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1 Introduction

For the past few decades, radial basis functions have been established as one of the
main tools in multivariate approximation theory. They allow the user to build high-
order, meshfree approximation spaces and provide an extremely flexible tool for the
reconstruction of functions from scattered data, see [6, 15, 46].

The main ingredient are, of course, radial functions, though many of the results
are also true for non-radial functions.

Definition 1. A radial function is a function ˚ W R
d ! R of the form ˚.x/ D

�.kxk2/, x 2 R
d, where � W Œ0;1/ ! R is a univariate function and kxk2 D

.x21 C : : :C x2d/
1=2 denotes the Euclidean norm of x 2 R

d.

Sometimes, the univariate function � in the above definition is referred to as the
radial function but we will not do this here. We will however make the following
general assumption.

Remark 1. We will always assume that the univariate function � W Œ0;1/ ! R is
defined on all of R by even extension, i.e. by �.�r/ WD �.r/ for r > 0.

We will say that such a � W Œ0;1/ generates or induces a multivariate function
on R

d. This induced function is simply defined to be ˚.x/ WD �.kxk2/, x 2 R
d.

In this article, we will predominantly be dealing with radial functions ˚ W Rd !
R having a compact support, i.e. with functions for which

supp˚ WD fx 2 Rd W ˚.x/ ¤ 0g
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is bounded. In general, we will simply assume that the support of ˚ is given by the
unit ball. In that case, we can introduce scaled versions, i.e.

˚ı.x/ WD ı�d˚.x=ı/

with ı > 0, which obviously have support in the ball about the origin with radius
ı. Besides scaling we can also shift a scaled basis function. This allows us to define
our basic approximation spaces. To this end let ˝ � R

d be a bounded domain and
let X D fx1; : : : ; xNg � ˝ be a set of distinct points, the data sites. Associated to
such a point set are two geometric quantities, the fill distance or mesh norm hX;˝

and the separation distance qX , which are defined to be

hX;˝ WD sup
x2˝

min
1�j�N

kx � xjk2;

qX WD min
1�j¤k�N

kxj � xkk2;

respectively. The fill distance describes how well the scattered points X “cover”
the domain ˝ in the following sense. The fill distance hX;˝ gives the radius of the
largest ball completely contained in ˝ without a data site within its interior. The
fill distance is important for understanding approximation orders. The separation
distance defines the smallest distance between the two closest data sites. It becomes
important when looking at stability issues.

A scaled, compactly supported kernel and a set of data sites are enough to define
a first approximation space via

WX D WX;˚ı WD spanf˚ı.� � x/ W x 2 Xg: (1)

We will refer to this as a local approximation space since we will not deal with
only one data set and one associated approximation space, but with a sequence
of data sets X1;X2; : : : with mesh norms hj D hXj;˝ , which are supposed to be
monotonically decreasing. To ensure a certain uniformity in decrease, we will
assume that hjC1 � �hj for some fixed � 2 .0; 1/. For some of our results we
will require that the sequence is quasi-uniform, which means that there is a constant
cq such that, with qj D qXj ,

qj � hj � cqqj:

Having this sequence of data sets Xj, it is clear that we can build a local
approximation space Wj D WXj for each Xj. To this end, we will define a kernel
˚j W ˝ � ˝ ! R for each level. In our application this kernel will be given by
the scaled version of a fixed translation invariant radial basis function. To be more
precise, we assume that there is a compactly supported function ˚ W Rd ! R with
support in the unit ball B.0; 1/ and that, for each level, there is a scaling parameter
ıj > 0 such that we can define

˚j.x; y/ D ı�d
j ˚..x � y/=ıj/:
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If we consider y to be fixed, it follows that the function ˚j.�; y/ has support in
B.y; ıj/, the ball with radius ıj and centre y.

As we assume that the data sets become denser and denser, we will also assume
that the support radii become smaller and smaller, usually in the same way, i.e., we
will assume that ıj D vhj with a constant � > 0, which we will link to � later on.
Note that this also leads to ıjC1 � �ıj.

With the data sets and the associated kernels at hand, we can build approximation
spaces of the form

Wj D spanf˚j.�; x/ W x 2 Xjg: (2)

representing details on level j. Thus, the approximation of our function will come
from the sum of these spaces, i.e., we have to investigate the approximation power of

Vn WD W1 C W2 C � � � C Wn

for n ! 1.
The rest of the paper is organised as follows. In the next section, we will

discuss the relevant material on optimal recovery, reproducing kernel Hilbert spaces
and Sobolev spaces. After that, we will discuss compactly supported radial basis
functions. In the fourth section, we will then address multiscale interpolation and
approximation.

2 Optimal Recovery and Reproducing Kernel Hilbert Spaces

2.1 The Reconstruction Problem

Our main tool in using discrete approximation spaces WX of the form (1) will be
optimal recovery and interpolation, which turns out to be the same in this context.
Throughout this section, we will consider only local approximation spaces WX;˚ı . In
particular, we want to keep the scaling factor ı fixed but might vary the data set X.

To understand why radial basis functions, or, more generally, positive definite
functions are natural tools in multivariate approximation theory, we start with an
abstract result from linear algebra.

To this end, let H be a Hilbert space and denote its dual by H�. Suppose
� D f�1; : : : ; �Ng � H� is a set of linearly independent functionals on H and
f1; : : : ; fN 2 R are certain given values. Then a generalised recovery problem would
ask for finding a function s 2 H so that �j.s/ D fj, 1 � j � N. We will call s a
generalised interpolant. Usually, there are an infinite number of possible generalised
interpolants and hence there is need to distinguish one of them. Moreover, if the data
contain noise, interpolation is not an appropriate way of reconstructing the unknown
function f . Hence, we will also consider a method, which was originally introduced
in the context of splines (see [42]).
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Definition 2. The norm-minimal generalised interpolant is the element s0 2 H
satisfying

ks0k D minfksk W s 2 H; �j.s/ D fj; 1 � j � Ng: (3)

Given a smoothing parameter " > 0, the optimal recovery or smoothing spline is
the element s" 2 H satisfying

min

8
<

:

NX

jD1
j�j.s/ � fjj2 C "ksk2H

9
=

;
: (4)

The solutions to both problems (3) and (4) are unique. A proof of the following
result can be found in [42, 46].

Theorem 1. Let H be a Hilbert space, �1; : : : ; �N 2 H� linearly independent
functionals with Riesz representers vj, 1;� j � N, and let f1; : : : ; fN 2 R be given.
The unique solutions s0 of (3) and s" of (4) can be written as

s" D
NX

jD1
˛jvj; (5)

" � 0, where the coefficients f˛jg are the solution of the linear system

.A C "I/˛ D f (6)

where A D .�i.vj// and f D .f1; : : : ; fN/T .

Hence, the optimal recovery problem can constructively be solved once the Riesz
representer of the functionals are known. For general Hilbert spaces of functions this
is not an easy task. However, for reproducing kernel Hilbert spaces this becomes
simple once the reproducing kernel is known.

Definition 3. A Hilbert space H of functions f W ˝ ! R is a reproducing kernel
Hilbert space if there is a kernel ˚ W ˝ �˝ ! R with

1. ˚.�; x/ 2 H for all x 2 ˝,
2. f .x/ D hf ; ˚.�; x/iH for all x 2 ˝ and all f 2 H.

In such a reproducing kernel Hilbert space, the Riesz representer of any
functional � 2 H� is simply given by applying � to one of the arguments of the
kernel, i.e. v� D �y˚.�; y/. In this paper, we will exclusively be concerned with
point evaluation functionals, i.e. �j.f / D f .xj/. Hence, the optimal recovery takes
the simple form

s" D
NX

jD1
˛j˚.�; xj/

and the matrix A has thus entries ˚.xi; xj/.
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2.2 Sobolev Spaces

The reproducing kernel Hilbert spaces we will be concerned with are Sobolev
spaces. For an integer � D k 2 N0 the Sobolev space Hk.˝/ consists of all those
functions u 2 L2.˝/ which have weak derivatives D˛u in L2.˝/ for all j˛j � k.
For non-integer � > 0, the Sobolev space H� .˝/ can be defined using interpolation
theory, see, for example, [1].

