) =
deg(1E2(y)).

(c) For |V ∩ Δ| > 2 (i.e., |V ∩ Δ| ≥ 4 ), without loss of generality, let
a = (a(1), 0n)(�= 02n) ∈ V ∩Δ. Here, there are two cases to be considered.
i. If there exists one vector v = (0n, v2) ∈ V \{02n}, then we set b = v.

Further, using that b(1) = 0n, we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) · Db(2)π(y) ⊕ Db(2)1E2(y)Da(1)1E1(x).

If Da(1)1E1(x) �= constant or Da(1)1E1(x) = 0, then again

D(a(1),a(2))D(b(1),b(2))f(x) �= 0,
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since π has no nonzero linear structure.
We now show that Da(1)1E1(x) = 1 is impossible. We have that
Da(1)1E1(x) = 0 if a(1) ∈ E1, or alternatively if a(1) /∈ E1

deg(Da(1)1E1(x)) = n − dim(E1) − 1,

since E1 ∪ (a(1) ⊕ E1) is a subspace of dimension dim(E1) + 1. Since
n − dim(E1) − 1 > 0 and by assumption dim(E1) < n − 1, we have
Da(1)1E1(x) �= 1.

ii. Let v = (v1, v2) ∈ V \{02n}. If we always have v = (v1, v2) such that
v1 �= 0n for every v2 �= 0n, then we set b = v ∈ V \{02n} such that
v2 �= 0n. Further, we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) · Db(2)π(y) ⊕ 1E2(y)Da(1)1E1(x)

⊕1E2(y ⊕ b(2))Db(1)1E1(x) ⊕ 1E2(y ⊕ b(2))Da(1)⊕b(1)1E1(x)

= a(1) · Db(2)π(y) ⊕ 1E2(y)Da(1)1E1(x) (10)
⊕1E2(y ⊕ b(2))Da(1)1E1(x ⊕ b(1)).

There are two cases to be considered.
If b(2) ∈ E2, then we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) · Db(2)π(y) ⊕ 1E2(y)(Da(1)1E1(x)

⊕Da(1)1E1(x ⊕ b(1))) �= 0,

since deg(1E2(y)) > deg(a(1) · Db(2)π(y)).
If b(2) /∈ E2, then we have three cases to be considered.
A. For a(1) ∈ E1 we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) · Db(2)π(y) �= 0.

B. For a(1) /∈ E1, b
(1) ∈ E1 we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) · Db(2)π(y)
⊕Db(2)1E2(y)Da(1)1E1(x) �= 0,

since Da(1)1E1(x) �= constant.
C. For a(1) /∈ E1, b

(1) /∈ E1 we have

D(a(1),a(2))D(b(1),b(2))f(x) = a(1) · Db(2)π(y)
⊕Db(2)1E2(y)Da(1)1E1(x)
⊕1E2(y ⊕ b(2))Da(1)Db(1)1E1(x) �= 0,

since Da(1)1E1(x) �= constant and furthermore deg(Da(1)1E1(x))
> deg(Da(1)Db(1)1E1(x)).

Combining items 1 and 2, we deduce that f does not belong to M#. ��
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Abstract. HN-transforms, which have been proposed as generalizations
of Hadamard transforms, are constructed by tensoring Hadamard and
nega-Hadamard kernels in any order. We show that all the 2n possi-
ble HN-spectra of a Boolean function in n variables, each containing 2n

elements (i.e., in total 22n values in transformed domain) can be com-
puted in O(22n) time (more specific with little less than 22n+1 arithmetic
operations). We propose a generalization of Deutsch-Jozsa algorithm, by
employing HN-transforms, which can be used to distinguish different
classes of Boolean functions over and above what is possible by the tra-
ditional Deutsch-Jozsa algorithm.

Keywords: Boolean function ·HN-transform , Deutsch-Jozsa algorithm

1 Introduction

Hadamard spectrum (or, Walsh-Hadamard spectrum) is possibly the most
important tool in analyzing a Boolean function. This explains how a given
Boolean function is correlated with each linear function and thus provides non-
linearity as a summary data. High nonlinearity is an important property for the
Boolean functions used in cryptographic primitives for resisting linear crypt-
analysis [14] as well as correlation and fast correlation attacks [15,22]. Consider
Boolean functions on n-variables. For n even, the functions with provably maxi-
mum nonlinearity 2n−1−2

n
2 −1 exist [6] and such functions are called bent, though
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the complete characterization of such functions is not yet known for n > 8. For
n odd, consider the truth table of an n-variable function f constructed by the
concatenation of the truth tables of two (n − 1)-variable bent functions g and
h, i.e., f(x0, x1, . . . , xn−1) = x0g(x1, . . . , xn−1) ⊕ (x0 ⊕ 1)h(x1, . . . , xn−1) for all
(x0, x1, . . . , xn−1) ∈ F

n
2 . One can then easily check that the nonlinearity of f is

2n−1 − 2
n−1
2 . This is famously known as the bent concatenation bound, which

had been conjectured [10] to be the maximum attainable nonlinearity until dis-
proved [18] in 1983. The maximum nonlinearity problem is directly related to
coding theory also, since it corresponds to the covering radius of the first order
Reed-Muller codes of block length 2n.

There are several efficient methods in constructing Boolean functions with
reasonably good cryptographic properties. However, commercial symmetric
(stream or block) ciphers generally do not exploit Boolean functions on large
number of variables. Instead, the trend is to use Boolean functions or S-Boxes
on small number of variables (say 4 to 8) and then to introduce several rounds to
obtain high confusion and diffusion. One can certainly regard the complete algo-
rithm as a Boolean function on the key and IV bits, however, since we generally
use between 80 to 256-bit key or IV, these Boolean functions are in reality very
complicated to analyze. It is generally impossible to write the complete Truth
Table (TT) or Algebraic Normal Form (ANF) of such functions. At the same
time, it is well known that for randomly chosen Boolean functions the Hadamard
spectrum values are concentrated around a low value [12] (i.e., their nonlineari-
ties are high). However, it is not only the properties of the Boolean function as
a whole that need to be studied. One may consider some sub-functions of the
said Boolean function or the coefficient of certain monomials that may provide
substantially high values of the Hadamard spectrum (i.e., low values of non-
linearity). Such a situation is needed for differential [11] or cube attacks [1,7]
on heuristically designed stream ciphers. Thus identifying such high Hadamard
spectrum values for a Boolean function (or its sub-functions) on large number of
variables is an important question from cryptanalytic perspective. Apart from
classical algorithms, quantum algorithms are also considered for approximating
large spectrum values (and their positions). It has been observed [13] that in
the quantum domain Deutsch-Josza algorithm [5] can create a superposition of
states whose amplitudes are precisely the corresponding spectrum values.

The theory of linear approximations, which is based on Hadamard trans-
form of the functions, has been generalized by Danielsen and Parker [3,4] as
well as Riera and Parker [19,20], by introducing nega-Hadamard transforms
leading to a class of generalized transforms, referred to as HN-transforms, com-
bining Hadamard and nega-Hadamard kernels. It has been observed [19,20] that
the quantum error correcting codes with optimal distance appear to have most
flat spectra with respect to such transforms. In the context of HN-spectra, sev-
eral results and constructions of Boolean functions and cryptographically strong
S-Boxes had been studied in [4,8,16,17,19,21,24]. Surprisingly, while the HN-
transform has been used for several purposes, its algorithmic issues have never
been studied in detail. While it is natural that similar kind of ideas as for the
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traditional Hadamard transform might be applicable, there are specific details
that need to be worked out. The algorithmic issues also provide several general-
ized techniques and characterizations related to Boolean functions.

In Sect. 3, we show that all the HN-spectra of an n-variable function can
be simultaneously computed in time O(22n) as opposed to the naive estimate
O(n22n) and we therefore design the corresponding algorithm. Note that the
computation of the Hadamard (or Walsh-Hadamard transform) of a Boolean
function on n-variables require O(n2n) time, by using the Fast Discrete Fourier
Transform algorithm. As we will explain later, there are 2n different HN-spectra,
each containing 2n elements. One of them is the well known Walsh spectrum.
Similar to the algorithm of Hadamard spectrum, we may re-use the algorithm
for each of the HN spectrum and that would require O(2n · n2n) time. However,
while analyzing the algorithm for obtaining all the 2n spectra, we note that the
structure of the transforms are of such a nice pattern that this can be executed
in O(22n) time, to be more specific, in exactly 22n+1 − 2n+1 addition or sub-
traction operations. This is indeed a tight bound as 22n transformed values can
be computed using 22n+1 − 2n+1 arithmetic operations. Note that each trans-
formed value, which depends on all the 2n values of the Boolean function, can
be obtained at an average cost of only 2 operations.

Next we consider quantum algorithms with respect to the HN-spectra. Sup-
pose that we have an oracle access to a Boolean function f in n variables which is
either constant or balanced. A classical algorithm will require 2n−1+1 queries to
determine whether f is constant or balanced. It is well known that Deutsch-Jozsa
algorithm [5] solves this problem in a single query. In Sect. 4, we generalize the
Deutsch-Jozsa algorithm by using HN-transforms and characterize larger classes
of Boolean functions that can be distinguished by exploiting these transforms.
We identify certain classes of quadratic symmetric functions that are related to
these separations.

2 Preliminaries

Let F2 be the finite field with two elements and Z be the ring of integers. For
any n ∈ Z

+ (the set of positive integers), let [n] = {1, . . . , n}. The Cartesian
product of n copies of F2 is Fn

2 = {x = (xn, . . . , x1) : xi ∈ F2, i ∈ [n]} which is an
n-dimensional vector space over F2 with respect to element-wise addition
denoted by ⊕, scalar multiplication defined by ax = (axn, . . . , ax1), for all a ∈ F2

and x ∈ F
n
2 . We define the inner product by u ·x =

⊕
i∈[n] uixi and intersection

by u ∗ x = (unxn, . . . , u1x1), for all u = (un, . . . , u1),x = (xn, . . . , x1) ∈ F
n
2 . For

any v = (vn, . . . , v1) ∈ F
n
2 , we can associate a unique integer j =

∑
i∈[n] vi2i−1.

When order is needed, we shall write v = uj . The (Hamming) weight of a vector
v ∈ F

n
2 is the integer sum wt(v) =

∑
i∈[n] vi. The (Hamming) distance between

two vectors u,v ∈ F
n
2 is d(u,v) = wt(u ⊕ v).

Any function from F
n
2 to F2 is said to be a Boolean function in n vari-

ables, whose set will be denoted by Bn. The character form of f ∈ Bn, χf (x) =



Quantum Algorithms Related to HN-Transforms of Boolean Functions 317

(−1)f(x), for all x ∈ F
n
2 . Let MT denote the transpose of a matrix M . We asso-

ciate the column vectors (i.e., 2n × 1 matrices) f = (f(u0), . . . , f(u2n−1))T and
χf = (χf (u0), . . . , χf (u2n−1))T to f ∈ Bn. The vector fT ∈ F

2n

2 is said to be
the truth table of f . The weight of a Boolean function f is wt(f) = wt(fT ).
The Hamming distance between two Boolean functions f, g ∈ Bn is d(f, g) =
wt(fT ⊕gT ). The algebraic normal form of f ∈ Bn is f(x) =

⊕
a∈F

n
2

μa

∏
i∈[n] x

ai
i ,

where μa ∈ F2, for all a = (an, . . . , a1) ∈ F
n
2 . The algebraic degree of f ,

deg(f) = maxa∈F
n
2
{wt(a) : μa �= 0}. The Boolean functions of the form

f(x) =
⊕

i∈[n] aixi ⊕ a0 = a · x⊕ a0, where ai ∈ F2 for all i ∈ [n] ∪ {0}, are said
to be affine functions. Affine functions are said to be linear if μ0 = 0. The set of
affine functions and linear functions are denoted by An and Ln, respectively.

2.1 HN-Transforms as a Generalization of Hadamard Transform

Recall that the tensor (sometimes, called Kronecker) product A ⊗ B, where
A = (aij)ij , B = (bk�)k� are m × n, respectively, p × q matrices, is defined by

A ⊗ B =

⎡

⎢⎣
a11B a12B · · · a1nB

...
...

. . .
...

am1B am2B · · · amnB

⎤

⎥⎦ .

The Hadamard and nega-Hadamard kernels H = 1√
2

[
1 1
1 −1

]
, N = 1√

2

[
1 ı
1 −ı

]
,

respectively, are unitary transformations over C⊗2 = C⊗C, where C is the field
of complex numbers. The set of all tensor products

{H,N}n =

{
1⊗

i=n

Ki = Kn ⊗ · · · ⊗ K1 : Ki ∈ {H,N}, i ∈ [n]

}

is a subset (its cardinality is 2n) of the set of all unitary transformations overs
(C2)⊗n.

Definition 1. Let f ∈ Bn. Suppose c = (cn, . . . , c1) ∈ F
n
2 and Kc ∈ {H,N}n

is such that Kc = Kn ⊗ · · · ⊗ K1 =
⊗1

i=n Ki where Ki =

{
H if ci = 0,

N if ci = 1
. For

0 ≤ j ≤ 2n − 1, we define,

Kc
f (uj) = 2− n

2

∑

x∈F
n
2

(−1)f(x)⊕uj ·x ıwt(c∗x), (1)

which is referred to as the HN-transform of f at uj with respect to Kc (cf. [8]).
The whole spectrum is denoted by Kcχf and is referred as the HN-spectrum of f
with respect to Kc.

For easy writing, let us denote u0 by 0 and u2n−1 by 1. Then, K0
f (u) =

2− n
2
∑

x∈F
n
2
(−1)f(x)⊕u·x and K1

f (u) = 2− n
2
∑

x∈F
n
2
(−1)f(x)⊕u·xıwt(x) are said

to be the Hadamard and nega-Hadamard transforms of f at u and denoted by
Hf (u) and Nf (u), respectively. For a detailed theory of Hadamard transform in
the context of cryptographic Boolean functions we refer to [2,9,19,20,24].
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3 The Complexity of Computing HN-Spectra

Given any function f ∈ Bn we can apply transformations from {H,N}n to
obtain 2n HN-spectra. Time complexity of computing each HN-spectrum is the
same as the time complexity of computing the Hadamard spectrum of f , which is
O(n2n), using the fast Hadamard transform algorithm. Thus, naively computing
all HN-spectra will require O(n22n) time if we calculate each of them separately.
In the following theorem we prove that this complexity can be improved.

Theorem 1. The time complexity of computing HN-spectra of f ∈ Bn is O(22n).

Proof. For f ∈ Bn there exist two functions f1, f2 ∈ Bn−1 such that f(x, y) =
(y ⊕ 1)f1(x) ⊕ yf2(x), for all x ∈ F

n−1
2 and y ∈ F2. Then 2− n

2 K(cn,c)
f (v,u) =

∑

x∈F
n−1
2

(−1)u·x⊕f1(x)ıwt(c∗x) + (−1)vıwt(cn)
∑

x∈F
n−1
2

(−1)u·x⊕f2(x)ıwt(c∗x), (2)

for all (v,u), (cn, c) ∈ F2×F
n−1
2 . We denote by T (n) the time complexity to com-

pute all HN-spectra of any Boolean function in n variables. We show our result
by finding a recurrence satisfied by T (n). The computation of 2− n

2 Kc
f1

(u) =∑
x∈F

n−1
2

(−1)u·x⊕f1(x)ıwt(c∗x), 2− n
2 Kc

f2
(u) =

∑
x∈F

n−1
2

(−1)u·x⊕f2(x)ıwt(c∗x), for
all u, c ∈ F

n−1
2 , will therefore take 2T (n − 1) time. For each c ∈ F

n−1
2 , the

computation of 2− n
2 K(cn,c)

f (v,u) where cn ∈ F2 and (v,u) ∈ F2 × F
n−1
2 requires

4 · 2n−1 = 2n+1 additions. If we vary c over F
n−1
2 the total number of additions

to compute all HN-spectra is 2n−1 ·2n+1 = 22n. Thus, we have the following first
order recurrence relation:

T (n) = 2T (n − 1) + 22n,

which by iteration renders

T (n) = 2n−1T (1) + 22n
n−2∑

i=0

1
2i

= 2n−1T (1) + 22n+1 − 2n+2 = O(22n),

and the theorem is shown. 	


3.1 Fast HN-Transform Algorithm

Based on the above observations we design Algorithm 1 to efficiently compute
HN-spectra of a Boolean function f ∈ Bn. In Fig. 1 we demonstrate the steps
of Algorithm 1 when f ∈ B3. It is clear from Fig. 1 that the total number of
additions and subtractions required is T (3) = 8× 2 + 8× 4 + 8× 8 = 23(2+22 +
23) = 24(23 − 1) = 22(3)+1 − 23+1 = 112. In general T (n) = 2n(2 + 22 + · · · +
2n−1 + 2n) = 22n+1 − 2n+1 = O(22n), as discussed before.
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Input: A Boolean function f ∈ Bn, available in the form of the 2n length array
χf = (χf (u0), . . . , χf (u2n−1))

Output: All 2n HN-spectra of f , each containing 2n elements

1 Initialize a 2n × 2n matrix h whose columns and rows are numbered from 0 to
2n − 1. The entry in the ith column and jth row is denoted by hi,j .

2 (h0,0, h0,1, . . . , h0,2n−1) ← (χf (u0), χf (u1), . . . , χf (u2n−1))
3 for j = 0 to n − 1 do

4 for � = 2j+1 − 1 downto 0 do
5 if � ≡ 0 (mod 2) then
6 k = 0
7 while k < 2n do

8 for i = k to k + 2j − 1 do
9 tmp ← f� �

2 �,i

10 f�,i ← tmp + f� �
2 �,i+2j

11 f�,i+2j ← tmp − f� �
2 �,i+2j

12 od

13 k ← k + 2j+1

14 od
15 fi
16 if � ≡ 1 (mod 2) then
17 k = 0
18 while k < 2n do

19 for i = k to k + 2j − 1 do
20 tmp ← f� �

2 �,i

21 f�,i ← tmp + ıf� �
2 �,i+2j

22 f�,i+2j ← tmp − ıf� �
2 �,i+2j

23 od

24 k ← k + 2j+1

25 od
26 fi
27 od
28 od

Algorithm 1. Fast HN-transform algorithm.

3.2 HN-Transform and Quadratic Symmetric Functions
on a Subspace Depending on c

In this section we describe the connection between HN-spectra and quadratic
approximations of a Boolean function as discussed in Gangopadhyay, Pasalic
and Stănică [8].

Consider any vector c ∈ F
n
2 . The (n − 1)-dimensional subspace orthogonal

to c is c⊥ = {x ∈ F
n
2 : c · x = 0}. Let �c ∈ Ln be defined by �c(x) = c · x,

for all x ∈ F
n
2 . Let s ∈ Bn be the symmetric quadratic bent function defined by
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Fig. 1. Fast HN-transform algorithm for a function in Bn.

s(x) =
⊕

i<j xixj , for all x ∈ F
n
2 . For each c ∈ F

n
2 we define sc ∈ Bn by sc(x) =

s(c∗x), for all x, c ∈ F
n
2 . We can think of sc’s as quadratic symmetric functions

on the variables xi’s for which ci = 1. Since (cf. [20,24]) wt(c∗x) ≡ 2sc(x)+c ·x
(mod 4), we obtain from (1)

2
n
2 Kc

f (u) =
∑

x∈c⊥
(−1)f(x)⊕sc(x)⊕u·x + ı

∑

x∈F
n
2 \c⊥

(−1)f(x)⊕sc(x)⊕u·x. (3)

Suppose that f ∈ Bn such that
∣∣∣∣∣∣

∑

x∈c⊥
(−1)f(x)⊕sc(x)⊕u·x

∣∣∣∣∣∣
= (−1)ε1(u,c)

∑

x∈c⊥
(−1)f(x)⊕sc(x)⊕u·x and

∣∣∣∣∣∣

∑

x∈F
n
2 \c⊥

(−1)f(x)⊕sc(x)⊕u·x

∣∣∣∣∣∣
= (−1)ε2(u,c)

∑

x∈F
n
2 \c⊥

(−1)f(x)⊕sc(x)⊕u·x,
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where ε1(u, c), ε2(u, c) ∈ F2 and c,u ∈ F
n
2 . Then

∑

x∈F
n
2

(−1)f(x)⊕sc(x)⊕ε1(u,c)⊕(ε1(u,c)⊕ε2(u,c))c·x⊕u·x

=

∣∣∣∣∣∣

∑

x∈c⊥
(−1)f(x)⊕sc(x)⊕u·x

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∑

x∈F
n
2 \c⊥

(−1)f(x)⊕sc(x)⊕u·x

∣∣∣∣∣∣

= |�(2
n
2 Kc

f (u))| + |(2
n
2 Kc

f (u))|.

