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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.

v



vi ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Image processing Time-frequency and

Numerical partial differential equations time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function.” Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.
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The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

College Park, MD, USA John J. Benedetto



Preface

We present the first of two volumes, which are composed of more than 30 articles
related to harmonic analysis. Harmonic analysis is a very old topic, which still
continues to draw the interest of many mathematicians. Modern research in this area
is motivated both by deeper and new theoretical questions and numerous practical
applications. These volumes aim to provide a sample of some of these directions.
All the authors were selectively invited and comprise both senior and junior
mathematicians. We are pleased to have received an unexpectedly enthusiastic
response to our invitations.

In response to the number of papers we received, it was suggested by
Birkhäuser/Springer to split our book into two volumes. Chapters in each volume
are organized into parts according to their topics, and the order of chapters in
each part is alphabetical. This first volume, entitled “Frames and Other Bases in
Abstract and Function Spaces,” consists of 16 chapters. It is quite homogeneous
mathematically since every chapter relates to the notion of frames or bases of other
types. The introduction to this volume contains some basic notions of the theory of
frames and underlines the way the chapters fit into the general theme. The second
volume, which is called “Recent Applications of Harmonic Analysis to Function
Spaces, Differential Equations, and Data Science,” consists of 15 chapters and is
very diverse. Its introduction is just a collection of extended abstracts.

We were lucky to receive excellent contributions by the authors, and we enjoyed
working with them. We deeply appreciate the generous help of many of our
colleagues who were willing to write very professional and honest reviews on
submissions to our volumes. We are very thankful to John Benedetto, who is the
series editor of the Birkhäuser Applied and Numerical Harmonic Analysis Series,
for his constant and friendly support. We appreciate the constant assistance of
Birkhäuser/Springer editors Danielle Walker and Benjamin Levitt. We are thankful
to Meyer Pesenson and Alexander Powell for their constructive comments regarding
introductions. We acknowledge our young colleague Hussein Awala for his help
with organizing files and templates.

ix



x Preface

We hope these volumes will be useful for people working in different fields of
harmonic analysis.

Philadelphia, PA, USA Isaac Pesenson
Sydney, NSW, Australia Quoc Thong Le Gia
New York, NY, USA Azita Mayeli
Claremont, CA, USA Hrushikesh Mhaskar
Kowloon Tong, Hong Kong Ding-Xuan Zhou
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Frames: Theory and Practice

Isaac Pesenson

Frames in Hilbert spaces were introduced by Duffin and Schaeffer in [1] for
reconstruction of bandlimited signals from irregularly spaced sampling points. The
precise definition of a frame is the following.

Definition 1. A set of vectors f�jg in a Hilbert space H is called a frame in H if
there are 0 < A � B < 1 such that for any f 2 H

Akf k2H �
X

j

j
˝
f ; �j

˛
H j2 � Bkf k2H; (1)

where h:; :iH is the inner product in H.

The informal meaning of the frame inequalities (1) is that every vector f 2 H
can be uniquely reconstructed from a set of “measurements” f

˝
f ; �j

˛
g and this

reconstruction is stable.
The ratio A=B of the constants in (1) is called the tightness of the frame. The

frame is said to be tight if A D B and it is called Parseval if A D B D 1. The frame
inequalities (1) imply that the so-called frame operator

S W f !
X˝

f ; �j
˛
�j

is bounded, positive-definite, and invertible. As a result one has the following
reconstruction formulas:

f D
X˝

f ; �j
˛
S�1�j D

X˝
f ; S�1�j

˛
�j;

I. Pesenson (�)
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
e-mail: pesenson@temple.edu

© Springer International Publishing AG 2017
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4 I. Pesenson

where fS�1�jg forms another frame with constants B�1; A�1, known as the canonical
dual frame. If f�jg is a Parseval, frame then it coincides with its canonical dual and
one has a remarkable reconstruction formula

f D
X˝

f ; �j
˛
�j:

Riesz bases and orthonormal bases are examples of frames. A set of vectors f�jg

in a finite-dimensional Hilbert space is a frame if and only if it is (just) a spanning
set. Compared to orthonormal bases, frame bases are generally overcomplete. It
turns out that this property is very advantageous for many applications. It makes
frame bases a very flexible tool for analysis and syntheses of signals in many
branches of information theory.

For example, frames naturally appear in a recently developed theory known as
the Dynamical Sampling. This theory is considered in chapter “Dynamical sampling
and systems from iterative actions of operators” written by Akram Aldroubi and
Armenak Petrosyan. This chapter opens Part II which is called “Frames in abstract
spaces.” In dynamical sampling, an unknown function f and its future states Anf
are coarsely sampled at each time level n, 0 � n < L, where A is an evolution
operator that drives the system. The goal is to recover f from these space-time
samples. The authors review some of the recent developments and prove new
results concerning frames and Bessel systems generated by iterations of the form
fAng W g 2 G; n D 0; 1; 2; : : : g, where A is a bounded linear operator on a separable
complex Hilbert space H and G is a countable set of vectors in H. For example, one
of the main results they state says that if A has a discrete spectrum then every f in
H can be recovered from fhAnf ; gigg2G;0�n<L.g/ in a stable way if and only if the
system f.A�/nggg2G;0�n<L.g/ is a frame in H.

Chapter “Optimization methods for frame conditioning and application to graph
Laplacian scaling” by Radu Balan, Mathew Begue, Chae Clark, Kasso Okoudjou is
motivated by the theory of scalable frames in finite-dimensional Hilbert spaces. As it
follows from the very definition tight frames are optimal in the sense that their frame
constant A=B is one. This property makes them very attractive for computational
(reconstruction) purposes. Scalable frames were introduced to turn a nonoptimal
(non-tight) frame into an optimal one, by just rescaling the length of each frame
vector. Namely,

Definition 2. A frame f�jg
J
jD1 in a finite-dimensional Hilbert space H is scalable if

there exists nonnegative numbers s1; : : :; sJ such that fsj�jg
J
jD1 is a Parseval frame

for H.

Authors are interested in computational aspects of constructing scalable or approx-
imately scalable frames by using methods of convex optimization. The chapter
also contains an interesting section about scalable frames and optimization methods
associated with a combinatorial Laplace operator on a finite graph.

In practice, one can be interested in frames whose elements have some specific
properties. In chapter “A Guide to Localized Frames and Applications to Galerkin-
like Representations of Operators” by Peter Balazs and Karlheinz Gröchenig,
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authors consider a general theory of localized frames. Their aim is to formulate
an abstract concept of localization that can explain the success of certain structured
frames in applications. Originally, a frame ˚ D f�jg

J
jD1 was called localized, if its

Gramian matrix G with entries Gj;k D
˝
�j; �k

˛
; 1 � j; k � J possesses enough off-

diagonal decay. In the further developments powerful methods of Banach algebra
theory were used, and nowadays, a frame is called localized, if its Gramian belongs
to a solid, inverse-closed Banach algebra of matrices.

The chapter is focusing on the so-called intrinsically localized frames whose
definition is the following.

Definition 3. Let ˚ D f�jg; � D f kg be two frames in a Hilbert space H and
.G˚;� /j;k D

˝
�j;  k

˛
; be their cross-Gram matrix. For a solid spectral Banach �-

algebra of infinite matrices A , one says that ˚ and � are A -localized with respect
to each other, if .G˚;� /j;k 2 A .

The chapter also gives a survey on localized frames and the corresponding matrix
representation of operators. The authors explain the concept of localization of
frames and present many useful properties of these frames. Authors are mainly
interested in the theory of the associated coorbit spaces and in the Galerkin
discretization of operators with respect to localized frames.

It should be noted that localized frames appear in a number of applications.
For example, they allow the sparsification of Fourier integral operators. Also, the
evolution operators related to the wave, Schrödinger, heat equation, and other PDEs
are examples of operators whose corresponding Gramian matrix is sparse, provided
that the right localized frame is chosen.

As it was already mentioned a frame in a finite-dimensional Hilbert space is any
set of vectors which spans the entire space. Clearly, even the variety of frames of the
same length is “too big.” The goal of the chapter “Computing the Distance Between
Frames and Between Subspaces of a Hilbert Space” by Travis Bemrose, Peter G.
Casazza, Desai Cheng, John Haas, and Hanh Van Nguyen is to understand some
properties of a variety of frames of a fixed length in a finite dimensional Hilbert
space. The authors convert a variety of such frames to a metric space and measure
distances between frames. There are many ways to convert a variety of frames into
a metric space and, accordingly, many notions of a distance between frames.

For example, given an M-dimensional Hilbert space HM one can fix an orthonor-
mal basis and identify every frame ˚ D f�jg

N
jD1 of length N with the matrix

˚ D Œ�1; �2; : : :; �N �

with columns given by the coordinate representations of the frame vectors. Next,
one can use, say, the Frobenius metric for matrices to measure distance between
frames which is denoted as dF. In this chapter authors make a detailed study of
six major distance measurements for frames and subspaces: the frame distance dF,
the Gramian distance dG, the isomorphy distance dI , the subspace distance dS, the
chordal distance dC, and the Parseval equivalence class distance dP. The chapter
establishes different relationships between these metrics and provides a number of
equivalent ways for computing them.
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The chapter “Sigma-Delta quantization for fusion frames and distributed sensor
networks” by Jiayi Jiang and Alexander M. Powell contains further development
and applications of such notions as Sigma-Delta (˙�) quantization and fusion
frames. Fusion frames have been used as a natural medium for studying distributed
sensor networks. They may be viewed as a vector-valued generalization of classical
frames.

Definition 4. By a fusion frame fPWjg one understands a family of orthogonal
projectors PWn of H onto a subspace Wn such that for 0 < A � B < 1 one has
for every f 2 H the frame-like inequality

Akf k2H �
X

j

j �
��PWj f

��2
H

� Bkf k2H;

To make the continuous measurements fPWj f g “digital friendly” one has to
reduce them to discrete or finite. The corresponding step is known as quantization.
For 1 � n � N, let An � Wn be a finite set, referred to as a quantization alphabet,
and let Qn W Wn ! An be an associated quantizer map with the property that for
every w 2 Wn

kw � Qn.w/k D min
a2An

kw � ak:

The first order fusion frame ˙� quantizer takes the fusion frame measurements
yn D PWn.f / 2 Wn; 1 � n � N; and produces the quantized outputs qn 2 An; 1 �

n � N; by initializing u0 D 0 2 Rd and iterating the following for n D 1; : : :;N

qn D Qn .PWn.un�1/C yn/

un D PWn.un�1/C yn � qn:

Authors also consider general order Sigma-Delta quantization algorithms for fusion
frames and provide stability results. Finally, they present numerical results and
experiments to illustrate the developed theory.

Part III “Space-frequency analysis in function spaces on Rn” begins with chapter
“Recent Progress in Shearlet Theory: Systematic Construction of Shearlet Dilation
Groups, Characterization of Wavefront Sets, and New Embeddings” by Giovanni
S. Alberti, Stephan Dahlke, Filippo De Mari, Ernesto De Vito, and Hartmut Führ.
The chapter presents a very general systematic approach to the continuous shearlet
transform with applications to microlocal analysis.

Let us recall that a continuous wavelet transform of a function f in L2.R/ is
introduced as

W f .a; b/ D a�1=2

Z

R
f .t/ N 

�
t � b

a

�
db

da

a2
; .a; b/ 2 .0;1/ � R; (2)
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where N is the complex conjugate of a sufficiently nice function  2 L2.R/ known
as a mother wavelet. The entire one-dimensional theory can be formulated in group-
theoretic terms by using the so-called ax C b group. From the very beginning this
transform was used to characterize singularities of functions of one variable.

To obtain a shearlet transform in L2.Rn/ one replaces one-dimensional translation
by b with n-dimensional translations and dilation by a > 0with multiplication by an
appropriate upper triangular matrix. Chapter 7 contains a deep approach to shearlet
dilation groups which unifies the results of a number of recent research papers. The
authors apply their results to derive a very elegant characterization of the wavefront
set of distributions in Rn. One of the main discoveries made in the paper shows
that the property of characterizing the wavefront set is linked to anisotropic scaling
which is inherited by the shearlet transform. The paper also contains some results
about the embeddings of shearing dilation groups into symplectic groups.

“Chapter Numerical Solution to an Energy Concentration Problem Associated
with the Special Affine Fourier Transformation” is written by Amara Ammari, Tahar
Moumni, and Ahmed Zayed.

A fundamental problem in signal processing and optics is the problem of
identifying bandlimited signals of a given bandwidth whose energy is essentially
contained in a prescribed time interval. This concentration of energy problem
can be reduced to a problem of finding the largest eigenvalues and associated
eigenfunctions of certain two-dimensional integral equations. The authors consider
equations of the form

Z

T
K.x; y/f .y/dy D �f .x/; x; y 2 R2; (3)

where T is a unit disk or a standard quadrilateral in R2. In both cases they reduce the
equation (3) to a similar equation in which T is replaced by the square Œ0; 1�� Œ0; 1�.
The reduction is performed by using the Special Affine Fourier Transformation,
a general inhomogeneous lossless linear mapping in phase space that maps the
position x and the wave number k into

�
x

0

k
0

�
D

�
a b
c d

��
x
k

�
C

�
m
n

�
; ad � bc D 1:

The authors find numerical solutions of the problem for the square by discretizing
it by means of the Gaussian quadrature method in two dimensions. The results for
eigenvalues are presented as tables for the absolute values of selected eigenvalues
and eigenfunctions are presented by their graphs. The chapter also contains a
computation of the so-called generalized prolate spheroidal wave functions.

In the next well-written chapter, the reader can learn a lot about the mathematics
of Magnetic Resonance Imaging (MRI). This chapter is called “A frame reconstruc-
tion algorithm with applications to magnetic resonance imaging” and it is authored
by John J. Benedetto, Alfredo Nava-Tudela, Alexander M. Powell, and Yang Wang.
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The main goal of it is to develop an algorithm for a class of signal reconstruction
problems, where the efficient noise reduction and stable signal reconstruction
are essential. This goal is achieved by combining general theorems (based on
fundamental theorems by Beurling and Landau) about irregular sampling of Paley-
Wiener functions in two variables with methods of finite frames in Hilbert spaces. In
fact, they further develop fast spectral data acquisition (this is especially important
for MRI) in the two-dimensional spectral domain by performing a one-dimensional
irregular sampling along interleaving Archimedean spirals which densely cover R2

and then present an approximate image reconstruction method in terms of specific
finite frames adapted to this sampling method.

Chapter “Frame properties of shifts of prolate and bandpass prolate functions” by
Jeffrey A. Hogan and Joseph D. Lakey is devoted to specific frames in Paley-Wiener
spaces

PWŒ�˝=2;˝=2�.R/ D PW˝.R/

of functions bandlimited to Œ�˝=2;˝=2�; ˝ > 0; and in spaces of bandpass-
limited functions

PWŒ�˝=2;�˝
0
=2�nŒ˝

0
=2;˝=2�.R/ D PW˝

0
;˝.R/; 0 < ˝

0

< ˝:

They begin by considering the operator P˝QT W PW˝.R/ ! PW˝.R/ where QT

multiplies f 2 L2.R/ by the characteristic function of the time interval Œ�T;T�
and P˝ D F �1Q˝=2F . The space PW˝.R/ has an orthonormal basis composed of
eigenfunctions of the compact operator P˝Q1. These functions are known as prolate
spheroidal wave functions. Note that this orthonormal basis contains eigenfunctions
from every eigenspace of P˝Q1 and there are infinitely many such eigenspaces.
The authors construct a frame in PW˝.R/ which involves only a finite number
P 2 N of eigenfunctions f ngP

nD0 which correspond to highest eigenvalues and
the “missing” eigenspaces are “compensated” by translations of these functions
 n.� � ˛k/; n D 0; : : :P � 1; k 2 Z. It is worth mentioning that the eigenfunctions
 n which correspond to highest eigenvalues are the˝-bandlimited functions whose
essential support is in Œ�1; 1�.

In chapter “Fast Fourier Transforms for Spherical Gauss-Laguerre Basis Func-
tions” authors Jürgen Prestin and Christian Wülker consider the space H of all
Lebesgue measurable functions f W R3 ! C equipped with the norm

kf kH D

�Z

R3
jf .x/j2 exp.�jxj2/dx

�1=2
:

By the Fourier analysis in H they understand the analysis and synthesis with respect
to a special orthonormal basis constructed using both the spherical harmonics and
generalized Laguerre polynomials. This basis in H is called the Spherical Gauss-
Laguerre (SGL) basis. A function in H is called bandlimited if it is a finite linear
combination of the SGL basis functions. The goal is to develop a kind of Fast Fourier
Transform in the space H.
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The authors propose fast and reliable algorithms for the computation and
evaluation of expansions of bandlimited functions into Spherical Gauss-Laguerre
(SGL) basis.

By separation of variables the authors construct explicit quadrature rules for the
SGL basis functions from the well-known quadrature rules. These new quadrature
rules enable the reconstruction of the SGL-Fourier coefficients of a bandlimited
function from a finite number of its samples. For a function of bandlimit B, a
naive implementation of such discrete SGL-Fourier transform (DSGFT), as well
as its evaluation at the quadrature points, requires O.B7/ arithmetic operations.
By exploiting the special structure of the SGL basis together with the use of a
fast spherical Fourier transforms the authors present algorithms with complexity
O.B5/. For bandlimits up to B D 64 numerical results show the reliability and
the performance of the proposed algorithms. Finally, the authors discuss further
research, such as the development of algorithms with complexity O.B3 log2 B/
and algorithms which can work with scattered data. It is worth mentioning that
SGL basis function expansions have a number of applications for instance, in
biomolecular dynamic simulations.

Chapter “Multiscale Radial Basis Functions” by Holger Wendland is a review of
the recent work of the author and his co-workers on the development of multiscale
methods by using compactly supported radial basis functions. A radial function is a
function ˚ W Rd ! R of the form ˚.x/ D �.kxk2/; x 2 Rd, where � W Œ0;1/ ! R
is a univariate function and kxk2 D .x21 C : : : C x2d/

1=2; x 2 Rd. In most of the
paper the author is dealing with such ˚ whose support is in the unit disc. For such
functions he constructs scaled versions

˚ı.x/ D ı�d˚.x=ı/; ı > 0; x 2 Rd:

By using scaling and shifts the author defines basic approximation spaces of
radial functions. In the first part of the paper the author shows how to use radial
basis functions (RBF) to reconstruct target functions from scattered data X D

fx1; : : :; xNg 2 ˝ � Rd. All the results involve the main characteristics of scattered
data: the mesh norm and the separation distance.

The primary focus of the chapter is on the multiscale method of approximation
by compactly supported RBF. The main conclusion here is that convergence of a
compactly supported sequence of RBF to a target function can fail if the mesh norm
and the support parameter do not scale in the right way. One of the main results
of the paper contains conditions for how the mesh parameter and the associated
scale parameter should decrease together to guarantee linear convergence of the
multilevel method. The chapter also contains a lot of useful information about the
so-called native spaces, Wendland functions, and the cost of suggested algorithms.

Part IV of this volume is called “Frames in spaces of functions on manifolds and
groups” and it starts with a chapter “Orthogonal wavelet frames on manifolds based
on conformal mappings” by Swanhild Bernstein and Paul Keydel. In this chapter the
authors construct a continuous wavelet transform, discrete wavelet bases and frames
in L2-spaces on Riemannian manifolds. Their main focus is on two-dimensional
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manifolds. By using a known fact that every 2-dimensional Riemannian manifold M
is conformally flat (curvature free, looks like R2) they use conformal maps between
M and R2 to transfer continuous wavelet transform, multiresolution analysis, and
frames from L2.R2/ to L2.M/. In particular, a multiresolution analysis they construct
in L2.M/ leads to an orthonormal basis in L2.M/. The authors are able to transfer
continuous and discrete wavelet transforms from R2 to a manifold in the case when
a corresponding conformal map has no singular points. In general, only frames can
be transferred. The results are illustrated by considering examples of 2-dimensional
surfaces of revolution.

In chapter “Quasi Monte Carlo integration and kernel-based function approxi-
mation on Grassmannians” its authors Anna Breger, Martin Ehler, and Manuel Graf
are concerned with numerical integration on an important class of homogeneous
manifolds known as Grassman manifolds. Approximation and numerical integration
on Euclidean spaces have been central problems in numerical analysis for a long
time. Approximation, cubature formulas, and interpolation on spheres are also not
new subjects and can be traced back to the classical papers by I. J. Schoenberg
and S. L. Sobolev. In recent years numerical integration and function approximation
and interpolation on compact Riemannian manifolds based on eigenfunctions of
the Laplace-Beltrami operator have been widely researched. A few years ago the
so-called Quasi Monte Carlo (QMC) numerical integration on spheres and general
compact Riemannian manifolds has been introduced and studied. In particular, in
the case of spheres a number of numerical experiments were performed to verify
theoretical claims. The major aim of the present paper is to provide numerical
experiments for the QMC scheme when the manifold is the Grassmannian Gk;d,
i.e., the collection of k-dimensional subspaces in Rd, naturally identified with the
collection of rank-k orthogonal projectors in Rd. To perform this very laborious
task, the authors explored the observation that instead of constructing cubature
formulas in the subspaces of eigenfunctions ˘t .Gk;d/ ; t � 0; of the Laplace-
Beltrami operator on Gk;d it is easier to construct them in a relevant subspace of
polynomials in Rd restricted to Gk;d. Authors do not explicitly mention frames in the
entire paper, however, the fact that they consider positive cubature formulas which
are exact on the subspaces of eigenfunctions ˘t .Gk;d/ ; t � 0; means (in a different
language) that they are talking about frames in these subspaces.

In chapter “Construction of Multiresolution Analysis Based on Localized Repro-
ducing Kernels” its authors K. Nowak and M. Pap survey specific methods of
extending the classical multiresolution analysis in the space L2.R/ to function
spaces on manifolds which do not have regular translations and dilations. A
multiresolution analysis in L2.R/ is a framework which allows for construction
of orthonormal bases generated by a single function. It leads to a very special
orthonormal basis in L2.R/ which is comprised of the discrete translates and dilates
of a single admissible function  :

 n;k.x/ D 2�n=2 .2�nx � k/:
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On manifolds other than R there is usually a lack o translations and dilations which
makes very difficult to generalize ideas of the classical multiresolution analysis.

In this survey the Hardy space and the Bergman space on the unit disc are
considered. It is observed that there are two subgroups of the Blaschke group one
of which can be treated as a group of generalized translations and another one as
a group of generalized dilations in the corresponding Hardy and Bergman spaces.
They construct an analog of the multiresolution analysis by proper discretization of
two special voice transforms of the Blaschke group. The constructions make use
of the localization properties of the reproducing kernels restricted to appropriately
selected sets of sampling points. It leads to orthonormal bases comprised of
generalized translations and dilations of a single function in the Hardy and Bergman
spaces on the unit disk.

Vignon S. Oussa in his chapter “Regular Sampling on Metabelian Nilpotent Lie
Groups: The Multiplicity-Free Case” studies questions which relate to extension
of Whittaker-Kotel’nikov-Shannon sampling and interpolation of properly defined
bandlimited functions on a class of nilpotent Lie groups. His results generalize a
number of facts which were known for the Heisenberg group.

Let N be a simply connected nilpotent Lie group with Lie algebra n. If n has
rational structure constants, then there is a strong Malcev basis X1;X2; : : :;Xk of n
such that � D exp ZX1 exp ZX2: : : exp ZXk is a discrete subgroup of N. One says
that a subspace of continuous functions H � L2.N/ is a sampling set with respect
to � if

1. there exists a constant cH such that for all f 2 H

kf k2L2.M/ D cH

X

�2�

jf .�/j2 (4)

2. there exists a function s 2 H such that

f .x/ D
X

�2�

f .�/s
�
��1x

�
:

Also, if H is a sampling space with respect to � and if the restriction mapping

f ! f j� 2 l2.� /; f 2 H;

is surjective, then we say that H has the interpolation property with respect to � .
It is natural to look for subspaces of L2.N/ that are sampling and also interpola-

tion spaces with respect to � . In the case when N is a semi-direct product of two
abelian groups, the author uses the group Fourier transform to describe a family
of sampling spaces via a natural sufficient condition. In this family of sampling
spaces the author is able to identify those that are interpolation spaces. It should be
noticed, that every equality like (4) can be interpreted in terms of tight frames in the
corresponding space H.
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Chapter “Parseval space-frequency localized frames on sub-Riemannian compact
homogeneous manifolds” is written by Isaac Pesenson. The objective of this chapter
is to describe a construction of Parseval bandlimited and localized frames in L2-
spaces on sub-Riemannian compact homogeneous manifolds.

The chapter begins with a brief review of some results about Parseval ban-
dlimited and localized frames in L2.M/; where M is a compact homogeneous
manifold equipped with a natural Riemannian metric. Then author is using a sub-
Riemannian structure on the two-dimensional standard unit sphere S2 to explain
the main differences between Riemannian and sub-Riemannian settings. Each of
these structures is associated with a second-order differential operator which arises
from a metric. The major difference between these operators is that in the case
of Riemannian metric the operator is elliptic (the Laplace-Beltrami operator L)
and in the sub-Riemannian case it is not (the sub-Laplacian L ). As a result, the
corresponding Sobolev spaces which are introduced as domains of powers of these
operators are quite different. In the elliptic case one obtains the regular Sobolev
spaces and in sub-elliptic one obtains function spaces (sub-elliptic Sobolev spaces)
in which functions have variable smoothness (compared to regular (elliptic) Sobolev
smoothness). The author describes a class of sub-Riemannian structures on compact
homogeneous manifolds and a construction of Parseval bandlimited (with respect
to a sub-Laplacian) and localized (with respect to a corresponding sub-Riemann
metric) frames.

Reference

1. R. Duffin, A. Schaeffer, A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72,
341–366 (1952)
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Dynamical Sampling and Systems from Iterative
Actions of Operators

Akram Aldroubi and Armenak Petrosyan

1 Introduction

The typical dynamical sampling problem is finding spatial positions X D fxi 2 R
d W

i 2 Ig that allow the reconstruction of an unknown function f 2 H � L2
�
R

d
�

from samples of the function at spatial positions xi 2 X and subsequent samples of
the functions Anf , n D 0; � � � ;L, where A is an evolution operator and n represents
time. For example, f can be the temperature at time n D 0, A the heat evolution
operator, and Anf the temperature at time n. The problem is then to find spatial
sampling positions X � R

d, and end time L, that allow the determination of the
initial temperature f from samples ff jX; .Af /jX; � � � ; .ALf /jXg. For the heat evolution
operator, the problem has been considered by Vetterli and Lu [20, 21] and inspired
our research in dynamical sampling, see, e.g., [3–6].

1.1 The Dynamical Sampling Problem

Let H be a separable (complex) Hilbert space, f 2 H be an unknown vector, and
fn 2 H be the state of the system at time n. We assume

f0 D f ; fn D Afn�1 D Anf
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where A is a known bounded operator on H . Given the measurements

hAnf ; gi for 0 � n < L.g/; g 2 G (1)

where G is a countable subset of H and L W G 7! N [ f1g is a function,
the dynamical sampling problem is to recover the vector f 2 H from the
measurements (1). It is important that the recovery of f be robust to noise. Thus,
we also require that the sampling data allow the recovery of f in a stable way.
Equivalently, for any f 2 H , the samples must satisfy the stability condition

C1kf k2 �
X

g2G

L.g/X

nD0

j < Anf ; g > j2 � C2kf k2;

for some C1;C2 > 0 absolute constants.
A related problem for band-limited signals in R

2 (i.e., the Paley Wiener spaces
PW	 ) with time varying sampling locations corresponding to trajectories but time-
independent function can be found in [16].

1.2 Dynamical Sampling for Diagonalizable Operators in l2.N/

When the Hilbert space is H D l2.N/, and when the operator A is equivalent to a
diagonal matrix D, i.e., A� D B�1DB where D D

P
j �jPj is an infinite diagonal

matrix, then a characterization of the set of sampling I � N such that any f 2 H
can be recovered from the data Y D ff .i/; .Af /.i/; � � � ; .Ali f /.i/ W i 2 Ig is obtained
in [4].

The results are stated in terms of vectors bi that are the columns of B corre-
sponding to the sampling positions i 2 I, the projections Pj that are diagonal infinite
matrices whose non-zero diagonals are all ones and correspond to the projection on
the eigenspace of D associated with �j, and the smallest integers li such that the sets
fbi;Dbi; : : : ;Dli big are minimal [6].

Theorem 1. Let A� D B�1DB, and let fbi W i 2 Ig be the column vectors
of B whose indices belong to I. Let li be the smallest integers such that the set
fbi;Dbi; : : : ;Dli big is minimal. Then any vector f 2 l2.N/ can be recovered from the
samples

Y D ff .i/;Af .i/; : : : ;Ali f .i/ W i 2 Ig

if and only if for each j, fPj.bi/ W i 2 Ig is complete in the range Ej of Pj.

Although Theorem 1 characterizes the sets I � N such that recovery of any f 2

l2.N/ is possible, it does not provide conditions for stable recovery, i.e., recovery
that is robust to noise. Results on the stable recovery are obtained for the case when
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I is finite [6]. Stable recovery is also obtained when H D l2.Z/, A is a convolution
operator, and I is a union of uniform grids [4]. For shift-invariant spaces, and union
of uniform grids, stable recovery results can be found in [1]. Obviously, recovery
and stable recovery are equivalent in finite dimensional spaces [3]. In [27] the case
when the locations of the sampling positions are allowed to change is considered.

1.2.1 Connections with Other Fields and Applications

The dynamical sampling problem has similarity with wavelets [7, 11, 12, 17, 22, 24,
25, 31]. In dynamical sampling an operator A is applied iteratively to the function
f producing the functions fn D Anf . fn is then, typically, sampled coarsely at each
level n. Thus, f cannot be recovered from samples at any single time level. But,
similarly to the wavelet transform, the combined data at all time levels is required
to reproduce f . However, unlike the wavelet transform, there is a single operator A
instead of two complementary operators L (the low pass operator) and H (the high
pass operator). Moreover, A is imposed by the constraints of the problem, rather
than designed, as in the case of L and H in wavelet theory. Finally, in dynamical
sampling, the spatial-sampling grids is not required to be regular.

In inverse problems, given an operator B that represents a physical process,
the goal is to recover a function f from the observation Bf . Deconvolution and
deblurring are prototypical examples. When B is not bounded below, the problem
is considered ill-posed (see, e.g., [23]). The dynamical sampling problem can be
viewed as an inverse problem when the operator B is the result of applying the
operators SX0 ; SX1A; SX2A

2; : : : ; SXL AL, where SXl is the sampling operator at time
l on the set Xl, i.e., BX D ŒSX0 ; SX1A; SX2A

2; : : : ; SXL AL�T . However, unlike the
typical inverse problem, in dynamical sampling the goal is to find conditions on
L, fXi W i D 0; : : : ;Lg, and A, such that BX is injective, well conditioned, etc.

The dynamical sampling problem has connections and applications to other areas
of mathematics including Banach algebras, C�-algebras, spectral theory of normal
operators, and frame theory [2, 8, 10, 13–15, 26, 32].

Dynamical sampling has potential applications in plenacoustic sampling, on-
chip sensing, data center temperature sensing, neuron-imaging, and satellite remote
sensing, and more generally to wireless sensor networks (WSN). In wireless
sensor networks, measurement devices are distributed to gather information about
a physical quantity to be monitored, such as temperature, pressure, or pollution
[18, 20, 21, 29, 30]. The goal is to exploit the evolutionary structure and the
placement of sensors to reconstruct an unknown field. When it is not possible to
place sampling devices at the desired locations (e.g., when there are not enough
devices), then the desired information field can be recovered by placing the sensors
elsewhere and taking advantage of the evolution process to recover the signals at
the relevant locations. Even when the placement of sensors is not constrained, if the
cost of a sensor is expensive relative to the cost of activating the sensor, then the
relevant information may be recovered with fewer sensors placed judiciously and
activated frequently. Super resolution is another application when an evolutionary
process acts on the signal of interest.
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Fig. 1 The dynamical
sampling procedure when the
sampling happens at different
time levels.

1.3 Contribution

In this chapter, we further develop the case of iterative systems generated by the
iterative actions of normal operators which was studied in [5, 6]. This is done in
Section 2.3. In Section 2.4 we study the case of general iterative systems generated
by the iterative actions of operators that are not necessarily normal (Fig. 1).

2 Frame and Bessel Properties of Systems from Iterative
Actions of Operators

In this section we review some results from [5, 6] on the iterative actions of normal
operators, prove some new results for this case, and generalize several results to the
case where the operators are not necessary normal.

2.1 Equivalent Formulation of the Dynamical Sampling
Problem

Using the fact that hAf ; gi D hf ;A�gi, we get the following equivalent formulation
of the dynamical sampling problem described in Section 1.1.

Proposition 1. 1. Any f 2 H can be recovered from fhAnf ; gigg2G;0�n<L.g/ if and
only if the system f.A�/nggg2G;0�n<L.g/ is complete in H .

2. Any f 2 H can be recovered from fhAnf ; gigg2G;0�n<L.g/ in a stable way if and
only if the system f.A�/nggg2G;0�n<L.g/ is a frame in H .

Because of this equivalence, we drop the � and we investigate systems of iterations
of the form fAnggg2G;0�n<L.g/, where A is a bounded operator on the Hilbert space
H , G is a subset of H , and L is a function from G to the extended set of
integers N

� D N [ f1g. The goal is then to find conditions on A, G, and L so
that fAnggg2G;0�n<L.g/ is complete, Bessel, a basis, Riesz basis, frame, etc. In the
remainder of this chapter, we only study the case where L.g/ D 1, for each g 2 G.
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2.2 Normal Operators

Theorem 1 as well as most of the results in [6] has been generalized to the case of
normal operators in general Hilbert spaces [5], and new results have been obtained.
The work relied on the spectral theorem of normal operators in Hilbert spaces (see,
e.g., [10] Ch. IX, theorem 10.16, and [9]). Since we will use this theorem again
in this work, we state a version of this landmark theorem and give an example
to clarify its meaning. In essence, the spectral theorem of normal operators is a
way of diagonalizing any normal operator in a separable complex Hilbert space.
Using an appropriate unitary transformation U, a normal operator A is equivalent to
a multiplication operator UAU�1Qf D N
Qf D zQf where Qf is a vector valued function
on C, and N
Qf .z/ D zQf .z/ for every z 2 C. Specifically,

Theorem 2 (Spectral theorem with multiplicity). For any normal operator A on
H there are mutually singular compactly supported Borel measures
j; 1 � j � 1

on C, such that A is equivalent to the operator

N.1/

1

˚ N
1 ˚ N.2/

2

˚ � � �

i.e., there exists a unitary operator U

U W H ! fH D .L2.
1//
.1/ ˚ L2.
1/˚ .L2.
2//

.2/ ˚ � � �

such that

UAU�1 D N
 D N.1/

1

˚ N
1 ˚ N.2/

2

˚ � � � : (2)

Moreover, if M is another normal operator with corresponding measures
�1; �1; �2; : : : then M is equivalent to A if and only if Œ�j� D Œ
j�; j D 1; : : : ;1

(are mutually absolutely continuous).

Since the measures f
j W j 2 N
�g are mutually singular, we can define the measure


 D
P

j 
j on C. A functioneg 2 fH is a vector of the form .egj/j2N� , whereegj is the
restriction ofeg to .L2.
j//

.j/.

Remark 1. Note that for every 1 � j < 1,egj.z/ is a finite dimensional vector in
l2f1; : : : ; jg and for j D 1,eg1.z/ is a vector in l2.N/. In order to simplify notation,
we define ˝j to be the set f1; : : :; jg and ˝1 to be the set N. Note that l2.˝j/ Š C

j,
for j 2 N, and l2.˝1/ D l2.N/: For j D 0 we define l2.˝0/ to be the trivial
space f0g.

An example to clarify the use of the theorem above is given below.

Example 1. Let A be the 8 � 8 diagonal matrix

A D

0

@
�1I2 0 0

0 �2I3 0

0 0 �3I3

1

A
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where �i ¤ �j if i ¤ j and Ij denotes the j � j identity matrix. For this case, the
theorem above gives: fH D .L2.
2//.2/ ˚ .L2.
3//.3/, 
2 D ı�1 , 
3 D ı�2 C ı�3 ,
where ıx is the Dirac measure at x. If g D .g1; : : : ; g8/T , then Ug D Qg D

�
Qgj
�
. In

particular,eg3.�2/ D

0

@
g3
g4
g5

1

A,eg3.�3/ D

0

@
g6
g7
g8

1

A, andeg3.z/ D 0 for z ¤ �2; �3 (in

fact for z ¤ �2; �3,eg3.z/ can take any value since the measure 
3 is concentrated
on f�2; �3g � C). We have

hUf ;Ugi D

Z

C

hQf .z/; Qg.z/id
.z/

D

Z

C

hQf2.z/; Qg2.z/id
2.z/C

Z

C

hQf3.z/; Qg3.z/id
3.z/

D hQf2.�1/; Qg2.�1/i C hQf3.�2/; Qg3.�2/i C hQf3.�3/; Qg3.�3/i

D

8X

jD1

fjgj D hf ; gi:

Since the measures 
j in Theorem 1 are mutually singular, there are mutually
disjoint Borel sets fEjg such that 
j is concentrated on Ej for every 1 � j � 1.

The function n W C ! f1; 2; : : : ;1g given by

n.z/ D

(
j; z 2 Ej

0; otherwise

is called multiplicity function of the operator A. Thus every normal operator is
uniquely determined, up to a unitary equivalence, by a pair .n; Œ
�/ where Œ
� is the
class of measures mutually singular with the compactly supported Borel measure 

and n W C ! f1; 2; : : : ;1g is a 
 measurable function.

2.3 Action of Normal Operators via Infinite Iterations

In this section we present results from [5] about a system of infinite iterative action
fAngigi2I; n�0 of a given normal operator A 2 B.H / on a set of vectors G � H .
Some of the results assume that A is reductive, i.e., every invariant subspace V for
A is also invariant for A�.

Theorem 3. Let A be a normal operator on a Hilbert space H , and let G be
a countable set of vectors in H such that fAnggg2G; n�0 is complete in H . Let

1; 
1; 
2; : : : be the measures in the representation (2) of the operator A. Then
for every 1 � j � 1 and 
j-a.e. z, the system of vectors fegj.z/gg2G is complete in
l2f˝jg.
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If in addition to being normal, A is also reductive, then fAnggg2G; n�0 being
complete in H is equivalent to fegj.z/gg2G being complete in l2f˝jg 
j-a.e. z for
every 1 � j � 1.

Although, the system of iteration fAnggg2G; n�0 is complete, it is shown in [5] that
it cannot be a basis for H . The obstruction is that fAnggg2G; n�0 cannot be minimal
and complete at the same time.

Theorem 4. If A is a normal operator on H then, for any set of vectors G � H ,
the system of iterates fAnggg2G;n�0 is not a basis for H .

Remark 2. The normality assumption on A is essential. For example, if S is the
right-shift operator on H D l2.N/, then fSne0gn�0 is an orthonormal basis for H D

l2.N/. In fact, it can be shown that, in a Hilbert space, a system of vectors H
fTnggn�0 generated by T 2 B.H / and g 2 H is a Riesz basis if and only if is
unitarily equivalent to the right-shift operator S in l2.N/ [19].

The fact that, for a normal operator A, fAnggg2G; n�0 cannot be basis is that when
it is complete, it must be redundant (since it is not minimal). But it is possible for
such a sequence to be a frame. For example, the following theorem characterizes
frames generated by the iterative action of diagonalizable normal operators acting
on a single vector b [6].

Theorem 5. Let � D
P

j �jPj, acting on l2.N/, be such that Pj have rank 1 for all
j 2 N, and let b WD fb.k/gk2N 2 l2.N/. Then f�lb W l D 0; 1; : : : g is a frame if and
only if

i) j�kj < 1 for all k:
ii) j�kj ! 1.

iii) f�kg satisfy Carleson’s condition

inf
n

Y

k¤n

j�n � �kj

j1 � N�n�kj
� ı: (3)

for some ı > 0.
iv) b.k/ D mk

p
1 � j�kj2 for some sequence fmkg satisfying 0 < C1 � jmkj �

C2 < 1.

In the previous theorem, the spectrum lies inside the unit disk D1. Moreover, the
spectrum concentrates near its boundary S1. These facts can be generalized for
normal operators [5].

Theorem 6. Let A be a normal operator on an infinite dimensional Hilbert space
H and G a system of vectors in H .

1. If fAnggg2G; n�0 is complete in H and for every g 2 G the system fAnggn�0 is
Bessel in H , then 


�
Dc
1

�
D 0 and 
jS1 is absolutely continuous with respect to

arc-length measure (Lebesgue measure) on S1.



22 A. Aldroubi and A. Petrosyan

2. If jGj < 1 and fAnggg2G; n�0 satisfy the lower frame bound then, for every
0 <  < 1, 


�
Dc
1�

�
> 0, where D1� is the closed disc of radius 1 � .

It can be proved that if 

�
Dc
1

�
D 0 and 
jS1 is absolutely continuous with respect to

arc-length measure on S1, then there exists a set G � H such that fAnggg2G; n�0 is
complete and Bessel system in H . Other developments on this theme can be found
in [28].

Corollary 1. If for a normal operator A 2 B.H / in an infinite dimensional space
H the system of vectors fAnggg2G; n�0 with jGj < 1 is a frame, then A is unitarily
equivalent to an operator� D

P
j �jPj where Pj are projections such that dim Pj �

jGj. In particular, if jGj D 1, then �j satisfy conditions i/; ii/ in Theorem 5.

Proof. Define the subspace eV� of fH to be eV� D fQf W supp Qf 	 D�g. The restriction
of UAU� to eV� is normal with its spectrum equal to the part of the spectrum of A
inside D�. If we iterate the z-multiplication operator on the projections G� D PeV�G
of the vectors in G we get a frame for eV� hence, from part (2), eV� must be finite
dimensional. That implies the spectrum of A is finite inside every D� with � < 1.
We also know from Part (1) of Theorem 6 that 
.Dc

1/ D 0. Furthermore, from
Corollary 2 below, 
.S1/ D 0. Thus, UAU� has the form � D

P
j �jPj. The fact

that dim Pj � jGj follows from Theorem 1. The rest follows from Theorem 5. ut

2.4 New Results for General Bounded Operators

This section is devoted to the study of the iterative action of general bounded
operators in B.H /.

Theorem 7. If for an operator A 2 B.H / there exists a set of vectors G in H such
that fAnggg2G; n�0 is a frame in H , then for every f 2 H , .A�/nf ! 0 as n ! 1.

Proof. Suppose, for some fggg2G, fAnggg2G; n�0 is a frame with frame bounds B1
and B2. Let f 2 H . Then for any m 2 Z we have

X

g2G

1X

nD0

jh.A�/mf ;Angij2 D
X

g2G

1X

nD0

jhf ;AnCmgij2 (4)

D
X

g2G

1X

nDm

jhf ;Angij2:

Since
P

g2G

P1
nD0 jhf ;Angij2 � B2kf k2, we conclude that

P1
nDm

P
g2G

jhf ;Angij2 ! 0 as m ! 1. Thus, from (4), we get that
P

g2G

P1
nD0 jh.A�/mf ;Angij2

! 0 as m ! 1. Using the lower frame inequality, we get

B1k.A
�/mf k �

X

g2G

1X

nD0

jh.A�/mf ;Angij2:
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Since the right side of the inequality tends to zero as m tends to infinity we get that
.A�/mf ! 0 as m ! 1. ut

Corollary 2. For any unitary operator A W H ! H and any set of vectors G �

H , fAnggg2G; n�0 is not a frame in H .

If for every f 2 H , .A�/nf ! 0 as n ! 1, then we can get the following
existence theorem of frames for H from iterations.

Theorem 8. If A is a contraction (i.e., kAk � 1), and for every f 2 H , .A�/nf ! 0

as n ! 1, then we can choose G 	 H such that fAnggg2G; n�0 is a tight frame.

Remark 3. The system we find in this case is not very useful since the initial system
G is “too large” (it is complete in H in some cases). Moreover, the condition
kAk � 1 is not necessary for the existence of a frame with iterations. For example,
we can take nilpotent operators with large operator norm for which there are frames
with iterations.

Proof. Suppose for any f 2 H , .A�/nf ! 0 as n ! 1 and kAk � 1. Let D D

.I � AA�/
1
2 and V D cl.DH /. Let fhgh2I be an orthonormal basis for V . Then

mX

nD0

X

h2I

j < f ;AnDh > j2 D

mX

nD0

X

h2I

j < D.A�/nf ; h > j2

D

mX

nD0

kD.A�/nf k2

D

mX

nD0

< D2.A�/nf ; .A�/nf >

D

mX

nD0

< .I � AA�/.A�/nf ; .A�/nf >

D kf k2 � k.A�/mC1f k:

Taking limits as m ! 1 and using the fact that .A�/mf ! 0 we get from the
identity above that

1X

nD0

X

h2I

j < f ;AnDh > j2 D kf k2:

Therefore the system of vectors G D fg D Dh W h 2 I g is a tight frame for H . ut

Theorem 9. If dim H D 1, jGj < 1, and fAnggg2G; n�0 satisfy the lower frame
bound, then kAk � 1.
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Proof. Suppose kAk < 1. Since fggg2G is finite and dim.H / D 1, for any fixed N
there exists a vector f 2 H with kf k D 1 such that < Ang; f >D 0, for every g 2 G
and 0 � n � N. Then

X

g2G

X

n�0

j < Ang; f > j2 D
X

g2G

1X

nDN

j < Ang; f > j2 �
X

g2G

kgk

1X

nDN

kAk2n ! 0

as N ! 1 hence the lower frame bound cannot hold. ut

Corollary 3. Let fAnggg2G; n�0 with jGj < 1 satisfy the lower frame bound. Then
for any coinvariant subspace V � H of A with kPV APV k < 1 we have that
dim.V / < 1.

Proof. V is coinvariant for A that is equivalent to

PV A D PV APV :

It follows that PV An D PV AnPV . Hence, if fAnggg2G; n�0 satisfy the lower frame
inequality in H , then f.PV APV /

nggg2G; n�0 also satisfy the lower frame inequality
for V and hence from the previous theorem if dim.V / D 1, then kPV APV k � 1.

ut

3 Related Work and Concluding Remarks

There are several features that are particular to the present work: In the system of
iterations f.A�/nggg2G;0�n<L.g/ that we considered in this chapter, we let L.g/ D 1

for all g 2 G. This setting implies strong constraints on the spectrum of A when
we further require that the system is a Bessel system, a frame, etc. Since in finite
dimensional spaces every finite spanning set is a frame, and since for fixed g, if
K > dim.H /, then the set f.A�/nggg2G;0�n�K is always linearly dependent, it does
not make sense to let L.g/ > dim.H /C 1. In fact, the finite dimensional problem
has first been studied [3] in which L.g/ is a constant for all g 2 G and is as small as
possible in some sense.
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Optimization Methods for Frame Conditioning
and Application to Graph Laplacian Scaling

Radu Balan, Matthew Begué, Chae Clark, and Kasso Okoudjou

1 Introduction

The notion of scalable frame has been investigated in recent years [4, 10, 15, 17],
where the focus was more on characterizing frames whose vectors can be rescaled
resulting in a tight frame. For completeness, we recall that a set of vectors F D

ffigM
iD1 in some (finite dimensional) Hilbert space H is a frame for H if there exist

two constants 0 < A � B < 1 such that

Akxk2 �

MX

iDi

jhx; fiij
2 � Bkxk2

for all x 2 H : When A D B the frame is said to be tight and if in addition, A D

B D 1 it is termed a Parseval frame. When F D ffigM
iD1 is a frame, we shall abuse

notations and denote by F again, the n � M matrix whose ith column is fi, and where
n is the dimension of H . Using this notation, the frame operator is the n � n matrix
S D FF� where F� is the adjoint of F. It is a folklore to note that F is a frame if
and only if S is a positive definite operator and the optimal lower frame bound, A,
coincides with the lowest eigenvalue of S while the optimal upper frame bound, B,
equals the largest eigenvalue of S. We refer to [6, 7, 20] for more details on frame
theory.

It is apparent that tight frames are optimal frames in the sense that the condition
number of their frame operator is 1. We recall that the condition number of a matrix
A, denoted �.A/, is defined as the ratio of the largest singular value and the smallest
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singular value of A, i.e., �.A/ D 	max.A/=	min.A/. By analogy, for a frame in a
Hilbert space ffigM

iD1 	 H with optimal frame bounds A and B, we define the
condition number of the frame to be the condition number of its associated frame
operator �.ffig/ WD �.S/ D B=A. In particular, if a frame is Parseval, then its
condition number equals 1. In fact, a frame is tight if and only if its condition
number is 1. Scalable frames were precisely introduced to turn a non-optimal (non-
tight) frame into an optimal one, by just rescaling the length of each frame vector.
More precisely,

Definition 1 ([16, Definition 2.1]). A frame ffigM
iD1 in some Hilbert space H is

called a scalable frame if there exist nonnegative numbers s1; : : :; sM such that
fsifigM

iD1 is a Parseval frame for H .

It follows from the definition that a frame ffigM
iD1 is scalable if and only if there

exist scalars si � 0 so that

�

 
MX

iD1

s2i fif
�
i

!
D 1:

To date various equivalent characterizations of scalable frames have been proved
and attempts to measure how close to scalable a non-scalable frame have been
offered [4, 15, 17, 21]. In particular, if a frame is not scalable, then one can naturally
measure how “not scalable” the frame is by measuring

min
si�0

�����In �

MX

iD1

s2i fif
�
i

�����
F

; (1)

as proposed in [8], where k�kF denotes the Frobenius norm of a matrix. Other
measures of scalability were also proposed by the same authors. However, it is not
clear that, when a frame is not scalable, an optimal solution to (1) yields a frame
fsifig that is as best conditioned as possible. Recently, the relationship between the
solution to this problem and the condition number of a frame has been investigated
in [5]. In particular, Casazza and Chen show that the problem of minimizing the
condition number of a scaled frame

min
si�0

�

 
MX

iD1

s2i fif
�
i

!
; (2)

is equivalent to solving the minimization problem

min
si�0

�����In �

MX

iD1

s2i fif
�
i

�����
2

; (3)
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where k�k2 is the operator norm of a matrix. Specifically they show that any
optimizer of (2) is also an optimizer of (3); vice-versa, any optimizer of (3)
minimizes the condition number in (2). Furthermore, they show that the optimal
solution to (1) does not even have to be a frame, and so would yield an undefined
condition number for the corresponding system.

In this chapter, we consider numerical solutions to the scalability problem. Recall
that a frame F D ffigM

iDi � H is scalable if and only if they exist scalars fsig
M
iD1 �

Œ0;1/ such that

MX

iD1

s2i fifi D I:

Consequently, the condition number of the scaled frame QF D fsifigM
iDi is 1. We

are thus interested in investigating the solutions to the following three optimization
problems:

min
si�0 ; s¤0

�max

�PM
iD1 s2i fif �

i

�

�min

�PM
iD1 s2i fif �

i

� : (4)

min
si � 0 ; s ¤ 0PM
iD1 s2i kfik

2
2 D N

�max

 
MX

iD1

s2i fif
�
i

!
� �min

 
MX

iD1

s2i fif
�
i

!
: (5)

min
si�0 ; s¤0

�����IN �

MX

iD1

s2i fif
�
i

�����
F

: (6)

Our motivation stems from the fact it appears from the existing literature on
scalable frames that the set of all such frames is relatively small, e.g., see [17]. As
a result, one is interested in scaling a frame in an optimal manner. For example, by
minimizing the condition number of the scaled frame (4), or the gap of the spectrum
of the scaled frame (5). Furthermore, one can try to find the relationship between the
optimal solutions to these two problems with the measures of scalability introduced
in [8], of which (1) is a typical example.

In addition, we investigate these optimization problems from a practical point
of view: the existence of fast algorithms to produce optimal solutions. As such, we
are naturally lead to consider these problems in the context of convex optimization.
We recall that in such a setting one wants to solve for s� D arg mins f .s/ for a real
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convex function f W X ! R [ f1g defined on a convex set X. Using the convexity
of f and X it follows that:

1. If s� is a local minimum of f , then it is a global minimum.
2. The set of all (global) minima is convex.
3. If f is a strictly convex function and a minimum exists, then the minimum is

unique.

In addition, the convexity of f and X allows the use of convex analysis to produce
fast, efficient algorithmic solvers, we refer to [2] and the references therein for more
details.

We point out that (4) is equivalent to (2) simply by the definition of condition
number of a frame. However, the condition number function � is not convex. As
such, it is nontrivial to find the optimal solution of (4). However, � is a quasiconvex
function (see [1, Theorem 13.6] for a proof), meaning that its lower level sets form
convex sets; that is, the set fX W �.X/ � ag forms a convex set for any real a � 0. See
[12] and the references therein for a survey on some algorithms that can numerically
solve certain quasiconvex problems. We refer to [19] for a survey of results on
optimizing the condition number. But we note that, while minimizing the condition
number � is not a convex problem, an equivalent convex problem was considered
in [18]. For comparison and completeness we state one of the main results of [18].
First, observe that if X is a symmetric positive semidefinite matrix, then its condition
number is defined as

�.X/ D

8
<

:

�max.X/=�min.X/ if �min.X/ > 0;
1 if �min.X/ D 0 and �max.X/ > 0;
0 if X 
 0:

In this setting, it was proved in [18] that the problem of minimizing the condition
number is equivalent to solving another problem with convex programming.

Theorem 1 ([18], Theorem 3.1). Let ˝ 	 S N be some nonempty closed convex
subset of S N, the space of N � N symmetric matrices and let S N

C be the space of
symmetric positive semidefinite N � N matrices. Then the problem of solving

�� D inff�.X/ W X 2 S N
C \˝g

is equivalent to the problem of solving

�� D inff�max.X/ W X 2 t˝; t � 0; X � Ig; (7)

that is, �� D ��.

The problem described by (7) can be restated as solving for optimal scalars fsig

satisfying

min
si�0 ; s¤0

(
�max

 
MX

iD1

s2i fif
�
i

! ˇ̌
ˇ̌
ˇ�min

 
MX

iD1

s2i fif
�
i

!
� 1

)
: (8)
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Therefore, when we obtain numerical solutions to the condition number prob-
lem (4), we actually solve (8) and the theory of [19] guarantees that the optimal
solutions to both problems are indeed equal.

Theorem 1 has an intuitive interpretation. Suppose �.X/ D ��. Then rescaling
X by a positive scalar, t, will also scale its eigenvalues by the same factor 1=t,
thus leaving its condition number, �.X=t/, unchanged. Therefore, without loss of
generality, we can assume that X is rescaled so that �min.X=t/ � 1 which is
imposed in the last condition of (7). Once we know that �min.X=t/ is at least 1 then
minimizing the condition number of X=t is equivalent to minimizing �max.X=t/ so
long as X=t 2 ˝ which is guaranteed by the first condition in (7).

The goal of this chapter is to investigate the relationship among the solutions
to each of the optimization problems (4), (5), and (6). In addition, we shall
investigate the behavior of the optimal solution to each of these problems vis-á-
vis the projection of a non-scalable frame onto the set of scalable frames. We shall
also describe a number of algorithms to solve some of these problems and compare
some of the performances of these algorithms. Finally, we shall apply some of the
results of frame scalability to the problem of reweighing a graph in such a way that
the condition number of the resulting Laplacian is as small as possible. The chapter
is organized as follow. In Section 2 we investigate the three problems stated above
and compare their solutions, and in Section 3 we consider the application to finite
graph reweighing.

2 Non-scalable Frames and Optimally Conditioned Scaled
Frames

We begin by showing the relationship between the three formulations of this
scalability problem. We shall first show the equivalence of these problems when
a frame is exactly scalable, and present toy examples of the different solutions
obtained when a frame is only approximately scalable.