The Sobolev embedding theorem guarantees that H� .˝/ is a reproducing kernel
Hilbert space for any � > d=2. However, since the reproducing kernel is uniquely
determined by the inner product and also depends upon ˝ in our setting, it is in
general not possible to give an explicit formula for the reproducing kernel. We will
circumvent this problem by two means. First of all, we will assume that we can
extend our functions defined on ˝ to all of Rd, see [4].

Proposition 1. Let˝ � R
d be a bounded domain with a Lipschitz boundary. Then,

there is a universal extension operator E W H� .˝/ ! H� .Rd/ satisfying

1. Ef j˝ D f
2. kEf kH� .Rd/ � C�kf kH� .˝/

for all f 2 H� .˝/ and all � � 0.

It is important that though the constant C� > 0 might depend on � , the operator
E itself does not. The existence of such an operator means that we can equip
H� .˝/ with an equivalent norm f 7! kEf kH� .Rd/ and thus we can concentrate
on determining the reproducing kernel of H� .Rd/ for � > d=2. This becomes
particularly easy if we write the norm on H� .Rd/ using the Fourier transform bf
of f 2 H� .Rd/, � > d=2 defined by

bf .!/ D .2�/�d=2
Z

Rd
f .x/e�ixT!dx:

With this, we can define the norm on H� .Rd/ to be

kf k2H� .Rd/
D

Z

Rd
jbf .!/j2.1C k!k22/�d!: (7)

The reproducing kernel can then be written in translation-invariant form, i.e. it
satisfies ˚.x; y/ D ˚0.x � y/ with ˚0 W Rd ! R for which we will simply write
˚.x; y/ D ˚.x � y/ in an abuse of notation. The function ˚ W R

d ! R is then
simply the inverse Fourier transform of one over the weight function, i.e.

b̊.!/ D .1C k!k22/�� ;

which is a consequence of the following general result, see [46].
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Proposition 2. Suppose ˚ 2 L1.Rd/ has a Fourier transform satisfying

c1.1C k!k22/�� � b̊.!/ � c2.1C k!k22/�� (8)

Then, ˚ also defines a reproducing kernel on H� .Rd/ with respect to the inner
product defined by

hf ; gi˚ WD
Z

Rd

bf .!/bg.!/
b̊.!/

d!:

The norm associated to this inner product is equivalent to the Sobolev norm (7).

This also opens the door to the construction of a variety of kernels, which are
also reproducing kernels in H� .Rd/. We will only consider compactly supported
˚’s having a Fourier transform with such a decay. However, since for t � 0 and
� � 0, we have

1C t� � .1C t/� � 2�.1C t� /

we see that the decay property (8) is equivalent to the decay property

c1.1C k!k2�2 /�1 � b̊.!/ � c2.1C k!k2�2 /�1; (9)

which is slightly easier to handle in what follows. An immediate consequence of
these observations is the following one.

Corollary 1. Let ˚ 2 L1.Rd/ be a reproducing kernel of H� .Rd/, � > d=2, i.e.
its Fourier transform satisfies (9). For ı 2 .0; 1	 let ˚ı WD ı�d˚.�=ı/. Then, ˚ı is
also a reproducing kernel of H� .Rd/ and for every g 2 H� .Rd/, we have the norm
equivalence

c1=21 kgk˚ı � kgkH� .Rd/ � c1=22 ı��kgk˚ı ;

Proof. This follows immediately from c̊
ı D b̊.ı�/. ut

It is important to note that the Hilbert space in which the scaled kernel ˚ı is the
reproducing kernel is always H� .Rd/, i.e. the space itself does not depend on the
scaling parameter. However, the norm associated to the inner product in which ˚ı
is the reproducing kernel does depend on ı > 0. Also the equivalence constants
depend on ı. While we always have kf k˚ı � Ckf kH� .Rd/ with C > 0 being
independent of ı > 0, the constant in the other estimate kf kH� .Rd/ � Cı��kf k˚ı
tends to infinity with ı ! 0. This is not surprising at all, since k � k˚ı ! k � kL2.Rd/

for ı ! 0 and the constant has to balance this loss of derivative in the norm.
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3 Compactly Supported Radial Basis Functions

In this section we will review recent results on compactly supported radial basis
functions. We are particularly interested in the construction of such basis functions
and in those compactly supported RBFs which are reproducing kernels of Sobolev
spaces.

Much of the general theory in this section can be found in [48]. Newer results are
based on [8, 9, 22, 35, 37, 43, 50, 51].

3.1 Construction of Compactly Supported RBFs

A famous result of Bochner states that a continuous, integrable function ˚ W Rd !
R is positive definite and hence the reproducing kernel of its associated reproducing
kernel Hilbert space, if and only if it possesses a non-negative, non-vanishing
Fourier transform

b̊.!/ WD .2�/�d=2
Z

Rd
˚.x/e�ixT!dx; ! 2 R

d;

see [46] for a proof. For a radial, positive definite function, it is well-known that
the Fourier transform is also radial and can be reduced to a one-dimensional Hankel
transform. This will be essential in what we now want to do. To formulate this, we
need to introduce Bessel functions of the first kind.

Definition 4. The Bessel function of the first kind of order � 2 C is defined by

J�.z/ WD
1X

mD0

.�1/m. 1
2
z/2mC�

mŠ
 .� C m C 1/
; z 2 C:

This gives the desired representation in the case of a positive definite, radial
function.

Theorem 2. Suppose ˚ 2 L1.Rd/\ C.Rd/ is radial, i.e. ˚.x/ D �.kxk2/, x 2 R
d.

Then its Fourier transform b̊ is also radial, i.e. b̊.!/ D Fd�.k!k2/ with

Fd�.r/ D r� d�2
2

Z 1

0

�.t/t
d
2 J d�2

2
.rt/dt: (10)

Hence, ˚ is positive definite if and only if Fd� � 0 and Fd� 6	 0.

An interesting consequence of (10) is that the operator Fd cannot only be defined
for d 2 N but actually for all d 2 Œ0;1/, which we will from now on do. However,
the connection to a multivariate Fourier transform is, of course, only given if d 2 N.
Also, the existence of the integral has to be ensured.
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Next, we introduce the key operators to construct compactly supported radial
basis functions.

Definition 5. 1. Let � be given so that t 7! �.t/t is in L1Œ0;1/, then we define for
r � 0,

.I �/.r/ D
Z 1

r
t�.t/dt:

2. For even � 2 C2.R/ we define for r � 0,

.D�/.r/ D �1
r
�0.r/:

In both cases the resulting functions should be seen as even functions by even
extension.

Obviously, these operators are inverse to each other in the sense that ID D I and
DI D I whenever these operations are well-defined, where I denotes the identity
operator.

The importance of these operators comes from the fact that they nicely work
together with the Fourier transform operator Fd. We will formulate this in a moment
but before that, we want to generalise them.

Definition 6. Let ˛ > 0 and assume that t 7! t�.t/ is integrable over Œ0;1/. Then,
we define for r � 0,

I˛�.r/ WD 1

2˛�1
 .˛/

Z 1

r
�.t/t.t2 � r2/˛�1dt

and for r < 0 the function I˛� is defined by even extension.

Note that we can rewrite the integral in the definition as

Z 1

r
�.t/t.t C r/˛�1.t � r/˛�1dt:

Hence, for ˛ 2 .0; 1/, the singularity at t D r is integrable. Since we will be
merely be concerned with continuous compactly supported functions in this paper,
the operator I˛ can always be applied to such a function for any ˛ > 0.

We also see that for ˛ D 1 we have I1 D I , i.e. both definitions coincide.
Finally, we will particularly be interested in the case ˛ D 1=2. In this case the
operator reduces to

I1=2�.r/ D
r
2

�

Z 1

r
�.t/t.t2 � r2/�1=2dt:
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Since we are merely interested in compactly supported functions, it is important
for us to note that I˛ respects a compact support in the following sense.

Lemma 1. Assume that the even function � W R ! R has a compact support
contained in the interval Œ�R;R	. Then, for each ˛ > 0 the function I˛� has also
compact support contained in Œ�R;R	.

We are now going to extend the range of possible operators I˛ by defining them
also for ˛ � 0. We will do this first formally in the following definition.

Definition 7. 1. We define I0 to be the identity operator, i.e. I0� D � for all even
functions � W R ! R.