(4)

The Hamming distance between f and sc ⊕ ε1(u, c) ⊕ (ε1(u, c) ⊕ ε2(u, c))�c ⊕
�u is

2n−1 − 1
2
(|�(2

n
2 Kc

f (u))| + |(2
n
2 Kc

f (u))|) .
Given any Boolean function f ∈ Bn, for all c ∈ F

n
2 we can obtain the spectra

[|�(2
n
2 Kc

f (u))| + |(2
n
2 Kc

f (u))| : u ∈ F
n
2

]
. (5)

by computing the HN-spectra. We then find

max
c∈F

n
2

max
u∈F

n
2

[|�(2
n
2 Kc

f (u))| + |(2
n
2 Kc

f (u))| : u ∈ F
n
2

]
. (6)

Suppose that the maximum value (6) is attained at u′, c′ ∈ F
n
2 . Then by using

the HN-spectra the best possible quadratic approximation of f that we obtain
is sc′ ⊕ ε1(u′, c′) ⊕ (ε1(u′, c′) ⊕ ε2(u′, c′))�c′ ⊕ �u′ .

Example 1. The 7-variable, 2-resilient functions with nonlinearity 56 are consid-
ered to be cryptographically strong functions and in [23, Table 4], all such rota-
tion symmetric functions are listed. We have computed the spectra defined in
(5), namely,

[
|�(2

n
2 Kc

f (u))| + |(2
n
2 Kc

f (u))| : u ∈ F
n
2

]
for all c ∈ F

n
2 . Since these

functions have nonlinearity the maxu∈F
n
2

|2n
2 Hf (u)| = 16 for each function f in

the list. Considering the HN-spectra for these functions we observe that for the
first 12 functions maxc∈F

n
2

maxu∈F
n
2

(
|�(2

n
2 Kc

f (u))| + |(2
n
2 Kc

f (u))| : u ∈ F
n
2

)
=

72, and for the remaining functions

max
c∈F

n
2

max
u∈F

n
2

(|�(2
n
2 Kc

f (u))| + |(2
n
2 Kc

f (u))| : u ∈ F
n
2

)
= 40.

This provides an example of how the HN-transforms enable us to obtain
quadratic approximations efficiently and it is very clear that the second set of
functions will have less correlation to the quadratic functions than the first ones.

Example 2. Parker [16] has computed the maximum of the square of the moduli
of the 2n times the HN-transformation values for several S-boxes including the
AES S-box. This is related to peak-to-average ration (PAR) of the corresponding
functions. In this example we consider the PRESENT S-box which is a permu-
tation on F

4
2. Let {fi : i = 1, . . . , 15} be its 15 non-zero component functions.

For each c ∈ F
4
2 we compute

max{2n|Kc
f (u)|2 : u ∈ F

4
2}.
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Table 1. HN-spectra analysis of PRESENT S-box.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

f1 64 32 64 32 64 32 128 64 32 16 32 16 32 16 64 32

f2 64 32 40 40 40 40 32 32 40 40 32 32 32 32 40 40

f3 64 32 40 40 40 40 32 32 32 64 40 72 40 72 32 64

f4 64 32 40 40 40 40 32 32 40 40 32 32 32 32 40 40

f5 64 64 40 72 40 72 32 64 40 72 32 64 32 64 40 72

f6 64 32 40 40 40 40 32 32 32 32 40 40 40 40 32 32

f7 64 64 40 72 40 72 32 64 40 72 32 64 32 64 40 72

f8 64 32 32 32 32 64 32 32 40 40 40 40 40 72 40 40

f9 64 32 32 16 32 16 64 32 32 16 64 32 64 32 128 64

f10 64 32 32 64 32 32 32 32 40 40 40 72 40 40 40 40

f11 64 32 32 32 32 64 32 32 40 40 40 40 40 72 40 40

f12 64 32 32 16 32 16 64 32 64 32 32 16 32 16 32 16

f13 64 32 32 64 32 32 32 32 40 40 40 72 40 40 40 40

f14 64 32 40 40 40 40 32 32 32 32 40 40 40 40 32 32

f15 64 32 40 40 40 40 32 32 32 64 40 72 40 72 32 64

Whether this provides us the best possible distribution of the HN-transformation
values among all the permutations on F

4
2 is an open question. In Table 1 we

tabulate the values of max{2n|Kc
f (u)|2 : u ∈ F

4
2} for each c ∈ F

4
2. For convenience

we write cj = (c3, c2, c1, c0) whenever j = 23c3+22c2+2c1+1c0. If F is the vector
Boolean function corresponding to the PRESENT S-box then define fi = ci · F
for all i = 0, 1, . . . , 15.

4 Extended Deutsch-Jozsa Algorithm

The extended Deutsch-Jozsa algorithm is pictorially represented in Fig. 2 and
described in Algorithm 2. If we consider the specific case H⊗n in place of Kc,
then we obtain the traditional Deutsch-Jozsa algorithm [5]. Given f ∈ Bn either
constant or balanced, if the corresponding quantum bit oracle implementation
Uf is available, Deutsch-Jozsa [5] provided a quantum algorithm that decides in
a constant number of queries which one it is. One can simply describe Deutsch-
Jozsa algorithm in terms of Hadamard spectrum values and it can be observed
that

∑

z∈F
n
2

∑

x∈F
n
2

(−1)x·z⊕f(x)

2n
|z〉 =

∑

z∈F
n
2

2− n
2 Hf (z)|z〉,

i.e., the associated probability for the state |z〉 is 2− n
2 Hf (z). In this regard, we

have the following technical result (see [13] for details).
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|0〉

|1〉

n

H

H⊗n Kc M

y

x x

y ⊕ f(x)

Uf

↑ ↑ ↑ ↑
|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

Fig. 2. Quantum circuit to implement extended Deutsch-Jozsa algorithm

Input: A Boolean function f ∈ Bn, available in the form of the unitary
transformation Uf

Output: n-bit pattern

1 Take an (n + 1) qubit state |ψ0〉 = |0〉⊗n|1〉;
2 Apply Hadamard Transform H⊗(n+1) on |ψ0〉 to get

|ψ1〉 =
∑

x∈F
n
2

|x〉√
2n

[
|0〉−|1〉√

2

]
;3 Apply Uf on |ψ1〉 to get

|ψ2〉 =
∑

x∈F
n
2

(−1)f(x)|x〉√
2n

[
|0〉−|1〉√

2

]
;4 Apply HN-Transform on the first

n qubits of |ψ2〉 to obtain

|ψ3〉 =
∑
z∈F

n
2

∑
x∈F

n
2

(−1)x·z⊕f(x)ıwt(c∗x)|z〉
2n

[ |0〉 − |1〉√
2

]
;

5 Measurement at M : measure the first n qubits of |ψ3〉 in
computational basis;

6 After measurement, the state v such that wt(v) = 0 or v = c implies
that the function is in Sc, else it is in Tc.

Algorithm 2. Extended Deutsch-Jozsa algorithm.

Proposition 1. Given f ∈ Bn, Df |0〉⊗n produces a superposition of all states
z ∈ F

n
2 with the amplitude 2− n

2 Hf (z) corresponding to each state |z〉.
In what follows, we trace the states through this circuit in the general case.

The input state is |ψ0〉 = |0〉⊗n|1〉. After applying H⊗(n+1) and Uf successively
we obtain as before

|ψ1〉 =
∑

x∈F
n
2

|x〉√
2n

[ |0〉 − |1〉√
2

]
and |ψ2〉 =

∑

x∈F
n
2

(−1)f(x)|x〉√
2n

[ |0〉 − |1〉√
2

]
,
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respectively. Finally we apply the HN-transform Kc on the first n qubits of |ψ2〉
to obtain

|ψ3〉 =
∑

z∈F
n
2

∑

x∈F
n
2

(−1)x·z⊕f(x)ıwt(c∗x)|z〉
2n

[ |0〉 − |1〉√
2

]

=
∑

z∈F
n
2

2− n
2 Kc

f (z)|z〉
[ |0〉 − |1〉√

2

]
.

(7)

Consider the sets Sc = {sc(x), 1 ⊕ sc(x), sc(x) ⊕ �c(x), 1 ⊕ sc(x) ⊕ �c(x)} and

Tc =

⎧
⎨

⎩g ∈ Bn :
∑

x∈c⊥=0

(−1)g(x)⊕sc(x) =
∑

x∈F
n
2 \c⊥

(−1)g(x)⊕sc(x) = 0

⎫
⎬

⎭ .

Theorem 2. Suppose that f ∈ Bn is chosen from the set Sc ∪ Tc where

Sc = {sc(x), 1 ⊕ sc(x), sc(x) ⊕ �c(x), 1 ⊕ sc(x) ⊕ �c(x)} and

Tc =

⎧
⎨

⎩g ∈ Bn :
∑

x∈c⊥
(−1)g(x)⊕sc(x) =

∑

x∈F
n
2 \c⊥

(−1)g(x)⊕sc(x) = 0,

⎫
⎬

⎭ ,

for any c ∈ F
n
2 . Applying the extended Deutsch–Jozsa algorithm on f , as above,

and measure the first n qubits of |ψ3〉 as obtained in (7), if we observe n-bit
string v such that wt(v) = 0 or v = c, then the function is in Sc, otherwise the
function is in Tc.

Proof. Using Eq. (3) |ψ3〉 is equal to

∑

z∈F
n
2

∑
x∈c⊥(−1)x·z⊕sc(x)⊕f(x) + ı

∑
x∈F

n
2 \c⊥(−1)x·z⊕sc(x)⊕f(x)|z〉

2n

[ |0〉 − |1〉√
2

]
.

If f ∈ Sc, then f(x) = sc(x) ⊕ a1�c(x) ⊕ a2, where (a1, a2) ∈ F2 × F2. Putting
z = 0

∑

x∈c⊥
(−1)sc(x)⊕f(x) + ı

∑

x∈F
n
2 \c⊥

(−1)sc(x)⊕f(x)

=
∑

x∈c⊥
(−1)a1�c(x)⊕a2 + ı

∑

x∈F
n
2 \c⊥

(−1)a1�c(x)⊕a2

=
∑

x∈c⊥
(−1)a2 + ı(−1)a1

∑

x∈F
n
2 \c⊥

(−1)a2 = (−1)a22n−1(1 + (−1)a1).

Putting z = c,
∑

x∈c⊥(−1)x·c⊕sc(x)⊕f(x) + ı
∑

x∈F
n
2 \c⊥(−1)x·c⊕sc(x)⊕f(x)

=
∑

x∈c⊥
(−1)a1�c(x)⊕a2 + ı

∑

x∈F
n
2 \c⊥

(−1)1⊕a1�c(x)⊕a2

=
∑

x∈c⊥
(−1)a2 + ı(−1)a1⊕1

∑

x∈F
n
2 \c⊥

(−1)a2 = (−1)a22n−1(1 + (−1)a1⊕1).
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Thus, if f ∈ Sc, then after measuring the first n qubits of |ψ3〉 we will observe
the |0〉 or the |c〉 state each with probability 1

2 . The probability is zero that any
other state is observed.

On the other hand, if f ∈ Tc then
∑

x∈c⊥
(−1)f(x)⊕sc(x) =

∑

x∈F
n
2 \c⊥

(−1)f(x)⊕sc(x) = 0.

The probability amplitudes of the first n qubits of |ψ3〉 for the states |0〉 and |c〉
are

∑

x∈c⊥
(−1)sc(x)⊕f(x) + ı

∑

x∈F
n
2 \c⊥

(−1)sc(x)⊕f(x) = 0 + ı0 and

∑

x∈c⊥
(−1)x·c⊕sc(x)⊕f(x) + ı

∑

x∈F
n
2 \c⊥

(−1)x·c⊕sc(x)⊕f(x)

=
∑

x∈c⊥
(−1)sc(x)⊕f(x) − ı

∑

x∈F
n
2 \c⊥

(−1)sc(x)⊕f(x) = 0 + ı0,

respectively. Therefore, the observation of either the state |ψ3〉 or the state |ψ3〉
implies f ∈ Sc, otherwise f ∈ Tc. 	


Form this theorem we obtain Algorithm 2 which can distinguish Boolean
functions from a larger set than the set of constant and balanced functions. It
is to be noted that, if wt(c) = 0, then we obtain the traditional Deutsch-Jozsa
algorithm with all H gates.

5 Conclusion

In this paper, we have studied algorithms related to the HN-transform which
is a generalization of the well known (Walsh-)Hadamard transform. First we
presented an O(22n) algorithm to obtain all the values in the HN-spectra. Then
we show that the Deutsch-Jozsa algorithm can be generalized considering the
HN-transform. These results have application in cryptology, coding theory and
related areas. While results related to HN-spectra have been investigated for
more than a decade, a disciplined study of the related computing algorithms
had not been attempted earlier, and that is the main goal of this paper.
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Abstract. Plateaued (vectorial) functions have an important role in the
sequence and cryptography frameworks. Given their importance, they
have not been studied in detail in general framework. Several researchers
found recently results on their characterizations and introduced new tools
to understand their structure and to design such functions. In this work,
we mainly extend some of the observations made in characteristic 2 and
given in (Carlet, IEEE Trans. Inf. Theor. 61(11), 6272–6289, 2015) to
arbitrary characteristic. We first extend to arbitrary characteristic the
characterizations of plateaued (vectorial) Boolean functions by the auto-
correlation functions, next their characterizations in terms of the second-
order derivatives, and finally their characterizations via the moments of
the Walsh transform.
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1 Introduction

Boolean bent functions were introduced by Rothaus [16] in the 1970s and then
generalized to arbitrary characteristic by Kumar et al. [9]. Since bent functions
can never be balanced, Carlet (1993) introduced in [4] the superclass of the class
of bent functions whose elements are the so-called partially-bent functions. As
a further extension, Zheng and Zhang introduced in [17] the notion of Boolean
plateaued functions whose absolute Walsh transform has at most one nonzero
value. Moreover, Boolean plateaued functions were generalized to arbitrary char-
acteristic: the so-called p-ary plateaued functions from Fpn to Fp (see for instance
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[6,13]). The vectorial p-ary plateaued functions from Fpn to Fpm are the functions
whose component functions are p-ary plateaued. This notion covers the vector-
ial bent functions. Since plateaued (vectorial) functions have a significant role in
the sequence and cryptography frameworks, several researchers have widely stud-
ied those functions (see for instance [1–3,5,6,8,10–13,18]). More precisely, new
characterizations of p-ary plateaued functions by using the moment of the Walsh
transform and the second-order derivative were provided (2014) in [10], and then
those characterizations were completed and extended in [12,13]. Independently,
Carlet [2,3] introduced several characterizations of plateaued (vectorial) Boolean
functions by means of the first-order and second-order derivatives, autocorrela-
tion functions and power moments of the Walsh transform values. The aim of
this paper is mainly to extend some characterizations of plateaued (vectorial)
Boolean functions given in [2,3] to arbitrary characteristic.

The paper is structured as follows. Section 2 sets the necessary background. In
Sect. 3, we extend to arbitrary characteristic the characterizations of plateaued
(vectorial) Boolean functions given in [2,3] and give more characterizations, by
means of the autocorrelation function. Section 4 generally extends the charac-
terizations of plateaued (vectorial) Boolean functions given in [2,3] to arbitrary
characteristic as well as providing the characterizations of plateaued (vectorial)
p-ary functions, in terms of the first-order and second-order derivatives. Section 5
extends to arbitrary characteristic the characterizations of plateaued (vectorial)
Boolean functions given in [2,3], and introduces further results by means of the
power moments of the Walsh transform.

2 Preliminaries

For any set E, #E denotes the size of E and E� = E\{0}. Let C be the field of
complex numbers. Given a complex number z ∈ C, |z| and z̄ denote the absolute
value and the conjugate of z, respectively. Let p be a prime number and n be a
positive integer. The finite field with pn elements is denoted by Fpn , which can
be viewed as an n-dimensional vector space over Fp, and it is denoted by F

n
p .

The trace function Tr : Fpn → Fp is defined as

Trpn/p(x) =
n−1∑

i=0

xpi

= x + xp + xp2
+ · · · + xpn−1

,

which is called the absolute trace of x ∈ Fpn . Let f be a function from F
n
p to Fp.

We can give a corresponding complex-valued function χf from F
n
p to C defined

as χf (x) = ξ
f(x)
p for all x ∈ F

n
p where ξp = e(2π

√−1)/p is a complex primitive
p-th root of unity. The Walsh transform of f is the Fourier transform χ̂f from
F

n
p to C of χf defined as

χ̂f (ω) =
∑

x∈Fn
p

ξp
f(x)−ω·x
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for all ω ∈ F
n
p where “·” denotes an inner product (for instance, the usual inner

product) in F
n
p . We can take ω · x = Trpn/p(ωx) if F

n
p is identified with Fpn . The

Walsh support of f is defined as the set {ω ∈ F
n
p : χ̂f (ω) �= 0}. A p-ary function

f can be recovered from χ̂f by the inverse transform:

ξf(x)
p =

1
pn

∑

b∈Fpn

χ̂f (b)ξb·x
p .

A p-ary function f is called plateaued if its absolute Walsh transform takes only
one nonzero value (and also possibly the value 0). More precisely, f is p-ary
bent if |χ̂f (ω)|2 = pn for all ω ∈ Fpn , and f is said to be p-ary s-plateaued (i.e.,
plateaued of amplitude μ) if |χ̂f (ω)|2 ∈ {0, μ2} for all ω ∈ Fpn (where μ2 = pn+s

for an integer s with 0 ≤ s ≤ n, and μ is called the amplitude of plateaued p-ary
function). By definition, p-ary bent functions are p-ary 0-plateaued functions
and hence, all results about p-ary plateaued functions in this paper are valid for
p-ary bent functions.

A function F from F
n
p to F

m
p is called an (n,m)-p-ary function or vectorial

p-ary function. The component functions of F are in the form fλ = λ · F for
λ ∈ F

m
p \{0} defined as fλ(x) = λ · F (x) for all x ∈ F

n
p , where “·” denotes an

inner product in F
m
p . The vector spaces F

n
p and F

m
p can be identified with the

Galois fields Fpn and Fpm of orders pn and pm, respectively. Then the component
functions fλ, λ ∈ F

�
pm , of F are defined as fλ(x) = Trpm/p(λF (x)) for all x ∈ Fpn .

A p-ary function F is called vectorial plateaued if its component functions fλ, λ ∈
F

�
pm , are p-ary plateaued with possibly different amplitudes. In particular, F is

called vectorial s-plateaued (i.e., plateaued with single amplitude) p-ary function
if its component functions fλ, λ ∈ F

�
pm , are p-ary s-plateaued (see for instance

[13]). Notice that vectorial p-ary bent functions are vectorial p-ary 0-plateaued
functions.

Remark 1. A vectorial p-ary function is plateaued if and only if all its component
functions are p-ary plateaued with possibly different amplitudes. Moreover, a
vectorial p-ary function is plateaued with single amplitude if and only if all its
component functions are p-ary plateaued of the same amplitude. Those facts are
frequently used in the sequel.