Lemma 1. Let F D ffigM
iD1 be a frame in R

N. Then the following statements are
equivalent:

(a) F D ffigM
iD1 is a scalable frame.

(b) Problem (4) has a global minimum solution, s� D fs�
i g, with objective function

value 1.
(c) Problem (5) has a global minimum solution, s� D fs�

i g, with objective function
value 0.

(d) Problem (6) has a global minimum solution, s� D fs�
i g, with objective function

value 0.
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Proof. Assume F is scalable with weights, fsig
M
iD1. TheneS D

PM
iD1 s2i fif �

i D IN ,
and the largest and smallest eigenvalue of the scaled frame operator is 1,

�max

�PM
iD1 s2i fif �

i

�

�min

�PM
iD1 s2i fif �

i

� D
�max

�eS
�

�min
�eS
� D 1:

Assume problem (4) has a global minimum solution, fsig
M
iD1. As, �max � �min,

the feasible solution must result in �max D �min D A. Applying this feasible solution
as a scaling of F, we have,

eS D

MX

iD1

s2i fif
�
i D AIN :

By normalizing the feasible solution by the square-root of A, we have the Parseval
scaling,

fQsig
M
iD1 D

	
1

p
A

si


M

iD1

:

We have just proved that (a) and (b) are equivalent.
Assume F is scalable with weights, fsig

M
iD1. TheneS D

PM
iD1 s2i fif �

i D IN , and the
difference between the largest and smallest eigenvalue of the scaled frame operator
is 0,

�max

 
MX

iD1

s2i fif
�
i

!
� �min

 
MX

iD1

s2i fif
�
i

!
D �max

�eS
�

� �min
�eS
�

D 0:

Additionally N D tr.IN/ D
PM

iD1 s2i kfik
2
2 which shows that fsig

M
iD1 is a feasible

solution for (5).
Assume problem (5) has a global minimum solution, fsig

M
iD1. As, �max � �min,

the feasible solution must result in �max D �min D A. Applying this feasible solution
as a scaling of F, we have,

eS D

MX

iD1

s2i fif
�
i D AIN :

But the feasibility condition
PM

iD1 s2i kfik
2
2 D N implies N D tr.AIN/, hence A D 1.

We have just proved that (a) and (c) are equivalent.
Assume F is scalable with weights, fsig

M
iD1. TheneS D

PM
iD1 s2i fif �

i D IN , and the
objective function for (6) attains the global minimum ,

�����IN �

MX

iD1

s2i fif
�
i

�����
F

D kIN � INkF D 0:
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Assume problem (6) has a global minimum solution, fsig
M
iD1, which occurs when���IN �

PM
iD1 s2i fif �

i

���
F

D 0. This implies thateS D
PM

iD1 s2i fif �
i D IN , and we have a

Parseval scaling. We have just proved that (a) and (d) are equivalent.

Remark 1. Lemma 1 asserts that the problem of finding optimal scalings, fsig
M
iD1,

for a given scalable frame F D ffigM
iD1 is equivalent to finding the absolute

minimums of the following optimization problems:

• minsi�0 ; s¤0

�max

�PM
iD1 s2i fif �

i

�

�min

�PM
iD1 s2i fif �

i

�

• min
si � 0 ; s ¤ 0PM
iD1 s2i kf1k

2
2 D N

�max

�PM
iD1 s2i fif �

i

�
� �min

�PM
iD1 s2i fif �

i

�

• minsi�0 ; s¤0

���IN �
PM

iD1 s2i fif �
i

���
F

Lemma 1 is restrictive in that it requires the frame F D ffigM
iD1 be scalable to

state equivalence among problems, but there can be a wide variance in the solutions
obtained when the frame is not scalable. Even nearly tight frames vary in initial
feasible solutions. We briefly consider "-tight frames and analyze the distance from
the minimum possible objective function value.

Let F" D fgig
M
iD1 with kgik2 D 1 for all i be an "-tight frame such that,

.1 � "/IN �

MX

iD1

gig
�
i � .1C "/IN :

First considering the case in which the frame cannot be conditioned any further, so
the optimal scaling weights are si D 1. Analyzing the solution produced by the three
optimization methods, we see the difference in solutions produced.

�max

�PM
iD1 s2i gig�

i

�

�min

�PM
iD1 s2i gig�

i

� D
�max

�PM
iD1 gig�

i

�

�min

�PM
iD1 gig�

i

� D
1C "

1 � "
D 1C

2"

1 � "
:

�max

 
MX

iD1

s2i fif
�
i

!
� �min

 
MX

iD1

s2i gig
�
i

!
D .1C "/ � .1 � "/ D 2"

�max

 
MX

iD1

s2i gig
�
i

!
D �max

 
MX

iD1

gig
�
i

!
D 1C ":

We lack the information necessary to give exact results for formulation (6), so we
instead give an upper bound when si D 1.
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�����IN �

MX

iD1

s2i gig
�
i

�����
F

D

�����IN �

MX

iD1

gig
�
i

�����
F

�
p

N

�����IN �

MX

iD1

gig
�
i

�����
2

� "
p

N:

It makes sense that we could enforce this constraint, as we could renormalize the
frame elements by the reciprocal of the smallest eigenvalue of the frame operator.
It is not true, though, that the scalings produced must be the same. Moreover, when
not using the constraint on the smallest eigenvalue, the scalings can vary wildly.

Remark 2. For general frames, the optimization problems (4)–(6) do not produce
tight frames. However, they can be solved using special classes of convex optimiza-
tion algorithms: problems (4) and (5) are solved by Semi-Definite Programs (SDP),
whereas problem (6) is solved by a Quadratic Program (QP) – see [2] for details on
SDPs and QPs. In the following we state these SDPs explicitly.

SDP 1 – Operator Norm Optimization:

.t1; s.1// D argmin
t; s1; : : : ; sM � 0PM

iD1 s2i fif �
i � tIN � IN � 0PM

iD1 s2i fif �
i C tIN � IN � 0

t (9)

This SDP implements the optimization problem (3). In turn, as showed by Cassaza
and Chen in [5], the solution to this problem is also an optimizer of the condition
number optimization problem (4). Conversely, assume s.�/ is a solution of (4). Let
A D �min.

PM
iD1 s2i fif �

i / and B D �max.
PM

iD1 s2i fif �
i /. Let r D 2

ACB . Then s.�/ D

.rs2i /
M
iD1 is a solution of (9) and the optimum value of the optimization criterion is

t1 D rB � 1 D 1 � rA.
SDP 2 – Minimum Upper Frame Bound Optimization:

.t2; s.2// D argmin
t; s1; : : : ; sM � 0PM
iD1 s2i fif �

i � IN � 0PM
iD1 s2i fif �

i � tIN � 0

t (10)

This SDP implements the optimization problem (8) which is as previously dis-
cussed, also produces the solution s.2/ to (4). Conversely, assume s.�/ is a solution
of (4). Let A D �min.

PM
iD1 s2i fif �

i / and B D �max.
PM

iD1 s2i fif �
i /. Let r D 1

A . Then
s.�/ D .rs2i /

M
iD1 is a solution of (10), and the optimum value of the optimization

criterion is t2 D B
A .
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SDP 3 – Spectral Gap Optimization:

.t3; v3; s.3// D argmin
t; v; s1; : : : ; sM � 0PM

iD1 s2i fif �
i � tIN � 0PM

iD1 s2i fif �
i � vIN � 0PM

iD1 si kfik
2
2 D N

t � v (11)

This SDP implements the optimization problem (5). As remarked earlier (5) is not
equivalent to any of (3),(4), or (8). A spectral interpretation of these optimization
problems is as follows. The SDP 1 (and implicitly (4) and (8)) scales the frame so
that the largest and smallest eigenvalues of the scaled frame operator are equidistant
and closest to value 1. The SDP 3 scales the frame so that the largest and smallest
eigenvalues of the scaled frame operator are closest to one another while the average
eigenvalue is set to 1. Equivalently, the solution to SDP 3 also minimizes the
following criterion:

�max.QS/ � �min.QS/
1
N tr.QS/

where QS D
PM

iD1 s2i fif �
i is the scaled frame operator.

QP 4 – Frobenius Norm Optimization:

s.4/ D argmin
s1; : : : ; sM � 0

MX

i;jD1

sisjjhfi; fjij
2 � 2

MX

iD1

s2i kfik
2
2 C N (12)

This QP implements the optimization problem (6).

Example 1. Consider the 5-element frame, X 	 R
3, generated such that each

coordinate is a random integer from 0 to 5.

X D

2

4
2 4 1 4 4

3 1 2 0 2

1 4 3 5 2

3

5

We then numerically compute X� , Xg, XF, which are the rescaled frames that
minimize problems SDP 1, SDP 3, and QP 4, respectively. That is, X� is the rescaled
frame, X� D fsifig, such that s� D fsig is the minimizer to Problem (3), which also
minimizes the frame condition number, �. Similarly, Xg is rescaled to minimize the
eigenvalue gap �max � �min while the average eigenvalue is 1, and XF is rescaled to
minimize Frobenius distance to the identity matrix.

In our numerical implementation minimizing condition number, we used the
CVX toolbox in MATLAB [11] which is a solver for convex optimization problems.
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Table 1 Comparisons of extreme eigenvalues, condition number, relative spectral gap, Frobenius
distance to identity, and the operator norm distance to identity for the non-scalable frame X and its
rescaled versions that minimize Problems (4)–(6).

�min �max � .�max � �min /=
1
N

PN
iD1 �i kI3 � �kF kI3 � �k2

X 4.1658 110.41 26.504 2.5296 109.95 109.41

X� 0.1716 1.8284 10.655 2.2888 1.4348 0.8284
Xg 0.0856 2.3558 27.501 2.2701 1.6938 1.3558

XF 0.01672 1.1989 71.667 2.2903 1.2048 0.9832

Let s� , sg, and sF denote the scaling vectors that determine the frames X� , Xg, and

XF, respectively. That is, X� D S1=2� X where S� is the diagonal matrix with values
given by s� , and so on. We obtained scalings

s�= [0.0187, 0, 0.0591, 0.0122, 0.0242],
sg= [0.0875, 0, 0.0398, 0.0297, 0],
sF= [0.0520, 0, 0.0066, 0.0177, 0].

The results comparing each of the four frames are summarized in Table 1.
Observe that each of the three methods can produce widely varying spectra.

We now demonstrate special conditions in which a frame’s condition number can
be decreased using matrix perturbation theory.

Lemma 2 (Weyl’s Inequality, [23, Corollary 4.9]). Let A be a Hermitian matrix
with real eigenvalues f�i.A/gd

iD1 and let B be a Hermitian matrix of the same size
as A with eigenvalues f�i.B/gd

iD1. Then for any i D 1; : : :; d we have

�i.A C B/ 2 Œ�i.A/C �1.B/; �i.A/C �d.B/�:

An immediate corollary of Weyl’s inequality tells us that perturbing a matrix by a
positive semidefinite matrix will cause the eigenvalues to not decrease.

Corollary 1. Let A be a Hermitian matrix with real eigenvalues f�i.A/gd
iD1 and let

B � 0 be Hermitian and of the same size of A. Then for any i D 1; : : :; d, we have
�i.A/ � �i.A C B/. The inequality is strict if B  0 is positive definite.

Lemma 3. Let f be an eigenvector of A with associated eigenvalue �. Let B be a
matrix of the same size as A with the property that Bf D 0. Then f is an eigenvector
of A C B with eigenvalue �.

Lemma 4 ([24, Section 1.3]). Let A and B be two N � N Hermitian matrices of
same size. Then for any i D 1; : : :;N, the mapping t 7! �i.A C tB/ is Lipschitz
continuous with Lipschitz constant kBk2.

Corollary 2. Let A be an N � N Hermitian matrix with simple spectrum and
minimum eigengap ı > 0, i.e.,

ı D min
i¤j

j�i � �jj:
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Let B be a nonnegative Hermitian matrix of same size as A. Then the mappings
t 7! �i.A C tB/ are interlacing:

�1.A/ � �1.A C tB/ � �2.A/ � �2.A C tB/ � � � � � �N�1.A C tB/ � �N.A/ � �N.A C tB/

for t 2 .0; ı
kBk2

/.

The following theorem gives conditions in which we can guarantee that the
condition number of frame can be reduced.

Theorem 2. Let F D ffigm
iD1 	 C

d be a frame that is not tight and whose frame
operator has simple spectrum with minimal eigengap ı > 0. Suppose that there
exists some index k such that fk is orthogonal to the eigenspace corresponding to
�max.FF�/ and not orthogonal to the eigenspace corresponding to �min.FF�/. Then
there exists a rescaled frame QF D fsifigm

iD1 satisfying �. QF/ < �.F/. In particular,
one scaling that decreases the condition number is

si D

( m
m�1C

p
1C�

; for i ¤ k
m

p
1C�

m�1C
p
1C�

; for i D k

for � 2 .0; ı kfkk
�2/.

Proof. Let fk denote the frame element as described in the assumptions in the
statement of the theorem. For � 2 .0; ı/, consider the frame operator HH� D

FF� C � fkf �
k which corresponds to the rescaled frame of F where each scale si D 1

except for sk D
p
1C � . The matrix fkf �

k is Hermitian and positive semidefinite
so by Corollary 1, we have �i.FF�/ � �i.HH�/ for every i D 1; : : :;N. Then
by Corollary 2, the eigenvalues of the frame operator HH� satisfy the following
interlacing property:

�1.FF�/ � �1.HH�/ � �2.FF�/ � �2.HH�/ � � � � � �N.FF�/ D �N.HH�/;

where the last equality follows from Lemma 3 and the fact that fk is orthogonal to
the eigenspace corresponding to �N.FF�/.

We can now compute

�.FF�/ D
�N.FF�/

�1.FF�/
�
�N.HH�/

�1.HH�/
D �.HH�/:

Finally, we renormalize the scales fsig by the constant factor m.m � 1 Cp
1C �/�1 to preserve the property that

Pm
iD1 si D m. This renormalization scales

all eigenvalues by the same factor which leaves the condition number unchanged.
The frame

QF D
m

m � 1C
p
1C �

H

is the frame described in the statement of the theorem, which concludes the proof.
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Remark 3. Having discussed the equivalence between the formulations above, we
have seen that they do not necessarily produce similar solutions. This brings the
question of which formulation we should use in general, to the forefront. One could
answer this question by seeking a metric that best describes the distance of a frame
to the set of tight frames. This is similar to the Paulsen problem [3], in that, after
we have solved one of the formulations above, we produce a scaling and subsequent
new frame and wish to determine the distance of this new frame to the canonical
Parseval frame associated with our original frame. In [8], the question of distance
to Parseval frames was generalized to include frames that could be made tight with
a diagonal scaling, resulting in the distance between a frame and the set of scalable
frames:

dF D min
�2S C .M;N/

kF � �kF: (13)

However, due to the fact that the topology of the set of scalable frames S C .M;N/
is not yet well-understood, computing dF is almost impossible for a non-scalable
frame. A source of future work involves finding bound on dF using the optimal
solutions to the three problems we stated above to analyze and produce bounds on
the minimum distance.

3 Minimizing Condition Number of Graphs

In this section we outline how to apply and generalize the optimization problems
from Section 2 in the setting of (finite) graph Laplacians. This task is not as simply
as directly applying the condition number minimization problem (4), and the others,
with graph Laplacian operators.

Recall that any finite graph has a corresponding positive semidefinite Laplacian
matrix with eigenvalues f�kg

N�1
kD0 and eigenvectors ffkgN�1

kD0 . Further any graph
has smallest eigenvalue � D 0 with multiplicity equal to number of connected
components in the graph with eigenvalues equal to constant functions supported on
those connected components. Because any Laplacian’s smallest eigenvalue equals 0,
its condition number �.L/ is undefined. For simplicity, let us assume that all graphs
in this section are connected and hence 0 D �0 < �1 � �2 � � � � � �N�1. Suppose
we restricted the Laplacian operator to the .N � 1/-dimensional space spanned by
the eigenvectors f1; : : :; fN�1. Then this new operator, call it L0, has eigenvalues
�1; : : :; �N�1 which are all strictly positive. Now, �.L0/, the condition number of
L0 is a well-defined number.

Recall that the complete graph on N vertices, KN , is the most connected a graph
on N vertices can be since one can traverse from any two vertices on precisely one
edge. It is the only graph that has all nonzero eigenvalues equal, i.e., �0 D 0 and
�1 D �2 D � � � D �N�1 D N � 1. This graph achieves the highest possible algebraic
connectivity, �1, of a graph on N vertices. If we create L0 by projecting the Laplacian
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of KN onto the N � 1-dimensional space spanned by the eigenvectors corresponding
with nonzero eigenvalue, then L0 equals NIN�1, that is the .N �1/� .N �1/ identity
matrix times N.

Lemma 5. Let G be a connected graph with eigenvalues f�kg
N�1
kD0 and eigenvectors

ffkgN�1
kD0 of the graph Laplacian L. Let QF D Œf1 f2 � � � fN�1� be the N � .N � 1/ matrix

of eigenvectors excluding the constant vector f0. Then the .N � 1/� .N � 1/ matrix

L0 D QF�L QF (14)

has eigenvalues f�kg
N�1
kD1 and associated orthonormal eigenvectors f QF�fkgN�1

kD1 .

Proof. We first show that f QF�fkgN�1
kD1 are eigenvectors to L0 with eigenvalues �k. For

any k D 1; : : :;N � 1 we have

L0 QF�fk D QF�L QF QF�fk:

But since QF is an orthonormal basis for the eigenspace that its vectors span, then QF QF�

is simply the orthogonal projection onto the eigenspace spanned by ff1; : : :; fN�1g.
That is, for any vector f , we have QF QF�f D f � hf ; f0if0, which is simply the function
f minus its mean value. For each k D 1; : : :;N � 1, the eigenvectors fk have zero
mean, i.e., hfk; f0i D 0. Hence QF QF�fk D fk and therefore

L0 QF�fk D QF�Lfk D QF�.�kfk/ D �k QF�fk:

The orthonormality of the eigenvectors f QF�fkgN�1
kD1 follows directly from the

orthonormality of ffkgN�1
kD0 and the computation

h QF�fk; QF�fji D . QF�fk/
� QF�fj D f �

k
QF QF�fj D f �

k fj D ı.k; j/:

Unlike the Laplacian, the operator in (14) is full rank and its rank equals the rank
of the Laplacian. We denote it L0 because it behaves as the Laplacian after the
projection of the function onto the zeroth eigenspace is removed.

For a general finite graph, the Laplacian can be written as the sum of rank-
one matrices L D

Pm
iD1 viv

�
i where vi is the i’th column in the incidence matrix

B associated with the i’th edge in the graph and m is the total number of edges
in the graph. Thus, the Laplacian can be formed by the product L D BB�. The
columns of the incidence matrix, B, as vectors in R

N do not form a frame; B has
rank N � 1. However, the restriction B to the .N � 1/-dimensional space spanned by
f1; : : ::; fN�1, call it B0, is a frame in that space. Then the methods of Section 2 do
apply to the frame B0 with corresponding frame operator L0 D B0B�

0 . Therefore the
operator L0 can also be written as one matrix multiplication L0 D . QF�B/. QF�B/�.
For other related results on graphs and frames we refer to [22]. We seek scalars
si � 1 so that the rescaled frame fsi QF�vig

m
iD1 is tight or as close to tight as possible.

In terms of matrices, we seek a nonnegative diagonal matrix X D diag.si/ so that
QL0 WD QF�BX2B� QF has minimal condition number. The resulting graph Laplacian,
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denoted QL� D BX2B�, is the operator with minimal condition number, QL0, without
the projection onto .N � 1/ eigenspaces, thus acting on the entire N-dimensional
space. One can interpret this problem as rescaling weights of graph edges to not
only make QL0 as close as possible to the .N � 1/-identity matrix but also make the
N � N Laplacian, QL, as close as possible to the Laplacian of the complete graph KN .

We present the pseudocode for the algorithm, GraphCondition, that produces QL� ,
the Laplacian of the graph that minimizes the condition number of L.

L�=GraphCondition.L;F;B/
where L is the Laplacian matrix of the graph G,
F is the N � N eigenvector matrix of L,
B is the incidence matrix of L.

1. Set QF D F.W; 2 W N/.
2. Use cvx to solve for X that minimizes �max. QF�BX2B� QF/.

subject to: X � 0 is diagonal, trace.X/ � t � 0, and QF�BX2B� QF � I.
3. Create L� D BX2B�.

Example 2. We consider the barbell graph G which consists of two complete graphs
on 5 vertices that are connected by exactly one edge. The Laplacian for G has
eigenvalues �1 � 0:2984 and �9 � 6:7016, thus giving a condition number
of �.G/ � 22:45. We rescaled the edges via the GraphCondition algorithm and
obtained a rescaled weighted graph QG� which has eigenvalues �1 � 0:3900 and
�10 � 6:991, thus giving a condition number �. QG�/ � 17:9443.

Both graphs, G and QG� , are shown in Figure 1. The edge bridging the two
complete clusters is assigned the highest weight of 1.8473. All other edges
emanating from those two vertices are assigned the smallest weights of 0.7389.
All other edges not connected to either of the two “bridge” vertices are assigned a
weight of 1.1019.

We show in the following example that the scaling coefficients fsig
m
iD1 that

minimize the condition number of a graph are not necessarily unique.

Example 3. Consider the graph G complete graph on four nodes with the edge .3; 4/
removed. Then G was rescaled and conditioned via GraphCondition; both graphs
are shown in Figure 2. The original Laplacian, L, and the rescaled conditioned
Laplacian, QL� , produced by the GraphCondition algorithm are given as

L D

2

664

3 �1 �1 �1

�1 3 �1 �1

�1 �1 2 0

�1 �1 0 2

3

775 ; QL� �

2

664

2:8406 �0:6812 �1:0797 �1:0797

�0:6812 2:8406 �1:0797 �1:0797

�1:0797 �1:0797 2:1594 0

�1:0797 �1:0797 0 2:1594

3

775 ;

with spectra

	.L/ D f0; 2; 4; 4g; 	. QL�/ D f0; 2:1594; 3:5218; 4:3188g:

GraphCondition
GraphCondition
cvx
GraphCondition
GraphCondition
GraphCondition
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Fig. 1 Top: The barbell graph G. Bottom: The conditioned graph with rescaled weights that
minimizes the condition number. The width of the edges is drawn to be proportional to the weight
assigned to that edge.

Both Laplacians have a condition number �.L/ D �. QL�/ D 2 which shows that the
scaling of edges that minimize condition number are not necessarily unique.

We prove that the GraphCondition algorithm will not disconnect a connected
graph.

Proposition 1. Let G D G.V;E; !/ be a connected graph and let QG� D
QG�.V; QE; Q!/ be the rescaled version of G that minimizes graph condition number.
Then QG� is also a connected graph.

Proof. Let �0 WD �.G/ � 1 and suppose that QG� is disconnected. This implies
that QG� has eigenvalue 0 with multiplicity at least 2 (one for each of its connected
components). This violates the condition QF�BX2B� QF � I in the GraphCondition
algorithm, which yields the unique minimizer.

GraphCondition
GraphCondition
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Fig. 2 The unweighted graph G (left) and its rescaled version QG� (right) yet both graphs have a
condition number equal to 2.

Fig. 3 From top to bottom:
QG� and QGg, which minimize
the condition number and
spectral gap, respectively.

We next consider the analogue of minimizing the spectral gap, �N�1 � �1, for
graphs. Just as before with condition number, we create the positive definite matrix
L0 and its incidence matrix, B0, and minimize its spectral gap by the methods in
Section 2 to minimize problem (5). We denote the rescaled graph that minimizes
the spectral gap by QGg.

Example 4. We present numerical results of each of the graph rescaling techniques
for the barbell graph shown in Figure 1. Each of the rescaled graphs is pictured in
Figure 3 and numerical data is summarized in Table 2.

As discussed in the motivation of this section, reducing the condition number of
a graph makes the graph more “complete,” that is, more like the complete graph in
terms of its spectrum. Since the algebraic connectivity �1 is as great as possible,
it is the only graph for which �1 D �N�1, the graph is the most connected a
graph can possibly be, and as such the distance between any two points is minimal.
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Table 2 Comparison of condition number and spectral gap of the barbell graph, G, shown in
Figure 1 and its rescaled versions, respectively.

�1 �N�1 � �N�1 � �1

G 0.2984 6.7016 22.4555 6.4031
QG� 1.0000 17.9443 17.9443 16.9443
QGg 0.0504 1.1542 22.8794 1.1038

As previously discussed, the effective resistance is a natural metric on graphs and
one can compute that for any two distinct vertices, i and j, on the complete graph on
N vertices we have

R.i; j/ D

N�1X

kD1

1

�k
.fk.i/ � fk.j//

2 D
1

N

N�1X

kD1

.fk.i/ � fk.j//
2

D
1

N
.ei � ej/

�FF�.ei � ej/ D
1

N
.ei � ej/

�.ei � ej/

D
1

N

��ei � ej

��2 D
2

N
:

Conjecture 1. The process of conditioning a graph reduces the average resistance
between any two vertices on the graph.

The intuition behind Conjecture 1 can be motivated by studying the quantityPN�1
kD1 1=�k. Consider a sequence of positive numbers fakg

N
kD1 with average Na D

1=N
PN

kD1 ak. Then since the function h.t/ D 1=t is continuous and convex on the
set of positive numbers, it is also midpoint convex on that set, i.e.,

N

Na
D Nh.Na/ �

NX

kD1

h.ak/ D

NX

kD1

1

ak
:

With this fact, let f�kg
N�1
kD1 denote the eigenvalues of connected graph G and

fQ�kg
N�1
kD0 denote the eigenvalues of the conditioned graph QG� , both satisfying

N� D 1=N
PN�1

kD1 �k D 1=N
PN�1

kD1
Q�k. Since QG� is better conditioned than G, then���

PN�1
kD1

Q�k � N�
��� �

���
PN�1

kD1 �k � N�
���. In other words, the eigenvalues fQ�kg

N�1
kD1 are

closer to the average N� than the eigenvalues f�kg
N�1
kD1 are. Hence

N�1X

kD1

1

Q�k

�

N�1X

kD1

1

�k
: (15)

Equation (15) almost resembles the effective resistance R.i; j/ D
PN�1

kD1 1=�k.fk.i/�
fk.j//2 except for the term .fk.i/ � fk.j//2. This term will be difficult to account
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for since little is known about the eigenvectors of QG� . Analysis of eigenvectors of
perturbed matrices is a widely open area of research and results are very limited, see
[9, 14, 23, 24].

We remark that Conjecture 1 claims that conditioning a graph will reduce the
average effective resistance between points; it is not true that the resistance between
all points will be reduced. If the weight on edge .i; j/ is reduced, then its effective
resistance between points i and j is increased. Since we impose that the trace of the
Laplacians be preserved, if any edge weights are increased, then by conservation at
least one other edge’s weight must be decreased. The vertex pairs for those edges
will then have an increased effective resistance between them.

While we lack the theoretical justification, numerical simulations support Con-
jecture 1 and this is a source of future work.

The authors of [13] approach a similar way. They propose using convex
optimization to minimize the total effective resistance of the graph,

Rtot D

NX

i;jD1

R.i; j/:

They show that the optimization problem is related to the problem of reweighting
edges to maximize the algebraic connectivity �1.
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A Guide to Localized Frames and Applications
to Galerkin-Like Representations of Operators

Peter Balazs and Karlheinz Gröchenig

1 Introduction

Localized frames are “good” frames. More precisely, the concept of localized
frames was introduced in [45] in an attempt to understand which properties render
a frame useful. Whereas an abstract frame can be viewed as a flexible coordinate
system for a Hilbert space — and only for one Hilbert space! — localized frames
go beyond Hilbert spaces and yield a description and characterization of a whole
class of associated Banach spaces. Indeed, the success of structured frames, such
as Gabor frames [32], wavelet frames [27], or frames of translates [9], is built
on their capacity to describe modulation spaces (Gabor), Besov-Triebel-Lizorkin
spaces (wavelet), and their use in sampling theory (translates).

Gabor frames are used for the description and extraction of time-frequency
features of a signal. It would be a waste of possibilities to use them to merely
determine the L2-membership of a given function. Likewise wavelets are used to
detect edges in an image or compress an image, and not just for the expansion of
a function in L2. In these applications one does not use arbitrary Gabor frames or
wavelet frames, but the window and the wavelet are usually carefully designed so as
to have some desired time-frequency concentration or a small support and vanishing
moments. Thus in such applications the frames come with an additional property,
namely some form of localization.
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The general theory of localized frames began as an attempt to formulate an
abstract concept of localization that can explain the success of certain structured
frames in applications [45]. Roughly speaking, a frame � D f k W k 2 Kg is called
localized, if its Gramian matrix G with entries Gk;l D h l;  kik;l2K possesses enough
off-diagonal decay. In the further developments of the concept powerful methods of
Banach algebra theory were used, and nowadays, and also in this survey, we call a
frame localized, if its Gramian belongs to a solid, inverse-closed Banach algebra of
matrices [35].

Localized frames possess many properties that are not available for general
frames.

(i) To every localized frame can be associated a class of Banach spaces,
the so-called coorbit spaces [30, 31]. Roughly speaking, the coorbit space H p

w
contains all elements f such that the sequence hf ;  kik belongs to the weighted
`p-space. For the standard structured frames one obtains well-known and classical
families of functions spaces, namely, the modulation spaces are associated to Gabor
frames [42], and the Besov spaces are associated to wavelet frames [62, 71]. In this
chapter we will explain the construction of the coorbit spaces and derive many of
their properties.

(ii) Localized frames possess nice dual frames. Technically speaking, the canon-
ical dual frame possesses the same localization. In fact, this is a fundamental
statement about localized frames, and the method of proof (matrix algebras, spectral
invariance) has motivated intensive research in Banach algebra theory [48–51].

(iii) Elements in coorbit spaces associated to a localized frame possess good
approximation properties [17]. In fact, the results on nonlinear N-term approxi-
mations and on the fast convergence of the iterative frame algorithms are based
fundamentally on the localization property and do not hold for arbitrary frames.

(iv) Localized frames often possess a characterization “without inequalities” [28,
47, 53]. These results have led to strong results about Gabor frames that have been
out of reach with conventional methods.

(v) Every localized frame is a finite union of Riesz sequences [44]. This is a
special case of the Feichtinger conjecture and was proved early on with an easy
proof, whereas the recent full proof of the Feichtinger conjecture is a monumental
result in functional analysis and occupies a completely different mathematical
universe [61].

(vi) General frames may be used to describe and discretize operators and operator
equations, and thus have led to an important line of frame research in numerical
analysis. In the so-called Galerkin approach an operator O is discretized with
respect to a frame by associating a matrix M with Mk;l D hO k; �li with respect
to given frames �;˚ . The standard discretization uses bases, but recently also
frames have been used [3]. The Galerkin approach works particularly well when
the corresponding matrix is sparse. The most famous example is the sparsification of
singular integral operators by means of wavelet frames (or bases) [15, 63]. This work
has led to many adaptive methods [24, 54, 68]. In this regard the time-frequency
analysis of pseudodifferential operators by means of Gabor frames is a particularly
successful example of the application of localized frames: certain symbol classes



Localized Frames and Galerkin 49

containing the Hörmander class S00;0 can be completely characterized by the off-
diagonal decay of the associated matrix [51]. Subsequently Gabor frames were
pivotal for the sparsification of Fourier integral operators and certain Schrödinger
propagators in the work of the Torino group [18–21] On a more abstract level,
localized frames have been heavily used in the adaptive frame methods for the
solution of operator equations in [23, 25].

This chapter will offer a survey of localized frames. Of the many possible topics
we will focus on the theory of the associated coorbit spaces and on the Galerkin
discretization of operators with respect to localized frames. We will mainly explain
the abstract theory and focus on the formalism of localized frames. These aspects
have not received as much attention as other topics and justify a more thorough
treatment. Several results may even claim some novelty, for instance, the inclusion
relations of coorbit spaces and the explicit relation between the mapping properties
of an operator and of its corresponding matrix seem to be new.

Although the topic of localized frames is eminently applied, we will choose a
formalistic point of view and develop and explain the formalism of localized frames,
their coorbit spaces, and the Galerkin discretization.

The motivation for this formal approach, and for this entire chapter, comes from
different readings of the original sources [35, 45] and many ensuing discussions
between the authors. One of us (K. G.) claimed that “this is folklore and known,”
while the other (P. B.) would point out — and rightly so — that the results he needed
and wanted to understand in detail were not formulated in the publications. P. B.
strongly argued that he needed a general abstract formalism in order to move on
to the real applications in acoustic applications as, e.g., in [65]. The result of our
discussions is this summary of localized frames with its emphasis on the formalism.
We hope that this point of view will also benefit other readers and users of localized
frames.

This chapter is organized as follows. In Section 2 we collect some preliminary
definitions and notation and then introduce the concept of localization frames.
Section 3 is devoted to the study of the associated coorbit spaces and the canonical
operators associated to a frame. In Section 4 we describe the Galerkin approach
and discuss the formalism of matrix representations of operators with respect to
localized frames. We end with a short outlook in Section 5.

2 Preliminaries and Notation

For a standard reference to functional analysis and operator theory, refer, e.g., to
[16]. We denote by B

�
X
�

the Banach algebra of bounded operators on the normed
space X. We will write kTkX!Y for the operator norm of a bounded operator T W

X ! Y , or just kTk, if the spaces are clear. We will use the same notation for the
inner product of a Hilbert space h:; :iH and for the duality relation of two dual sets
B;B0, h:; :iB;B0 . If there is no chance of confusion, we will just use the notation h:; :i

for that.
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Let A 2 B
�
H1;H2

�
with closed range. Then there exists a unique bounded oper-

ator A� W H2 ! H1 for which AA�f D f ;8f 2 ran.A/ and ker
�
A�
�

D .ran .A//?.
This A� is called the (Moore-Penrose) pseudoinverse of A. See, e.g., [12].

2.1 Sequence Spaces

We use the canonical notation of sequence spaces `p D `p.K/ consisting of
sequences on a countable and separable index set K 	 R

d. By an abuse of notation,
but for greater consistency, we define `0 as those sequences for which lim

k!1
ck D 0.

(Usually this space is denoted by c0.) We denote the set of sequence with only
finitely many non-zero entries by `00 (usually denoted by c00).

A weight is a (strictly) positive sequence w D .wk/k2K , wk > 0. Then we define
the weighted space `p

w by c 2 `p
w ” w � c 2 `p with norm kck`p

w
D kc � wk`p . So

for the weighted sequence spaces and 1 < p � 2 and 2 � q < 1 we get

`00 	 `1w 	 `p
w 	 `2w 	 `q

w 	 `0w„ ƒ‚ …
.�/

	 `1
w (1)

where the middle .�/ is a chain of dense Banach spaces. `00 is dense in all `p
w for

1 � p < 1 and p D 0, and weak-* dense in `1
w . Clearly `0w D `00

k:k`1w .
For 1 � p < 1 and 1 D 1

p C 1
q we know that

�
`p

w

�0
Š `

q
1=w with the duality

relation

hck; dki`p
w;`

q
1=w

D

�
wkck;

1

wk
dk

�

lp;lq
D
X

k

ckdk: (2)

For p D 1 this is only true in the Köthe dual sense [56]. We also have
�
l0w
�0

Š `11=w.

2.2 Frames

A sequence � D . k/k2K in a separable Hilbert space H is a frame for H , if there
exist positive constants A and B (called lower and upper frame bound, respectively)
that satisfy

Akf k2 �
X

k2K

jhf ;  kij
2 � Bkf k2 8f 2 H : (3)
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A frame where the two bounds can be chosen to be equal, i.e., A D B, is called
tight. In the following we will denote by � D . k/ and˚ D .�k/ the corresponding
sequences in H .

By C� W H ! `2 we denote the analysis operator defined by .C� f /k D hf ;  ki.
The adjoint of C� is the synthesis operator D� .ck/ D

P
k ck k. The frame operator

S� D D�C� can be written as S� f D
P

k hf ;  ki k, it is positive and invertible1.
By using the canonical dual frame . Q k/, Q k D S�1 k for all k, we obtain the
reconstruction formula

f D
X

k

hf ;  ki Q k D
X

k

˝
f ; Q k

˛
 k for all f 2 H :

Any sequence �d D . d
k / for which C� d is bounded on H and where such a

reconstruction holds is called a dual frame.
The Gram matrix G� is defined by .G� /k;l D h l;  ki. This matrix defines an

operator on `2 by matrix multiplication, corresponding to G� D C�D� . Similarly
we can define the cross-Gram matrix .G�;˚/k;l D h�l;  ki for two frames ˚ and � .
Clearly

G�;˚c D
X

l

.G�;˚/k;l cl D

*
X

l

cl�l;  k

+
D C�D˚c :

If, for the sequence � , there exist constants A, B > 0 such that the inequalities

A kck22 �

�����
X

k2K

ck k

�����

2

H

� B kck22

are fulfilled, � is called a Riesz sequence. If � is complete, it is called a Riesz basis.

2.2.1 Banach Frames

The concept of frames can be extended to Banach spaces [10, 14, 41]:
Let X be a Banach space and Xd be a Banach space of scalar sequences. A

sequence . k/ in the dual X0 is called a Xd-frame for the Banach space X if there
exist constants A;B > 0 such that

Akf kX � khf ;  kik2KkXd
� Bkf kX for all f 2 X: (4)

1Note that those “frame-related” operators can be defined as possibly unbounded operators for any
sequence [6].
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An Xd-frame is called a Banach frame with respect to a sequence space Xd, if
there exists a bounded reconstruction operator R W Xd ! X, such that R . k.f // D f
for all f 2 X. If Xd D `p for 1 � p � 1, we speak of p-frames, respectively
p-Banach frames. The distinction between Xd-frames and Banach frames will
disappear for localized frames. The norm equivalence (4) already implies the
existence of a reconstruction operator for X, in this setting.

2.2.2 Gelfand Triples

Let X be a Banach space and H a Hilbert space. Then the triple .X;H ;X0/ is
called a Banach Gelfand triple, if X 	 H 	 X0, where X is dense in H , and H is
w�-dense in X0. The prototype of such a triple is .`1; `2; `1/.

A frame for H is called a Gelfand frame [23] for this triple if there exists a
Gelfand triple of sequence spaces .Xd; `

2;X0
d/, such that the synthesis operator D� W

Xd ! X and the analysis operator C Q� W X ! Xd are bounded.
Now for a Gelfand frame � for the Gelfand triple .X;H ;X0/ with the sequence

spaces .`1; `2; `1/, we define the coorbit space C o .`p; �/ D ff 2 X0 W C� f 2 `pg.
Similarly, one could define the orbit spaces O .`p; �/ D fD� c for c 2 `pg. We refer
to [30] for an early example and the terminology of coorbit spaces.

3 Localization of Frames

In this section we introduce the concept of localized frames and define the
corresponding family of coorbit spaces. In Subsection 3.1 we treat the maximal
space H 1

w in detail. In Subsection 3.2 we show the duality relations of these spaces.
In Subsection 3.3 we study the frame-related operators.

We call a Banach *-algebra A of infinite matrices (over the index set K) a solid
spectral matrix algebra, if

(i) A 	 B
�
`2
�
.

(ii) A is inverse-closed in B
�
`2
�
, i.e., A 2 A and A is invertible on `2, then

A�1 2 A .
(iii) A is solid, i.e., A 2 A and jbk;lj � jak;lj, then B D .bk;l/ 2 A and

kBkA � kAkA .

Several examples, e.g., the Jaffard class or a Schur-type class, can be found in [35].
In these examples localization is defined by some off-diagonal decay of the Gram
matrix. For the systematic construction of spectral matrix algebras, we refer to [49–
51, 69], a survey on spectral invariance is contained in [48].

Definition 1. Let A be a solid spectral matrix algebra. Two frames � and ˚ are
called A -localized with respect to each other, if their cross-Gram matrix G�;˚

belongs to A . If G�;˚ 2 A , we write � �A ˚ .
A single frame � D . k/ is called (intrinsically) A -localized, if � �A � .
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Alternative definitions of localized frames can be found in [36] (continu-
ous frames), [43, 45] (localization with respect to a Riesz basis), [1] (`p-self-
localization), or [33, 39, 64] (localization in terms of the intrinsic metric on a
manifold). Although all these concepts have their merits, we will focus on the
intrinsic localization of Definition 1.

The following connection holds for any chosen dual frame ˚d [35]:

� �A ˚;˚d �A � H) � �A �: (5)

A weight w is called A -admissible, if every A 2 A can be extended to a bounded
operator on `p

w for all 1 � p � 1, i.e., A 	
T

1�p�1

B
�
`p

w

�
.

In the following, A is always a solid spectral Banach algebra of matrices on K.
Since A is a Banach *-algebra, if w is A -admissible, then 1=w is admissible, too.
This is because for A W `p

w ! `p
w, we have A� W `

q
1=w ! `

q
1=w for q > 1. For q D 1,

this argument is valid using the pre-dual.

Definition 2. Let H 00 D

	
f D

P
k

ck k W c 2 `00



be the subspace of all finite

linear combinations over � .
For 1 � p < 1 define H p

w .�;
Q�/ as the completion of H 00 with respect to the

norm

kf kH
p

w
D
���C Q .f /

���
`

p
w

:

Let H 0
w be the completion of H 00 with respect to the norm

kf kH 0
w

D kf kH 1

w
D
���C Q .f /

���
`1

w

:

In Section 3.1 we will define the space H 1
w as a weak� completion with respect

to the metric
���C Q .f /

���
`1

w

. Alternatively, we may define it as the bidual H 1
w D

.H 0
w /

��.

We note right away that H p
w 	 H q

w 	 H 0
w for 1 � p � q.

As a consequence of this definition the analysis operator can be extended to a
bounded operator from H p

w into `p
w.

The main results in [35] are summarized below. The first one describes the
independence of H p

w .�;
Q�/ of the defining frame � .

Proposition 1 ([35]). Let ˚ and � be frames for H and ˚d and � d dual frames.
If � d �A � , ˚d �A � and � d �A ˚ , then H p

w .�; �
d/ D H p

w .˚;˚
d/ with

equivalent norms for all 1 � p � 1.
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The proof of this result relies on the algebra properties of A and identities for
Gram matrices. By this result we may therefore write unambiguously H p

w WD

H p
w .�;

Q�/ D H p
w .

Q�;�/.
In particular, let ˚ D � . For a frame � and its dual � d, which are A -localized

with respect to each other, it can be shown that they are automatically Banach frames
for all involved associated Banach spaces:

Theorem 1 ([35]). Assume that � �A � d. Then � is a Banach frame for
H p

w .�; �
d/ for 1 � p < 1 or p D 0. The reconstructions f D

P
n2N

hf ;  ni d
n

and f D
P
n2N

˝
f ;  d

n

˛
 n converge unconditionally for 1 � p < 1.

The assumptions of Proposition 1 can be weakened for the canonical dual frame,
because it can be shown that an intrinsically localized frame is automatically
localized with respect to its canonical dual. As a consequence an intrinsically
localized frame is automatically a Banach frame for all associated Banach spaces.
This is the main theorem about localized frames:

Theorem 2 ([35]). Let � be an intrinsically A -localized frame, � �A � . Then

Q� �A
Q� and � �A

Q�:

As a consequence, H p
w .�;

Q�/ D H p
w .

Q�;�/ and � is a p-Banach frame for
H p

w .�;
Q�/ for 1 � p < 1 or p D 0. The reconstructions

f D
X

n2N

hf ;  ni Q n and f D
X

n2N

˝
f ; Q n

˛
 n (6)

converge unconditionally in H p
w for 1 � p < 1.

Therefore the norms kC� f k`p
w

and
��C Q� f

��
`

p
w

are equivalent, and the inequalities

1��G Q�

��
`

p
w!`

p
w

kf kH
p

w
� kC� f k`p

w
� kG�k`p

w!`
p
w

kf kH
p

w
: (7)

are valid for 1 � p < 1 and p D 0

The unconditional convergence of the reconstruction formula (6) implies that
both synthesis operators D� and D Q� map `p

w onto H p
w for 1 � p < 1 and p D 0.

Consequently, an equivalent norm on H p
w is given by

inf
˚
kck`p

w
W f D D c


for f 2 H p

w :

In particular this means that the orbit and co-orbit definitions of H p
w coincide.

The best studied examples of intrinsically localized frames are the following.

(i) Frames of translates [9, 17],
(ii) Frames of reproducing kernels in a shift-invariant space [45, 70]
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(iii) Gabor frames [32, 35, 45],
(iv) Frames of reproducing kernels in (general) Bargmann-Fock spaces [58],
(v) Wavelet frames that are orthogonal across different scales [17, 34].

However, not all useful frames are localized in the sense of Definition 1,
among them are general wavelet frames, frames of curvelets, shearlets, frames on
manifolds, etc. Although these frames do possess some form of localization, they
are not part of our theory of localized frames. While many of the constructions
discussed in this chapter, such as the definition and characterization of coorbit
spaces, can be carried out by hand or with different techniques, the main results
for localized frames are not available for wavelets or curvelets. For instance, the
decisive Theorem 2 and most of its consequences are false for wavelet frames and
their many generalizations.

3.1 H 1
w as a Normed Space

In the following we will focus on the theory of the coorbit spaces H p
w

�
�; Q�

�
that

are associated to a localized frame. We start with the “distribution space” H 1
w and

offer a thorough treatment. In [35] “the rigorous discussion was omitted to avoid
tedious technicalities.”

Let w be an A -admissible weight. We define H 1
w as a certain weak� completion

of H . We say that two sequences .fn/ and .gn/ in H are equivalent, denoted
by fn � gn, if hfn � gn; Q ki ! 0 as n ! 1. Alternatively, fn � gn ! 0 in the
	.H ;H 00/-topology.

Definition 3. We define H 1
w as the set of equivalence classes of sequences f D

Œfn�, such that

(i) fn 2 H for all n 2 N,
(ii) limn!1

˝
fn; Q k

˛
D ˛k exists for all k 2 K,

(iii) sup
n

��C Q� fn
��
`1

w
< 1.

In this way H 1
w is well-defined. The definition of f is independent of its

representative. Indeed, if f D Œfn� and fn � gn, then ˛k D limn!1hfn; Q ki D

limn!1hgn; Q ki.
Furthermore, condition (iii) implies that jhfn; Q kijwk � C for all n 2 N and

k 2 K, consequently, j˛kjwk D limn!1 j
˝
fn; Q k

˛
jwk � C and thus ˛ 2 `1

w . Now,
write hf ; Q ki D ˛k. and set

kf kH 1

w
D k˛k`1

w
: (8)

Therefore C Q� W H 1
w ! `1

w is a bounded operator.
Clearly, (8) defines a seminorm, because limits are linear and k � k`1

w
is a norm.

Now assume that kf kH 1

w
D 0. This means that for every representative Œfn� of f we

have limnhfn; Q ki D 0, or equivalently fn � 0. Thus f D 0 in H and k�kH 1

w
is

indeed a norm.
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Lemma 1. (i) The map f D Œfn� 7! ˛ D
�

limnhfn; Q ki
�

k2K is an isometric
isomorphism from H 1

w onto the subspace V� D f˛ 2 `1
w W ˛ D G Q�;�˛g.

(ii) The subspace V� is closed in `1
w and thus H 1

w is complete.

Proof. (i) For f 2 H we interpret the reconstruction formula f D
P

l
hf ; Q li l

weakly as
P

l
hf ; Q li h l; Q ki, or in operator notation as

C Q� f D G Q�;�C Q� f : (9)

Now let f D Œfn� 2 H 1
w as in Definition 3. This is a sequence of vectors fn 2 H

such that limn!1

˝
fn; Q k

˛
D ˛k and kC Q� fnk`1

w
� C for all n. This means that

the sequence C Q� fn converges pointwise to ˛ and is dominated by the sequence
C.w�1

l /l 2 `1
w . By dominated convergence it now follows that (again with pointwise

convergence)

˛ D lim
n!1

C Q� fn D lim
n!1

G Q�;�C Q� fn D G Q�;� lim
n!1

C Q� fn D G Q�;�˛ :

Consequently, the limiting sequence ˛ 2 `1
w satisfies ˛ D G Q�;�˛ and ˛ 2 V� .

Conversely, let ˛ 2 V� . Choose a sequence Fn of finite subsets of K, such that
Fn � FnC1 and

S1
nD1 Fn D K and define

fn D
X

l2Fn

˛l l 2 H :

Then clearly

lim
n!1

hfn; Q ki D lim
n!1

X

l2Fn

˛l
˝
 l; Q k

˛
D G Q�;�˛ D ˛ ;

and supk jhfn; Q kijwk � Ck˛k`1

w
. This means that f D Œfn� 2 H 1

w , and as a
consequence the map Œfn� 2 H 1

w 7! ˛ 2 V� is an isometric isomorphism.
(ii) Assume that ˛n 2 V� and ˛ 2 `1

w such that k˛n � ˛k`1

w
! 0. Since G Q�;� is

bounded on `1
w , we obtain that ˛ D limn!1 ˛n D limn G Q�;�˛n D G Q�;�˛, whence

˛ 2 V� and V� is a (norm)-closed subspace of `1
w . By the identification proved in

(i), H 1
w is therefore complete. ut

Switching the roles of � and Q� in Definition 3, we see that C� is an
isometry between H p

w .
Q�;�/ and a closed subspace of `1

w . By Equation (7) the
corresponding norms are equivalent and so C� is bounded from H p

w into `1
w .

We next verify the unconditional weak �-convergence of the sum D� c DP
k2K

ck k for .ck/ 2 `1
w . Let " > 0 and g 2 H 00. Choose a finite set H0, such
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that
P

k 62H0
jhg;  kijw�1

k < "=kck`1

w
. Now let H; J 	 K be two finite sets such that

H � H0 and J � H0. Then H n J [ J n H 	 K n H0, and therefore

jh
X

k2J

ck k �
X

k2H

ck k; gij D jh
X

k2HnJ[JnH

ck k; gij

� kck`1

w

X

k 62H0

jh k; gijw�1
k < " :

Thus the series for D� c converges weak-� unconditionally. Furthermore, since G Q�;�

is bounded on `1
w by the basic assumption on � and Theorem 2, we also deduce the

boundedness of D� as follows:

kD� ckH 1

w
D
��C Q�D� c

��
`1

w
D
��G Q�;� c

��
`1

w
� kG Q�;�k`1

w !`1

w
kck`1

w
< 1:

The following lemma summarizes the properties of H 1
w .

Lemma 2. Let � be an A -localized frame and w an A -admissible weight. Then�
H 1

w ; k�kH 1

w

�
is a Banach space, and

(i) C� W
�
H 1

w ; k�kH 1

w

�
! `1

w is continuous.

(ii) D� W `1
w !

�
H 1

w ; k�kH 1

w

�
is continuous with kD�k`1

w !H 1

w
�

��G Q�;�

��
`1

w !`1

w
. The series Dc D

P
k2K

ck k is weak-� unconditionally conver-

gent.

3.2 Duality

The associated Banach spaces H p
w are a generalization of the coorbit spaces in [30]

and the modulation spaces [29]. We first formulate their duality.

Proposition 2. Let � be a A -localized frame and w an admissible weight. Let
1 � p < 1 and q such that 1p C 1

q D 1 or .p; q/ D .0; 1/. Then

�
H p

w

�0
Š H q

1=w;

where the duality for f 2 H p
w and h 2 H q

1=w is given by

hf ; hiH
p

w ;H
q
1=w

WD
˝
C Q� f ;C�h

˛
`

p
w;`

q
1=w
:



58 P. Balazs and K. Gröchenig

Proof. Fix h 2 H q
1=w. Then, using the duality of `p

w and `
q
1=w, we define a

sesquilinear form by

hf ; hiH
p

w ;H
q
1=w

D
˝
C Q� f ;C�h

˛
`

p
w;`

q
1=w
;

for f 2 H p
w .

Now set W .h/.f / D hf ; hiH
p

w ;H
q
1=w

. Then jW .h/.f /j �
��C Q� f

��
`

p
w

kC�hk`q
1=w

D

kC�hk`q
1=w

� kf kH
p

w
, since C�h 2 `

q
1=w by the norm equivalence (7). If p D 0,

we use the estimate jW .h/.f /j �
��C Q� f

��
`1

w
kC�hk`11=w

D kC�hk`11=w
� kf kH 0

w
,

Therefore W .h/ 2
�
H p

w

�0
. As a consequence W W H q

1=w !
�
H p

w

�0
is bounded,

with kW .h/k.H p
w /

0 � kC�hk`q
1=w

.

Conversely, let H 2
�
H p

w

�0
and c 2 `p

w be arbitrary with 1 � p � 1 or
p D 0. Then D� c is in H p

w and so H .D� c/ D
P

k
ckH. k/ with unconditional

convergence. Therefore the sequence .H. k//k is in `
q
1=w [16]. Now define the

operator V W
�
H p

w

�0
! H q

1=w by V .H/ D
P

k
H. k/ Q k.

For f 2 H p
w we have

W .V .H//.f / D
˝
C Q� f ;C�V .H/

˛
`

p
w;`

q
1=w

D
X

l

˝
f ; Q l

˛
*
X

k

H. k/ Q k;  l

+
D

D
X

k

H. k/

*
X

l

˝
f ; Q l

˛
 l; Q k

+
D
X

k

H. k/
˝
f ; Q k

˛
D H

 
X

k

˝
f ; Q k

˛
 k

!
D H.f /:

The formal manipulations are justified by the unconditional convergence of the
series involved, by the continuity of H, and by density arguments. Thus W W

H q
1=w !

�
H p

w

�0
is onto.

On the other hand,

V .W .h// D
X

l

W .h/. l/ Q l D
X

l

X

k

˝
 l; Q k

˛
hh;  ki Q l D

D
X

k

hh;  ki

 
X

l

˝
Q k;  l

˛
Q l

!
D
X

k

hh;  ki Q k D h:

Therefore W is invertible. ut

Similar results appeared in [30] and [23].

Remark 1. Note that the duality is consistent with the inner product h:; :i on H , see
Lemma 4.
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Also, note that the isomorphism
�
H p

w

�0
Š H q

1=w is not an isometric isomor-
phism.

By the above result we now have
�
H 1
1=w

�0

Š
�
H 1

w ; k�kH 1

w

�
. This yields

another proof for the completeness of
�
H 1

w ; k�kH 1

w

�
.

3.2.1 Duality for H 1
w

For p D 1 we can now prove a reconstruction result, as an extension to Theorem 1.

Lemma 3. Let � be a A -localized frame and w an A -admissible weight. If
f 2 H 1

w , then f D
P

hf ;  ki Q k and f D
P˝

f ; Q k
˛
 k with weak-* unconditional

convergence in 	
�
H 1

w ;H 1
1=w

�
.

Therefore f D D Q�C� f D D�C Q� f ; and, in particular D Q� and D� are onto H 1
w .

The norm equivalence (7) is valid for all 1 � p � 1 and p D 0:

1��G Q�

��
`

p
w!`

p
w

kf kH
p

w
� kC� f k`p

w
� kG�k`p

w!`
p
w

kf kH
p

w
: (7’)

Proof. By above, H 1
1=w is the predual of H 1

w . Now, let f 2 H 1
w and g 2 H 1

1=w,
then we have

ˇ̌
ˇ
X

k2K

hf ;  ki
˝
Q k; g

˛ ˇ̌
ˇ �

X

k2K

ˇ̌˝
f ;  k

˛ˇ̌ ˇ̌˝
Q k; g

˛ˇ̌
� kC� f k`1

w

��C Q�g
��
`11=w

;

and the sum of the left-hand side converges absolutely.
By Lemma 2 D Q�C� is well-defined on all of H 1

w . Let g 2 H 00, then

˝
D Q�C� f ; g

˛
D lim

H ! K

H finite

*
X

k2H

hf ;  ki � Q k; g

+
D lim

H ! K

H finite

X

k2H

hf ;  ki �
˝
Q k; g

˛
D hf ; gi :

And so f D D Q�C� f .
The second reconstruction formula follows by an analogous argument. The norm

equivalence (7’) follows immediately from the reconstruction formula. ut

We can formulate the compatibility of the duality relations in the following way.