2. For n 2 N we define I�n WD Dn.
3. For ˛ > 0 we let k WD d˛e and define I�˛ WD I�kIk�˛ .

To see to what functions � we can apply these operators, we restrict ourselves
to compactly supported and even functions. If such a function possesses ` C 1

continuous derivatives then we first note that the derivatives must satisfy �.j/.r/ D
.�1/j�.j/.�r/. In particular, we see that for odd j the derivative at zero has to vanish.
The Taylor expansion about the origin is thus

�.r/ D
X̀

jD0

�.j/.0/

jŠ
rj C 1

`Š

Z r

0

.r � t/`�.`C1/.t/dt

D
b`=2cX

jD0

�.2j/.0/

.2j/Š
r2j C 1

`Š

Z r

0

.r � t/`�.`C1/.t/dt:

Applying I�1 D D to this expansion yields

I�1�.r/ D �1
r

d

dr
�.r/

D �
b`=2cX

jD1

�.2j/.0/

.2j � 1/Š r
2j�2 � 1

.` � 1/Š
1

r

Z r

0

.r � t/`�1�.`C1/.t/dt:

The critical term on the right-hand side behaves like

lim
r!0

1

r

Z r

0

.r � t/`�1�.`C1/.t/dt D lim
r!0

.` � 1/
Z r

0

.r � t/`�2�.`C1/.t/dt D 0

as long as ` � 2 and like �.2/.0/ for ` D 1. Hence, for even � 2 C2.R/ with
compact support I�1� is well-defined and continuous. We can iterate this process
to derive the following result.

Corollary 2. Let ˛ > 0 and k D d˛e. If � 2 C2k.R/ is even and compactly
supported, then I�˛� is well-defined, continuous and compactly supported.
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However, more important to us is the following observation, which can be derived
from the above corollary but also straight-forward by induction.

Corollary 3. If k 2 N, then for every even � 2 C.R/ with compact support,  WD
Ik� and I�k are well-defined and satisfy

I�kIk� D �:

Proof. We already know that  is well-defined. To see that I�k is also well-
defined, we first recall that the fundamental theorem of calculus immediately yields
I�1I1� D �. For k � 2, we first compute

I�1Ik�.r/ D � 1

2k�1.k � 1/Š
1

r

d

dr

Z 1

r
�.t/t.t2 � r2/k�1dt

D 2r.k � 1/
2k�1.k � 1/Š

1

r

Z 1

r
�.t/t.t2 � r2/k�2dt

D 1

2k�2.k � 2/Š
Z 1

r
�.t/t.t2 � r2/k�2dt

D Ik�1�.r/

and the rest follows by induction. ut
To understand the interaction of the operators I˛ and Fd, we need the following

relation on Bessel functions.

Lemma 2. For � > �1=2 and � > �1 we have

J�CvC1.t/ D t�C1

2v
 .� C 1/

Z 1

0

J�.tu/u
�C1.1 � u2/vdu; t > 0:

The proof of this lemma starts with the integral on the right-hand side. It uses
the definition of the Bessel function as an infinite series, exchanges integration
and summation, integrates the resulting terms and interprets the result as a Bessel
function again. Details can be found in [38, Lemma 4.13].

Theorem 3. For each d; ˛ > 0 we have

FdI˛� D FdC2˛� (11)

Hence, � defines a positive definite function on R
dC2˛ if and only if I˛ defines a

positive definite function on R
d.

Proof. We compute FdI˛ using Theorem 2 and Fubini’s theorem
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FdI˛�.r/ D 1

2˛�1
 .˛/
r� d�2

2

Z 1

0

Z 1

t
�.s/s.s2 � t2/˛�1t d

2 J d�2
2
.rt/dsdt

D 1

2˛�1
 .˛/
r� d�2

2

Z 1

0

�.s/s
Z s

0

.s2 � t2/˛�1t d
2 J d�2

2
.rt/dtds:

After a change of variables u WD t=s, the inner integral can be computed using
Lemma 2:

Z s

0

.s2 � t2/˛�1t d
2 J d�2

2
.rt/dt D

Z 1

0

.s2 � u2s2/˛�1.us/
d
2 J d�2

2
.rsu/sdu

D s2˛�1C d
2

Z 1

0

.1 � u2/˛�1u d
2 J d�2

2
.rsu/du

D s2˛�1C d
2 2˛�1
 .˛/.rs/�˛J d�2

2 C˛.rs/:

Inserting this into the above formula for FdI˛ immediately yields

FdI˛�.r/ D r� d�2
2 �˛

Z 1

0

�.s/ss˛�1C d
2 J d�2

2 C˛.rs/ds

D r� dC2˛�2
2

Z 1

0

�.s/s
dC2˛
2 J dC2˛�2

2
.rs/ds

D FdC2˛�.r/:

ut
This means particularly for the operators I D I1 and I1=2 the following.

Corollary 4. • A function � induces a positive definite function on R
dC2 if and

only if I � induces a positive definite function on R
d.

• A function � induces a positive definite function on R
dC1 if and only if I1=2�

induces a positive definite function on R
d.

However, (11) has another important consequence. If � 2 C.R/ has compact
support, then we can interpret the classical Fourier transform of � also in the L2
sense. In the L2-sense, � is uniquely determined by its Fourier transform and hence
we have the following result.

Corollary 5. Let ˛; ˇ > 0. Assume that � 2 C.R/ is even and has compact support
then we have

I˛Iˇ� D I˛Cˇ� D IˇI˛ (12)

and

I�˛I˛� D �: (13)
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Proof. Using (11) yields

FdI˛Iˇ� D FdC2˛Iˇ� D FdC2˛C2ˇ�:

The other expressions in the first identity have the same Fourier transform and hence
all of the stated functions must be the same.

To prove the second equality, let k D d˛e. By definition, we have I�˛ D
I�kIk�˛ . Hence,

I�˛I˛� D I�kIk�˛I˛� D I�kIk� D �;

where we first have used (12) and then Corollary 3. ut

3.2 Wendland Functions and Generalised Wendland Functions

We will now describe a popular class of compactly supported radial basis functions,
which is widely used in applications. The starting point is the cut-off power function

��.r/ D .1 � r/vC (14)

which is known to induce a positive definite function on R
d if � � .d C 1/=2, see

[3, 46].

Definition 8. The Wendland function of smoothness 2k for space dimension d is
defined by

�d;k.r/ D Ik�bd=2cCkC1.r/

D 1

2k�1.k � 1/Š
Z 1

r
.1 � t/bd=2cCkC1t.t2 � r2/k�1dt; 0 � r � 1:

The definition shows that we will have the same function for even d D 2n and
odd d D 2n C 1. We will address this issue later on. However, it is also clear from
this definition that �d;k restricted to Œ0; 1	 is a polynomial of degree bd=2c C 3k C 1,
which can easily be computed. Some of them are, up to a constant factor, listed in
Table 1.

The reason why these functions have become quite popular is summarised in the
following theorem.

Theorem 4. The functions �d;k are positive definite on R
d and are of the form

�d;k.r/ D
�

pd;k.r/; 0 � r � 1;

0; r > 1;
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Table 1 Wendland functions.

Space dimension Function Smoothness

d D 1 �1;0.r/ D .1� r/
C

C0

�1;1.r/ PD.1� r/3
C

.3r C 1/ C2

�1;2.r/ PD.1� r/5
C

.8r2 C 5r C 1/ C4

d � 3 �3;0.r/ D .1� r/2
C

C0

�3;1.r/ PD.1� r/4
C

.4r C 1/ C2

�3;2.r/ PD.1� r/6
C

.35r2 C 18r C 3/ C4

�3;3.r/ PD.1� r/8
C

.32r3 C 25r2 C 8r C 1/ C6

d � 5 �5;0.r/ D .1� r/3
C

C0

�5;1.r/ PD.1� r/5
C

.5r C 1/ C2

�5;2.r/ PD.1� r/7
C

.16r2 C 7r C 1/ C4

with a univariate polynomial pd;k of degree bd=2cC3kC1. They possess continuous
derivatives up to order 2k. The degree of pd;k is minimal for a given space dimension
d and smoothness 2k and are up to a constant factor uniquely determined by this
setting.

The above defined functions have been generalised in the following way, see
[8, 9, 22, 35].