For a nonnegative integer i, the even power moment of the Walsh transform of
f is given as

Si(f) =
∑

ω∈Fpn

|χ̂f (ω)|2i

with the convention S0(f) = pn. It is a well known fact that S1(f) = p2n is known
as the Parseval identity. By the Parseval identity, we have (see for instance [10]):

Lemma 1. Let f : Fpn → Fp be p-ary s-plateaued where s is an integer with
0 ≤ s ≤ n. Then for ω ∈ Fpn , |χ̂f (ω)|2 takes pn−s times the value pn+s and
pn − pn−s times the value 0.
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For every nonnegative integers A and i, we have

∑

ω∈Fpn

(
|χ̂f (ω)|2 − A

)2

|χ̂f (ω)|2i = Si+2(f) − 2ASi+1(f) + A2Si(f) ≥ 0. (1)

For a positive integer i and A = pn+s with an integer 1 ≤ s ≤ n, the inequality
(1) becomes an equality if and only if f is p-ary s-plateaued. For instance for
i = 1, f is p-ary s-plateaued if and only if S3(f) + p4n+2s = 2pn+sS2(f).

We finally introduce the following notations. A p-ary function f is said to be
balanced over Fp if #{x ∈ Fpn : f(x) = k} = pn−1 for each k ∈ Fp, i.e., f takes
every value of Fp the same number, pn−1 times. The first-order derivative of f
at a ∈ Fpn is the map Daf : Fpn → Fp defined as Daf(x) = f(x + a) − f(x) for
x ∈ Fpn . The second-order derivative of f at (a, b) ∈ F

2
pn is given as DbDaf(x) =

f(x + a + b) − f(x + a) − f(x + b) + f(x) for x ∈ Fpn . For (a, b) ∈ F
2
pn , one

can readily see DbDaf(x) = DaDbf(x) for x ∈ Fpn . Similarly, the first-order
derivative of vectorial F at a ∈ Fpn is defined as

DaF (x) = F (x + a) − F (x),

and the second-order derivative of F at (a, b) ∈ F
2
pn is given as DbDaF (x) =

F (x + a + b) − F (x + a) − F (x + b) + F (x) for x ∈ Fpn . The autocorrelation
function of f is a map from Fpn to C defined as

a �→ F(Daf) =
∑

x∈Fpn

ξf(x+a)−f(x)
p ,

which can be denoted by Δf (a) for all a ∈ Fpn . Let G1, G2 : Fpn → C be two
functions. The convolution of G1 and G2 is a map from Fpn to C defined as

(G1 ⊗ G2)(u) =
∑

x∈Fpn

G1(x)G2(u − x)

for all u ∈ Fpn (see for instance [14, Definition 10.1.18]).

3 Characterizations by the Autocorrelation Functions

In this section, we begin extending the characterizations of plateaued (vector-
ial) Boolean functions to arbitrary characteristic by presenting further charac-
terizations of those functions in arbitrary characteristic by the autocorrelation
functions.

We start with the known elementary materials related to the Fourier trans-
form, convolution and autocorrelation function, which are useful to prove the
main results in this section.

Let G : Fpn → C be a function, and let Ĝ(v) =
∑

u∈Fpn
G(u)ξ−u·v

p be its
Fourier transform for v ∈ Fpn . Then for all u ∈ Fpn

̂̂
G(u) = pnG(−u). (2)
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By (2), one can find the known relation G(−u) = 1
pn

∑
v∈Fpn

Ĝ(v)ξ−v·u
p for all

u ∈ Fpn . Therefore, G(u) = 0 for all u ∈ Fpn if and only if Ĝ(v) = 0 for all
v ∈ Fpn . Let G1, G2 : Fpn → C, then

G1(u) = G2(u), ∀u ∈ Fpn ⇐⇒ Ĝ1(v) = Ĝ2(v), ∀v ∈ Fpn . (3)

We recall the convolution theorem of Fourier analysis (see for instance
[14, Theorem 10.1.19]).

Proposition 1 [14]. Let G1, G2 : Fpn → C. Then we have ̂G1 ⊗ G2 = Ĝ1Ĝ2.

Moreover, Ĝ1 ⊗ Ĝ2 = pnĜ1G2.

Let f : Fpn → Fp be a p-ary function and let Δf (a) =
∑

x∈Fpn
ξ

f(x+a)−f(x)
p be

its autocorrelation function for a ∈ Fpn . By (2), we have

̂̂
Δf (a) = pnΔf (−a) (4)

for all a ∈ Fpn . As readily seen, for all a ∈ Fpn

Δf (a) =
∑

x∈Fpn

ξp
f(x)−f(x+a) = Δf (−a) (5)

where we used the bijective change of variable x �→ x − a. The Walsh transform
χ̂f of f satisfies

|χ̂f (b)|2 =
∑

x,y∈Fpn

ξp
f(x)−f(y)−b·(x−y) =

∑

x,y∈Fpn

ξp
f(x+y)−f(y)−b·x = Δ̂f (b) (6)

for all b ∈ Fpn where in the second equality we used the bijective change of
variable x �→ x + y. Hence, combining (4), (5) and (6), we have ̂|χ̂f (a)|2 =
pnΔf (a) for all a ∈ Fpn . Moreover, by Proposition 1, the Fourier transform of
|χ̂f |4 is obtained as

̂|χ̂f |2|χ̂f |2 = p−n
(
|̂χ̂f |2 ⊗ |̂χ̂f |2

)
= p−n

(
pnΔf ⊗ pnΔf

)
= pn

(
Δf ⊗ Δf

)
. (7)

We first characterize p-ary plateaued functions by considering the Fourier trans-
forms of their absolute Walsh transforms. By definition of p-ary plateaued func-
tions, we can say that f is p-ary plateaued of amplitude μ if and only if the two
functions |χ̂f |4 and μ2|χ̂f |2 are equal; equivalently, by (3) their Fourier trans-
forms are equal. We now present the following characterization of plateaued
p-ary functions.

Theorem 1. Let f : Fpn → Fp. Then, f is p-ary plateaued of amplitude μ if
and only if for all x ∈ Fpn

∑

a∈Fpn

Δf (a)Δf (x − a) = μ2Δf (x). (8)

Let F : Fpn → Fpm and let fλ, λ ∈ F
�
pm , be the component functions of F . Then,

F is p-ary plateaued with single amplitude if and only if for all x ∈ Fpn and
λ ∈ F

�
pm , we have

∑
a∈Fpn

Δfλ
(a)Δfλ

(x − a) = μ2Δfλ
(x).
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Proof. As stated above, f is p-ary plateaued of amplitude μ if and only if the two
functions Δf ⊗ Δf and μ2Δf are equal; equivalently, (Δf ⊗ Δf )(x) = μ2Δf (x)
for all x ∈ Fpn by (5). This proves the first assertion. By Remark 1, the second
statement is a direct consequence of the first statement. �
Now let us compute the Fourier transform of |χ̂f |6, by Proposition 1,

̂|χ̂f |2|χ̂f |4 = p−n
(
|̂χ̂f |2 ⊗ |̂χ̂f |4

)
= pn

(
Δf ⊗ Δf ⊗ Δf

)

where we used (7) in the last equality. We can present the following result, which
may be less practical than Theorem 1.

Theorem 2. Let f : Fpn → Fp. Then, f is p-ary plateaued of amplitude μ if
and only if for all x ∈ Fpn

∑

a,b∈Fpn

Δf (a)Δf (b)Δf (x − a − b) = μ2
∑

c∈Fpn

Δf (c)Δf (x − c).

Let F : Fpn → Fpm and let fλ, λ ∈ F
�
pm , be the component functions of F . Then,

F is p-ary plateaued with single amplitude if and only if for all x ∈ Fpn and
λ ∈ F

�
pm ,

∑

a,b∈Fpn

Δfλ
(a)Δfλ

(b)Δfλ
(x − a − b) = μ2

∑

c∈Fpn

Δfλ
(c)Δfλ

(x − c).

Proof. As in the proof of Theorem 1, f is p-ary plateaued of amplitude μ if and
only if the two functions |χ̂f |6 and μ2|χ̂f |4 are equal; equivalently, from (3) and
(5), (Δf ⊗ Δf ⊗ Δf )(x) = μ2(Δf ⊗ Δf )(x) for all x ∈ Fpn . By Remark 1, the
proof of the second statement is a direct consequence of the first statement. �
In order to characterize vectorial plateaued p-ary functions whose component
functions may have different amplitudes, we need to get rid of the μ2 in (8).
Then putting x = 0 in (8), we have

∑
a∈Fpn

|Δf (a)|2 = μ2Δf (0) = μ2pn by (5)
since Δf (0) = pn. Hence we can directly derive from Theorem 1 the following
result.

Theorem 3. Let f : Fpn → Fp. Then, f is p-ary plateaued if and only if for all
x ∈ Fpn ,

pn
∑

a∈Fpn

Δf (a)Δf (x − a) =
∑

a∈Fpn

|Δf (a)|2Δf (x).

Let F : Fpn → Fpm , and fλ, λ ∈ F
�
pm , be the component functions of F . Then,

F is p-ary plateaued if and only if for all x ∈ Fpn and λ ∈ F
�
pm ,

pn
∑

a∈Fpn

Δfλ
(a)Δfλ

(x − a) =
∑

a∈Fpn

|Δfλ
(a)|2Δfλ

(x).
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We can rewrite Theorem 3 as follows. A p-ary function f is plateaued if and only
if for all x ∈ Fpn (by the bijective change of variable a �→ a − b)

pn
∑

a,b,c∈Fpn

ξ−f(a)+f(b)+f(c)−f(−a+b+c+x)
p

=
∑

a,b,c,d∈Fpn

ξ−f(a)+f(b)+f(c)−f(−a+b+c)+f(d)−f(d+x)
p .

For vectorial F : Fpn → Fpm , we can write this by considering f = λ · F for
λ ∈ F

�
pm . Applying the Fourier transform, by (3) their Fourier transforms are

equal, and hence we deduce (see the proof of Theorem 5) that:

Corollary 1. A vectorial function F is plateaued if and only if for all x ∈ Fpn

and v ∈ Fpm pn#{(a, b, c) ∈ F
3
pn : −F (a)+F (b)+F (c)−F (−a+b+c+x) = v} =

#{(a, b, c, d) ∈ F
4
pn : −F (a)+F (b)+F (c)−F (−a+b+c)+F (d)−F (d+x) = v}.

One can obtain the following characterization of p-ary bent (vectorial) functions
by means of the autocorrelation function (see for instance [9, Property 4]).

Corollary 2. Let f : Fpn → Fp. Then we have
∑

a∈Fpn

|Δf (a)|2 ≥ p2n, (9)

with an equality if and only if f is p-ary bent. Let F : Fpn → Fpm , and let fλ,
λ ∈ F

�
pm , be the component functions of F . Then F is vectorial p-ary bent if and

only if
∑

a∈Fpn
|Δfλ

(a)|2 = p2n for all λ ∈ F
�
pm .

Proof. Recall that Δf (a) =
∑

x∈Fpn
ξp

f(x+a)−f(x) for a ∈ Fpn . For any function
f , Δf (0) = pn and |Δf (a)| ≥ 0 for all a ∈ F

�
pn . Hence, the bound in (9) holds

for every function, and it is achieved by bent p-ary functions because of the fact
that f is p-ary bent if and only if Δf (a) = 0 for all a ∈ F

�
pn . Thanks to the well

known fact that a vectorial p-ary function is bent if and only if all its components
are p-ary bent, the proof of the second statement is a direct consequence of the
first statement. �

4 Characterizations in Terms of the Derivatives

This section generally extends to arbitrary characteristic the characteriza-
tions of plateaued (vectorial) Boolean functions in terms of the first-order and
second-order derivatives given in [2,3]. More precisely, we characterize power
plateaued p-ary functions and vectorial plateaued p-ary functions whose com-
ponents are unbalanced. We finally extend the notion of strongly-plateaued
functions.

The first characterization of Boolean plateaued functions in terms of the
second-order derivatives was provided in [5], and has been extended to arbitrary
characteristic in [2,13].
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Theorem 4 [13]. Let f : Fpn → Fp. Set θf (x) =
∑

a,b∈Fpn
ξ

DbDaf(x)
p for x ∈

Fpn . Then, f is p-ary plateaued of amplitude μ if and only if θf (x) = μ2 for all
x ∈ Fpn . In particular, f is p-ary bent if and only if θf (x) = pn for all x ∈ Fpn .

The extension of [2,3, Theorem 1] to arbitrary characteristic was given in [12].

Theorem 5 [12]. Let F,G : Fpn → Fpm . For v ∈ Fpm and x ∈ Fpn , let us
denote by NF (v;x) the size of the set {(a, b) ∈ F

2
pn : DbDaF (x) = v}. Then

NF (v;x) = #{(a, b) ∈ F
2
pn : DaF (b) − DaF (x) = v} for all v ∈ Fpm and

x ∈ Fpn . Moreover,

– F is p-ary plateaued if and only if for all v ∈ Fpm , NF (v;x) is independent of
x ∈ Fpn .

– F is p-ary plateaued with single amplitude if and only if there exist two integers
u1 and u2 such that NF (0;x) = u1 and NF (v;x) = u2 for all v ∈ F

�
pm and

x ∈ Fpn .
– For two plateaued p-ary functions F and G, if NF (v;x) = NG(v;x) for all

v ∈ Fpm , which means that F and G have the same distribution for DbDaF (x)
and DbDaG(x), then the component functions fλ and gλ, λ ∈ F

�
pm , are sλ-

plateaued p-ary functions.

The following link between the second-order derivative and the fourth power
moment of the Walsh transform was given in [10] (for characteristic 2, see [1]).

Proposition 2. Let f : Fpn → Fp. Then, S2(f) = pn
∑

a,b,x∈Fpn
ξ

DbDaf(x)
p .

We can derive from Theorems 4 and 5 and Proposition 2 the following result.

Corollary 3. Let f : Fpn → Fp. Set θf (x) =
∑

a,b∈Fpn
ξ

DbDaf(x)
p for x ∈ Fpn .

Then, f is p-ary plateaued if and only if S2(f) = p2nθf (x) for all x ∈ Fpn . Let
F : Fpn → Fpm , and let fλ, λ ∈ F

�
pm , be the component functions of F . Then

F is p-ary plateaued if and only if for each λ ∈ F
�
pm , S2(fλ) = p2nθfλ

(x) for all
x ∈ Fpn . In particular, F is p-ary plateaued with single amplitude if and only if,
additionally, S2(fλ) does not depend on λ for λ �= 0.

Proof. By Proposition 2, S2(f) = pn
∑

x∈Fpn
θf (x). Assume that f is p-ary

plateaued. By Theorem4, S2(f) = pnpnθf (x) for all x ∈ Fpn . Conversely, for
all x ∈ Fpn we have θf (x) = θ where θ = p−2nS2(f). By Theorem 4, f is p-ary
plateaued.
By Remark 1, the second statement is a direct consequence of the first
statement.
The last assertion, with the above arguments, can be completed from
Theorems 4 and 5 and Proposition 2. �
Notice that for all a, b, c ∈ Fpn we have DaDbfλ(c) = λ · DaDbF (c) where fλ =
λ · F for λ ∈ F

�
pm . By Proposition 2 and Corollary 3, F is p-ary plateaued if and

only if for all x ∈ Fpn and λ ∈ F
�
pm

∑

a,b,c∈Fpn

ξλ·DaDbF (c)
p = pn

∑

a,b∈Fpn

ξλ·DaDbF (x)
p ,
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equivalently, applying the Fourier transform, by (3) for all x ∈ Fpn and v ∈ Fpm

#{(a, b, c) ∈ F
3
pn : DaDbF (c) = v} = pn#{(a, b) ∈ F

2
pn : DaDbF (x) = v},(10)

that is, for all v ∈ Fpm , #{(a, b) ∈ F
2
pn : DaDbF (x) = v} is independent of

x ∈ Fpn . Thus, Corollary 3 can also be derived only from Theorem5.

Remark 2. Notice that if we add an affine function to F , then plateaued-ness of
F is preserved because it does not change the value of the second-order derivative
of F . On the other hand, adding a quadratic function to F changes this value
since the distribution of the second-order derivative of F is dependent on x in
general. We indicate this in the following results which generalize those of [2].

Corollary 4. Let F : Fpn → Fpm . Then, F is p-ary plateaued if and only if for
all x ∈ Fpn , there exists a permutation φx of F

2
pn defined as φx(a, b) = (ax, bx)

such that DbDaF (x) = Dbx
Dax

F (0); or equivalently, there exists a permutation
ψx of F

2
pn defined as ψx(a, b) = (a′

x, b′
x) such that DaF (b)−DaF (x) = Da′

x
F (b′

x)−
Da′

x
F (0).

Proof. For v ∈ Fpm and x ∈ Fpn , let us define the following sets
{
(a, b) ∈ F

2
pn : DbDaF (x) = v

}
and

{
(ax, bx) ∈ F

2
pn : Dbx

Dax
F (0) = v

}
.(11)

Assume that F is p-ary plateaued. By Theorem5, for each x ∈ Fpn the sizes of
the sets in (11) are equal for all v ∈ Fpm , then for all x ∈ Fpn there exists a
permutation φx of F

2
pn from the first set (defined for some value of v and x �= 0)

to the second set (defined for the same value of v and for x = 0) in (11) defined
as φx(a, b) = (ax, bx). Conversely, because of the permutation φx, for all v ∈ Fpm

and x ∈ Fpn , the sizes of the sets in (11) are equal. By Theorem 5, F is p-ary
plateaued. The proof is complete.
For the second statement, we consider the following sets

{(a, b) ∈ F
2
pn : DaF (b) − DaF (x) = v} and (12)

{(a′
x, b′

x) ∈ F
2
pn : Da′

x
F (b′

x) − Da′
x
F (0) = v} (13)

for v ∈ Fpm and x ∈ Fpn . By Theorem 5, using the above arguments, F is p-ary
plateaued if and only if for all x ∈ Fpn , there exists a permutation ψx of F

2
pn

mapping from the set in (12) to the set in (13) defined as ψx(a, b) = (a′
x, b′

x). �
Recall that DaF (b) − DaF (x) = DaDb−xF (x) for a, b, x ∈ Fpn . Hence we have
ψx(a, b) = φx(a, b − x) since Da′

x
F (b′

x) − Da′
x
F (0) = DaF (b) − DaF (x) =

DaDb−xF (x) = Da′′
x
Db′′

x
F (0) = Da′′

x
F (b′′

x) − Da′′
x
F (0) where ψx(a, b) = (a′

x, b′
x)

and φx(a, b − x) is denoted by (a′′
x, b′′

x).

Remark 3. Notice that the simple permutation φx(a, b) = (a, b) for all a, b ∈ Fpn

correlates with quadratic functions. Actually, F admits such associated φx if
and only if DbDaF (c) = DbDaF (0) at (a, b) ∈ F

2
pn for all c ∈ Fpn , that is,

DcDbDaF (0) = 0 at (a, b, c) ∈ F
3
pn , which means that it is a quadratic function.
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Corollary 5. Let F : Fpn → Fpm be p-ary plateaued, and for all x ∈ Fpn ,
let φx be a permutation defined by φx(a, b) = (ax, bx) as in Corollary 4. Let
G : Fpn → Fpm be a function such that DbDaG(x) = Dbx

Dax
G(0) at (a, b) ∈ F

2
pn

for all x ∈ Fpn . Then, F + G is p-ary plateaued.

Proof. By Corollary 4, for all x ∈ Fpn , we have DbDaF (x) = Dbx
Dax

F (0) where
(ax, bx) = φx(a, b). Then, for all x ∈ Fpn , DbDa(F + G)(x) = DbDaF (x) +
DbDaG(x) = Dbx

Dax
F (0) + Dbx

Dax
G(0) = Dbx

Dax
(F + G)(0) where (ax, bx) =

φx(a, b). Thus, F + G is p-ary plateaued. �
Remark 4. We derive from the above results that in general F + G may not
be p-ary plateaued when F is p-ary plateaued and G is quadratic. For a
quadratic function G, although we have DbDaG(x) = DbDaG(0) (see Remark 3),
DbDaG(x) may not equal Dbx

Dax
G(0) for some x ∈ Fpn where (ax, bx) = φx(a, b)

for the associated permutation φx of F .

