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1 Introduction

The notion of scalable frame has been investigated in recent years [4, 10, 15, 17],
where the focus was more on characterizing frames whose vectors can be rescaled
resulting in a tight frame. For completeness, we recall that a set of vectors F D
ffigM

iD1 in some (finite dimensional) Hilbert space H is a frame for H if there exist
two constants 0 < A � B < 1 such that

Akxk2 �
MX

iDi

jhx; fiij2 � Bkxk2

for all x 2 H : When A D B the frame is said to be tight and if in addition, A D
B D 1 it is termed a Parseval frame. When F D ffigM

iD1 is a frame, we shall abuse
notations and denote by F again, the n � M matrix whose ith column is fi, and where
n is the dimension of H . Using this notation, the frame operator is the n � n matrix
S D FF� where F� is the adjoint of F. It is a folklore to note that F is a frame if
and only if S is a positive definite operator and the optimal lower frame bound, A,
coincides with the lowest eigenvalue of S while the optimal upper frame bound, B,
equals the largest eigenvalue of S. We refer to [6, 7, 20] for more details on frame
theory.

It is apparent that tight frames are optimal frames in the sense that the condition
number of their frame operator is 1. We recall that the condition number of a matrix
A, denoted �.A/, is defined as the ratio of the largest singular value and the smallest
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singular value of A, i.e., �.A/ D �max.A/=�min.A/. By analogy, for a frame in a
Hilbert space ffigM

iD1 � H with optimal frame bounds A and B, we define the
condition number of the frame to be the condition number of its associated frame
operator �.ffig/ WD �.S/ D B=A. In particular, if a frame is Parseval, then its
condition number equals 1. In fact, a frame is tight if and only if its condition
number is 1. Scalable frames were precisely introduced to turn a non-optimal (non-
tight) frame into an optimal one, by just rescaling the length of each frame vector.
More precisely,

Definition 1 ([16, Definition 2.1]). A frame ffigM
iD1 in some Hilbert space H is

called a scalable frame if there exist nonnegative numbers s1; : : :; sM such that
fsifigM

iD1 is a Parseval frame for H .

It follows from the definition that a frame ffigM
iD1 is scalable if and only if there

exist scalars si � 0 so that

�

 
MX

iD1

s2
i fif

�
i

!
D 1:

To date various equivalent characterizations of scalable frames have been proved
and attempts to measure how close to scalable a non-scalable frame have been
offered [4, 15, 17, 21]. In particular, if a frame is not scalable, then one can naturally
measure how “not scalable” the frame is by measuring

min
si�0

�����In �
MX

iD1

s2
i fif

�
i

�����
F

; (1)

as proposed in [8], where k�kF denotes the Frobenius norm of a matrix. Other
measures of scalability were also proposed by the same authors. However, it is not
clear that, when a frame is not scalable, an optimal solution to (1) yields a frame
fsifig that is as best conditioned as possible. Recently, the relationship between the
solution to this problem and the condition number of a frame has been investigated
in [5]. In particular, Casazza and Chen show that the problem of minimizing the
condition number of a scaled frame

min
si�0

�

 
MX

iD1

s2
i fif

�
i

!
; (2)

is equivalent to solving the minimization problem

min
si�0

�����In �
MX

iD1

s2
i fif

�
i

�����
2

; (3)
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where k�k2 is the operator norm of a matrix. Specifically they show that any
optimizer of (2) is also an optimizer of (3); vice-versa, any optimizer of (3)
minimizes the condition number in (2). Furthermore, they show that the optimal
solution to (1) does not even have to be a frame, and so would yield an undefined
condition number for the corresponding system.

In this chapter, we consider numerical solutions to the scalability problem. Recall
that a frame F D ffigM

iDi � H is scalable if and only if they exist scalars fsigM
iD1 �

Œ0; 1/ such that

MX

iD1

s2
i fifi D I:

Consequently, the condition number of the scaled frame QF D fsifigM
iDi is 1. We

are thus interested in investigating the solutions to the following three optimization
problems:

min
si�0 ; s¤0

�max

�PM
iD1 s2

i fif �
i

�

�min

�PM
iD1 s2

i fif �
i

� : (4)

min
si � 0 ; s ¤ 0PM
iD1 s2

i kfik2
2 D N

�max

 
MX

iD1

s2
i fif

�
i

!
� �min

 
MX

iD1

s2
i fif

�
i

!
: (5)

min
si�0 ; s¤0

�����IN �
MX

iD1

s2
i fif

�
i

�����
F

: (6)

Our motivation stems from the fact it appears from the existing literature on
scalable frames that the set of all such frames is relatively small, e.g., see [17]. As
a result, one is interested in scaling a frame in an optimal manner. For example, by
minimizing the condition number of the scaled frame (4), or the gap of the spectrum
of the scaled frame (5). Furthermore, one can try to find the relationship between the
optimal solutions to these two problems with the measures of scalability introduced
in [8], of which (1) is a typical example.