Definition 9. Let ˛ > 0 and � > �1 such that ˛ C � > 0. The generalised
Wendland functions are defined to be

 �;˛.r/ WD I˛��.r/ D 1

2˛�1
 .˛/

Z 1

r
.1 � t/vt.t2 � r2/˛�1dt:

Obviously, we have

�d;k D  bd=2cCkC1;k

so that the new functions are indeed a generalisation of the old once. However, for
arbitrary ˛ and �, we can neither expect  �;˛ to be positive definite on R

d nor will
 �;˛ in general be representable by a univariate polynomial within its support.

Nonetheless, using the machinery so far, we can compute the Fourier transform
of these functions as

Fd �;˛.r/ D FdC2˛�v.r/ D r�.d�2/=2�˛
Z 1

0

sd=2C˛.1 � s/vJ.d�2/=2C˛.rs/ds

D r�d�2˛��
Z r

0

td=2C˛.r � t/vJ.d�2/=2C˛.t/dt:
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The latter integral has intensively been studied and can be expressed using hyper-
geometric series. Recall that such a series is formally defined to be

pFq.z/ 	 pFqŒa1; : : : ; apI b1; : : : ; bqI z	

WD
1X

nD0

.a1/n � � � .ap/n

.b1/n � � � .bq/n

zn

nŠ
DW

1X

nD0

.a/n

.b/n

zn

nŠ
;

where we assume that neither of the b1; : : : bq is a non-positive integer and use the
Pochhammer symbol defined as .a/n WD 1 for n D 0 and .a/n WD a.a C 1/ � � � .a C
n � 1/ D 
 .a C n/=
 .a/ and .a/n WD .a1/n � � � .ap/n. Such a series is known to
converge point-wise if p � q, which is the case we are interested in.

A few simple properties and the connection to the integrals we are interested in
are collected in the next lemma.

Lemma 3. 1. If ap D bq, then pFq D p�1Fq�1.
2. For ˇ C � > �1 and � > �1 we have

Z r

0
.r � t/�t�Jˇ.t/dt D 
 .�C 1/
 .ˇ C �C 1/


 .ˇ C 1/
 .ˇ C �C �C 2/
2�ˇrˇC�C�C1

� 2F3
�
ˇ C �C 1

2
;
ˇ C �C 2

2
Iˇ C 1;

ˇ C �C �C 2

2
;
ˇ C �C �C 3

2
I �r2=4

�

:

3. The derivatives of the hyper-geometric functions satisfy for n 2 N:

dn

dzn pFqŒa1; : : : ; apI b1; : : : ; bqI z	

D .a1/n � � � .ap/n

.b1/n � � � .bq/n
pFqŒa1 C n; : : : ap C nI b1 C n; : : : ; bq C nI z	:

4. For r > 0 we have

1F2

�

aI a C b

2
; a C b C 1

2
I �r2=4

�

> 0

if a and b satisfy b � 2a � 0 or b � a � 1 or 0 � a � 1; b � 1. The hyper-
geometric series cannot be strictly positive if 0 � b < a or if a D b 2 .0; 1/.

Proof. The first statement is obvious, the third statement can simply be checked by
differentiation under the sum. The second statement can be found, for example, in
[11, 13.1(56)]. The final statement is a consequence of the findings in [30]. ut

Hence, we can continue to compute our Fourier transform. Setting � WD d=2C˛,
� WD � and ˇ WD .d � 2/=2 C ˛, we see that the second statement of the lemma
yields
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Fd �;˛.r/ D r�d�2˛��
Z r

0
td=2C˛.r � t/vJ.d�2/=2C˛.t/dt

D 
 .� C 1/
 .d C 2˛/

2d=2C˛�1
 .d=2C ˛/
 .d C 2˛ C � C 1/

� 2F3
"

d

2
C ˛;

d C 1

2
C ˛I d

2
C ˛;

d C � C 1

2
C ˛;

d C � C 2

2
C ˛I � r2

4

#

D Cd
�;˛1F2

"
d C 1

2
C ˛I d C � C 1

2
C ˛;

d C � C 2

2
C ˛I � r2

4

#

:

with

Cd
�;˛ WD 
 .� C 1/
 .d C 2˛/

2d=2C˛�1
 .d=2C ˛/
 .d C 2˛ C � C 1/
: (15)

This allows us to make the following general statement on the generalised
Wendland functions, which comes from [8].

Theorem 5. Let ˛ > 0 and � > �1 with ˛ C � > 0. Then, the d-variate Fourier
transform of the generalised Wendland function is given by

Fd �;˛.r/ D Cd
�;˛ 1F2

�
d C 1

2
C ˛I d C � C 1

2
C ˛;

d C � C 2

2
C ˛I � r2

4

�

:

Hence,  �;˛ induces a positive definite function on R
d if

� � d C 1

2
C ˛: (16)

Furthermore, the Fourier transform satisfies

d

dr
Fd �;˛.r/ D �rFd �;˛C1.r/: (17)

Proof. Setting a D dC1
2

C ˛ and b D � shows that (16) is equivalent to b � a � 1.
Hence, we can conclude from Lemma 3 that  �;˛ is positive definite. To see (17),
we also use Lemma 3, which yields

d

dr
Fd �;˛.r/ D Cd

�;˛

d

dr
1F2

"
d C 1

2
C ˛I d C � C 1

2
C ˛;

d C � C 2

2
C ˛I � r2

4

#

D � r

2
Cd
�;˛

dC1
2 C ˛

�
dC�C1

2 C ˛
� �

dC�C2
2 C ˛

�
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� 1F2
"

d C 1

2
C ˛ C 1I d C � C 1

2
C ˛ C 1

d C � C 2

2
C ˛ C 1I � r2

4

#

D � r
Cd
�;˛

Cd
�;˛C1

d C 2˛ C 1

.d C � C 2˛ C 1/.d C � C 2˛ C 2/
Fd �;˛C1.r/

D � rFd �;˛C1.r/;

where the constant expression in the last but one line can be simplified to 1 using
the recurrence formula of the 
 -function. ut

Note that the last property can also be expressed as I�1Fd �;˛ D Fd �;˛C1. It
also has the following interesting consequence.

Corollary 6. The Fourier transform of the generalised Wendland function  �;˛ is
monotonically decreasing if

v � d C 1

2
C ˛ C 1: (18)

Since the classical Wendland functions �d;k are a special case of the generalised
Wendland functions  �;˛ , using the parameters � D bd=2c C k C 1 and ˛ D k, we
see that (16) is satisfied, i.e. we have an alternative proof for them being positive
definite. However, for d � n, the function �d;k induces not only a positive definite
function on R

d but also on all Rn with n � d and the monotony condition (18)
becomes

bd=2c C k C 1 � n C 1

2
C k C 1

or

bd=2c � n C 1

2
:

Corollary 7. The Wendland function �d;k induces a positive definite function on R
n

with a monotonically decreasing Fourier transform for all n � 2bd=2c � 1.

In [9], there is also a discussion of the decay of the Fourier transform of the
generalised Wendland functions. This generalises earlier results from [44].

Theorem 6. The d-dimensional Fourier transform Fd �;˛ of the generalised
Wendland function  �;˛ with � � ˛ C dC1

2
and ˛ > 0 satisfies

c1.1C r2/�˛� dC1
2 � Fd �;˛.r/ � c2.1C r2/�˛� dC1

2 ; r 2 R

with certain constants c1; c2 > 0 independent of r. Hence,  �;˛ defines a reproduc-
ing kernel of

H˛C dC1
2 .Rd/
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As mentioned above, this recovers and generalises the decay rate established
in [44] for Fd�d;k, showing that they are reproducing kernels for H� .Rd/ with
� D dC1

2
Ck. While these are integer order Sobolev spaces in odd space dimensions,

they are of order integer plus a half in even dimensions. But we are now also in
the situation to explicitly state compactly supported RBFs which are reproducing
kernels in Sobolev spaces of integer order in even dimensions. We only have to
work with ˛ D k � 1=2, k 2 N, and � � k C d=2 to have a kernel for HkCd=2.Rd/.
These kernels have a more complicated structure than the original Wendland kernels
but are still easily computable. They can best be described by introducing the
elementary functions

S.r/ WD
p
1 � r2; L.r/ WD log

�
r

1C S.r/

�

; r 2 .0; 1/:

Then, some of the functions together with the space dimension d and the order � of
the Sobolev space in which they are reproducing kernels are, up to a constant factor,
given in Table 2. We have always chosen � D k C d=2 D � , since the decay of
the Fourier transform and hence the Sobolev space is independent of � as long as
� � ˛ C .d C 1/=2 D k C d=2.