We now investigate power functions on Fpn in terms of the first-order deriva-
tives. Power functions are widely studied because of their interesting algebraic
and combinatorial properties, and their applications in sequence design, coding
theory and cryptography.

Corollary 6. Let F be a power function on Fpn defined as F (x) = xd. For
v, x ∈ Fpn , let NF (v;x) be the size of the set {(a, b) ∈ F

2
pn : DaF (b) − DaF (x) =

v}. Then for all v, x, λ ∈ Fpn with λ �= 0,

NF (v;x) = #{(a, b) ∈ F
2
pn : DaF (b) − DaF (x/λ) = v/λd}. (14)

In particular, for all v ∈ Fpn , NF (v; 0) = NF (v/λd; 0) for any λ ∈ F
�
pn . Moreover

i. F is p-ary plateaued if and only if NF (v; 1) = NF (v; 0) for all v ∈ Fpn .
ii. F is p-ary plateaued with single amplitude if and only if NF (0; 1) = NF (0; 0)

and there exists an integer u such that NF (v; 1) = NF (v; 0) = u for all
v ∈ F

�
pn .

If F is p-ary plateaued and gcd(d, pn − 1) = 1, then it has single amplitude.

Proof. For all λ ∈ Fpn with λ �= 0, by the bijective change of variable a �→ λa
and b �→ λb, we have #{(a, b) ∈ F

2
pn : DaF (b) − DaF (x) = v} = #{(a, b) ∈ F

2
pn :

DλaF (λb) − DλaF (x) = v}. For all a, b, x, λ ∈ Fpn with λ �= 0, we can easily
see DλaF (λb) = (λb + λa)d − (λb)d = λdDaF (b) and DλaF (x) = λdDaF (x/λ).
Hence, (14) holds for all v, x, λ ∈ Fpn with λ �= 0.
In particular, for x = 0 in (14), we have #{(a, b) ∈ F

2
pn : DaF (b) − DaF (0) =

v} = #{(a, b) ∈ F
2
pn : DaF (b) − DaF (0) = v/λd}, that is, NF (v; 0) =

NF (v/λd; 0) for all v, λ ∈ Fpn with λ �= 0.
We now prove (i). By (14), for all v ∈ Fpn we have (by taking λ = x for x �= 0)

NF (v;x) = #{(a, b) ∈ F
2
pn : DaF (b) − DaF (1) = v/xd}. (15)

Assume that NF (v; 1) = NF (v; 0) for all v ∈ Fpn . Then we have #{(a, b) ∈ F
2
pn :

DaF (b) − DaF (1) = v/xd} = #{(a, b) ∈ F
2
pn : DaF (b) − DaF (0) = v/xd}, which
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equals #{(a, b) ∈ F
2
pn : DaF (b)−DaF (0) = v} from the second statement. Then,

for all v ∈ Fpn , NF (v;x) = NF (v; 0) for all x ∈ F
�
pn by (15). Hence, F is p-ary

plateaued by Theorem 5. Conversely, the other direction is clear from Theorem5.
Next we prove (ii). The second item of Theorem 5 says that F is p-ary

plateaued with single amplitude if and only if there exist two integers u1

and u2 such that NF (0;x) = u1 and NF (v;x) = u2 for all x ∈ Fpn and
v ∈ F

�
pn . Assume that NF (0; 1) = NF (0; 0) and there exists an integer u such

that NF (v; 1) = NF (v; 0) = u for all v ∈ F
�
pn . From the proof of (i), we

have NF (v;x) = NF (v; 0) for all v, x ∈ Fpn with x �= 0. Combining them,
NF (v;x) = u for all v, x ∈ Fpn with v �= 0 and NF (0;x) is independent of
x ∈ Fpn . Hence, by Theorem 5, F is p-ary plateaued with single amplitude.
Conversely, the other direction is clear from Theorem5.

Finally we prove the last assertion. Assume that F is p-ary plateaued. By
(i), NF (v; 1) = NF (v; 0) for all v ∈ Fpn . From the second assertion, NF (v; 0) =
NF (v/λd; 0) for all v, λ ∈ Fpn with λ �= 0. Then, NF (v; 1) = NF (v/λd; 0) for all
v, λ ∈ Fpn with λ �= 0. For v = 0, it is obvious that NF (0; 1) = NF (0; 0). For
v ∈ F

�
pn , if we set v = 1 and using the fact gcd(d, pn − 1) = 1, then λ �→ 1/λd is

a permutation of F
�
pn . Then we get NF (1, 1) = NF (v, 0) for all v ∈ F

�
pn , that is,

NF (v, 0) = NF (v; 1) does not depend on v ∈ F
�
pn . Hence, plateaued F has single

amplitude from (ii). �
Remark 5. With the above notations, for a power function F (x) = xd, in general
we have NF (v; 1) �= NF (v/λd; 1) for v, λ ∈ Fpn with λ �= 0. However, the equality
case is necessary for plateaued-ness.

We now consider plateaued-ness property of vectorial p-ary functions whose com-
ponent functions are all unbalanced. Recall that a function is balanced if and
only if its Walsh transform vanishes at zero input.

Theorem 6. Let F : Fpn → Fpm , and let fλ, λ ∈ F
�
pm , be unbalanced functions.

For v ∈ Fpm and x ∈ Fpn , let NF (v;x) be the size of the set {(a, b) ∈ F
2
pn :

DaDbF (x) = v}. Then, F is p-ary plateaued if and only if for all v ∈ Fpm and
x ∈ Fpn we have

NF (v;x) = #{(a, b) ∈ F
2
pn : F (a) − F (b) = v}. (16)

In particular, F is p-ary plateaued with single amplitude if and only if for all
v ∈ Fpm and x ∈ Fpn (16) holds and it is independent of v ∈ F

�
pm .

Proof. Assume that F is p-ary plateaued. Since fλ = λ · F , λ ∈ F
�
pm , are all

unbalanced p-ary plateaued of amplitude μλ, we have χ̂fλ
(0) �= 0 for all λ ∈ F

�
pm

(and also for λ = 0), and hence μ2
λ = |χ̂fλ

(0)|2. For λ ∈ Fpm , since |z|2 = zz for
z ∈ C, we can easily see

|χ̂fλ
(0)|2 =

∑

a,b∈Fpn

ξλ·(F (a)−F (b))
p . (17)
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Recall that DaDbfλ(x) = λ ·(DaDbF (x)) for all a, b, x ∈ Fpn and λ ∈ Fpm . Then,
by Theorem 4, for all x ∈ Fpn and λ ∈ Fpm we have

G(λ;x) =
∑

a,b∈Fpn

ξλ·DaDbF (x)
p =

∑

a,b∈Fpn

ξλ·(F (a)−F (b))
p (18)

where the second equality follows from (17). By (3), for all x ∈ Fpn and v ∈ Fpm ,
the Fourier transforms of the equal functions in (18) are equal:

Ĝ(v;x) =
∑

λ∈Fpm

∑

a,b∈Fpn

ξλ·(DaDbF (x)−v)
p =

∑

λ∈Fpm

∑

a,b∈Fpn

ξλ·(F (a)−F (b)−v)
p , (19)

equivalently, Ĝ(v;x) = pm#{(a, b) ∈ F
2
pn : DaDbF (x) = v} = pm#{(a, b) ∈

F
2
pn : F (a) − F (b) = v}. Hence, the assertion holds.

Conversely, assume that for all x ∈ Fpn and v ∈ Fpm (16) holds, that is,
(19) holds. By (3), for all x ∈ Fpn and λ ∈ Fpm , (18) holds, that is, by (17),
G(λ;x) = |χ̂fλ

(0)|2, which is nonzero since fλ, λ ∈ F
�
pm , are all unbalanced.

Then, for all λ ∈ F
�
pm , G(λ;x) does not depend on x ∈ Fpn . By Theorem 4, fλ,

λ ∈ F
�
pm , is p-ary plateaued, and hence, F is p-ary plateaued.

Finally we prove the last statement. Theorem4 says that F is p-ary plateaued
with single amplitude if and only if G(λ;x) in (18) does not depend on x ∈ Fpn

nor λ for λ �= 0; equivalently by (3), Ĝ(v;x) in (19) does not depend on x ∈
Fpn nor of v for v �= 0. Hence, with the above arguments, this completes the
proof. �
We derive from Theorem 6 and [12, Theorem 8 and Corollary 4] the following
result.

Corollary 7. Let F : Fpn → Fpm be a function whose component functions are
all unbalanced. Let s be an integer with 0 ≤ s ≤ n. Then F is vectorial p-ary
s-plateaued if and only if for all v ∈ F

�
pm we have #{(a, b) ∈ F

2
pn : F (a)−F (b) =

v} = p2n−m − pn+s−m. In particular, F is vectorial p-ary bent if and only if
#{(a, b) ∈ F

2
pn : F (a) = F (b)} = p2n−m +pn −pn−m. Moreover, if F is vectorial

p-ary s-plateaued, #{(a, b) ∈ F
2
pn : F (a) = F (b)} = p2n−m + pn+s − pn+s−m.

In the following, we study a particular case of p-ary plateaued (vectorial) func-
tions: when the value distribution of b �→ DaDbF (x) is independent of x ∈ Fpn

for each fixed value of a although the value distribution of DbDaF (x) when
(a, b) ∈ F

2
pn is independent of x ∈ Fpn in Theorem 5.

Definition 1. Let F : Fpn → Fpm . Then, F is called vectorial p-ary strongly-
plateaued if for all a ∈ Fpn and v ∈ Fpm , the size of the set {b ∈ Fpn :
DaDbF (x) = v} is independent of x ∈ Fpn . In particular, f : Fpn → Fp is
called p-ary strongly-plateaued if for all a ∈ Fpn and v ∈ Fp, the size of the set
{b ∈ Fpn : DaDbf(x) = v} is independent of x ∈ Fpn .

Remark 6. By Theorem 5, any p-ary strongly-plateaued function is p-ary
plateaued. Moreover, a vectorial p-ary function is strongly-plateaued if and only
if its component functions are p-ary strongly-plateaued.
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Theorem 7. Let F : Fpn → Fpm . For all a, x ∈ Fpn and v ∈ Fpm we have
#{b ∈ Fpn : DaDbF (x) = v} = #{b ∈ Fpn : DaF (b) − DaF (x) = v}.
Proof. For all a, b, x ∈ Fpn , (by the bijective change of variable b �→ b − x),
we have DaDbF (x) = DaDb−xF (x) = F (a + b) − F (x + a) − F (b) + F (x) =
DaF (b) − DaF (x). This completes the proof. �
The notion of p-ary strongly-plateaued is closely connected to p-ary
partially-bent.

Proposition 3. Let f : Fpn → Fp. Then f is p-ary strongly-plateaued if and
only if f is p-ary partially-bent.

Proof. By the fact (see for instance [7]) that f is p-ary partially-bent if and
only if the derivative Daf is either balanced or constant for all a ∈ Fpn , then
f is p-ary partially-bent if and only if for all v ∈ Fpm and a ∈ Fpn , #{b ∈
Fpn : Daf(b) = Daf(x) + v} is independent of x ∈ Fpn ; equivalently, f is p-ary
strongly-plateaued by Theorem7. �
Proposition 4. A vectorial p-ary function is strongly-plateaued if and only if
its all component functions are p-ary partially-bent. In particular, p-ary bent and
quadratic (vectorial) functions are p-ary strongly-plateaued (vectorial) functions.

Proof. The first assertion follows from Remark 6 and Proposition 3. Because of
the well known fact that p-ary bent and quadratic (vectorial) functions are
p-ary partially-bent (vectorial) functions (see for instance [7]), the last asser-
tion follows from the first statement. �

5 Characterizations by Using Power Moments
of the Walsh Transform

In 2014, new characterizations of p-ary plateaued functions, and in 2015 differ-
ent characterizations of plateaued (vectorial) Boolean functions were provided
in [2,3,10] in terms of the Walsh transform. Those characterizations are com-
pleted and extended in this section. We first derive from Theorem4 the following
characterization of p-ary plateaued (vectorial) functions.

Theorem 8. Let f : Fpn → Fp. Then f is p-ary plateaued if and only if for all
α ∈ F

�
pn , we have

∑

ω∈Fpn

χ̂f (α + ω)χ̂f (ω) |χ̂f (ω)|2 = 0. (20)

Let F : Fpn → Fpm and let fλ, λ ∈ F
�
pm , be the component functions of F . Then,

F is p-ary plateaued if and only if
∑

ω∈Fpn
χ̂fλ

(α + ω)χ̂fλ
(ω) |χ̂fλ

(ω)|2 = 0
for all α ∈ F

�
pn and λ ∈ F

�
pm . In particular, F is p-ary plateaued with single

amplitude if and only if, additionally,
∑

ω∈Fpn
|χ̂fλ

(ω)|4 does not depend on λ

for λ �= 0.
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Proof. By definition of χ̂f , for all α ∈ F
�
pn (20) is equivalent to:

∑

ω,x,y,z,t∈Fpn

ξf(x)−(α+ω)·x−f(y)+ω·y+f(z)−ω·z−f(t)+ω·t
p = 0,

that is, to:
∑

ω,x,y,z,t∈Fpn

ξf(x)−f(y)+f(z)−f(t)−ω·(x−y+z−t)−α·x
p = 0, equivalently, to:

∑

x,y,z∈Fpn

ξf(x)−f(y)+f(z)−f(x−y+z)−α·x
p = 0

since
∑

ω∈Fpn
ξ

ω·(x−y+z−t)
p is null if x − y + z − t �= 0, that is, (by the bijective

change of variables: y = x+a and z = x+a+b) to:
∑

x,a,b∈Fpn
ξ

DbDaf(x)−α·x
p = 0.

This last expression equals the Fourier transform of x �→ ∑
a,b∈Fpn

ξ
DbDaf(x)
p at

α ∈ F
�
pn . We know (see for instance [1]) that the Fourier transform of a function

from Fpn to C vanishes at any nonzero input if and only if the function is
constant. Theorem 4 says that there exists θ ∈ N such that

∑
a,b∈Fpn

ξ
DbDaf(x)
p =

θ for all x ∈ Fpn if and only if f is p-ary plateaued. Thus the assertion holds.
By Remark 1, the second statement is a direct consequence of the first state-

ment. The last assertion follows from Theorems 4 and 5 and Proposition 2. �
Corollary 8. Let f : Fpn → Fp. Then f is p-ary plateaued if and only if for all
x ∈ Fpn

∑

ω∈Fpn

|χ̂f (ω)|4 = pn
∑

ω∈Fpn

ξf(x)−ω·x
p χ̂f (ω) |χ̂f (ω)|2. (21)

Let F : Fpn → Fpm , and let fλ, λ ∈ F
�
pm , be the component functions of F . Then

F is p-ary plateaued if and only if for all x ∈ Fpn and λ ∈ F
�
pm

∑

ω∈Fpn

|χ̂fλ
(ω)|4 = pn

∑

ω∈Fpn

ξfλ(x)−ω·x
p χ̂fλ

(ω)|χ̂fλ
(ω)|2. (22)

In particular, F is p-ary plateaued with single amplitude if and only if for all
x ∈ Fpn and λ ∈ F

�
pm (22) holds and it is independent of λ �= 0.

Proof. Assume that f is p-ary plateaued of amplitude μ. By Lemma 1, the left-
hand side of (21) is equal to p2nμ2. For all x ∈ Fpn , the right-hand side of (21)
equals

pnμ2
∑

ω∈Fpn

ξf(x)−ω·x
p χ̂f (ω) = pnμ2

∑

y∈Fpn

ξf(x)−f(y)
p

∑

ω∈Fpn

ξω·(y−x)
p = pnpnμ2.

Thus for all x ∈ Fpn , (21) holds. Conversely, assume that (21) holds for all
x ∈ Fpn . That is, for all x ∈ Fpn , a function G : Fpn → C defined as x �→ G(x) =∑

ω∈Fpn
ξ

f(x)−ω·x
p χ̂f (ω)|χ̂f (ω)|2 is constant. Then its Fourier transform
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Ĝ(α) =
∑

x∈Fpn

G(x)ξ−α·x
p =

∑

ω∈Fpn

∑

x∈Fpn

ξf(x)−x·(α+ω)
p χ̂f (ω) |χ̂f (ω)|2

=
∑

ω∈Fpn

χ̂f (α + ω)χ̂f (ω) |χ̂f (ω)|2

is null at any α ∈ F
�
pn . Hence f is p-ary plateaued by Theorem8.

By Remark 1, the second statement is a direct consequence of the first
statement.

The last assertion, with the above arguments, follows from Theorems 4 and
5 and Proposition 2. �
Considering fλ = λ · F for λ ∈ F

�
pm , for all x ∈ Fpn and λ ∈ F

�
pm the equality

(22) is equivalent to:
∑

ω,a,b,c,d∈Fpn

ξ
λ·(F (a)−F (b)+F (c)−F (d))−ω·(a−b+c−d)
p

= pn
∑

ω,a,b,c∈Fpn

ξλ·(F (x)−F (a)+F (b)−F (c))−ω·(x−a+b−c)
p ,

equivalently,
∑

a,b,c∈Fpn

ξλ·(F (a)−F (b)+F (c)−F (a−b+c))
p = pn

∑

a,b∈Fpn

ξλ·(F (x)−F (a)+F (b)−F (x−a+b))
p ,

that is, (by the bijective change of variables: a �→ a + b + c and b �→ b + c in the
left-hand side, and a �→ a + x and b �→ a + b + x in the right-hand side) we have

∑

a,b,c∈Fpn

ξλ·(DbDaF (c))
p = pn

∑

a,b∈Fpn

ξλ·(DbDaF (x))
p ,

which is equivalent to (10). Namely, the characterizations given by Corollaries 3
and 8 are equivalent. This link between the Walsh transform and second-order
derivative of p-ary functions can be formalized as follows.

Proposition 5. Let f : Fpn → Fp. Then, for all x ∈ Fpn

∑

ω∈Fpn

ξf(x)−ω·x
p χ̂f (ω) |χ̂f (ω)|2 = pn

∑

a,b∈Fpn

ξDaDbf(x)
p . (23)

Proof. By definition χ̂f , for all x ∈ Fpn , the left-hand side of (23) equals
∑

ω,a,b,c∈Fpn

ξf(x)−f(a)−f(b)+f(c)+ω·(a+b−c−x)
p = pn

∑

a,b∈Fpn

ξf(x)−f(a)−f(b)+f(a+b−x)
p

since
∑

ω∈Fpn
ξ

−ω·(x−a−b+c)
p is null if c �= a+b−x. For all x ∈ Fpn , by the bijective

change of variables: a �→ a + x and b �→ b + x, it is equal to the right-hand side
of (23). Hence, the proof is complete. �
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We now present further characterizations of plateaued p-ary functions in terms
of the even power moments of the Walsh transform. We shall recover some results
given by Mesnager [10]. According to (1), for i ≥ 1 and a nonnegative integer A,
f is p-ary plateaued of amplitude μ if and only if

Si(f)A2 − 2Si+1(f)A + Si+2(f) = 0, (24)

where A = μ2 > 0. Then, the reduced discriminant Si+1(f)2 −Si+2(f)Si(f) ≤ 0
of the above equation can not be positive, and it is zero if and only if f is p-ary
plateaued. Moreover, this can be derived from the Cauchy-Schwarz Inequality
(see for instance [15]), which states that for (x1, x2, . . . , xm), (y1, y2, . . . , ym) ∈
R

m or C
m, (

m∑

k=1

|xkyk|
)2

≤
m∑

k=1

|xk|2
m∑

k=1

|yk|2,

with an equality if and only if for all k ∈ {1, . . . , m}, |xk|2 = d|yk|2 for some
d ∈ R

+. Applying the Cauchy-Schwarz Inequality for xk = |χ̂f (ω)|i and yk =
|χ̂f (ω)|i+2, we have

⎛

⎝
∑

ω∈Fpn

|χ̂f (ω)|2i+2

⎞

⎠
2

≤
∑

ω∈Fpn

|χ̂f (ω)|2i
∑

ω∈Fpn

|χ̂f (ω)|2i+4,

that is, Si+1(f)2 ≤ Si(f)Si+2(f) for i ≥ 1. The inequality is an equality if and
only if for all ω ∈ Fpn |χ̂f (ω)|2i = d |χ̂f (ω)|2i+4 for some d ∈ R

+ where i ≥ 1;
equivalently, |χ̂f (ω)|2 is constant (with also possibly the value 0), that is, f is
p-ary plateaued. Notice that the equality case is equivalent to [10, Theorem 1].