In addition, we investigate these optimization problems from a practical point
of view: the existence of fast algorithms to produce optimal solutions. As such, we
are naturally lead to consider these problems in the context of convex optimization.
We recall that in such a setting one wants to solve for s� D arg mins f .s/ for a real
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convex function f W X ! R [ f1g defined on a convex set X. Using the convexity
of f and X it follows that:

1. If s� is a local minimum of f , then it is a global minimum.
2. The set of all (global) minima is convex.
3. If f is a strictly convex function and a minimum exists, then the minimum is

unique.

In addition, the convexity of f and X allows the use of convex analysis to produce
fast, efficient algorithmic solvers, we refer to [2] and the references therein for more
details.

We point out that (4) is equivalent to (2) simply by the definition of condition
number of a frame. However, the condition number function � is not convex. As
such, it is nontrivial to find the optimal solution of (4). However, � is a quasiconvex
function (see [1, Theorem 13.6] for a proof), meaning that its lower level sets form
convex sets; that is, the set fX W �.X/ � ag forms a convex set for any real a � 0. See
[12] and the references therein for a survey on some algorithms that can numerically
solve certain quasiconvex problems. We refer to [19] for a survey of results on
optimizing the condition number. But we note that, while minimizing the condition
number � is not a convex problem, an equivalent convex problem was considered
in [18]. For comparison and completeness we state one of the main results of [18].
First, observe that if X is a symmetric positive semidefinite matrix, then its condition
number is defined as

�.X/ D
8
<

:

�max.X/=�min.X/ if �min.X/ > 0;

1 if �min.X/ D 0 and �max.X/ > 0;

0 if X 	 0:

In this setting, it was proved in [18] that the problem of minimizing the condition
number is equivalent to solving another problem with convex programming.

Theorem 1 ([18], Theorem 3.1). Let ˝ � S N be some nonempty closed convex
subset of S N, the space of N � N symmetric matrices and let S NC be the space of
symmetric positive semidefinite N � N matrices. Then the problem of solving

�� D inff�.X/ W X 2 S NC \ ˝g
is equivalent to the problem of solving

�� D inff�max.X/ W X 2 t˝; t � 0; X 
 Ig; (7)

that is, �� D ��.

The problem described by (7) can be restated as solving for optimal scalars fsig
satisfying

min
si�0 ; s¤0

(
�max

 
MX

iD1

s2
i fif

�
i

! ˇ̌
ˇ̌
ˇ�min

 
MX

iD1

s2
i fif

�
i

!
� 1

)
: (8)
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Therefore, when we obtain numerical solutions to the condition number prob-
lem (4), we actually solve (8) and the theory of [19] guarantees that the optimal
solutions to both problems are indeed equal.

Theorem 1 has an intuitive interpretation. Suppose �.X/ D ��. Then rescaling
X by a positive scalar, t, will also scale its eigenvalues by the same factor 1=t,
thus leaving its condition number, �.X=t/, unchanged. Therefore, without loss of
generality, we can assume that X is rescaled so that �min.X=t/ � 1 which is
imposed in the last condition of (7). Once we know that �min.X=t/ is at least 1 then
minimizing the condition number of X=t is equivalent to minimizing �max.X=t/ so
long as X=t 2 ˝ which is guaranteed by the first condition in (7).

The goal of this chapter is to investigate the relationship among the solutions
to each of the optimization problems (4), (5), and (6). In addition, we shall
investigate the behavior of the optimal solution to each of these problems vis-á-
vis the projection of a non-scalable frame onto the set of scalable frames. We shall
also describe a number of algorithms to solve some of these problems and compare
some of the performances of these algorithms. Finally, we shall apply some of the
results of frame scalability to the problem of reweighing a graph in such a way that
the condition number of the resulting Laplacian is as small as possible. The chapter
is organized as follow. In Section 2 we investigate the three problems stated above
and compare their solutions, and in Section 3 we consider the application to finite
graph reweighing.

2 Non-scalable Frames and Optimally Conditioned Scaled
Frames

We begin by showing the relationship between the three formulations of this
scalability problem. We shall first show the equivalence of these problems when
a frame is exactly scalable, and present toy examples of the different solutions
obtained when a frame is only approximately scalable.

Lemma 1. Let F D ffigM
iD1 be a frame in R

N. Then the following statements are
equivalent:

(a) F D ffigM
iD1 is a scalable frame.