Yet another consequence is the existence of compactly supported reproducing
kernels in Sobolev spaces.

Corollary 8. Each H� .Rd/ with � > d=2 possesses a compactly supported, radial
reproducing kernel.

Proof. The results of Theorem 6 show that H� .Rd/ has such a reproducing kernel,
namely �;˛ as long as � D ˛� dC1

2
> dC1

2
. The case of � 2 .d=2; .dC1/=2/ cannot

be handled with this technique but follows from another construction technique
in [23]. ut

Table 2 The missing Wendland functions.

Space dimension Function Sobolev

d D 2  2;1=2.r/ PD3r2L.r/C .2r2 C 1/S.r/ H2.R2/

 3;3=2.r/ PD � 15r4.r2 C 6/L.r/� .81r4 C 28r2 � 4/S.r/ H3.R2/

 4;5=2.r/ PD 315r6.3r2 C 8/L.r/

C .256r8 C 2639r6 C 690r4 � 136r2 C 16/S.r/
H4.R2/

d D 4  3;1=2.r/ PD3r2.r2 C 4/L.r/C .13r2 C 2/S.r/ H3.R4/

 4;3=2.r/ PD � 105r4.r2 C 2/L.r/� .32r6 C 247r4 C 40r2 � 4/S.r/ H4.R4/

 5;5=2.r/ PD 315r6.3r4 C 60r2 C 80/L.r/

C .9295r8 C 31670r6 C 4704r4 � 688r2 C 64/S.r/
H5.R4/

d D 6  4;1=2.r/ D 15r2.3r2 C 4/L.r/C .16r4 C 83r2 C 6/S.r/ H4.R6/

 5;3=2.r/ PD �105r4.r4 C 16r2 C 16/L.r/

� .919r6 C 2346r4 C 216r2 � 16/S.r/
H5.R6/



282 H. Wendland

As a matter of fact, in [23] Johnson constructed compactly supported radial
functions � having a d-variate Fourier transform satisfying (8) for a � D k 2 N

with k � d=4 if d is even and k � max..d C 1/=4; 2/ if d is odd.
For k 2 Œd=4; d=2	 for even d and k 2 Œ.dC1/=4; d=2	 for odd d, this seems at first

to be problematic, since it is well-known that an integrable, continuous function with
a non-negative Fourier transform has automatically an integrable Fourier transform
(see [46, Corollary 6.12]). The resolution of this seeming contradiction is quite
simple, for such values of k the constructed � in [23] is not continuous on all of
R any more, it might even have a pole at the origin.

When it comes to the actual computation of the Fourier transform of a generalised
Wendland function, it is better to reduce the d-variate Fourier transform to a
univariate one:

Fd �;˛.r/ D F1I˛C d�1
2
��.r/

D
p
2=�

2˛�1C d�1
2 
 .˛ C d�1

2
/

Z 1

0

Z 1

s
.1 � t/vt.t2 � s2/˛�1C d�1

2 cos.rs/dtds:

Specifying this to the case of �d;k shows that we will naturally have a different
Fourier transform for d even or d odd. The Fourier transform for odd d is easily
calculated for the classical Wendland functions. As an example, we give the three-
dimensional Fourier transform of

�d;1.r/ D 1

20
.1 � r/4.4r C 1/:

Lemma 4. The Fourier transform of �d;1 for d D 3 is given as

F3�3;1.r/ D � 6
p
2

r8
p
�

	
r2 � 24/ cos r � 9r sin r � 4r2 C 24



:

Clearly, we see that the Fourier transform decays like O.r�6/, so that the
corresponding Sobolev space is H3.R3/ as predicted. However, note that the
numerical evaluation near the origin is highly ill-conditioned because of severe
cancellation.

3.3 Other Compactly Supported Radial Basis Functions

Besides the functions introduced and discussed in the previous sections, there are
plenty of others which can be found in the literature. There is the construction
by Buhmann in [5], which produces also “one piece” radial functions, but the
decay of their Fourier transform is unknown. There are the earlier constructions
by Wu in [50], which are also one piece polynomials but with a higher degree
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than those mentioned above, having also a Fourier transform with isolated zeros.
Then, there is the construction by Johnson in [2, 23], which produces functions with
multiple radial pieces. Each of these pieces is poly-harmonic. The functions are
again reproducing kernels in integer order Sobolev spaces.

4 Multiscale Interpolation and Approximation

We are now coming to the second main part of this paper, the discussion of
multiscale approximation using compactly supported radial basis functions.

Let us first point out why we need a multiscale approach when working with
compactly supported radial basis functions. We start with the following negative
result (see, for example, [47, 49]).

Recall that the norm-minimal interpolant s D s0 D IX;˚ı to a function f 2 C.˝/,
which is based upon the data sites X D fx1; : : : ; xNg � ˝ and uses the basis
function ˚ı W Rd ! R can be written as

IX;˚ı f .x/ D
NX

jD1
˛j˚ı.x � xj/; x 2 ˝:

where the coefficients ˛ 2 R
N are determined by the linear system A˛ D f with

the interpolation matrix A D .˚ı.xi � xj//. From now on, we will refer to this
norm-minimal interpolant just as the interpolant.

Theorem 7. Let ˝ � R
d be a bounded domain with a Lipschitz boundary. Let ˚

be a reproducing kernel of H� .Rd/ with � > d=2, i.e. b̊ satisfies (9). Let ˚ı D
ı�d˚.�=ı/. Finally, let X D fx1; : : : ; xNg � ˝ be given. Then, there is a constant
C > 0 such that the error between any f 2 H� .˝/ and its interpolant s D IX;˚ı f
can be bounded by

kf � IX;˚ı f kL2.˝/ � C

�
hX;˝

ı

��

kf kH� .˝/: (19)

Consequently, if we denote the interpolant to a function f from our local
approximation spaces Wj from (2) as sj and choose the support radii ıj proportional
to the fill distances hj D hXj;˝ , we cannot expect sj to converge to f with j ! 1.
We can only expect convergence if hj=ıj ! 0 for j ! 1, which means that
we essentially lose the advantage of the compact support, since the interpolation
matrices become more and more dense.
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4.1 Quasi-Interpolation, Principle Shift-Invariant Spaces
and the Strang-Fix Conditions

Even in the more ideal situation of infinite, regular data sites and even if the
interpolation process is replaced by a best approximation process the above negative
result remains true. This follows from the following short discussion on quasi-
interpolation in principle shift-invariant spaces.

For a compactly supported, continuous function ˚ W R
d ! R and h > 0, we

define the space

Sh WD span
˚
˚.h�1 � �˛/ W ˛ 2 Z

d
� D spanf˚h.� � h˛/ W ˛ 2 Z

dg:

Such spaces are called principal shift-invariant spaces and they mimic our local
approximation spaces in the case of the data sites being a regular grid of grid size
h. These spaces have extensively been studied and their approximation properties
are intrinsically connected to polynomial reproduction, i.e. to the question whether
�m.R

d/ � Sh, or alternatively, to the so-called Strang-Fix conditions.

Definition 10. An integrable function ˚ W R
d ! R satisfies the Strang-Fix

conditions of order m if b̊.0/ ¤ 0 and Dˇ b̊.2�˛/ D 0 for all ˛ 2 Z
d n f0g

and ˇ 2 N
d
0 with jˇj � m.

The following result summarises these ideas. Its proof can be found in [39].

Theorem 8. Let ˚ W R
d ! R be a compactly supported, continuous function.

Then, the following statements are equivalent:

1. ˚ satisfies the Strang-Fix conditions of order m.
2. For ˇ 2 N

d
0 with jˇj � m the function

x 7!
X

˛2Zd

˛ˇ˚.x � ˛/

is a polynomial from �j˛j.Rd/.
3. For each f 2 HmC1.Rd/ and each h > 0 there are weights wh

˛ such that as h ! 0,

�
�
�
�
�

f �
X

˛2Zd

wh
˛˚.h

�1 � �˛/

�
�
�
�
�

Hs.Rd/

� Csh
mC1�skf kHsC1.Rd/; 0 � s � p

X

˛2Zd

jwh
˛j2 � Kkf k2L2.Rd/

:

The constants Cs and K are independent of f .
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Hence, in our terminology, at least if working on an infinite uniform grid, we
could get away with just one of the approximation spaces Sh D WhZd if our
compactly supported function was satisfying the Strang-Fix conditions.