Lemma 4. Let � be a A -localized frame and w an admissible weight. For f 2 H p
w

and h 2 H 1
1=w we have

hf ; hiH
p

w ;H
q
1=w

D hf ; hiH 1

w ;H 1
1=w
:
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Proof. The identity follows from the definition of the duality in Proposition 2,
because

hf ; hiH
p

w ;H
q
1=w

D
˝
C Q� f ;C�h

˛
`

p
w;`

q
1=w

D
˝
C Q� f ;C�h

˛
`1

w ;`11=w
D hf ; hiH 1

w ;H 1
1=w
:

ut

After clarifying the meaning of the duality brackets, we can now give the traditional
definition of the coorbit space H p

w as a subspace of “distributions.”

Proposition 3. Let � be an A -localized frame and w an admissible weight. For
1 � p < 1 we have

H p
w D

(
f 2 H 1

w W f D
X

k2K

˝
f ; Q k

˛
H 1

w ;H 1
1=w
 k with

˝
f ; Q k

˛
H 1

w ;H 1
1=w

2 `p
w

)
;

with unconditional convergence.

Proof. We combine the reconstruction formula in Theorem 2 with the identities�
hf ;  kiH 1

w ;H 1
1=w

�

k2K
D
�

hf ;  kiH
p

w ;H
q
1=w

�

k2K
2 `p

w from Lemma 4 and use the

unconditional convergence in H p
w . We obtain

f D
X

k2K

hf ;  kiH
p

w ;H
q
1=w

Q k D
X

k2K

hf ;  kiH 1

w ;H 1
1=w

Q k:

ut

For p D 1 we can state the following characterization (using Proposition 2 and
Lemma 3):

Corollary 1. Let � be a A -localized frame. Let W and w admissible weights
satisfying W � w so that H 1

w 	 H 1
W . Then for f 2 H 1

W the following properties
are equivalent:

(i) f 2 H 1
w .

(ii)
��C Q� f

��
`1

w
< 1.

(iii) There is a c 2 `1
w , such that f D

P
k2K

ck k with C Q� f D G�; Q� c and

��C Q� f
��
`1

w
D
��G�; Q� c

��
`1

w
:

(iv) f 2
�
H 1

w

�0
:
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3.2.2 The Chain of Banach Spaces H p
w

Formulated for Gelfand triples we obtain the following consequence.

Corollary 2. Let � be a A -localized frame and w an admissible weight with
inf
k2K

wk > 0. Let 1 � p < 2 and 1=p C 1=q D 1, or .p; q/ D .0; 1/. Then � is

a Gelfand frame for the Gelfand triples

H p
w 	 H 	 H q

1=w;

with respect to the duality
˝
C Q� f ;C�h

˛
`

p
w;`

q
1=w

and the sequence spaces

`p
w 	 `2 	 `

q
1=w.

Proof. By Proposition 2
�
H p

w

�0
Š H q

1=w. Since wk � C we have, for 1 � p � 2

and 2 � q � 1, the following inclusions

H 1
w 	 H p

w 	 H 2
w 	 H 	 H 2

1=w 	 H q
1=w 	 H 1

1=w;

For q < 1, these inclusions are norm-dense, continuous embeddings (by the
corresponding inclusions (1) for sequence spaces), for q D 1, H is w*-dense
in H 1

1=w. Theorem 1 asserts that � is a Banach frame for H p
w and H q

1=w. ut

To summarize the “size” of the coorbit spaces for 1 � p � 2 and 2 � q � 1 by
Equation (1) we obtain the following inclusions:

H 00 	 H 1
w 	 H p

w 	 H 	 H q
1=w 	 H 0

1=w 	 H 1
1=w

D�

x???

???yC�

`00 	 `1w 	 `p
w 	 `2 	 `

q
1=w 	 `01=w 	 `1

1=w

All the inclusions but the last one are in fact norm-dense embeddings; H 00 is
norm dense in H p

w for 1 � p < 1 and weak*-dense in H 1
w .

Finally we mention that the assumption on the weight serves only to obtain a
“small space” with p D 1 on the left side of the diagram. By contrast, if 1=w 	 `2,
then `1

w � `2, and one obtains the Gelfand pair H 0
w 	 H 	 H 1

1=w, which looks a
bit unusual.

3.2.3 Equivalence Result on Inclusion of Sequence Spaces and Associated
Banach Spaces

Whereas the inclusions of the coorbit spaces H p
w follow from the inclusions of the

weighted `p-spaces, the converse is less obvious and requires more tools.
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Theorem 3. Let � be an A -localized norm-bounded frame, i.e., inf
k

k kkH > 0.

Let 1 � p1; p2 � 1 and let w1;w2 be admissible weights. Then

H p1
w1 	 H p2

w2 ” `p1
w1 	 `p2

w2 :

Proof. The implication (H is clear.
Conversely, assume that H p1

w1 	 H p2
w2 and that `p1

w1 6	 `p2
w2 .

Since � is a frame, by the Feichtinger conjecture [8] proved in [61], � is a
finite union of Riesz sequences. In particular, H contains an infinite-dimensional
subspace with a Riesz basis �0 D f k jk 2 K0 g 	 � .

The Gram matrix G�0 is invertible on `2.K0/ [13]. We extend G�0 to a matrix on
`2.K/ by defining Gc D 0 for c 2 `2.KnK0/ D `2.K0/?. Note that G is obtained
from the Gram matrix G� by setting .G� /j;k D 0 for j; k 62 K0. Since A is solid, we
conclude that G is in A , and since A is closed with respect to the pseudo-inversion
[35], we also find that G� 2 A . The matrix G possesses the pseudo-inverse G� with
G� D G�1

�0
c for c 2 `2.K0/ and G�c D 0 for c 2 `2.K0/?.

Extend c 2 `p1
w1 .K0/

�
`p2

w2 .K0/ to a sequence Qc 2 `p1
w1 .K/

�
`p2

w2 .K/ (by setting
Qck D 0 for k 2 KnK0) and set d D G� Qc. In particular, dk D 0 for k 62 K0. Since
G� 2 A is bounded on `p1

w1 , it follows that d 2 `p1
w1 .K/n`

p2
w2 .K/. Therefore f DP

k2K
dk k 2 H p1

w1 . Furthermore

.C�0 f /k D hf ;  ki D
X

l2K0

dl h l;  ki D .Gd/k D ck for k 2 K0:

If f 2 H p1
w1 , then C� f 2 `p1

w1 : But C� f
ˇ̌
K0

D c 62 `p2
w2 .K0/, and so C� f 62 `p2

w2 .
Therefore f 62 H p2

w2 , which is a contradiction. ut

Most likely, the statement could be proved without the full strength of the
theorem of Marcus, Spielman, and Srivastava [61].

3.3 Properties of the Frame-Related Operators

We next summarize the properties of the canonical operators associated to every
frame. We include the statements for p D 1 and discuss the convergence of series
expansions. As a novelty, we discuss all operators with respect to a frame ˚ in
the same localization class, i.e. ˚ �A � . Being pedantic, we always consider the
operator as a mapping with a domain. For instance, whereas the synthesis operator
is the formula D� c D

P
k2K

ck k we will use the notation Dp;w
� to denote the synthesis

operator on H p
w .

Theorem 4. Let � be an A -localized frame and let w be an A -admissible weight.
Let 1 � p � 1 and let 1=p C 1=q D 1 or .p; q/ D .0; 1/.
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(i) The analysis operator Cp;w
� W H p

w ! `p
w is given by

Cp;w
� f D

�
hf ;  kiH

p
w ;H

q
1=w
; k 2 K

�
:

Then Cp;w
� is bounded, one-to-one and has closed range in `p

w. Cp;w
� is the

restriction of C1;w
� to H p

w , i.e. Cp;w
� D C1;w

�

ˇ̌
H

p
w

. Furthermore ran
�
Cp;w
�

�
D

ran
�

Cp;w
Q�

�
and this is a complemented subspace:

`p
w D ran

�
Cp;w
�

�
˚ ker

�
Dp;w
�

�
; (10)

� is an `p
w-Banach frame for all H p

w with bounds

A D
���Gp;w

Q�

���
�1

`
p
w!`

p
w

and B D
��Gp;w

�

��
`

p
w!`

p
w
: (11)

(ii) The synthesis (or reconstruction) operator Dp;w
� W `p

w ! H p
w is given by

Dp;w
� c D

X

k

ck k

with unconditional convergence in H p
w for 1 � p < 1 and p D 0, and

weak*-convergence for p D 1. Then Dp;w
� is bounded with operator norm 1

and it maps onto H p
w . Furthermore Dp;w

� is the restriction of D1;w
� to H p

w , i.e.
Dp;w
� D D1;w

�

ˇ̌
H

p
w

. For p < 1

�
Dp;w
�

��
D Cq;1=w

� , and
�
Cp;w
�

��
D Dq;1=w

� :

(iii) The frame operator Sp;w
� W H p

w ! H p
w is defined by

Sp;w
� f D

X

k

hf ;  kiH
p

w ;H
q
1=w

�  k D
X

k

hf ;  kiH 1

w ;H 1
1=w

�  k

with unconditional convergence in H p
w for 1 � p < 1 and p D 0. It is

unconditionally weak*-convergent for p D 1. Furthermore Sp;w
� D Dp;w

� Cp;w
�

and
�
Sp;w
�

��
D Sq;1=w

� , and Sp;w
� D S1;w

�

ˇ̌
H

p
w

. The operator Sp;w
� is bounded

with bound
���Gp;w

Q�;�

���
`

p
w!`

p
w

��Gp;w
�

��
`

p
w!`

p
w
. It is invertible with inverse

�
Sp;w
�

��1
D

Sp;w
Q�

D S1;w
Q�

ˇ̌
H

p
w

D
�
S1;w
�

ˇ̌
H

p
w

��1
, and is therefore simultaneously invertible

on all H p
w .
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(iv) For the Gram matrix .G� /k;l D h l;  kiH (which by the admissibility induces
a bounded operator Gp;w

� W `q
w ! `p

w) we have Gp;w
� D Cp;w

� Dp;w
� and again

Gp;w
� D G1;w

�

ˇ̌
H

p
w

The operator G�; Q� is the projection from `p
w on ran

�
Cp;w
�

�
.

As a consequence of Theorem 4, one may now drop the indices and write simply
and unambiguously C� , D� , S� , and G� .

We split the proof of Theorem 4 into shorter lemmata. Note that we prove them
for an arbitrary frame ˚ that is localized with respect to the intrinsically localized
frame � . So we need the following preparatory result.

Lemma 5. Let ˚ and � frames with ˚ �A � and � �A � and let w be an A -
admissible weight. Then ˚ is intrinsically localized, and Q̊ �A

Q� and ˚ �A
Q� .

In particular �k 2 H 1
1=w and hf ; �kiH

p
w ;H

q
1=w

D hf ; �kiH 1

w ;H 1
1=w

for f 2 H p
w .

Proof. Since Q� �A
Q� by Theorem 2, we may apply (5) as follows:

˚ �A �; Q� �A
Q� ) ˚ �A

Q�

˚ �A �; Q� �A ˚ ) ˚ �A ˚ :

As a consequence, the frame ˚ is A -localized and all results about A -localized
frames apply to ˚ . In particular, Proposition 1 implies that H p

w .�;
Q�/ D

H p
w .˚;

Q̊ / with equivalent norms, and we may write unambiguously H p
w .

Furthermore, since the Gram matrix G Q�;˚ 2 A is bounded on `1w, it follows that
every row and column of G Q�;˚ belongs to `1w and likewise to `11=w. Consequently,

�k D
P

l2Kh�k; Q li l is in H 1
w \ H 1

1=w. Thus the brackets

hf ; �kiH
p

w ;H
q
1=w

D hf ; �kiH 1

w ;H 1
1=w

are well-defined by Lemma 4. ut

In particular all results shown above are applicable also for ˚ , however, with
equivalent norms.

Lemma 6. Let ˚ and � be A -localized frames such that ˚ �A � . Let w be an
A -admissible weight and 1 � p; q � 1 with 1=p C 1=q D 1 or .p; q/ D .0; 1/.
Then the analysis operator Cp;w

˚ W H p
w ! `p

w given by

Cp;w
˚ f D

�
hf ; �kiH

p
w ;H

q
1=w
; k 2 K

�

is bounded, one-to-one and has closed range. Furthermore

1���Gp;w
Q�; Q̊

���
`

p
w!`

p
w

kf kH
p

w
�
��Cp;w

˚ f
��
`

p
w

�
��Gp;w

˚;�

��
`

p
w!`

p
w

kf kH
p

w
; (12)

where both sides of the inequality are bounded. The operator Cp;w
˚ is the restriction

of C1;w
˚ to H p

w , i.e. Cp;w
˚ D C1;w

˚ j
H

p
w

.



Localized Frames and Galerkin 65

Proof. The associated Banach spaces H p
w coincide for the frames � and ˚ . By

Proposition 1 and Lemma 4
�
Cp;w
˚ f

�
k D hf ; �kiH

p
w ;H

q
1=w

D hf ; �kiH 1

w ;H 1
1=w

.

���Cp;w
Q�

f
���
`

p
w

D
���Cp;w

Q�
Dp;w

Q̊
Cp;w
˚ f

���
`

p
w

�
���Gp;w

Q�; Q̊

���
`

p
w!`

p
w

��Cp;w
˚ f

��
`

p
w
; and

��Cp;w
˚ f

��
`

p
w

D
���Cp;w

˚ Dp;w
� Cp;w

Q�
f
���
`

p
w

�
��Gp;w

˚;�

��
`

p
w!`

p
w

���Cp;w
Q�

f
���
`

p
w

:

By Lemma 5 the Gram matrices Gp;w
Q�; Q̊

and Gp;w
˚;� are in A and are therefore bounded

on `p
w for all p; 1 � p � 1. By Lemma 4 Cp;w

� D C1;w
� j

H
p

w
, since H p

w 	 H 1
w . ut

As Q� �A � the analysis operator Cp;w
Q�

W H p
w ! `p

w is given by Cp;w
Q�

f D˝
f ; Q k

˛
H

p
w ;H

q
1=w

. By definition, this particular analysis operator is an isometry.

Lemma 7. Under the assumptions of Lemma 6 the synthesis operator Dp;w
˚ W `p

w !

H p
w is bounded and onto with operator norm

��Dp;w
˚

��
`

p
w!H

p
w

D
���Gp;w

Q�;˚

���
`

p
w!`

p
w

:

It is given by

Dp;w
˚ c D

X

k

ck�k

with unconditional convergence in H p
w for 1 � p < 1 and p D 0 and weak*-

convergence for p D 1. Furthermore, Dp;w
˚ is the restriction of D1;w

˚ to H p
w , i.e.

Dp;w
˚ D D1;w

˚ j
H

p
w

. For p < 1 we have

�
Dp;w
˚

��
D Cq;1=w

˚ and
�
Cp;w
˚

��
D Dq;1=w

˚ : (13)

Proof. By Lemma 5 and Lemma 3 Dp;w
˚ is bounded and onto H p

w .˚;
Q̊ / D

H p
w .�;

Q�/ (see also Proposition 1). Since Dp;w
˚ D G˚; Q�Dp;w

� , Dp;w
˚ is bounded on

`p
w. The unconditional convergence of Dp;w

˚ c D
P

k
ck�k is shown as in Lemma 2.

Since `p
w � `1

w , it is clear that Dp;w
˚ D D1;w

˚ j
H

p
w

.

For the adjoint operator let c 2 `p
w, and f 2 H q

1=w ' .H p
w /

0. Then

˝
Dp;w
˚ c; f

˛
H

p
w ;H

q
1=w

D
˝X

k

ck�k; f
˛
H

p
w ;H

q
1=w

D

D
X

k

ck h�k; f iH
p

w ;H
q
1=w

D
D
c;Cq;1=w

˚ f
E

`
p
w;`

q
1=w

;

where the change of order is justified because c 2 `p
w, f 2 H q

1=w and by Lemma 6.
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The operator norm is

��Dp;w
˚

��
`

p
w!H

p
w

D sup
kck

`
p
w

D1

��Dp;w
˚ c

��
H

p
w

D sup
kck

`
p
w

D1

���Gp;w
Q�;˚

c
���
`

p
w

D
���Gp;w

Q�;˚

���
`

p
w!`

p
w

:

ut

Clearly, by above,
��Dp;w

˚

��
`

p
w!H

p
w

D
���Cq;1=w

˚

���
.H p

w /
0

!`
q
1=w

. In general we have
���Cq;1=w

˚

���
.H p

w /
0

!`
q
1=w

¤
���Cq;1=w

˚

���
H

q
1=w!`

q
1=w

, because the isomorphism between

.H p
w /

0 and H q
1=w of Proposition 2 is not an isometry.

Lemma 8. Let � , ˚ , and � be frames with � �A � , ˚ �A � and � �A � ,
and let w be an A -admissible weight. Let 1 � p � 1 and let 1=p C 1=q D 1 or
.p; q/ D .0; 1/. The cross-Gram matrix G˚;� with entries .G˚;�/k;l D h�l; �kiH

induces a bounded operator Gp;w
˚;� W `p

w ! `p
w and factors as

Gp;w
˚;� D Cp;w

˚ Dp;w
� ;

and so
�
Gp;w
˚;�

��
D Gq;1=w

�;˚ . The Gram matrix Gp;w
˚;� is the restriction G1;w

˚;�

ˇ̌
ˇ
H

p
w

.

Furthermore ran
�
Gp;w
˚;�

�
D ran

�
Cp;w
˚

�
and ker

�
Gp;w
˚;�

�
D ker

�
Dp;w
�

�
. The Gram

matrix Gp;w
˚;� is a bijective mapping from ran

�
Cp;w

Q�

�
onto ran

�
Cp;w
˚

�
.

For � D Q̊ the Gram matrix satisfies

G˚; Q̊ D G Q̊ ;˚ D G�
˚; Q̊ ; (14)

and G˚; Q̊ is a bounded projection from `p
w on the range of Cp;w

˚ with kernel

ker
�
Dp;w
˚

�
. In addition, ran

�
Cp;w
˚

�
D ran

�
Cp;w

Q̊

�
and

`p
w D ran

�
Cp;w
˚

�
˚ ker

�
Dp;w
˚

�
;

Therefore, we have

��Dp;w
˚

��
`

p
w!H

p
w

D
��G Q̊ ;˚

��
`

p
w!`

p
w

� 1: (15)

Proof. For c 2 `00 we have

�
Gp;w
˚;� � c

�
l
D
X

k

.G˚;�/l;k ck D
X

k

h�k; �li ck D .C˚D�c/l :
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Therefore Gp;w
˚;� D Cp;w

˚ Dp;w
� on `00. Since both sides are bounded operators on

`p
w (Gp;w

˚;� because ˚ �A � ), the factorization can be extended from the dense
subspace `00 to `p

w for p < 1.
By Lemma 6 Cp;w

˚ is one-to-one, and therefore ker
�
Gp;w
˚;�

�
D ker

�
Dp;w
�

�
.

Likewise, by Lemma 7 Dp;w
� is onto H p

w , and therefore ran
�
Gp;w
˚;�

�
D ran

�
Cp;w
˚

�
.

Since Gp;w
˚;�Cp;w

Q�
f D Cp;w

˚ f , the Gram matrix Gp;w
˚;� induces a bijective mapping from

ran
�
Cp;w
�

�
onto ran

�
Cp;w
˚

�
. (Compare to the “frame transformation” in [2].)

If � D Q̊ , then

.G˚; Q̊ /k;l D
˝
�l; Q�k

˛
H

D
˝
�l; S

�1�k
˛
H

D
˝
S�1�l; �k

˛
H

D .G Q̊ ;˚ /k;l;

and for the entries of the adjoint matrix

.G�
˚; Q̊ /k;l D .G˚; Q̊ /l;k D h�k; S�1�liH D

˝
S�1�l; �k

˛
H

D .G˚; Q̊ /k;l;

and (14) is verified.
Since Dp;w

Q̊
Cp;w
˚ D IdH

p
w

by (6), we obtain

.Gp;w

˚; Q̊
/2 D Cp;w

˚ Dp;w
Q̊

Cp;w
˚ Dp;w

Q̊
D Cp;w

˚ Dp;w
Q̊

D Gp;w

˚; Q̊
:

Thus Gp;w

˚; Q̊
is a projection operator on `p

w with range ran
�
Cp;w
˚

�
and kernel

ker
�

Dp;w
Q̊

�
D ker

�
Dp;w
˚

�
. In particular, kGp;w

˚; Q̊
k � 1 and (15) follows.

Since Gp;w

˚; Q̊
D Gp;w

Q̊ ;˚
we get ran

�
Gp;w

˚; Q̊

�
D ran

�
Gp;w

Q̊ ;˚

�
and by above

we also have ran
�
Cp;w
�

�
D ran

�
Cp;w

Q�

�
. By the projection property, using

[16, Theorem III.13.2], ran
�
Cp;w
˚

�
and ker

�
Dp;w
˚

�
are therefore complementary

subspaces. ut

By combining all properties of Cp;w
� and Dp;w

� , we finally obtain the following list
of properties for the frame operator Sp;w

˚ D Dp;w
˚ Cp;w

˚ .

Lemma 9. The frame operator Sp;w
˚ W H p

w ! H p
w is defined by

Sp;w
˚ f D

X

k

hf ; �kiH
p

w ;H
q
1=w

� �k D
X

k

hf ; �kiH 1

w ;H 1
1=w

� �k

with unconditional convergence in H p
w for p < 1 and weak*-unconditional

convergence for p D 1. The frame operator satisfies the identities Sp;w
˚ D Dp;w

˚ Cp;w
˚ ,�

Sp;w
˚

��
D Sq;1=w

˚ , and Sp;w
˚ D S1;w

˚ j
H

p
w

, and is bounded on all H p;w with operator
norm

��Sp;w
˚

��
H

p
w !H

p
w

�
���Gp;w

Q�;˚

���
`

p
w!`

p
w

�
��Gp;w

˚;�

��
`

p
w!`

p
w
:

Furthermore, Sp;w
˚ is simultaneously invertible on all H p

w with inverse�
Sp;w
˚

��1
D Sp;w

Q̊
.
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4 Galerkin Matrix Representation of Operators
with Localized Frames

For a numerical treatment of operator equations one often uses redundant frame
representations for the Galerkin discretization. Such discretizations have been
formulated for wavelet frames in [68] and for Gabor frames in [46]. The formalism
for general (Hilbert space) frames has been introduced in [3].

For localized frames we formally define the relation between operators and
matrices as follows.

Definition 4. Let � , ˚ , and � be frames with � �A � , ˚ �A � and � �A � .
Let w1;w2 be A -admissible weights and 1 � p1; p2 � 1 or p1; p2 D 0. Let q1; q2
be the dual indices defined as usual.

(i) For the bounded linear operator O W H p1
w1 ! H p2

w2 define the matrix M.˚;�/ by

�
M.˚;�/ .O/

�
k;l D hO�l; �kiH

p2
w2 ;H

q2
1=w2

D hO�l; �kiH 1

w2
;H 1

1=w2
:

We call M.˚;�/ .O/ the (Galerkin) matrix of O with respect to ˚ and � .
(ii) For the matrix M that induces a bounded operator in B

�
`p1

w1 ; `
p2
w2

�
define O.˚;�/ W

B
�
`p1

w1 ; `
p2
w2

�
! B

�
H p1

w1 ;H
p2

w2

�
by

�
O.˚;�/ .M/

�
h D

X

k

�X

j

Mk;j
˝
h; �j

˛ �
�k; (16)

for h 2 H p1
w1 . We call O.˚;�/ .M/ the operator of M with respect to ˚ and � .

Theorem 5. Assume that ˚;� , and � are A -localized frames in H satisfying
˚ �A � and � �A � . Let w1;w2 be A -admissible weights, let 1 � p1; p2 � 1

or p1; p2 D 0 with dual indices q1; q2.

(i) If O 2 B
�
H p1

w1 ;H
p2

w2

�
, then M.˚;�/.O/ 2 B

�
`p1

w1 ; `
p2
w2

�
, and we have

��M.˚;�/ .O/
��
`

p1
w1!`

p2
w2

� kG˚;�k`p2
w2!`

p2
w2

��G Q�;�

��
`

p1
w1!`

p1
w1

kOkH
p1

w1 !H
p2

w2
: (17)

Furthermore,

M.˚;�/.O/ D C˚ ı O ı D� :

(ii) If M 2 B
�
`p1

w1 ; `
p2
w2

�
, then O.˚;�/.M/ 2 B

�
H p1

w1 ;H
p2

w2

�
, and

O.˚;�/.M/ D D˚ ı M ı C�;

and

��O.˚;�/ .M/
��

H
p2

w2 !H
p1

w1
�
��G Q�;˚

��
`

p1
w1!`

p1
w1

kG�;�k`p2
w2!`

p2
w2

kMk`p2
w2!`

p1
w1
: (18)
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Proof. This result follows directly from the results in Section 3. For example, let
c D .ck/ 2 `p1

w1 , then

�
M.˚;�/ .O/ c

�
l D .C˚ ı O ı D�c/l D

D

 
C˚

 
X

k2K

ckO�k

!!

l

D
X

k2K

ck hO�k; �liH
p2

w2 ;H
q2
1=w2

:

ut

Using tensor products and the results in Section 3, it is easy to extend the results
in [3]. For g 2 X0

1, f 2 X2 the tensor product f ˝ g is defined as the rank-one
operator from X1 to X2 by .f ˝ g/ .h/ D hh; giX1;X0

1
f . We will use .f ˝ g/ .h/ D

hh; giH
p

w ;H
q
1=w

f for h 2 H p
w .

Proposition 4. Let � and ˚ be A -localized frames in H satisfying ˚ �A �

and w1;w2 be A -admissible weights and 1 � p1; p2 � 1 or p1; p2 D 0. Then the
factorization

�
O.˚;�/ ı M. Q̊ ; Q�/

�
D id D

�
O. Q̊ ; Q�/ ı M.˚;�/

�
;

holds for every space of bounded operators B
�
H p1

w1 ;H
p2

w2

�
.

Therefore every O 2 B
�
H p1

w1 ;H
p2

w2

�
possesses the representation

O D
X

k;j

˝
O Q j; Q�k

˛
�k ˝  j D

X

k;j

˝
O j; �k

˛
Q�k ˝ Q j; (19)

and both expansions converge unconditionally in the strong operator topology
(respectively weak-* unconditionally if either p1 D 1 or p2 D 1).

Proof. By Theorem 5 for an O in any B
�
H p1

w1 ;H
p2

w2

�
we have

�
O.˚;�/ ı M. Q̊ ; Q�/

�
O D D˚

�
C Q̊ O D Q�

�
C� D O; (20)

using the reconstruction formulas in Theorem 2 and Lemma 3.
The representation in (19) converges in the strong operator topology by

Theorem 5. ut

As in the Hilbert space setting [3] we get the following decomposition.

Proposition 5. Let �;˚ , and � be A -localized frames in H satisfying
˚ �A �;� �A � . Let w1;w2;w3 be A -admissible weights and 1 � p1; p2 � 1

or p1; p2 D 0. Then for O1 W H p1
w1 ! H p2

w2 and O2 W H p3
w3 ! H p1

w1 , we have

M.˚;�/ .O1 ı O2/ D M.˚;�/ .O1/ ı M. Q�;�/ .O2/ :
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Proof. The statement follows from the factorization

M.˚;�/ .O1 ı O2/ D C˚ O1 O2 D� D

D C˚ O1 D� C Q� O2 D� D M.˚;�/ .O1/ ı M. Q�;�/ .O2/ :

ut

Then we get an extension of results in [4, 5] to coorbit spaces.

Lemma 10. Let � and ˚ be A -localized sequence in H satisfying ˚ �A � ,
w1;w2 be A -admissible weights and 1 � p1; p2 � 1 or p1; p2 D 0. Let O be a
linear operator from H 00 into H 1

w2 . Then

O 2 B
�
H p1

w1 ;H
p2

w2

�
” M.�;˚/.O/ 2 B

�
`p1

w1 ; `
p2
w2

�
;

Proof. The implication ) is stated in Theorem 5(i).
For the converse, let O be a linear operator from H 00 to H p2

w2 such that
M.�;˚/.O/ D Cp2;w2

˚ ı O ı Dp1;w1
� is bounded. Then ran .D� / 	 dom .O/ and

therefore O is defined everywhere. Since

O D Dp2;w2
Q̊

ı Cp2;w2
˚ ı O ı Dp1;w1

� ı Cp1;w1
Q�

;

the operator O is also bounded. ut

4.1 Characterization of Operator Classes

Combining the matrix representation of an operator with the well-known character-
izations of boundedness of operators between `p-spaces [60] we obtain criteria for
the boundedness of operators between certain coorbit spaces.

For the description we recall the following norms on infinite matrices. Consid-
ering an index set K D L � N, we can define discrete mixed norm spaces [42],
i.e.,

`p1;p2
w D

8
<

:M D .Ml;n/l2L;n2N

ˇ̌
ˇ̌
ˇ̌kMk`p1;p2

w
WD

 
X

l

.wl;n jMl;njp2 /
p1=p2

!1=p2

< 1

9
=

; :

In particular we consider weights w D w.1/ ˝ w.2/ with wk;l D w.1/k � w.2/l .

Proposition 6. Let � and ˚ be A -localized sequence in H satisfying ˚ �A � ,
w.i/ be A -admissible weights and 1 � pi < 1 for i D 1; 2. Let O be a linear
operator from H 00 to H 1

w2 , and M D M.˚;�/ .O/. Then
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O 2 B
�
H 1

w.1/
;H 1

w.2/

�
” O 2 B

�
H 0

w.1/
;H 1

w.2/

�

” sup
k

P
l

ˇ̌
ˇ̌w.2/k � 1

w
.1/
l

hO l; �ki

ˇ̌
ˇ̌ < 1;

” M 2 `1;1

1=w.2/˝w.1/
:

(21)

O 2 B
�
H 1

w.1/
;H 0

w.2/

�
” lim

k

P
l

ˇ̌
ˇ̌w.2/k � 1

w
.1/
l

hO l; �ki

ˇ̌
ˇ̌ D 0: (22)

O 2 B
�
H 1

w.1/
;H 1

w.2/

�
” sup

k;l

ˇ̌
ˇ̌w.2/k � hO l; �ki � 1

w
.1/
l

ˇ̌
ˇ̌ < 1;

” M 2 `1;1

1=w.2/˝w.1/
:

(23)

O 2 B
�
H 1

w.1/
;H p

w.2/

�
” sup

l

P
k

ˇ̌
ˇ̌w.2/k � 1

w
.1/
l

hO l; �ki

ˇ̌
ˇ̌
p

< 1;

” M� 2 `
p;1
1=w.2/˝w.1/

(24)

O 2 B
�
H 1

w.1/
;H 1

w.2/

�
” sup

E finite

P
l

ˇ̌
ˇ̌P
k2E

w.2/k � 1

w
.1/
l

hO l; �ki

ˇ̌
ˇ̌ < 1: (25)

O 2 B
�
H 2

w.1/
;H 2

w.2/

�
”

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

For MMk;l D w.2/k � 1

w
.1/
l

hO l; �ki we have:

P
l

ˇ̌
ˇ̌P
k2E

MMk;l

ˇ̌
ˇ̌
2

< 1;
�

MM� MM
�n

is defined for all n D 1; 2; : : :

sup
n

sup
i

���
MM� MM

�n�

i;i

�1=n

D K < 1:

(26)

Proof. The conditions on the matrix M are variations of the well-known Schur test.
For instance, M is bounded from `1 to `1, if and only if the row sums are uniformly
bounded, i.e., supk

P
l jMk;lj < 1. A convenient reference for Schur’s test is [60].

To also include weights, we proceed as follows. Let Djc D .w.j/k ck/k2K be
the multiplication operator with weight w.j/; j D 1; 2. Then Dj is an isometric
isomorphism from `

p
w.j/

onto `p.

Therefore a matrix M is bounded from `
p1
w.1/

into `p2
w.2/

, if and only if MM D

D2MD�1
1 is bounded from `p1 into `p2 . We now apply the boundedness charac-

terizations in [60] to D2M.�;˚/.O/D�1
1 . For example, Lemma 10 says that O 2

B
�
H 1

w1 ;H
1

w2

�
” M.�;˚/.O/ 2 B

�
`1

w1 ; `
1
w2

�
, which in turn is equivalent to

saying that MM D D2M.�;˚/.O/D�1
1 2 B

�
`1; `1

�
. Since MMk;l D w.2/k � 1

w
.1/
l

hO l; �ki,

condition (21) follows from [60, Theorem 2.6]. The other characterizations fol-
low in the same way from [60, Theorem 2.12,2.13(a),2.13(b),2.14] and [22],
respectively. ut
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In concrete applications one uses only the sufficient conditions for boundedness
and checks that the matrix M.�;˚/.O/ satisfies the conditions of Schur’s test.

Corollary 3. Let � and ˚ be A -localized frame in H satisfying ˚ �A � , and
1 � p � 1. Let O be a linear operator from H 00 to H 1

w . If sup
k

P
l

jhO l; �kij <

1; and sup
l

P
k

jhO l; �kij < 1; then O 2 B
�
H p;H p

�
.

For an example of how these abstract results are applied in analysis, we refer to
the investigation of the boundedness of pseudodifferential operators with the help
of Gabor frames in [46, 51].

For further reference, we remark that the results in Section 4 do not use the full
power of intrinsic localization, but remain true under weaker assumptions. In fact,
we have only used the norm equivalences for the analysis operators of two frames
˚ and � and their duals Q̊ and Q� :

kC� f k`p
w

� kC Q� f k`p
w

� kC˚ f k`p
w

� kC Q̊ f k`p
w

(27)

for f 2 H 00. This is all that is needed to define unambiguously a coorbit space H p
w .

If (27) holds, then all statements of this section, specifically Theorem 5 and
Propositions 4–6 remain true.

One of our main points is that these norm equivalences (27) always hold
for A -localized frames, as we have seen in Section 3. In addition, (27) also
hold for wavelet frames (with sufficiently many vanishing moments and sufficient
decay) with the Besov spaces and Sobolev spaces as the corresponding coorbit
spaces. In fact, one of the main motivations for wavelets was the investigation of
singular integral operators, see [37, 62]. However, for wavelet frames the norm
equivalences (27) require different arguments that are not covered by our theory
of localized frames.

4.2 Invertibility

For the invertibility we can show, as in the Hilbert space setting [5]:

Lemma 11. Let ˚ and � be A -localized frames for H satisfying ˚ �A � and
1 � p � 1. Let O W H p

w1 ! H p
w2 be a bounded, linear operator.

Then O is bijective, if and only if M.˚;�/ .O/ is bijective as operator from
ran

�
Cp;w1
�

�
to ran

�
Cp;w2
�

�
.

In this case the matrix associated to the inverse is given by

�
M.˚;�/ .O/

��
WD
�
M.˚;�/ .O/jran.C� /

��1

D M. Q�; Q̊ /

�
O�1

�
:

Proof. By Theorem 4, Cp;w
� is a bijection from H p

w onto ran
�
Cp;w
�

�
, and Dp;w

� a
bijection from ran

�
Cp;w
�

�
onto H p

w , where w D w1 or w2.
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Therefore O is bijective if and only if M.˚;�/ .O/ is bijective from ran
�
Cp1;w1
�

�

to ran
�
Cp2;w2
�

�
.

Furthermore

M. Q�; Q̊ /

�
O�1

�
M.˚;�/ .O/ D Cp1;w1

Q�
ı O�1 ı Dp2;w2

Q̊
Cp2;w2
˚ ı O ı Dp1;w1

� D

D Cp1;w1
Q�

ı Dp1;w1
� D G Q�;� ;

and therefore the projection on ran
�
Cp1;w1
�

�
. ut

Remark 2. Note that for p1 ¤ p2, there does not exist a bijective operator O W

H p1
w1 ! H p2

w2 by Theorem 3.

The condition number of a matrix (or an operator) plays an important role in
numerical analysis [59] and is defined by � .M/ D kMk �

��M�1
��. For matrices with

non-zero kernel we can define the generalized condition number [11] by �� .M/ D

kMk �
��M�

��. By using Lemma 11 and Theorem 5 it is straightforward to show

��
�
M.˚;�/ .O/

�
D �� .G˚;� / � ��

�
G Q�;�

�
� �� .O/ :

Theorem 6. Let� be an A -localized frame for H and w an A -admissible weight.
Assume that O W H ! H is invertible and that M.�; Q�/.O/ 2 A . Then O is
invertible simultaneously on all coorbit spaces H p

w , 1 � p � 1.

Proof. By Lemma 11 the matrix of O�1 is given by M. Q�;�/.O
�1/ D

�
M.�; Q�/.O/

��
.

Since A is closed with respect to taking a pseudo-inverse and M.�; Q�/.O/ 2 A , it

follows that also M. Q�;�/.O
�1/ 2 A 	 B

�
`p

w; `
p
w

�
. By Lemma 10 O�1 is therefore

bounded on H p
w for 1 � p � 1. ut

This result is special for intrinsically localized frames and fails for wavelet
frames (Fig. 1).

5 Outlook

This manuscript was motivated by many discussions of the first author with applied
scientists who work on the numerical solution of integral equations. In applications
in acoustics, the solutions of the Helmholtz equation are of particular importance,
see, e.g., [55], they are used for example, for the numerical estimation of head-
related transfer functions [57, 72].

In general the problem of solving an integral equation can be seen as solving a
linear equation

O � f D g ; (28)
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H p1w1 H p2w2
O

ran (CY) ran (CY)

DY CY DF CF

M = M(Y,F ) (O)

Fig. 1 All operators in the diagram are bijective, if M or equivalently O, is bijective.

where the operator O models the physical system and the right-hand side is given
and the solution f is to be determined. For the important example of sound
propagation, the right-hand side g is often called the load vector. It is usually
assumed that f ; g; are in some appropriate function spaces.

For the numerical treatment of such operator equations one needs a reduction to
a discrete formulation. This is often done with a so-called Galerkin scheme [66].
As a first step, either the boundary of the considered space or the whole space itself
are separated in finite patches or finite volume elements. This leads to the Boundary
Element Method [38] or the Finite Element Method [7]. In the Galerkin scheme one
first finds the matrix M D M.�;�/.0/ corresponding to the operator O with respect
to a given basis or frame � . Instead of solving the operator equation Of D g, one
converts (28) into a matrix equation as follows:

Of D g ”
X

l

˝
f ; Q�l

˛
O�l D g ”

X

l

˝
f ; Q�l

˛
hO�l; �ki D hg; �ki ”

M.˚;˚/ .O/ � C Q̊ f D C˚g: (29)

Here M D M .˚; Q̊ / .O/ is called the system matrix or stiffness matrix.
In the setting of localized frames, the natural function spaces are the Banach

spaces H p
w . By the results above this is equivalent to the vectors in the matrix

equation (29) to be contained in some `p
w-space.

In finite and boundary element approach the system ˚ is usually a spline-
like basis [38]. Recently wavelet bases [26], but also frames have been applied,
e.g. in [54, 68]. Currently the potential of other frames is investigated for solving
operator equations in acoustics, such as ˛-modulation frames [67]. Note, however,
that neither wavelet frames nor ˛-modulation frames are localized in the sense
of Definition 1. As mentioned above, as long as (27) is fulfilled most results of
Section 4 can still be applied.
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To use a numerical solver, it is necessary to perform a further reduction to a
finite-dimensional matrix equation. This means that we have to find a good finite
dimensional approximation of M.˚;˚/.O/. This is done by restricting M.˚;˚/.O/ to
a suitable finite-dimensional subspace. Specifically, let fPng be a bounded sequence
of finite-rank orthogonal projections in B

�
H
�

with the property that Pnx ! x for
all x 2 H and n ! 1. Assume that A 2 B

�
H
�

is invertible. Consider

PnAPnx D Pny (30)

and solve for xn D .PnAPn/
�1 Pny. This is the classical projection method [40].

The projection method for A is said to converge, if for all y 2 H there exists a
unique solution xn to (30) with xn ! A�1y. This is the case [40] if and only if
the matrices An D PnAPn have uniformly bounded inverses, i.e. sup

n�N

��A�1
n

�� < 1.

In particular, if kI � Ak < 1, then the method converges. The special case when
Pn is the orthogonal projection on the first n coordinates in `2 is called the finite
section method. In numerical analysis, this approximation scheme is often called
the Galerkin scheme.

If jhAx; xij � c � kxk2, then A is invertible,
��A�1

�� � c�1 and it is easy to see that
the projection method converges.

A convergence analysis of the finite section method in weighted `p-spaces is
carried out in [52]. The methods are closely related to the methods used for the
analysis of localized frames.

The projection method can be combined with frames in several ways:

• The “naive approach”: assume that K D Z and choose MN k;l D M.˚;˚/.O/k;l for
jkj; jlj � N. This corresponds to a finite section method.

• Subspace selection: Choose a sequence KN of finite subsets of K with the
following properties:

(i) Ki 	 Kj for i � j and
S1

iD1 Ki D K.
(ii) The space VN WD span f kjk 2 KNg has dimension N.

For a frame � it may happen that dim VN < card.KN/, but the set �.N/ WD

f kjk 2 KNg is always a frame for VN . (This need not be the case when dim VN D

1). For the numerical treatment the condition numbers of the transforms, i.e.
the quotients of the frame bounds, has to be controlled. Therefore we consider
�.N/ D f k jk 2 KN g being a frame for VN with bounds C,D independent of N.
This is called a subframe in [54]. We denote the canonical dual on VN by Q�.N/ WDn

Q 
.N/
k

o
. Then use the projection PNf D

P
k2KN

hf ;  ki Q 
.N/
k D

P
k2KN

D
f ; Q 

.N/
k

E
 k and

solve (30). Since ran
�
M .˚;˚/ .O/

�
	 ran .C˚/, this set-up leads exactly to the

formulation in (29).
In concrete applications it is a non-trivial problem to find index sets such

that the approximation method converges and at the same time is numerically
efficient. For wavelet frames this problem can be tackled with a multi-resolution
approach with a basis property on each scale, see, e.g., [54].
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We note that the matrix MN cannot have full rank whenever the frame f kjk 2 KNg

is redundant for VN . By Lemma 11 the equation (29) still has a unique solution,
although the matrix is not invertible. For the efficient solution of (29), even for
frames, one can apply Krylov subspace methods, such as the conjugate gradient
method [54]. Other possible methods include versions of Richardson iterations [23]
or steepest descent methods [24].
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Computing the Distance Between Frames
and Between Subspaces of a Hilbert Space

Travis Bemrose, Peter G. Casazza, Desai Cheng,
John Haas, and Hanh Van Nguyen

1 Introduction

A fundamental notion in Hilbert space frame theory is to compute the distance
between frames and the distance between subspaces of a Hilbert space. One space
these problems arise is with a number of algorithms which serve to approximate
frame operators or inverse operators [5]. There are six standard distance functions
used in frame theory. In this paper we will establish the exact relationship between
all of these distance functions.

A standard result in the field [2] is that the closest Parseval frame (see section 2
for the definitions) to a frame ˚ D f�ig

N
iD1 for HM is fS�1=2�ig

N
iD1, where S is the

frame operator of ˚ . Also well known is the closest equal norm frame to a given
frame. But the algorithms which carry out these constructions cancel each other out.
As a result, a longstanding problem in the field involving distances is the Paulsen
Problem.

Paulsen Problem Given a frame ˚ , find the closest equal norm tight frame to ˚ .

This is not the usual statement of the Paulsen Problem which originally asked:
Given a nearly equal norm, nearly Parseval frame, find the closest equal norm
Parseval frame. However, the above version is the general result we would like to
have. The Paulsen Problem has proved exceptionally difficult because it mixes a
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geometric condition with an algebraic condition, which is often a difficult mixture.
There are partial results on the Paulsen Problem [1, 4], but we believe the distances
given to date are far from the minimal distance.

In this paper, we will make a detailed study of six major distance measurements
for frames and subspaces (see Section 2.2 for the definitions): The frame distance
dF, the Gramian distance dG, the isomorphy distance dI , the subspace distance
dS, the chordal distance dC, and the Parseval equivalence class distance dP.
We will establish the best relationships between these distance measurements and
provide numerous equivalent formulations for computing the distances. One very
useful result is that the chordal distance between two subspaces is given by two
orthonormal bases – one from each subspace – so that the orthonormal bases are
biorthogonal.

The main goal in this paper is to establish the relationship between six of
the standard distance functions in frame theory so that when one is faced with a
distance problem, they may find that an equivalent form is much easier to compute.
Each of these distances has certain advantages for given situations. The standard
distance is immediate when given two frames ˚ and � . However, if we want to
compute the minimal distance between all frames unitarily isomorphic to ˚ and � ,
this is an extremely difficult computation. In this case, the Gramian distance has
the advantage that unitarily isomorphic frames have the same gram matrix so the
minimal distance is now immediate. Also, chordal distance between subspaces has
the advantage that there is a simple algorithm for computing chordal distance. Also,
chordal distance has a simple representation in terms of projecting an orthonormal
basis in the space onto the subspaces which in turn can be computed quickly from
the trace of the project of the projections.

The paper is organized as follows. Section 2.1 is an introduction to the basic
notions from frame theory and Section 2.2 gives the distance functions we will be
working with. In Section 3, we show how the distances between frames relate to
the subspace distances in a higher dimensional Hilbert space, and in Section 4, we
show how to compute the closest pairs of frames corresponding to fixed pairs of
subspaces. Section 5 is a detailed study of the subspace distance and Section 6 is
a detailed study of the chordal distance. Finally, in Section 7, we relate all of the
distances discussed in this paper.

2 Preliminaries

In this section, we introduce the basics of frame theory and define several notions
of distance that we consider in this paper.
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2.1 Finite Frames

We write HM for any real M-dimensional Hilbert space. A family of vectors ˚ D

f�ig
N
iD1 in HM is a frame with lower and upper frame bounds A and B for real

numbers 0 < A � B if

A kxk2 �

NX

iD1

jhx; �iij
2 � B kxk2 ; for all x 2 HM:

The frame is A-tight if A D B and it is Parseval if A D B D 1. It is equal norm if
k�ik D

���j

�� for all 1 � i; j � N and it is unit norm if every frame vector is a unit
vector.

We reserve the letter M to refer to the dimension of the Hilbert space that a frame
spans, and we use the letter N to refer to a frame’s cardinality. An .N;M/ frame is
thus a frame for HM consisting of N vectors.

With respect to a fixed orthonormal basis for HM , the synthesis matrix of an
.N;M/ frame is

˚ D
�
�1 �2 � � � �N

�
;

the M �N matrix with columns given by the coordinate representations of the frame
vectors. Because it is convenient to identify a frame with its synthesis matrix, we
proceed with the tacit understanding that ˚ is both a matrix and a set of vectors.

The analysis matrix of an .N;M/ frame ˚ is the N � M matrix ˚T and is
determined by the mapping

˚Tx D

NX

iD1

hx; �ii ei 2 HN ;

where feig
N
iD1 is the natural basis for HN D `2.N/. The frame operator matrix is

the M � M matrix S D S˚ D ˚˚T and is given by

Sx D

NX

iD1

hx; �ii�i;

for x 2 HM . Now,

hSx; �i D

NX

iD1

jhx; �iij
2 ;

so it follows that S is a positive, self-adjoint, invertible matrix satisfying A � I � S �

B � I. A frame is A-tight if and only if S D A � I, so ˚ is a Parseval frame if and only
if S D I, in which case



84 T. Bemrose et al.

kxk2 D

NX

iD1

jhx; �iij
2

for x 2 HM .
The space of M�M orthogonal matrices is called the orthogonal group, denoted

OM , which is a group under normal matrix multiplication. Two .N;M/ frames˚ and
� are (unitarily) isomorphic if there exists U 2 OM such that � D U˚ , in which
case we write ˚ ' � .

The Gram matrix of an .N;M/ frame ˚ D
�
�1 �2 : : : �N

�
is the N � N matrix

G D G˚ D ˚T˚ D
�˝
�j; �i

˛�N

i;jD1 :

If ˚ and � are .N;M/ frames, then a straightforward application of the singular
value decomposition shows that G˚ D ˚T˚ D � T� D G� if and only if ˚ ' �

[2], so we sometimes identify unitarily isomorphic frames by their Gram matrix.
For further details on the fundamentals of frame theory, see [2, 3, 5? ].

2.2 Distances

Given real M � N matrices X and Y , recall that the Hilbert Schmidt trace inner
product,

hX;YiH:S: D tr.XYT/;

induces the norm k�kH:S: on R
M�N , which is in fact the Frobenius norm. This leads

to the following well-known fact.

Proposition 1. If X is an M�N matrix with column vectors f�ig
N
iD1 and row vectors

fxig
M
iD1, then

kXk2H:S: D

MX

iD1

kxik
2 D

NX

iD1

k�ik
2 :

With this in mind, we define our notions of distance in terms of the metric
induced by the Hilbert Schmidt norm. The fundamental metric on the space of
frames is the frame distance.

Definition 1. If ˚ D f�ig
N
iD1 and � D f ig

N
iD1 are .N;M/ frames, the frame

distance between them is

dF.˚; �/ D k˚ � �kH:S: :
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Next, we define two notions of distance which are pseudometrics on the space
of .N;M/ frames. Because the Gram matrix encodes much of the geometric
information of a frame, we define a distance in terms of the Gram matrices of frames.

Definition 2. If ˚ D f�ig
N
iD1 and � D f ig

N
iD1 are .N;M/ frames, the Gramian

distance between them is

dG.˚; �/ D kG˚ � G�kH:S: ;

where G˚ D ˚T˚ and G� D � T� are the Gram matrices of ˚ and � .

This is a pseudometric because if ˚ ' � , then G˚ D G� , which means
dG.˚; �/ D 0. We also define a distance in terms of unitary isomorphy of frames.

Definition 3. If ˚ D f�ig
N
iD1 and � D f ig

N
iD1 are .N;M/ frames, the isomorphy

distance between them is

dI.˚; �/ D inf
˚ 0'˚
� 0'�

��˚ 0 � � 0
��

H:S: :

As with the Gramian distance, this is a pseudometric because dI.˚; �/ D 0

whenever ˚ ' � .
Next, we consider notions of distance between M-dimensional subspaces of HN .

The Grassmannian space GN;M is the space of M-dimensional subspaces of HN .
If W is a M-dimensional subspace of HN , we let B.W/ denote the family of
orthonormal bases of W. Similarly to how it is convenient to identify a frame
by its synthesis matrix, it is also convenient to identify an orthonormal basis
X D fxig

M
iD1 2 B.W/ with the M � N matrix

X D

2

64
xT
1
:::

xT
M

3

75 ;

where the rows are the coordinate representations of the transposed elements of X
with respect to some fixed basis for HN . Thus, we think of an element X 2 B.W/
both as an M � N matrix and as a set of row vectors.

Definition 4. If W1;W2 2 GN;M , then the subspace distance between W1 and W2 is

dS.W1;W2/ D inf
X2B.W1/
Y2B.W2/

kX � YkH:S: :

We sometimes identify an M-dimensional subspace W of HN by its uniquely
corresponding orthogonal projection, the symmetric, idempotent rank M, N � N
matrix P with the property that

Px D x for x 2 W and Py D 0 for y 2 W?:
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By the Parseval identity, X D fxig
M
iD1 2 B.W/ if and only if the orthogonal

projection P of HN onto W is given by

P D

MX

iD1

xix
T
i D XTX:

Finally, we recall the chordal distance.

Definition 5. Let W1;W2 2 G .N;M/. A pair .X;Y/, where X D fxig
M
iD1 2 B.W1/

and Y D fyig
M
iD1 2 B.W2/, is said to be a pair of principal bases between W1 and

W2 if

max
x2W1
kxkD1

max
y2W2

kykD1

hx; yi D hx1; y1i

and, for i > 1, we have

max
x2Wi

1
kxkD1

max
y2Wi

2
kykD1

hx; yi D hxi; yii ;

where Wi
1 D W1 \ span.x1; : : : ; xi�1/

? and Wi
2 D W2 \ span.y1; : : : ; yi�1/

?.
The principal angles f�ig

M
iD1 �

�
0; �

2

�
are then defined by

cos �i D hxi; yii ;

for each i 2 f1; : : : ;Mg. The chordal distance between W1 and W2 is then

dC.W1;W2/ D

vuut
MX

iD1

sin2 .�i/:

3 From Frames to Subspaces

In this section, we see that there is a natural relationship between the distance
between frames and the distance between the ranges of their analysis matrices. We
emphasize this ideas for the case of Parseval frames.

If ˚ is an .N;M/ frame with transposed row vectors fxig
M
iD1, then the spanning

property of ˚ means that fxig
M
iD1 forms a linearly independent subset of HN . We

call the subspace W D spanfxig
M
iD1 the analysis subspace of ˚ , and to facilitate

notation, we write � .˚/ D W to denote the analysis subspace generated by ˚ . To
justify this name, we recall a standard result [2, 3, 5].
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Theorem 1. If ˚ is an .N;M/ frame with analysis subspace W D � .˚/, then W
is the range of ˚T .

By another standard result [2, 3, 5], we can identify unitarily isomorphic frames
by their analysis subspaces.

Theorem 2. If ˚ and � are .N;M/ frames and ˚ ' � , then � .˚/ D � .�/.
Moreover, if ˚ and � are Parseval, then ˚ ' � if and only if � .˚/ D � .�/.

Let PN;M denote the class of Parseval .N;M/ frames and let PN;M=' be
the partition of PN;M into the equivalence classes induced by unitary isomorphy.
Theorem 2 shows that the elements of PN;M=' are in one-to-one correspondence
with the elements of GN;M . Moreover, if ˚ is a Parseval .N;M/ frame and Œ˚� 2

PN;M=' is the corresponding equivalence class, then the elements of Œ˚� are in
one-to-one correspondence with the elements of B.� .˚//. In order to see this, we
recall that the orthonormal bases for a given M-dimensional subspaces are unitarily
equivalent.

Lemma 1. If W is an M-dimensional subspace of HN and X D fxjg
M
jD1 2 B.W/

and Y D fyjg
M
jD1 � HN is any set of orthonormal vectors , then Y 2 B.W/ if and

only if there exists Y D UX for some U 2 OM:

Proof. If Y D UX for some orthogonal matrix U, then Y generates the same
orthogonal projection as X because

YTY D XTUTUX D XTX;

which means that Y 2 B.W/. Conversely, if Y 2 B.W/, then U D .hxb; yai/Ma;bD1

is an orthogonal matrix because

.UTU/ab D

MX

jD1

˝
ya; xj

˛ ˝
xj; yb

˛
D

*
MX

jD1

˝
ya; xj

˛
xj; yb

+
D hya; ybi D ıab;

where ıab is the dirac delta function. In this case, the transpose of the jth row of
UX is

MX

lD1

˝
yj; xl

˛
xl D

MX

lD1

xlx
T
l yj D yj;

where the last equality follows because
PM

lD1 xlxT
l is the orthogonal projection of

HN onto W. This means that Y D UX, completing the proof. ut

If ˚1;˚2 2 Œ˚� for some Œ˚� 2 PN;M=', then Theorem 2 shows that ˚1 and ˚2
induce the same analysis subspace. Conversely, if W 2 GN;M and X1;X2 2 B.W/,
then setting ˚1 D X1 and ˚2 D X2 gives ˚1˚T

1 D ˚2˚
T
2 D I, so ˚1 and ˚2 are

Parseval .N;M/ frames, and they are unitarily isomorphic by Lemma 1.
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Finally, we show that the space of equivalence classes of Parseval .N;M/ frames
and the space of M-dimensional subspaces of HN are isometric. In order to do this,
we consider a version of the isomorphy distance dI restricted to PN;M and lifted to
PN;M=', which is well-defined by Theorem 2.