(b) Problem (4) has a global minimum solution, s� D fs�
i g, with objective function

value 1.
(c) Problem (5) has a global minimum solution, s� D fs�

i g, with objective function
value 0.

(d) Problem (6) has a global minimum solution, s� D fs�
i g, with objective function

value 0.
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Proof. Assume F is scalable with weights, fsigM
iD1. TheneS D PM

iD1 s2
i fif �

i D IN ,
and the largest and smallest eigenvalue of the scaled frame operator is 1,

�max

�PM
iD1 s2

i fif �
i

�

�min

�PM
iD1 s2

i fif �
i

� D �max
�eS
�

�min
�eS
� D 1:

Assume problem (4) has a global minimum solution, fsigM
iD1. As, �max � �min,

the feasible solution must result in �max D �min D A. Applying this feasible solution
as a scaling of F, we have,

eS D
MX

iD1

s2
i fif

�
i D AIN :

By normalizing the feasible solution by the square-root of A, we have the Parseval
scaling,

fQsigM
iD1 D

�
1p
A

si

�M

iD1

:

We have just proved that (a) and (b) are equivalent.
Assume F is scalable with weights, fsigM

iD1. TheneS D PM
iD1 s2

i fif �
i D IN , and the

difference between the largest and smallest eigenvalue of the scaled frame operator
is 0,

�max

 
MX

iD1

s2
i fif

�
i

!
� �min

 
MX

iD1

s2
i fif

�
i

!
D �max

�eS
� � �min

�eS
� D 0:

Additionally N D tr.IN/ D PM
iD1 s2

i kfik2
2 which shows that fsigM

iD1 is a feasible
solution for (5).

Assume problem (5) has a global minimum solution, fsigM
iD1. As, �max � �min,

the feasible solution must result in �max D �min D A. Applying this feasible solution
as a scaling of F, we have,

eS D
MX

iD1

s2
i fif

�
i D AIN :

But the feasibility condition
PM

iD1 s2
i kfik2

2 D N implies N D tr.AIN/, hence A D 1.
We have just proved that (a) and (c) are equivalent.

Assume F is scalable with weights, fsigM
iD1. TheneS D PM

iD1 s2
i fif �

i D IN , and the
objective function for (6) attains the global minimum ,

�����IN �
MX

iD1

s2
i fif

�
i

�����
F

D kIN � INkF D 0:
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Assume problem (6) has a global minimum solution, fsigM
iD1, which occurs when���IN �PM

iD1 s2
i fif �

i

���
F

D 0. This implies thateS D PM
iD1 s2

i fif �
i D IN , and we have a

Parseval scaling. We have just proved that (a) and (d) are equivalent.

Remark 1. Lemma 1 asserts that the problem of finding optimal scalings, fsigM
iD1,

for a given scalable frame F D ffigM
iD1 is equivalent to finding the absolute

minimums of the following optimization problems:

• minsi�0 ; s¤0

�max

�PM
iD1 s2

i fif �
i

�

�min

�PM
iD1 s2

i fif �
i

�

• min
si � 0 ; s ¤ 0PM
iD1 s2

i kf1k2
2 D N

�max

�PM
iD1 s2

i fif �
i

�
� �min

�PM
iD1 s2

i fif �
i

�

• minsi�0 ; s¤0

���IN �PM
iD1 s2

i fif �
i

���
F

Lemma 1 is restrictive in that it requires the frame F D ffigM
iD1 be scalable to

state equivalence among problems, but there can be a wide variance in the solutions
obtained when the frame is not scalable. Even nearly tight frames vary in initial
feasible solutions. We briefly consider "-tight frames and analyze the distance from
the minimum possible objective function value.

Let F" D fgigM
iD1 with kgik2 D 1 for all i be an "-tight frame such that,

.1 � "/IN �
MX

iD1

gig
�
i � .1 C "/IN :

First considering the case in which the frame cannot be conditioned any further, so
the optimal scaling weights are si D 1. Analyzing the solution produced by the three
optimization methods, we see the difference in solutions produced.

�max

�PM
iD1 s2

i gig�
i

�

�min

�PM
iD1 s2

i gig�
i

� D
�max

�PM
iD1 gig�

i

�

�min

�PM
iD1 gig�

i

� D 1 C "

1 � "
D 1 C 2"

1 � "
:

�max

 
MX

iD1

s2
i fif

�
i

!
� �min

 
MX

iD1

s2
i gig

�
i

!
D .1 C "/ � .1 � "/ D 2"

�max

 
MX

iD1

s2
i gig

�
i

!
D �max

 
MX

iD1

gig
�
i

!
D 1 C ":

We lack the information necessary to give exact results for formulation (6), so we
instead give an upper bound when si D 1.
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�����IN �
MX

iD1

s2
i gig

�
i

�����
F

D
�����IN �

MX

iD1

gig
�
i

�����
F

� p
N

�����IN �
MX

iD1

gig
�
i

�����
2

� "
p

N:

It makes sense that we could enforce this constraint, as we could renormalize the
frame elements by the reciprocal of the smallest eigenvalue of the frame operator.
It is not true, though, that the scalings produced must be the same. Moreover, when
not using the constraint on the smallest eigenvalue, the scalings can vary wildly.