However, as we will see now, if the kernel is in addition radial, it will not satisfy
the Strang-Fix conditions. To prove this negative result, which goes back to Wu [51],
we need two auxiliary results.

The first one is concerned with a question about the density of functions of the
form exp.imx/ in the continuous functions. It was first stated by Pólya as a problem
in 1931 ([34]) and then solved by Szász in 1933 ([40]).

Lemma 5 (Pólya). Let the real numbers m1;m2; � � � have the properties 0 < m1 <

m2 < � � � and

lim inf
n!1

n

mn
>

b � a

2�
> 0:

Furthermore, let f be continuous in the closed interval Œa; b	. Then it will follow
from

Z b

a
f .x/ cos.max/dx D

Z b

a
f .x/sin.mnx/dx D 0

that f vanishes identically on Œa; b	.

The second auxiliary result comes from number theory. It deals with the question
which natural numbers can be represented as the sum of two squares, see, for
example, [24].

Lemma 6. Let an be the nth natural number which can be expressed as a sum of
two integer squares. There are constants c1; c2 > 0 and n0 2 N such that

c1n <
an

p
log.n/

< c2n; n � n0:

Using the operators introduced in Section 3.1, we are now able to show that there
are no compactly supported radial functions, which satisfy the Strang-Fix conditions
in dimensions larger than one.

Theorem 9. For d � 2, there is no non-vanishing, continuous, radial, compactly
supported function ˚ W Rd ! R, which satisfies the Strang-Fix conditions.

Proof. Assume that ˚ W R
d ! R is such a function, i.e. ˚ D �.k � k2/ with an

even, compactly supported and continuous function � W R ! R. Then, its Fourier
transform is given by

b̊.!/ D Fd�.k!k2/ D F1I d�1
2
�.k!k2/ DW F1 .k!k2/:
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with a new compactly supported, continuous function  WD I d�1
2
�. If ˚ would

satisfy the Strang-Fix condition, then we must therefore have

0 D F1 .2�k˛k2/; ˛ 2 Z
d n f0g:

Next, let an be the nth natural number, which can be represented by two squared
integers. Since d � 2, for each such an we can therefore pick an ˛n 2 Z

d n f0g such
that an D k˛nk22. Thus, if we define mn WD 2�k˛nk2 D 2�

p
an, then Lemma 6 tells

us that

n

mn
D 1

2�

np
an
>

1

2�
p

c2

np
n.log n/1=4

:

This particularly means that lim infn!1.n=mn/ D 1 and hence that according to
Lemma 5, we must have that  D I.d�1/=2� 	 0. But from (13) we can finally
conclude that � D I�.d�1/=2 D 0. ut

4.2 Multilevel Interpolation

In this section, we want to discuss and analyse the simplest case of a multilevel
algorithm, which produces a global approximant from the space Vn. Let us recall
the general setting. We assume that we have a sequence of increasingly finer and
finer finite point sets

X1;X2; : : : ;Xn; : : :

and a decreasing sequence of support radii

ı1 � ı2 � : : : � ın � : : :

Then, using a compactly supported RBF ˚ W Rd ! R and its scaled versions

˚j.x; y/ WD ı�d
j ˚..x � y/=ıj/; (20)

we build, as mentioned in the introduction, local approximation spaces

Wj D spanf˚j.�; x/ W x 2 Xjg: (21)

and global approximation spaces

Vn WD W1 C W2 C : : :C Wn: (22)
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Algorithm 1: Multilevel Approximation
Input : Right-hand side f , Number of levels n
Output : Approximate solution fn 2 W1 C : : :C Wn

Set f0 D 0, e0 D f
for j D 1; 2; : : : ; n do

Determine a local approximant sj 2 Wj to ej�1.
Set fj D fj�1 C sj.
Set ej D ej�1 � sj.

In this situation, the simplest possible algorithm to compute an approximation
fn 2 Vn to a function f 2 H is a residual correction scheme as described in
Algorithm 1.

We will now analyse the approximation properties of this algorithm. To this end,
we need a general sampling inequality. The following result comes from [32].

Lemma 7. Let ˝ � R
d be a bounded domain with Lipschitz boundary. Let � >

d=2. Let X � ˝ be a finite point set with sufficiently small mesh norm hX;˝ . Then,
there is a constant C > 0, independent of X, such that for all f 2 H� .˝/ vanishing
on X, we have

kf kH�.˝/ � Ch���
X;˝ kf kH� .˝/:

for 0 � � � � .

Using sj D IXj;˚j ej�1 as the interpolant to ej�1 on Xj with kernel ˚j, we have the
following theorem.

Theorem 10. Let ˝ � R
d be a bounded domain with Lipschitz boundary. Let

X1;X2; : : : be a sequence of point sets in ˝ with mesh norms h1; h2; : : : satisfying
hjC1 D �hj for j D 1; 2; : : : with fixed � 2 .0; 1/ and h1 D � sufficiently small. Let
˚ be a kernel generating H� .Rd/, i.e. satisfying (9) and let ˚j be defined by (20)
with scale factor ıj D vhj. Let the target function f belong to H� .˝/. Then, there
exists a constant C1 > 0 such that

kEejk˚jC1
� C1 .�

� C ��� / kEej�1k˚j for j D 1; 2; 3; : : : (23)

and hence there exists a constant C > 0 such that

kf � fnkL2.˝/ � C ŒC1�
� C C1�

�� 	n kf kH� .˝/ for n D 1; 2; : : : ;

provided that �v � � > 0 with a constant � > 0. Thus there are constants �0 2
.0; 1/ and �0 > 1 such that the multiscale approximation fn converges linearly to f
in the L2 norm for all � � �0 and � � �0 with �� � � .
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Proof. The proof of this theorem can be found in [49]. We will thus only review
its critical steps. The first, important auxiliary observation is that the interpolant at
Xj to ej�1 is the same as the interpolant to Eej�1 since both functions coincide on
Xj � ˝. Here, E denotes the extension operator from Proposition 1. From this, it
follows that

kejkH� .˝/ D kej�1 � IXj;ıj ej�1kH� .˝/

D kEej�1 � IXj;ıj Eej�1kH� .˝/

� kEej�1 � IXj;ıj Eej�1kH� .Rd/

� Cı��
j kEej�1 � IXj;ıj Eej�1k˚j

� Cı��
j kEej�1k˚j ; (24)

where we have used Lemma 1 and the fact that the interpolant is norm-minimal with
respect to the ˚j-norm.

Then, we have

kEejk2˚jC1
� 1

c1

Z

Rd
jcEej.!/j2.1C .ıjC1k!k2/2� /d! DW 1

c1
.I1 C I2/

with

I1 WD
Z

Rd
jcEej.!/j2d!;

I2 WD ı2�jC1
Z

Rd
jcEej.!/j2k!k2�2 d!:

Obviously, using Plancharel’s theorem, the properties of the extension operator
and (19), we see that the first integral can be bounded by

I1 D kEejk2L2.Rd/
� ckejk2L2.˝/ D ckej�1 � sjk2L2.˝/

� c

�
hj

ıj

�2�

kej�1k2H� .˝/ � c��2�kEej�1k2˚j
:

Similarly, for the second integral, we can use (24) to derive the bound

I2 D ı2�jC1
Z

Rd
jcEej.!/j2k!k2�2 d! � ı2�jC1

Z

Rd
jcEej.!/j2.1C k!k2�2 /d!

D ı2�jC1kEejk2H� .Rd/
� ı2�jC1kejk2H� .˝/ � C

�
ıjC1
ıj

�2�

kEej�1k2˚j

� C�2�kEej�1k2˚j
:
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Piecing these bounds together gives estimate (23). The rest then more or less
follows by applying (23) iteratively and the following observation. Since en D f � fn
vanishes on Xn, we have by Lemma 7 and Lemma 1 that

kf � fnkL2.˝/ D kenkL2.˝/ � Ch�n kenkH� .˝/ � Ch�n kEenkH� .Rd/

� Ch�n ı
��
nC1kEenk˚nC1

D CkEenk˚nC1
; (25)

since hn=ınC1 D hn=.vhnC1/ �D 1
��

� 1
�

. ut
Though we cannot directly determine�0 and �0, equation (23) gives some insight

into the influence of the two critical parameters � and �. On the one hand, the
parameter � determines how much we have to refine our data set from level to level.
Hence, the smaller � the more points we have to use in the next level.