Theorem 9. Let f : Fpn → Fp. Then for all i ≥ 1, we have

Si+1(f)2 ≤ Si+2(f)Si(f), (25)

with an equality if and only if f is p-ary plateaued. Let F : Fpn → Fpm and let
fλ, λ ∈ F

�
pm , be the component functions of F . Then for all i ≥ 1, we have

∑

λ∈F
�
pm

Si+1(fλ)2 ≤
∑

λ∈F
�
pm

Si+2(fλ)Si(fλ), (26)

equivalently,
∑

λ∈F
�
pm

Si+1(fλ) ≤
∑

λ∈F
�
pm

√
Si+2(fλ)Si(fλ), (27)

with an equality if and only if F is p-ary plateaued.

Proof. As stated above, the first assertion is a direct consequence of the Cauchy-
Schwarz Inequality and its equality case. In the second statement, the inequalities
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(26) and (27) can be easily obtained by (25). To prove equality cases, notice that
by (25) we have

Si+2(fλ)Si(fλ) − Si+1(fλ)2 ≥ 0

for all λ ∈ F
�
pm . Thanks to the well known fact that a sum of nonnegative terms is

zero if and only if each term is zero, then the inequality (26) or (27) becomes an
equality if and only if fλ, λ ∈ F

�
pm , are all p-ary plateaued by (25); equivalently,

F is p-ary plateaued. �
In particular, from (24), for i = 1 and A > 0, f is p-ary plateaued if and only if
S1(f)A2−2S2(f)A+S3(f) = 0. The reduced discriminant S2(f)2−S3(f)S1(f) ≤
0 of the above equation can not be positive and it is zero if and only if f is p-ary
plateaued.

Corollary 9. Let f : Fpn → Fp. Then S2(f)2 ≤ p2nS3(f), with an equality if
and only if f is p-ary plateaued. Let F : Fpn → Fpm and let fλ, λ ∈ F

�
pm , be the

component functions of F . Then we have
∑

λ∈F
�
pm

S2(fλ)2 ≤ p2n
∑

λ∈F
�
pm

S3(fλ),

equivalently,
∑

λ∈F
�
pm

S2(fλ) ≤ pn
∑

λ∈F
�
pm

√
S3(fλ), with an equality if and only

if F is p-ary plateaued.

6 Conclusion

Plateaued functions have attracted attention since their introduction in the liter-
ature because of their role in diverse domains of Boolean and vectorial functions
for sequences and cryptography like correlation immune functions and orthogo-
nal arrays (since plateaued functions offer the best possible compromise between
resiliency order and nonlinearity), APN functions and S-boxes (since plateaued
APN functions in odd dimension are almost bent), and because, like partially-
bent functions, they represent a natural class for generalizing in the same time
bent functions and quadratic functions, but they constitute a larger class than
partially-bent functions, including also all semi-bent and near-bent functions.
But their structure is still more difficult to characterize and, little is known
about those functions already in characteristic 2 and still more in arbitrary
characteristic. The objective of this paper was to provide several various tools
to handle the plateaued-ness property of p-ary (vectorial) functions in order to
clarify their structure. To this end, several explicit characterizations were given,
extending the recent results of Carlet [2,3] (valid in characteristic 2).
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Abstract. Group signature is a cryptographic primitive where a user
can anonymously sign a message on behalf of group users. The dynamic
case in group signature is more interesting than the static one. The gen-
eral idea of this scheme consists in finding a collision between two cipher-
texts using two different Quasi-cyclic Moderate Density Parity-Check
(QC-MDPC) matrices in McEliece cryptosystem. We use a variation of
AGS Zero-Knowledge protocol to prove the possession of the secret key
and then we use the Fiat Shamir transformation to turn it into a signa-
ture. The public key and signature sizes are constants and independent of
group users size and are shorter than those presented in the literature for
80 bits security level. Furthermore the proposed group signature scheme
presents several advantages: it is a dynamic group signature based on
error correcting code assumptions which are supposed resistant to quan-
tum computing.

Keywords: Dynamic group signature · Code-based cryptography ·
QC-MDPC codes · McEliece cryptosystem · General decoding problem

1 Introduction

Group signature schemes have been introduced by Chaum and van Heyst [3], in
order to provide revocable anonymity to a signer, who is allowed to sign on behalf
of a group. In such a scheme an authority is able, in exceptional cases, to “open”
any group signature and thus recover the actual signer. The properties of group
signature schemes make them a very important cryptographic primitive, with
several applications in real-life scenarios such as e-voting schemes, e-bidding,
digital right management systems, controlled anonymous printing services and
other domains.

For many years, several group signatures have been introduced namely the
ACJT [4], which was the first provably secure coalition-resistant scheme under
the Strong RSA and DDH assumptions. Boneh, Boyen and Shacham in [5] and
later Camenisch and Lysyanskaya in [6] proposed very efficient group signature
schemes using bilinear maps. Independently, Nguyen and Safavi-Naini presented
in [7] another group signature scheme using bilinear maps. We note that all these
schemes were analyzed in the random oracle model [8].
c© Springer International Publishing AG 2017
S. El Hajji et al. (Eds.): C2SI 2017, LNCS 10194, pp. 346–364, 2017.
DOI: 10.1007/978-3-319-55589-8 23
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Bellare et al. in [9] gave formal definitions of the security properties of group
signatures, they proposed the first scheme provably secure in the standard model
(while totally unpractical). Independently, Kiayias and Yung [10] (and later [11])
defined a security model. Bellare et al. [12] extended the [9] model to the case
of dynamic groups.

All the aforementioned group signature schemes are based on number theory
assumptions. However, number-theoretic based cryptography will not resist to
the quantum computer. Recently, the research for post-quantum group signa-
tures is quite active as shows these publications [2,13–16,18]. The majority of
these works are based on lattice assumptions, while in code-based cryptography
we denote three group signature schemes. The two first schemes presented in
Asiacrypt 2015 [17,18] in Secrypt 2016 are based on BMW (Bellare, Micciancio
and Warinschi) model [9]. The last one is based on a slight relaxation of the BSZ
(Bellare, Shi and Zang) model [12] and is proposed in [2].

In this paper, we present a new dynamic code-based group signature scheme
which is an improvement of [2]. It is based on two main ideas: the first one consists
in using as Zero-Knowledge argument system the AGS (Aguilar, Gaborit and
Shrek) identification scheme [1], this choice implies lower signature and public
key sizes. For example, to achieve a 80 bits security level, the public key and
signature sizes are 2.5 Ko and 1.32 Mo respectively in our scheme instead of 2.5
Mo and 20 Mo in [2].

We explain in the following points how we reduce the signature and public
key length:

– We use two double circulant matrices (concatenation of an identity matrix and
a circulant matrix) as public key. Therefore, we can generate such matrices
only from the first row of the circulant matrix since the others are obtained
by applying a shift.

– AGS identification scheme [1] have low communication data than all exist-
ing code based identification schemes. In addition, the cheating probability
is around 1

2 witch implies less number of rounds. Thus the signature size is
reduced.

The second difference between our construction and that presented in [2] consists
to find cipher collision instead of syndrome collision in the joining protocol. In
[2], the authors generate trapdoor matrix to make syndrome collision. Notice
that in Hamming metric, the one existing trapdoor matrix is CFS signature
instance [27]. To generate cipher collision, we use QC-MDPC McEliece variant
where in [19] the authors assume that QC-MDPC decoding algorithm is fast and
simple to implement.

This paper is organized as follows: we set in Sect. 2 some notations and pre-
liminaries concerning code based cryptography, AGS Zero-Knowledge identifica-
tion protocol and Fiat-Shamir paradigm. In Sect. 3, we give a security model of
group signature in dynamic case. Then, in Sect. 4 we explain our proposed group
signature scheme and we prove its security in Sect. 5 with specific parameters.
We conclude in Sect. 6.



348 B.E. Ayebie et al.

2 Preliminaries

In this section, we first provide the notations that will be used all along this
work. Secondly, we give background in code-based cryptography. We present
also the QC-MDPC McElice variant and the AGS Zero-Knowledge identification
protocol.

2.1 Notation

Let μ denotes some randomness and the symbol ‖ is for concatenation. v[r]
denotes the r − th coordinate of the vector v and sr denotes the r − th symbol
of the string s. Fq denotes the finite field of cardinality q. Mm×n(Fq) denotes
matrices over Fq of m rows and n columns. Sn

w is the set of vectors of weight
w lying in Fn

2 . H denotes a generic random oracle. Let h : F�
2 → Fn

2 , h′ :
F�

2 → Mk×n(F2) and h′′ : F�
2 → F�

2 be random oracles model. For protocols,
we denote by P and V respectively the prover and the verifier. We use coding
theory notation, where G and H respectively denote generator and parity check
matrices of a code. Let H ∈ Mk×n(Fq) and x ∈ Fn

q . The product H ·xT is called
the syndrome of x and wt(x) refers to the Hamming weight of x. We define 1λ

as a string of ones λ times. We denote by a
$← S if a is chosen uniformly at

random from the finite set S.
We define Pr[A = a] as being the probability to have the event A = a. Let

ExpC−b
B,A (λ) and AdvC

B,A(λ) define respectively the experiment where adversary
A attack the properties C of the scheme B, where the objective is to output the
bit b and the advantage of the adversary A in the experiment ExpC−b

B,A (λ).
We define ρr as a left shift rotation of r position applied to vector u as follows:

ρr :Fn
2 → Fn

2

u �→ ρr(u)

2.2 Code-Based Cryptography

Now we give some necessary notions in code-based cryptography for the well
understanding of our work.

The Syndrome decoding problem and the General Decoding problem, that
we recall hereafter, are two problems based on coding theory proved to be NP-
complete in [20].

Problem 1 (Syndrome Decoding Problem). The SD(n, k, ω) problem is formu-
lated as follows: let n, k and ω be integers, given an uniformly random matrix
H ∈ Mk×n(F2) and a uniformly random syndrome y ∈ F

k
2 , find a vector s ∈ F

n
2

such that wt(s) ≤ ω and H · s� = y�.

Problem 2 (General Decoding Problem GD). The GD(n, n − k, ω) problem is
defined as follows: let k, n and w be integers, and let (G, x, ω) be a triple con-
sisting of a matrix G ∈ Mn−k×n(F2), vector x ∈ Fn

2 and an integer ω < n. Find
a vector m ∈ Fn−k

2 and a vector e ∈ Fn
2 such that wt(e) ≤ ω and x = m · G + e.
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Double circulant matrices. We say that H is a double circulant matrix if
H = [Ip|A] where Ip is the identity matrix of size p and A is a circulant
matrix of length p, which means a p × p matrix generated from its first row
a = (a0, · · · , ap−1)

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

a0 a1 . . . ap−1

ap−1 a0 . . . ap−2

. . . . . .

. . . . . .

. . . . . .
a1 a2 . . . a0

⎞

⎟⎟⎟⎟⎟⎟⎠
(1)

(n, p, w)-QC-MDPC code construction. We use specially a (n, p, w)-QC-
MDPC codes where n = n0p. This means that the parity-check matrix has the
form: H = [H0|H1| · · · |Hn0−1], where Hi is a p × p circulant block.

We define the first row of H by picking a random vector of length n = n0p and
weight w. The other p − 1 rows are obtained from the p − 1 quasi-cyclic shifts of
this first row. Each block Hi will have a row weight wi such that w =

∑n0−1
i=0 wi.

A generator matrix G in row reduced echelon form can be easily derived
from the Hi’s blocks. Assuming the rightmost block Hn0−1 is non-singular, we
construct a generator-matrix as follows:

G =

⎛

⎜⎜⎜⎜⎜⎜⎝
In−p

(H−1
n0−1.H0)T

(H−1
n0−1.H1)T

.

.

.
(H−1

n0−1.Hn0−2)T

⎞

⎟⎟⎟⎟⎟⎟⎠
(2)

QC-MDPC McEliece Encryption Scheme: Using QC-MDPC code,
Misoczki et al. present in [19] the QC-MDPC version of McEliece cryptosys-
tem. For instance, to achieve a 128 bits of security we just need 9857 bits for the
public key which is very compact unlike the original version of McEliece using
Goppa codes.

2.3 AGS Zero-Knowledge Identification Protocol

In 2011 Aguilar et al. published a new identification scheme AGS [1] improving
the Veron’s protocol [22] which is a variation of Stern protocol [23]. The improve-
ment consists in reducing the cheating probability from 2

3 to 1
2 asymptotically

exploiting the structure of random double circulant codes. In fact, decreasing the
cheating probability for one round affect directly the number of rounds needed
to reach a certain level of security. For example, to achieve a 80 bits security
level for signature we have to execute the AGS protocol 88 rounds whereas in
Stern [23] case we need 140 rounds.



350 B.E. Ayebie et al.

Remark 1. It is proved in [1] that the AGS identification protocol verifies the
Zero-Knowledge, completeness and the soundness properties and thus a mali-
cious prover cannot be authenticated with probability much higher than 1

2 .

Fiat-Shamir paradigm. It’s possible to transform an identification protocol
into a signature scheme through the Fiat-Shamir paradigm [24]. The general
difference between authentication and signature is the number of characters
involved. In fact, an authentication protocol consists of an interaction between
a prover and a verifier while a signature needs only one signer. Fiat and Shamir
propose an idea consisting at the generation of the challenge with a random
oracle. We explain in the following how it works: firstly, a signer generates all
the commitments at once. By applying an oracle to these elements, he obtains
challenges that are used to compute the answers to send to the verifier. We use a
hash function as a random oracle and the challenges are deduced from the hash
value of the message and the commitments.

The Fiat-Shamir paradigm has been proved secure for the three-pass proto-
cols in [25] and more recently for five-pass protocols in [26].

3 Group Signature

In this paper, we are interested in the dynamic group signature case. For this
reason, we follow the definitions presented in [21].

Definition 1. A group signature scheme GS = (Setup, Join, Sign, V erif,
Open) is a sequence of protocols such as:

– Setup(1λ): this algorithm generates global public parameters of the system
params, the group public key gpk and the group manager secret key gmsk
encompassing the opening key, skO;

– Join(Ui): this is an interactive protocol between a user Ui and the group man-
ager. At the end of the protocol, the user obtains a secret signing key sk[i].
The group manager adds the new user Ui and updates skO;

– Sign(gpk, sk[i],m;μ): to sign a message m, the user uses his secret key sk[i]
and some randomness μ to output a signature σ valid under the group public
key gpk;

– V erif(gpk,m, σ): anybody should be able to verify the validity of the signature
σ on the message m with respect to gpk. It thus outputs 1 if the signature is
valid, and 0 otherwise;

– Open(skO, gpk,m, σ): for a valid signature σ with respect to gpk, the group
manager can provide the signer identity. It thus outputs the user Ui.

Following [21], to be claimed secure, a group signature scheme has to prove
its correctness and fulfill three properties: anonymity(anon), traceability(tr) and
non frameability(nf). For more details on security requirement of group signa-
ture, see [21].
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Correctness: This notion guarantees that honest users should be able to gen-
erate valid signatures and the opener should then be able to revoke anonymity
of the signers.

Unforgeability: Informally, the unforgeability notion guarantees that no one
can produce a valid signature that cannot be opened in convincing way (trace-
ability) and that no one can produce a signature on behalf of some group member
(non-frameability).

In the following experiments, to join the group, an adversary(A) runs the
joinP-oracle (passive join). A creates an honest user for whom he does not know
the secret key: the index i is added to the HU (Honest Users) list.

For users whose secret keys are known to the adversary, we let the adversary
play on their behalf. For honest users, the adversary can interact with them
granted some oracles:

– corrupt(i), if i ∈ HU , provides the secret key sk[i] of this user. The adversary
can now control it. The index i is then moved from HU to the list of corrupted
users CU ;

– sign(i,m), if i ∈ HU , plays as the honest user Ui would do in the signature
process. Then i is appended to the list S[m].

We also define the open-oracle which on input (m,σ) returns Open(skO, gpk,
m, σ).

Algorithm 1. Unforgeability Notions
(a) Experiment Exptr

GS,A(λ)

1. (gpk, gmsk, skO) ← Setup(1λ)
2. (m, σ) ← A(gpk : joinP, corrupt, sign, open)
3. if V erif(gpk, m, σ) = 0, return 0
4. if ∃j /∈ CU ∪ S[m],

Open(gmsk, gpk, m, σ) = j
return 1
else return 0

Advtr
GS,A(λ) = Pr[Exptr

GS,A(λ) = 1]

(b) Experiment Expnf
GS,A(λ)

1. (gpk, gmsk, skO) ← Setup(1λ)
2. (m, σ) ← A(gpk, gmsk : joinP, corrupt, sign, open)
3. if V erif(gpk, m, σ) = 0, return 0
4. if ∃i ∈ HU \ S[m], Open(gmsk, gpk, m, σ) = i

return 1
else return 0

Advnf
GS,A(λ) = Pr[Expnf

GS,A(λ) = 1]



352 B.E. Ayebie et al.

Traceability and Non-frameability. Traceability (see Algorithm 1(a)) says
that nobody should be able to produce a valid signature that cannot be opened
in a convincing way. Furthermore, non-frameability (see Algorithm 1(b)) guar-
antees that no dishonest player (even the authorities, i.e. the Group Manager
GM, hence the keys when gmsk is provided to the adversary) will be able to
frame an honest user: an honest user that does not sign a message m should not
be convincingly declared as a possible signer. Non-frameability also shows that
the group manager cannot cheat. Thus, we say that:

– GS is traceable if, for any polynomial adversary A, the advantage Advtr
GS,A(λ)

is negligible.
– GS is non-frameable if, for any polynomial adversary A, the advantage

Advnf
GS,A(λ) is negligible.

In both games, the adversary generates a signature σ on a message m of its
choice. In the latter game, the adversary itself can play the role of the opener
trying to frame an honest user i.

Anonymity. Given two of honest users i0 and i1, the adversary should not
have any significant advantage in guessing which one of them have issued a valid
signature.

Algorithm 2. Anonymity notion
Experiment Expanon−b

GS,A (λ)

1. (gpk, gmsk, skO) ← (1λ)
2. (m, i0, i1) ← A(FIND, gpk : joinP, corrupt, sign)
3. σ ← Sign(gpk, ib, m, sk[i])
4. b′ ← A(GUESS, σ : joinP, corrupt, sign)
5. if i0 /∈ HU or i1 /∈ HU return 0
6. return b′

Advanon
GS,A(λ) = Pr[Expanon−1

GS,A (λ) = 1] − Pr[Expanon−0
GS,A (λ) = 1]

The adversary can interact with honest users as before (with sign and cor-
rupt) but the challenge signature is generated using the interactive signature
protocol Sign. The adversary plays the role of corrupted users whereas honest
users are activated to play their roles.

GS is anonymous if, for any polynomial adversary A, the advantage
Advanon

GS,A(λ) is negligible.

4 The Proposed Dynamic Group Signature

In this section, we use notations defined in Sect. 3 concerning group signature.
We first propose a variation of AGS identification protocol then, we present a
high level overview of our scheme. Finally, we describe precisely the operations
of the different algorithms required in the proposed group signature scheme.
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4.1 Setup Algorithm

The following algorithm aims to output global parameters to generate our code

(n, k, w), group signature public key gpk = (
(

R
Q

)
, w), group manager secret key

gmsk = (H, skO). We initialize the secret key of the opener skO to empty set.