Remark 2. For general frames, the optimization problems (4)–(6) do not produce
tight frames. However, they can be solved using special classes of convex optimiza-
tion algorithms: problems (4) and (5) are solved by Semi-Definite Programs (SDP),
whereas problem (6) is solved by a Quadratic Program (QP) – see [2] for details on
SDPs and QPs. In the following we state these SDPs explicitly.

SDP 1 – Operator Norm Optimization:

.t1; s.1// D argmin
t; s1; : : : ; sM � 0PM

iD1 s2
i fif �

i � tIN � IN � 0PM
iD1 s2

i fif �
i C tIN � IN � 0

t (9)

This SDP implements the optimization problem (3). In turn, as showed by Cassaza
and Chen in [5], the solution to this problem is also an optimizer of the condition
number optimization problem (4). Conversely, assume s.�/ is a solution of (4). Let
A D �min.

PM
iD1 s2

i fif �
i / and B D �max.

PM
iD1 s2

i fif �
i /. Let r D 2

ACB . Then s.�/ D
.rs2

i /M
iD1 is a solution of (9) and the optimum value of the optimization criterion is

t1 D rB � 1 D 1 � rA.
SDP 2 – Minimum Upper Frame Bound Optimization:

.t2; s.2// D argmin
t; s1; : : : ; sM � 0PM
iD1 s2

i fif �
i � IN � 0PM

iD1 s2
i fif �

i � tIN � 0

t (10)

This SDP implements the optimization problem (8) which is as previously dis-
cussed, also produces the solution s.2/ to (4). Conversely, assume s.�/ is a solution
of (4). Let A D �min.

PM
iD1 s2

i fif �
i / and B D �max.

PM
iD1 s2

i fif �
i /. Let r D 1

A . Then
s.�/ D .rs2

i /M
iD1 is a solution of (10), and the optimum value of the optimization

criterion is t2 D B
A .
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SDP 3 – Spectral Gap Optimization:

.t3; v3; s.3// D argmin
t; v; s1; : : : ; sM � 0PM

iD1 s2
i fif �

i � tIN � 0PM
iD1 s2

i fif �
i � vIN � 0PM

iD1 si kfik2
2 D N

t � v (11)

This SDP implements the optimization problem (5). As remarked earlier (5) is not
equivalent to any of (3),(4), or (8). A spectral interpretation of these optimization
problems is as follows. The SDP 1 (and implicitly (4) and (8)) scales the frame so
that the largest and smallest eigenvalues of the scaled frame operator are equidistant
and closest to value 1. The SDP 3 scales the frame so that the largest and smallest
eigenvalues of the scaled frame operator are closest to one another while the average
eigenvalue is set to 1. Equivalently, the solution to SDP 3 also minimizes the
following criterion:

�max.QS/ � �min.QS/
1
N tr.QS/

where QS D PM
iD1 s2

i fif �
i is the scaled frame operator.

QP 4 – Frobenius Norm Optimization:

s.4/ D argmin
s1; : : : ; sM � 0

MX

i;jD1

sisjjhfi; fjij2 � 2

MX

iD1

s2
i kfik2

2 C N (12)

This QP implements the optimization problem (6).

Example 1. Consider the 5-element frame, X � R
3, generated such that each

coordinate is a random integer from 0 to 5.

X D
2

4
2 4 1 4 4

3 1 2 0 2

1 4 3 5 2

3

5

We then numerically compute X� , Xg, XF, which are the rescaled frames that
minimize problems SDP 1, SDP 3, and QP 4, respectively. That is, X� is the rescaled
frame, X� D fsifig, such that s� D fsig is the minimizer to Problem (3), which also
minimizes the frame condition number, �. Similarly, Xg is rescaled to minimize the
eigenvalue gap �max � �min while the average eigenvalue is 1, and XF is rescaled to
minimize Frobenius distance to the identity matrix.

In our numerical implementation minimizing condition number, we used the
CVX toolbox in MATLAB [11] which is a solver for convex optimization problems.
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Table 1 Comparisons of extreme eigenvalues, condition number, relative spectral gap, Frobenius
distance to identity, and the operator norm distance to identity for the non-scalable frame X and its
rescaled versions that minimize Problems (4)–(6).