On the other hand, the parameter � determines the relation between the support
radius and the fill distance. Here, a larger � means that we have more non-zero
entries per row in the interpolation matrix, which increases the computational cost.
Nonetheless, increasing � is less critical than decreasing �.

But there is yet another consequence of this theorem. For simplicity, let us
eliminate one of the parameters by setting � D ��1 so that (23) becomes

kEejk˚jC1
� C1�

�kEej�1k˚j (26)

and we have convergence for all � > 0 with C1�� < 1. However, we even have
convergence if for an arbitrary � > " > 0 we have C1�" � 1. In this case, (26)
becomes

kEejk˚jC1
� ���"kEej�1k˚j : (27)

We can also revisit (25) by choosing an 0 � ˇ � � � ". Then, Lemma 7 applied in
the derivation of (25) yields

kf � fnkHˇ.˝/ � Ch��ˇ
n kenkH� .˝/ � Ch��ˇ

n ı��
n�1kEenk˚nC1

D Ch�ˇ
n kEenk˚nC1

:

Using (27) n times yields the estimate

kf � fnkHˇ.˝/ � Ch�ˇ
n �n.��"/kf kH� .˝/:

Finally, the fact that h1 D � and hjC1 D �hj shows that hn D �n so that we can
rephrase the last estimate as

kf � fnkHˇ.˝/ � Ch��"�ˇ
n kf kH� .˝/;

i.e., we have not only derived an estimate also for derivatives but have expressed
the error in terms of the fill-distance of the finest data set. The exponent is almost
optimal.
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Corollary 9. Under the assumptions of Theorem 10 with � D 1=� and 0 � ˇ �
� � " we have the error bound

kf � fnkHˇ.˝/ � Ch��"�ˇ
n kf kH� .˝/;

provided that � is sufficiently small.

There are several possible extensions to this theorem. First of all, the condition
hjC1 D �hj can be relaxed to something like c�hj � hjC1 � �hj with fixed �; c 2
.0; 1/ without altering the result. Secondly, the algorithm also converges if the target
function f is rougher, say f 2 H� .˝/ with d=2 < � < � . Details can be found in
[49].

From a numerical point of view, the multilevel scheme is extremely efficient.
Once, the neighbourhood information are known, i.e. once we know for each level
` and each data site x.`/j those data sites x.`/k which are relevant for the computation,

i.e. those with kx.`/k � x.`/j k2 � ı`, we have the following computational cost.

Corollary 10. If the data sets Xj are quasi-uniform, i.e qj � hj, then we have for
the involved linear systems:

• The number of non-zero entries per row is independent of the level.
• The condition number is independent of the level.
• The number of steps required by a non-preconditioned CG method is independent

of the level.
• The computational cost is linear in each level.

The neighbourhood information can be assembled in O.Nj log Nj/ time using
tree-based search structures. Finally, we also have to compute the residuals. If the
data sets are nested, we can restrict ourselves to compute residuals only on the finest
level. If they are not nested, then we have to do this in step j for the remaining
point sets XjC1; : : : ;Xn. Again, the neighbourhood information can be collected in
O.Nj log Nj/ time for level j. Moreover, the number of levels is, because of the
uniform refinement, at most O.log Nn/.

Before we come to numerical results, we want to discuss briefly two versions
of this algorithm, one which discards unnecessary coefficients and one which only
considers necessary data sites.

The first one was introduced in [25] as one of two discarding strategies for
multilevel algorithms on the sphere. The general idea is that after computing the
local interpolant at level j, which has a representation of the form

sj D
NjX

kD1
˛
.j/
k ˚j.�; x.j/k /;

to discard all coefficients ˛
.j/
k which have an absolute value smaller than a given

threshold. This threshold can and should be level dependent. Since the discarding
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Algorithm 2: Multilevel Approximation with Dynamical Discarding
Input : Right-hand side f , Number of levels n
Output : Approximate solution fn 2 Vn D W1 C � � � C Wn

Setef 0 D 0,ee0 D f ;
for j D 1; 2; : : : ; n do

Determine the local interpolant sj 2 Wj toeej�1.

Drop all coefficients j˛.j/k j � epsj in sj to defineesj.

Setef j Def j�1 Cesj.
Seteej Deej�1 �esj.

is done during each level, it was named discarding dynamically in contrast to the
strategy of discarding after all steps have been computed. The Algorithm is formally
given in Algorithm 2.

It is possible to show convergence of this algorithm in a very similar way as it
has been done in the proof of Theorem 10. Details can be found in [25].

Theorem 11. Let " > 0 be given. Assume that the assumption of Theorem 10 are
satisfied. Let "j � c1"ı

d=2
j with a constant c1 > 0. Finally, let ˛ WD C1.�� C ��� /.

Then there is a constant C > 0 such that

keejk˚jC1
� ˛keej�1k�j C C":

Hence, after n steps the error can be bounded by

kf �ef nkL2.˝/ � C˛nkf kH� .˝/ C C"
1 � ˛n

1 � ˛ :

The second variation of our standard multilevel interpolation algorithm is an
adaptive version. After computing the local interpolant sj on Xj to ej�1, we can check
the error ej D ej�1� sj on the upcoming data set XjC1. Then, instead of interpolating
this error on all of XjC1, we will actually only use those points of XjC1 on which ej

has an absolute value larger than a given threshold "j > 0. To describe this algorithm
in more detail let us denote the initial point sets by eXj and let us denote the adaptive
point sets which are actually used by Xj. Then, the algorithm can be stated as in
Algorithm 3.

An error analysis of this algorithm is more problematic since it would require to
know ej on all of eXj but we only know ej on Xj � eXj. We could avoid this problem
by creating an inner loop in which we check ej on eXj and add those points for which
ej is still too large. However, in practice this does not seem to be necessary.
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Algorithm 3: Adaptive Multilevel Approximation

Input : Right-hand side f , Number of levels n, thresholds "i, point setseX1; : : : ;eXn

Output : Approximate solution fn 2 W1 C : : :C Wn

Set f0 D 0, e0 D f , X1 D eX1
for j D 1; 2; : : : ; n do

Determine sj D IXj ;˚j ej�1 2 Wj .
Set fj D fj�1 C sj.
Set ej D ej�1 � sj.
for x 2 eXjC1 do

if jej.x/j > "j then
XjC1 D XjC1 [ fxg

Fig. 1 Franke function (left), step function (right).

4.3 Numerical Examples

We will now look at two examples. In the first example, we are interested in
understanding the importance of the parameters �, which is responsible for the
relation between the support radius and the fill distance on each level, and the
parameter �, which is responsible for the refinement of the data sets from level
to level.

In this example, we will only be interested in varying the parameter �. We will
work on˝ D Œ0; 1	2 and use the Franke function, see, for example, [20] and the left
half of Figure 1, as our target function. The RBF is given by �.r/ D .1�r/4C.4rC1/,
i.e. the C2-Wendland function in R

2. We will work only on equidistant grids Xj with
grid size qj D 2�j�2, 1 � j � 8, which is also the separation distance of the data
set Xj and hence equivalent to its fill distance. This means that we fix the refinement
factor to be � D 1=2. We then vary the overlap factor �, by defining ıj D e�qj and
changing e�. Finally, we measure the error on a fine grid of grid size q D 2�11.