Definition 6. For Œ˚�; Œ� � 2 PN;M=', the distance between Œ˚� and Œ� � is

dP.Œ˚�; Œ� �/ D dI.˚; �/:

Theorem 3. The metric spaces .GN;M; dS/ and .PN;M; dP/ are isometric. In partic-
ular, given Parseval .N;M/ frames ˚ and � , we have

dP.Œ˚�; Œ� �/ D dS.W1;W2/;

where W1 D � .˚/ and W2 D � .�/.

Proof. We have already seen that these spaces are in one-to-one correspondence.
The claim follows by identifying the elements of Œ˚� and Œ� � with the elements of
B.W1/ and B.W2/, respectively. ut

4 From Subspaces to Frames

In this section, we compute the isomorphy distance between well-conditioned
frames ˚ and � . In light of Theorem 2, if W1 D � .˚/ and W2 D � .�/, then this
is equivalent to minimizing the frame distance over all possible pairs of unitarily
equivalent frames corresponding to W1 and W2.

By definition, the value dI.˚; �/ is obtained by minimizing over OM �OM . In the
following lemma, we show that this can be simplified to a maximization over OM .

Lemma 2. If ˚ and � are .N;M/ frames, then

d2I .˚; �/ D k˚k2H:S: C k�k2H:S: � 2 sup
W2OM

tr.W˚� T/:

Equivalently, we have

dI.˚; �/ D inf
˚ 0'˚

dF.˚
0; �/ D dF inf

� 0'�
.˚;� 0/:

Proof. Because OM is a group, if U;V 2 OM , then W D VTU 2 OM , so using that
the Hilbert Schmidt norm is rotationally invariant, we have

d2I .˚; �/ D inf
U;V2OM

kU˚ � V�k2H:S: D inf
W2OM

kW˚ � �k2H:S: :
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Expanding the right-hand expression and using the cyclicity of the trace then gives
the result. ut

In general, the expression sup
W2OM

tr.W˚� T/ from Lemma 2 does not have a

unique maximizer, for instance, if the analysis subspaces of˚ and� are orthogonal.

Example 1. Let

˚ D

�
1 1 1 1

1 1 �1 �1

�
and � D

�
1 �1 1 �1

�1 1 1 �1

�

which are .4; 2/ frames. Since ˚� T D 02, where 02 is the zero 2 � 2 matrix, it
follows that tr.W˚� T/ D 0 for every W 2 O2.

However, if� and˚ are .N;M/ frames such that the M�M matrix˚� T is invertible
(i.e., ˚ , � are dual frames), then the expression sup

W2OM

tr.W˚� T/ is achieved by a

unique maximizer W 2 OM , which we compute in the following theorem.

Theorem 4. If � and ˚ are .N;M/ frames such that the M � M matrix ˚� T is
invertible, then U D .�˚T˚� T/�1=2�˚T is the unique element of OM such that

tr.U˚� T/ D sup
W2OM

tr.W˚� T/:

In particular,

sup
W2OM

tr.W˚� T/ D tr
�
.�˚T˚� T/1=2

�
:

Proof. Consider the polar decomposition, ˚� T D VP, where V is a unitary matrix
and P D .�˚T˚� T/1=2 is positive semidefinite. In fact, P is positive definite
because of the invertibility assumption on ˚� T , and thus

V D ˚� T.�˚T˚� T/�1=2 2 OM:

Given any U 2 OM , we have

tr.U˚� T/ D tr.UVP/ D hU;VTiP;

where h�; �iP is the inner product induced by P. The Cauchy Schwarz inequality then
implies

˝
U;VT

˛
P �

ˇ̌˝
U;VT

˛
P

ˇ̌
� kUkP

��VT
��

P ;
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where the right inequality is equality only when U and VT are collinear, and since
U is an orthogonal matrix, the left and right inequalities are both equalities if and
only if U D VT , so the claim follows. ut

Combining Lemma 2 and Theorem 4, we have the following computation for the
isomorphy distance.

Corollary 1. If � and ˚ are .N;M/ frames such that the M � M matrix ˚� T is
invertible, then

d2I .˚; �/ D k˚k2H:S: C k�k2H:S: � 2 tr
�
.�˚T˚� T/1=2

�
:

Given a frame ˚ and an arbitrary subspace W 2 GN;M , it may be desirable to
find the closest Parseval frame � with analysis subspace W. When the invertibility
condition is satisfied, we can identify this frame precisely.

Corollary 2. Let ˚ be an .N;M/ frame and let W 2 GN;M. If � is any Parseval
.N;M/ frame such that � .�/ D W, the product ˚� T is invertible, and we let
Q� WD ˚� T.�˚T˚� T/�1=2� , then

inf
� 0

2PN;M
� .� 0/DW

d2F.˚; �
0/ D k˚k2H:S: C M � 2 tr

�
.˚� T�˚T/1=2

�
D d2F.˚; Q�/;

and Q� is the unique Parseval .N;M/ frame with analysis subspace W that achieves
this minimum. In addition, if ˚ is Parseval, then

d2F.˚; Q�/ D 2
�
M � tr

�
.˚� T�˚T/1=2

��
:

Proof. The distance of interest is the smallest frame distance between ˚ and the
Parseval frames with analysis subspace W, which, by Theorem 2, is achieved by
the frame in Œ� � that is closest to ˚ . By Lemma 2, this distance is the isometry
distance between ˚ and � . By Theorem 4, Q� is the unique frame in Œ� � whose
frame distance to ˚ gives this isometry distance. ut

5 The Subspace Distance

In this section, we study the basic properties of the subspace distance. In order to
do this, we show that the subspace distance dS.W1;W2/ is characterized by a pair of
biorthogonal orthonormal bases from W1 and W2.

Definition 7. If X D fxig
M
iD1 2 B.W1/ and Y D fyig

M
iD1 2 B.W2/, then .X;Y/

is said to be a pair of companion bases with respect to W1 and W2, or just
companion bases, if the following conditions hold:

1. hxi; yii � 0; 1 � i � M;
2.
˝
xi; yj

˛
D 0; 1 � i ¤ j � M.

To begin, we show the existence of companion bases and how to compute them.
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Lemma 3. If W1 and W2 are M-dimensional subspaces of HN, then there exists
X D fxig

M
iD1 2 B.W1/ and Y D fyig

M
iD1 2 B.W2/ such that .X;Y/ is a pair of

companion bases for W1 and W2.

Proof. Let QX D fQxig
M
iD1 2 B.W1/ and QY D fQyig

M
iD1 2 B.W2/. By the singular value

decomposition, there exist orthogonal M � M matrices U and V and a diagonal
matrix D with nonnegative diagonal entries such that QX QYT D UDVT . If we set
X D UT QX and Y D VT QY , then X 2 B.W1/ and Y 2 B.W2/ by Lemma 1 and

�˝
xi; yj

˛�M

i;jD1 D XYT D UT QX QYTV D UTUDVTV D D;

which means that .X;Y/ is a pair of companion bases.

Next, we show that when given a pair of orthonormal bases for subspaces, then
the Hilbert Schmidt distance between them is minimal when they are companion
bases.

Lemma 4. If X D fxig
M
iD1 2 B.W1/ and Y D fyig

M
iD1 2 B.W2/ are a pair of

companion bases, then

kX � Yk2H:S D inf
U2OM

kUX � Yk2H:S

and this infimum is achieved if and only if U D I.

Proof. If QX D fQxig
M
iD1 2 B.W1/, then by Lemma 1, there exists U D .uij/

M
i;jD1 2 OM

such that QX D UX, or equivalently Qxi D
PM

jD1 uijxj for i 2 f1; : : : ;Mg. This means
that minimizing over B.W1/ is equivalent to minimizing over OM; that is,

inf
fQxig

M
iD12B.W1/

MX

iD1

kQxi � yik
2 D inf

.uij/
M
i;jD12OM

MX

iD1

������

MX

jD1

uijxj � yi

������

2

:

With this in mind and using that fxig
M
iD1 and fyig

M
iD1 are companion bases for W1 and

W2, we calculate

MX

iD1

������

MX

jD1

uijxj � yi

������

2

D

MX

iD1

0

@2 � 2

*
MX

jD1

uijxj; yi

+1

A

D

MX

iD1

.2 � 2uii hxi; yii/

�

MX

iD1

.2 � 2 hxi; yii/ D

MX

iD1

kxi � yik
2 :

The inequality saturates if and only if uii D 1 for all 1 � i � M if and only if U is
the identity matrix. The statement follows by recognizing that
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MX

iD1

������

MX

jD1

uijxj � yi

������

2

D kUX � Yk2H:S: :

ut

Next, we show that the computation of the subspace distance is equivalent to a
minimization over OM .

Lemma 5. If W1 and W2 are M-dimensional subspaces of HN, X 2 B.W1/ and
Y 2 B.W2/, then

dS.W1;W2/ D inf
W2OM

kWX � YkH:S: :

Proof. Lemma 1 shows that dS can be rephrased in terms of minimization over
OM � OM ,

inf
QX2B.W1/
QY2B.W2/

�� QX � QY
��

H:S: D inf
U;V2OM

kUX � VYkH:S: :

Because OM is a group, if given U;V 2 OM , then there exist W D VTU 2 OM ,
so using that the Hilbert Schmidt norm is rotationally invariant, dS can further be
simplified to minimizing over just OM ,

inf
U;V2OM

kUX � VYkH:S: D inf
W2OM

kWX � YkH:S: :

ut

Now we are ready to prove the main theorem of this section.

Theorem 5. Let W1 and W2 be M-dimensional subspaces of HN. If X D fxig
M
iD1 2

B.W1/ and Y D fyig
M
iD1 2 B.W2/ are companion bases for W1 and W2, then

d2S.W1;W2/ D kX � Yk2H:S: :

Furthermore, if QX 2 B.W1/ and QY 2 B.W2/, then

d2S.W1;W2/ D
�� QX � QY

��2
H:S:

if and only if there exists U 2 OM such that

QX D UX and QY D UY:

Proof. Lemma 5 and Lemma 4 show that dS.W1;W2/ D kX � Yk2H:S: :
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If QX D UX and QY D UY for some U 2 OM , then the rotational invariance of the
Hilbert Schmidt norm shows that

d2S.W1;W2/ D kX � Yk2H:S: D kU.X � Y/k2H:S: D
�� QX � QY

��2
H:S: :

Conversely, suppose that QX 2 B.W1/, QY 2 B.W2/, and dS.W1;W2/ D
�� QX � QY

��
H:S: :

By Lemma 1, there exist U;V 2 OM such that QX D UX and QY D VY , so rotational
invariance of the Hilbert Schmidt norm gives

�� QX � QY
��2

H:S D
��VTUX � Y

��2
H:S: :

Thus, the fact that
�� QX � QY

��
H:S: D kX � YkH:S: together with Lemma 5 and Lemma 1

shows that VTU D I, which means that U D V , completing the proof. ut

We end this section with some final results concerning the distance given by
companion bases.

Corollary 3. Given M-dimensional subspaces W1 and W2 of HN with companion
bases X D fxig

M
iD1 2 B.W1/ and Y D fyig

M
iD1 2 B.W2/, we have

d2S.W1;W2/ D 2
�
M � tr.XYT/

�
D 2

 
M �

MX

iD1

hxi; yii

!
:

Proof. This is a straightforward application of Theorem 5. ut

Combining these results, we see that the subspace distance can be characterized
in terms of the singular value decomposition.

Corollary 4. If W1 and W2 are M-dimensional subspaces of HM, QX 2 B.W1/ and
QY 2 B.W2/, then

d2S.W1;W2/ D 2 .M � tr.D// ;

where U;V 2 OM and D is the diagonal matrix with nonnegative entries such that

QX QYT D UDVT

is the singular value decomposition of QX QYT.

Proof. As in the proof of Lemma 3, the pair X D UT QX and Y D VT QY forms a pair of
companion bases for W1 and W2, so the claim follows by applying Corollary 3. ut
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6 The Chordal Distance

In this section, we recall the basic properties of the chordal distance. To begin, we
show that every pair of principal bases is also a pair of companion bases.

Proposition 2. Let W1;W2 2 GN;M. If X D fxig
M
iD1 2 B.W1/ and Y D fyig

M
iD1 2

B.W2/ are a pair of principal bases between W1 and W2, then .X;Y/ are also a
pair of companion bases.

Proof. If i; j 2 f1; : : : ;Mg with i < j, then since every linear combination ˛xi C

ˇxj 2 Wi
1 D W1 \ spanfx1; : : : ; xi�1g

?, it follows from the definition of principal
vectors that the function

F.t/ WD
��.cos t/xi C .sin t/xj � yi

��2

obtains its absolute minimum at t D 0: By expanding the squared norm in the
definition of F and using that X and Y are orthonormal sets, we have

F.t/ D 2 � 2.cos t/ hxi; yii � 2.sin t/
˝
xj; yi

˛
;

and since F0.0/ D 0 and F00.0/ � 0, a direct computation gives
˝
xj; yi

˛
D 0 and

hxi; yii � 0. The argument is similar for the case i > j, so the claim follows. ut

Fundamental to chordal distance is its relationship to the trace of the product of
projections onto the subspaces.

Lemma 6. Let W1;W2 2 GN;M. If P is the orthogonal projection of HN onto W1 and
Q is the orthogonal projection of HN onto W2, then

tr.PQ/ D

MX

iD1

cos2.�i/;

where f�ig
M
iD1 are the principal angles between W1 and W2.

Proof. Let X 2 B.W1/ and Y 2 B.W2/ be a pair of principal bases between W1

and W2, so P D XTX and Q D YTY . By Proposition 2, X and Y are also companion
bases between W1 and W2, so the definitions of principal bases and companion bases
together show that XYT is an M � M diagonal matrix,

XYT D diag.cos �i/
M
iD1;

which gives

tr.PQ/ D tr.XTXYTY/ D tr.XYTYXT/ D tr.XYT.XYT/T/ D

MX

iD1

cos2.�i/:

ut
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Because of this, the chordal distance is characterized by the trace of orthogonal
projections. The following result is in [6].

Proposition 3. Let W1;W2 2 GN;M. If P is the orthogonal projection of HN onto W1

and Q is the orthogonal projection of HN onto W2, then

d2C.W1;W2/ D M � tr.PQ/:

Proof. If f�ig
M
iD1 are the principal angles between W1 and W2, then applying

Lemma 6 gives

d2C.W1;W2/ D

MX

iD1

sin2.�i/ D M �

MX

iD1

cos2.�i/ D M � tr.PQ/:

ut

Another standard result from [6] relates the chordal distance to projections of the
orthonormal bases for HN onto subspaces.

Theorem 6. Let M1;M2 2 f1; : : : ;Ng, let W1 2 GN;M1 , and let W2 2 GN;M2 . If P
is the orthogonal projection onto W1, Q is the orthogonal projection onto W2, and
X D fxig

N
iD1 2 B.HN/ is any orthonormal basis for HN, then

NX

iD1

kPxi � Qxik
2 D .M1 C M2/ � 2 tr.PQ/:

In particular, if dim W1 D dim W2 D M, then

d2C.W1;W2/ D
1

2

NX

iD1

kPxi � Qxik
2 :

Proof. Recall that because P and Q are orthogonal projections, we have PDPTDP2,
Q D QT D Q2, tr.P/ D M1 and tr.Q/ D M2. Using this, we compute that

NX

iD1

kPxi � Qxik
2 D

NX

iD1

hPxi; xii C

NX

iD1

hQxi; xii � 2

NX

iD1

hPQxi; xii

D tr.P/C tr.Q/ � 2 tr.PQ/

D M1 C M2 � 2 tr.PQ/:

If dim W1 D dim W2 D M; then Proposition 3 shows that

NX

iD1

kPxi � Qxik
2 D 2.M � tr.PQ// D 2d2C.W1;W2/:

ut
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It follows immediately that the chordal distance between two subspaces is the
same as the distance between their orthogonal complements.

Corollary 5. Let W1;W2 2 GN;M. If W?
1 and W?

2 are the orthogonal complements
of W1 and W2, respectively, then

dC.W1;W2/ D dC.W
?
1 ;W

?
2 /:

Proof. If P and Q are the orthogonal projections of HN onto W1 and W2, respec-
tively, then P0 D .I � P/ and Q0 D .I � Q/ are the orthogonal projections onto W?

1

and W?
2 , respectively, so given any orthonormal basis X D fxig

M
iD1 2 B.HN/ for

HN , it follows from Theorem 6 that

d2C.W
?
1 ;W

?
2 / D

1

2

NX

iD1

k.I � P/xi � .I � Q/xik
2

D
1

2

NX

iD1

kPxi � Qxik
2

D d2C.W1;W2/:

ut

7 Relationships Between Distances

In this section, we relate the subspace and chordal distances. In the special case of
Parseval frames, we also relate these to the Gramian and isomorphy distances. The
fundamental observation is that companion bases and principal bases are essentially
the same objects. We begin with a lemma.

Lemma 7. Let W1;W2 2 GN;M. If X D fxig
M
iD1 2 B.W1/ and Y D fyig

M
iD1 2 B.W2/

are companion bases, then

hxi; yii D sup
y2W2

kykD1

hxi; yi

for each i 2 f1; : : : ;Mg.

Proof. If y 2 W2 with kyk D 1, then the Parseval identity gives

y D

MX

iD1

hy; yii yi and
MX

iD1

jhy; yiij
2 D 1;
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so jhy; yiij � 1 for every i 2 f1; : : : ;Mg. Using this and the fact that
˝
xi; yj

˛
D 0

whenever i ¤ j, we compute

hxi; yi D

*
xi;

MX

jD1

hy; yjiyj

+

D hy; yii hxi; yii

� hxi; yii

which completes the proof. ut

Thus, up to permutation of indices, we can identify principal bases with
companion bases.

Theorem 7. Let W1;W2 2 GN;M. If X D fxig
M
iD1 2 B.W1/ and Y D fyig

M
iD1 2

B.W2/, then .X;Y/ is a pair of companion bases for W1 and W2 if and only if there
exists some permutation 	 on f1; : : : ;Mg such that

�
QX; QY

�
is a pair of principal

bases for W1 and W2, where QX D fx	.i/gM
iD1 and QY D fy	.i/gM

iD1.

Proof. If QX D fx	.i/gM
iD1 and QY D fy	.i/gM

iD1 is a pair of principal bases for some
permutation 	 , then it is a pair of companion bases by Proposition 2. To see the
converse, suppose that .X;Y/ is a pair of companion bases and choose 	 so that

˝
x	.1/; y	.1/

˛
�
˝
x	.2/; y	.2/

˛
� � � � �

˝
x	.M/; y	.M/

˛
:

By Lemma 7, it follows that QX D fx	.i/gM
iD1 and QY D fy	.i/gM

iD1 form a pair of
principal bases for W1 and W2. ut

Because of this, the subspace distance is also characterized by the principal
angles. This allows us to relate the two distances.

Theorem 8. Let W1;W2 2 GN;M. If f�ig
M
iD1 are the principal angles between W1

and W2, then

d2S.W1;W2/ D 2.M �

MX

iD1

cos �i/:

In particular,

d2S.W1;W2/ � 2d2C.W1;W2/:

Proof. If X 2 B.W1/ and Y 2 B.W2/ are a pair of companion bases, then they are
also a pair of principal bases by Theorem 7. Thus, by Corollary 3,

d2S.W1;W2/ D 2.M �

MX

iD1

cos �i/:
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In particular,

d2S.W1;W2/ D 2

MX

iD1

.1�cos �i/ � 2

MX

iD1

.1�cos2 �i/ D 2

MX

iD1

sin2 �i D 2d2C.W1;W2/:

ut

Next, we consider the special case of Parseval frames. First, we recall a theorem
from [1].

Theorem 9. If ˚ D f�ig
N
iD1 and � D f ig

N
iD1 are Parseval .N;M/ frames, then

d2G.˚; �/ � 4d2F.˚; �/:

Thus, when working with Parseval frames and their analysis subspaces, we are
able to relate all of the distances defined in this chapter.

Theorem 10. Let ˚ and � be Parseval .N;M/ frames. If W1 D � .˚/ and W2 D

� .�/ are their respective analysis subspaces, then

d2I .˚; �/ D d2S.W1;W2/ � 2d2C.W1;W2/ D d2G.˚; �/ � 4d2F.˚; �/:

Note: From Lemma 2,

inf
˚ 0'˚

d2F.˚
0; �/ D d2F inf

� 0'�
.˚;� 0/ D d21.˚; �/

both end of this inequality are bounded by expressions involving d2F.

Proof. If Œ˚�; Œ� � 2 PN;M , it follows directly from Theorem 3 that d2I .˚; �/ D

d2P.Œ˚�; Œ� �/ D d2S.W1;W2/, and we have d2S.W1;W2/ � 2d2C.W1;W2/ from
Theorem 8.

If G˚ D ˚T˚ and G� D � T� are the Gram matrices of ˚ and � , then they are
both symmetric and Parsevality shows that

G2
˚ D ˚T˚˚T˚ D ˚T˚ D G˚ ;

and, similarly, G2
� D G� , so they are both orthogonal projections. If x 2 W1, then

x D ˚Ty for some y 2 HM , so again Parsevality shows that

G˚x D ˚T˚x D ˚T˚˚Ty D ˚Ty D x:

On the other hand, if x 2 W?
1 , then the fact that W?

1 D ran.˚T/? D ker.˚/ shows
that

G˚x D ˚T˚x D 0:
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Thus, G˚ is the orthogonal projection of HN onto W1 and, by the same argument,
G� is the orthogonal projection of HN onto W2. Since tr.G2

˚/ D tr.G˚/ DPM
iD1 h�i; �ii D M and similarly tr.G2

� / D M, it follows from Proposition 3 that

d2G.˚; �/ D kG˚ � G�k2H:S:

D kG˚k2H:S: C kG�k2H:S: � 2 tr.G˚G� /

D 2 .M � tr.G˚G� //

D 2d2C.˚; �/:

Finally, Theorem 9 shows that d2G.˚; �/ � 4d2F.˚; �/. ut
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Sigma-Delta Quantization for Fusion Frames
and Distributed Sensor Networks

Jiayi Jiang and Alexander M. Powell

1 Introduction

Fusion frames were introduced in [9] as a mathematical tool for problems involving
distributed signal processing and data fusion. Fusion frames provide signal decom-
positions by using projections onto an overlapping and overcomplete collection of
subspaces. This provides a framework for applications where one seeks to process
or infer global information about a signal in settings where hardware and network
constraints only permit access to a collection of coarse local measurements of the
signal. For example, fusion frames have been proposed as a natural medium for
studying distributed sensor networks [11, 12].

We consider the following sensor network structure as a motivating example
throughout the chapter. Suppose that one seeks to measure a signal x over a large
environment E using a collection of remotely dispersed sensor stations fsngN

nD1

that are constrained by limited power, limited computational resources, and limited
ability to communicate. The signal of interest might, for example, include:

• electromagnetic signals arising from communications,
• physical measurements of temperature, acoustics, or general pressure waves,
• biological or chemical signatures within a region,
• a combination of multiple signals of differing modalities.

Each sensor station sn is able to make local measurements in a proximity Wn, but the
size of the environment E and the constraints on sn prevent individual sensor stations
from gaining global insight into the signal x. A key point is that the proximities Wn

will have some overlap; utilizing this redundancy or correlation will make it possible
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to accurately measure the signal x in spite of the various constraints on the sensor
stations. Further assume that:

• the sensor stations sn have been dispersed at known pre-determined locations, so
that each sensor is aware of the proximities Wn for other nearby sensor stations,

• each sensor station is able to transmit analog signals un to a small number of
other nearby sensor stations,

• each sensor station is able to transmit a low-bit digital signal qn to a distantly
located central base station C .

The central base station C is relatively unconstrained in its power and computational
resources, and is used to reconstruct a estimateex of the signal x from the received
digital signals qn.

In this chapter, we examine a mathematical framework for the above sensor
network structure when the environment E D R

d and the signal x 2 R
d. The

sensor stations sn will be mathematically described using fusion frames where
the proximity Wn is modeled as a subspace of R

d and the local measurement
yn D PWn.x/ made by a sensor station is modeled as an orthogonal projection of
x onto Wn. The communicated signals un and qn will be implemented by adapting
Sigma-Delta (˙�) quantization to the setting of fusion frames. The reconstruction
procedure at the base station C will employ an analogue of Sobolev duals for fusion
frames.

2 Fusion Frames and Quantization

Let fWngN
nD1 � R

d be a collection of subspaces of Rd and let fvngN
nD1 � .0;1/ be

a collection of positive scalars. The collection f.Wn; vn/g
N
nD1 is said to be a fusion

frame with bounds 0 < A � B < 1 if

8x 2 R
d; Akxk2 �

NX

nD1

v2nkPWn.x/k
2 � Bkxk2; (1)

where PW.x/ denotes the orthogonal projection of x onto the subspace W and
k � k denotes the Euclidean norm. The fusion frame is said to be tight if A D B.
The fusion frame is said to be unweighted if each vn D 1. Fusion frames may
be viewed as a vector-valued generalization of frame theory and may also be
viewed as a generalization of the so-called finite dimensional decompositions to
the overcomplete setting, see [10] for further background on fusion frames.

If f.Wn; vn/g
N
nD1 � R

d is a fusion frame, then the associated fusion frame
operator S W Rd ! R

d is defined by

S.x/ D

NX

nD1

v2nPWn.x/: (2)
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It is known that S is a positive invertible operator satisfying AI � S � BI, e.g., [9],
in the sense that .S � AI/ and .BI � S/ are positive operators and where I denotes
the identity operator. This implies, e.g., [9], that each x 2 R

d can be recovered from
the fusion frame measurements yn D PWn.x/ 2 R

d; 1 � n � N; by

8x 2 R
d; x D S�1Sx D

NX

nD1

v2n S�1.PWn.x// D

NX

nD1

v2n S�1.yn/: (3)

In the special case when the fusion frame is tight, it is known that the constant A
satisfies

A D d�1

NX

nD1

v2n dim.Wn/; (4)

and the fusion frame operator satisfies S D AI and S�1 D A�1I, e.g., [10].
In particular, for unweighted tight fusion frames one has the simple and explicit
reconstruction formula

8x 2 R
d; x D

 
d

PN
jD1 dim.Wj/

!
NX

nD1

PWn.x/ D

 
d

PN
jD1 dim.Wj/

!
NX

nD1

yn: (5)

The fusion frame measurements yn D PWn.x/ appearing in (3) and (5) are
R

d-valued quantities that can take on a continuum of values and which, in
applications, might physically exist as analog quantities. To be amenable to digital
processing or storage the measurements must undergo a lossy step that reduces their
range to a finite (hence digitally useable) range. For example, in the motivating
sensor network structure in Section 1, each sensor station makes a physical
measurement yn that must be converted to a digital quantity qn to be transmitted
to the base station C . The lossy process of reducing the range of measurements
from the continuum to the discrete or finite is known as quantization.

Memoryless quantization is perhaps the simplest approach to quantizing fusion
frame measurements. For each 1 � n � N; let An � Wn be a finite set, referred to
as a quantization alphabet, and let Qn W Wn ! An be an associated quantizer map
with the property that

8w 2 Wn; kw � Qn.w/k D min
a2An

kw � ak: (6)

Memoryless quantization of the fusion frame measurements fyngN
nD1 produces

quantized measurements fqngN
nD1, with qn 2 An, by

qn D Qn.yn/: (7)
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The fineness or density of the alphabets An plays an important role in determin-
ing how lossy quantization is. Let W be a subspace of Rd and let B.W; �/ D fw 2

W W kwk � �g denote the closed ball of radius � in the subspace W. We shall say
that a finite set N � B.W; �/ is an "-net for B.W; �/ if

8b 2 B.W; �/; 9z 2 N ; such that kb � zk � ": (8)

To illustrate the performance of memoryless quantization, let f.Wn; 1/g
N
nD1 be an

unweighted tight fusion frame for Rd, so that (5) holds. Let x 2 R
d satisfy kxk � 1

and note that the fusion frame measurements yn D PWn.x/ satisfy kynk � kxk � 1,
i.e., yn 2 B.Wn; 1/. For each 1 � n � N, let An be an "-net for B.Wn; 1/ and suppose
that memoryless quantization (7) is implemented using the alphabets fAngN

nD1. Since
yn 2 B.Wn; 1/, the "-net property ensures that kyn � Qn.yn/k � ". So, motivated
by (5), if one reconstructsex 2 R

d from the quantized measurements fqngN
nD1 by

ex D

 
d

PN
jD1 dim.Wj/

!
NX

nD1

qn;

then a coarse upper bound on the overall quantization error gives

kx �ex k D

 
d

PN
jD1 dim.Wj/

!�����

NX

nD1

.yn � Q.yn//

����� �

 
dN

PN
jD1 dim.Wj/

!
": (9)

Note that the upper bound in (9) does not decrease to zero as N increases. So, a
small choice of " > 0 is needed to ensure that memoryless quantization achieves
small overall quantization error. Unfortunately, a small choice of " > 0 can require
extremely large quantization alphabets An which can only be represented using
a large number of bits. The cost and complexity of high-bit alphabets might not
be suitable for every signal processing problem. For example, this is the case in
the sensor network example from Section 1, where the power-constrained sensor
stations are only able to transmit low-bit signals to the central base station.

In summary, memoryless quantization does not efficiently utilize overlap or
correlation among the subspaces Wn, but instead requires fine alphabets to achieve
accurate quantization. The next section describes a different approach to quan-
tization that employs coarse quantization alphabets but compensates for this by
efficiently utilizing correlations among the subspaces Wn.

3 Sigma-Delta Quantization for Fusion Frames

In this section we introduce Sigma-Delta (˙�) algorithms for fusion frames.
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It will be useful to briefly recall the classical ˙� algorithm for quantizing a
scalar-valued input sequence fcng � R . In the setting of sampling expansions,
cn D f .n=�/ 2 R are samples of a bandlimited function f , see [13], whereas in the
setting of finite frames, the coefficients cn D hx; eni 2 R are frame coefficients of a
signal x 2 R

d, see [4]. For comparison, the fusion frame setting of this chapter will
require an extension to vector-valued measurements yn D PWn.x/ 2 R

d.
To describe classical ˙� quantization, let A � R be a finite scalar-valued

quantization alphabet, and let Q W R ! A be an associated scalar quantizer that
satisfies

8t 2 R; jt � Q.t/j D min
a2A

jt � aj:

The classical first order ˙� quantizer takes coefficients fcngN
nD1 � R as input and

produces quantized output coefficients fqngN
nD1 � A , by initializing u0 D 0 and

iterating the following for n D 1; � � � ;N

qn D Q.un�1 C cn/; (10)

un D un�1 C cn � qn: (11)

See [26] for an overview on ˙� quantization in the setting of finite frames. We
are now ready to discuss adaptations of this algorithm to vector-valued inputs yn D

PWn.x/ 2 R
d for the setting of fusion frames.

3.1 A First Order ˙� Algorithm for Fusion Frames

Let fWngN
nD1 be a collection of subspaces of R

d with dn D dim.Wn/. For each
1 � n � N; let An � Wn be a quantization alphabet and let Qn W Wn ! An be a
quantizer map as in (6).

Suppose that x 2 R
d and denote yn D PWn.x/ 2 Wn. The first order fusion frame

˙� quantizer takes the fusion frame measurements yn 2 Wn; 1 � n � N; as its
input, and produces the quantized outputs qn 2 An; 1 � n � N; by initializing
u0 D 0 2 R

d and iterating the following for n D 1; � � � ;N

qn D Qn.PWn.un�1/C yn/; (12)

un D PWn.un�1/C yn � qn: (13)

This algorithm may be viewed as a generalization of ˙� quantization or error
diffusion from the setting of finite frames to the vector-valued setting of fusion
frames, [4, 8, 26]. For related work on vector-valued ˙� quantization in the
engineering literature, see [19, 22–25]. The work in [1–3] considers delicate stability
issues for vector-valued error diffusion algorithms (with connections to digital
halftoning). The work in [5] considers ˙� quantization for finite frames in C

d

using C-valued alphabets with a lattice structure.
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Returning to the sensor network example from Section 1, yn D PWn.x/ is the
signal measurement made by the sensor station sn, the quantized coefficient qn is
digitally encoded and sent from sn to the central base station C , and the state variable
un is the analog signal that is transmitted from sn to the next station snC1. Note that,
in contrast to classical ˙� quantization, the algorithm requires knowledge of the
fusion frame fWngN

nD1.
It will be useful to note a matrix formulation of (13). Given sets Sn � R

d; 1 �

n � N; let
LN

nD1 Sn denote the collection of all N-tuples f D ffngN
nD1 with fn 2 Sn.

Given subspaces Wn � R
d; 1 � n � N, let I denote the identity operator on R

d

and let

D W

NM

nD1

Wn �!

NM

nD1

Wn

denote the following N � N block operator

D D

0

BBBBBBBB@

I 0 � � � 0

�PW2 I 0 � � � 0

0 �PW3 I 0 � � � 0
: : :

:::

0 � � � �PWN�1 I 0

0 � � � 0 �PWN I

1

CCCCCCCCA

: (14)

Note that D is a bijection and has inverse

D�1 D

0

BBBBBBBBBB@

I 0 0 � � � 0 0

PW2 I 0 0 0

.PW3PW2 / PW3 I
: : : 0 0

.PW4PW3PW2 / .PW4PW3 / PW4

: : :
:::

:::
:::

::: I 0

.PWN PWN�1 � � � PW2 / .PWN PWN�1 � � � PW3 / .PWN PWN�1 � � � PW4 / � � � PWN I

1

CCCCCCCCCCA

:

If one defines u 2
LN

nD1 Wn, y 2
LN

nD1 Wn, q 2
LN

nD1 An by

u D

0

BBB@

u1
u2
:::

uN

1

CCCA ; y D

0

BBB@

y1
y2
:::

yN

1

CCCA ; q D

0

BBB@

q1
q2
:::

qN

1

CCCA ; (15)

then (13) can be expressed as

Du D y � q: (16)
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3.2 Stability

It is important in practice for one to have control on the size of the state variables un

in ˙� algorithms. A fusion frame ˙� quantizer is said to be stable if there exist
constants C1;C2 > 0 such that for any fyng1

nD1 2 `1.N/ and any N 2 N one has

max
1�n�N

kynk � C1 H) max
1�n�N

kunk � C2: (17)

Stability plays an important role in the mathematical error analysis of ˙� algo-
rithms and it also ensures that the algorithms can be implemented in circuitry
without suffering from blow-up of voltages and other physical quantities. In this
section, we examine stability of the first order fusion frame ˙� quantizer for
different choices of the quantization alphabets fAngN

nD1.

Proposition 1. Fix "; ı > 0 and let An be an "-net for B.Wn; " C ı/. Suppose
that the first order fusion frame ˙� algorithm is implemented using the alphabets
fAngN

nD1. If kxk � ı, then kunk � " holds for all 0 � n � N.

Proof. The proof proceeds by induction and is almost identical to standard stability
results for ˙� quantization, e.g., see Lemma 2.1 in [13] or Proposition III.2 in [4].

The base case of the induction, n D 0; holds since u0 D 0. For the inductive step,
suppose that kun�1k � ". Note that

kPWn.un�1/C ynk D kPWn.un�1 C x/k � kun�1k C kxk � "C ı: (18)

Namely, .PWn.un�1/C yn/ 2 B.Wn; "C ı/. Since An is an "-net for B.Wn; "C ı/, it
follows that

kunk D k.PWn.un�1/C yn/ � Qn.PWn.un�1/C yn/k � ":

This completes the proof.

A small choice of " in Proposition 1 ensures the state variables un have small
norms, but this requires fine quantization alphabets An that have large cardinality.
Since physical implementations of very fine quantizers can be costly, there are
instances where it is preferable to use coarse quantizers and low-bit quantization
alphabets. To put this in perspective, a desirable property of ˙� quantization for
scalar-valued coefficients (e.g., as for sampling expansions and finite frames) is that
it is possible to achieve highly accurate quantization using only a 1-bit quantization
alphabet such as A D f�1; 1g to quantize each scalar-valued coefficient, see
[4, 13, 14].

In view of this, we shall consider the question of whether the first order fusion
frame ˙� quantizer can be stably implemented using low-bit alphabets An. We
begin by considering the case of equal-norm quantization alphabets.
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Let W be a subspace of Rd and let S.W; �/ D fw 2 W W kwk D �g denote the
sphere of radius � in W. We shall say that a finite set N � S.W; �/ is an angular
� -net for S.W; �/ if

8w 2 W; 9z 2 N ; such that cos�1

�
hw; zi

kwk kzk

�
� �:

The next result shows that the first order fusion frame ˙� algorithm can be
stably implemented using equal-norm quantization alphabets.

Proposition 2. Fix f�ngN
nD1 � .0; �/ and let � D max1�n�N �n. Let An be an

angular �n-net for S.Wn; �/. Suppose that the first order fusion frame˙� algorithm
is implemented using the alphabets fAngN

nD1.
If 0 < ı < � cos � and kxk � ı, then

8 0 � n � N; kunk � C D max

	
�;
ı2 C �2 � 2ı� cos.�/

2.� cos � � ı/



:

Proof. The proof proceeds by induction. The base case n D 0 holds since u0 D 0.
For the inductive step suppose that kun�1k � C. To simplify notation let an D

kPWn.un�1/C ynk and bn D kqnk D � and cn D kunk and

�n D cos�1

�
hPWn.un�1/C yn; qni

anbn

�
:

Since An is an angular �n-net for Sn.�/, we have 0 � �n � �n � �: Thus

kunk2 D a2n C b2n � 2anbn cos.�n/

� a2n C �2 � 2an� cos.�/: (19)

Similar to (18), note that 0 � an � C C ı. Let f .t/ D t2 � 2t� cos.�/ C �2. In
view of (19), to show that kunk � C; it suffices to show that the image of the interval
Œ0;C C ı� under the map f satisfies

f
�
Œ0;C C ı�

�
�
�
0;C2

�
:

First, note that the global minimum of f occurs at t D � cos � , and hence f .t/ �

f .� cos �/ D �2 sin2 � � 0 holds for all t 2 R.
Next, note that the maximal value of f on the interval Œ0;C C ı� is achieved at

either t D 0 or t D .CCı/. So, it remains to verify that f .0/ � C2 and f .CCı/ � C2.
By the definition of C, we have f .0/ D �2 � C2. One can also compute that

f .C C ı/ D C2 � 2C.� cos � � ı/C
�
ı2 C �2 � 2ı� cos �

�
;
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so that by the definition of C and 0 < ı < � cos � it follows that f .C C ı/ � C2:

This completes the proof.

Next, we specialize Proposition 2 to the case of low-bit alphabets An given by
the vertices of the centered regular m-simplex. We recall the following properties of
the regular simplex.

Lemma 1. Let W be an m-dimensional subspace of Rd. There exists a collection
V .W/ D fvkg

mC1
kD1 in W such that

PmC1
jD1 vj D 0; and each vj is unit-norm kvjk D 1;

and

hvj; vki D �
1

m
; for j ¤ k: (20)

Moreover, if � D cos�1.1=m/; then fvkg
mC1
kD1 is an angular � -net for S.W; 1/.

The � -net property in Lemma 1 can be found in Theorem 6.5.1 in [7]. The
property (20) can be found in the literature on equiangular tight frames, e.g., see
(2) in Section 2.2 of [27].

Proposition 3. Let fWngN
nD1 be subspaces of Rd with d? D max1�n�N dim.Wn/.

Let An D V .Wn/ be as in Lemma 1. Suppose that the first order fusion frame ˙�
algorithm is implemented using the alphabets fAngN

nD1.
If 0 < ı < 1=d? and kxk � ı, then

8 0 � n � N; kunk � C D max

(
1;
ı2 C 1 � 2ı

d?

2. 1d? � ı/

)
: (21)

Proof. Since An is an angular �n-net with �n D cos�1.1=dn/ and dn D dim.Wn/,
we have � D max1�n�N �n D cos�1.1=d?/: Since cos.�/ D 1=d?, the result now
follows from Proposition 2.

Proposition 3 shows that the first order fusion frame ˙� quantizer can be stably
implemented with a quantization alphabet of size .dn C 1/ for the dn-dimensional
subspace Wn. If Bn denotes the number of bits per dimension, then

Bn D
# bits to encode the alphabet An

dimension of subspace Wn
D

log2.dn C 1/

dn
:

Thus, for subspaces of dimension dn > 1 the first order fusion frame ˙� quantizer
provides stable “sub-one-bit” quantization.

This means that if the first order fusion frame˙� algorithm is used to implement
the sensor network example from Section 1, then the sensor station sn associated to
the proximity Wn only needs to transmit a log2.dn C 1/-bit signal to the central base
station.
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3.3 Higher Order Algorithms

In this section we define a higher order version of ˙� quantization for fusion
frames. Higher order algorithms incorporate additional memory so that the quanti-
zation step can utilize several of the previous state variables, instead of just a single
preceding state variable as in (13). In the context of Section 1, this corresponds
to a sensor network with increased communication capability where each sensor
station can share information with more than just one immediately subsequent
sensor station.

3.3.1 General rth Order Algorithms

To describe rth order˙� quantization for fusion frames, let G denote the collection
of all subspaces of Rd and let

F W Rd �

 
rM

nD1

R
d

!
�

 
rM

nD1

G

!
! R

d

be a fixed function that will be referred to as a quantization rule. An rth order fusion
frame ˙� quantizer takes the fusion frame measurements yn D PWn.x/ 2 Wn; 1 �

n � N; as its inputs, and produces the quantized outputs qn 2 An; 1 � n � N;
by initializing u0 D u�1 D � � � D u1�r D 0 2 R

d and iterating the following for
n D 1; � � � ;N

qn D Qn
�
F.yn; fujg

n�1
jDn�r; fWjg

n
jDn�rC1/

�
(22)

un D yn � qn C

rX

iD1

.�1/i�1

 
r

i

!
PWn PWn�1 � � � PWn�iC1

.un�i/: (23)

We adopt the convention that Wj D ; when j � 0. The state variable update (23)
is motivated as an analogy with (16) using higher powers of the operator D. In
particular, it can be shown that if u; y; q are as in (15), then an equivalent formulation
of (23) is given by

Dru D y � q: (24)

It is important that the quantization rule F in (22) is chosen so that the rth order
fusion frame ˙� algorithm is stable in the sense of (17). Analyzing the stability of
higher order˙� algorithms can present a number of technically challenging issues,
e.g., see [13, 15, 28] for results in the scalar-valued setting. For this reason, we shall
focus on a simple and well-understood choice of F in the next section.
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3.3.2 The Greedy rth Order Algorithm

The greedy rth order fusion frame ˙� quantizer takes the fusion frame measure-
ments yn D PWn.x/ 2 Wn; 1 � n � N; as its inputs, and produces the quantized
outputs qn 2 An; 1 � n � N; by initializing u0 D u�1 D � � � D u1�r D 0 2 R

d and
iterating the following for n D 1; � � � ;N

qn D Qn

 
yn C

rX

iD1

.�1/i�1

 
r

i

!
PWn PWn�1 � � � PWn�iC1

.un�i/

!
; (25)

un D yn � qn C

rX

iD1

.�1/i�1

 
r

i

!
PWn PWn�1 � � � PWn�iC1

.un�i/: (26)

Note that if r D 1, then this reduces to the first order fusion frame ˙� quantizer
in (12) and (13).

Proposition 4. Fix "; ı > 0 and let An be an "-net for B.Wn; 2
r"Cı/. Suppose that

the greedy rth order fusion frame˙� algorithm is implemented using the alphabets
fAngN

nD1. If kxk � ı, then kunk � " holds for all .1 � r/ � n � N.

Proof. The proof proceeds by induction and is almost identical to standard stability
results for the rth order greedy ˙� quantizer, e.g., see (18) and (19) in [16].

The base cases .1� r/ � n � 0 of the induction hold since we defined uj D 0 for
.1 � r/ � j � 0. For the inductive step, suppose that kukk � " for all .1 � r/ � k �

.n � 1/. Since kynk D kPWn.x/k � ı we have

kyn C

rX

iD1

.�1/i�1

 
r

i

!
PWn PWn�1 � � � PWn�iC1

.un�i/k � ıC"

rX

iD1

 
r

i

!
D ıC.2r �1/":

In other words,

yn C

rX

iD1

.�1/i�1

 
r

i

!
PWn PWn�1 � � � PWn�iC1

.un�i/ 2 B.Wn; ı C .2r � 1/"/:

Since An is an "-net for B.Wn; ı C .2r � 1/"/, it follows from (25) and (26) that
kunk � ". This completes the proof.

It would be interesting to know if there exist choices of F in (22) which provide
stable rth order ˙� algorithms for fusion frames when a low-bit alphabet An is
used (as in Proposition 3 for the first order algorithm).

Question: Do there exist rth order fusion frame ˙� algorithms which are stable
when measurements using fusion frame subspaces Wn are quantized with suitable
alphabets An of cardinality #.An/ D 1C dim.Wn/?
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For perspective, it is known that there exist stable 1-bit ˙� algorithms of
arbitrary order in the settings of sampling expansions and finite frames, but the
constructions can be challenging and technical, e.g., [13].

4 Signal Reconstruction

In this section we shall discuss methods for reconstructing a signal ex from the
quantized coefficients fqngN

nD1 produced by fusion frame ˙� algorithms. In the
sensor network from Section 1, signal reconstruction takes place at the central base
station C and is used to accurately extract content from the low-bit digital signals
qn that were received from the sensor stations sn.

4.1 Notation

Recall that k � k denotes the Euclidean norm on R
d. The spectral norm of a linear

operator P W Rd ! R
d will be denoted by

kPkspec D supfkPxk W x 2 R
d and kxk D 1g:

Let fWngN
nD1 be subspaces of Rd. Let f D ffngN

nD1 2
LN

nD1 Wn. For 1 � p < 1

define the norms

kf kp D

 
X

nD1

kfnkp

!1=p

and kf k1 D max
1�n�N

kfnk:

When p D 2, the norm kf k2 is induced by the inner product

hf ; giLWn D

NX

nD1

hfn; gni:

Given a linear operator R W
LN

nD1 Wn ! R
d and 1 � p � 1, define the following

operator norm

kRkp;
L

Wn D sup

(
kRf k W f 2

NM

nD1

Wn and kf kp D 1

)
:

To simplify notation for the most convenient of these operator norms (i.e., when
p D 2), we shall denote

kRkop D kRk2;
L

Wn :
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4.2 Left Inverses of the Analysis Operator

Our discussion of signal reconstruction for fusion frame ˙� algorithms will be
based on choosing a suitable left inverse to the analysis operator of a fusion frame.
In this section, we recall some necessary background on left inverses of the analysis
operator.

Let f.Wn; vn/g
N
nD1 be a fusion frame for Rd. The associated analysis operator T

is defined by

T W Rd �!

NM

nD1

Wn;

x 7�! fvnPWn.x/g
N
nD1:

The adjoint of the analysis operator is called the synthesis operator and is defined by

T� W

NM

nD1

Wn �! R
d;

ffngN
nD1 7�!

NX

nD1

vnfn:

Since the fusion frame operator (2) satisfies S D T�T and since S is invertible,
one has that L D .T�T/�1T� is a left inverse to T , namely, LT D I. This
canonical choice of left inverse is generally not a unique left inverse since the
measurements yn D PWn.x/ 2 Wn; 1 � n � N; provide an overcomplete or
redundant representation of Rd when

PN
nD1 dim.Wn/ > d. In fact, we shall later see

that a non-canonical choice of left inverse can be preferable in the reconstruction
step for fusion frame ˙� quantization.

It will be useful to recall the following two lemmas on left inverse operators; the
proofs are standard, e.g., [21], but we include them for the sake of completeness. We
also refer the reader to [17, 18] for further background on duals of fusion frames.

Lemma 2. Let F W R
d !

LN
nD1 Wn be a linear operator for which .F�F/ W

R
d ! R

d is a bijection. A linear operator L W
LN

nD1 Wn ! R
d is a left inverse

of F if and only if

L D .F�F/�1F� C G.I � F.F�F/�1F�/; (27)

for some linear operator G W
LN

nD1 Wn �! R
d:

Proof. A direct computation shows that LF D I for any L of the form (27). Next, to
see that every left inverse is of the form (27), suppose that L0F D I, and note that
setting L D L0 and G D L0 yields equality in (27). This completes the proof.
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Lemma 3. Let F W R
d !

LN
nD1 Wn be a linear operator for which .F�F/ W

R
d ! R

d is a bijection. Let eF D .F�F/�1F�. If the linear operator L W
LN

nD1

Wn ! R
d is a left inverse to F, then keFkop � kLkop.

Proof. Since L is of the form (27), we have that L D eF C Z, where Z satisfies
ZF D 0. HenceeFZ� D 0 and Z.eF/� D 0. It follows that

kLk2op D kLL�kspec D k.eF C Z/.eF C Z/�kspec

D keF.eF/� C Z.eF/� CeFZ� C ZZ�kspec D keF.eF/� C ZZ�kspec: (28)

SinceeF.eF/� is a positive operator, one has

keF.eF/�kspec D sup
kxkD1

jheF.eF/�x; xij:

and one may select x0 2 R
d such that kx0k D 1 and keF.eF/�kspec D jheF.eF/�x0; x0ij.

Since ZZ� and .eF.eF/� C ZZ�/ are positive operators, one has

keFk2op D keF.eF/�kspec

D jheF.eF/�x0; x0ij

� jheF.eF/�x0; x0i C hZZ�x0; x0ij

D jh.eF.eF/� C ZZ�/x0; x0ij

� sup
kxkD1

jh.eF.eF/� C ZZ�/x; xij

D keF.eF/� C ZZ�kspec: (29)

Combining (28) and (29) gives keFkop � kLkop, and this completes the proof.

4.3 Error Bounds and Sobolev Left Inverses

In this section, we combine observations from earlier sections to give error bounds
for fusion frame ˙� algorithms, and we discuss the important issue of selecting
suitable left inverses L for reconstruction. Since fusion frame ˙� algorithms only
act on the measurements yn D PWn.x/, we will restrict our attention, with little loss
of generality, to unweighted fusion frames.

Let f.Wn; 1/g
N
nD1 be an unweighted fusion frame for Rd with analysis operator

T , and let L be a left inverse of T . Consider a stable rth order fusion frame ˙�
algorithm that satisfies the stability condition (17) with constants C1;C2 > 0. Given
x 2 R

d, use the measurements yn D PWn.x/ as inputs to the rth order fusion frame
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˙� algorithm, and denote the quantized output and state variables by fqngN
nD1 and

fungN
nD1, respectively. Let u; y; q be as in (15). Use the left inverse L to reconstruct

ex D Lq

from the quantized measurements.

Proposition 5. Assume the set-up of the previous paragraph. If kxk � C1, then the
reconstruction error for the rth order fusion frame ˙� algorithm satisfies

kx �exk � C2 kLDrk1;
L

Wn : (30)

Proof. Since L is a left inverse of T , one has x D LTx D Ly. So, (24) gives

x �ex D LTx � Lq D L.y � q/ D LDru: (31)

Since kxk � C1, it follows that kynk D kPWn.x/k � kxk � C1 holds for all
1 � n � N: So, (17) implies

kuk1 D max
1�n�N

kunk � C2: (32)

Recall that u 2
LN

nD1 Wn. So, if kxk � C1 then by (31) and (32)

kx �exk � kLDruk � kLDrk1;
L

Wnkuk1 � C2 kLDrk1;
L

Wn :

This completes the proof.

It is natural to ask which choice of left inverse L minimizes the upper bound (30).
Unfortunately, the norm k � k1;

L
Wn is not very convenient for this question.

However, it can be shown that

kLDrk1;
L

Wn �
p

NkLDrk2;
L

Wn D
p

NkLDrkop:

Combining this with (30) gives an error bound in terms of the norm k � kop

kx �exk � C2
p

N kLDrkop: (33)

We now address which choice of left inverse minimizes the upper bound kLDrkop

in (33).

Proposition 6. Let f.Wn; vn/g
N
nD1 be a fusion frame for Rd with analysis operator

T. Suppose that R W
LN

nD1 Wn !
LN

nD1 Wn is a bijective linear operator. Let

LR D ..R�1T/�R�1T/�1.R�1T/�R�1:
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Then LR is a minimizer of the problem

min
L

kL Rkop such that LT D I:

Proof. Let F D R�1T , and note that F W R
d !

LN
nD1 Wn. Next, observe that

.F�F/ W Rd ! R
d is bijective, so that F satisfies the hypotheses of Lemma 3. To see

this, note that if F�Fz D 0, then

0 D hF�Fz; zi D hFz;FziLWn D kFzk22:

This implies that R�1Tz D Fz D 0. So, T�Tz D T�RR�1T.z/ D T�R.0/ D 0. Since
T�T is injective this implies z D 0. Hence .F�F/ W Rd ! R

d is injective. It follows
from the rank-nullity theorem that .F�F/ W Rd ! R

d is bijective.
Now suppose that LT D I, i.e., L is a left inverse to T . Since R is a bijection,

LRR�1T D I, i.e., LR is a left inverse of F D R�1T . So, by Lemma 3, we have that
kLRkop is minimized when

LR D ..R�1T/�R�1T/�1.R�1T/�:

This completes the proof.

We now return to the error bound (33) for stable rth order fusion frame ˙�
quantization. Applying Proposition 6 with R D Dr gives the following corollary.

Corollary 1. Let f.Wn; 1/g
N
nD1 be an unweighted fusion frame for Rd with analysis

operator T. Define the rth order Sobolev left inverse by

Lr;Sob D ..D�rT/�D�rT/�1.D�rT/�D�r: (34)

Then Lr;Sob is a minimizer of the problem

min
L

kLDrkop such that LT D I:

Corollary 1 shows that Lr;Sob is a left inverse to T that minimizes kLDrkop in (30).
In view of this, Lr;Sob is a natural candidate for performing reconstruction from the
rth order ˙� quantized fusion frame measurements. In the setting of finite frames,
the work in [6, 16, 20] shows that kLDrkop decays significantly faster than 1=

p
N

as a function of frame size N; this ensures that ˙� efficiently utilizes correlations
among frame coefficients. It is reasonable to expect that such theoretical results have
extensions to the setting of fusion frames, but this would take us beyond the scope
of this chapter.



Sigma-Delta Quantization for Fusion Frames and Distributed Sensor Networks 117

5 Examples and Experiments

In this section, we provide examples and experiments to illustrate the performance
of fusion frame ˙� algorithms.

5.1 The First Order Algorithm

The following result gives control on kLDk1;
L

Wn in (30) for the case of first order
fusion frame ˙� quantization using unweighted tight fusion frames.

Proposition 7. Suppose that f.Wn; 1/g
N
nD1 is an unweighted tight fusion frame for

R
d with analysis operator T. Since f.Wn; 1/g

N
nD1 is tight, recall that L D A�1T� is

a left inverse to T, with A defined by (4). The error term kLDk1;
L

Wn appearing in
the fusion frame ˙� error bound (30) for r D 1 can be bounded by

kLDk1;
L

Wn �

 
d

PN
nD1 dim.Wn/

! 
1C

N�1X

nD1

kPWnC1
� PWnkspec

!
: (35)

Proof. If u D fungN
nD1 2

LN
nD1 Wn, then

Du D

0

BBBBB@

u1
u2 � PW2 .u1/
u3 � PW2 .u2/

:::

uN � PWN .uN�1/

1

CCCCCA
:

By the definition of L and since un 2 Wn

LDu D A�1

 
u1 C

NX

nD2

.un � PWn.un�1//

!

D A�1

 
PW1 .u1/C

NX

nD2

.PWn.un/ � PWn.un�1//

!

D A�1

 
PWN .uN/C

N�1X

nD1

.PWn.un/ � PWnC1
.un//

!
:
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It follows that

kLDuk � A�1

 
kuNk C

N�1X

nD1

kPWn � PWnC1
kspec kunk

!