Algorithm 3. Setup algorithm
Require: 1λ

Ensure: params, gpk
(λ, k, n, w) ∈ N

4 ← params(1λ)
(Q, H) ∈ Mk×n(F2) × M(n−k)×n(F2) ← QC − MDPC(params)
R ∈ Mk×n(F2) a generator matrix of a QC − MDPC(params) codes

gpk ← (

(
R
Q

)
, w)

skO ← ∅
gmsk ← (H, skO)

4.2 AGS Variant Protocol with Collision

To build our variation of AGS protocol with ciphertext collision, the idea consists
in using two related instances of AGS protocol as described below.

– The matrices R, Q and H are generated as explained in the setup algorithm
(Algorithm 3) such that R and Q are two different generator matrices of QC-
MDPC code of the same parameters. Let w1, w2 and w3 be three integers that
will constitute the weight of the error vectors and all of them are bellow to
the capacity correction t of codes generated by R and Q.

– The user construct the first instance by choosing randomly (e1,m1) ∈ Fn
2 ×Fk

2

such that wt(e1) = w1 then, he calculates c1 = m1 · R + e1. The user must
also choose (f2,m2) ∈ Fn

2 × Fk
2 such that wt(f2) = w′ < w2, calculate c2 =

m2 · Q + f2 and sends c1, c2 to the group manager.
– The group manager receives c1, c2 and applies the efficient decoding algorithm,

of the QC-MDPC code using the secret matrix H, ψH to c2 (ψH(c2) to get m2).
The next step consist in: the generation of e2 ∈ Fn

2 of weight w2, computing
c2 = m2 · Q + e2 and e3 as follows e3 = c1 + c2. He sets the opener secret key
as follows sko[i] = (e2, e3,m2) and sends to the user the second part of his
secret key (e2,m2).

– After receiving (e2,m2) from the manager, the user must verify if m2 has been
well calculated and sets his secret key as follow: sk[i] = (e1 + e2, (m1‖m2))
with the following condition c1 + c2 + e3 = 0.

c1 + c2 + e3 = 0 ⇐⇒ e1 + m1 · R + e2 + m2 · Q + e3 = 0 (3)
⇐⇒ e1 + e2 + e3 + m1 · R + m2 · Q = 0

⇐⇒ e1 + e2 + e3 + (m1 ‖ m2) ·
(

R
Q

)
= 0

We note e = e1 + e2 + e3, m = (m1 ‖ m2) and G =
(

R
Q

)
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Algorithm 4. The AGS variant
1. P randomly chooses (u, v) ∈ Fk

2 ×Fk
2 and permutations (π, π′) of {1, 2, ..., n}. Then

P sends to V the commitments c1, d1, c2 and d2 such that: c1 = h(π), d1 = h(π′),
c2 = h(π(u · R)) and d2 = h(π′(v · Q))
rnd ← {π′, π, u, v}

2. V sends a value 0 ≤ r ≤ k − 1 (number of shifted positions) to P.
3. P build ρr(e1), ρr(e2), ρr(e3) and sends the last part of the commitment: c3 =

h(π(u · R + ρr(e1) + v · Q + ρr(e2) + ρr(e3))) and
d3 = h(π′(u · R + ρr(e1) + v · Q + ρr(e2) + ρr(e3)))
α ← {c1, d1, c2, d2, c3, d3}

4. V sends b ∈ {0, 1} to P.
5. Two possibilities:

– if b = 0: P reveals ρr(u + ρr(m1)), ρr(v + ρr(m2)), π, π′.
ans ← {ρr(u + ρr(m1)), ρr(v + ρr(m2)), π, π′}

– if b = 1: P reveals π(u · R), π′(v · Q), π(ρr(e1)) and π′(ρr(e2)), π(ρr(e2) +
ρr(e3) + v · Q) and π′(ρr(e1) + ρr(e3) + u · R).
ans ← {π(u · R), π′(vQ), π(ρr(e1)), π

′(ρr(e2)), π(ρr(e2) + ρr(e3) + v ·
Q), π′(ρr(e1) + ρr(e3) + u · R)}

6. V computes c := check(α, b, ans) where check is defined by:
– if b = 0: V verifies that c1, d1, c3 and d3 have been honestly computed.
– if b = 1: V verifies that c2, d2, c3 and d3 have been honestly computed. and

that the weight of π(ρr(e1)) and π′(ρr(e2)) are w1 and w2 respectively.
if all checks passed
c ← 1
Else
c ← 0

7. V outputs Accept if c = 1 and Reject otherwise
8. Additional check for V who knows m2 ac := addcheck(m2, α, β, ans):

– If b = 0 V checks if d2 = h(π′(ρr(m2)Q + (v + ρr(m2))Q)).
• If d2 is well calculated ac ← 1 else ac ← 0

– else their is no additional checks to verify.

The Eq. (3) becomes
e + m · G = 0

with e ∈ Fn
2 , m ∈ F2k

2 and G ∈ M2k×n(F2).
private key: (e,m) with e of weight wt(e) ≤ w1 + w2 + w3, of length n and
m ∈ F2k

2 .
public key: (G,w1, w2, w3) with G a matrix of size 2k × n and e + m · G = 0.

Remark 2. In the case where b = 0, c1 and d1 can be easily calculated and

c3 = h(π((u + ρr(m1)) · R + (v + ρr(m2)) · Q))
= h(π(u · R + v · Q + m1 · R + m2 · Q))
= h(π(u · R + v · Q + ρr(e1) + ρr(e2) + ρr(e3)))
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By analogy, we verify d3. In addition, the opener can do additional checks by
verifying d2 = h(π′(ρr(m2)Q + (v + ρr(m2))Q)) (the opener have m2 and Q is
public).

In the case where b = 1, the verifier can check c2 and d2 by applying h
on π(u · R) and π′(v · Q) respectively. We compute c3 and d3 as follows: c3 =
h(π′(π(u · R) + π(ρr(e1)) + π(ρr(e2) + ρr(e3) + v · Q))) and d3 = h(π′(v · Q) +
π′(ρr(e2))+π′(ρr(e1)+ρr(e3)+u·R)). We note that in our AGS variant protocol,
we keep the same properties of Zero-Knowledge, correctness and soundness as
the original AGS identification scheme and even the same cheating probability.

4.3 High Level Overview

In our signature scheme, we consider the following actors:

Group manager (GM) represents the authority and he is able to run the setup
algorithm (Algorithm 3) by giving as input a security parameter, to add new
members to the group (by the join protocol) and to revoke the anonymity of
the signers (by open algorithm).

Group members or users who sign on behalf of the group (by executing Sign
algorithm).

Outsiders users who do not belong to the group but can verify a signature
granted the group public key gpk (by running Algorithm 7).

The signature scheme occur in three steps: firstly, the user U asks the manager
GM for joining the group and then he gets his secret signing key; secondly, the
user sign on behalf of the group using his secret key and finally, the group
manager GM is able to recover the signer’s identity.

First step: the user U chooses randomly e1 ∈ Fn
2 of weight w1, m1 ∈ Fk

2 ,
m2 ∈ Fk

2 and f2 ∈ Fn
2 such that wt(f2) < w2. He compute c1 = m1 · R + e1 and

c2 = m2 ·Q+f2. The user U sends c1 and c2 to the GM who generate e2 ∈ Fn
2 of

weight w2, m2 ∈ Fk
2 and e3 ∈ Fn

2 such that c1 = m1 ·R+e1 = m2 ·Q+e2+e3 (the
collision as explained in Algorithm 5), the user’s secret key is (e1 + e2,m1‖m2).
The GM has access only to (e2, e3,m2), while (e1,m1) is known only by the user
himself.

Second step: every group user possesses a secret key verifying

(e1 + e2 + e3) + (m1‖m2) ·
(

R
Q

)
= 0

The possession of such secret key will be proved in Zero-Knowledge way using
the AGS variant identification protocol.

Third Step: the open algorithm is running by the group manager GM using
the second part of the user’s secret key.
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4.4 Join Scheme

The Join protocol (Algorithm 5) is an interactive protocol between the group
manager GM and the user Ui. Firstly the user randomly chooses two pair
(e(i)1 ,m

(i)
1 ) ∈ F

n
2 × F

k
2 and (f (i)

2 ,m
(i)
2 ) ∈ F

n
2 × F

k
2 such that wt(f (i)

2 ) < w2 and
wt(e(i)1 ) = w1. He sends c

(i)
1 = m

(i)
1 · R + e

(i)
1 and c

(i)
2 = m

(i)
2 · Q + f

(i)
2 to GM

where R,Q ∈ Mk×n(F2) are two generators matrix of two QC-MDPC codes of
same parameters. Secondly the GM uses H ∈ M(n−k)×n(F2) from his gmsk and
Q from gpk to make cipher collision and compute (e(i)2 , e

(i)
3 ,m

(i)
2 ) ∈ Sn

w2
×F

n
2 ×F

k
2

such that c
(i)
1 = m

(i)
2 · Q + e

(i)
2 + e

(i)
3 as explained in the Subsect. 4.1.

Algorithm 5. Join interactive scheme

1. Ui chooses (e
(i)
1 , m

(i)
1 )

$← F
n
2 × F

k
2 , (f

(i)
2 , m

(i)
2 ) ∈ F

n
2 × F

k
2 such that wt(f

(i)
2 ) < w2,

wt(e1) = w1, then send c
(i)
1 = m

(i)
1 · R + e

(i)
1 and c

(i)
2 = m

(i)
2 · Q + f

(i)
2 to GM

2. GM computes:
– m

(i)
2 · Q = ψH(c

(i)
2 )

– retrieve m
(i)
2 from the first k positions of m

(i)
2 · Q

– generate e
(i)
2

$← Sn
w2

– compute c
(i)
2 = m

(i)
2 · Q + e

(i)
2 and e

(i)
3 = c

(i)
1 + c

(i)
2

if ∃i0 : skO[i0] = (e
(i)
2 , e

(i)
3 , m

(i)
2 ) return false

else skO[i] = (e
(i)
2 , e

(i)
3 , m

(i)
2 ) and send e

(i)
2 , m

(i)
2 to Ui

3. if the computed m
(i)
2 is different to the received m

(i)
2 return false

else sk[i] = (e
(i)
1 + e

(i)
2 , m

(i)
1 ‖ m

(i)
2 )

4.5 Signature Algorithm

This algorithm outputs a signature σ of a message m valid under gpk using
secret key sk[i] of user Ui. The signature is obtained by applying the Fiat-Shamir
transformation to our AGS Zero Knowledge identification variant. We repeat the
variant lλ times until achieving cheating probability close to 0 corresponding to λ
security level. To sign a message m (Algorithm 6), a group member Ui produces a
transcript Tr = (α, β, ans) of the AGS variant protocol (Algorithm 4) executed
on public key gpk and secret key sk[i] simulating the interaction through the
use of a random oracle h′′. In the round r, rnd[r] are the random elements
generated by gen(μ) (gen(μ) is a function that generate random elements in
the AGS variant protocol). To run the AGS variant, α[r] are the commitment
calculated as described in Algorithm 4 the value of β ∈ {0, 1}l depends on the
random oracle h′′ (we choose h′′ such that l ≥ lλ) and ans[r] are responses
obtained in the AGS variant protocol.
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Algorithm 6. Sign(gpk, sk[i],m, lλ, μ)
α ← ∅, rnd ← ∅, ans ← ∅ and r ← 0

1. While(r < lλ)
rnd[r] ← gen(μ)
α[r] ← com(gpk, sk[i], rnd[r])
r ← r + 1

2. β = h
′′
(m, α)

3. r = 0
4. While r < lλ

ans[r] ← resp(sk[i], βr, rnd[r])
r ← r + 1

5. Output (m, σ) where σ = (α, ans)

4.6 Verification Algorithm

To verify a signature σ of a message m generate by Algorithm 7, the verifier
should firstly split the signature as σ = (α, ans). Then he generates β from m
and α using the random oracle h′′ to verify the integrity of the message m and the
membership of the user. Thereafter, we check the responses ans[r] corresponding
to α[r] and βr for each iteration. If all checks passed, the signature is valid if not
the verification fails.

Algorithm 7. Verif(gpk,m, lλ, σ)
1. Split σ = (α, ans)

β = h
′′
(m, α)

2. r ← 0
While (r < lλ)
c = check(α[r], βr, ans[r])
if(c == 0)
Output 0
r ← r + 1

3. Output 1

4.7 Open Algorithm

We note that the manager secret key skO consists on a part of users secret key.
We have for all users i, skO[i] = (e(i)2 , e

(i)
3 ,m

(i)
2 ). We note also that a group

manager can check more commitments than a classical verifier. Consequently
GM may check additional requirements at Step 6 of our AGS variant protocol
(Algorithm 4).

In the case b = 0, GM can check

d2 = h(σ′(ρr(m2)Q + (v + ρr(m2))Q))

in addition to c1, d1, c3, d3 as described in Remark 2.
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Algorithm 8. Open algorithm
Require: skO, gpk, m, σ
Ensure: i : the signer identity

Split σ = (α, ans)
β = h′′(m, α)
i ← 1
while i < numberofUsers do

r ← 0
while r < 	λ do

c ← addCheck(skO[i], α[r], βr, ans[r])
if c = 0 then

i ← i + 1
r ← 0

else if c = 1 and r = 	λ − 1 then
return i

else
i ← i + 1

end if
end while

end while
return False

We define the function addcheck(skO[i], α[r], βr, ans[r]) which is similar
to the function check(α[r], βr, ans[r]) but checks additional requirements as
described above, we note that only GM can run the function addcheck using skO.

Given a signature σ = (α, ans) on a message m, the group manager (who
execute the open Algorithm 8) acts like in algorithm V erify but now with
additional checks. If there exists a user i such as all iterations on r are successful,
the signer can only be i.

Moreover, addcheck(skO[i], α[r], βr, ans[r]) outputs 1 with a probability
around to 1

2 when i is not the real signer of the message m. Because only the
case βr = 1 who can pass (their is no additional check to do). We recall that
the cheating probability in our AGS variant protocol is asymptotically equal to
1
2 , thus lλ rounds required for algorithms Sign and V erify ensure an opening
probability close to 0.

5 Security Analysis and Practical Results

5.1 Security Analysis

In this part we study the security requirements as it was defined in Algorithms
1 and 2 of our signature scheme. We start with anonymity properties and finish
with Soundness properties. Our methodology is similar to the one used in the
extended version of [2].

Anonymity: We now study the anonymity property.
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Theorem 1. If there exists an adversary A that can break the anonymity prop-
erty of the scheme, then there exists an adversary B that can break the Zero-
Knowledge property of our AGS variant.

Proof. Let A be an adversary against the anonymity of our scheme with advan-
tage ε. We will prove that ε is negligible using the Zero-Knowledge property of
our AGS variant. We consider the following sequence of games: G�, G0 and G1.

– G�: the challenger run Setup(1λ) and gives gpk to A who has also access
to oracles joinP, corrupt, sign and open. This game is the same as the real
anonymity experiment (Algorithm 2), A outputs (i0, i1,m), but the challenger
generates a simulated signature σ� by programming the random oracle Hλ

accordingly.
– G0: in this game the challenger and the adversary A has the same way and

access to oracles as in game G�. Now the challenger and the adversary execute
the real anonymity experiment (Algorithm 2) for b = 0. A outputs (i0, i1,m)
and the challenger outputs σ0 = Sign(gpk; sk[i0];m;μ).

– G1: in this game the challenger and the adversary A has the same way and
access to oracles as in game G�. Now the challenger and the adversary execute
the real anonymity experiment (Algorithm 2) for b = 1. A output (i0, i1,m)
and the challenger outputs σ1 = Sign(gpk; sk[i1];m;μ).

Given that our AGS version is Zero-Knowledge, in first time, we have that, σ�

is statistically close to σ0 and in second time, we have that, σ� is statistically close
to σ1. It then follows that Expanon−1

GS,A (λ) and Expanon−0
GS,A (λ) are indistinguish-

able so Advanon
GS,A(λ) = Pr[Expanon−1

GS,A (λ) = 1] − Pr[Expanon−0
GS,A (λ) = 1] (where

Expanon−1
GS,A (λ) and Expanon−0

GS,A (λ) are as defined in Algorithm 2) is negligible.�

Soundness: the soundness of our group signature scheme allows us to prove the
traceability and the non-frameability.

We suppose that the adversary A can forge a signature on user Uj∗ which is
considered as an uncorrupted user. The adversary A produces a signature

σ = (cmt; rsp) = (cmt[1], · · · , cmt[lλ], rsp[1], · · · , rsp[lλ])

such as V erif(gpk,m, σ) = 1. A does not have any knowledge on the user secret
key sk[j∗] where lλ is the number of iteration required in the AGS variation to
achieve a certain security level.

Producing such as forgery by A means that he have been able to success-
fully run lλ iterations of AGS variation protocol without knowing a valid secret
whereas the cheating probability is close to 1

2 . Then A has either broken the
soundness of the AGS variation or enabled the design of a knowledge extrac-
tor reaping benefits of the forgery to produce a valid solution to the general
syndrome decoding problem.

The traceability and non-frameability are two notions closely related, conse-
quently we treat both of them simultaneously. In both cases, the adversary A
that can produce a valid forgery σ verifying:

V erif(gpk,m, σ) = 1
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However, breaking traceability implies for A to produce σ such as the group
manager could not trace it back to any group member. More explicitly, to attack
the traceability on user Uj∗ , A should produce a forgery σ on message m such
that:

V erif(gpk,m, σ) = 1 and Open(skO, gpk,m, σ) = 0 (4)

while the non-frameability requires to produce a signature that does trace back
to an actual group member. The adversary produce σ verifying:

V erif(gpk,m, σ) = 1 and Open(skO, gpk,m, σ) = j∗ (5)

With the evidence that σ �= Sign(gpk, sk[j∗],m;μ).

Theorem 2. If there exists an adversary A against the traceability (resp the non
frameability) of the scheme, then we can build an adversary B that can either
break a general decoding problem GD, or the Simulation-Soundness of the AGS
variation protocol.

Proof. Assume that their exists an adversary A against the traceability of our
group signature with success probability equal to ε. We use a sequence of games
to show that if A is efficient which means he can break the traceability property
(rep the non-frameability) then it’s possible for an adversary B to solve a difficult
problem with non negligible probability related to ε.

G0: this is the original game of the traceability (non frameability) as defined
in Algorithm 1a (resp in Algorithm 1b) when the adversary B runs algorithm
Setup(1λ), he chooses a user Uj∗ on witch A will be challenged. Then B provides

gpk = (
(

R
Q

)
, ω) (resp gpk = (

(
R
Q

)
, ω) and skO) to A which has access to the

following oracles: joinP , Sign, Open and corrupt (resp joinP , Sign and corrupt
but not Open since he has skO). For any query of A, B responds honestly but
the game aborts if A tries to corrupt Uj∗ .

At some point A produces a forgery (m,σ) such that for all j ∈ CU ,
the signature on m were never queried and the probability for A to have
V erify(gpk,m, σ) = 1 is equal to ε.

G1: this game is similar to the previous one G0 A still knows gpk (resp gpk and
skO) with the same oracle access. It differ from G0 by the following: whenever
A queries oracle sign on user Uj∗ , B generates a simulated valid signature. Like
previously, the game aborts if A tries to corrupt Uj∗ .

At some point, A produces a forgery (m,σ) under the condition that for all
j ∈ CU , signatures on m were never queried and signatures honestly produced
on behalf of Uj∗ in game G0 are indistinguishable from random ones produced
in this game.

Consequently, for the adversary A, games G0 and G1 are indistinguishable
and the probability for A to have V erif(gpk,m, σ) = 1 is still ε.