�min �max � .�max � �min /= 1
N

PN
iD1 �i kI3 � �kF kI3 � �k2

X 4.1658 110.41 26.504 2.5296 109.95 109.41

X� 0.1716 1.8284 10.655 2.2888 1.4348 0.8284
Xg 0.0856 2.3558 27.501 2.2701 1.6938 1.3558

XF 0.01672 1.1989 71.667 2.2903 1.2048 0.9832

Let s� , sg, and sF denote the scaling vectors that determine the frames X� , Xg, and

XF, respectively. That is, X� D S1=2
� X where S� is the diagonal matrix with values

given by s� , and so on. We obtained scalings

s�= [0.0187, 0, 0.0591, 0.0122, 0.0242],
sg= [0.0875, 0, 0.0398, 0.0297, 0],
sF= [0.0520, 0, 0.0066, 0.0177, 0].

The results comparing each of the four frames are summarized in Table 1.
Observe that each of the three methods can produce widely varying spectra.

We now demonstrate special conditions in which a frame’s condition number can
be decreased using matrix perturbation theory.

Lemma 2 (Weyl’s Inequality, [23, Corollary 4.9]). Let A be a Hermitian matrix
with real eigenvalues f�i.A/gd

iD1 and let B be a Hermitian matrix of the same size
as A with eigenvalues f�i.B/gd

iD1. Then for any i D 1; : : :; d we have

�i.A C B/ 2 Œ�i.A/ C �1.B/; �i.A/ C �d.B/�:

An immediate corollary of Weyl’s inequality tells us that perturbing a matrix by a
positive semidefinite matrix will cause the eigenvalues to not decrease.

Corollary 1. Let A be a Hermitian matrix with real eigenvalues f�i.A/gd
iD1 and let

B 
 0 be Hermitian and of the same size of A. Then for any i D 1; : : :; d, we have
�i.A/ � �i.A C B/. The inequality is strict if B � 0 is positive definite.

Lemma 3. Let f be an eigenvector of A with associated eigenvalue �. Let B be a
matrix of the same size as A with the property that Bf D 0. Then f is an eigenvector
of A C B with eigenvalue �.

Lemma 4 ([24, Section 1.3]). Let A and B be two N � N Hermitian matrices of
same size. Then for any i D 1; : : :; N, the mapping t 7! �i.A C tB/ is Lipschitz
continuous with Lipschitz constant kBk2.

Corollary 2. Let A be an N � N Hermitian matrix with simple spectrum and
minimum eigengap ı > 0, i.e.,

ı D min
i¤j

j�i � �jj:
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Let B be a nonnegative Hermitian matrix of same size as A. Then the mappings
t 7! �i.A C tB/ are interlacing:

�1.A/ � �1.A C tB/ � �2.A/ � �2.A C tB/ � � � � � �N�1.A C tB/ � �N.A/ � �N.A C tB/

for t 2 .0; ı
kBk2

/.

The following theorem gives conditions in which we can guarantee that the
condition number of frame can be reduced.

Theorem 2. Let F D ffigm
iD1 � C

d be a frame that is not tight and whose frame
operator has simple spectrum with minimal eigengap ı > 0. Suppose that there
exists some index k such that fk is orthogonal to the eigenspace corresponding to
�max.FF�/ and not orthogonal to the eigenspace corresponding to �min.FF�/. Then
there exists a rescaled frame QF D fsifigm

iD1 satisfying �. QF/ < �.F/. In particular,
one scaling that decreases the condition number is

si D
( m

m�1Cp
1C�

; for i ¤ k
m

p
1C�

m�1Cp
1C�

; for i D k

for � 2 .0; ı kfkk�2/.

Proof. Let fk denote the frame element as described in the assumptions in the
statement of the theorem. For � 2 .0; ı/, consider the frame operator HH� D
FF� C � fkf �

k which corresponds to the rescaled frame of F where each scale si D 1

except for sk D p
1 C � . The matrix fkf �

k is Hermitian and positive semidefinite
so by Corollary 1, we have �i.FF�/ � �i.HH�/ for every i D 1; : : :; N. Then
by Corollary 2, the eigenvalues of the frame operator HH� satisfy the following
interlacing property:

�1.FF�/ � �1.HH�/ � �2.FF�/ � �2.HH�/ � � � � � �N.FF�/ D �N.HH�/;

where the last equality follows from Lemma 3 and the fact that fk is orthogonal to
the eigenspace corresponding to �N.FF�/.