� A�1kuk1

 
1C

N�1X

nD1

kPWn � PWnC1
kspec

!
:

This completes the proof.

The error term
PN�1

nD1 kPWnC1
� PWnkspec in (35) is analogous to the frame varia-

tion for ˙� quantization of setting of finite frames, see [4]. Since
PN�1

nD1 kPWnC1
�

PWnkspec remains well-controlled when the consecutive subspaces Wn;WnC1 are
close to each other, (30) and (35) show that the error for the first order fusion
frame ˙� algorithm will decrease as a function of N, i.e., the algorithm efficiently
utilizes correlations among the measurements. The next example illustrates this for
a particular family of fusion frames.

Example 1. For each N � 3, define the system ˚N D f'N
n gN

nD1 � R
3 by

'N
n D

r
2

3

�
1

p
2
; cos

�
2�n

N

�
; sin

�
2�n

N

��
2 R

3:

The collection ˚N is a unit-norm tight frame for R3, i.e.,

8x 2 R
d; x D

3

N

NX

nD1

hx; 'N
n i'N

n ;

e.g., see [29]. For each N � 3; define the collection of 2-dimensional subspaces
fWN

n gN
nD1 � R

3 by

WN
n D fx 2 R

3 W hx; 'N
n i D 0g: (36)

It is easily shown that for each fixed N � 3, WN D f.WN
n ; 1/g

N
nD1 is an unweighted

tight fusion frame for R3 with constant AN D 2N=3, cf., Lemma 3 in [10].
For each N � 3, and 1 � n � N, let

eN
1;n D

�
0; sin

�
2�n

N

�
;� cos

�
2�n

N

��
; (37)

eN
2;n D

r
1

3

�
�

p
2; cos

�
2�n

N

�
; sin

�
2�n

N

��
: (38)

Note that feN
1;n; e

N
2;ng forms an orthonormal basis for WN

n . Define the quantization
alphabet A N

n � WN
n by

A N
n D

(
eN
1;n;

 
�1

2
eN
1;n C

p
3

2
eN
2;n

!
;

 
�1

2
eN
1;n �

p
3

2
eN
2;n

!)
:
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Note that A N
n satisfies the conditions of the alphabet in Lemma 1 in the case of

2-dimensional subspaces.
Since feN

1;n; e
N
2;ng is an orthonormal basis for WN

n , we have that for each x 2 R
3

PWN
n
.x/�PWN

nC1
.x/D

2X

jD1

hx; eN
j;nieN

j;n�

2X

jD1

hx; eN
j;nC1ie

N
j;nC1

D

2X

jD1

�
hx; eN

j;ni�hx; eN
j;nC1i

�
eN

j;nC

2X

jD1

hx; eN
j;nC1i

�
eN

j;n�eN
j;nC1

�
:

So,

kPWN
n
.x/ � PWN

nC1
.x/k �

0

@
2X

jD1

ˇ̌
hx; eN

j;ni � hx; eN
j;nC1i

ˇ̌2
1

A
1=2

C

2X

jD1

jhx; eN
j;nC1ij keN

n;j; � eN
nC1;jk

� kxk

0

@
2X

jD1

keN
j;n � eN

j;nC1k
2

1

A
1=2

C kxk

2X

jD1

keN
j;n; � eN

j;nC1k

� kxk.1C
p
2/

0

@
2X

jD1

keN
j;n � eN

j;nC1k
2

1

A
1=2

:

Using that 1 � cos.�/ � �2

2
for 0 � � � �=2; it can be shown that

keN
1;n � eN

1;nC1k �
2�

N
;

keN
2;n � eN

2;nC1k �
2�

N
p
3

�
2�

N
:

Thus,

kPWN
n
.x/ � PWN

nC1
.x/k � kxk

2�
p
2.1C

p
2/

N
� kxk

�
8�

N

�
:

So, the spectral norm satisfies

kPWN
n

� PWN
nC1

kspec �
8�

N
: (39)
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Let TN denote the analysis operator for the tight fusion frame WN . We have that
LN D A�1

N T�
N D

�
3
2N

�
T�

N is a left inverse to TN . By Proposition 7 and (39) we have

kLDk1;
L

Wn �

�
3

2N

� 
1C

N�1X

nD1

8�

N

!
�
3.8� C 1/

2N
�
18�

N
: (40)

Given x 2 R
3, let yN

n D PWN
n
.x/; 1 � n � N, denote the fusion frame

measurements of x. Use the first order fusion frame ˙� algorithm with alphabets
fA N

n gN
nD1, to quantize the measurements fyN

n gN
nD1, and let fqN

n gN
nD1 be the algorithm’s

quantized outputs and let fuN
n gN

nD1 be the associated state variables.
If 0 < ı < 1=2 and kxk < ı, then Proposition 3 implies that kuN

n k � C for all
1 � n � N, where C is given by (21). Reconstruct the signalexN from qN D fqN

n gN
nD1

by

exN D LN.q
N/:

Combining (30) and (40) shows that

kx �exNk � CkLDk1;
L

Wn �
18C�

N
: (41)

In particular, in this example, the quantization error decays like 1=N as the number
N of subspaces increases.

Example 2. This example shows a numerical experiment to illustrate the error
bound (41) from Example 1.

Assume the set-up of Example 1 with x D . 1
10
; �
25
;� 1p

57
/ and ı D 1=4. The

constant C from (21) satisfies C D 13
8
< 2. Noting that kxk � 0:2082 < ı, the error

bound (41) gives

kx �exNk �
36�

N
:

Figure 1 shows a log-log plot of the error kx �exNk against N. For comparison, the
figure also shows a log-log plot of upper bound 36�=N against N.

5.2 Second Order Algorithm

In this section, we examine the performance of the second order fusion frame ˙�
algorithm.

Example 3. For each N � 3, let the 2-dimensional subspaces fWN
n gN

nD1 be defined
as in (36) and let feN

1;n; e
N
2;ng be the orthonormal basis for WN

n defined by (37)
and (38). Recall that for each N � 3; f.WN

n ; 1/g/
N
nD1 is an unweighted tight fusion

frame for R3. Let TN be the associated analysis operator.
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Fig. 1 Log-log plot of the error kx �exNk versus N, and log-log plot of 36�=N versus N, see
Example 2. The first order fusion frame ˙� algorithm was used.

The greedy second order fusion frame ˙� algorithm takes the following form

qn D Qn .yn C 2PWn.un�1/ � PWn PWn�1 .un�2// ;

un D yn C 2PWn.un�1/ � PWn PWn�1 .un�2/ � qn:

Define the quantization alphabet A N
n � WN

n by

A N
n D

	
k

4
cos

�
� j

4

�
eN
1;n C

k

4
sin

�
� j

4

�
eN
2;n W 1 � j � 8 and 1 � k � 6



:

Let x D
�p

2
2
; ��3

2
; �1
200

�
. For N � 4, let yN

n D PWN
n
.x/; 1 � n � N, denote the

fusion frame measurements of x. Use the greedy second order fusion frame ˙�
algorithm with alphabets fA N

n gN
nD1, to quantize the measurements fyN

n gN
nD1, and let

qN D fqN
n gN

nD1 be the algorithm’s quantized outputs.
Let LN D 3

2N T�
N be as in Example 1, and recall that LN is a left inverse of TN . Let

LSob;N be the Sobolev left inverse of TN , as defined by (34) with r D 2. Reconstruct
signals from the quantized measurements using the canonical reconstruction and the
Sobolev inverse:

exN;can D LN.q
N/ and exN;Sob D LSob;N.q

N/:
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Fig. 2 Log-log plot of the error versus N when the signal is reconstructed using either the
canonical left inverse or the Sobolev left inverse, see Example 3. The greedy second order fusion
frame˙� algorithm was used. For comparison, log-log plots of 2=N and 2=N2 versus N are given.

Figure 2 shows log-log plots of kx � exN;cank and kx � exN;Sobk against N. For
comparison, log-log plots of 2=N and 2=N2 against N are also given. The figure
shows that reconstruction with the Sobolev left inverse leads to significantly smaller
error.
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Part III
Space-Frequency Analysis in Function

Spaces on Rn



Recent Progress in Shearlet Theory: Systematic
Construction of Shearlet Dilation Groups,
Characterization of Wavefront Sets, and New
Embeddings

Giovanni S. Alberti, Stephan Dahlke, Filippo De Mari, Ernesto De Vito,
and Hartmut Führ

1 Introduction

This chapter is concerned with several important aspects of modern signal analysis.
Usually, signals are modeled as elements of function spaces such as L2 or Sobolev
spaces. To analyze such a signal and to extract the information of interest from it,
the first step is always to decompose the signal into suitable building blocks. This is
performed by transformation, i.e., the signal is mapped into function spaces on an
underlying parameter set, and then the signal is processed and analyzed by studying
and modifying the resulting coefficients. By now, a whole zoo of suitable transforms
have been introduced and analyzed such as the Fourier transform, the Gabor
transform, or the wavelet transform, just to name a few. Some of them have already
been very successful, e.g., the Fourier transform works excellently for signals
that are well localized in the frequency domain, whereas wavelets are often the
method of choice for the analysis of piecewise smooth signals with well-localized
singularities such as edges in an image. Which transform to choose obviously
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depends on the application, i.e., on the type of information one wants to detect from
the signal. However, in recent years, it has turned out that a serious bottleneck still
has to be removed. Most of the classical transforms such as the wavelet transform
perform suboptimally when it comes to the detection of directional information. The
reason is very simple: most of these transforms are essentially isotropic, whereas
directional information is of anisotropic nature. This observation triggered many
innovative studies how to design new building blocks that are particularly tuned
to this problem, such as curvelets [4], contourlets [16], ridgelets [3], and many
others. In this chapter, we are in particular interested in one specific contribution
to this problem, i.e., the shearlet approach. Shearlets are new affine representation
systems that are based on translations, shearings, and anisotropic dilations. We refer
to the monograph [35] for an overview. Among all the new approaches, the shearlet
transform stands out for the following reason: the continuous shearlet transform
can be derived from a square-integrable representation of a specific group, the full
shearlet group [7–9]. This property is not only of academic interest but also has
the important consequence that the whole powerful machinery derived in the realm
of square-integrable group representations such as reproducing kernels, inversion
formulas, etc. can directly be employed. This feature of the shearlet transform
clearly has strengthened the interest in the shearlet theory, and many important
results concerning the group-theoretical background have been derived so far. It
is the aim of this chapter to push forward, to clarify, and to unify this theory
with respect to several important aspects. Our main objectives can be described
as follows.

After the full shearlet group has been discovered, the question arose if other
suitable concepts of shearlet groups could be constructed. A first example was the
shearlet Toeplitz group [6], where the shearing part of the group has a Toeplitz
structure. As we will see later in Subsection 3.3 of this chapter, the full shearlet
group and the shearlet Toeplitz group are in a certain sense the “extreme” cases of
a general construction principle. In this view, the full shearlet group corresponds to
the nilpotency class n D 2, whereas the Toeplitz case corresponds to the nilpotency
class n D d, where d denotes the space dimension. Therefore, one would conjecture
that there should be a lot of examples “in between”. Indeed, in [26], a positive
answer has been given, and a first classification of low-dimensional shearlet groups
has been derived. In this chapter, we further extend these results and present an
approach to the systematic construction of suitable shearlet groups. The starting
point is a general class of shearlet groups introduced in [26]. We say that a dilation
group H is a shearlet group if every h 2 H can be written as h D ˙ds; d 2 D; s 2 S
where D is a diagonal scaling subgroup and S denotes a connected, closed abelian
matrix group, the shearing subgroup. The key to understanding and constructing
shearing subgroups lies in the realization that their associated Lie algebras carry a
very useful associative structure. This associative structure also greatly facilitates
the task of identifying the diagonal scaling groups compatible with a given shearing
subgroup. Through the notion of Jordan-Hölder bases the problem of characterizing
all suitable scaling group generators translates to a rather simple linear system of
equations. It turns out that all examples known so far are special cases of this general
construction.
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In recent studies, it has also been observed that shearlets provide a very powerful
tool in microlocal analysis [28], e.g., to determine the local regularity of a function.
In the one-dimensional case, pointwise smoothness can very efficiently be detected
by examining the decay of the continuous wavelet transform as the scale parameter
a tends to zero [32]. In the multivariate setting, pointwise smoothness does not
cover all the geometric information one might be interested in. E.g., if the function
under consideration exhibits singularities, one usually wants to know in which
direction the function is singular. This can be described by the so-called wavefront
set of a distribution. It has turned out that the continuous shearlet transform can
be employed to detect this wavefront set, once again by studying its decay as the
scaling parameter tends to zero. This property has been first observed in [34]; we
also refer to [28] for an overview, and to [29] for a sample application of these
techniques in image processing. In [21], these concepts have been generalized
to much more general classes of dilation groups. It has been shown that under
natural assumptions, a wavefront set can again be detected by the decay of the
voice transform. Essentially, two fundamental conditions are needed, that are related
with the dual action of the dilation group H: the dual action must be microlocally
admissible in direction � and it must satisfy the V-cone approximation property at
� , see Section 4.1 for the precise definitions. If these properties hold for one point
�0 in the open dual orbit, a characterization of wavefront sets is possible. In this
chapter, we show that both properties are satisfied for our general construction of
shearlet dilation groups, provided that the infinitesimal generator Y of the scaling
subgroup satisfies Y D diag.1; �2; : : : ; �d/; 0 < �i < 1; 2 � i � d. Consequently,
characterizations of wavefront sets are possible for a huge subclass of our general
construction. It is worth mentioning that anisotropic dilations are necessary for the
detection of wavefront sets, in particular the classical (isotropic) continuous wavelet
transform would not do the job.

A third important issue we will be concerned with in this chapter is the
relations of our general shearlet groups to other classical groups, in particular to the
symplectic groups Sp.d;R/. The symplectic groups are among the most important
classical groups, because they play a prominent role in classical mechanics. We
therefore investigate to which extent our shearlet dilation groups can be embedded
into symplectic groups, in a way that intertwines the quasi-regular representation
with the metaplectic representation. For the full shearlet groups and the shearlet
Toeplitz groups, these issues have been studied in [14], see also [33]. Their
connected components can indeed be embedded into the symplectic groups, which
yields group isomorphisms of the positive parts of shearlet groups with the so-
called TDS(d) subgroups that have already been studied in [15]. In this chapter,
we generalize this result to dilation groups of the form G D R

d Ì H, where H is a
subgroup of T.d;R/C D fh 2 GL.d;R/ W h1;1 > 0 and hi;j D 0 for every i > jg. We
show that for any such group there exists a group embedding � W G ! Sp.d;R/, and
that its quasi-regular representation is unitarily equivalent to 
ı�, where 
 denotes
the metaplectic representation of Sp.d;R/. Since the positive part of any shearlet
group falls into this general category, the desired embeddings for shearlet groups
follow from this result. Let us also mention the following very interesting fact: for
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the full shearlet dilation groups, such embeddings are never possible. Indeed, in
[14] it has been shown that already for the two-dimensional full shearlet group there
does not exist an injective continuous homomorphism into Sp.2;R/ or into any of
its coverings.

Let us also mention a nice by-product of our construction. In recent studies
[8, 9, 11, 12], an interesting relation of the shearlet approach to the coorbit theory
derived by Feichtinger and Gröchenig [17–20, 27] has been established. Based on a
square-integrable group representation, coorbit space theory gives rise to canonical
associated smoothness spaces, where smoothness is measured by the decay of the
underlying voice transform. In [8–13], it has been shown that all the conditions
needed in the coorbit setting can be satisfied for the full shearlet and the shearlet
Toeplitz groups. In [24], the coorbit approach has been extended to much more
general classes of dilation groups, and it turns out that the analysis from [24] also
carries over to the construction presented in this chapter, so that we obtain many new
examples of coorbit spaces. In particular, we refer to [25, 26] for explicit criteria for
compactly supported functions that can serve as atoms in the coorbit scheme.

This chapter is organized as follows. In Sections 2 and 3, we present our
construction of generalized shearlet dilation groups. After discussing the basic
notations and definitions in the Subsections 2.1 and 2.2, in Subsection 2.3 we
start with the systematic investigation of the Lie algebras of shearing subgroups.
One of the main results is Lemma 6 which provides a complete description of a
shearing subgroup in terms of the canonical basis of its Lie algebra. This fact can
be used to derive linear systems whose nonzero solutions determine the anisotropic
scaling subgroups that are compatible with S (Lemma 9). These relationships are
then used in Section 3 to derive a systematic construction principle. The canonical
basis can be directly computed from the structure constants of a Jordan-Hölder basis
(Lemma 13). The power of this approach is demonstrated by several examples. In
Section 4, we study the suitability of shearlet dilation groups for the characterization
of wavefront sets. Here the main result is Theorem 28 which shows that shearlet
groups with anisotropic dilations and suitable infinitesimal generators for the scaling
subgroups do the job. The proof is performed by verifying the basic conditions from
[21]. The last section is concerned with the embeddings of shearing dilation groups
into symplectic groups. The main result of this section is Theorem 33 which shows
that the huge class of semidirect products of the form G D R

d Ì H, where H is a
subgroup of T.d;R/C can be embedded into Sp.d;R/.

2 Generalities on Shearlet Dilation Groups

2.1 Basic Notations and Definitions

As explained in the introduction to this chapter, we are concerned with the
construction and analysis of large classes of generalized shearlet transforms. These
transforms are constructed by fixing a suitable matrix group, the so-called shearlet
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dilation group. By construction, these groups have a naturally associated isometric
continuous wavelet transform, which will be the generalized shearlet transform. In
this subsection, we summarize the necessary notation related to general continuous
wavelet transforms in higher dimensions. We let GL.d;R/ denote the group of
invertible d � d-matrices. We use Id to denote the d � d identity matrix. The Lie
algebra of GL.d;R/ is denoted by gl.d;R/, which is the space of all d � d matrices,
endowed with the Lie bracket ŒX;Y� D XY � YX. Given h 2 gl.d;R/ its (operator)
norm is denoted by

khk D sup
jxj�1

jhxj:

We let exp W gl.d;R/ ! GL.d;R/ denote the exponential map, defined by

exp.X/ D

1X

kD0

Xk

kŠ
;

known to converge absolutely for every matrix X. Given a closed subgroup H <

GL.d;R/, the associated Lie algebra of H is denoted by h, and it is defined as tangent
space of H at Id, or, equivalently, as the set of all matrices X with exp.RX/ � H. It
is a Lie subalgebra of gl.d;R/, i.e., it is closed under taking Lie brackets.

A matrix group of particular importance for the following is the group T.d;R/
of upper triangular matrices with ones on the diagonal. Elements of T.d;R/ are
called unipotent. Its Lie algebra is the subspace t.d;R/ � gl.d;R/ of all strictly
upper triangular matrices. It is well known that exp W t.d;R/ ! T.d;R/ is a
homeomorphism [31]. In particular, whenever s � t.d;R/ is a Lie subalgebra, the
exponential image exp.s/ is a closed, simply connected and connected matrix group
with Lie algebra given by s. Conversely, any connected Lie subgroup S of T.d;R/
is closed, simply connected and S D exp.s/ where s � t.d;R/ is the corresponding
Lie algebra, see Theorem 3.6.2 of [36].

For the definition of generalized wavelet transforms, we fix a closed matrix
group H < GL.d;R/, the so-called dilation group, and let G D R

d Ì H. This
is the group of affine mappings generated by H and all translations. Elements of
G are denoted by pairs .x; h/ 2 R

d � H, and the product of two group elements
is given by .x; h/.y; g/ D .x C hy; hg/. The left Haar measure of G is given by
d
G.x; h/ D j det.h/j�1dxdh, where dx and dh are the Lebesgue measure and the
(left) Haar measure of Rd and H, respectively.

The group G acts unitarily on L2.Rd/ by the quasi-regular representation
defined by

Œ�.x; h/f �.y/ D jdet.h/j�1=2f
�
h�1.y � x/

�
: (1)

We assume that H is chosen irreducibly admissible, i.e. such that � is an (irre-
ducible) square-integrable representation. Recall that a representation is irreducible
if the only invariant closed subspaces of the representation space are the trivial
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ones. Square-integrability of the representation means that there exists at least one
nonzero admissible vector  2 L2.Rd/ such that the matrix coefficient

.x; h/ 7! h ;�.x; h/ i

is in L2.G/, which is the L2-space associated to the left Haar measure d
G. In this
case the associated wavelet transform

W W L2.Rd/ 3 f 7! ..x; h/ 7! hf ; �.x; h/ i/ 2 L2.G/ (2)

is a scalar multiple of an isometry, which gives rise to the wavelet inversion formula

f D
1

c 

Z

G
W f .x; h/�.x; h/ d
G.x; h/ ; (3)

where the integral is in the weak sense, and c > 0 is a normalization constant
depending on the wavelet.

We note that the definition of W f also makes sense for tempered distributions
f , as soon as the wavelet  is chosen as a Schwartz function and the L2-scalar
product is properly extended to a sesquilinear map S 0 � S ! C. Analogs of the
wavelet inversion formula are not readily available in this general setting, but it will
be seen below that the transform has its uses, for example in the characterization of
wavefront sets.

Most relevant properties of the wavelet transform are in some way or another
connected to the dual action, i.e., the (right) linear action R

d � H 3 .�; h/ 7! hT� .
For example, H is irreducibly admissible if and only if the dual action has a single
open orbit O D fhT�0 W h 2 Hg � R

d of full measure (for some �0 2 O), such
that in addition the stabilizer group H�0 D fh 2 H W hT�0 D �0g is compact [23].
This condition does of course not depend on the precise choice of �0 2 O . The dual
action will also be of central importance to this chapter.

2.2 Shearlet Dilation Groups

The original shearlet dilation group was introduced in [7, 8], as

H D

	
˙

�
a b
0 a1=2

�
W a > 0; b 2 R



:

The rationale behind this choice was that the anisotropic scaling, as prescribed
by the exponents 1; 1=2 on the diagonal, combines with the shearing (controlled
by the parameter b) to provide a system of generalized wavelets that are able to
swiftly adapt to edges of all orientations (except one). A mathematically rigorous
formulation of this property is the result, due to Kutyniok and Labate, that the
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continuous shearlet transform characterizes the wavefront set [34]. Approximation-
theoretic properties of a different, more global kind were the subject of the chapter
[8] describing the so-called coorbit spaces defined in terms of weighted integrability
conditions on the wavelet coefficients.

The original shearlet dilation group has since been generalized to higher
dimensions. Here, the initial construction was introduced in [9], and further studied,
e.g., in [5, 11]. It is a matrix group in dimension d � 3 defined by

S D

8
ˆ̂̂
<

ˆ̂̂
:

˙

0

BBB@

a s1 : : : sd�1

a�2

: : :

a�d

1

CCCA W a > 0; s1; : : : ; sd�1 2 R

9
>>>=

>>>;
: (4)

Here �2; : : : ; �d are positive exponents, often chosen as �2 D : : : D �d D 1=2.
It should, however, be noted that they can be chosen essentially arbitrarily (even
negative), without affecting the wavelet inversion formula. Coorbit space theory is
applicable to all these groups as well [11, 24]. Furthermore, it was recently shown
that, for suitable choices of the analyzing wavelet, the associated shearlet transform
also characterizes the wavefront set [21], as long as the exponents �2; : : : ; �d are
strictly between zero and one.

A second, fundamentally different class of shearlet groups are the Toeplitz
shearlet groups introduced in [6] and further studied in [12]. These groups are
given by

H D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

˙

0

BBBBBBBBBBBBB@

a s1 s2 : : : : : : : : : sd�1

a s1 s2 : : : : : : sd�2

: : :
: : :

: : :
:::

: : :
: : :

: : :
:::

: : :
: : : s2
: : : s1

a

1

CCCCCCCCCCCCCA

W a > 0; s1; : : : ; sd�1 2 R

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

: (5)

Coorbit space theory can be applied to these groups as well [12, 24]. By [21,
Lemma 4.10], the fact that H contains nontrivial multiples of the identity implies
that H does not characterize the wavefront set. However, it will be shown below
that by properly adjusting the diagonal entries, it is possible to construct a closely
related group H0 that does lend itself to the characterization of the wavefront set.

A closer inspection of the two higher-dimensional families of shearlet groups
reveals several common traits: fix one of the above-listed groups H. Then each h 2

H factors as

h D ˙diag.a; a�2 ; : : : ; a�d / � u
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where the first factor denotes the diagonal matrix with the same diagonal entries
as h, and the second factor u is unipotent. In fact, this factorization is necessarily
unique. Furthermore, denoting by D the set of all diagonal matrices occurring in
such factorizations, and by S the set of all unipotent ones that arise, it is easy to see
that D (and consequently S) are closed subgroups of H. Finally, one readily verifies
that the groups S that occur in the examples are in fact commutative. We will now
use these properties to define a general class of shearlet dilation groups, that we will
study in this chapter:

Definition 1. Let H < GL.d;R/ denote an irreducibly admissible dilation group.
H is called generalized shearlet dilation group, if there exist two closed subgroups
S;D < H with the following properties:

(i) S is a connected abelian Lie subgroup of T.d;R/;
(ii) D D fexp.rY/ W r 2 Rg is a one-parameter group, where Y is a diagonal matrix;

(iii) Every h 2 H can be written uniquely as h D ˙ds, with d 2 D and s 2 S.

S is called the shearing subgroup of H, and D is called the diagonal complement or
scaling subgroup of H.

Remark 2. As noted in Subsection 2.1, S is closed and simply connected and the
exponential map is a diffeomorphism from its Lie algebra s onto S.

Remark 3. The class of shearlet dilation groups, as considered in this chapter, was
initially defined in [26], and for some of the following results and observations,
more detailed proofs can be found in that paper. In particular, it was shown there
that coorbit space theory applies to all generalized shearlet dilation groups. In fact,
it is possible to construct wavelet frames with compactly supported atoms, with
frame expansions that, depending on the provenance of the signal, converge in a
variety of coorbit space norms simultaneously.

The notion of a shear group occurred prior to [26] in [30], where it refers to a
discrete group of matrices generated by commuting matrices b with .b � Id/

2 D 0.
Up to a suitable change of coordinates, these groups are contained in T.d;R/, just
as our class of shearing subgroups. Apart from this rather general observation, the
precise relationship between shear groups according to [30] and shearlet dilation
subgroups according to Definition 1 is currently unclear.

As will be seen below, shearlet dilation groups can be constructed systematically.
The natural order in finding the constituent subgroups S;D is to first pick a candidate
for S, and then determine the infinitesimal generators of the one-parameter group D
that are compatible with S. The details of this programme are given in the next
subsections.
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2.3 Shearlet Dilation Groups and Their Lie Algebras

It is the aim of this subsection to give an overview of the most important structural
properties of shearlet dilation groups. The following proposition gives a first
characterization of these groups, see [26, Proposition 4.3]. In the following, we
will make repeated use of associative commutative algebras. If A denotes such an
algebra containing an identity element 1A , we let A � denote the group of invertible
elements in A , i.e., the set of all elements a 2 A for which b 2 A exists with
ab D 1A .

Proposition 4. Let S denote a connected abelian subgroup of T.d;R/. Then the
following are equivalent:

(i) S is the shearing subgroup of a generalized shearlet dilation group;
(ii) There is � 2 R

d such that S acts freely on ST� via the dual action, and in
addition, dim.S/ D d � 1;

(iii) The matrix group A D frs W s 2 S; r 2 R
�g is an abelian irreducibly admissible

dilation group. It is also a shearlet dilation group.

The fundamental observation made in [22, Remark 9] is that if A is abelian and
admissible, as in part (iii) of the above proposition, then its Lie algebra a is in fact
an associative subalgebra containing the identity element, hence it is closed under
matrix multiplication. This associative structure is in many ways decisive. To begin
with, one has the relations

a D span.A/; A D a�:

We will see in Subsection 3.1 below that this connection to associative algebras can
be used for the systematic –even exhaustive– construction of shearing subgroups.

There is however a second ingredient, that is more directly related to the
properties of the dual action. It is described in the following lemma, see [26,
Corollary 4.7]. We use e1; : : : ; ed for the canonical basis of Rd.

Lemma 5. Let S denote a connected abelian subgroup of T.d;R/ of dimension
d � 1, with Lie algebra s. Then the following are equivalent:

(i) S is a shearing subgroup;
(ii) There exists a unique basis X2; : : : ;Xd of s with XT

i e1 D ei, for all i D 2; : : : ; d.

We call the basis from part (ii) the canonical basis of s.

The canonical basis plays a special role for the description of shearing subgroups.
As a first indication of its usefulness, we note that all off-diagonal entries of the
elements of shearing groups depend linearly on the entries in the first row.

Lemma 6. Let S denote a shearing subgroup with Lie algebra s, and canonical
basis X2; : : : ;Xd of s. Then the following holds:

(a) S D fId C X W X 2 sg.
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(b) Let h 2 S be written as

h D

0

BBBBBBBBB@

1 h1;2 : : : : : : : : : h1;d
0 1 h2;3 : : : : : : h2;d

0 0
: : :

: : :
:::

:::

0 0 0
: : :

: : :
:::

0 0 0 0 1 hd�1;d

0 0 0 0 0 1

1

CCCCCCCCCA

:

Then

h D Id C

dX

iD2

h1;iXi :

Proof. For part (a), denote the right-hand side by S1. Since s is an associative
subalgebra consisting of nilpotent matrices, S1 consists of invertible matrices, and it
is closed under multiplication. Furthermore, the inverse of any element of S1 can be
computed by a Neumann series that breaks off after at most d terms:

.Id C X/�1 D Id C

d�1X

kD2

.�1/k�1Xk ;

and the result is again in S1. Hence S1 is a matrix group. It is obviously closed and
connected, with tangent space of S1 at the identity matrix given by s. It follows that
S1 is a Lie subgroup of T.d;R/ and, hence, it is simply connected. Thus S and S1 are
closed, connected, and simply connected subgroups sharing the same Lie algebra,
hence they are equal. Now part (b) directly follows from (a) and the properties of
the canonical basis.

We now turn to the question of characterizing the scaling subgroups D that are
compatible with a given shearing subgroup S. It is convenient to describe D in terms
of its Lie algebra as well. Since D is one-dimensional, we have D D exp.RY/, with
a diagonal matrix Y D diag.�1; �2; : : : ; �d/. We then have the following criterion
[26, Proposition 4.5]:

Proposition 7. Let S < GL.d;R/ denote a shearing subgroup. Let Y denote a
nonzero diagonal matrix, and let D WD exp.RY/ the associated one-parameter
group with infinitesimal generator Y. Then the following are equivalent:

(i) H D DS [ .�DS/ is a shearlet dilation group;
(ii) For all X 2 s we have ŒX;Y� D XY � YX 2 s, and in addition the first diagonal

entry of Y is nonzero.
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Remark 8. The above proposition states that H D S Ì R
�, so that H is solvable

group with two connected components, and each of them is simply connected.

Since Y and rY , for nonzero r 2 R, determine the same one-parameter subgroup,
part (ii) of the proposition allows to fix �1 D 1. Note that part (ii) is trivially fulfilled
by isotropic scaling, which corresponds to taking 1 D �1 D �2 D : : : D �d. In
what follows, we will be particularly interested in anisotropic solutions; our interest
in these groups is mainly prompted by the crucial role of anisotropic scaling for
wavefront set characterization.

It turns out that the relation ŒY; s� � s translates to a fairly transparent system
of linear equations. Once again, the canonical basis X2; : : : ;Xd of s proves to be
particularly useful: As the following lemma shows, the adjoint action s 3 X 7!

ŒY;X� maps s into itself if and only if the Xi are eigenvectors of that map. The
lemma uses the notation Ei;j for the matrix having entry one at row i and column j,
and zeros everywhere else.

Lemma 9. Let s denote the Lie algebra of a shearing subgroup, and let X2; : : : ;Xd

denote the canonical basis of s, given by

Xi D E1;i C

dX

jD2

dX

kDjC1

di;j;kEj;k (6)

with suitable coefficients di;j;k. Let Y D diag.1; �2; : : : ; �d/ be given. Then ŒY; s� � s

if and only if

for all i D 2; : : : ; d W �i D 1C 
i ;

and the vector .
2; : : : ; 
d/ is a solution of the system of linear equations given by

for all .i; j; k/ 2 f2; : : : ; dg3 with di;j;k 6D 0 W 
i C 
j D 
k : (7)

In particular, .
2; : : : ; 
d/ 7! .1; 1C 
2; : : : ; 1C 
d/ sets up a bijection between
the nonzero solutions of (7) on the one hand and the anisotropic scaling subgroups
D compatible with S on the other.

Remark 10. Note that (6) shows that di;j;k D .Xi/jk.

Proof. We first note that the Ej;k are eigenvectors under the adjoint action of any
diagonal matrix:

ŒY;Ej;k� D .�j � �k/Ej;k : (8)

As a consequence, given any matrix X, the support of the matrix ŒY;X� (i.e., the set
of indices of its nonzero entries) is contained in the support of X.
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Note that Y normalizes s if and only if ŒY;Xi� 2 s for i D 2; : : : ; d. Now the
calculation

ŒY;Xi� D ŒY;E1;i�C
X

.j;k/

di;j;kŒY;Ej;k� D .1 � �i/E1;i C
X

.j;k/

di;j;k.�j � �k/Ej;k (9)

shows that the only (potentially) nonzero entry in the first row of ŒY;Xi� occurs at
the ith column, hence ŒY;Xi� is in s if and only if it is a scalar multiple of Xi. In view
of (9) and the linear independence of the Ej;k, this holds precisely when

for all .i; j; k/ 2 f2; : : : ; dg3 with di;j;k 6D 0 W 1 � �i D �j � �k : (10)

Rewriting this system for 
i D �i � 1, for i D 2; : : : ; d, yields (7).

Finally, let us return to properties of the associated shearlet transforms. In view
of the central role of the dual action, it is important to compute the associated open
dual orbit. Here we have the following, see [26, Proposition 4.5]:

Proposition 11. Let S be a shearing subgroup, and D any diagonal complement
of S. Then H D DS [ �DS acts freely on the unique open dual orbit given by
O D R

� � R
d�1.

Note that the dual orbit is the same for all shearing groups. Somewhat surpris-
ingly, the same can be said of the admissibility condition [26, Theorem 4.12]:

Theorem 12. Let H < GL.Rd/ denote a generalized shearlet dilation group. Then
0 6D  2 L2.Rd/ is admissible iff

Z

Rd

jb .�/j2

j�1jd
d� < 1 :

3 A Construction Method for Shearlet Dilation Groups

3.1 Constructing Shearing Subgroups

In this subsection we want to describe a general method for the systematic
construction of shearing subgroups. Recall that given a shearing subgroup S with
Lie algebra s, taking the Lie algebra a D RId ˚ s and its associated closed matrix
group A results in an abelian irreducibly admissible matrix group. Following [22],
this entails that a is an associative matrix algebra. Furthermore, note that s consists
of strictly upper triangular matrices, which entails that any product of d elements of
s vanishes.

These features of a can be described in general algebraic terms. Given a finite-
dimensional, associative commutative algebra A , we call an element a 2 A
nilpotent if there exists n 2 N such that an D 0. The set of all nilpotent elements
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in A is called the nilradical of A , denoted by N . We call A nilpotent if every
element of A is nilpotent. N is an ideal in A , i.e., given a 2 N and an arbitrary
b 2 A , one has .ab/n D anbn D 0 for sufficiently large n, i.e. ab is again in the
nilradical. We call the algebra A irreducible (over R) if it has a unit element 1A

satisfying 1A b D b for all b 2 A , and such that A D R � 1A ˚ N holds. Note that
N determines A in this case, and we will freely switch between A and N in the
following.

Now the above considerations show that a is an irreducible associative commu-
tative algebra. In the remainder of this subsection, we will be concerned with a
converse to this statement, i.e., with the construction of shearing subgroups from
an abstractly given irreducible associative algebra. Assume that A is an irreducible
commutative associative algebra of dimension d, and denote its nilradical by N .
We let

n.A / D minfk 2 N W ak D 0; 8a 2 N g ;

which is called the nilpotency class of A . Letting

N k D fa1 : : : ak W ai 2 N g;

for k � 1, and N 0 D N , one can prove that

n.A / D minfk 2 N W N k D f0gg � d :

By definition of the nilpotency class, we obtain that N n.A /�1 6D f0g, and for all
a 2 N n.A /�1 and b 2 N , it follows that ab D 0.

Hence, choosing a nonzero ad 2 N n.A /�1, we find that Id WD R � ad is an
ideal in N ; in fact, we get N Id D f0g. Applying the same reasoning to the
algebra N =Id (and choosing any representative modulo Id) produces a second
element ad�1 with the property that Id�1 D span.ad�1; ad/ fulfills N Id�1 � Id.
Further repetitions of this argument finally yield a basis a2; : : : ; ad of N , that we
supplement by a1 D 1A to obtain a basis of A with the property

N Ik � IkC1 for 1 � k < d ; (11)

and I2 D N . We call a basis a2; : : : ; ad of N satisfying condition (11) a Jordan-
Hölder basis of N .

The existence of a Jordan-Hölder basis can be also proved by referring to a gen-
eral result about nilpotent representations of nilpotent algebras, see Theorem 3.5.3
of [36]. Indeed, regard N as nilpotent algebra and A as a vector space. It is easy
to check that the (regular) representation � of the Lie algebra N acting on A as
�.a/b D ab is nilpotent, so that there exists a basis fa1; : : : ; adg of A such that for
each a 2 N , the endomorphism �.a/ is represented by a strictly upper triangular
matrix �.a/ 2 gl.d;R/ according to the canonical isomorphism

�.a/aj D

dX

kD1

�.a/j;k ak j D 1; : : : ; d :
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Since �.a/1A D a, it is always possible to choose a1 D 1A and, by construction,
for all a 2 N and for i D 1; : : : ; d � 1

�.a/spanfai; : : : ; adg � spanfaiC1; : : : ; adg �.a/ad D 0 :

These bases provide access to an explicit construction of an associated shearing
subgroup, explained in detail in the next lemma. Recall the notation Ei;j for the
matrix possessing entry one in row i, column j, and zeros elsewhere. Note that the
map � W A ! gl.d;R/ in the following lemma coincides with the identically
denoted map that we just introduced.

Lemma 13. Let A denote an irreducible commutative associative algebra of
dimension d with nilradical N possessing the Jordan-Hölder basis

a2; : : : ; ad 2 A :

Let a1 D 1A , and let  W Rd ! A denote the induced linear isomorphism

 ..x1; : : : ; xd/
T/ D

dX

iD1

xiai :

Let � W A ! gl.d;R/ denote the associated linear map satisfying for all Qa 2 A
and for all x 2 R

d:

 �1.Qa �  .x// D �.Qa/ � x :

(a) The set

S D fId C �.a/T W a 2 N g

is a shearing subgroup, with associated Lie algebra given by

s D f�.a/T W a 2 N g :

(b) Defining Xi D �.ai/
T , for i D 1; : : : ; d, we get that X1 is the identity matrix,

and X2; : : : ;Xd is the canonical basis of s in the sense of Lemma 5.
(c) Let .di;j;k/1�i;j;k�d denote the structure constants associated to the basis, defined

by the equations

for all 1 � i; j � d W aiaj D

dX

kD1

di;j;kak : (12)
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Then

Xi D

0

B@
di;1;1 di;1;2 : : : di;1;d
:::

:::
:::

:::

di;d;1 di;d;2 : : : di;d;d

1

CA : (13)

(d) We note the following nontrivial properties of the di;j;k, valid for all 1 � i; j;
k � d:

di;j;k D dj;i;k; d1;j;k D ıj;k; di;j;k D 0 whenever k � max.i; j/:

In particular, we get for 2 � j � d

Xi D E1;i C

dX

jD2

dX

kDjC1

di;j;kEj;k : (14)

Proof. We start with part (c). Since multiplication with a1 D 1A is the identity
operator, the statement about X1 is clear. Let 1 � i; j � d. By definition of  , we
have  .ej/ D aj, and hence by definition of �

�.ai/ej D  �1.ai �  .ej// D  �1.aiaj/

D  �1

 
dX

kD1

di;j;kak

!
D

dX

kD1

di;j;kek :

Hence the jth column of �.ai/ is the vector .di;j;1; : : : ; di;j;d/
T , and its transpose is

the jth row of �.ai/
T . This shows (13).

Now, with (c) established, the equation

a1aj D aj

for i D 2; : : : ; d, yields that d1;j;k D ıj;k, which also takes care of part (b).
Furthermore, the fact that aiaj D ajai ensures that di;j;k D dj;i;k. Finally, recall that
A Ii � IiC1 by (11), which entails aiaj 2 IiC1, and thus di;j;k D 0 whenever
k � i. Since di;j;k D dj;i;k, we then obtain more generally that k � max.i; j/ entails
di;j;k D 0. Now equation (14) is clear, and (d) is shown.

In order to prove (a), we first note that � is a homomorphism of associative
algebras, hence s D �.N /T is a commutative associative matrix algebra. In
particular, it is also an abelian Lie-subalgebra. Furthermore, the relation di;j;k D 0

whenever k � max.i; j/ ensures that the basis X2; : : : ;Xd consists of strictly upper
triangular matrices. In addition, d1;j;k D ıj;k entails that X2; : : : ;Xd is indeed a
canonical basis, and thus Lemma 5 gives that the associated Lie group is a shearing
subgroup. Now part (a) of Lemma 6 yields (a) of the current lemma, and (b) is also
shown.
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Remark 14. It is natural to ask whether the construction of shearing subgroups S
from irreducible commutative associative algebras A , as described in Lemma 13, is
exhaustive. The answer is yes. To see this, consider the Lie algebra s of a shearing
subgroup S. Let X2; : : : ;Xd be the canonical basis of s. Since Xj is strictly upper
triangular, and the first row of Xi equals eT

i , it follows that the first i entries of the
first row of XiXj vanish. This product is again in the span of the Xk, hence

XiXj D
X

k>i

di;j;kXk ;

with suitable coefficients di;j;k. But the fact that the sum on the right-hand side
starts with k D i C 1 shows that the basis X2; : : : ;Xd is a Jordan-Hölder basis of
the nilpotent associative matrix algebra s. If one now applies the procedure from
Lemma 13 (with ai D Xi), direct calculation allows to verify that �.X/T D X for all
X 2 s. Hence every shearing subgroup arises from the construction in Lemma 13.

In particular, the observations concerning the structure constants di;j;k made in
part (d) of Lemma 13 also apply to the di;j;k in Lemma 9.

Remark 15. A further benefit of the above construction of shearing groups via
associative algebras is that it settles the question of conjugacy as a by-product. By
Theorem 13 in [22] and the remarks prior to that result, one sees that two shearing
subgroups S1 and S2 are conjugate iff their Lie algebras are isomorphic as associative
algebras.

In particular, following the observation made in [22, Theorem 15], in dimension
d � 7 there exist uncountably many nonconjugate shearing subgroups.

3.2 An Inductive Approach to Shearlet Dilation Groups

For possible use in inductive proof strategies, we note a further consequence of the
block structure:

Proposition 16. Let H D ˙DS < Gl.d;R/ denote a shearlet dilation group, with
d � 3, and let

H1 D

	
h0 2 GL.d � 1;R/ W 9 h 2 H; z 2 R

d�1; s 2 Rn f0g with h D

�
h0 z
0 s

� 

:

Then H1 is a shearlet dilation group as well.
Conversely, the elements of H can be described in terms of H1 as follows: There

exists a map y W H1 ! R
d�1 such that we can write each h 2 H uniquely as
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h.h1; r/ D

0

BBBBBBBB@

r
y1.h1/

h1 y2.h1/
:::

yd�2.h1/
0 : : : : : : 0 yd�1.h1/

1

CCCCCCCCA

;

with h1 2 H1; r 2 R.

3.3 Examples

As a result of the previous subsections, we obtain the following general procedure
for the systematic construction of shearlet dilation groups:

1. Fix a nilpotent associative algebra N .
2. Pick a Jordan-Hölder basis a2; : : : ; ad of N , and compute the canonical basis

X2; : : : ;Xd of the Lie algebra s of the associated shearing subgroup. Note that
this amounts to determining the structure constants .di;j;k/1�i;j;k�d. The shearing
subgroup is then determined as S D Id C s.

3. In order to determine the diagonal scaling groups that are compatible with S, set
up and solve the linear system (7) induced by the nonvanishing di;j;k.

We will now go through this procedure for several examples or classes of
examples.

Example 17. We start out with the simplest case of a nilpotent algebra N of
dimension d � 1, namely that of nilpotency class 2. Here one has ab D 0 for
any a; b 2 N , and it is clear that for two such algebras, any linear isomorphism
is an algebra isomorphism as well. Picking any basis a2; : : : ; an of N , we obtain
Xi D E1;i. In particular, the linear system (7) is trivial. Hence any one-parameter
diagonal group can be used as scaling subgroup. We thus recover the groups
described in (4).

Example 18. Another extreme class of nilpotent algebras of dimension d is that of
nilpotency class d. Here there exists b 2 N with bd�1 6D 0. This implies that
b; : : : ; bd�1 are linearly independent, and then it is easily seen that ai D bi�1, for
i D 2; : : : ; d, defines a Jordan-Hölder basis of N . In this example, the defining
relations read

aiaj D aiCj�1; 2 � i; j; i C j � 1 � d; (15)

and the resulting canonical Lie algebra basis is then determined as
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X2 D

0

BBBBBBBBB@

0 1

0 1
: : :

: : :

: : :
: : :

0 1

0

1

CCCCCCCCCA

; X3 D

0

BBBBBBBB@

0 0 1

0 0 1
: : :

: : :
: : :

0 0 1

0 0

0

1

CCCCCCCCA

; : : : ;

Xd D

0

BBBBBBBBB@

0 : : : : : : : : : 0 1

0
:::

0
:::
:::

0

1

CCCCCCCCCA

:

Thus we see that the resulting shearing subgroup is that of the Toeplitz shearlet
group from (5). The linear system (7) becomes


i C 
j D 
iCj�1; for 2 � i; j; i C j � 1 � d:

It is easy to see that all solutions of this system are given by


j D .j � 1/ı; j D 2; : : : ; d

with ı an arbitrary real parameter. Thus the scaling subgroups compatible with the
Toeplitz dilation group are precisely given by

exp.Rdiag.1; 1C ı; : : : ; 1C .d � 1/ı// ;

with ı 2 R arbitrary.

Remark 19. For d D 3, the two above listed cases are all possible examples of
shearing subgroups, and not even just up to conjugacy. In particular, we find that all
shearing subgroups in dimension 3 are compatible with anisotropic dilations.

We now turn to the shearing subgroups in dimension 4, with focus on the groups
not covered by (4) and (5).

Example 20. Since the nilpotency classes n D 2; 4 are already covered by the
previous examples, the remaining 4-dimensional cases of irreducible algebras A
all have nilpotency class 3. It is shown in [22] that

A Š RŒY1;Y2�=.Y
3
1 ;Y

2
2 � ˛Y21 ;Y1Y2/;
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with ˛ 2 f�1; 0; 1g. Here, RŒY1;Y2� denotes the algebra of polynomials with real
coefficients and indeterminates Y1;Y2, and J D .Y31 ;Y

2
2 � ˛Y21 ;Y1Y2/ denotes the

ideal generated by the three polynomials. Then the nilradical N is generated by
Y1CJ ;Y2CJ . We choose the basis a2 D Y1CJ ; a3 D Y2CJ ; a4 D Y21CJ ,
and obtain as the only nonzero relations

a22 D a4; a23 D ˛a4:

This allows to conclude that a2; a3; a4 is indeed a Jordan-Hölder basis. Following
Lemma 13 (c), we can read off the canonical basis of the associated shearing
subgroup as

X2 D

0

BB@

0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0

1

CCA ; X3 D

0

BB@

0 0 1 0

0 0 0 0

0 0 0 ˛

0 0 0 0

1

CCA ; X4 D

0

BB@

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

1

CCA :

We next determine the compatible scaling subgroups. In the case ˛ 6D 0, we obtain
the system of equations

2
2 D 
4; 2
3 D 
4:

Thus the infinitesimal generators of scaling subgroups are of the form Y D

diag.1; 1C ı; 1C ı; 1C 2ı/, with ı 2 R arbitrary.
In the case ˛ D 0, we only get one equation, namely

2
2 D 
4;

showing that here the compatible infinitesimal generators are of the form Y D

diag.1; 1C ı1; 1C ı2; 1C 2ı1/, with ı1; ı2 2 R arbitrary.

Finally, we give an example of a shearing subgroup which is only compatible
with isotropic scaling. It is based on the same algebra as Example 18 (with d D 4),
and as a result the associated shearing subgroups are conjugate. Recall that the
groups in Example 18 are compatible with anisotropic scaling. This illustrates an
important, somewhat subtle point: While the precise choice of Jordan-Hölder basis
in the procedure described in Lemma 13 is immaterial if one is just interested in
guaranteeing the shearing subgroup property, it may have a crucial influence on the
availability of compatible anisotropic scaling subgroups.

Example 21. Let A D RŒX�=.X4/. We use the Jordan-Hölder algebra a2 D X C

X2 C .X4/, a3 D X2 C .X4/, a4 D X3 C .X4/. This leads to the following nonzero
relations

a22 D a3 C 2a4; a2a3 D a4;
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which gives rise to the basis

X2 D

0

BB@

0 1 0 0

0 0 1 2

0 0 0 1

0 0 0 0

1

CCA ; X3 D

0

BB@

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

1

CCA ; X4 D

0

BB@

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

1

CCA :

Now the nonzero entries in the matrix X2 imply that the linear system (7) contains
the equations

2
2 D 
3; 2
2 D 
4; 
2 C 
3 D 
4:

The first two equations imply 
3 D 2
2 D 
4, and then the third equation yields

2 D 0. Hence this shearing subgroup is only compatible with isotropic scaling.

4 Anisotropic Scaling and Wavefront Set Characterizations

In this section we investigate the suitability of the various groups for microlocal
analysis. The idea is to verify the criteria derived in [21] that allow to establish
the suitability of a dilation group for the characterization of the wavefront set via
wavelet coefficient decay. As it will be seen, this property only depends on the
scaling subgroup.

4.1 Criteria for Wavefront Set Characterization

Throughout this subsection H is an irreducibly admissible matrix group, i.e. its dual
action has a single open orbit O � R

d, with associated compact fixed groups. We
use V b O to denote that the closure of V inside O is compact.

Given R > 0 and x 2 R
d, we let BR.x/ and BR .x/ denote the open/closed ball

with radius R and center x, respectively. We let Sd�1 � R
d denote the unit sphere. By

a neighborhood of � 2 Sd�1, we will always mean a relatively open set W � Sd�1

with � 2 W. Given R > 0 and an open set W � Sd�1, we let

C.W/ WD
˚
r� 0 W � 0 2 W; r > 0


D

	
� 2 R

d n f0g W
�

j�j
2 W



;

C.W;R/ WD C.W/ n BR.0/:

Both sets are clearly open subsets of Rd n f0g and thus of Rd.
Given a tempered distribution u, we call .x; �/ 2 R

d � Sd�1 a regular directed
point of u if there exists ' 2 C1

c .R
d/, identically one in a neighborhood of x, as
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well as a �-neighborhood W � Sd�1 such that for all N 2 N there exists a constant
CN > 0 with

for all � 0 2 C .W/ W
ˇ̌
c'u.� 0/

ˇ̌
� CN.1C j� 0j/�N : (16)

We next formally define the sets Ki and Ko which will allow to associate group
elements to directions.

Definition 22. Let ; ¤ W � Sd�1 be open with W � O (which implies
C .W/ � O). Furthermore, let ; ¤ V b O and R > 0. We define

Ki.W;V;R/ WD
˚
h 2 H W h�TV � C.W;R/



as well as

Ko.W;V;R/ WD
˚
h 2 H W h�TV \ C.W;R/ 6D ;


:

If the parameters are provided by the context, we will simply write Ki and Ko. Here,
the subscripts i=o stand for “inner/outer”.

We now define what we mean by dilation groups characterizing the wavefront
set. We first extend the continuous wavelet transform to the space of tempered dis-
tributions, i.e., we use W u, for a Schwartz wavelet  and a tempered distribution u.

Definition 23. The dilation group H characterizes the wavefront set if there exists a
nonempty open subset V b O with the following property: For all 0 6D  2 S .Rd/

with supp.b / � V , for every u 2 S 0.Rd/ and all .x; �/ 2 R
d � .O \ Sd�1/, the

following statements are equivalent:

(a) .x; �/ is a regular directed point of u.
(b) There exists a neighborhood U of x, some R > 0 and a �-neighborhood W �

Sd�1 such that for all N 2 N there exists a constant CN > 0 such that for all
y 2 U, and for all h 2 Ko.W;V;R/ the following estimate holds:

jW u.y; h/j � CNkhkN :

Note that the definition excludes a set of directions � from the analysis of the
wavefront set, namely the directions not contained in O \ Sd�1. These directions
always constitute a set of measure zero. Recall from Proposition 11 that in the case
of shearlet dilation groups, this exceptional set is given by .f0g � R

d�1/ \ Sd�1.
We next recall the sufficient conditions for dilation groups that characterize the

wavefront set, as established in [21]. The first one is related to the problem that one
would like to interpret the norm as a scale parameter.

Definition 24. Let � 2 O \ Sd�1 and ; ¤ V b O . The dual action is called
V-microlocally admissible in direction � if there exists a �-neighborhood W0 �

Sd�1 \ O and some R0 > 0 such that the following hold:
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1. There exist ˛1 > 0 and C > 0 such that

kh�1k � C � khk�˛1

holds for all h 2 Ko.W0;V;R0/.
2. There exists ˛2 > 0 such that

Z

Ko.W0;V;R0/
khk˛2 dh < 1:

The dual action is called microlocally admissible in direction � if it is V-
microlocally admissible in direction � for some ; ¤ V b O .

The second important condition is contained in the following definition. It can
be understood as formalizing the ability of the associated wavelet systems o make
increasingly fine distinctions between different directions, as the scales go to zero.

Definition 25. Let � 2 O \ Sd�1 and ; ¤ V b O . The dual action has the V-cone
approximation property at � if for all �-neighborhoods W � Sd�1 and all R > 0

there are R0 > 0 and a �-neighborhood W 0 � Sd�1 such that

Ko.W
0;V;R0/ � Ki.W;V;R/:

We now have the following [21, Corollary 4.9]:

Theorem 26. Assume that the dual action is V-microlocally admissible at some
�0 2 O and has the V-cone approximation property at �0, for some nonempty open
subset V � O . Then H characterizes the wavefront set.

Remark 27. The property of characterizing the wavefront set is linked to anisotropic
scaling, in the following sense: If H characterizes the wavefront set, then

H \ R
C � Id D fIdg ;

by [21, Lemma 4.10]. Hence if H is a shearlet dilation group characterizing the
wavefront set, its scaling subgroup must be anisotropic. This excludes the shearing
group constructed in Example 21.

Theorem 26 therefore implies that every group failing the anisotropy criterion
H \ R

C � Id D fIdg must necessarily fail either the microlocal admissibility or the
cone approximation property. It is in fact the latter that breaks down, as noted in [21,
Lemma 4.4].

These considerations highlight the importance of understanding when a given
shearing group admits anisotropic scaling.
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4.2 Characterization of the Wavefront Set for Shearlet Dilation
Groups

We can now state a very general theorem concerning the ability of shearlet groups
to characterize the wavefront set. Note that there are no conditions on the shearing
subgroups.

Theorem 28. Assume that H is a shearlet dilation group. Let YD diag.1; �2; : : : ; �d/

denote the infinitesimal generator of the scaling subgroup. If 0 < �i < 1 holds, for
all 2 � i � d, then H characterizes the wavefront set.