Under the soundness of AGS variation protocol, we now treat separately
traceability (game Gtrac

1 ) and non-frameability (game Gnf
1 ).
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Gtrac
1 : A has been given a forgery σ verifying (4). Since the AGS variation pro-

tocol is sound, B could thus apply a knowledge extractor algorithm on σ to
generate a (e∗,m∗) passing AGS variation protocol (m∗ · G + e∗ = 0). During
this game A queried for oracle corrupt on all users except for Uj∗ meaning that
he may have obtained many secret keys solving the instance of general decoding
(G,ω1 + ω2 + ω3, 0). It mean that A has obtained the following GD instance
(G,ω1 + ω2 + ω3, 0, usk[i]i∈CU ). If (e∗,m∗) /∈ usk[i]i ∈ CU , A has then enabled
B to find solution to the previous GD instance with probability directly related
to ε, else, A replays the game until B gets a new solution to the aforesaid GD
instance.

Gnf
1 : in the non frameability game, A has a forgery σ verifying (5). Since A has

the skO it means that he has a knowledge of a part of the user’s secret key
because usk[i] = (e(i)1 + e

(i)
2 ,m

(i)
1 ‖m

(i)
2 ) and A has the (e(i)2 , e

(i)
3 ,m

(i)
2 ) for all i,

we have that A can compute c
(i)
1 = m

(i)
2 · Q + e

(i)
2 + e

(i)
3 = (m(i)

1 · R + e
(i)
1 ).

Using the corrupt oracle, A can learn the entire (ei,mi) = (e(i)1 + e
(i)
2 +

e
(i)
3 ,m

(i)
1 ‖m

(i)
2 ) for every user (different from Uj∗) he might corrupt. In fact, A

has obtained the following unsolved GD instances (R, c
(i)
1 , ω1)i∈HU containing

the particular one (R, c
(j∗)
1 , ω1). Now, under the soundness of AGS variation

protocol, B, by programming the ROM, exploits σ to get (e∗,m∗) = (e∗
1 + e∗

2 +
e∗
3,m

∗
1‖m∗

2) from which he can issues signatures verifying (5) just like σ. In
particular, it means that applying algorithm Open on signatures issued with
(e∗,m∗) returns j∗. It leads to (e∗

2, e
∗
3,m

∗
2) = (e(j

∗)
2 , e

(j∗)
3 ,m

(j∗)
2 ) and then that

(e∗
1,m

∗
1) is a solution to the GSD instance (R, c

(j∗)
1 , ω1).

At the end of game G1, B has either broken the soundness of AGS variation
protocol or been able to solve a computational problem with non negligible
probability related to ε. This concludes the proof. �

5.2 Practical Results

To instantiate our scheme, we propose the following parameters:

– In [28], Qian Guo et al. show that it’s possible to successfully recovers the
secret key of QC-MDPC instance for 80 bit security proposed by Misoczki et
al. in [19]. Consequently, it’s recommended to use this proposed instance of
QC-MDPC for 128 bit security: n = 19714, p = 9857, w = 142, and t = 134.

– We generate R and Q two QC-MDPC matrices for the same parameters
(n, p, w, t). Generating each one of these matrices require only 9857 bits and
w = 142 can be stocked using 8 bits which implies a public key of size

sizegpk = (2 × (n − p) + 8)-bit = 19750 bit = 2.5 KB since gpk = (
(

R
Q

)
, w).

– To achieve a λ = 80 bits security level in our AGS variation protocol, the
number of rounds must be equal to lλ = 88. We parse a signature σ as follows:
σ = (cmt[1], .., cmt[lλ], rsp[1], .., rsp[lλ]). For each round 1 ≤ i ≤ lλ cmt[i] =
(c1, d1, c2, d2, c3, d3) and we choose a hash function that returns a 160 bit then
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the size of each cmt[i] is sizecmt[i] = 6 × 160 bits = 960 bits.

Now we calculate the size of rsp[i] such 1 ≤ i ≤ lλ, for this reason we calculate
the size of permutations as follow:

sizeperm = 2 × m × 2m-bit where m = �log2(2p)�
2 which implies a permutation

of size sizeperm = 4096 bits.

We distinguish 2 cases:
• The first case: where the challenge b = 0, the size of the response is

sizersp0 = 2 × p + 2 × sizeperm = 27906 bits
• The second case: where the challenge b = 1, the size of the response is

sizersp1 = 6 × n = 118284 bits
The size of a signature σ = (cmt[1], .., cmt[lλ], rsp[1], .., rsp[lλ]) is
sizeσ = lλ × (sizecmt[i] + max(sizersp0, sizersp1)) = 10493472 bits, which
means a signature of size 1.32 MB.

Comparing our results with the first dynamic group signature based on coding
theory [2] for 80 bits security level, Our schema is more efficient in terms of
public key and signature sizes which are respectively equal to 2.5 MB and 20 MB
in [2] and only 2.5 KB and 1.32 MB in our scheme.

Our construction is not based on trapdoor matrix, to make syndrome colli-
sion. Notice that in hamming metric, the one existing trapdoor matrix is CFS
signature instance [27]. We propose an other approach in the join protocol based
on QC-MDPC McEliece to make cipher collision instead of syndrome collision.

6 Conclusion

In this work, we have proposed a new dynamic group signature scheme based on
coding theory assumptions which improve the first code based group signature
presented in [2]. In this proposed scheme, group public key and signatures sizes
remain independent of group length but just depending on the security level.
Our technique consist in using the QC-MDPC version of McEliece cryptosystem
in the join protocol and AGS identification scheme as Zero-Knowledge argu-
ment system unlike using the trapdoor matrix and Stern identification scheme
as described in [2]. Even if in [28] the authors proposed a key recovery attack for
80 bits security level, our scheme remain still secure because we use parameters
for 128 bits security level. We have started to develop this idea before the publi-
cation of [28]. These choices make the join protocol very fast and decreases the
public key and signature length typically from 2.5 MB in the original scheme to
2.5 KB in our one for the public key and from 20 MB in the original scheme to
1.32 MB in our scheme for the signature. In future work we will try to add the
revocation properties and try to turn this scheme to a List signature scheme.
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Abstract. Cloud computing is a revolutionary information technology,
that aims to provide reliable, customized and quality of service guaran-
teed environments, where virtualized and dynamic data are stored and
shared among cloud users. Thanks to its significant benefits such as: on
demand resources and low maintenance costs, cloud computing becomes
a trend in the area of new technologies that facilitates communication
and access to information. Despite the aforementioned facts, the distrib-
uted and open nature of this paradigm makes privacy and security of
the stored resources a major challenge, that limits the use and agree-
ment of cloud computing in practice. Among the strong security policies
adopted to address this problem, there are Intrusion Detection and Pre-
vention Systems (IDPS), that enable the cloud architecture to detect
anomalies through monitoring the usage of stored resources, and then
reacting prevent their expansion. In this paper, we propose a secure,
reliable and flexible IDPS mainly based on autonomous mobile agents,
that are associated with tracing and revocation protocol. While roaming
among multiple cloud servers, our mobile agent is charged with executing
requested tasks and collecting needed information. Thus, on each cloud
server a “cryptographic trace” is produced in which all behaviors, results
and data involved in the execution are recorded, which allow to identify
any possible intrusions and hence predict a response to prevent them or
end their processing, through using a server revocation technique based
on trust threshold.

Keywords: Cloud computing · IDPS · Mobile agent · Cryptographic
traces · Revocation protocol

1 Introduction

Cloud Computing is a rapidly expanding paradigm that brings a revolution in IT
world through using the Internet services. These services that consist of appli-
cations and databases deployed in large centralized data centers, are delivered
to end users on demand rather than being maintained in a large and expensive
IT infrastructure. Cloud computing was defined by the NIST [1] as an emerging
c© Springer International Publishing AG 2017
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computing approach enabling ubiquitous, convenient and on-demand network
access to shared resources (e.g., data, servers, applications, and services), that
can be rapidly provisioned and released with minimal management effort or ser-
vice provider interaction. Reliable and flexible computations on demand, avail-
able and easy accessible data/services, in addition to the wide storage capacities
associated with high quality of services, are among the several benefits of the
cloud that attract customers and make it a viable commercial option, particu-
larly for small companies and startups which will potentially reduce their costs
when paying only for what they really use.

Even though cloud computing shows a significant widespread according to
its recent design of IT hardware, it is confronted to the substantial problem
of security. With its open and distributed framework mainly based on resource
virtualization, global replication and migration, cloud computing increasingly
seduces potential attackers. In 2011 [2], the Amazons Elastic Computer Cloud
service is used by a hacker to attack Sonys online entertainment systems, by
registering and opening an Amazon account and using it anonymously. Such
attack compromised more than 100 million customer accounts, the largest data
breach in the U.S. One of the most common requirements for cloud security is
an Intrusion Detection and Prevention System (IDPS), which can be efficient to
early screen malicious entities, track their untrustworthy behaviors and prevent
the damages they can cause to the systems. An IDPS was also defined by the
NIST [3] as a software or hardware device, that has all the capabilities of an
intrusion detection system (IDS) to potentially identify an attack and notify
appropriate personnel immediately, and can also attempt to stop possible threats
or at least prevent them from succeeding, so that they can be contained.

In this paper, a robust IDPS relying on mobile agent technology is pro-
posed to ensure a safe interaction model where communication between the cloud
provider and its related cloud storage servers are secure and reliable. The use of
this technology will allow us to benefit from the autonomy, pro-activity, mobility
and flexibility of its entities in order to provide the cloud with perceptive and
talented solutions. Mobile agents [4] represent a particular category of software
entities with the capacity to move across different platforms and execute the
requested tasks independently from the environment where they are landed, as
they transport their own resources including the code, the data to deploy and
an execution state.

Our approach begins once the cloud provider receives requests from one or
multiple cloud users. Then, it creates a mobile agent with specified constraints,
and which will be charged with the migration across the cloud storage servers
to gather or retrieve data, achieve actions and calculations, benefit from services
and resources and finally return back with results. Along its round-trip, the
mobile agent adopts two major mechanisms combined with cryptographic prim-
itives (asymmetric encryption, digital signature and hash function) to ensure
confidentiality and integrity of data associated. The first mechanism consists of
generating cryptographic traces, where all behaviors, actions and computations
performed either by the agent or the hosting server are recorded, so that any
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anomaly can be easily detected through verifying and analyzing these traces. The
second one is a prevention mechanism based on revocation technique, where a
trust threshold is assigned to each server to define its degree of maliciousness
according to many factors and proofs. Once this threshold is reached, the named
server is added to the black database of malicious servers hosted by a specified
authority.

The reminder of the paper is organized as follows. Section 2 provides a state-
ment of the security problems in cloud computing, especially those between the
Cloud Provider and the storage servers. A brief review on the related works is
provided in Sect. 3. In Sect. 4 we give an overview of the system architecture,
then we describe the proposed IDPS with the mechanisms employed. An eval-
uation using CloudSim tool is exposed in Sect. 5, and the obtained results are
compared to a basic mathematical model, in terms of security, reliability and
efficiency. Finally, further discussion and perspectives are mooted in conclusion.

2 Security Issues

While cloud computing shows a large set of advantages more appealing than
ever, it also brings new and challenging security threats to the outsourced
data. This is relatively due to the concept of virtualization and the physical
absence of resources, which makes the overall cloud architecture not fully con-
trolled/managed and thus not safe.

We begin with an architecture description of cloud data storage services illus-
trated in Fig. 1. This latter consists of four different entities: data owner, cloud
user (CU), cloud service provider (CSP) controlling and monitoring numerous
storage servers (SS), and trusted third authority (TPA) that has the capabil-
ities to assess cloud storage security on behalf of a data owner. When a CU

Fig. 1. The generic architecture of cloud computing
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submits storage or computation service requests, the CSP charges its adminis-
tration server to spread the request among its different SS located on different
geographical areas. According to [1], among the essential features that cloud
computing provides are defined:

– Resource Pooling: the provider’s computing resources are pooled to serve mul-
tiple consumers, using a multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to consumer demand.
There is a sense of location independence in that the customer generally has
no control or knowledge over the exact location of the provided resources but
may be able to specify location at a higher level of abstraction (e.g., coun-
try, state, or data-center). Examples of resources include storage, processing,
memory, and network bandwidth.

– Broad Network Access: capabilities are available over the network and accessed
through standard mechanisms that promote use by heterogeneous thin or thick
client platforms (e.g., mobile phones, tablets, laptops, and workstations).

These two features are extremely vulnerable to many attacks: Masquerading,
Man-In-The-Middle, etc., since they evoke many security issues as illustrated in
Fig. 2. In this context, multiple scenarios are considered:

– An intruder may intercept the communication between the CPU and its rele-
vant cloud servers. He can proceed to the alteration of the exchanged data in
order to compromise their confidentiality and integrity.

– An attacker can harm to the CUs privacy through leaking their confidential
data to others.

– An attacker may corrupt one or multiple SSs with the aim to monitor them
and initiate various cheating attacks.

Within the scope of this article, we focus on how to ensure secure cloud
data storage services. We consider both malicious outsiders and a semi-trusted
storage server SS as potential adversaries interrupting cloud data storage ser-
vices. Malicious outsiders can be economically motivated and have the capability

Fig. 2. Security issues in cloud computing architecture
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to attack cloud storage servers, subsequently they are able to pollute or delete
owner’s data while remaining undetected. The CS is semi-trusted in the sense
that most of the time it behaves properly and does not deviate from the pre-
scribed protocol execution. However, for its own benefit the CS might neglect
to keep or deliberately delete rarely accessed data files that belong to ordinary
cloud owners. Moreover, the CS may decide to hide the data corruptions caused
by server hacks or Byzantine failures to maintain its reputation.

In this context, many efforts have been devoted to investigate the security
issue of Cloud Computing. Indeed, several solutions have been proposed in the
literature, where IDPSs are supplied as very important and invaluable tools.
Towards this, Gupta et al. [5] propose an intrusion detection and prevention app-
roach that focuses on a non-conventional technique for securing cloud network
from malicious insiders and outsiders, using network profiling to describe network
behavior of cloud users and the attack patterns that needs to be looked over. In
[6], Tapakula et al. have proposed an IDPS for cloud environment based on a
virtual machine monitor (called hypervisor) to protect the system from different
types of attacks in the infrastructure layer (IaaS). However, it has not provided a
prevention solution face to high severe attacks over the system. Recently, Auto-
nomic Computing drew researchers attention for CIDPS with minimal human
intervention. The authors of [7] have proposed a customizable defense system,
called VMFence, in a virtualization-based cloud computing environment. It is
deployed with distributed intrusion prevention system and a file integrity mon-
itoring tool (FIMT) endowed with a high efficiency of detection and response.
This allows the cloud provider to configure detection rules for each domain,
according to the type of service running in each virtual machine, while the file
modification information is collected in real time. Smith et al. [8] presented an
autonomic mechanism for anomaly detection in a cloud computing environment,
with uniform format analysis and size reduction for data, as well as learnt how to
detect the nodes which have abnormal behavior and act differently from others
in an unsupervised mode. In the work of Alsafi et al. [9], they discuss a method
where the use of multi-threading techniques provides a more efficient method for
improving the performance of an IDPS in a cloud environment. Their method
provides the system with the ability to handle a large number of data packet
flows through an analysis module that filters out the bad packets and a reporting
module that produces reports on security and accuracy of data. Dastjerdi et al.
[10] have proposed an application of mobile agents in IDPS to provide flexible,
scalable, and a cost effective system for the cloud environment. However, the
inefficient sharing of knowledge among the mobile agents makes the robustness
of the system not supported and the scalability not ensured.

3 Proposed IDPS for Cloud Security

In this section, a thorough description of our Cloud-based IDPS is provided,
which is essentially made up of two main parts. In the first part, a robust detec-
tion mechanism is proposed, where mobile agents generate a behaviors record in
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the form of a cryptographic trace on each visited cloud server. The second part
presents a prevention policy that punishes malicious entities through a server
revocation technique based on trust threshold. The detection and prevention in
our proposed system are complementary and dependent, as they are basically
reliant to the same sensible parameters in the cryptographic traces obtained
through the trip of the mobile agent, to perform the tasks that the CU requests.

3.1 Cryptographic Traces for Intrusion Detection

In this section, we describe the proposed detection method, which is mainly based
on the mechanism of execution tracing associated to the mobile agents. Thanks
to its numerous features, mobility of agents provides an agile, dynamic and
operational aspects to the interactions with cloud servers, since the rate of the
exchanges is lower which significantly lessens the network traffic. As illustrated in
Fig. 3, in a normal scenario, the CSP receives multiple requests for computation
or storage services from different CUs. According to this, a mobile agent is
created and attributed a list of the IP addresses corresponding to the hosts in
its itinerary, as well as the jobs to be carried out on each one. Then, the mobile
agent analyzes the given positions to follow the shortest path, and moves among
the specified cloud servers to execute its tasks, such that the obtained results are
securely accumulated until it returns back to the CSP. Moreover, it is supposed
that the TPA afforded the CSP and each cloud server a public and private key
in order to deal with the computations and verification with the agent.

Fig. 3. The use of mobile agents in the interactions of the cloud computing

Before migration, the agent is also assigned some essential credentials given in
Table 1, to authenticate the visited cloud servers according to their IP addresses.
Thus, we make use of an enhanced version of Diffie-Hellman key exchange pro-
tocol inspired from [13], where the digital signature algorithm is integrated to
fix security issues related to Man-in-the-Middle attacks. Figure 4 illustrates the
authentication process, that generates a common session key at the end. This
process employs the cryptographic generator ISAAC+[14] to produce randoms
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Table 1. Authentication credentials assigned to the mobile agent by the CSP

Credential Description

p, t Random odd primes, where t < p − 1 and q = t

p − 1

2

g Generator of the field Fp

XMA Random private key, with 1 < XMA < q

PKCSP Public key of the CSP

H(.) 256-bits hash function (SHA-3)

SC(revreSduolC)AM(tnegAeliboM n)

a: random integer
p,q,g,H− →

XCSn : random private key < q

YCSn : public key, with:

YCSn = gXCSnmodp

b: random integer

VMA = gamodp,

WMA = PKa
CSPmodp

RMA = VMAmodq
VMA,WMA− →

VCSn = gbmodp,

WCSn = Y b
CSn

modp
VCSn ,WCSn← − RCSn = VCSnmodq

Kab = W a
CSn

modp, Kba = W b
MAmodp,

Kba = V a×XMA
CSn

Kpdom ab = V
b×XCSn
MA modp

IPh: address in the Host list IPCSn : address of the platform

Signature:

SCSn = b−1 × H((VCSn Kba Kab

SCSn← IPCSn) + XCSn × RCSn)modq

Verify: SCSn == SMA, where:

SMA = a−1 × H((VMA Kab Kba

IPh) + XMA × RMA)modq

Common Shared Key

SKn = Kab × Kbamodp = gvw×(XMA+XCSn )modp

Fig. 4. Authentication process between the mobile agent and the cloud server

and the hash function SHA-3 [15] to elaborate signatures. The following are the
main steps in this mechanism:

1. The mobile agent “MA” generate a random integer “a” and sends the authen-
tication credentials (p, q, g,H) assigned by its owner to the cloud server
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“CSn”. Then, MA computes the values: VMA as the exponentiation of the
generator g by the random a, WMA as the exponentiation of the public key
of the cloud service provider (as the agent owner) PKCSP by a and RMA as
the modulo of VMA by q. Finally, MA forwards VMA and WMA to “CSn”,
while RMA is kept secret.

2. Once receiving the authentication credentials, the “CSn” chooses a random
private key XCSn

< q and computes its public key PKCSn
as the expo-

nentiation of g by XCSn
. Then, “CSn” generates a random integer “b” and

computes the values: VCSn
, WCSn

(using the “CSn” public key) and RCSn

in the same way the agent did. Afterwards, CSn sends VCSn
and WCSn

to
“MA”, while RCSn

is kept secret.
3. The “CSn” calculates the exponentiation by b of the previously received

WMA and notates it as Kba. Besides, the exponentiation by b × XCSn
of

the received value VMA is computed and noted as Kab. Then, using the IP
address of the cloud server platform, the “CSn” computes its own signature
as: SCSn

= b−1 ×H((VCSn
||Kba||Kab||IPCSn

)+XCSn
×RCSn

)modq. Finally,
this signature is forwarded to the mobile agent.