We can now compute

�.FF�/ D �N.FF�/

�1.FF�/
� �N.HH�/

�1.HH�/
D �.HH�/:

Finally, we renormalize the scales fsig by the constant factor m.m � 1 Cp
1 C �/�1 to preserve the property that

Pm
iD1 si D m. This renormalization scales

all eigenvalues by the same factor which leaves the condition number unchanged.
The frame

QF D m

m � 1 C p
1 C �

H

is the frame described in the statement of the theorem, which concludes the proof.
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Remark 3. Having discussed the equivalence between the formulations above, we
have seen that they do not necessarily produce similar solutions. This brings the
question of which formulation we should use in general, to the forefront. One could
answer this question by seeking a metric that best describes the distance of a frame
to the set of tight frames. This is similar to the Paulsen problem [3], in that, after
we have solved one of the formulations above, we produce a scaling and subsequent
new frame and wish to determine the distance of this new frame to the canonical
Parseval frame associated with our original frame. In [8], the question of distance
to Parseval frames was generalized to include frames that could be made tight with
a diagonal scaling, resulting in the distance between a frame and the set of scalable
frames:

dF D min
�2SC .M;N/

kF � �kF: (13)

However, due to the fact that the topology of the set of scalable frames SC .M; N/

is not yet well-understood, computing dF is almost impossible for a non-scalable
frame. A source of future work involves finding bound on dF using the optimal
solutions to the three problems we stated above to analyze and produce bounds on
the minimum distance.

3 Minimizing Condition Number of Graphs

In this section we outline how to apply and generalize the optimization problems
from Section 2 in the setting of (finite) graph Laplacians. This task is not as simply
as directly applying the condition number minimization problem (4), and the others,
with graph Laplacian operators.

Recall that any finite graph has a corresponding positive semidefinite Laplacian
matrix with eigenvalues f�kgN�1

kD0 and eigenvectors ffkgN�1
kD0 . Further any graph

has smallest eigenvalue � D 0 with multiplicity equal to number of connected
components in the graph with eigenvalues equal to constant functions supported on
those connected components. Because any Laplacian’s smallest eigenvalue equals 0,
its condition number �.L/ is undefined. For simplicity, let us assume that all graphs
in this section are connected and hence 0 D �0 < �1 � �2 � � � � � �N�1. Suppose
we restricted the Laplacian operator to the .N � 1/-dimensional space spanned by
the eigenvectors f1; : : :; fN�1. Then this new operator, call it L0, has eigenvalues
�1; : : :; �N�1 which are all strictly positive. Now, �.L0/, the condition number of
L0 is a well-defined number.

Recall that the complete graph on N vertices, KN , is the most connected a graph
on N vertices can be since one can traverse from any two vertices on precisely one
edge. It is the only graph that has all nonzero eigenvalues equal, i.e., �0 D 0 and
�1 D �2 D � � � D �N�1 D N � 1. This graph achieves the highest possible algebraic
connectivity, �1, of a graph on N vertices. If we create L0 by projecting the Laplacian
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of KN onto the N � 1-dimensional space spanned by the eigenvectors corresponding
with nonzero eigenvalue, then L0 equals NIN�1, that is the .N �1/� .N �1/ identity
matrix times N.

Lemma 5. Let G be a connected graph with eigenvalues f�kgN�1
kD0 and eigenvectors

ffkgN�1
kD0 of the graph Laplacian L. Let QF D Œf1 f2 � � � fN�1� be the N � .N � 1/ matrix

of eigenvectors excluding the constant vector f0. Then the .N � 1/ � .N � 1/ matrix

L0 D QF�L QF (14)

has eigenvalues f�kgN�1
kD1 and associated orthonormal eigenvectors f QF�fkgN�1

kD1 .

Proof. We first show that f QF�fkgN�1
kD1 are eigenvectors to L0 with eigenvalues �k. For

any k D 1; : : :; N � 1 we have

L0
QF�fk D QF�L QF QF�fk:

But since QF is an orthonormal basis for the eigenspace that its vectors span, then QF QF�
is simply the orthogonal projection onto the eigenspace spanned by ff1; : : :; fN�1g.
That is, for any vector f , we have QF QF�f D f � hf ; f0if0, which is simply the function
f minus its mean value. For each k D 1; : : :; N � 1, the eigenvectors fk have zero
mean, i.e., hfk; f0i D 0. Hence QF QF�fk D fk and therefore

L0
QF�fk D QF�Lfk D QF�.�kfk/ D �k QF�fk:

The orthonormality of the eigenvectors f QF�fkgN�1
kD1 follows directly from the

orthonormality of ffkgN�1
kD0 and the computation

h QF�fk; QF�fji D . QF�fk/
� QF�fj D f �

k
QF QF�fj D f �

k fj D ı.k; j/:

Unlike the Laplacian, the operator in (14) is full rank and its rank equals the rank
of the Laplacian. We denote it L0 because it behaves as the Laplacian after the
projection of the function onto the zeroth eigenspace is removed.