Remark 29. We can now quickly go through the examples of shearing subgroups in
Subsection 3.3 and show that for most cases, there exists a compatible anisotropic
scaling subgroup that allows to characterize the wavefront set. Writing �i D 1C
i

as in Lemma 5, the condition from Theorem 28 translates to �1 < 
i < 0, for
2 � i � d. Apart from the group in Example 21, which was specifically constructed
to not allow any anisotropic scaling, all other shearing groups can be combined
with a compatible scaling group in such a way that the resulting shearlet transform
fulfills the conditions of Theorem 28, and therefore characterizes the wavefront set.
Note that this was previously known only for the original shearlet group [21, 34].
In particular, we may combine the Toeplitz shearing subgroup with the scaling
subgroup with exponents .1; 1�ı; : : : ; 1�.d�1/ı/, and choosing ı 2 .0; 1=.d�1//

guarantees that the Toeplitz shearlet transform characterizes the wavefront set.

The proof of the Theorem amounts to verifying the cone approximation property
and microlocal admissibility of the dual action, and this will be carried out in the
following two propositions. For the remainder of this section, we fix a shearlet
dilation group H with infinitesimal generator diag.1; �2; : : : ; �d/ of the scaling
subgroup. We let �max D maxi�2 �i, and �min D mini�2 �i.

Proposition 30. If �max < 1, there exists an open subset ; ¤ V b O such that
the dual action of H on the orbit O has the V-cone approximation property at
.1; 0; : : : ; 0/T 2 Sd�1 \ O .

Proof. We will employ the structural properties of shearing subgroups derived in
Section 2.2. We let S and D denote the shearing and scaling subgroups of H,
respectively. The infinitesimal generator of D is a diagonal matrix with the entries
1; �2; : : : ; �d. We let X2; : : : ;Xd denote the canonical basis of s, consisting of strictly
upper triangular matrices Xi. By Lemma 6, each h 2 S is uniquely described by

h D h.t; 1/ D Id C

dX

iD2

tiXi ;

where t D .t2; : : : ; td/T denotes the vector of first row entries of h.t; 1/. For H, we
thus obtain the global chart

h.t; a/ D

 
Id C

dX

iD2

tiXi

!
sgn.a/diag.jaj; jaj�2 ; : : : ; jaj�d / 2 GL.d;R/; .t; a/ 2 R

d�1�R
� :
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For the purpose of the following computations, it is possible and beneficial to
slightly modify this construction and replace h.t; 1/ by its inverse. Thus, every h 2 H
can be written (uniquely) as h D ˙h.t; 1/�1h.0; a/ with t 2 R

d�1 and a 2 .0;C1/.
The dual action is then given by

.h�1/T D ˙.h.0; a/�1h.t; 1//T D ˙

 
Id C

dX

iD2

tiX
T
i

!
h.0; a�1/; (17)

where by construction

Id C

dX

iD2

tiX
T
i D

�
1 0T

t Id�1 C A.t/T

�
; (18)

with A.t/ being a .d � 1/ � .d � 1/ strictly lower-triangular matrix satisfying

kA.t/k � Cjtj (19)

with a constant C depending only on H.
We now parametrise the open orbit O by the global chart provided by affine

coordinates

˝ W R� � R
d�1 ! O ˝.�; v/ D �.1; vT/T ;

and Sd�1 \ O by the corresponding diffeomorphism to its image

! W Rd�1 ! Sd�1 \ O; !.v/ D
.1; vT/T
p
1C jvj2

:

Given " > 0, we set

W" D fv 2 R
d�1 W jvj < "g D B".0/;

since fW" W " > 0g is a neighborhood basis of the origin in R
d�1 and f!.W"/ W " >

0g is a neighborhood basis of �0 D .1; 0; : : : ; 0/ 2 Sd�1 \ O .
Furthermore, for fixed 0 < �1 < �2 and "0 > 0 the set

V D ˝. .�1; �2/ � W"0 /

is an open subset with V b O .
Given h 2 H, as in (17), and � 2 V , then � D ˝.�; v/ with �1 < � < �2 and

v 2 W"0 , and we get

.h�1/T� D ˙�

�
1 0T

t Id�1 C A.t/T

��
a�1

v0

�
D ˙a�1�

�
1

t C .Id�1 C A.t/T/v00

�
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where v0; v00 2 R
d�1 have components given by v0

i D a��ivi and v00
i D a1��ivi for

all i D 2; : : : ; d. Hence

.h�1/T.V/ D ˝
�
.˙a�1�1;˙a�1�2/ � .t C .Id�1 C A.t/T/Wa

"0
/
�

where Wa
"0

D fv00 2 R
d�1 W v00

i D a1��ivi; jvj < "0g.
Fix now R > 0 and a neighborhood W � Sd�1 \ O of �0. Without loss of

generality we can assume that W D !.W"/ for some " > 0. Furthermore, since

.R;C1/� W" � ˝�1.C.!.W"/;R// � .
R

p
1C "2

;C1/� W" � .
R

2
;C1/� W";

where the last inclusion on the right holds if " � 1, then the V-cone approximation
property holds true if there exist R0 > 0 and 0 < "0 � 1 such that for all h 2 H
satisfying

.h�1/T.V/ \˝

�
.
R0

2
;C1/ � W"0

�
6D ;; (20a)

it holds that

.h�1/T.V/ � ˝ . .R;C1/ � W" / : (20b)

Take R0 > 0 and 0 < "0 <
p
3, which we will fix later on as functions of R and ",

and h 2 H as in (17). If h D �.h.0; a/�1h.t; 1//T , then

�
.
R0

2
;C1/ � W"0

�
\
�
.�a�1�2;�a�1�1/ � .t C .Id�1 C A.t/T/Wa

"0
/
�

D ;;

so that (20a) implies that h D C.h.0; a/�1h.t; 1//T and

�
.
R0

2
;C1/ � W"0

�
\
�
.a�1�1; a

�1�2/ � .t C .Id�1 C A.t/T/Wa
"0
/
�

6D ;:

Hence

R0 < 2a�1�2; W"0 \
�
t C .Idd�1 CA.t/T/Wa

"0

�
6D ;:

If we choose R0 > 2�2, the first inequality gives

a <
2�2

R0
< 1; (21)

and, since a < 1, setting �max D maxf�2; : : : ; �dg, clearly

Wa
"0

� W"0a1��max : (22)
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By the above inclusion, since W"0 \
�
t C .Id�1 C A.t/T/Wa

"0

�
6D ;, then there exists

� 2 W"0a1��max such that jt C � C A.t/T�j < "0. Hence, triangle inequality, (19)
and (21) give

jtj < "0 C .1C kA.t/Tk/j�j � "0 C .1C Cjtj/a1��max"0

� "0 C .
2�2

R0
/1��max.1C Cjtj/"0 � 2"0 C

1

2
jtj;

where the last inequality holds true provided that

R0 > 2�2 maxf1; .
"0

"0
/

1
1��max ; .2C"0/

1
1��max g: (23)

Hence, if (20a) holds true with R0 satisfying (23), then

a <
2�2

R0
< 1 (24a)

jtj < 4"0 (24b)

.
2�2

R0
/1��max"0 < minf"0;

1

2C
g: (24c)

The condition (20b) is equivalent to

.a�1�1; a
�1�2/ � .t C Id�1 C A.t/T/Wa

"0
/ � .R;C1/ � W";

which is ensured by a�1�1 > R and, recalling (22), by tC.Id�1CA.t/T/W"0a1��max �

W".
By (24a) the first condition is satisfied if �1=R > 2�2

R0
. Taking into account (23), it

is sufficient to assume that

R0 > 2�2 maxf1; .
"0

"0
/

1
1��max ; .2C"0/

1
1��max ;

R

�1
g: (25)

To ensure that t C .Id�1 C A.t/T/W"0a1��max � W", note that, for all � 2 W"0a1��max ,
conditions (19), (24a), and (24b) give

jt C .Id�1 C A.t/T/�j � jtj C .1C Cjtj/j�j � jtj C .1C Cjtj/a1��max"0

< 4"0 C .1C C4"0/.
2�2

R0
/1��max"0

� 4"0 C "0 C 2"0 D 7"0;

where the last inequality follows from (24c). Hence, with the choice "0 D

minf1; "=7g and R0 satisfying (25) for all � 2 W"0a1��max ,

jt C .Id�1 C A.t/T/�j < ";

so that (20b) holds true for all h 2 H satisfying (20a).
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Remark 31. The proof does not make use of the fact that the shearlet group S is
abelian. The proof is based only on the following two properties of S

a) a global smooth chart t 7! s.t/ from R
d�1 onto S;

b) for all t 2 R
d the dual action of s.t/ is of the form

.s.t/�1/T D

�
1 0T

t B.t/

�

where kB.t/k � C1 C C2jtj for a suitable choice of C1 and C2.

With the cone approximation property already established, the remaining condi-
tion is quite easy to check.

Proposition 32. If 0 < �min � �max < 1, there exists an open subset ; ¤ V b
O such that the dual action of H on the orbit O is V-microlocally admissible in
direction .1; 0; : : : ; 0/ 2 Sd�1 \ O .

Proof. We retain the notations from the previous proof, as well as the open set

V D ˝. .�1; �2/ � W"0 / ;

with �1 < 1 < �2. Since we assume �max < 1, the cone approximation property
holds, and then condition (2) of Definition 24 follows from condition (1) by [21,
Lemma 4.7]. In addition, the cone approximation property allows to replace Ko in
that condition by the smaller set Ki. In short, it remains to prove the existence of
˛ > 0 and C00 > 0 such that

kh�1k � C00khk�˛

holds for all h 2 Ki.!.W"/;V;R/, for suitable ";R > 0. In the following
computations, we let " D 1 and R > 2. Now assume that h D ˙h.t; 1/�1h.0; a/ 2

Ki.!.W"/;V;R/, which means that h�TV � C.!.W"/;R/. This implies in particu-
lar that

h�T

0

BBB@

1

0
:::

0

1

CCCA D ˙h.t; 1/Th.0; a/�1

0

BBB@

1

0
:::

0

1

CCCA D ˙h.t; 1/T

0

BBB@

a�1

0
:::

0

1

CCCA

D ˙a�1

�
1

t

�
2 C.!.W"/;R/ :

This implies that the sign is in fact positive. Furthermore, we have jtj � " D 1, and
then

2a�1 �

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

h�T

0

BBB@

1

0
:::

0

1

CCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

> R > 2 ;
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which implies a < 1. By using the fact kh.t; 1/k �
p
2.1C.1CC/jtj/ �

p
2.2CC/,

where C was the constant from (19), we can now estimate

kh�1k D kh.0; a/�1h.t; 1/k � kh.0; a/�1kkh.t; 1/k �
p
2.2C C/a�1;

where we used a < 1 and �max � 1 to estimate the norm of h.0; a/�1. In addition,

khk D kh.t; 1/�1h.0; a/k � kh.t; 1/�1kkh.0; a/k � C0a�min :

Here we used that the set fh.t; 1/ W jtj � 1g � H is compact to uniformly estimate
the norm of the inverses by a suitable C0, and a < 1 to estimate the norm of h.0; a/.
But these estimates combined yield

kh�1k �
p
2.2C C/a�1 �

p
2.2C C/.C0/1=�minkhk�1=�min :

Since we assume that �min > 0, the proof is finished.

5 Embeddings into the Symplectic Group

From the analytical point of view, we saw that shearlet dilation groups are a useful
tool for the characterization of the wavefront set of distributions. On the other
hand, from the algebraic and geometrical points of view, these groups and the
associated generalized wavelet representation exhibit an interesting link with the
symplectic group and the metaplectic representation. More precisely, in this section
we show that the positive part DS of any shearlet dilation group DS[ .�DS/may be
embedded into the symplectic group. Note that the full group DS[.�DS/ cannot be
expected to be imbedded into Sp.d;R/ [14, Theorem 3.5]. Moreover, we prove that
the wavelet representation is unitarily equivalent to the metaplectic representation,
provided that they are restricted to a suitable subspace of L2.Rd/. In fact, a much
more general class of groups is allowed, see Theorem 33.

The relevance of the symplectic group and of the metaplectic representation in
this context has already been shown in several works [1, 2, 14, 15]. In particular, the
argument given here generalizes [14].

Let T.d;R/C denote the subgroup of GL.d;R/ consisting of the upper triangular
matrices with positive entry in position .1; 1/, namely

T.d;R/C D fh 2 GL.d;R/ W h1;1 > 0 and hi;j D 0 for every i > jg:

We consider the following subspace of L2.Rd/:

H D ff 2 L2.Rd/ W suppOf 	 �Lg; where �L D f� 2 R
d W �1 � 0g:

The main result of this section reads as follows.
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Theorem 33. Take H < T.d;R/C. The group G D R
d Ì H may be embedded into

the symplectic group, namely there exists a group embedding �W G ! Sp.d;R/.
Moreover, the restriction to H of the quasi-regular representation � defined in (1)
is unitarily equivalent to 
 ı � restricted to H , where 
 is the metaplectic
representation of Sp.d;R/.

The rest of this section is devoted to the proof of this theorem. The embedding �,
the subgroup �.G/, as well as the intertwining operator between the quasi-regular
representation and the metaplectic representation will be explicitly constructed.

First, we construct the subgroup �.G/ < Sp.d;R/ and the map �. The vectorial
part of G D R

d ÌH will correspond to the subspace of the d-dimensional symmetric
matrices given by

˙ WD f	b WD

0

BBB@

b1 b2=2 � � � bd=2

b2=2
::: 0

bd=2

1

CCCA W b 2 R
dg:

We shall need the following preliminary result concerning the map

�W T.d;R/C ! GL.d;R/; h 7!
p

h1;1 h�T : (26)

Lemma 34. The map � is a group homomorphism and for all b 2 R
d and h 2

T.d;R/C there holds

�.h/�T	b�.h/
�1 D 	hb: (27)

Proof. The first part is trivial, since the matrices in H are upper triangular with
h1;1 > 0. The second part can be proven as follows. Fix b 2 R

d and h 2 T.d;R/C.
The assertion is equivalent to

h	b hT D h1;1	hb:

Write for i D 2; : : : ; d

h D

0

BBB@

h1
h2
:::

hd

1

CCCA ; h1 D Œh1;1 h0
1�; hi D Œ0 h0

i�; b0 D

0

B@
b2
:::

bd

1

CA :

We have

h	b D

0

BBB@

h1;1 h0
1

0 h0
2

:::
:::

0 h0
d

1

CCCA

�
b1 b0T=2

b0=2 0

�
D

0

BBB@

h1;1b1 C h0
1b

0=2 h1;1b0T=2

h0
2b

0=2 0
:::

:::

h0
db0=2 0

1

CCCA ;
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whence

h	b hTD

0

BBB@

h1;1b1Ch0
1b

0=2 h1;1b0T=2

h0
2b

0=2 0
:::

:::

h0
db0=2 0

1

CCCA

�
h1;1 0 � � � 0

h0T
1 h0T

2 � � � h0T
d

�

D

0

BBB@

h1;1.h1;1b1 C h0
1b

0=2/C h1;1b0Th0T
1 =2 h1;1b0Th0T

2 =2 � � � h1;1b0Th0T
d =2

h1;1h0
2b

0=2
::: 0

h1;1h0
db0=2

1

CCCA :

Therefore, since b0Th0T
i D h0

ib
0 for every i and h0

ib
0 D hib for i � 2, we obtain

h	b hT D h1;1

0

BBBB@

h1;1b1 C h0
1b

0 h0
2b

0=2 � � � h0
db0=2

h0
2b

0=2
::: 0

h0
db0=2

1

CCCCA
D h1;1

0

BBBB@

h1b1 h2b=2 � � � hdb=2
h2b=2
::: 0

hdb=2

1

CCCCA
;

whence h	b hT D h1;1	hb, as desired.

We use the notation

g.	; h/ D

�
h
	h h�T

�
2 Sp.d;R/; 	 2 Sym.d;R/; h 2 GL.d;R/:

The product law is

g.	1; h1/g.	2; h2/ D g.	1 C h�T
1 	2h

�1
1 ; h1h2/: (28)

In the following result we show that G D R
d Ì H is isomorphic to the subgroup of

Sp.d;R/ given by˙Ì�.H/ WD g.˙; �.H//. This proves the first part of Theorem 33.

Proposition 35. Take H < T.d;R/C. Then the map

�WRd Ì H ! g.˙; �.H// < Sp.d;R/; .b; h/ 7! g.	b; �.h//

is a group isomorphism.

It is worth mentioning that Lemma 2.3 in [14] immediately follows from this result.

Proof. Recall that the product in R
d Ì H is defined by

.b1; h1/.b2; h2/ D .b1 C h1b2; h1h2/; bi 2 R
d; hi 2 H:
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By definition of � and using (28) there holds

�.b1; h1/�.b2; h2/ D g.	b1 ; �.h1//g.	b2 ; �.h2//

D g.	b1 C �.h1/
�T	b2�.h1/

�1; �.h1/�.h2//:

Therefore, Lemma 34 gives

�.b1; h1/�.b2; h2/ D g.	b1 C 	h1b2 ; �.h1h2//

D g.	b1Ch1b2 ; �.h1h2//

D �..b1; h1/.b2; h2//;

as desired. Note that the fact that g.˙; �.H// is a subgroup follows a posteriori.

Intertwining the quasi-regular representation � , given in (1), with the Fourier trans-
form F W H ! L2.�L/ we obtain the representation O�.b; h/ WD F�.b; h/F �1 on
L2.�L/ given by

O�.b; h/Of .�/ D j det h j1=2e�2� ihb;�iOf .hT�/; Of 2 L2.�L/:

The metaplectic representation restricted to ˙ Ì �.H/ takes the form


.�.b; h//Of .�/ D j det �.h/ j�1=2e� ih	b�;�iOf .�.h/�1�/; Of 2 L2.�L/: (29)

We now show that O� and 
 are unitarily equivalent, which concludes the proof of
Theorem 33. The intertwining operator is given by

� W L2.�L/ ! L2.�L/; � Of .�/ D j det JQ�1 .�/j1=2Of .Q�1.�//;

where QW�L ! �L is defined by Q.�/ D � 1
2
�1� .

Proposition 36. Let � be the group isomorphism given by Proposition 35. For
every .b; h/ 2 R

d Ì H there holds

�
.�.b; h//��1 D F�.b; h/F �1 D O�.b; h/:

Proof. We start by giving a few identities without proof [14]:

j det JQ.�/j D 21�dj�1j
d; (30)

j det JQ�1 .�/j D 2
d
2�1j�1j

� d
2 ; (31)

h	b�; �i D �2hb;Q.�/i; (32)

Q�1.�/ D
p
2�=

p
��1: (33)
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By (32) and (27) there holds

�2hb;Q.hT�/i D h	b hT�; hT�i D hh	b hT�; �i D h1;1h	hb�; �i:

Therefore, using again (32) we obtain

�2hb;Q.hT�/i D �2h1;1hhb;Q.�/i D �2hb; h1;1 hTQ.�/i;

whence

Q.hT�/ D h1;1 hTQ.�/: (34)

By using the definition of � , (29), (32), (26) and once again the definition of � , we
can now compute for Of 2 L2.�L/, b 2 R

d and h 2 H

�
.�.b; h//��1Of .�/ D j det JQ�1 .�/j1=2.
.�.b; h//��1Of /.Q�1.�//

D j det JQ�1 .�/j1=2j det �.h/j�1=2e� ih	bQ�1.�/;Q�1.�/i��1Of .�.h/�1Q�1.�//

D j det JQ�1 .�/j1=2j det �.h/j�1=2e�2� ihb;�i��1Of .�.h/�1Q�1.�// (35)

D j det JQ�1 .�/j1=2h
� d
4

1;1 j det hj1=2e�2� ihb;�i��1Of .h
� 1
2

1;1 hTQ�1.�//

D j det JQ�1 .�/j1=2h
� d
4

1;1 j det hj1=2e�2� ihb;�i

�j det JQ.h
� 1
2

1;1 hTQ�1.�//j1=2Of .Q.h
� 1
2

1;1 hTQ�1.�///:

Now note that by (34) and by the fact that Q is quadratic there holds

Q.h
� 1
2

1;1 hTQ�1.�// D h1;1 hTQ.h
� 1
2

1;1 Q�1.�// D hTQ.Q�1.�// D hT�: (36)

Moreover we have

j det JQ.h
� 1
2

1;1 hTQ�1.�//j D 21�dj.h
� 1
2

1;1 hTQ�1.�//1j
d

D 21�dh
� d
2

1;1 j. hTQ�1.�//1j
d

D 21�dh
� d
2

1;1 hd
1;1jQ

�1.�/1j
d

D 21�dh
d
2

1;12
d
2 j�1j

d
2 ;

where the first equality follows from (30), the third one from the fact that hT is lower
triangular and the fourth one from (33). Therefore by (31)

j det JQ�1 .�/j1=2j det JQ.h
� 1
2

1;1 hTQ�1.�//j1=2 D 2
d
4� 1

2 j�1j
� d
4 2

1
2� d

2 h
d
4

1;12
d
4 j�1j

d
4 D h

d
4

1;1:

(37)



Recent Progress in Shearlet Theory 159

Finally, inserting (36) and (37) into (35) we obtain

�
.�.b; h//��1Of .�/ D j det hj1=2e�2� ihb;�iOf . hT�/ D O�.b; h/Of .�/;

as desired.
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Numerical Solution to an Energy Concentration
Problem Associated with the Special Affine
Fourier Transformation

Amara Ammari, Tahar Moumni, and Ahmed Zayed

1 Introduction

The SAFT, which was introduced in [1], is an integral transformation associated
with a general inhomogeneous lossless linear mapping in phase-space that depends
on six parameters independent of the phase-space coordinates. It maps the position
x and the wave number k into

�
x0

k0

�
D

�
a b
c d

� �
x
k

�
C

�
p
q

�
(1)

with

ad � bc D 1: (2)

This transformation, which can model many general optical systems [1], maps any
convex body into another convex body and (2) guarantees that the area of the body
is preserved by the transformation. Such transformations form the inhomogeneous
special linear group ISL.2;R/:

A. Ammari
Department of Mathematics, Faculty of Sciences of Tunis, University of Manar, Tunis, Tunisia
e-mail: ammari.ipeib@gmail.com

T. Moumni
Department of Mathematics, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna,
Tunisia
e-mail: moumni.tahar1@gmail.com

A. Zayed (�)
Department of Mathematical Sciences, DePaul University, Chicago, IL 60614, USA
e-mail: azayed@condor.depaul.edu

© Springer International Publishing AG 2017
I. Pesenson et al. (eds.), Frames and Other Bases in Abstract and Function Spaces,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-3-319-55550-8_8

161

mailto:ammari.ipeib@gmail.com
mailto:moumni.tahar1@gmail.com
mailto:azayed@condor.depaul.edu


162 A. Ammari et al.

The SAFT offers a unified viewpoint of known signal processing transformations
as well as optical operations on light waves.

The integral representation of the wave-function transformation associated with
the transformation (1) and (2) is given by

F.!/ Dbf A.!/ D

Z

R
k.t; !/f .t/dt (3)

D
1

p
2�jbj

Z

R
exp

	
i

2b

�
at2 C d!2 � 2t! C 2pt C 2.bq � dp/!

�

f .t/dt;

where A stands for the six parameters .a; b; c; d; p; q/; and

k.t; !/ D
1

p
2�jbj

exp

	
i

2b

�
at2 C d!2 � 2t! C 2pt C 2.bq � dp/!

�

:

The inversion formula for the SAFT is easily shown to be

f .t/ D
1

p
2�jbj

Z

R
F.!/ exp

	
�i

2b

�
d!2 C at2 � 2t! C 2!.bq � dp/C 2pt

�

d!;

(4)
which may be considered as the SAFT evaluated using A�1; where1

A�1 def
D
h
A�1

ˇ̌
ˇ��1

i



�
Cd �b bq � dp
�c Ca cp � aq

�
;

and to be precise,

A�1 D

�
Cd �b
�c Ca

�
and ��1 def

D

�
bq � dp
cp � aq

�
:

We also have

hf ; gi D

Z

R
f .t/g.t/dt D

Z

R
F.!/G.!/d! D hF;Gi;

from which we obtain kf k D kFk : When p D 0 D q; we obtain the homogeneous
special group SL.2;R/; which is represented by the unimodular matrix

M D

�
a b
c d

�
:

1With a little abuse of notation, we use ��1 which should be understood as a parameter vector
corresponding to the inverse–SAFT.
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One of the fundamental problems in communication engineering is the energy
concentration problem, i.e. the problem of finding a signal bandlimited to Œ�	; 	�
with maximum energy concentration in the interval Œ��; ��; 0 < 	; �; in the time
domain or equivalently, finding a signal that is time limited to the interval Œ��; ��
with maximum energy concentration in Œ�	; 	� in the frequency domain. This
problem was solved by a group of mathematicians, D. Slepian, H. Landau, and H.
Pollak at Bell Labs [7, 8, 10, 11] in the early 1960s. The solution involved the prolate
spheroidal wave functions (PSWF) which are eigenfunctions of a differential and an
integral equations.

In [13] a solution of the energy concentration problem for a general class of
integral transforms, including SAFT, was proposed. In one dimension, the problem
for the SAFT was not difficult to solve in closed form; however, the two-dimensional
problem was more challenging when the signal is bandlimited to a disc. The latter
problem may be phrased as follows: Among all signals bandlimited to a disc E1
centered at the origin with radius ı in the SAFT domain, find the signal with
maximum energy concentration in a disc T1 centered at the origin with radius R:
Because of the uncertainty principle, the energy concentration in T1 cannot be 100%:

A. Zayed has showed in [13] that the solution of the energy concentration
problem is the eigenfunction that corresponds to the largest eigenvalue of the
integral equation

Z

E1

f .p/K1.q;p/dp D �f .q/; (5)

where p;q 2 R2 and K1 depends on R and the kernel of the SAFT and is given
explicitly by

K1.p;q/ D
RF.p; q/

2�b

J1
�

R
p
.p1 � q1/2 C .p2 � q2/2=b

�

p
.p1 � q1/2 C .p2 � q2/2

;

where

F.p; q/ D exp

	
i

2b

�
d
�
jpj2 � jqj2/C �.p � q/

��

; (6)

where � D 2.bn � dm/ and J1 is the Bessel function of the first kind and order one.
The aim of this chapter is to solve numerically the above energy concentration

problem for the SAFT, i.e. to find numerically the largest eigenvalues and their
corresponding eigenfunctions. We use the Gaussian quadrature method in two
dimensions to solve that problem, as well as a concentration of energy problem in
other cases involving the so-called generalized prolate spheroidal wave functions
(GPSWFs) and another problem involving an integral equation with kernel of
convolution type.
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2 Gaussian Quadrature for General Quadrilateral

In this section we discuss the Gaussian quadrature method for evaluating two-
dimensional integrals over general quadrilateral domains, for more details, see
[12]. We begin with the evaluation of two-dimensional integrals over a standard
quadrilateral element. Let Rst be the standard quadrilateral element Rst D Œ�1; 1�2

(Fig. 1).
To compute the following integral

I D

Z Z

Rst

g.�; �/d�d� D

Z 1

�1

Z 1

�1

g.�; �/d�d�;

we use the Gaussian quadrature method in one dimension twice. More precisely, for
any fixed �, we integrate numerically with respect to �:

Z 1

�1

Z 1

�1

g.�; �/d�d� �

Z 1

�1

.

MX

iD1

wig.�i; �//d�;

where �i and wi are Gaussian quadrature points and weights of order M in the �
direction. Next, integrating numerically with respect to �; we have

Z 1

�1

Z 1

�1

g.�; �/d�d� �

MX

iD1

NX

jD1

wibwjg.�i; �j/;

Fig. 1 The standard quadrilateral element Rst D Œ�1; 1�2.
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Fig. 2 A quadrilateral element with straight boundary lines.

where �j and bwj are Gaussian quadrature points and weights of order N in the �
direction. Usually M D N.so �i D �i;bwi D wi/, and we have Gaussian quadrature
of order N for the standard quadrilateral element

Z 1

�1

Z 1

�1

g.�; �/d�d� �

NX

iD1

NX

jD1

wiwjg.�i; �j/: (7)

Now we use the Gaussian quadrature method to evaluate two-dimensional
integrals over a general quadrilateral region. Let K be a general quadrilateral
element with straight boundary lines and vertices .xi; yi/; i D 1; 2; 3; 4 arranged
in the counter-clockwise order (Fig. 2): We would like to evaluate

I D

Z Z

K
F.x; y/dxdy:

Firstly, we transform the quadrilateral element K to the standard quadrilateral
element Rst and then apply the Gaussian quadrature (7). The idea is to construct a
linear mapping to map the quadrilateral element K with straight boundary lines to
the standard quadrilateral element Rst (Fig. 3):
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Fig. 3 Linear mapping between K and Rst.

The mapping can be achieved conveniently by using the nodal shape functions
as follows:

x D P.�; �/ D

4X

iD1

xiNi.�; �/ D x1N1.�; �/Cx2N2.�; �/Cx3N3.�; �/Cx4N4.�; �/;

y D Q.�; �/ D

4X

iD1

yiNi.�; �/ D y1N1.�; �/Cy2N2.�; �/Cy3N3.�; �/Cy4N4.�; �/;

where the nodal shape functions for quadrilaterals are given by:

N1.�; �/ D
1

4
.1 � �/.1 � �/;

N2.�; �/ D
1

4
.1C �/.1 � �/;

N3.�; �/ D
1

4
.1C �/.1C �/;

N4.�; �/ D
1

4
.1 � �/.1C �/:

Then we have
Z Z

K
F.x; y/dxdy D

Z Z

Rst

F.P.�; �/; Q.�; �//jJ.�; �/jd�d�;

where J.�; �/ is the Jacobian of the transformation defined by

J.�; �/ D j
@.x; y/

@.�; �/
j D

ˇ̌
ˇ̌
ˇ

@x
@�

@y
@�

@x
@�

@y
@�

ˇ̌
ˇ̌
ˇ :
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Secondly, by applying the Gaussian quadrature methods for the standards
quadrilateral element, we obtain the Gaussian quadrature of order N for general
quadrilateral elements,

Z Z

K
F.x; y/dxdy �

NX

iD1

NX

jD1

wiwjF.P.�i; �j/; Q.�i; �j//jJ.�i; �j/j:

3 The Gaussian Quadrature Method and Integral Equations

In this section we use the Gaussian quadrature method to solve two-dimensional
integral equations. Suppose that now we have to solve the following integral
equation

Z

K
k.x; y/'.y/dy D ˛'.x/; x 2 K; (8)

where K is a general quadrilateral element or the unit disc of R2: In the special case
where K is a general quadrilateral element we use the mapping cited above which
transforms K to the standard quadrilateral element. In the special case where K is
the unit disc of R2 we use the polar coordinates to transform (8) to the following
integral equation:

Z 1

0

Z 2�

0

K .r; r0; �; � 0/ .r0; � 0/d� 0r0dr0 D ˛ .r; �/: (9)

To proceed further, we assume that K .r; r0; �; � 0/ can be written as follows:

r0K .r; r0; �; � 0/ D

C1X

ND�1

kN.r; r
0/eiN.��� 0/: (10)

As was done in [10], let us search for a solution of (10) of the form,

 .r; �/ D

C1X

ND�1

'N.r/e
iN� (11)

Substituting (10) and (9) into (11), one gets

Z 1

0

kN.r; r
0/'N.r

0/dr0 D ˇ'N.r/; r 2 Œ0; 1�;N 2 Z; (12)
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where ˛ D 2�ˇ: By applying the Gaussian quadrature method in one dimension
[3] we obtain an approximate solution of the integral equation (12) and therefore we
obtain an approximate solution of (11).

3.1 Examples

In this subsection we demonstrate the above techniques by examples.

Example 1: Prolate Spheroidal Wave Function (PSWF)
In this example and without loss of generality, we will consider the standard

quadrilateral element Rs D Œ�1; 1�2: We consider the 2-D PSWFs associated with
Rs and defined by:

Z

Rs

eic<x;y>�.y/dy D ˛�.x/: (13)

Here,< :; : > is the classical inner product on R2: It is well known that the solutions
of (13) of product form are

�mn.x/ D  m.x1/ n.x2/; m; n 2 N;

associated with the eigenvalue ˛m;n.c/: Here,  m is the classical PSWFs in one
dimension given by

Z 1

�1

eicxy m.y/dy D ę m.x/: (14)

Although the eigenfunctions can be found in closed form, numerical methods are
used to calculate the eigenvalues; see [11].

Example 2: Generalized Prolate Spheroidal Wave Function (GPSWF) The
Generalized Prolate Spheroidal Wave Function was introduced in [9]. The N-
dimensional GPSWFs are solution of the integral equation

Z

T
k.x; y/'.y/d
.y/ D ˛'.x/; (15)

where k.x; y/ is the reproducing kernel of an appropriate reproducing-kernel Hilbert
space of functions and T is a general domain in RN : For the computation of GPSWF
in the special case where T is a general quadrilateral element, we use the Gaussian
quadrature for general quadrilateral elements.

Example 3: Circular Prolate Spheroidal Wave Functions:
In this example, we consider the 2-D PSWFs defined by

Z

D
K.x; y/�.y/dy D ˛�.x/; (16)
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where

• D D f.x1; x2/ 2 R2I x21 C x22 � 1g is the unit disc of R2;

• K.x; y/ D eic<x;y>; where < x; y >D x1y1 C x2y2 is the usual inner product on
R2, and c is a positive real number.

To solve the integral equation (16), Slepian [10] used polar coordinates and
converted (16) into

Z 1

0

r0dr0

Z 2�

0

K .r; r0; �; � 0/e�.r0; � 0/d� 0 D ˛e�.r; �/: (17)

Here, K .r; r0; �; � 0/ D eicrr0cos.��� 0/: Note that we can use the Gaussian quadrature
method to solve (17), but since the kernel K .r; r0; �; � 0/ is of convolution type, let
us proceed and search for a solution of (17) in the form

e�.r; �/ D

C1X

ND�1

'N.r/e
iN� (18)

In view of the relation [2, P. 344],

eitsin� D

C1X

ND�1

JN.t/e
iN� (19)

or equivalently,

eicrrcos.��� 0/ D

C1X

ND�1

iNJN.crr0/eiN.��� 0/: (20)

Substituting (20) and (17) into (18), one gets

eHN.'N/.x/
def
D

Z 1

0

yJN.cxy/'N.y/dy D ˇ'N.x/; x 2 Œ0; 1�; N 2 Z (21)

where JN.:/ is the Bessel function of the first kind of degree N and ˛ D 2�ˇ: By
making the substitution

� D
p

cˇ; �N.y/ D
p

y'N.y/;

in (21), we get the equivalent integral equation

fH N.�N/.x/
def
D

Z 1

0

p
cxy JN.cxy/�N.y/dy D ��N.x/; x 2 Œ0; 1� N 2 Z: (22)
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Circular prolate spheroidal wave functions (CPSWFs) are the solutions of (22). In
[5], we have showed that the CPSWFs share similar properties with the PSWFs,
notably the double orthogonality over finite and infinite intervals. We have also
used the Gaussian quadrature methods, among other methods, to solve the integral
equation (22).

4 Solution of the SAFT Energy Concentration Problem
by the Gaussian Quadrature Method

The aim of this section is to solve the integral equation (5) or at least to find
the largest eigenvalues and the corresponding eigenfunctions for different values
of b and fixed ı; and then for fixed b and different values of ı: It is shown that
for fixed b; the largest eigenvalues increase as ı increases, while for fixed ı the
largest eigenvalues decrease as b increases. Because of the phase factor in (6), these
eigenfunctions are generally complex-valued. However, for practical purposes we
are interested in the modulus of this function. Therefore, without loss of generality,
we will consider the integral equation:

Kf .x/ D

Z

E
f .y/K.y; x/dy D �f .x/; (23)

where

K.x; y/ D
J1.
p
.x1 � y1/2 C .x2 � y2/2=b/

2�b
p
.x1 � y1/2 C .x2 � y2/2

;

b > 0; and J1 is the Bessel function of the first kind and E is a disc of radius ı � 1:

Using polar coordinates, x D .�; �/ and y D .r; �/; Equation (23) becomes

Z ı

0

Z 2�

0

g.r; �/K .r; �; �; �/rdrd� D �g.�; �/; (24)

where

K .r; �; �; �/ D
J1.
p

r2 C �2 � 2r�cos.� � �/=b/

2�b
p

r2 C �2 � 2r�cos.� � �/
:

Using the following change of variables,er D r
ı
; e� D �

ı
; e� D �

2�
; e� D �

2�
;

Equation (24) becomes

Z 1

0

Z 1

0

g.ıer; 2�e�/K .ıer; 2�e�; ıe�; 2�e�/erderde� De�g.ıe�; 2�e�/; (25)

wheree� D �
2�ı2

:
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For simplicity of the notation, we denote byeK.r; �; �; �/ D K .ır; 2��; ı�; 2��/
andeg.r; �/ D g.ır; 2��/: Thus, our aim now is to solve the integral equation

Keg.x/ D

Z 1

0

Z 1

0

eg.r; �/eK.r; �; �; �/rdrd� De�eg.�; �/; (26)

Let us denote by 'n;b the nth eigenfunction of K and by e�n.b/ its associate
eigenvalue. Here the eigenvaluese�n.b/ are arranged as follows je�1.b/j � je�2.b/j �

� � � je�n.b/j � je�nC1.b/j � � � � :When b is known and fixed, we may write 'n instead
of 'n;b ande�n instead ofe�n.b/:

For the computation of 'n and its corresponding eigenvalue, we use shifted
Legendre polynomials given by the following Rodriguez formula, see [6]

Pn.x/ D cn.�1/
n dnŒxn.x � 1/n�

dxn
; (27)

where cn is a normalization coefficient to be determined in the sequel. Straightfor-
ward computations show that

Z 1

0

Pn.x/Pm.x/dx D .�1/n.cn/
2.2n/ŠB.n � 1; n � 1/ımn; (28)

where B.x; y/ is the Beta function given by B.x; y/ D

Z 1

0

tx�1.1 � t/y�1dt for x > 0

and x > 0. Hence, the normalized polynomials are given by

Pn.x/ D

p
.2n C 1/

nŠ

dnŒxn.1 � x/n�

dxn
: (29)

It is interesting to mention that Pn; n � 0; has all its zeros in Œ0; 1�. These zeros
denoted by x1; � � � ; xn; are simply given as the eigenvalues of the following tri-
diagonal matrix D

D D Œdi;j�1�i;j�n; dj;j D
1

2
; dj;jC1 D djC1;j D

j

2
p
4j2 � 1

; (30)

and di;j D 0 if i ¤ j �1; j; j C1: For more details, see [3]. Also, it is well known [3],
that if f 2 C2n.Œ0; 1�I R/, then we have the following Gaussian quadrature formula
to evaluate the integral

Z 1

0

f .x/dx D

nX

kD1

wkf .xk/C
1

a2n

f .2n/.�/

.2n/Š
; for some 0 � � � 1; (31)
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where anD

p
2nC1

nŠ
is the highest coefficient of Pn and wkD�

anC1

an

1

PnC1.xk/P0
n.xk/

:

The formula for the Gaussian quadrature method in two dimensions is given by

Z 1

0

Z 1

0

f .x; y/dxdy �

NX

iD1

NX

jD1

wiwjf .xi; xj/: (32)

By combining (32) and (25), one obtains:

NX

iD1

NX

jD1

wiwjxieK.xi; xj; �; �/'n.xi; xj/ �e�n'n.�; �/: (33)

By making the following substitutions in (33), � D xl and � D xk; where 1 �

`; k � N; one obtains the following system of N2 equations

NX

iD1

NX

jD1

wiwjxieK.xi; xj; x`; xk/'n.xi; xj/ �e�n'n.x`; xk/: (34)

For the simplicity of notation, we let a.i; j; `; k/ D wiwjxieK.xi; xj; x`; xk/ and
bn.`; k/ D 'n.x`; xk/: Note here that the N2 equations given by (33) are equivalent
to

A � Vn De�nVn;

where A is the N2 � N2 matrix given by

0

BBB@

A11 A12 � � � A1N

A21 A22 � � � A2N
:::

:::
:::

:::

AN1 AN2 � � � ANN

1

CCCA

and

VT
n D .bn.1; 1/; � � � ; bn.1;N/; bn.2; 1/; � � � ; bn.2;N/; � � � ; bn.N; 1/; � � � ; bn.N;N//

Here Alk is the N � N matrix whose coefficients are nothing else but
.a.k; j; `; i/1�i;j�N/:
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5 Numerical Results

Example 1: The case of the disc (SAFT).
By letting N D 10 in the case of the SAFT, we obtain the following numerical
results (Fig. 4):

Remark 1. We remark from the numerical results of Tables 1–3 that for fixed n and
fixed ı the function j�n.b; ı/j decreases as b increases.

Remark 2. We remark from the numerical results of Tables 4–6 that for fixed n and
b the function j�n.b; ı/j increases as ı increases.

To proceed further, let denote by ˚n the nth eigenfunction of K given by (23). Note
here that ˚n is defined on the disc of radius ı centered at the origin (Figs. 5, 6, 7, 8,
and 9).

Fig. 4 Graphs of j�n.b; ı/j for different values of the parameter ı and for b D 1.

Table 1 Values of j�n.b; ı/j for different values of b and fixed ı D 0:1.

n j�n.1; 0:1/j j�n.10; 0:1/j j�n.20; 0:1/j

n D 1 0.2454022238e-2 0.2457110612e-4 0.6142835069e-5

n D 2 0.7125526937e-4 0.7128850760e-6 0.1782219658e-6

n D 3 0.7042877369e-4 0.7046377014e-6 0.1761601553e-6

n D 4 0.6791566596e-4 0.6795821515e-6 0.1698964494e-6

n D 5 0.6694493407e-4 0.6708114218e-6 0.1677055989e-6
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Table 2 Values of j�n.b; ı/j
for different values of b and
fixed ı D 0:5.

n j�n.1; 0:5/j j�n.10; 0:5/j j�n.20; 0:5/j

n D 1 0:0595157513 0.6140903665e-3 0.1535591695e-3

n D 2 0:0017757813 0.1781995457e-4 0.4455410558e-5

n D 3 0:0017547996 0.1761366356e-4 0.4403858648e-5

n D 4 0:0016916250 0.1698672813e-4 0.4247230158e-5

n D 5 0:0016446913 0.1676164059e-4 0.4192093072e-5

Table 3 Values of j�n.b; ı/j for different values of b and fixed ı D 0:9.

n j�n.1; 0:9/j j�n.10; 0:9/j j�n.20; 0:9/j

n D 1 0.1798154920 0.1988237807e-2 0.4974432166e-3

n D 2 0.6158608947e-2 0.5772152659e-4 0.1443450443e-4

n D 3 0.5743168460e-2 0.5705233661e-4 0.1426742584e-4

n D 4 0.5678783994e-2 0.5501767092e-4 0.1375969164e-4

n D 5 0.5620593759e-2 0.5424552928e-4 0.1357829818e-4

Table 4 Values of j�n.b; ı/j
for different values of ı and
fixed b D 0:01.

n j�n.0:01; 0:1/j j�n.0:01; 0:5/j j�n.0:01; 0:9/j

n D 1 1:3516387262 3:7148184478 5:0445557883

n D 2 1:3496428804 3:6615475731 4:9869102652

n D 3 1:2944308861 3:3673717133 4:8933207101

n D 4 1:2890502395 3:3359956169 4:8449264773

n D 5 0:9894122515 3:3281710198 4:5778648879

Table 5 Values of j�n.b; ı/j
for different values of ı and
fixed b D 0:1.

n j�n.0:1; 0:1/j j�n.0:1; 0:5/j j�n.0:1; 0:9/j

n D 1 0.21686083297 0:9220108659 1:3887067139

n D 2 0.9969863516e-2 0:8296680510 1:2724173455

n D 3 0.9313107509e-2 0:8171040493 1:1452172446

n D 4 0.7086460202e-2 0:5970233994 1:0226225145

n D 5 0.7009256906e-2 0:5933987767 0:8873584713

Table 6 Values of j�n.b; ı/j for different values of ı and fixed b D 1.

n j�n.1; 0:01/j j�n.1; 0:5/j j�n.1; 0:9/j

n D 1 0.2457110612e-4 0.5951575130e-1 0.1798154920

n D 2 0.7128850760e-6 0.1775781386e-2 0.6158608947e-2

n D 3 0.7046377014e-6 0.1754799680e-2 0.5743168460e-2

n D 4 0.6795821515e-6 0.1691625026e-2 0.5678783994e-2

n D 5 0.6708114218e-6 0.1644691357e-2 0.5620593759e-2
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Fig. 5 Graphs of ˚1 associated with the parameter b D 20 and ı D 0:9.
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Fig. 6 Graphs of ˚1 associated with the parameter b D 0:1 and ı D 0:9.

Example 2: The 2-D PSWFs associated with the standard quadrilateral.
By letting N D 10 in the Gaussian quadrature formula in two dimensions for

the case of the 2-D PSWFs associated with the standard quadrilateral, we obtain the
following numerical results: In Table 7 we list eigenvalues j˛m;n.c/j associated with
�m;n for several pairs .m; n/
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Fig. 7 Graphs of ˚1 associated with the parameter b D 0:1 and ı D 0:5.
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Fig. 8 Graphs of ˚1 associated with the parameter b D 1 and ı D 0:5.

To compare the results of this example to those given in [4], we recall that the
mth PSWFs given by (14) is also solution of the following integral equation

Z 1

�1

sin.c.x � y//

�.x � y/
 m.y/dy De�m.c/ m.x/: (35)
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Fig. 9 Graphs of ˚1 associated with the parameter b D 1 and ı D 0:1.

Table 7 Values of j˛m;n.c/j
for different values of c.

.m; n/ j˛m;n.0:1/j j˛m;n.4/j j˛m;n.10/j

.1; 1/ 3.9955600952 1:5643332702 0:6283185030

.1; 2/ 0.1331793883 1:4970888465 0:6283175023

.2; 2/ 0.4439114679e-2 1:4327349913 0:6283165016

Table 8 Values of je�n.c/j for c D 4 and for c D 10.

n je�n.4/j je�n.4/j see [4] je�n.10/j je�n.10/j see [4]

1 0.9958854897 0.958854904 0.9995963049 0.9999999559

2 0.9121074308 0.9121074240 0.9968501088 0.9999967707

3 0.5190548175 0.5190548374 0.9936927993 0.9998927329

5 0.3813008980e-3 0.3812917217e-3 0.8976748606 0.8251463487

Note that the relation between ęn.c/ and e�n.c/ is given by je�n.c/j D
c
2�

jęn.c/j2 D c
2�

j˛nn.c/j; see [11]. In Table 8 we list in the first and third columns
the eigenvalues e�n.c/ calculated by the quadrature method in two dimensions for
c D 4 and c D 10; respectively, while in the second and the fourth columns we list
the eigenvalues e�n.c/ obtained in [4] for the same values of c: Note here that the
bold digits indicate the agreement between our results and those of Ref. [4].

In what follows we present the plots of some 2-D PSWFs associated with the
standard equilateral �m;n for different values of m; n and c (Figs. 10, 11, 12, 13, 14,
and 15).

Example 3: The 2-D PSWFs associated with the disc of radius 1:
We note here that in this example, the kernel given in (17) can be written as

in (10). Hence, finding the solution of (16) is reduced to finding the solution of (22).
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Fig. 10 Graphs of �11 associated with the parameter c D 0:1.
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Fig. 11 Graphs of �22 associated with the parameter c D 0:1.

By using the Gaussian quadrature method in one dimension and letting N D 40; we
obtain the following numerical results (Table 9):

In what follows we present the plots of some 2-D PSWFs �m.x; y/; given by (16),
associated with the unit disc for different values of m; and c (Figs. 16, 17, 18, 19,
20, and 21).
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Table 9 Values of j˛n.c/j for
different values of c.

n j˛n.0; 1/j j˛n.7/j j˛n.10/j

1 0.7849619636e-1 0:8962680659 0:25132741228718

2 0.5453911469e-5 0:7588496584 0:25132741228717

3 0.1363521777e-9 0:1896482892 0:25132741228037
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Fig. 16 Graphs of �1.x; y/ associated with the parameter c D 0:1.
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Fig. 17 Graphs of �2.x; y/ associated with the parameter c D 0:1.
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Fig. 18 Graphs of �1.x; y/ associated with the parameter c D 10.
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A Frame Reconstruction Algorithm with
Applications to Magnetic Resonance Imaging

John J. Benedetto, Alfredo Nava-Tudela, Alexander M. Powell,
and Yang Wang

1 Introduction

1.1 Background

We introduce a combined Fourier and finite frame technique to resolve a class of
signal reconstruction problems, where efficient noise reduction and stable signal
reconstruction are essential. This class includes the special case of obtaining fast
spectral data acquisition in magnetic resonance imaging (MRI) [32]. Fast data
acquisition is important for a variety of reasons. For example, human subject motion
during the MRI process should be analyzed by methods that do not blur essential
features, and speed of data acquisition lessens the effect of such motion. We shall use
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the MRI case as a prototype to explain our idea. Generally, our approach includes
the transition from a theoretically conclusive reconstruction method using Fourier
frames to a finite frame algorithm designed for effective computation.

To begin, the use of interleaving spirals in the spectral domain, so-called
k–space when dealing with MRI, is one viable setting for attaining fast MRI signal
reconstruction in the spatial domain; and a major method in this regard is spiral–
scan echo planar imaging (SEPI), e.g., see [23]. With this in mind, the Fourier
frame component of our technique goes back to results of Beurling [13] and Henry
J. Landau [42], as well as a reformulation of the Beurling–Landau theory in the
late 1990s that was made with Hui-Chuan Wu, see [9–11]. This reformulation is in
terms of quantitative coverings of a spectral domain by translates of the polar set
of the target/subject disk space D in the spatial domain. In this context, harmonics
for Fourier frames can be constructed by means of the Beurling–Landau theory on
interleaving spirals in the spectral domain, allowing for the reconstruction of signals
in D:

The finite frame component of our technique was developed in 2002, when the
four co-authors worked together, see [12].

There has been major progress with regard to MRI and fMRI, and the importance
of effective SEPI has not been diminished.

With regard to the progress, MRI and fMRI are often essentially effected in real–
time [22], and technologies such as wavelet theory [33], compressed sensing [45],
and non-uniform FFTs [25, 26, 30, 37] have also been used to advantage.

Although SEPI is faster than conventional rectilinear sampling, the fastest
rectilinear echo planar imaging (EPI), which can be faster than SEPI, is prone to
artifacts from gradient switching which is often ameliorated in SEPI. Further, SEPI
is still of potential great importance with regard to spectroscopic imaging [2] and
fMRI, e.g., dynamic imaging of blood flow [50].

Amidst all of this complexity, a distinct advantage of frame oriented techniques,
such as ours, is the potential for effective noise reduction and stable signal
reconstruction in the MRI process. With regard to frames, noise reduction, and
stable reconstruction, we refer to [5, 7], and see [38, 39] for an authoritative more
up-to-date review. The point is that noise reduction can be effected by modeling
in which information bearing signals can be moved into a coefficient subspace
relatively disjoint from coefficients representing noise in the system. This idea has
a long history in the engineering community, and the theory of frames provides
an excellent model to effect such a transformation. In fact, frames that are not bases
allow one to construct Bessel mappings, see Section 3, that are not surjective, giving
rise to the aforementioned subspaces; and the overcompleteness inherent in frames
guarantees stable signal representation, e.g., see [20] and [4], Chapter 7.

1.2 Outline

Section 2 describes spiral–scan echo planar imaging (SEPI), beginning with the
imaging equation for MR in which the NMR (nuclear magnetic resonance) sig-
nal S.t/ is obtained by integrating the solution of Bloch’s differential equation.
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The phenomenon of NMR was discovered independently by Felix Bloch and
Edward Purcell, see [18], page 13, for historical comments (the word nuclear gives
the false impression that nuclear material is used). Section 7 expands on this material
by means of a sequence of images with brief explanations.

Section 3 provides the mathematical background for our theory and algorithm.
This includes the theory of frames and a fundamental condition for the existence
of Fourier frames due to Beurling and Landau. We also have an alternative parallel
approach depending on a multidimensional version of Kadec’s sufficient condition
for Riesz bases in the Fourier frame case. In Section 4, we first describe our
algorithm conventionally and, keeping in mind our interest in noise reduction and
stable reconstruction, we then formulate it in frame theoretic terms. This allows
us to prove a basic theorem on computational stability (Theorem 3) indicating the
importance of designing frames that are tight or, at least, almost tight. Naturally,
our algorithm, which is discrete, should also have the theoretical property that,
in the limit, it will be a constructive way of genuinely approximating analogue
images, whose discrete versions are computed by the algorithm. This is the content
of Section 5.

Section 6 is devoted to refinements of the formulation in Section 4 in order to
effect useful implementation.

Finally, after Section 7 we close with Section 8, that outlines the paradigm
we have used to manufacture data in which to evaluate our algorithm when MRI
generated data is not available.

2 An MRI Problem

A standard MRI equation is a consequence of Felix Bloch’s equation for transverse
magnetization Mtr in the presence of a linear magnetic field gradient [18] pages
269–270, see Section 7. In fact, an MR signal S.t/ is the integration of Mtr; and the
corresponding imaging equation is

S.t/ D S.k.t// D S.kx.t/; ky.t/; kz.t// (1)

D

Z Z Z
�.x; y; z/ expŒ�2� ih.x; y; z/; .kx.t/; ky.t/; kz.t//i�e

�t=T2dx dy dz;

e.g., see [17, 18, 33], pages 269–270, [14], Subsection 16.2, page 344. S.t/ is also
referred to as an echo or FID (free induction decay), and can be measured for the
sake of imaging. Equation 1 is a natural physical Fourier transform associated with
magnetization, analogous to the natural physical wavelet transform effected by the
behavior of the basilar membrane within certain frequency ranges, e.g., [6].
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The parameters, variable, and inputs in Equation 1 are the following:

kx.t/ D �

Z t

0

Gx.u/du (2)

and Gx.u/ is an x-directional time-varying gradient with similar definitions for the
y and z variables, T2 is the transverse relaxation time, the exponential term e�t=T2

representing the T2 decay appears as a limiting factor in echo planar imaging [1], �
is the gyromagnetic ratio, and �.r/ D �.x; y; z/ D �.r;T2/ is the spatial spin density
distribution from which the spin density image is reconstructed.

Since S.t/ is a measurable quantity in the MR process and since precise
knowledge of �.x; y; z/ is desired, it is natural to compute the inverse Fourier
transform of S, properly adapted to the format in Equation 2. Because of significant
issues which arise and goals which must be addressed, the inversion process has to
be treated carefully. In particular, there is a significant role for the time-varying
gradients. First, the gradients are inputs to the process, and must be designed
theoretically in order to be realizable and goal oriented. Once the gradients have
been constructed, the imaging data S.t/ at time t is really of the form S.k.t// as seen
in Equations 1 and 2; and it is usual to refer to the spectral domain of S as k–space.
See Section 7 for more detail for this process.

Example 1. Let

Gx.t/ D � cos �t � ��t sin �t

and

Gy.t/ D � sin �t C ��t cos �t:

By the definition of kx; ky, see Equation 2, we compute kx.t/ D ��t cos �t and
ky.t/ D ��t sin �t. Combining kx and ky we obtain the Archimedean spiral,

Ac D f.c� cos 2��; c� sin 2��/ W � � 0g 	 bR
2
;

where �; �; and � > 0 are considered as constants, � D �.t/ D .1=2�/ �t; and
c D 2���=� . Clearly, we have �.t/ ! 1 as t ! 1:This idea for formulating time
domain gradient pulse forms is due to Ljunggren [44]. They clearly generate a spiral
scan in the k–domain and are not difficult to realize, see Figure 1.