A typical result can be found in Table 3, where we have chosen the overlap factor
to be e� D 3, which means that we have at most 25 non-zero entries per row in
our matrix, independent of the level. The table contains the number of points per
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Table 3 Approximation of the Franke function. Basis function �2;1 2 C2,e� D 3.

level N l2 l
1

l2 order l
1

order CG

1 81 1.087e-02 7.201e-02 27

2 289 2.464e-03 2.724e-02 2.14 1.40 38

3 1089 5.420e-04 8.947e-03 2.18 1.61 40

4 4225 1.218e-04 2.994e-03 2.15 1.60 40

5 16641 2.775e-05 1.015e-03 2.13 1.56 40

6 66049 6.360e-06 3.466e-04 2.13 1.55 39

7 263169 1.458e-06 1.151e-04 2.12 1.59 39

8 1050625 3.207e-07 3.605e-05 2.19 1.68 39

expected 2.5 1.5

Table 4 Approximation of the Franke function. Basis function �2;1 2 C2, variouse�.

e� D 5 e� D 7 e� D 9 e� D 11

level l2 order l2 order l2 order l2 order

1 6.44e-3 5.45e-3 5.13e-3 5.02e-3

2 8.33e-4 2.95 4.82e-4 3.50 3.47e-4 3.89 2.81e-4 4.16

3 1.53e-4 2.45 8.12e-5 2.57 5.34e-5 2.70 4.04e-5 2.80

4 2.90e-5 2.40 1.43e-5 2.51 8.89e-6 2.59 6.45e-6 2.65

5 5.56e-6 2.38 2.54e-6 2.49 1.49e-6 2.57 1.04e-6 2.63

6 1.07e-6 2.37 4.53e-7 2.48 2.52e-7 2.57 1.69e-7 2.62

7 2.07e-7 2.37 8.10e-8 2.48 4.26e-8 2.57 2.74e-8 2.63

8 3.82e-8 2.44 1.38e-8 2.55 6.86e-9 2.63 4.23e-9 2.69

level, the discrete `2- and `1-error and the approximation order computed from
comparing two successive level. Since �2;1 is a reproducing kernel in H� .Rd/ with
� D k C .d C 1/=2 D 2:5, which means we would expect an L2-approximation
order � D 2:5 and an L1-approximation order of � � d=2 D 1:5. Finally, the
table also contains the number of steps an unpreconditioned CG method requires
to compute an approximate solution of the linear system with a relative accuracy
of 10�6 a higher accuracy does not lead to a significant change in the solutions but
only to a larger number CG steps.

In Table 4 we have collected the error and convergence order estimates for
increasing overlaps. It seems that the expected order of 2:5 cannot only be matched
but is actually exceeded. The number of non-zero entries per row increases to at most
373 in the case of e� D 11. The example also indicates that halving the fill distance,
i.e. choosing � D 1=2 seems to be an appropriate choice and that the convergence
order can be achieved solemnly by increasing the initial support radius.

In our second example, we also want to test the other two algorithms. To this end,
we keep the general set-up of our first example but change the test function to a C1
step function given by

f .x/ D 1

2
tanh.2000.x2 C x1 � 1//; x 2 Œ0; 1	2; (28)
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Table 5 Approximation of the step function (28). Basis function �2;1 2 C2,e� D 3.

level N l2 l
1

l2 order l
1

order CG

1 81 1.329e-01 4.935e-01 19

2 289 9.378e-02 4.869e-01 0.50 0.02 36

3 1089 6.563e-02 4.756e-01 0.51 0.03 41

4 4225 4.520e-02 4.528e-01 0.54 0.07 44

5 16641 3.018e-02 4.203e-01 0.58 0.11 44

6 66049 1.883e-02 3.548e-01 0.68 0.24 44

7 263169 9.965e-03 2.505e-01 0.92 0.50 44

8 1050625 3.398e-03 1.226e-01 1.55 1.03 44

expected 2.5 1.5

Fig. 2 Approximation of the step function, levels 0 (upper left) to 7 (lower right).

which is shown in Figure 1 (right). We keep the overlap fixed at e� D 3. The results
of the standard multilevel algorithm are given in Table 5 and Figure 2. Clearly,
convergence is much slower. In particular we have typical overshoots near the edge
of the step function, at least in the first few levels.

The result of the dynamically discarding algorithm, Algorithm 2, is given in
Table 6. For these results we have set the overall threshold to " D 10�5 and have on
level j then discarded all the coefficients with absolute value less than "ıj. Clearly,
the results are very similar to those of the standard algorithm, Algorithm 1. But the
total number of point information used reduces from 1,402,168 in Algorithm 1 to
just 31,506 in Algorithm 2, i.e. we use only 2.25% of the original points. As we can
see from Figure 3, the reason for this is that only those basis functions centred at
data sites near the edge of the step function or near the boundary of the domain have
large coefficients.
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Table 6 Approximation of the step function with dynamical discarding. Basis function �2;1 2
C2,e� D 3.

level N l2 l
1

l2 order l
1

order CG

1 72 1.329e-01 4.935e-01 19

2 268 9.378e-02 4.869e-01 0.50 0.02 36

3 1018 6.563e-02 4.756e-01 0.51 0.03 41

4 2080 4.520e-02 4.528e-01 0.54 0.07 44

5 2880 3.018e-02 4.208e-01 0.58 0.11 44

6 4774 1.884e-02 3.548e-01 0.68 0.24 44

7 7134 9.974e-03 2.505e-01 0.92 0.50 44

8 13280 3.453e-03 1.226e-01 1.53 1.03 44

expected 2.5 1.5

Fig. 3 Approximation of the step function with dynamical discarding, used data sites for levels 0
(upper left) to 7 (lower right).

The results of the adaptive algorithm are given in Table 7. Here we have used
the thresholding strategy that we only considered points on the next level where the
error of the current level is larger than 10�3 times the maximum error of the current
interpolant on the next level. Again, the errors are comparable, though slightly
worse. The total number of points used is now 74; 029 out of 1; 402; 168, or 5:3%.
Figure 4 shows the data sites which are actually used. The pattern is similar to the
one created by the dynamically discarding algorithm, though more points are kept
towards the boundary of the computational domain.
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Table 7 Adaptive Approximation of the step function. Basis function �2;1 2 C2,e� D 3.

level N l2 l
1

l2 order l
1

order CG

1 81 1.329e-01 4.935e-01 19

2 200 1.010e-01 4.882e-01 0.40 0.02 26

3 812 6.977e-02 4.786e-01 0.53 0.03 30

4 2318 4.828e-02 4.588e-01 0.53 0.06 31

5 5514 3.249e-02 4.283e-01 0.57 0.10 31

6 10094 2.066e-02 3.699e-01 0.65 0.21 30

7 18480 1.159e-02 2.656e-01 0.83 0.48 30

8 36530 4.934e-03 1.441e-01 1.23 0.88 31

expected 2.5 1.5

Fig. 4 Adaptive approximation of the step function, used data sites for levels 0 (upper left) to 7
(lower right).

5 Other Multilevel Schemes

So far, we have discussed multilevel and multiscale methods for interpolation
problems. It is straight-forward to extend the result to the optimal recovery or
smoothing spline approach (4). The results of Theorem 10 and Corollary 9 remain
valid if the smoothing parameter " is chosen level dependent satisfying "j �
c.hj=ıj/

2� , see [49].
In [41], the multilevel scheme is analysed for target functions being zero on the

boundary. The centres and the support radii on each level are chosen such that
the multilevel interpolant is satisfying zero boundary conditions, as well, i.e. the
supports of the basis functions are always contained in the domain ˝.

In [13], a multilevel scheme for vector-valued, divergence-free functions is
analysed. Here, matrix-valued kernels are employed. In this situation, it is not
possible anymore to keep the ratio between fill distance and support radius constant.
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The paper [29] follows closely the original papers [26, 27] and discusses
convergence orders for interpolation on the sphere, similar to those derived in
Corollary 9. It also deals with inverse estimates, i.e. statements that show that a
certain convergence rate must lead to a certain smoothness of the target function.
These are mainly based upon the results from [36].

Shortly after the introduction of compactly supported RBFs and the initial,
purely numerical papers on multilevel interpolation schemes such as [18, 19] and
the first theoretical results such as [21, 31], which all differ substantially from the
theoretical results given in this paper, also first attempts based upon collocation for
solving PDEs numerically with such a multilevel scheme have been derived, see, for
example, [14, 16] and [7]. However, only recently, the numerical observations could
be underpinned with theoretical proofs in [12, 28]. There have also been first papers
on the solution of PDEs based upon a weak formulation and a Galerkin method, see
[10, 45]. The first of these two papers is purely numerically, while the second one
contains theoretical results, which seem, however, to be too optimistic.

Finally, multiscale schemes like those discussed here have been used in computer
graphics (see [33]), in the context of neural networks (see [17]) and in the context
of machine learning (see [52]).
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