For a general finite graph, the Laplacian can be written as the sum of rank-
one matrices L D Pm

iD1 viv
�
i where vi is the i’th column in the incidence matrix

B associated with the i’th edge in the graph and m is the total number of edges
in the graph. Thus, the Laplacian can be formed by the product L D BB�. The
columns of the incidence matrix, B, as vectors in R

N do not form a frame; B has
rank N � 1. However, the restriction B to the .N � 1/-dimensional space spanned by
f1; : : ::; fN�1, call it B0, is a frame in that space. Then the methods of Section 2 do
apply to the frame B0 with corresponding frame operator L0 D B0B�

0 . Therefore the
operator L0 can also be written as one matrix multiplication L0 D . QF�B/. QF�B/�.
For other related results on graphs and frames we refer to [22]. We seek scalars
si � 1 so that the rescaled frame fsi QF�vigm

iD1 is tight or as close to tight as possible.
In terms of matrices, we seek a nonnegative diagonal matrix X D diag.si/ so that
QL0 WD QF�BX2B� QF has minimal condition number. The resulting graph Laplacian,
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denoted QL� D BX2B�, is the operator with minimal condition number, QL0, without
the projection onto .N � 1/ eigenspaces, thus acting on the entire N-dimensional
space. One can interpret this problem as rescaling weights of graph edges to not
only make QL0 as close as possible to the .N � 1/-identity matrix but also make the
N � N Laplacian, QL, as close as possible to the Laplacian of the complete graph KN .

We present the pseudocode for the algorithm, GraphCondition, that produces QL� ,
the Laplacian of the graph that minimizes the condition number of L.

L�=GraphCondition.L; F; B/

where L is the Laplacian matrix of the graph G,
F is the N � N eigenvector matrix of L,
B is the incidence matrix of L.

1. Set QF D F.W; 2 W N/.
2. Use cvx to solve for X that minimizes �max. QF�BX2B� QF/.

subject to: X 
 0 is diagonal, trace.X/ � t � 0, and QF�BX2B� QF 
 I.
3. Create L� D BX2B�.

Example 2. We consider the barbell graph G which consists of two complete graphs
on 5 vertices that are connected by exactly one edge. The Laplacian for G has
eigenvalues �1  0:2984 and �9  6:7016, thus giving a condition number
of �.G/  22:45. We rescaled the edges via the GraphCondition algorithm and
obtained a rescaled weighted graph QG� which has eigenvalues �1  0:3900 and
�10  6:991, thus giving a condition number �. QG�/  17:9443.

Both graphs, G and QG� , are shown in Figure 1. The edge bridging the two
complete clusters is assigned the highest weight of 1.8473. All other edges
emanating from those two vertices are assigned the smallest weights of 0.7389.
All other edges not connected to either of the two “bridge” vertices are assigned a
weight of 1.1019.

We show in the following example that the scaling coefficients fsigm
iD1 that

minimize the condition number of a graph are not necessarily unique.

Example 3. Consider the graph G complete graph on four nodes with the edge .3; 4/

removed. Then G was rescaled and conditioned via GraphCondition; both graphs
are shown in Figure 2. The original Laplacian, L, and the rescaled conditioned
Laplacian, QL� , produced by the GraphCondition algorithm are given as

L D

2

664

3 �1 �1 �1

�1 3 �1 �1

�1 �1 2 0

�1 �1 0 2

3

775 ; QL� 

2

664

2:8406 �0:6812 �1:0797 �1:0797

�0:6812 2:8406 �1:0797 �1:0797

�1:0797 �1:0797 2:1594 0

�1:0797 �1:0797 0 2:1594

3

775 ;

with spectra

�.L/ D f0; 2; 4; 4g; �. QL�/ D f0; 2:1594; 3:5218; 4:3188g:

GraphCondition
GraphCondition
cvx
GraphCondition
GraphCondition
GraphCondition
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Fig. 1 Top: The barbell graph G. Bottom: The conditioned graph with rescaled weights that
minimizes the condition number. The width of the edges is drawn to be proportional to the weight
assigned to that edge.

Both Laplacians have a condition number �.L/ D �. QL�/ D 2 which shows that the
scaling of edges that minimize condition number are not necessarily unique.

We prove that the GraphCondition algorithm will not disconnect a connected
graph.

Proposition 1. Let G D G.V; E; !/ be a connected graph and let QG� D
QG�.V; QE; Q!/ be the rescaled version of G that minimizes graph condition number.
Then QG� is also a connected graph.