Remark 1. a. The echo planar imaging (EPI) method, developed by Mansfield
(1977) [18], page 306, theoretically and usually provides high speed data acquisition
within the time interval of a few hundredths of seconds. The method utilizes multiple
echos by fast gradient alternation. As such, realizable gradient design giving rise to
large high speed gradient fields is essential. A solution to this design problem has
to be coupled with controlling spatial resolution limits imposed by the T2-decay in
Equation 1, e.g., [18] pages 314–315.
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Fig. 1 Archimedean
sampling example with three
Archimedean spirals in the k
domain.
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A weakness of this technique as originally formulated is that the alternating
gradient to be applied is a series of rectangular pulses which are difficult to generate
for high gradient power and frequency, see [1], pages 2–3, for this and a fuller
critique.

b. SEPI ensures rapid scanning for fast data acquisition. Spiral scanning also
simplifies the scanning of data in radial directions once the span is completed.
In this regard the inherent T2 effect appears as an almost circular blurring which
is preferable to the one-dimensional blurs observed in earlier EPI. Further, there
is a reduction in transient and steady state distortion, since SEPI eliminates the
discontinuities of gradient waveforms which arise in uniform rectilinear scanning
that proceeds linearly around corners while transversing k-space, e.g., [1, 18].

Interleaving spiraling from rapid spiral scans proceeds from dc levels to high
frequencies. That such multiple pulsing can be implemented in SEPI is due to its
locally circular symmetry property in data acquisition, and the resulting interleaving
spirals yield high resolution imaging when accompanied by effective k–space
sampling and reconstruction methods, see [35]. In fact, interleaving spiral scans
not only improve k-space sampling strategies, but they also overcome the gradient
requirement and T2-decay limitations for standard EPI.

c. EPI and SEPI are both fast in terms of image data acquisition, but the off
resonance and flow properties of the two methods differ; and, in fact, total scan time
spiral imaging requires lower gradient power than EPI, e.g., [43]. Further, SEPI has
more significantly reduced artifact intensities than the 2–dimensional FFT since its
spiral trajectories collect low spatial frequencies with every view; and it also seems
to be superior vis-à-vis motion insensitivity, see [28, 29].
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3 Fourier Frames and Beurling’s Theorem

3.1 Frames and Beurling’s Theorem

Definition 1. a. Let H be a separable Hilbert space. A sequence fxn W n 2 Zdg 	 H
is a frame for H if there exist constants 0 < A � B < 1 such that

8y 2 H; Akyk2 �
X

jhy; xnij2 � Bkyk2:

The optimal constants, viz., the supremum over all such A and infimum over all
such B, are called the lower and upper frame bounds, respectively. When we refer
to frame bounds A and B, we shall mean these optimal constants.

b. A frame X for H is a tight frame if A D B: If a tight frame has the further
property that A D B D 1; then the frame is a Parseval frame for H:

c. A frame X for H is equal-norm if each of the elements of X has the same norm.
Further, a frame X for H is a unit norm tight frame (UNTF) if each of the elements
of X has norm 1: If H is finite dimensional and X is a UNTF for H; then X is a finite
unit norm tight frame (FUNTF).

d. A sequence of elements of H satisfying an upper frame bound, such as B kxk2

in part a, is a Bessel sequence.

There is an extensive literature on frames, e.g., see [4, 8, 15, 19, 20, 24, 52].
Let X D fxjg be a frame for H. We define the following operators associated

with every frame. They are crucial to frame theory. The analysis operator L W H !

`2.Zd/ is defined by

8x 2 H: Lx D fhx; xnig:

The second inequality of Definition 1, part a, ensures that the analysis operator L is
bounded. If H1 and H2 are separable Hilbert spaces and if T W H1 ! H2 is a linear
operator, then the operator norm kTkop of T is

kTkop D supkxkH1�1 kT.x/kH2 :

Clearly, we have kLkop �
p

B. The adjoint of the analysis operator is the synthesis
operator L� W `2.Zd/ ! H, and it is defined by

8a 2 `2.Zd/; L�a D
X

n2Zd

anxn:

From Hilbert space theory, we know that any bounded linear operator T W H ! H
satisfies kTkop D kT�kop : Therefore, the synthesis operator L� is bounded and

kL�kop �
p

B.



A Frame Reconstruction Algorithm with Applications to Magnetic Resonance Imaging 191

The frame operator is the mapping S W H ! H defined as S D L�L, i.e.,

8x 2 H; Sx D
X

n2Zd

hx; xni xn:

We shall describe S more fully. First, we have that

8x 2 H; hSx; xi D
X

n2Zd

jhx; xnij2 :

Thus, S is a positive and self-adjoint operator, and the inequalities of Definition 1,
part a, can be rewritten as

8x 2 H; A kxk2 � hSx; xi � B kxk2 ;

or, more compactly, as

AI � S � BI:

It follows that S is invertible ([4, 20]), S is a multiple of the identity precisely when
X is a tight frame, and

B�1I � S�1 � A�1I: (3)

Hence, S�1 is a positive self-adjoint operator and has a square root S�1=2 (The-
orem 12.33 in [48]). This square root can be written as a power series in S�1;
consequently, it commutes with every operator that commutes with S�1; and,
in particular, with S: Utilizing these facts we can prove a theorem that tells us
that frames share an important property with orthonormal bases, viz., there is a
reconstruction formula [8], Theorem 3.2.

Theorem 1 (Frame reconstruction formula). Let H be a separable Hilbert space,
and let X D fxngn2Zd be a frame for H with frame operator S. Then,

8x 2 H; x D
X

n2Zd

hx; xni S�1xn D
X

n2Zd

˝
x; S�1xn

˛
xn D

X

n2Zd

˝
x; S�1=2xn

˛
S�1=2xn:

Proof. The proof is given by the following computations. From I D S�1S, we have

8x 2 H; x D S�1Sx D S�1
X

n2Zd

hx; xni xn D
X

n2Zd

hx; xni S�1xnI

from I D SS�1, we have

8x 2 H; x D SS�1x D
X

n2Zd

˝
S�1x; xn

˛
xn D

X

n2Zd

˝
x; S�1xn

˛
xnI
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and from I D S�1=2SS�1=2, it follows that

8x 2 H; x D S�1=2SS�1=2x D S�1=2
X

n2Zd

˝
S�1=2x; xn

˛
xn D

X

n2Zd

˝
x; S�1=2xn

˛
S�1=2xn:

ut

Let Rd be d-dimensional Euclidean space, and let bRd denote Rd when it is
considered as the domain of the Fourier transforms of signals defined on Rd. The
Fourier transform of f W Rd �! C is formally defined as

'.�/ Dbf .�/ D

Z

Rd
f .x/ e�2� ix�� dx:

The Paley-Wiener space PWD is

PWD D
n
' 2 L2.bRd/ W supp'_ 	 D

o
;

where D 	 Rd is closed, L2.bRd/ is the space of finite energy signals ' onbRd, i.e.,

k'k
L2.bRd/

D

�Z

bRd
j'.�/j2 d�

�1=2
< 1;

'_ is the inverse Fourier transform of ' defined as

'_.x/ D

Z

bRd
'.�/e2� ix��d�;

and supp'_ denotes the support of '_.
Notationally, let e� .x/ D e2� ix��; where x 2 Rd and � 2 bRd:

Definition 2. Let � 	 bRd be a sequence, and let D 	 Rd be a closed set having
finite Lebesgue measure. It is elementary to see that E .�/ D fe�� W � 2 �g is a
frame for the Hilbert space L2.D/ if and only if there exist 0 < A � B < 1 such
that

8' 2 PWD; Ak'k2
L2.bRd/

�
X

�2�

j'.�/j2 � Bk'k2
L2.bRd/

:

In this case, and because of this equivalence, we say that � is a Fourier frame
for PWD:

It is elementary to verify the following equivalence.
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Proposition 1. E .�/ D fe�� W � 2 �g is a frame for the Hilbert space L2.D/ if
and only if the sequence,

f3.e�� 1D/ W � 2 �g 	 PWD;

is a frame for PWD; in which case it is also called a Fourier frame for PWD:

Recall that a set � is uniformly discrete if there is r > 0 such that

8�; � 2 �; j� � � j � r;

where j� � � j is the Euclidean distance between � and � .
Beurling [13] proved the following theorem for the case that D is the closed ball

B.0;R/ 	 Rd centered at 0 2 Rd and with radius R.

Theorem 2. Let � 	 bRd be uniformly discrete, and define

� D �.�/ D sup
�2bRd

dist.�;�/;

where dist.�;�/ D inffj� ��j W � 2 �g: If R� < 1=4, then� is a Fourier frame for
PWB.0;R/.

By the definition of Fourier frame the assertion of Beurling’s theorem is that
every finite energy signal f defined on D has the representation,

f .x/ D
X

�2�

a�.f /e
2� ix��; (4)

in L2-norm on D, where
P

�2� ja�.f /j2 < 1. Beurling [13] and [42] used the term
set of sampling instead of Fourier frame. In practice, signal representations such
as Equation 4 often undergo an additional quantization step to achieve analog-to-
digital conversion of the signal, e.g., [47].

In theory, for the case D D B.0;R/, we cannot expect to construct either tight or
exact Fourier frames for the spiral in Subsection 3.2, see [27].

It is possible to make a quantitative comparison between Kadec’s 1=4-theorem
and Theorem 2. For now we provide the following remark which shows that the
construction of Subsection 3.2 can also be achieved by use of Kadec’s theorem.

Remark 2. Kadec (1964) [36] proved that if � D f�m W m 2 Zg 	 bR and
supm2Z j�m � m

2R j < 1=4, then � is a Riesz basis for PWŒ�R;R�. This means that
fe2� i�m=Rg is an exact frame for PWŒ�R;R�, which, in turn, means it is a bounded
unconditional basis for PWŒ�R;R� or, equivalently, that it is a frame which ceases to
be a frame if any of its elements is removed, see, e.g., [52].
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3.2 Fourier Frames on Interleaving Spirals

We can now address the problem of imaging speed in the data acquisition process of
MRI in terms of the imaging equation, Equation 1, translated into a Fourier frame
decomposition. In fact, � 2 � 	 bR2 in Equation 4 corresponds to .kx.t/; ky.t/; kz.t//
in Equation 1 in the case kz.t/ is identically 0:

We use Theorem 2 to give a constructive non-uniform sampling signal recon-
struction method in the setting of spirals and their interleaves. The method is much
more general than the geometry of interleaving spirals.

For the case of spirals there are three cases: given an Archimedean spiral A, to
show there is R > 0, generally small, and a Fourier frame � 	 A for PWB.0;R/

(the calculation for this case uses techniques from the following case); given an
Archimedean spiral A and R > 0, to show there are finitely many interleaves of A
and a Fourier frame �, contained in their union, for PWB.0;R/ (Example 2); given
R > 0, to show there is an Archimedean spiral A and a Fourier frame � 	 A for
PWB.0;R/ (Example 3).

Example 2. a. Given any R > 0 and c > 0. Notationally, we write any given �0 2 bR
2

as �0 D r0e2� i�0 2 C, where r0 � 0 and �0 2 Œ0; 1/. We shall show how to construct
a finite interleaving set B D [M�1

kD1 Ak of spirals,

Ak D
˚
c�e2� i.��k=M/ W � � 0


; k D 0; 1; : : : ;M � 1;

and a uniformly discrete set �R 	 B such that �R is a Fourier frame for PWB.0;R/.
Thus, all of the elements of L2.B.0;R// will have a decomposition in terms of the
Fourier frame fe� W � 2 �Rg; see [9–11] for the original details.

b. We begin by choosing M such that cR=M < 1=2. Then, either 0 � r0 < c�0 <
c or there is n0 2 N [ f0g for which

c.n0 C �0/ � r0 < c.n0 C 1C �0/:

In this latter case, we can find k 2 f0; : : : ;M � 1g such that

c.n0 C �0 C
k

M
/ � r0 < c.n0 C �0 C

k C 1

M
/:

Thus,

dist.�0;B/ �
c

2M
:

Next, we choose ı > 0 such that R� < 1=4, where � D .c=2M C ı/.
Then, for each k D 0; 1; : : : ;M � 1, we choose a uniformly discrete set �k of

points along the spiral Ak having curve distance between consecutive points less than
2ı, and beginning within 2ı of the origin. The curve distance, and consequently the
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ordinary distance, from any point on the spiral Ak to �k is less than ı. Finally, we
set �R D [M�1

kD0 �k. Thus, by the triangle inequality, we have

8� 2 bR
2
; dist.�;�R/ � dist.�;B/C dist.B; �R/

�
c

2M
C ı D �;

where dist.B; �R/ D inf fj� � �j W � 2 B and� 2 �Rg: Hence, R� < 1=4 by our
choice of M and ı; and so we invoke Beurling’s theorem, Theorem 2, to conclude
that �R is a Fourier frame for PWB.0;R/:

Example 3. Note that since we are reconstructing signals on a space domain having
area about R2, we require essentially R interleaving spirals. On the other hand, if we
are allowed to choose the spiral(s) after we are given PWB.0;R/; then we can choose
�R contained in a single spiral Ac for c > 0 small enough.

Remark 3. a. There have been refinements and generalizations of Kadec’s theorem
(Remark 2), that are relevant to our approach, e.g., Sun and Zhou [51]. In fact,
given R > 0, the Sun and Zhou result gives rise to exact frames for L2.Œ�R;R�d/
which become frames for L2.B.0;R//. For d D 2, the corresponding set � 	 bR2
can be chosen on interleaves of a given spiral A 	 bR2. This allows us to replace
the application of Beurling’s theorem in Examples 2 and 3 by a multidimensional
Kadec theorem.

b. It can be proved that it is not possible to cover a separable lattice by finitely
many interleaves of an Archimedean spiral, see [46]. In particular, sampling for the
spiral MRI problem cannot be accomplished by simply overlaying spirals on top of
a lattice, and then appealing to classical sampling theory on lattices. Consequently,
it is a theoretical necessity that non-uniform sampling results, such as the Beurling’s
or Kadec’s theorem, are required in the spiral case.

4 The Transition to Finite Frames

4.1 Algorithm

Let D D Œ0; 1/2 and let N > 1: The space L2N.D/ of N-digital images is the closed
subspace of L2.D/ consisting of all piecewise constant functions, f 2 L2.D/; of the
form

f .x; y/ D fk;l for .x; y/ 2

�
k

N
;

k C 1

N

�
�

�
l

N
;

l C 1

N

�
; 0 � k; l < N:
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We use the notation, ˛ D .�; 
/ 2 bR
2

and e.s/ D e�2� is; s 2 R: For a given
f 2 L2N.D/; we compute

bf .˛/ D �
1

4�2�


N�1X

k;lD0

fk;l � e

�
k�C l


N

��
e

�
�

N

�
� 1

� h
e
�


N

�
� 1

i
:

Setting

Gk;l.�; 
/ D e

�
k�C l


N

��
e

�
�

N

�
� 1

� h
e
�


N

�
� 1

i
;

we have

bf .˛/ Dbf .�; 
/ D �
1

4�2�


N�1X

k;lD0

fk;lGk;l.�; 
/: (5)

Since there are N2 unknowns, fk;l, if we have N2 or more samples ofbf .˛/, say
fbf .˛m/g

M�1
mD0 with M � N2, where � D f˛mgM�1

mD0 is properly chosen in the square�
� N
2
; N
2

�2
, then we have a necessary condition for being able to reconstruct ffk;lg. In

fact, we suppose that the following conditions are satisfied.

1. M � N2, and, in fact, we may want sufficient over-sampling so we may choose
M � N2, e.g., M � 4N2.

2. The periodic extension�CKZ2 gives rise to a frame E .�CKZ2/ for L2N.D/with
frame constants A, B; see Proposition 1. This can be proved for � constructed in
the square

�
� N
2
; N
2

�2
: In the case of SEPI for MRI imagery, this is achieved by

taking f˛mg on a few tightly wound spirals.

We shall show that the samples� D f˛mgM�1
mD0 allow us to reconstruct f in a stable

manner. We begin by writing

Hk;l.�; 
/ D �
1

4�2�

Gk;l.�; 
/: (6)

Hence, by (5), we have

bf .�; 
/ D

N�1X

k;lD0

fk;lHk;l.�; 
/: (7)

Ordering f.k; l/ W 0 � k; l < Ng lexicographically as fan W n D 0; : : : ;N2 � 1g; we
obtain

bf .�; 
/ D

N2�1X

nD0

fan Han.�; 
/: (8)
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Therefore, we can write

bf .˛m/ D

N2�1X

nD0

fan Han.˛m/: (9)

We define the vectors,

F D

0

B@
fa0
:::

faN2�1

1

CA and bF D

0

B@

bf .˛0/
:::

bf .˛M�1/

1

CA ;

and the matrix,

H D .Han.˛m//m;n : (10)

It is convenient notationally to set Hn D Han : and so H can be written as

H D

0

BBB@

H0.˛0/ : : : HN2�1.˛0/

H0.˛1/ : : : HN2�1.˛1/
:::

:::

H0.˛M�1/ : : : HN2�1.˛M�1/

1

CCCA : (11)

We obtain

bF D HF: (12)

Since (12) is an over-determined system, we find the least-square approximation,
yielding

F D .H�H/�1H�bF; (13)

where H� D H
T

and T denotes the transpose operation, i.e., � is the usual Hermitian
involution for matrices. Note that H is an M � N2 matrix, and so H� is an N2 � M
matrix and H�H is an N2 � N2 matrix.

Equation 13 asserts that F is the Moore-Penrose pseudo-inverse of bF, and a
major goal is to mold this equation into a viable algorithm and computational tool
with regard to noise reduction and stable reconstruction, see Section 6. It should
be pointed out that Moore-Penrose has played a role in the reconstruction of MR
images, going back to Van de Walle et al. (2000) and Knutsson et al. (2002).
However, unprocessed application of Moore-Penrose is not feasible for typical MR
image sizes, as the work of Samsonov et al. and Fessler illustrates. In fact, our
frame theoretic approach is meant to provide a new technique for experts in MRI to
develop.
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Equation 13 can be written in frame-theoretic terminology. In fact, H is the
analysis operator L W l2.f0; : : :N2 � 1g/ ! l2.f0; : : :M � 1g/, H� is its adjoint
synthesis operator L�, and the frame operator S D L�L is H�H. Defining the
Gramian R D LL�; we have

f D .S�1L�/Lf ;

and

f D .L�R�1/Lf ;

where f 2 l2.f0; : : :N2 � 1g/: Clearly, Equation 13 is f D .S�1L�/Lf in our frame
theoretic notation.

Remark 4. Define the space F2N.D/ 	 L2.D/ of continuous N-digital images as

F2N.D/ D

(
N�1X

mD0

N�1X

nD0

fm;n�
�

x �
m

N
; y �

n

N

�
W ffm;ngN�1

m;nD0 	 R

)
;

where �.x; y/ D �.x/�.y/ D �N.x/�N.y/, and �N.x/ is the triangle function
supported by Œ0; 1=N� whose Fourier transform is the usual Fejér kernel. We
introduce F2N.D/ in order to increase the speed of our algorithm, Equation 13. In
fact, in forthcoming work we provide a Fejér kernel reconstruction algorithm with
which to refine Equation 13.

4.2 Computational Stability

We must find out to what extent the reconstruction scheme of Section 4.1, in which
we evaluate the coefficients fk;` in Equation 5, is stable. To this end,we would like
to show that the condition number,

�.H�H/ D cond.H�H/ D
j�max.H�H/j

j�min.H�H/j
; (14)

is not too large, where �max, �min denote the maximum and minimum eigenvalues
of H�H. Thus, the problem is precisely that such a reconstruction scheme is not
necessarily stable because the matrix H�H may have a large condition number.
Consequently, if the sampled values bf .˛/ are noisy, the reconstruction may not
be useful. This is where the theory of frames can be applied to yield a stable
reconstruction.

We can check that H�H is positive definite, and so the absolute values on the right
side of Equation 14 can be omitted. Further, H�H is a normal operator (matrix).
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The following theorem underlies a useful algorithmic approach, but must be
made more precise in the sense that the conditions of Subsection 4.1 be made with
more specificity.

Theorem 3. Given H as defined in Equation 10, and assume X D � C N Z2 is a
Fourier frame for L2.D/ with frame bounds A and B: Then,

cond.H�H/ �
��
2

�4 B

A
:

Proof. Let ˛ D .�; 
/ 2 �C NZ2. Then, ˛ D ˛m C N� for some 0 � m < M and
� 2 Z2. Let g 2 L2.Œ0; 1�2/ be an N-digital image, i.e.,

g.x; y/ D gk;l for a D .x; y/ 2

�
k

N
;

k C 1

N

�
�

�
l

N
;

l C 1

N

�
:

By 5, we compute

bg.˛/ D

N�1X

k;lD0

Z kC1
N

k
N

Z lC1
N

l
N

gk;le.a � ˛/da;

D �
1

4�2�


N�1X

k;lD0

gk;lGk;l.˛/;

where ˛ D .�; 
/ and e.s/ D e�2� is; s 2 R: Let ˛m D .�m; 
m/ 2 �. Then,

bg.˛/ D �
1

4�2�


N�1X

k;lD0

gk;l Gk;l.˛m/; (15)

D
�m
m

�

bg.˛m/:

Therefore, with � D .�x; �y/; we compute

X

˛2�CNZ2

jbg.˛/j2 D

M�1X

mD0

X

�2Z2

jbg.˛m C N�/j2

D

M�1X

mD0

X

�2Z2

�
�m
m

.�m C N�x/.
m C N�y/

�2
jbg.˛m/j

2:
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It is easy to check that, since .�m; 
m/ D ˛m 2 .�N=2;N=2/2, we have

1 �
X

�2Z2

�
�m
m

.�m C N�x/.
m C N�y/

�2

D
X

�x2Z

�
�m

�m C N�x

�2
�
X

�y2Z

�

m


m C N�y

�2

D
1

sinc 2. ��m
N /

�
1

sinc 2. �
m
N /

;

where we use the identity,

X

n2Z

t2

.t C Nn/2
D

1

sinc 2. � t
N /
;

with sinc .t/ D sin t
t ; see [34], Equation (10).

We know that

1

sinc 2. ��m
N /

1

sinc 2. �
m
N /

�
��
2

�4
:

Therefore, the fact that

X

˛2�CNZ2

jbg.˛/j2 D

M�1X

mD0

X

�2Z2

�
�m
m

.�m C N�x/.
m C N�y/

�2
jbg.˛m/j

2

allows us to make the estimate,

M�1X

mD0

jbg.˛m/j
2 �

X

˛2�CNZ2

jbg.˛/j2 �
��
2

�4 M�1X

mD0

jbg.˛m/j
2:

Hence, it follows from the inequalities,

Akgk2L2 �
X

˛2�CNZ2

jbg.˛/j2 � Bkgk2L2 ;

that

�
2

�

�4
Akgk2L2 �

M�1X

mD0

jbg.˛m/j
2 � Bkgk2L2 : (16)
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Now, replacing f with g in Equation 12, we obtain

bG D HG:

Therefore,

G�.H�H/G D bG�bG D

M�1X

mD0

jbg.˛m/j
2: (17)

Observe that

kGk2 D

N�1X

k;lD0

jgk;lj
2 D N2kgk2L2 :

Combining 16 and 17 leads to

. 2
�
/4 A

N2
kGk2 � G�.H�H/G �

B

N2
kGk2I (18)

and so

�max.H
�H/ �

B

N2
;

and

�min.H
�H/ �

�
2

�

�4 A

N2
:

Hence, we conclude that

cond.H�H/ �
��
2

�4 B

A
:

ut

5 Asymptotic Properties of the Algorithm

Given the samples fbf .˛j/g
M�1
jD0 and N 2 N, where f 2 L2.D/, M > N2; and

f˛jg
M�1
jD0 	 Œ�k=2; k=2� � Œ�k=2; k=2� 	 bR2; the reconstruction frecon 2 L2N.D/,

should serve as an approximation to f , see Equation 13. We quantify that wish in
this subsection. We begin with the following, which is not difficult to verify.
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Proposition 2. Given f 2 L2.D/ and N 2 N: The function g 2 L2N.D/; that
minimizes kf � gk2 is

g.x; y/ D

N�1X

k;lD0

gk;l1h k
N ;

kC1
N

�.x/1h l
N ;

lC1
N

�.y/;

where

gk;l D
1ˇ̌�

k
N ;

kC1
N

�
�
�

l
N ;

lC1
N

�ˇ̌
Z
h

k
N ;

kC1
N

�
�
h

l
N ;

lC1
N

� f .x; y/ dx dy;

i.e., gk;l is the average of f over
�

k
N ;

kC1
N

�
�
�

l
N ;

lC1
N

�
.

From the definition of Hk;l in Equation 6, we have

Hk;l.�; 
/ Db1h k
N ;

kC1
N

�.�/b1h l
N ;

lC1
N

�.
/; (19)

and, as in Subsection 4.1, recall that we order f.k; l/ W 0 � k; l < Ng lexicographi-
cally as fangN2�1

nD0 . Also, let DN
an

be the square,
�

k
N ;

kC1
N

�
�
�

l
N ;

lC1
N

�
; where an is the

lexicographic integer corresponding to the word .k; l/: For convenience, we write
Dn D DN

an
:

The asymptotic behavior of the algorithm is formulated in the following asser-
tion. The mathematical calculation to verify this behavior follows the assertion, see
Remark 5.

Asymptotic behavior of the algorithm. Let f 2 L2.D/ and fix N. Assume
K � 0 and assume f˛jg

M�1
jD0 is essentially uniformly distributed [40] in the square,�

� K
2
; K
2

�
�
�
� K
2
; K
2

�
; as M ! 1. Then, for M � 0; we obtain the approximation,

8n D 1; : : : ;N2 � 1; fan �
1

jDnj

Z

Dn

f .x; y/dxdy; (20)

where jDnj D 1=N2 is the area of Dn; and where the fan are the coefficients of frecon

for a given element of L2N.D/: Thus, comparing Equation 20 with Proposition 2, we
see that, as M ! 1, the algorithm reconstruction, frecon, approaches the optimal
L2N.D/ approximation of f .

Note that

H�H D

0

B@
c0;0 : : : c0;N2�1
:::

:::

cN2�1;0 : : : cN2�1;N2�1

1

CA ;

where ck;l D
PM�1

jD0 Hl.˛j/Hk.˛j/. Also, we compute



A Frame Reconstruction Algorithm with Applications to Magnetic Resonance Imaging 203

H�bF D

0

B@

PM�1
jD0 H0.˛j/bf .˛j/

:::PM�1
jD0 HN2�1.˛j/bf .˛j/

1

CA :

Consequently, we have

frecon D .H�H/�1H�bF

D

0

B@

1
M

PM�1
jD0 H0.˛j/H0.˛j/ : : : 1

M

PM�1
jD0 HN2�1.˛j/H0.˛j/

:::
:::

1
M

PM�1
jD0 H0.˛j/HN2�1.˛j/ : : :

1
M

PM�1
jD0 HN2�1.˛j/HN2�1.˛j/

1

CA

�1

�

0

B@

1
M

PM�1
jD0 H0.˛j/bf .˛j/

:::
1
M

PM�1
jD0 HN2�1.˛j/bf .˛j/

1

CA ;

which tends to

0

BB@

R
Œ K
2 ;

K
2 �
2 H0.�/H0.�/d� : : :

R
Œ K
2 ;

K
2 �
2 HN2�1.�/H0.�/d�

:::
:::R

Œ K
2 ;

K
2 �
2 H0.�/HN2�1.�/d� : : :

R
Œ K
2 ;

K
2 �
2 HN2�1.�/HN2�1.�/d�

1

CCA

�1

�

0

BB@

R
Œ K
2 ;

K
2 �
2 H0.�/bf .�/d�

:::R
Œ K
2 ;

K
2 �
2 HN2�1.�/bf .�/d�

1

CCA ;

as M ! 1 and for K >> 0: This last matrix product is approximately

0

B@
hH0;H0i : : : hHN2�1;H0i

:::
:::

hH0;HN2�1i : : : hHN2�1;HN2�1i

1

CA

�10

B@
hbf ;H0i
:::

hbf ;HN2�1i

1

CA

D

0

BBB@

jD0j 0

jD1j
: : :

0 jDN2�1j

1

CCCA

�10

BBB@

hf ;1D0i

hf ;1D1i
:::

hf ;1DN2�1
i

1

CCCA
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D

0

BB@

1
jD0j

hf ;1D0i

:::
1

jDN2�1j
hf ;1DN2�1

i

1

CCA D

0

BB@

1
jD0j

R
D0

f .x; y/dxdy
:::

1
jDN2�1j

R
DN2�1

f .x; y/dxdy

1

CCA ;

where we use Equation 19 and Parseval’s theorem for the first equality.
Therefore, for a given f 2 L2N.D/, we have

frecon D .H�H/�1H�bF �

 
1

jD0j

Z

D0

f .x; y/dxdy; : : : ;
1

jDN2�1j

Z

DN2�1

f .x; y/dxdy

!T

;

as asserted.

Remark 5. The above approximation of integrals by sums can be justified using
results from the theory of uniformly distributed sequences, especially Theorem 5.5
(the Koksma-Hlawka inequality) and Theorem 6.1 and related techniques dealing
with the discrepancy of sequences [40], Chapter 2. These methods are important
with regard to exact frames, see [3, 49]. Further, continuity properties of matrix
inversion enable the interchange of limits with matrix inverses in the calculation.

6 Computational Aspects of the Algorithm

6.1 Computational Feasibility

To solve the basic problem of Section 4, i.e., reconstructing f 2 L2N.D/ through

bF D HF; (21)

and develop the associated algorithm formula, Equation 13, as we did in Subsec-
tion 4.1, we begin by addressing the system,

.H�H/F D H�bF: (22)

The dimensions of the vectors and matrices are:

• F is N2 � 1

• H is M � N2; where M � N2

• A D H�H is N2 � N2

• bF is M � 1

• b D H�bF is N2 � 1:

Therefore, a direct implementation requires memory for

N4 C .M C 1/N2 C M � 2 .N4 C N2/
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scalars. With regard to operation count, we have the following situation. The
computations to solve Equation 22, assuming that H� and H�H are given to us,
involve computing H�bF and .H�H/�1.H�bF/: The first term requires O.M N2/

operations and the second term requires O..N2/3/ operations.

6.2 Transpose Reduction

Set

H D

0

BBB@

H0.˛0/ : : : HN2�1.˛0/

H0.˛1/ : : : HN2�1.˛1/
:::

:::

H0.˛M�1/ : : : HN2�1.˛M�1/

1

CCCA D

0

BBB@

VT
0

VT
1
:::

VT
M�1

1

CCCA ;

where each Vj is N2 � 1; and Vj D .H0.˛j/; : : : ;HN2�1.˛j//
T: We compute

H�H D

0

B@

PM�1
kD0 H0.˛k/H0.˛k/; : : : ;

PM�1
kD0 H0.˛k/HN2�1.˛k/

:::PM�1
kD0 HN2�1.˛k/H0.˛k/; : : : ;

PM�1
kD0 HN2�1.˛k/HN2�1.˛k/

1

CA ;

D

M�1X

kD0

0

B@
H0.˛k/H0.˛k/; : : : ;H0.˛k/HN2�1.˛k/

:::

HN2�1.˛k/H0.˛k/; : : : ;HN2�1.˛k/HN2�1.˛k/

1

CA ;

D

M�1X

kD0

0

BBB@

H0.˛k/

H1.˛k/
:::

HN2�1.˛k/

1

CCCA .H0.˛k/;H1.˛k/; : : : ;HN2�1.˛k//;

D

M�1X

kD0

VkVT
k :

Also, we have

H�bF D

0

B@

PM�1
kD0 H0.˛k/bf k

:::PM�1
kD0 HN2�1.˛k/bf k

1

CA D

M�1X

kD0

bf kVk:
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Consequently, our algorithm for calculating H�H and H�bf requires the variables
A;V;bF; and b: The algorithm is constructed as follows. Given f˛0; � � � ; ˛M�1g and
bF D .bf 0; : : : ;bf M�1/

T:

1. Let V D ŒH0.˛0/; : : : ;HN2�1.˛0/�
T ; where a “for loop” of length N2 is required

to compute VI

2. Define A D VVTI

3. Define b D bf0VI

4. For j D 1 to M � 1;

• Let V D
�
H0.˛j/; : : : ;HN2�1.˛j/

�T
I

• Let A D A C VVTI

• b D b Cbf jV:

end

Therefore, the algorithm requires memory for N2�N2C2 .M �1/CN2�1CN2�1

scalars. This is better than the direct implementation Equation 21 of Subsection 6.1.
The computational cost requires:

• O.MN2/ calculations to compute the V vectors,
• O.MN4/ calculations to compute A D H�H; and
• O.MN2/ calculations to compute b D H�bF:

Remark 6. The direct implementation uses more memory than the transpose reduc-
tion algorithm by a factor of roughly .M=N2/C 1:

6.3 An Alternative

As before, we begin with the system,

H�HF D H�bF;

where H�H is of size N2 � N2.
A problem arises from the fact that we have to build an N2 � N2 matrix, when

in fact we only need a set of N2 coefficients to describe the image that we want to
reconstruct from the frequency information contained inbF.

Let us review the process:
The unit square D is divided in N2 smaller elements, in a grid-like fashion; and,

as such, we deal with the characteristic functions for each of the
�

k
N ;

kC1
N

�
�
�

l
N ;

lC1
N

�

sub-squares.
Thus, an N-digital image f 2 L2N.D/ is defined as

N�1X

kD0;lD0

fk;l1h k
N ;

kC1
N

�
�
h

l
N ;

lC1
N

�:
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When we have M D N2 values ofbf , we are dealing with the exact and unique
solution of H�HF D H�bF: When we have more than N2 values ofbf , i.e., when
M > N2, then we are dealing with a minimum squares solution.

It is natural to ask how one can formulate this situation in terms of some energy.
Consider the function,

E.v/.�; 
/ D

N2�1X

iD0

vib1i.�; 
/;

where v D .v0; : : : ; vN2�1/
T 2 RN2 and

1i D 1h ki
N ;

kiC1

N

�
�
h

li
N ;

liC1

N

�;

for 0 � ki; li � N � 1:

Also, consider the data set fbf j D bf .�j; 
j/ W .�j; 
j/ 2 bR2; 0 � j � M � 1g,
wherebf is the Fourier transform of f W R2 ! R:

We build the function F W RN2 �! R as follows:

F .v/ D

M�1X

jD0

ˇ̌
ˇ̌
ˇ̌
N2�1X

iD0

vib1i.�j; 
j/ �bf j

ˇ̌
ˇ̌
ˇ̌

2

D

M�1X

jD0

ˇ̌
ˇE.v/.�j; 
j/ �bf j

ˇ̌
ˇ
2

:

We want to find v� 2 RN2 such that

F .v�/ D min
v2RN2

F .v/:

We shall take the following course of action. First, the minimization approach will
not be pursued because of the calculation of F .v/ is generally too expensive. In
fact, we shall take the conjugate gradient approach to solving the system,

H�HF D H�bF: (23)

It makes sense to take this approach for the following reasons.

1. Modulo the problem of storing H, we can solve in a finite number of steps
equation 23 perfectly, if perfect arithmetic, as opposed to other iterative methods.

2. Since the storage of H is prohibitively expensive, we shall have to resort to
computing H�Hpk iteratively, where pk is from the usual conjugate gradient
algorithm notation. Note that H�H is implicitly stored that way.

3. The storage requirements are reduced to 4 vectors, in our case, of size N2 � 1. In
reality we need an extra vector that grows as M �1 to be able to compute H�Hpk.

This method makes sense when H�H is positive-definite.



208 J.J. Benedetto et al.

For perspective, the Kaczmarz algorithm is a different approach to signal
reconstruction that can operate with low memory requirements by using simple
row-action updates, e.g., [16]. The Kaczmarz algorithm has figured prominently
in computerized tomography.

7 An MRI Primer

The ideas behind the discovery of magnetic resonance imaging, are due to Paul
Lauterbur, see [21]. We outline and illustrate them.

A magnetic dipole is a spinning charged particle. A magnetic dipole has a
magnetic dipole moment that is characterized by its gyromagnetic ratio � and its
spin angular momentum S. We call this magnetic dipole moment 
; and 
 D �S,
[31]. See Figure 2.

If we place a magnetic dipole in the presence of a static magnetic field B0, and
its magnetic dipole moment is not aligned with the magnetic field, we observe that
the magnetic dipole moment precesses about the magnetic field at a frequency !0
called the Larmor frequency. The Larmor frequency is proportional to the strength
of the magnetic field. The constant of proportionality is the gyromagnetic ratio, i.e.,
!0 D �kB0k2, [31, 41]. See Figure 3.

If a macroscopic sample of magnetic dipoles in solid, liquid, or gaseous form (for
example, about 1023 hydrogen nuclei in water per cm3) is placed in the presence of
a static magnetic field B0, then the energy in this sample will be minimized when
the majority of the magnetic dipole moments align with B0. This minimum energy
state gives rise to a local magnetization M of the sample, and M D �B0, where � is
called the nuclear susceptibility of the sample, [41]. See Figure 4.

Suppose that we place a circular coil centered on a macroscopic sample of
magnetic dipoles that has been magnetized by a static magnetic field B0; and

Fig. 2 A magnetic dipole is a
spinning charged particle.

S

μ

Fig. 3 Magnetic dipole
precession in the presence of
a magnetic field.

μ

B0
S

ω0
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B0M

Fig. 4 Magnetization of a macroscopic sample of magnetic dipoles.

Fig. 5 Magnetization of a
sample and coil experiment.

B1 (t)

v(t) = A sin(ωt)

B0MM

Fig. 6 Nuclear magnetic
resonance (NMR) observed at
the Larmor frequency.

B1 (t)

B

v(t) = A sin(ω0t)

B0M

Fig. 7 Relaxation of the
magnetization of a sample to
its steady state.

B0

S(t)

M(t)

suppose that the coil is embedded in a plane containing B0: See Figure 5. We then
apply a time-varying sinusoidal voltage v.t/ D A sin.!t/ at the coil with amplitude
A and frequency !. We observe a time-varying magnetic field B1.t/ perpendicular
to B0 that will grow and shrink, coming in and out of the plane containing the coil.

The nuclear magnetic resonance or NMR phenomenon can then be observed at
the Larmor voltage frequency !0 in the following way: the magnetization in the
sample is rotated and placed in the transversal plane to B0, [31, 41]. See Figure 6.

When the voltage pulse that generated the magnetic field B1 is turned off, we then
observe an induced voltage S.t/ in the coil as the magnetization of the sample M
precesses around B0 eventually aligning with it. This relaxation process is triggered
by thermal noise in the sample, [41]. See Figure 7.

The magnetization M can be decomposed in longitudinal and transversal compo-
nents, Mlon and Mtr, respectively. The longitudinal component will be parallel to B0
and the transversal component will be in the transversal plane perpendicular to B0,
[41]. See Figure 8.
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Fig. 8 Transversal and
longitudinal magnetizations. B0

S(t)

Mlon(t)

Mtr(t)

Bloch’s equations predict in a variety of cases that the decay to the steady state
of the magnetization will be exponential, i.e.,

Mlon � �B0 / exp.�t=T1/; (24)

kMtrk2 / exp.�t=T2/; (25)

where / denotes proportional to and where the characteristic relaxation times T1
and T2 are particular to the magnetization sample, [41].

With this physical setup, we arrive at the imaging equation, Equation 1, of
Section 2, viz.,

S.t/ D S.k.t// D S.kx.t/; ky.t/; kz.t//

D

Z Z Z
Mtr.x; y; z/e

�2� ih.x;y;z/;.kx;ky;kz/idx dy dz

D

Z Z Z
�.x; y; z/e�t=T2e�2� ih.x;y;z/;.kx;ky;kz/idx dy dz; (26)

where we have introduced the transversal component Mtr; where � is a magnetic
dipole density function of space, where r D .x; y; z/, and where ks.t/ for s D x; y; z
is proportional to

Z t

0

@

@s
B0.u/du; (27)

cf. Equation 2 of Section 2. Thus, the induced signal S can be seen as the Fourier
transform of the transversal magnetization Mtr in the k-spectral domain. Hence,
to recover the transversal magnetization we take the inverse Fourier transform of
the signal S. The transversal magnetization Mtr D Mtr.r; t/ D �.r/e�t=T2 is also
a function of time t, as seen in Equation (26). In practice, the values of kr in the
k-spectral domain are obtained by sampling (27) at regular time intervals. For this
strategy to work, the magnetic field B0 must have a non-zero gradient. Hence, the
design of magnetic gradients plays an important role in the sampling strategy of the
k-spectral domain from which we recover an image in the spatial domain of Mtr,
and from which we obtain an image of the density �, [41].
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8 Synthetic Data Generation

We give the logic for the empirical evaluation of the algorithm in the case when data
is not machine provided automatically, e.g., from an actual MRI.

• Given a high resolution image I .1024 � 1024/.
• Downsample I (e.g., by taking averages) to IN , N � N; where, for example, N

could be 128 or 256.
• Therefore, for comparison purposes, IN is the optimal, available image at the

N � N level.
• CalculatebI D

P
Iak Hak ; i.e., 106 terms for each ˛m 2 bR2.

• ChoosebI.˛m/, m D 0; 1; : : : ;M � 1 � N2 � 1; appropriately, where the ˛m are
on a finite union of sufficiently tightly wound Archimedean spirals, for example,
and are restricted to a ŒK;K�2 square.

• Set LI DbI; an M � 1 vector.
• Implementation gives

QI D S�1L�bI;

that has matrix dimension,

.N2 � N2/.N2 � M/.M � 1/ D N2 � 1:

• Quantitatively analyze the difference IN � QI, an N � N matrix.
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Frame Properties of Shifts of Prolate
and Bandpass Prolate Functions

Jeffrey A. Hogan and Joseph D. Lakey

1 Introduction: Prolate Functions, Bandpass Prolates,
and Frames

We study certain frames for spaces of bandlimited or bandpass-limited functions
that are generated by shifts of those functions that are most concentrated in a
given time interval. In the baseband case the generators correspond to the most
concentrated eigenfunctions of the operator P˝QT that first truncates an L2.R/-
function to Œ�T;T� then bandlimits to Œ�˝=2; ˝=2�. These eigenfunctions are
dilated prolate spheroidal wave functions (prolates for short) and the number of
such eigenfunctions with good concentration is approximately c D 2˝T—the
time-bandwidth product. In [7] we showed that by shifting the most concentrated
prolates one can generate a frame for the Paley–Wiener space PW˝ D ff 2

L2.R/ W suppbf � Œ�˝=2; ˝=2�g where F .f / Dbf denotes the Fourier transform
bf .�/ D

R
f .t/ e�2� it� dt, f 2 L1 \ L2.R/. The frame property holds if there are

enough prolate shifts—essentially one prolate shift per unit time per unit bandwidth
is required. Denoting by 'n the nth eigenfunction of P˝QT (ordered by decreasing
eigenvalue), this means the shifts f'n.� � ˛k/ W n D 0; : : : ;P � 1; k 2 Zg form a
frame for PW˝ if P=˛ � 2˝T (see Theorems 2 and 3).

Concentration of bandpass-limited signals is important in applications. Define
P˝0;˝ D P˝ � P˝0 where 0 < ˝ 0 < ˝. We refer to eigenfunctions of P˝0;˝QT
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as bandpass prolates. Whether the density property—one bandpass prolate shift
per unit bandwidth per unit time—is sufficient for shifts of the most concentrated
bandpass prolates to form frames is an open question but we can verify explicit
frame bounds in several redundant cases, e.g., Corollary 1, cf., [7] and [9]. In
the baseband case the generators of corresponding canonical dual frames can be
computed through their coefficients in the prolate shift frames.

An application of bandpass prolate frames in the study of EEG involving
phase locking, e.g., [11], is outlined here. A second application to cross-frequency
coupling, specifically, the question of whether certain cognitive functions exhibit
coupling of power in a high frequency band with phase of a corresponding low
frequency band—is also outlined very briefly.

2 Prolate Spheroidal Wave Functions and Frames

The Bell Labs Theory of time and bandlimiting was developed in several papers
authored by combinations of Landau, Slepian, and Pollak [16, 17, 21–23] and
published in the Bell System Technical Journal beginning in the early 1960s. We
review basic concepts of time and bandlimiting here.

2.1 Basic Concepts of Time and Bandlimiting and Frames

The time-limiting operator QT multiplies f 2 L2.R/ by the characteristic function
1Œ�T;T� of the interval Œ�T;T� (we write Q D Q1). We let P˝ denote the bandlimiting
operator P˝ D F �1Q˝=2F . We have changed the roles of the symbols P and Q
relative to some of the standard literature, e.g., [12, 29]. The composition P˝QT is
compact and self-adjoint on the Hilbert space PW˝ D P˝.L2.R// and with c the
time-bandwidth product, Pc=�Q commutes with the differential operator [23]

Pc D
d

dt
.t2 � 1/

d

dt
C c2t2 (1)

whose eigenfunctions 'n .n � 0/ associated with the eigenvalues �n with �0 < �1 <
�2 < � � � are the prolate spheroidal wave functions which arise in mathematical
physics (e.g., [20], cf., [24]). The normalized eigenfunctions of P˝QT are unitary
dilates by 1=T of those of PT˝Q. We refer to the former as .T; ˝/-prolates, or just
prolates when their dependence on the duration–bandwidth product 2T˝ is clear.

The .1;˝/-prolates 'n D '˝n form an orthonormal basis for PW˝ with L2-inner
product as well as an orthogonal basis for L2Œ�1; 1� with

R 1
�1 j'nj2 D �n when

k'nkL2.R/ D 1. Thus, if f 2 PW˝ , then f D
P1

nD0hf ; '
˝
n i'˝n and

R 1
�1 jf j2 DP

�njhf ; '˝n ij2. The prolate 'n D '˝n is real-valued, even (odd) if n is even (odd),
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has n zeros on Œ�1; 1�, and is also an eigenfunction of f 7!
p
2=˝ D˝=2F �1Qf ,

where .Daf /.t/ D
p

af .at/, with eigenvalue 
n D in
p
2�n.˝/=˝, see, e.g., [6].

That is,

b'n

�˝
2
�
�

D .�i/n

s
2

˝�n
Q'n.�/ : (2)

Landau and Widom’s 2˝T theorem [18] states that P˝QT has approximately 2˝T
eigenvalues close to one, with a logarithmic plunge from eigenvalues close to one to
very small eigenvalues. Denote by P.˝;T; ˛/ the number of eigenvalues of P˝QT

larger than ˛ 2 .0; 1/. Then

P.˝;T; ˛/ D 2˝T C log.2˝T/ log
�1 � ˛

˛

�
C o.log.˝T// : (3)

A corresponding identity applies to P˙QT when ˙ is a finite union of intervals,
e.g., [6, Theorem 4.1.1] but the width of the plunge region is proportional to the
number of intervals comprising ˙ . When ˛ D 1=2 one also has b2˝Tc C 1 �

P.˝;T; 1=2/ � b2˝Tc � 1, see [6, 15].
For the sake of completeness we include here the definitions of frames and Riesz

bases, see, e.g., [5]. Let H be an infinite dimensional, separable Hilbert space.
A family ff1; f2; : : : g is a frame for H if there exist constants 0 < A � B < 1

such that for any f 2 H one has

Akf k2H �
X

n

jhf ; fnij2 � Bkf k2H :

A sequence fgng is a Riesz basis for its closed span in H if there exist constants
0 < c � C < 1 such that for any sequence fcng1

nD1 2 `2.N/ one has

c
1X

nD1

jcnj2 � k
X

cngnkH � C
1X

nD1

jcnj2 :

2.2 Basic Fourier Identities for Time and Frequency Limiting

In this section we prove a general identity for eigenfunctions of operators of the form
P˙QS where QS denotes multiplication by 1S and P˙ D F �1Q˙F . We assume
that S and ˙ are compact and that ˙ D �˙ . The latter implies that the kernel of
P˙ is real and symmetric, and the compactness then implies that the eigenvalues
f�ng of P˙QS satisfy 1 > �0 � �1 � � � � > 0.
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Lemma 1. Let fb ng1
nD0 be an orthonormal basis for L2.˙/ where ˙ � R is

compact. Then fQI ng1
nD0 is complete in L2.I/ for any bounded interval I.

Proof. By Plancherel’s theorem, if
P

jhQIf ;  nij2 D
P

jhbQIf ; b nij2 D 0, then by
completeness of b n, bQIf D 0 a.e. on˙ . However, .QIf /^ is real-analytic so .QIf /^

must then vanish identically. Then QIf D 0 a.e. by Fourier uniqueness. �

Lemma 2. Suppose that � is a real-valued, symmetric kernel �.t; s/ D �.t�s/ with
the reproducing property

R
�.t � s/ �.t � u/ dt D

R
�.s � t/ �.t � u/ dt D �.u � s/

and let Rf .t/ D
R

S �.t � s/ f .s/ ds have a discrete spectrum. Then the eigenfunctions
 n of R are orthogonal over S as well as over R.

Proof. Let 
n be the nth eigenvalue of R. By orthogonality,

ınmD

Z 1

�1

 n.t/  m.t/ dtD
1


n 
m

Z 1

�1

Z

S
�.t�s/ n.s/ ds

Z

S
�.t�u/ n.u/ du dt

D
1


n 
m

Z

S
 n.s/

Z

S
 n.u/

Z 1

�1

�.t � s/�.t � u/ dt du ds

D
1


n 
m

Z

S
 n.s/

Z

S
 m.u/ �.s � u/du ds D

1


n

Z

S
 n.s/  m.s/ ds : �

Lemma 3. If ˙ D �˙ is compact, then the eigenfunctions  n of P˙QS with
k nkL2.R/ D 1 form a complete orthogonal family in L2.S/ and

P
�njb n.�/j

2 D jSj,
� 2 ˙ .

Proof. Completeness follows from Lemma 1. Orthogonality follows from
Lemma 2. For each � 2 ˙ , the orthonormal expansion e2� it� D

P
nhe2� i�� ;  niL2.S/

 n.t/=�n of the exponential exp.2� it�/ converges in L2.S/. This gives

X
�njb n.�/j

2 D

1X

nD0

1

�n

Z

S
 n.t/ e�2� it� dt

Z

S
 n.s/ e2� is� ds

D

Z

S

� 1X

nD0

1

�n

�Z

S
e2� is� n.s/ ds

�
 n.t/

�
e�2� it� dt D

Z

S
e2� it�e�2� it� dt D

Z
1S D jSj :

That is,
P
�njb n.�/j

2 D jSj on ˙ . �

By Dini’s theorem, convergence is uniform in � . As such, given A < jSj there is
a P such that A �

PP�1
nD0 �njb n.�/j

2 � jSj for all � 2 ˙ .
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3 Frames Generated by Shifting Prolates

In this section we review some results first presented in [7] and [9] regarding frames
of shifts of baseband prolates and their duals in certain cases.

3.1 Normalized Prolate Shifts

We write �n.t/ D
p
�n'n.t/ to denote a .1; 2˝/-baseband prolate normalized to

have
R1

�1 �2n.t/ dt D �n and �n;˛.t/ D
p
�n'n.t � ˛/.

Theorem 1 ([7, Thm. 2]). For ˛ � 1 fixed, F˛ D f�n;2˛` W ` 2 Z; n � 0g forms a
frame for PW2˝ with lower frame bound A � b1=˛c and upper bound B � d1=˛e.

As a special case, F1 forms a Parseval frame for PW2˝ . The generator �n is not
concentrated on Œ�1; 1� when n > 4˝. However, the normalization k�n;˛k2 D �n

implies that the �n;˛ term just adds fine detail for large n. The proof of Theorem 1
uses the completeness of the prolates in PW2˝ and thus casts doubt on whether a
frame can be generated from shifts of the most concentrated prolates only. However,
a different frame bound also applies when 1=˛ is a multiple of the time-bandwidth
product and it suggests that FP;˛ D f�n;2˛` W ` 2 Z; 0 � n < Pg can form a frame
for appropriate P and ˛.

Theorem 2 ([7, Cor. 7]). If 1=˛ D 4m˝ for some m 2 N, then FP;˛ D f�n;2˛` W

` 2 Z; 0 � n < Pg forms a frame for PW2˝ with frame bounds

inf
P�1X

nD0

1

�n

ˇ̌
ˇ�n

� �
˝

�ˇ̌
ˇ
2

� A � B � sup
P�1X

nD0

1

�n

ˇ̌
ˇ�n

� �
˝

�ˇ̌
ˇ
2

:

In the limit P ! 1 the corresponding frame F˛ is tight with A D B D 4m˝.

The limiting case effectively states that one can replace the upper and lower
frame bound estimates b1=˛c � A � B � d1=˛e of Theorem 1 with A D B D 1=˛

when 1=˛ D 4˝ m. The proof of Theorem 2 combines the identity

X

`

P�1X

nD0

jhf ; �n;2˛`ij
2 D 2

Z ˝

�˝

jbf .�/j2
P�1X

nD0

1

�n

ˇ̌
ˇ�n

� �
˝

�ˇ̌
ˇ
2

d�

with a variant of Lemma 3 that uses the identity (2). When FP;˛ forms a frame for
PW2˝ , the modulates e4� i˝mt�n;2˛`, `;m 2 Z; 0 � n < P form a frame for L2.R/
with the same bounds. This is because the modulates for different m are orthogonal.

When 1=˛ D 4˝ the frames FP;˛ in Theorem 2 have P generators per unit
shift, and 4˝ shifts—the time-bandwidth product—per unit time. The lower frame
bound is positive for P D 1 and increases with P. When P D 1 the family FP;1=.4˝/
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in fact forms a Riesz basis for PW2˝ , see [28]. However, the lower frame bound A1
is very small so numerical reconstructions can be unstable. When P > 1, FP;1=.4˝/

is redundant with a factor P but the frame also becomes more snug, meaning that
.B � A/=.B C A/ becomes smaller as P gets larger. It turns out that if P=˛ D 4˝

then the family FP;˛ is also a Riesz basis as the following result in [7] shows. The
Riesz bounds in this case are equivalent to the respective infimum and supremum of
the spectrum of the positive-definite matrix valued function

Q D

P�1X

`D0

Q`I Q`
n;m.�/ D

1

˝
�n

�� C `=˛

˝
� 1

�
�m

�� C `=˛

˝
� 1

�
;

0 � n;m < P; 0 � � < 1=˛ (4)

where P D 2˝˛ 2 N. The values of kQ.�/k and kQ�1.�/k are plotted in [7]. We
consider a finite dimensional analogue in Sect. 5.

The argument depends crucially on the fact that the prolate functions f'ngP�1
nD0

form a Chebyshev system on Œ�1; 1�. Specifically, if �1 � t0 < t1 < : : : tP�1 < 1,
then the matrix ˚nm D 'n.tm/, 0 � n;m < P is nonsingular. It is natural to ask, for
fixed bandwidth˝, which P provides a Riesz basis with best properties, either from
the point of view of Riesz bounds or in terms of localization of the basis elements
and their duals. This discussion may be summarized as follows.

Theorem 3 ([7, Thm. 12]). Let 'n denote the nth prolate bandlimited to Œ�˝; ˝�
and time-concentrated in Œ�1; 1�. If P D 2˝˛ 2 N, then the functions f'n.� � ˛k/ W

0 � n � P � 1; k 2 Zg form a Riesz basis for PW2˝ . That is, there exist constants
0 < A � B < 1 such that for any sequence fcnkg

P�1
nD0; k2Z 2 `2.ZN/ one has

A
X

nk

jcnkj
2 � k

X

nk

cnk 'n.� � ˛k/k2 � B
X

nk

jcnkj
2 :

Riesz bounds A; B depend on the parameters P; ˛. A Riesz basis is, in a sense,
closer to an orthogonal basis if B=A is close to one. We illustrate in a finite
dimensional analogue that Riesz bounds are closer to one when P is close to the
time-bandwidth product, see Fig. 6. The prolate Riesz duals can be computed in the
Fourier domain essentially by inverting the matrix Q in (4).