4. Similarly, the “MA” computes the values Kab and Kba using the random a, the
private keyXCSn

and (VCSn
,WCSn

) previously received from the “CSn”. Thus,
the signature SMA relevant to the “MA” is calculated using the IP address con-
tained in the afforded Host IP List. If this signature is equal to that provided
by the “CSn”, then this latter is said to be authenticated and a shared session
key can be computed by both parties as: SKn = Kab × Kbamodp.

The use of ephemeral secrets a and b chosen by the both sides provides two
important properties. The first one is forward secrecy that prevents the disclosure
of any of the previous session keys even if the long-term private key of any party is
exposed. The second one is key freshness as neither of the authenticating parties
can predetermine the value of the session key, since he would not know the
ephemeral secret of the other party. In addition, the use of the CSP’s public key
in computations facilitates traceability and saves time and energy of producing a
public key for the agent at each cloud sever visited. Thereby, the 256-bits length
session key (SKn) obtained at the cloud server (n) will be used to compute the
cryptographic trace on that platform.

Being inspired from the work of [12], a trace is associated to the execution of
the mobile agent on each visited server. It is noted T =< ui, S > and contains the
signature of the executed black statements (instructions of the agent code using
information from external environments), in addition to a unique identifier of the
trace. This process allows the owner of the agent to verify its execution and depict
suspicious behaviors or operations carried out by malicious intruders. Indeed, the
temporal correctness of the agent execution is a crucial point to guarantee that the
connected cloud servers work in synchronized timing. Thus, we introduce Network
Time Protocol (NTP) [11] to enforce the clocks of different cloud servers related to
the CSP to perform in sync with it. This makes the control and the harmonization
of log entries more straightforward when an event occurred across multiple servers.
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A cryptographic trace is generated as indicated in the java function illustrated
in Fig. 5. It contains a generic DSA signature [17] performed using the public
key of the CSP, which makes this latter the only one able to decrypt it by means
of its private key. In addition to the unique identifier (ui), the identities (ID s:
sender, host: current host, ID next: intended host), the session key (SK S(i)),
the timestamp (ts) and the required task (Task), the generic signature includes
two nested fields:

pub l i c Trace<ui , S> Generate_CryptoTrace ( Agent A , CloudServer S ( i ) ){
ID_s = A . getSender ( ) ;
ID_ma = A . getAgentIdentity ( ) ;
host = S ( i ) . getIdentity ( ) ;
crd = A . getCredentials ;
PK_csp = crd . getCSPkey ( ) ;
ID_next = crd . getNextHost ( S ( i ) ) ;
SK_S ( i ) = th i s . getSessionKey ( ) ;
Task= A . getRequestTask ( ) ;
BS = c l a s s . execute ( A ) . getBlackStatement ( ) ;
RS= c l a s s . execute ( A ) . getResults ( ) ;
// cur rent timestamp
java . sql . Date ts = new java . sql . Timestamp ( Calendar . getInstance ( ) .

getTime ( ) . getTime ( ) ) ;
// unique i d e n t i f i e r
ui = UUID . randomUUID ( ) ;
Signature dsa1 = Signature . getInstance ( ”SHA256withDSA” , ”SUN” ) ;
dsa1 . initSign ( PK_csp ) ;
Signature dsa2 = Signature . getInstance ( ”SHA256withDSA” , ”SUN” ) ;
dsa2 . initSign ( SK_S ( i ) ) ;
i f ( i==1)
T ( S ( i ) )= <ui , dsa1 . sign ( dsa1 . update ( ui , SK_S ( i ) , ID_s , host , ID_next

, ts , Task , AES_Encrypt ( SK_S ( i ) , ( BS , RS ) ) , dsa2 . sign ( dsa2 .
update ( ID_s , ID_ma , Hash ( ts , BS , RS ) ) ) ) )>;

e l s e
T ( S ( i ) )= <ui , dsa1 . sign ( dsa1 . update ( T ( S ( i−1) ) , ui , SK_S ( i ) , ID_s ,

host , ID_next , ts , Task , AES_Encrypt ( SK_S ( i ) , ( BS , RS ) ) ,
dsa2 . sign ( dsa2 . update ( ID_s , ID_ma , Hash ( ts , BS , RS ) ,
Hash ( T ( S ( i−1) ) ) ) ) ) )>;

r e turn T ( S ( i ) ) ;
}

Fig. 5. Java pseudo-code of the cryptographic trace generation

– A symmetric encryption, using AES [16] with the session key SKS(i) of 256
bits length, of the black statements and the results obtained through the
execution of requested tasks.

– The DSA signature, using SK S(i), of the agent’s identity and its sender, as
well as a SHA-3 hash of the timestamp, black statements and the results of
execution.

Our system is also provided with a chaining mechanism that links the traces
produced during the trip of the mobile agent. Thereby, each trace being produced
on a cloud server (current host) will be enclosed while generating the trace on
the following server (intended host), either in the generic signature or in the
nested signature which joins the trace hash. Since for the first destination in
the itinerary list there is no prior trace, the chaining process begins at the
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second cloud server being visited (i = 2). Once returning back to the CSP, the
mobile agent presents the final results along with the collected traces. Then, a
verification of each trace T (S(i)) is performed following the steps below:

1. using its private key, the CSP decrypts the generic signature, verifies the iden-
tities involved and checks the freshness of the timestamp (ts). Then, decrypts
the cipher using the session key SK S(i), in order to get the black statements
and the results in clear.

2. a SHA-3 hash of the previous trace provided by the mobile agent is calculated:
h1 = Hash(T (S(i − 1))).

3. using the current session key SK S(i), the CSP decrypts the nested signature
and verifies the identity of the agent and its sender.

4. the CSP computes its own hash of the timestamp along with the black state-
ments and the results, that are provided in the cipher Hash(ts,BS,RS).
Then, this hash is compared to that contained in the third field of the nested
signature.

5. the CSP computes the hash of the given trace in the first field of the generic
signature: h2 = Hash(T (S(i − 1))). Then h1 and h2 are compared to the
hash in the last field of the nested signature.

Once the verification is successfully carried out, the cloud server is classified
as trustworthy for this session, else it is considered suspicious and the CSP
proceeds to its prevention policy.

3.2 Revocation-Based Trust Threshold for Intrusion Prevention

As a matter of fact, the prevention policy we adopt for our system consists in a
double faced method: ending the activity of the malicious server in that session,
and punishing it through decreasing its level of trust. When the CSP verifies
the trace of the mobile agent’s execution on a server S(i), and finds that one or
more comparisons do not match, then this server is qualified as suspicious. At
this stage, the CSP sends a message to the named server asking it for forwarding
the specified trace. The core of this message and its reply provided by S(i) is
shown in Fig. 6, such that the identity of each one is involved as identifier for its
message.

From CSP to S(i):

M_(csp-to-si)=Sign_(sk_(si)) ( Hash(ID_(si)), Forward-Trace())

From S(i) to CSP:

M_(si-to-csp)=Sign_(pk_(csp))( Hash(ID_csp), Hash(ID_(si)),

M_(csp-to-si),T(S(i)))

Fig. 6. The core of the message and reply for Forward-Trace() transaction

Once the CSP receives the reply for its request and decrypts the involved
signature using its private key, it proceeds to the verifications as indicated in
Fig. 7:
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1. Checks the hash containing its identity ID csp, then verifies that the value
Hash(ID (si)) is the same in both messages M (csp− to− si) and M (si−
to − csp).

2. Decrypts the nested M (csp− to− si) using the session key and verifies that
it contains the forward request.

3. Computes the hash of the trace provided Hash(T (S(i))) and verifies that it
matches with the hash given by the server S(i + 1)

Verification_Flow (suspicious Server (S_i)){

Request(Forward-Trace()) ===> (S_i)

While (timestamp){

if (Not-Received())

{Revocation ((S_i), Punishement(level=1));}

else{

/* Verification 1 */

if (Hash(ID_(S_i)).NotEqualTo (extract-ID_Hash(

M_(csp-to-si),M_(si-to-csp))))

{Revocation ((S_i), Punishement(level=2));}

else{

/* Verification 2 */

if (Hash(T(S_i)). NotEqualTo(extract-Trace_Hash(M_(si-to-csp))))

{Revocation ((S_i), Punishement(level=3));}

else{

/* Verification 3 */

Agent. re-Execute();

if (Agent. getCurrentTrace(). NotEqualTo( T(S_i)))

{Revocation ((S_i), Punishement(level=4));}

else{

Print ("The Cloud Server is Honest")

}}

}}

}}

Fig. 7. Pseudo-code describing the verification flow of a cloud server maliciousness

It is sufficient to not receive a reply for the request or at least one of these
verifications does not match, so that the CSP can start its revocation protocol
in concordance with a Trust Authority (TA). Otherwise, in case a response is
received such that all verifications are unverified, then the CSP charges the
same mobile agent with moving to the server S(i) in order to re-execute the
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same tasks. The returned results are verified to see if the execution agrees with
the forwarded trace. If the traces match, then the server is qualified as honest,
else the revocation protocol is triggered.

The revocation protocol has two instances according to the trust level of the
cloud server. A trust level (TL) is represented by a decimal number between 0
and 1 and it is allocated by the Trust Authority (TA), which is the only one who
possesses the right to modify it. According to this (TL), the revocation may be
conditional or permanent, with regard to a threshold (d) decided by the TA for
each cloud server registered in its database.

The conditional revocation protocol is processed when the cloud server has
one TL that did not reach yet the threshold (d), and it is described as follows:

1. The CSP informs the TA that the server S(i) is suspicious and sends to it
the proofs it has.

2. The TA verifies that the TL of the named server is less than the (d), and
then requests the trace directly from S(i).

3. If the cloud server forwards the trace, the TA proceeds to a verification of all
data involved in this trace, then it re-executes the agent again and compares
the given trace with that provided by the CSP.
– if they match, then the server is considered to be honest and the CSP is

warned for dishonest attitude.
– else, the server is provisionally revoked and punished by subtracting a

percentage of its TL according to a punishment scale.
4. If the server did not present the requested trace, then it is revoked with

decreasing its TL until sending the trace or proving its good intention.

Concerning the permanent revocation protocol, it becomes activated when
the TL of the suspicious server exceeds the threshold (d). It is defined in the
steps bellow:

1. The CSP informs the TA that the server S(i) is malicious and sends all its
proofs to demonstrate that it conducts incorrect behaviors.

2. The TA verifies that the TL of the named server is greater than (d).
3. The TA verifies narrowly all information provided by the CSP, beginning

by the timestamp freshness, the identities of communicating parties and the
session key produced. Whether one of these data is incorrect, the TA stops
the revocation and warns the CSP for invalid information. Else, verification
is pursued.

4. The TA computes the hash of the given trace in the CSP proofs
Hash(T (S(i))) with the hash included in the trace of the server S(i + 1).
If they match, it sends the mobile agent to be re-executed and verifies if the
obtained trace agrees with the others.
– if they agree, this means that the CSP claimed a revocation basing falsified

proofs. In this case, the TA imposes a sanction to the CSP for its dishonest
attitude.

– else, the server is permanently revoked with decreasing its TL.
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Table 2. Technical characteristics of
the cloud platforms

Characteristic Value

OS Windows, Ubuntu, MacOs

Processor Core i7 at 2.7GHz

RAM 4 Go

Bandwidth 1000Mbit/s

Table 3. Technical characteristics of
the mobile agent

Characteristic Value

Storage memory 512Mbits

Processor GenuineIntel

800MHz

Communication protocol HTTP-based-

MTP

Bandwidth 100Mbit/s

In the case a server is permanently revoked and classified in a black list,
we consider a time interval before revising the behavior of that server to see if
it may become honest. This timing interval is chosen according to many con-
straints: application field, sensitivity of data, category of users, etc. For example,
in the field of e-commerce, the data involved are highly sensitive since it relies
on monetary transactions and the users are categorized in the top classes of
confidentiality (Banks, Stock Exchanges, Businessman, etc.). Thus, every mil-
lisecond of activity ban costs a lot for the server and all its dependents. Hence,
after being revoked for certain period, the behaviors and activities of the server
can be resumed with a maximum of restrictions and caution. The server needs
to pass this procedure t times chosen randomly, such as 5 ≤ t ≤ 15. Once this
step is successfully performed, the server begins to accumulate a new threshold
while preserving the same restrictions until it comes to prove its real honesty
through reaching its old trust level.

4 Performance Analysis

In this section, we evaluate the detection and prevention performances of our
Cloud-based IDPS to prove its reliability and efficiency. For that purpose, a
basic cloud environment was implanted using the simulation toolkit CloudSim
[18]. Besides, many virtual machines (VMs), with the characteristics denoted in
Table 2, are assigned on real and heterogeneous hosts in order to represent the
CSP and the related cloud servers. Indeed, the use of mobile agents needs the
integration of an agent framework in each machine. Thus, we make use of JADE
4.3.3 FIPA-compliant agent platform [19], which is configured on Eclipse and
charged with receiving, executing and dispatching our mobile agent. This latter
has the characteristics denoted in Table 3.

The experimentations being conducted initiate five datacenters hosting
increasingly 2, 4, 6, 10 and 15 cloud servers, as virtual machines (VMs). It
is worth to mention that CloudSim involves two fundamental entities: the bro-
kers responsible for administering the operations on the VMs, and the cloudlets
that define the tasks to be executed by the cloud servers. In the context of our
solution, a list of cloudlets assembling the solicited tasks is submitted by the
broker, and attributed to the agent before moving. Figure 8 shows an example
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pub l i c void processEvent ( SimEvent ev ) {
i n t num_user = 1 ;
Calendar calendar = Calendar . getInstance ( ) ;
CloudSim . init ( num_user , calendar ) ;
Datacenter DC4 = createDatacenter ( ”Datacenter 04 ” , 10) ;
DatacenterBroker broker = ( DatacenterBroker ) createBroker (

”DCBroker” ) ;
broker . submitVmList ( createVM ( broker . getId ( ) , 10 , 1) ) ;
broker . submitCloudletList ( createCloudlet ( broker . getId ( ) , 7 , 1) ;
CSPAgent . Tasks= broker . getCloudletList ;

CloudSim . startSimulation ( ) ;
CSPAgent . move ( ) ;

// . . .
}

Fig. 8. Java pseudo-code of the proposed configuration in CloudSim

Table 4. Running time (in S) of the authentication and trace generation regarding the
increase of cloud servers

Nb of servers Authentication Trace generation

2 0.024 0.088

7 0.079 0.312

15 0.166 0.654

30 0.325 1.42

60 0.643 2.65

of Java pseudo-code used in CloudSim to establish the proposed configuration.
The evaluation of our IDPS for cloud emphasizes on three important criteria:
response time, network load and detection rates. This is achieved while making a
comparison with the mathematical model presented by Braun et al. [20], where
a basic IDS architecture is adopted to ensure communication within the cloud.
We choose to evaluate our approach compared to the work of [20], because this
latter provides a prototype of toolkit totally based on mobile agents, called Tracy
Mobile Agent, with layered architecture. Moreover, having a very small impera-
tive core where all basic functions for starting and managing agent life-cycle are
included and added as services, gives great advantages for clouds and imposes
less load on processing systems. Tracy Mobile Agent still in use until now as an
emergent toolkit that variety of approaches, mainly detection ones, adopt for
conception and comparison.

4.1 Response Time

When the agent requires to migrate across various cloud servers with the aim
to perform manifold tasks, it is strongly needed, before computing the overall
response time expressed by the system, to calculate the overhead of security
added through performing the authentication mechanism and the trace gener-
ation. Table 4 gives this overhead regarding the expansion of cloud servers in
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Fig. 9. Response time of our cloud-IDPS compared to [20]

Fig. 10. Network load of our cloud-IDPS compared to [20]

the itinerary of the agent. Knowing that only one migration from one server
to another takes about 156 ms, it is clearly noticed that the authentication and
trace generation represent a very low percentage of the overall time spent during
the agent round-trip.

A comparison of response time between our cloud-based IDPS and the work
of [20], regarding the expansion of requested tasks, is shown in Fig. 9. By virtue
of this latter, we prove that adopting mobile agent technology for cloud envi-
ronments is beneficial as it reduces response time of about 34% and provides a
flexible and secure layout.

4.2 Network Load

Our cloud-based IDPS shows very challenging performances in terms of network
load, compared to Braun et al. [20]. This is illustrated in Fig. 10, where we remark
that the use of mobile agents provided with security features demonstrates a
lower network load of about 30%.

While analyzing the given results, we remark the appearance of an optimum
load highly expressed when the mobile agent visits a number of cloud servers
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not beyond six. Hence, it is greatly advised that the itinerary of each dispatched
mobile agent contains no more than six destinations, for better reliability and
effectiveness in the execution of tasks.

4.3 Security Performance

The efficiency of an IDPS is determined through evaluating its capacity to make
correct attack detection. For that purpose, we consider two commonly used rates
to quantify the detection performance:

Detection rate (DR):
Nb of detected attacks

Nb of attacks

False Alarm rate (FAR):
Nb of false alarms

Nb of alarms

For capturing and sending packets (especially malicious ones), we make use of
the java library JPCAP (Network Packet Capture Facility) with JADE. Besides,
real attacks are simulated and injected in the running environments using MetaS-
ploit tool [21] dedicated for penetration tests and creation of secure solutions.
Examples of the used attacks are shown in Table 5.

It is well acknowledged that reliable IDPS has to express a high detection
rate, while keeping the false alarm rate as reduced as possible. Table 6 lists
the results of injecting various attacks to evaluate the behavior of our IDPS,
compared to the system of Braun et al. Besides, the detection rates specific
for each kind of attack are shown in Fig. 11. They clearly prove the robustness

Table 5. Simulated attacks to evaluate detection performance of our IDPS

Attack Description

DoS/DDoS Using a spoofed address, the attacker applies a TCP SYN
flooding to burden the cloud server and make it unavailable.

Reused IP The attacker burdens the server VM to force its disconnection
and convince the centralized management component to allocate
it for him.

Nmap TCP scan Performs a scan of a remote machine to determine the available
ports that can be exploited to gain shell access of the server
hosting the mobile agent.

Table 6. Performance of our IDPS, in terms of attack detection, compared to Braun
et al. [20]

Number of cloud servers 2 4 6 10 15 30

Number of injected attacks 1 2 3 6 10 17

Attacks detected: Braun et al. 0 0 1 2 4 9

Attacks detected: our IDPS 1 2 3 6 10 17



A Secure Cloud-Based IDPS 381

Fig. 11. Detection rate of our solution
compared to [20]

Fig. 12. False alarm rate of our solu-
tion compared to [20]

and effectiveness of our IDPS in detecting intrusions, through highly significant
detection rates that are enhanced of about 15% more than Braun et al.

The given results are further supported by the assessment of the false alarm
rate as indicated in Fig. 12, where we notice a notably low false alarm rate
of our IDPS versus a substantial rate for the system of Braun et al. Hence,
our cloud-based IDPS demonstrates very promising features as security tool for
cloud environment.

5 Conclusion

In this paper, a new approach for intrusion detection and prevention in cloud
computing is proposed. We were concerned by persistently depicting security
vulnerabilities through introducing autonomous mobile agents able to trace the
execution of tasks on multiple cloud servers. These traces undergo a thorough
verification associated to an agile prevention policy. Depending on a trust thresh-
old, malicious servers are provisionally or permanently revoked, while decreasing
their trust level for each suspicious behavior. In practice, our IDPS demonstrates
low rates in terms of response time and network load against a high detection
performance, compared to the system of Braun et al. In future, we envisage to
extend our IDPS to cover the different layers and infrastructures of the cloud,
as well as introducing an access control model able to collaborate with mobile
agents.
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