Proof. Let �0 WD �.G/ � 1 and suppose that QG� is disconnected. This implies
that QG� has eigenvalue 0 with multiplicity at least 2 (one for each of its connected
components). This violates the condition QF�BX2B� QF 
 I in the GraphCondition
algorithm, which yields the unique minimizer.

GraphCondition
GraphCondition
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Fig. 2 The unweighted graph G (left) and its rescaled version QG� (right) yet both graphs have a
condition number equal to 2.

Fig. 3 From top to bottom:
QG� and QGg, which minimize
the condition number and
spectral gap, respectively.

We next consider the analogue of minimizing the spectral gap, �N�1 � �1, for
graphs. Just as before with condition number, we create the positive definite matrix
L0 and its incidence matrix, B0, and minimize its spectral gap by the methods in
Section 2 to minimize problem (5). We denote the rescaled graph that minimizes
the spectral gap by QGg.

Example 4. We present numerical results of each of the graph rescaling techniques
for the barbell graph shown in Figure 1. Each of the rescaled graphs is pictured in
Figure 3 and numerical data is summarized in Table 2.

As discussed in the motivation of this section, reducing the condition number of
a graph makes the graph more “complete,” that is, more like the complete graph in
terms of its spectrum. Since the algebraic connectivity �1 is as great as possible,
it is the only graph for which �1 D �N�1, the graph is the most connected a
graph can possibly be, and as such the distance between any two points is minimal.



Optimization Methods for Frame Conditioning and Application to Graph. . . 43

Table 2 Comparison of condition number and spectral gap of the barbell graph, G, shown in
Figure 1 and its rescaled versions, respectively.

�1 �N�1 � �N�1 � �1

G 0.2984 6.7016 22.4555 6.4031
QG� 1.0000 17.9443 17.9443 16.9443
QGg 0.0504 1.1542 22.8794 1.1038

As previously discussed, the effective resistance is a natural metric on graphs and
one can compute that for any two distinct vertices, i and j, on the complete graph on
N vertices we have

R.i; j/ D
N�1X

kD1

1

�k
.fk.i/ � fk.j//

2 D 1

N

N�1X

kD1

.fk.i/ � fk.j//
2

D 1

N
.ei � ej/

�FF�.ei � ej/ D 1

N
.ei � ej/

�.ei � ej/

D 1

N

��ei � ej

��2 D 2

N
:

Conjecture 1. The process of conditioning a graph reduces the average resistance
between any two vertices on the graph.

The intuition behind Conjecture 1 can be motivated by studying the quantityPN�1
kD1 1=�k. Consider a sequence of positive numbers fakgN

kD1 with average Na D
1=N

PN
kD1 ak. Then since the function h.t/ D 1=t is continuous and convex on the

set of positive numbers, it is also midpoint convex on that set, i.e.,

N

Na D Nh.Na/ �
NX

kD1

h.ak/ D
NX

kD1

1

ak
:

With this fact, let f�kgN�1
kD1 denote the eigenvalues of connected graph G and

fQ�kgN�1
kD0 denote the eigenvalues of the conditioned graph QG� , both satisfying

N� D 1=N
PN�1

kD1 �k D 1=N
PN�1

kD1
Q�k. Since QG� is better conditioned than G, then���

PN�1
kD1

Q�k � N�
��� �

���
PN�1

kD1 �k � N�
���. In other words, the eigenvalues fQ�kgN�1

kD1 are

closer to the average N� than the eigenvalues f�kgN�1
kD1 are. Hence

N�1X

kD1

1

Q�k

�
N�1X

kD1

1

�k
: (15)

Equation (15) almost resembles the effective resistance R.i; j/ D PN�1
kD1 1=�k.fk.i/�

fk.j//2 except for the term .fk.i/ � fk.j//2. This term will be difficult to account
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for since little is known about the eigenvectors of QG� . Analysis of eigenvectors of
perturbed matrices is a widely open area of research and results are very limited, see
[9, 14, 23, 24].

We remark that Conjecture 1 claims that conditioning a graph will reduce the
average effective resistance between points; it is not true that the resistance between
all points will be reduced. If the weight on edge .i; j/ is reduced, then its effective
resistance between points i and j is increased. Since we impose that the trace of the
Laplacians be preserved, if any edge weights are increased, then by conservation at
least one other edge’s weight must be decreased. The vertex pairs for those edges
will then have an increased effective resistance between them.

While we lack the theoretical justification, numerical simulations support Con-
jecture 1 and this is a source of future work.

The authors of [13] approach a similar way. They propose using convex
optimization to minimize the total effective resistance of the graph,

Rtot D
NX

i;jD1

R.i; j/:

They show that the optimization problem is related to the problem of reweighting
edges to maximize the algebraic connectivity �1.
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