3.2 Duals of Redundant Prolate Shift Frames

Any dual frame of a shift-invariant frame is also shift invariant and computing a dual
frame is a matter of computing its generators. We can provide a concrete method to
compute generators of canonical duals of prolate-shift frames when the redundancy
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is expressed in the number of generators. Thus, assuming that f�n.� � ˛k/ W 0 �

n � P � 1; k 2 Zg generates a frame for PW2˝—as before, �n D
p
�n'n where 'n

is the nth baseband prolate—we seek generatorse�n of the canonical dual frame.
If L � 2˝ then, as a consequence of the sampling theorem, if f ; g 2 PW˝ then

hf ; gi D
1

L

X

`2Z

f
� `

L

�
g
� `

L

�
:

The frame operator Tf D
PP�1

nD0

P1
kD�1hf ; �n;˛ki�n;˛k can be written

Tf .t/ D

P�1X

nD0

1X

kD�1

�n

�Z 1

�1

f .x/'n.x � ˛k/ dx
�
'n.t � ˛k/

D

P�1X

nD0

�n

Z 1

�1

f .x/
� 1X

kD�1

'n.x � ˛k/ '�
n .˛k � t/

�
dx

D

P�1X

nD0

�n
1

˛
.

Z 1

�1

f .x/
Z 1

�1

'n.x � s/ '�
n .s � t/ds dx

D
1

˛

P�1X

nD0

�nf � 'n � '�
n .t/

where f � g denotes the convolution of f and g and g�.t/ D g.�t/. Taking Fourier
transforms and using (2) for bandwidth 2˝ one obtains

bTf .�/ Dbf .�/ 
.�/I 
.�/ D
1

˛

P�1X

nD0

�njb'n.�/j
2 D

1

˛

P�1X

nD0

j'n
�
�=˝

�
j2 : (5)

In other words, the frame operator is a Fourier multiplier. Since 
 is nonvanishing
on its support Œ�˝;˝�, one can invert 
 there and thus invert the frame operator,
that is,

.bT�1f /.�/ D
bf .�/

.�/

; j�j � ˝ :

Finite dimensional analogues of 
 are plotted in Fig. 1, see also Sect. 5. Recall that
the canonical dual frame is obtained by applying T�1 to each of the frame elements.
In our case, the canonical dual is also a shift frame whose generatorse'n are obtained
by applying T�1 to the generators of the primal frame, namely,

be'n.�/ D
b'n.�/


.�/
; j�j � ˝ :
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Fig. 1 512-dimensional DFT analogues of the multiplier 
 in (5) using P D 10; 16, and 20 terms
with a normalized time-bandwidth product of 16.

In particular, the nth generator of the dual frame can be expressed solely in terms
of shifts of the nth generator of the primal frame, and the coefficients of these shifts
are independent of the generator (though they do depend ultimately on the number
of prolate generators, reflected in the definition of 
). Specifically, define

1



D

1X

`D�1

b` e2� i`�=.2˝/I b` D
1

2˝

Z ˝

�˝

e�2� i`�=.2˝/


.�/
d� :

Then

Q'n.t/D
Z ˝

�˝

O'n.�/


.�/
e2� it� d�D

X
b`

Z ˝

�˝

O'n.�/ e2� i�.tC `
2˝ / d�D

X
b`'n

�
t C

`

2˝

�
:

If 
` denotes the `th Fourier coefficient of 
, then fb`g is a convolution inverse of

`, that is,

1X

`D�1

b`
k�` D ık :

One can estimate the dual prolates numerically by estimating the coefficients b`,
provided that one has a means to compute the prolates themselves. The following
calculation shows that one can compute the b` from the samples of the prolate
generators:



Frame Properties of Shifts of Prolate and Bandpass Prolate Functions 223

-2 -1 0 1 2 -2 -1 0 1 2

-2 -1 0 1 2-2 -1 0 1 2

0
0.1
0.2
0.3
0.4
0.5
0.6

-0.4
-0.2

0
0.2
0.4

-0.4
-0.2

0
0.2
0.4

-0.2
0

0.2
0.4
0.6

Fig. 2 The most concentrated generators 'n (solid) and their duals (suitably normalized–dotted)
are plotted for n D 0; 2; 4; 6 using P D 10 and shift parameter ˛ D 1=4˝ with a time-bandwidth
product equal to 10. The generators are computed by computing 8000 Nyquist samples and sinc
interpolating.


` D
1

2˝

Z ˝

�˝


.�/e�2� i`�=.2˝/ d� D

P�1X

nD0

�n

Z ˝

�˝

jb'n.�/j
2e�2� i`�=.2˝/ d�

D

P�1X

nD0

�n'n � '�
n

� `

2˝

�
D

P�1X

nD0

�n

Z 1

�1

'n

� `

2˝
� x

�
'�

n .x/ dx

D
1

2˝

P�1X

nD0

�n

1X

kD�1

'n

�` � k

2˝

�
'�

n

� k

2˝

�
:

To compute the coefficients 
` it suffices to have the samples 'n.k=2˝/, k 2 Z

and n D 0; : : : ;P � 1. Plots of the four most concentrated symmetric prolates and
their duals for˝ D 2:5 are given in Fig. 2. To estimate 
` numerically one needs to
use finitely many samples. In general the pointwise decay of a .1; 2˝/-prolate 'n is
like that of a sinc function, e.g., [1] when n & 4˝. On the other hand, the samples
can be controlled by the eigenvalue for small n as the following result proved in [8]
shows.

Theorem 4 ([8, Thm. 5]). Let 'n denote the nth prolate bandlimited to Œ�˝;˝�
and time concentrated on Œ�1; 1�. Then there are constants C1 and C2 such that if
M D .1C C1˝= log.4˝// then

P
jkj>M

ˇ̌
'n.k=.2˝//

ˇ̌2
� C2.1 � �n/.
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4 Bandpass Prolate Shift Frames

In this section we discuss bandpass prolate functions and frames generated by their
shifts.

4.1 Bandpass Prolate Functions

Set P˝0;˝ D P˝ � P˝0 where 0 < ˝ 0 < ˝. By a .1;˝ 0; ˝/-bandpass prolate
(BPP) we mean an eigenfunction of P˝0;˝Q for fixed ˝ 0; ˝. Unlike baseband
prolates, BPPs do not arise as eigenfunctions of a second or fourth order differential
equation with polynomial coefficients [19] so computing them numerically requires
a different approach. For fixed � D .˝ � ˝ 0/=2, it can be shown that as
˝ ! 1, the eigenfunctions of P˝0;˝Q become sine or cosine modulations of the
baseband prolate eigenfunctions of P�Q. However, for a fixed finite value of the
center bandpass frequency ˝0 D .˝ C ˝ 0/=2, the BPPs are expressed as linear
combinations of modulations

 D

1X

nD0

.ane� i˝0t C bne�� i˝0t/ 'n (6)

of baseband prolate eigenfunctions 'n of P�Q whose coefficients an; bn are
components of eigenvectors a; b solving the matrix eigenvalue problem

�

�
a
b

�
D

�
� � �

� �

��
a
b

�
(7)

in which � is the diagonal matrix of eigenvalues of P�Q and the entries of � are
the integrals �nm D

R 1
�1 e2� i˝0t 'n 'm dt [10].

Let Pn.t/ denote the nth Legendre polynomial

Pn.t/ D
1

2n nŠ

dn

dxn
Œ.x2 � 1/n�

and denote by NPn.t/D
p

nC1=2Pn.t/ the normalization satisfying
R 1

�1
NP2n.t/ dtD1.

The baseband prolate 'n can be expressed as

'n.t/ D
1

p
�n

1X

kD0

bkn NPk.t/ : (8)

Denote by B D B� the unitary matrix with nth column fbkngk and by
p
� the

diagonal matrix with diagonal entries
p
�n. Finally let T denote the matrix with

entries

Tmn D

Z 1

�1

t NPn.t/ NPm.t/ dt D
n

p
4n2 � 1

ım;n�1; .m � n/ : (9)

The following was proved in [10].
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Proposition 1 ([10, Prop. 3]). The matrices � and T in (7) and (9) are related by
p
�Be2� i˝0TB�

p
� D � :

where the entries of B are defined by (8).

Let TN denote the truncation of T to its principal N � N minor. The following esti-
mate, also proved in [10], together with superexponential decay of the eigenvalues
�n of P�Q implies that the coefficients an; bn of (6) are negligible for N � 2�:

k� �
p
�B

� NX

nD0

.2� i˝0T2N/
n

nŠ

�

N
B�

p
�k`2!`2 � 2

.2�˝0/
N

NŠ
:

In particular, a solution of (7) can be well-approximated in `2 by a solution of the
truncated problem with � and � replaced by truncations to their corresponding
principal N � N minors, when N � 2�.

Further details of the numerical construction of BPPs can be found in [10].
One important property of BPPs is that they are real-valued and symmetric or
antisymmetric. The eigenvalues of P˝0;˝ Q can be degenerate, but only when
a symmetric and antisymmetric BPP share the same eigenvalue. As such, the
symmetric BPPs can be indexed by decreasing eigenvalue as can the antisymmetric
BPPs.

4.2 Bandpass Prolate Shift Frames

For notational convenience we denote by  n the nth eigenfunction of P2˝0;2˝Q
(i.e., the kth symmetric eigenfunction if n D 2k and the k-th antisymmetric
eigenfunction if n D 2k � 1). We continue to denote by �n the corresponding
eigenvalue of P2˝0;2˝Q (Fig. 3). The functions f

p
�n n

�
� � `

2˝

�
g form a tight frame

for PW2˝0;2˝ D ff 2 L2.R/ W suppbf � f˝ 0 � j�j � ˝gg, see [9]. Using
Plancherel’s theorem we have
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Fig. 3 The four most concentrated symmetric bandpass prolates are plotted for a time-bandwidth
product of ten (� D 2:5) and ˝0 D 55. In this case the bandpass prolates are approximately sine
(n D 1; 3) or cosine (n D 0; 2) modulates of the�-baseband prolates '0; '1; '2, and '3. The plots
are generated from samples of numerical solutions of (6) and (7).

D 2˝

Z ˝

�˝

jbf .�/j2
P�1X

nD0

�n

ˇ̌b n.�/
ˇ̌2

d�

D 2˝

Z

˝0�j�j�˝

jbf .�/j2
P�1X

nD0

�n

ˇ̌b n.�/
ˇ̌2

d�:

Lemma 3 indicates that
PP�1

nD0 �n

ˇ̌b n.�/
ˇ̌2

converges (monotonically) to two on
˝ 0 � j�j � ˝ as P ! 1. By Dini’s theorem the convergence is uniform. See
Fig. 4 for a finite dimensional illustration. One can verify that, in fact, one already
has a frame for P D 1.

Corollary 1. For P sufficiently large, the shifts f
p
�n n.t � k=.2˝// W 0 � n �

P � 1; k 2 Zg form a (non-tight) frame for PW2˝0;2˝ .

These BPP shift frames are redundant for two reasons. First, the shift rate
corresponds to the Nyquist rate for PW2˝ whereas the total width of the passband
is only 2.˝ �˝ 0/. Additionally, in principle only one generator should be needed
for completeness and we are using P of them.
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Fig. 4 Sums of square-moduli of DFTs of first P finite bandpass prolates (FBPs) for P D 32

(wiggly) and P D 64 (straight). The FBPs are discussed in Sect. 5. The terms are 512 dimensional
vectors concentrated in the middle 128 dimensions and frequency limited to discrete Fourier
coordinates 64 < ! � 128 mod 512.

4.3 Bandpass Shift Frame Duals: Some Unsettled Matters

Duals of bandpass prolate shift frames in the redundant case can be computed, in
principle, along the same lines as in Sect. 3.2. That is, by inverting the Fourier series
of the partial sum of squares of Fourier transforms of bandpass prolate generators
on the passbands. It should be possible also to compute the corresponding multiplier
from BPP samples just as in the baseband case. Doing so will require justification
of all of the steps in Sect. 3.2 including Thm. 4.

As in the baseband case, shifts of the P most concentrated (symmetric and
antisymmetric) bandpass prolates

p
�n  n.� � ˛k/ should form a Riesz basis for

PW˝0;˝ when 1=˛ D 4�P, that is, when there is one bandpass prolate shift per unit
time per unit bandwidth, as follows.

Conjecture 1. The bandpass prolate functions f
p
�n n.t � ˛k/ W 0 � n � P � 1;

k 2 Zg form a frame for PW˝0;˝ if P=˛ � 2.˝ �˝ 0/, that is, there is at least one
bandpass prolate shift per unit bandwidth per unit time. If P=˛ D 2.˝ �˝ 0/, then
the bandpass prolate shifts form a Riesz basis.

We have verified a version of the conjecture in which the bandpass prolates
are replaced by eigenfunctions of the operator PP

˝0;�
Q in which PP

˝0;�
denotes

projection onto the span of the functions fe˙� i˝0t'n.t/g, n D 0; : : : ;P � 1, and
'n is the nth eigenfunction of P�Q. Details will be provided elsewhere.

The Chebyshev property of the baseband prolates—that f'n.tk/gN�1
n;kD0 is non-

singular for �1 � t0 < t1 < � � � < tN�1—a key element of the baseband
proof—is not known to hold in the bandpass case. One expects that the separate
symmetric and antisymmetric BPPs form Chebyshev systems as their respective
eigenvalues are separately nondegenerate. One can test the conjecture in the finite
dimensional setting. Here, analogues of prolates and bandpass prolates can be
formed as eigenvectors if the composition of a time-truncation matrix and DFT
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truncation, and shifts are replaced by cyclic translations. The corresponding Paley–
Wiener space is the span of appropriate DFT vectors and one can define the
redundancy simply as the number of prolate generators times the number of shifts
(the ambient dimension divided by the amount of the basic shift) divided by the
dimension of the DFT subspace. We will see in examples that when the redundancy
is equal to one, the shifts of multiple bandpass prolates have desirable spectral
properties—in particular, they form a basis for their span, which is the set of vectors
whose DFTs are nonvanishing on the Fourier supports of the prolates—except in
degenerate cases.

5 Finite Dimensional Analogues

The finite dimensional analogue of PW˝0;˝ is the space of .K0;K/-bandlimited
vectors in C

N whose discrete Fourier transforms are supported in frequencies
between K0 and K (mod N). The baseband prolate theory for this case was originally
worked out by Chamzas and Xu [30]; see also [6, pp. 32–33], which also discusses
other contributions to the finite theory. Fix a finite dimension N and think of vectors
x D Œx.0/; : : : ; x.N � 1/�T 2 C

N D `2.ZN/ as one period of a periodic sequence.
The finite dimensional analogue of the reproducing kernel for a Paley–Wiener
space is a Toeplitz matrix A D AK where K is fixed with 2K C 1 � N. Define
Ak` D ak�` D sin ..2K C 1/.k � `/�=N/=.N sin..k � `/�=N/, k; ` D 0; : : : ;N � 1.
Vectors in the image of A are said to be K-bandlimited, as the DFTs of the columns
of A vanish at indices m 2 ZN such that m > K mod N. Let AM D AK

M be the
principal M�M minor of A. The eigenproblem AMs D �s, s D Œs.0/; : : : ; s.M�1/�T

is a finite dimensional analogue of the problem QP˝Q' D �Q'. It is proved in
[30] that when M C 2K < N and M > 2K, the ordered eigenvalues �n of AM

are nondegenerate: 1 > �0 > �1 > � � � > �2K . The range of AK has dimension
2K C 1 so �2KC1 D � � � D �M�1 D 0. When M C 2K � N, AM will have
M C 2K C 1 � N unit eigenvalues (loc. cit.). One can argue as in [15] (when
M C 2K < N) that the number of eigenvalues larger than 1=2 cannot exceed the
normalized time-bandwidth product .2K C 1/ � M=N.

Just as P˝Q commutes with a differential operator from which its eigenfunctions
can be computed, AM commutes with a symmetric tridiagonal matrix TM defined by

Tkk D � cos
�

N
.2k C 1 � M/ cos

�

N
.2K C 1/;

Tk;kC1 D sin
�.k C 1/

N
sin

�

N
.M � 1 � k/; k D 0; : : : ;M � 1

and Tk�1;k D Tk;kC1 and Tk` D 0 if jk � `j > 1. The finite prolate (FPS) sequences
sn D Œsn.0/; : : : ; sn.M �1/�T , n D 0; : : : ; 2K can be computed as eigenvectors of TM

and extended to K-bandlimited vectors in `2.ZN/ by applying the N � N Toeplitz
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matrix A to the vectors Œsn.0/; : : : ; sn.M � 1/; 0; : : : ; 0� 2 C
N . These extensions

possess the same double orthogonality properties of the baseband prolates, viz.
Lemma 2 and form a complete family for the space of K-bandlimited vectors.

5.1 Finite Bandpass Prolates

Here we develop a method to compute finite bandpass prolates (FBPs). For frames
generated by certain shifted FBPs, one can also compute canonical dual frames
using the frame conjugate gradient method, e.g., [4].

By analogy with the continuous case in which the .˝ 0; ˝/ bandpass prolates are
defined as eigenfunctions of .P˝ � P˝0/Q, we then define the M-concentrated and
.K0;K/-bandlimited FBPs as eigenvectors of AK

M � AK0

M . In turn, these eigenvectors
can be expressed in terms of their coefficients when expanded in eigenvectors of AK

M .
These coefficients solve an eigenvalue problem analogous to (7) as the following
result, whose proof can be found in [9], shows.

Lemma 4 ([9, Lem. 5]). Let sn.M;K/ denote the nth eigenvector of AK
M, 0 � n �

2K, and let � be an eigenvector of AK
M � AK0

M expressed as � D
P

n ˛nsn.M;K/.
Then the coefficients ˛ D Œ˛0; : : : ; ˛M�

T of � form an eigenvector of the matrix
.I2KC1 � TK;K0

/�K where �K is the diagonal matrix whose entries are the nonzero
eigenvalues of AK

M and TK;K0

k;` D sk.M;K/T s`.M;K0/, 0 � k; ` � 2K.

Figure 5 illustrates the first four symmetric FBPs when N D 1024, M D 512,
K D 120 and K0 D 100; cf., the continuous BPPs in Fig. 3.

5.2 Numerical FBPs and Shift Frames

Conjecture 1 is that a family of shifts of the first P .1;˝ 0; ˝/-BPPs forms a
Riesz basis for the space PW˝0;˝ if 1=˛ D 2�P, that is, there is one BPP shift
per unit time per unit bandwidth. Shen and Walter [28] actually proved that the
shifts of a modulated prolate can form a Riesz basis for PW˝0;˝ , using a special
characterization of Riesz bases generated by shifts of a single function. As indicated
in Fig. 1 the Riesz bounds will not be snug in this case. Practically speaking, the
Riesz bounds should be snug in order that the frame operator is well conditioned.

Since the space of .K0;K/-bandlimited vectors has dimension 2.K � K0/, and
since there are S (circular) shifts of size N=S, the finite dimensional (FBP) version
of the density conjecture for BPP shifts is that taking S D 2.K � K0/=P shifts
by multiples of N � P=.2.K � K0// of each FBP provides a basis for the .K0;K/-
bandlimited vectors. Observe that, unlike the continuous case, this calculation does
not take into account the duration of the FBPs, as there is not a natural rescaling
of duration versus bandwidth in the finite dimensional case as there is in the
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Fig. 5 Middle sections of the four most concentrated symmetric finite bandpass prolates are
plotted for N D 1024, M D 512, and .K0;K/ D .100; 120/. The normalized time-bandwidth
product 2.K � K0/M=N is equal to the TBP in Fig. 3 and other parameters reflect those in the
corresponding continuous case. The plots are generated from numerical solutions outlined in
Lemma 4. This illustrates that the continuous case can be viewed as a limit of finite dimensional
cases with corresponding parameter values.

continuous case. Nevertheless, the number of prolate generators P is a parameter
in the finite dimensional case and it is natural to ask, for a fixed duration M, how
the Riesz bounds depend on P. Figure 6 plots the singular values of the matrix
whose columns consist of shifted FBP Riesz bases for the 32-dimensional space
of .16; 32/-bandlimited vectors inside C

512. The squares of the largest and smallest
singular values are the upper and lower Riesz bounds. The duration M D 128 is
fixed so the normalized time-bandwidth product is 32 � 128=512 D 8. The figure
shows that the ratio of largest to smallest singular values is smallest in the case
P D 8 and S D 4. Figure 7 plots the most concentrated FBP and its corresponding
dual in the particular case N D 512, M D 128, .K0;K/ D .16; 32/ using P D 2; 4; 8,
and 16. When P D 8 the basis is nearly tight. In other cases the duals are not as well
concentrated, indicating that the basis may be less effective in temporally localizing
signal features.

6 A Brief Outline of Certain Applications in EEG

The prolate frames outlined here could be of use in any application that requires
a quantification of concentration in space or time of a bandlimited or bandpass
limited signal, as is illustrated in Fig. 8. We briefly outline one application in the
study of electroencephalography and mention one other. Figure 9 shows two one
second records of two different channels of EEG data recorded simultaneously from
the same subject. The first application was discussed in more detail in [11] and
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Fig. 6 Singular values of the 512 � 32 matrix whose columns are the FBPs corresponding to
N D 512, M D 128, K D 32, and K0 D 16 for number of prolate generators NP D 2 (�), NP D 4

(dashed), NP D 8 (solid), NP D 16 (dots), and NP D 32 (ı).

-0.3

-0.2

-0.1

0

0.1

0.2

50 100 150 200 250 300 350 400 450 500

50 100 150 200 250 300 350 400 450 500

50 100 150 200 250 300 350 400 450 500

50 100 150 200 250 300 350 400 450 500

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15

Fig. 7 Plots of most concentrated FBP (solid) and corresponding canonical shift-dual prolate
(dots) in the Riesz basis cases, N D 512, M D 128, K D 32, and K0 D 16 for number of
prolate generators and shift size .NP; S D 512 � NP=32/. Top left: .NP; S/ D .2; 32/; top right:
.NP; S/ D .4; 64/; bottom left: .NP; S/ D .8; 128/; bottom right: .NP; S/ D .16; 256/.

it involves quantifying locking of phases of the parts of different signals—in this
case measured scalp voltage channels in EEG—in the same frequency range. Such
behavior was first measured in clean electrocorticogram (ECoG) signals measured
using embedded electrodes.
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Fig. 8 Projection of a 1024 Hz sampled signal onto the highpass component 256 � j!j < 512

Hz using N D 1024 (dashed), and its local approximation by the terms of an FBP shift frame
with eight FBP generators and redundancy four (solid). The second figure zooms in around the
time center. The local approximation has the form

P7
nD0hx; Qvn;sivn;s where vn;s is the nth most

concentrated FBP centered at s D 512 and Qvn;s is the corresponding dual frame generator.
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Fig. 9 One second records of EEG data. Lower curve channel is from prefrontal cortex. Upper
curve is from left dorsolateral prefrontal cortex. Channels were recorded in the middle of an
integration task visualizing a fixed shape and color.

Based on ECoG data, it was observed [13, 14, 25, 26] that phase locking
of gamma-band (30–100 Hz) activity in different cortical regions is associated
with certain cognitive tasks that involve integrating different features of recalled
information such as shape and color. Specifically, phase locking is believed to reflect
switching of communication between different cortical regions on and off, and this
switching occurs over a few oscillations in the given frequency band.
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Given any pair of complex signals z1.t/; z2.t/ that possess defined amplitude–
phase decompositions zi.t/ D Ai.t/ ei�i.t/, one can measure phase locking near time
t0 with respect to a weight p, considered as a nonnegative function with integral one,
by setting

PL.z1; z2; t0/ D
ˇ̌
ˇ
Z

p.t0 � t/ ei.�1.t/��2.t// dt
ˇ̌
ˇ : (10)

A typical choice of p is p.t/ D 1Œ�ı; ı�.t/=.2ı/. Then PL.z1; z2; t0/ is the modulus
of the average of the unit vectors ei.�1.t/��2.t/ on Œt0 � ı; t0 C ı�. If the differences
�1.t/��2.t/wander over this interval, then the modulus of the average will be small,
whereas if �1.t/��2.t/ varies little over this interval, then the modulus of the average
will be close to one.

Because EEG signals are noisy and less well associated with cortical activity
compared to ECoG, frequency specific phase relationships are harder to measure in
EEG. If phase in the gamma band (30–100 Hz) is to be associated with switching
activity over 3–5 cycles, then the duration should be approximately 50–100 ms.
An alternative to defining gamma phase by narrowband filtering and Hilbert
transforming is to project onto the span of the bandpass prolates most concentrated
in the desired time–frequency region. In our setting, assuming a sampling rate of
1024 Hz, it is reasonable to define finite bandpass prolates in the passband to be
64 ˙ 32 Hz and with a concentration length of 64 samples, say. In this case the
normalized time-bandwidth product is eight. A phase of the signal near a given time
center can be defined by taking the Hilbert transform of the projection of the signal
shifted to that center onto the span of the first eight prolates (using dual generators
computed at the highest shift rate to compute the expansion coefficients). A phase
locking value for two such signals can then be defined by computing (10) using
p.t/ D 1Œ�ı; ı�=.2ı/ with ı D 1=32s. The PLVs themselves tend to vary sharply and
a graphical representation is usually produced by averaging PLVs over a duration ı
(Fig. 10). Strong peaks in the PLV curve are believed to indicate switching on or off
of communication between regions of cortex in vicinity of the measured voltages.
See [11] for more details and comparison with other methods in the literature. In
particular, the method proposed by Lachaux et al. [14] amounts to using phase
computed from projection on the span of the single most concentrated prolate.

A second potential application of BPPs, in particular of wavelets generated
by families of BPPs, is the study of cross-frequency coupling in EEG data, e.g.,
[2, 3], which is thought to reflect mechanisms to transfer information from large-
scale brain networks operating at behavioral timescales to the fast, local cortical
processing. Such coupling was first observed in time–frequency distributions of
ECoG data. Most studies address coupling between low frequency phase and
high frequency power. Such coupling seems functionally dependent, for example,
theta/gamma coupling has been observed in auditory tasks while alpha/high gamma
coupling seems more common in visual processing, e.g., [27]. Evidently, ability
to localize high-frequency energy in a part of phase is critical and snug BPP-shift
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Fig. 10 Smoothed phase locking values produced by projecting channels in Fig. 9 onto 8 most
concentrated FBPs bandlimited to 32 � j!j � 96 Hz and concentrated in M D 64 samples
(solid) compared to modulated Gaussian method of Lachaux et al. [14] (dots). The modulated
Gaussian method corresponds to projection onto shifts of a single prolate versus the shifts of all
well-concentrated prolates, which account for temporal variation in signal phase. Rightmost peak
should indicate switching of cortical communication in vicinities of measurements and is missed
by Gaussian method.

frames can do so because the frame inequality precisely quantifies such energy
localization. Experimental results from EEG will be reported elsewhere.
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Fast Fourier Transforms for Spherical
Gauss-Laguerre Basis Functions

Jürgen Prestin and Christian Wülker

1 Introduction

Since its popularization by Cooley and Tukey [5], the Fast Fourier Transform (FFT)
on the unit circle T and its inverse (iFFT) have been generalized to several other
domains and corresponding sets of basis functions. For example, many applications
in signal processing and data analysis nowadays benefit from an extension of
the univariate FFTs to the d-dimensional Torus T

d (d > 1), where multivariate
trigonometric polynomials are used in analogy to the univariate case (see, e.g.,
[10, Sect. 2]). Another example is the two-dimensional unit sphere S

2. Here, the
spherical harmonics are used as an orthonormal basis of the space L2.S2/ of
functions square-integrable over S

2 (see [8, 14, 17, 20], for instance). This has
also initiated the development of fast Fourier transforms on the three-dimensional
rotation group SO.3/, where the spherical harmonics are replaced by so-called
Wigner-D functions (see [16, 21, 23], for example). Recently, certain combinations
of spherical harmonics, generalized Laguerre polynomials, and an exponential
radial decay factor were used as orthonormal basis functions of the space L2.B3/
of square-integrable functions on the three-dimensional unit ball B3; a fast Fourier
transform was developed in this setting as well (see [18] for more information).

In this work, we introduce fast Fourier transforms on the entire three-dimensional
real space R

3. On the one hand, this extends the above collection of domains in a
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natural direction; on the other hand, due to the non-compactness of R
3, we find

ourselves in a somewhat new situation.
Of course, the non-compactness of the underlying domain has to be accounted

for. While it is conceivable to consider basis functions that exhibit an appropriate
decay behavior, in this work, we endow the space L2.R3/ with the Gaussian weight
function exp.�j � j2/, where j � j denotes the standard Euclidean norm (such weight
function is also referred to as a multivariate Hermite weight in literature). In
particular, we consider the weighted L2 space

H :D

	
f W R3 ! C W f (Lebesgue) measurable and

Z

R3

jf .x/j2 exp.�jxj2/dx < 1



;

endowed with the inner product

hf ; giH :D
Z

R3

f .x/g.x/ exp.�jxj2/dx; f ; g 2 H; (1)

and induced norm k � kH :D
p

h�; �iH .
A crucial feature of the space H is that it allows to work with such structurally

simple functions as polynomials. Particularly, as recently noted by Maizlish and
Prymak [19, Sect. 1], we have the following result, essential for everything to follow:

Theorem 1.1. The class of (complex-valued) polynomials on R
3 is dense in H,

i.e., any function f 2 H can be approximated arbitrarily well by polynomials with
respect to k � kH.

Having this in mind, it appears natural to employ appropriately normalized
orthogonal polynomials as an orthonormal basis of the Hilbert space H. In view
of this, however, we note that orthogonal polynomials in H are not unique, as
we should expect in the univariate setting. In fact, a review of the relevant litera-
ture reveals several different variants of such, arising from different construction
approaches (see, e.g., [11, Sect. 5.1.3]).

By a separation-of-variables approach, Ritchie and Kemp [25] constructed
particular orthogonal polynomials in H from the well-known spherical harmonics
(Definition 2.1) and generalized Laguerre polynomials (Theorem 2.3). We call these
spherical Gauss-Laguerre (SGL) basis functions (the term “Gaussian” is to account
for the Gaussian weight on H).

Definition 1.2 (SGL basis functions). The SGL basis function of degree n 2 N

and orders l 2 f0; : : : ; n �1g and m 2 f�l; : : : ; lg is defined in spherical coordinates
(see Section 2) as

Hnlm W R3 ! C; Hnlm.r; #; '/ :D Nnl Rnl.r/Ylm.#; '/; (2)
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where Nnl is a normalization constant,

Nnl :D

s
2.n � l � 1/Š

� .n C 1=2/
;

Ylm is the spherical harmonic of degree l and order m, while the radial part Rnl is
defined as

Rnl.r/ :D L.lC1=2/n�l�1 .r
2/rl;

L.lC1=2/n�l�1 being a generalized Laguerre polynomial.

By construction of the SGL basis functions, these polynomials are orthonormal
in H and span the space of all polynomials on R

3 (see Section 2). The completeness
of this orthonormal system thus follows from Theorem 1.1.

Corollary 1.3. The SGL basis functions Hnlm constitute an orthonormal basis (i.e.,
a complete orthonormal system) in H. In particular, for any f 2 H, the Fourier
partial sums

BX

nD1

n�1X

lD0

lX

mD�l

hf ;HnlmiH Hnlm; B 2 N; (3)

converge to f in the norm of H as B approaches 1.

In this paper, we present a general class of algorithms for the efficient numerical
computation of the SGL Fourier coefficients Ofnlm :D hf ;HnlmiH in (3) – that is, we
present fast SGL Fourier transforms. As is commonly done in generalized FFTs,
we develop our algorithms starting out from a concomitant quadrature formula, so
that these algorithms are exact (in exact arithmetics) for bandlimited functions (see
Section 3). Inspired by the construction of the SGL basis functions, our approach is
based on a separation of variables, separating the radius r from the angles # and '.
For the radial part of our fast transforms, we introduce the discrete R transform
(Section 3.3.2). The spherical part of our transforms is constituted by a fast spherical
Fourier transform, i.e., a generalized FFT for the spherical harmonics. Notably, our
approach also results in fast inverse transforms with the same asymptotic complexity
as the forward transforms: All of our fast algorithms have an asymptotic complexity
of O.B4/, B being the respective bandlimit, while the number of sample points on
R
3 scales with B3. This clearly improves the naive bound of O.B7/.
Applications of our fast algorithms arise, for example, in the simulation of

biomolecular recognition processes, such as protein-protein or protein-ligand dock-
ing (see Section 5).

The rest of this paper is organized as follows: In Section 2, we review the
construction of the SGL basis functions. This section is optional to the reader
interested solely in our fast algorithms. Subsequently, in Section 3, we develop
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fast SGL Fourier transforms. The resulting algorithms are tested in a prototypical
numerical experiment in Section 4. In Section 5, we discuss the results, draw final
conclusions, and give an outlook on future developments. We also include the layout
of a true O.B3 log2B/ fast SGL Fourier transform and inverse.

2 Spherical Gauss-Laguerre (SGL) Basis Functions

As mentioned above, the SGL basis functions of Definition 1.2 arise from a par-
ticular construction approach by Ritchie and Kemp [25]. This approach comprises
multiple steps. The first step is the introduction of spherical coordinates. We define
these as radius r 2 Œ0;1/, polar angle # 2 Œ0; ��, and azimuthal angle ' 2 Œ0; 2�/,
being connected to Cartesian coordinates x, y, and z, via

x D r sin# cos';

y D r sin# sin';

z D r cos#:

In the following, with a slight abuse of notation, we write f .x/ D f .r; #; '/ if
.r; #; '/ are the spherical coordinates of the point x D .x; y; z/ 2 R

3, in which case
we simply write x D .r; #; '/. This allows the inner product (1) to be rewritten as

hf ; giH D

Z 1

0

n Z �

0

Z 2�

0

f .r; #; '/g.r; #; '/ d' sin# d#
o

r2 e�r2dr; f ; g 2 H:

(4)
Note that the integration range Œ0; �� � Œ0; 2�/ of the two inner integrals above can
be identified with the unit sphere S

2.
The next step is a separation of variables. In particular, Ritchie and Kemp make

the product ansatz

p.x/ D R.r/S.#; '/; x D .r; #; '/ 2 R
3; (5)

for each orthogonal polynomial p to be constructed.
Of course, the radial part R and the spherical part S should be polynomial on

Œ0;1/ and S
2 (by which we mean the restriction of a polynomial on R

3 to S
2),

respectively. Furthermore, it is desirable that each two orthogonal polynomials pj

and pk satisfy separate orthogonality relations with respect to the radius and on the
sphere,

Z 1

0

Rj.r/Rk.r/ r2 e�r2dr D ıjk; (6)

Z �

0

Z 2�

0

Sj.#; '/Sk.#; '/ d' sin# d# D ıjk; (7)
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denoting by ıjk the standard Kronecker symbol, being 1 if j D k and 0 otherwise.
The property hpj; pkiH D ıjk, i.e., the orthonormality of the SGL basis functions,
then follows by (4).

The above separation approach allows the radial part R and the spherical part S
in (5) to be constructed almost independently from each other. We begin with the
spherical part S, for which solely the spherical harmonics are required.

Definition 2.1. The spherical harmonic of degree l 2 N0 and order m 2 f�l; : : : ; lg
is defined as

Ylm W S2 ! C; Ylm.#; '/ :D

s
.2l C 1/

4�

.l � m/Š

.l C m/Š
Plm.cos#/eim'; (8)

where Plm denotes the associated Legendre polynomial of degree l and order m [1,
Eqs. 8.6.6 and 8.6.18]:

Plm W Œ�1; 1� ! R; Plm.t/ :D
.�1/m

2llŠ
.1 � t2/m=2

dlCm

dtlCm
.t2� 1/l:

The associated Legendre polynomials satisfy a three-term recurrence relation [1,
Eq. 8.5.3]:

.l C 1 � m/PlC1;m.t/ D .2l C 1/ tPlm.t/

� .l C m/Pl�1;m.t/; t 2 Œ�1; 1�; jmj � l 2 N:

(9)

In our context, the most important properties of the spherical harmonics are the
following; for a detailed introduction to the related theory, refer to Freeden et al.
[12] or Dai and Xu [7], for example.

Theorem 2.2. The spherical harmonics constitute an orthonormal basis of the
space L2.S2/ of square-integrable functions on the unit sphere S

2, endowed with
the standard inner product

hf ; giS2 :D
Z �

0

Z 2�

0

f .#; '/g.#; '/ d' sin# d#; f ; g 2 L2.S2/: (10)

Furthermore, the spherical harmonics of degree at most N span the space of all
(complex-valued) polynomials of (total) degree at most N on S

2 (N 2 N0).

With this knowledge, it is clear that the spherical harmonics are a good choice for
the spherical part S in (5); the orthogonality relation (7) is thus satisfied (compare
with (10)).

In a next step, the spherical harmonics are extended radially in order to regain
polynomials on R

3. To this end, Ritchie and Kemp borrow the following result from
the theory of orthogonal polynomials in the univariate setting:
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Theorem 2.3 (Szegő [28, Sect. 5.1]). For every fixed real number ˛ > �1, there
exists exactly one set of polynomials on the positive half-line Œ0;1/ satisfying the
orthogonality relation

Z 1

0

L.˛/j .t/L
.˛/
k .t/ t˛e�t dt D

� .k C ˛ C 1/

kŠ
ıjk; j; k 2 N0; (11)

where � denotes the gamma function.

These polynomials are called generalized (or associated) Laguerre polynomials.
Each generalized Laguerre polynomial L.˛/k is of degree k, and possesses the closed-
form expression

L.˛/k .t/ D

kX

jD0

.�1/j

jŠ

 
k C ˛

k � j

!
tj; t 2 Œ0;1/ (12)

[28, Eq. 5.1.6]. As the associated Legendre polynomials, the generalized Laguerre
polynomials satisfy a three-term recurrence relation [28, Eq. 5.1.10]:

.k C 1/L.˛/kC1.t/ D .2k C ˛ C 1 � t/L.˛/k .t/

� .k C ˛/L.˛/k�1.t/; t 2 Œ0;1/; k 2 N: (13)

Inspired by the solution to Schrödinger’s equation for the hydrogen atom (cf. [2,
Sect. 7.4]), Ritchie and Kemp now make the ansatz

R.r/ D R.˛/k .r/ :D N.˛/
k r˛L.˛C1=2/

k .r2/; ˛ > �1; k 2 N0;

for the radial part R in (5). By setting ˛ :D l, where l is the order of the spherical
harmonic Ylm to be extended, and substituting r2 for t in (11), this ansatz results in
the orthogonality relation

Z 1

0

R.l/j .r/R
.l/
k .r/ r2 e�r2dr D

� .k C l C 3=2/

2kŠ

n
N.l/

k

o2
ıjk; j; k 2 N0: (14)

This immediately entails setting

N.l/
k :D

s
2kŠ

� .k C l C 3=2/
;

so that the orthogonality relation (6) is satisfied. Observe that the polynomials R.l/k
are real.

At this point, it is important to note that one cannot expect to obtain a polynomial
on R

3 by extending a spherical harmonic Ylm by an arbitrary polynomial in r.
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However, the above combinations of R.l/k and Ylm are, in fact, polynomials of (total)
degree 2kCl on R

3. This is due to the fact that rlYlm is a polynomial of degree l on R
3,

while L.lC1=2/k .r2/ is a polynomial of degree 2k on R
3. By some further working with

the closed-form expression (12) of the generalized Laguerre polynomials, Ritchie
and Kemp found that by setting k :D n � l � 1, n > l, the arising combinations of
Rnl :D R.l/n�l�1 and Ylm actually span the space of polynomials on R

3. This establishes
the final form of the SGL basis functions Hnlm of Definition 1.2. The notion “basis
functions” is justified by Theorem 1.1.

Finally, note that the degree of the SGL basis functions is not to be confused with
their polynomial degree: The SGL basis function Hnlm is of degree n in the sense of
Definition 1.2, but of polynomial degree 2n � l � 2.

3 Fast Fourier Transforms for SGL Basis Functions

In this section, we develop fast Fourier transforms for the SGL basis functions of
Definition 1.2. To this end, we first derive an SGL sampling theorem for bandlimited
functions. For a fixed bandlimit B 2 N, these are functions f 2 H for which Ofnlm D 0

if n > B. By construction of the SGL basis functions, with increasing bandlimit
B, these spaces exhaust the entire class of polynomials on R

3; recall, however, that
these spaces do not coincide with the classical polynomial spaces of R

3. This is
why we introduce a different notion here. The SGL sampling theorem enables us
to compute the SGL Fourier coefficients of such bandlimited functions in a discrete
way, that is, with a finite number of computation steps. This immediately results in
a first discrete SGL Fourier transform and corresponding inverse. By a separation-
of-variables technique and the employment of a fast spherical Fourier transform, we
then unveil a whole class of fast SGL Fourier transforms and inverses. We close this
section by a linear-algebraic description and comparison of our transforms.

3.1 SGL Sampling Theorem

To derive an SGL sampling theorem, we make use of two auxiliary results: an
equiangular quadrature rule for the unit sphere S

2, which is a classical construct
of Driscoll and Healy [8], and a Gauss-Hermite quadrature rule for the positive
half-line Œ0;1/. We begin with the former.

Theorem 3.1 (Driscoll and Healy [8, Theorem 3]). Let g be a polynomial of
degree L � 1 on S

2, i.e., g 2 spanfYlm W jmj � l < Lg, L 2 N. Then the spherical
Fourier coefficients of g obey the quadrature rule

hg;YlmiS2 D

2L�1X

j;kD0

bj g.#j; 'k/Ylm.#j; 'k/; jmj � l < L; (15)
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Fig. 1 Sampling angles .#j; 'k/, plotted as points on the unit sphere S
2, for (left) L D 16 and

(right) L D 32. Note that the sampling angles are denser near the poles than near the equator.

where the sampling angles are defined as #j :D .2j C 1/�=4L and 'k :D k�=L,
resulting in the closed-form expression

bj D sin
�
.2j C 1/

�

4L

�2
L

L�1X

lD0

1

2l C 1
sin
�
.2j C 1/.2l C 1/

�

4L

�

for the quadrature weights.

We call L the order of the respective spherical quadrature rule. Note that the
quadrature weights bj are real, and do not depend on the azimuthal sampling angles
'k. This is due to the special choice of the sampling angles #j and 'k. Figure 1 shows
the sampling angles #j and 'k for the orders L D 16 and L D 32, respectively,
plotted as points on the unit sphere S2. Figure 2 shows the corresponding quadrature
weights bj.

As it turns out, the weights bj are positive. Since we are not aware of a proof of
this feature having been given in this context, we include a direct proof here.

Lemma 3.2. The quadrature weights bj are positive.

Proof. Let L 2 N be given. Firstly, we note that 0 < .2jC1/�=4L < � and thus 0 <
sin..2j C1/�=4L/ for j D 0; : : : ; 2L �1. Set �j :D .2j C1/�=4, j 2 f0; : : : ; 2L �1g.
We derive
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Fig. 2 Spherical quadrature weights bj, plotted for (left) L D 16 and (right) L D 32. Note how the
weights compensate for the higher density of sampling angles near the poles of S

2 (cf. Figure 1):
the higher the density of sampling angles gets, the smaller the corresponding weights become.

L�1X

lD0

1

2l C 1
sin
�
.2l C 1/

�j

L

�
D Im

L�1X

lD0

1

2l C 1
ei.2lC1/�j=L

D Im

L�1X

lD0

n i

L

Z �j

0

ei.2lC1/t=L dt C
1

2l C 1

o

D
1

L
Re

Z �j

0

eit=L
L�1X

lD0

ei2lt=L dt

D
1

L
Re

Z �j

0

e2it � 1

eit=L � e�it=L
dt

D
1

2L

Z �j

0

sin.2t/

sin.t=L/
dt: (16)

Substituting u=2 for t on the right-hand side of (16), we arrive at

L�1X

lD0

1

2l C 1
sin
�
.2j C 1/.2l C 1/

�

4L

�
D

1

4L

Z .jC1=2/�

0

sin u

sin.u=2L/
du: (17)

To show the positivity of the right-hand side of (17), we distinguish between four
different cases: j < L or j � L, j being even or uneven, respectively. The reason
for the first distinction is that the denominator sin.�=2L/ is strictly increasing on
the interval Œ0;L�/ and strictly decreasing on the interval .L�; 2L��. Furthermore,
sin.�=2L/ is non-negative on the integration range Œ0; .j C 1=2/�� � Œ0; 2L�� which
allows all cases to be treated in a straightforward manner.
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Let now j < L and set �j :D 0 if j is even and �j :D 1 if j is odd. Two simple
estimations reveal

Z .jC1=2/�

0

sin u

sin.u=2L/
du >

Z .jC�j/�

0

sin u

sin.u=2L/
du

>

.jC�j/=2�1X

kD0

1

sin..2k C 1/�=2L/

n Z .2kC1/�

2k�
C

Z 2.kC1/�

.2kC1/�

o
sin u du

D 0:

If, on the other hand, j � L, we make use of the identity

Z .jC1=2/�

0

sin u

sin.u=2L/
du D

Z .2L�j�1=2/�

0

sin u

sin.u=2L/
du

and proceed in the same sense. �

In a next step towards our SGL sampling theorem, we introduce the half-
range Gauss-Hermite quadrature, i.e., a Gaussian quadrature rule for the Hermite
weight exp.�r2/ on the positive half-line Œ0;1/. We add the term “half-range” here
because the Hermite weight is usually considered on the entire real line R, leading
to other quadrature rules.

Theorem 3.3 (Gautschi [13, Sects. 3.2.2 & 3.2.3]). Let p be a polynomial of
degree at most 2N � 1, N 2 N. Furthermore, let r0 < � � � < rN�1 denote the
simple, positive roots of the Nth orthogonal polynomial pN with respect to the
weight function exp.�r2/on Œ0;1/. Then equality holds in the Gaussian quadrature
formula

Z 1

0

p.r/e�r2dr D

N�1X

iD0

ai p.ri/; (18)

where the quadrature weights ai are real, positive, and satisfy the equation

ai D

Z 1

0

pN.r/

.r � ri/p0
N.ri/

e�r2dr:

As in the spherical quadrature rules introduced in Theorem 3.1, we call N the
order of the respective quadrature rule.

We do not want to go into detail regarding the numerical aspects of Theorem 3.3.
We only mention that Steen et al. [26, Sect. 2] have developed special recurrence
relations to compute the coefficients of the three-term recurrence relation satisfied
by the orthogonal polynomials pn, n 2 N0. This, in turn, allows the sampling points
ri in (18) to be computed by a standard approach (see [13, Sect. 3.2.2, (v)]). It is
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Fig. 3 Sampling points ri, corresponding quadrature weights ai (�), and scaled weights ai exp.r2i /
(�, cf. Section 3.2) of the half-range Gauss-Hermite quadrature rule of order (left) N D 32 and
(right) N D 64. The points ri are used as sampling radii which, combined with the sampling
angles #j and 'k shown in Figure 1, constitute the sampling points of our SGL sampling theorem
(Theorem 3.4) for the bandlimits (left) B D 16 and (right) B D 32.

then also possible to compute the corresponding quadrature weights ai with desired
precision by Steen et al. [26, Eq. 2.1]. This approach is used in the numerical
experiments of the upcoming Section 4. Figure 3 shows the sampling points ri and
corresponding weights ai for the orders N D 32 and N D 64.

We now combine Theorems 3.1 and 3.3 to obtain our SGL sampling theorem.
For this, let f be bandlimited with bandlimit B 2 N. The function f thus possesses
the unique SGL decomposition

f D

BX

nD1

n�1X

lD0

lX

mD�l

Ofnlm Hnlm: (19)

Recalling that Hnlm.r; #; '/ D Nnl Rnl.r/Ylm.#; '/, we see that f .r; �; �/ is a linear
combination of spherical harmonics of degree l < B for every fixed r 2 Œ0;1/.
Hence, using the spherical quadrature rule of Theorem 3.1 of order L D B, we get
for jmj � l < n � B

Ofnlm D Nnl

Z 1

0

n Z �

0

Z 2�

0

f .r; #; '/Ylm.#; '/ d' sin# d#
o
Rnl.r/r

2 e�r2dr

D Nnl

Z 1

0

n 2B�1X

j;kD0

bj f .r; #j; 'k/Ylm.#j; 'k/
o
Rnl.r/r

2 e�r2dr: (20)

Considering again the SGL decomposition (19), we verify that the integrand
in (20) is a polynomial in r of degree at most 4B � 2, multiplied by the
Hermite weight. Therefore, using the half-range Gauss-Hermite quadrature rule of
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Theorem 3.3 of order N D 2B, we obtain

Z 1

0

n 2B�1X

j;kD0

bj f .r; #j; 'k/Ylm.#j; 'k/
o
Rnl.r/r

2 e�r2dr D

2B�1X

i;j;kD0

ai r
2
i bj f .ri; #j; 'k/Rnl.ri/Ylm.#j; 'k/: (21)

Combining (20) and (21) now yields our SGL sampling theorem:

Theorem 3.4 (SGL sampling theorem). Let f be a bandlimited function with
bandlimit B 2 N. Then the SGL Fourier coefficients of f obey the quadrature rule

Ofnlm D

2B�1X

i;j;kD0

ai r
2
i bj f .ri; #j; 'k/Hnlm.ri; #j; 'k/; jmj � l < n � B; (22)

where the sampling radii ri > 0 and weights ai > 0 are those of the half-range
Gauss-Hermite quadrature rule of order 2B (Theorem 3.3), while the sampling
angles .#j; 'k/ and weights bj > 0 are those of the equiangular spherical quadrature
rule of order B (Theorem 3.1, Lemma 3.2).

Note that the sampling angles shown in Figure 1 are radially extended by
precisely the sampling points shown in Figure 3 to obtain the sampling points of
Theorem 3.4 for the bandlimits B D 16 and B D 32, respectively.

3.2 Discrete SGL Fourier Transforms

Based on the results of the previous section, we are now able to give a rigorous
definition of the term “discrete SGL Fourier transform.”

Definition 3.5 (DSGLFT/iDSGLFT). Let B2 N. Any method for the computation
of the SGL Fourier coefficients of bandlimited functions with bandlimit B by means
of (22) is called a discrete SGL Fourier transform (DSGLFT). Correspondingly,
any method for reconstruction of function values of functions with bandlimited B
at the respective sampling nodes .ri; #j; 'k/ is referred to as an inverse discrete SGL
Fourier transform (iDSGLFT).

Let Qai :D ai exp.r2i /r
2
i . We state a simple DSGLFT as Algorithm 1. The SGL

Fourier coefficients of a bandlimited function f are here computed one after another,
evaluating the corresponding triple sum every single time. We introduce the factor
exp.r2i / to compensate for the fast decay of the quadrature weights ai (cf. Figure 3).
This modification is accounted for by weighting the SGL basis function samples
Hnlm.ri; #j; 'k/ by the factor exp.�r2i / (see also Section 5).
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Algorithm 1: Naive DSGLFT

Data: Sample values f .ri; #j; 'k/; i; j; k D 0; : : : ; 2B�1, of a function f with bandlimit B 2 N

Result: SGL Fourier coefficients Ofnlm, jmj � l < n � B

for n D 1 to B do
for l D 0 to n � 1 do

for m D � l to l do

Compute Ofnlm D
2B�1P
iD0

2B�1P
jD0

2B�1P
kD0

˚
Qai bj f .ri; #j; 'k/

˚
Hnlm.ri; #j; 'k/e�r2i


;

end
end

end

Algorithm 2: Naive iDSGLFT

Data: SGL Fourier coefficients Ofnlm, jmj � l < n � B, of a function f with bandlimit B 2 N

Result: Function values f .ri; #j; 'k/; i; j; k D 0; : : : ; 2B � 1

for i D 0 to 2B � 1 do
for j D 0 to 2B � 1 do

for k D 0 to 2B � 1 do

Compute f .ri; #j; 'k/ D
BP

nD1

n�1P
lD0

lP
mD�l

Ofnlm Hnlm.ri; #j; 'k/;

end
end

end

In this work, we use the standard complexity model in which a single operation is
defined as a complex multiplication and a subsequent complex addition. To state the
asymptotic complexity of Algorithm 1, we make the assumption that the (modified)
quadrature weights Qai and bj, as well as the sampling points .ri; #j; 'k/, are stored
and readily available during runtime. Using the three-term recurrence relations (9)
and (13) of the associated Legendre polynomials and the generalized Laguerre
polynomials, we can evaluate any SGL basis function Hnlm at an arbitrary sampling
node .ri; #j; 'k/ in O.B/ steps. Algorithm 1 has, thus, an asymptotic complexity of
O.B7/: the total number of summands of the triple sum scales with B3, just as the
total number of iterations of the three “for” loops.

We state a simple iDSGLFT as Algorithm 2. The function values of a bandlimited
function f are here reconstructed at each sampling node .ri; #j; 'k/ by directly sum-
ming up the SGL basis function values Hnlm.ri; #j; 'k/, weighted by the respective
SGL Fourier coefficient Ofnlm. Simple considerations show that this algorithm also
has an asymptotic complexity of O.B7/.
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3.3 Fast SGL Fourier Transforms

At this point, we are naturally faced with the task to develop discrete SGL Fourier
transforms and corresponding inverse transforms with an asymptotic complexity of
less than O.B7/. This motivates:

Definition 3.6 (FSGLFT/iFSGLFT). We call any DSGLFT (iDSGLFT) with an
asymptotic complexity of less than O.B7/ a fast (inverse) SGL Fourier transform,
abbreviated FSGLFT (iFSGLFT, respectively).

In this section, we design such fast transforms and, simultaneously, correspond-
ing fast inverse transforms in three main steps: 1) We separate the above naive
DSGLFT/iDSGLFT (Algorithm 1 and 2, respectively) into a radial and a spherical
subtransform. 2) Subsequently, we employ a fast spherical Fourier transform and
inverse to reduce the complexity of the spherical subtransform. 3) We introduce our
new discrete R transform, a tool to compute the collection of sums

Nnl

2B�1X

iD0

ai r
2
i Rnl.ri/si D

2B�1X

iD0

˚
Nnl Rnl.ri/e

�r2i
˚

Qai si

; n D l C 1; : : : ;B; (23)

for a fixed 0 � l < B, Œsi�iD0;:::;2B�1 being an input vector of length 2B, to reduce
the complexity of the radial subtransform. For this purpose, we also introduce a
corresponding inverse discrete R transform. In the following, we consistently use the
notation Œa���D0;:::;N�1 to denote a (column) vector of length N 2 N with (complex-
valued) elements a� .

Let B 2 N and a function f with bandlimit B be given. In a first step, we rearrange
the triple sum in Algorithm 1 to obtain

Ofnlm D

2B�1X

iD0

˚
Nnl Rnl.ri/e

�r2i
˚

Qai

2B�1X

j;kD0

bj f .ri; #j; 'k/Ylm.#j; 'k/

; jmj � l < n � B:

(24)

Note that even without a fast algorithm here, the above separation of variables
allows the complexity of Algorithms 1 and 2 to be reduced to O.B6/ by a simple
rearrangement of the computation steps: Precomputation of the inner sum in (24)
for all jmj � l < B and i D 0; : : : ; 2B � 1 can be done in O.B6/ steps. Subsequent
evaluation of the outer sum for all jmj � l < n � B can be done in O.B5/ steps. The
costs for evaluating Rnl and Ylm are taken into account as O.B/, respectively. The
computation steps of the inverse transform may be rearranged in the same sense. We
maintain this strategy, and optimize the substeps.

Since f is bandlimited with bandlimit B, we conclude that f .ri; �; �/ is a polyno-
mial of degree at most B � 1 on S

2 for each i. By Theorem 2.2, this implies that
f .ri; �; �/ 2 spanfYlm W jmj � l < Bg (we have already made use of this fundamental
feature of bandlimited functions in the derivation of the SGL sampling theorem,
Theorem 3.4). Therefore, by the spherical quadrature rule of order B in Theorem 3.1,
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the inner sum in (24) equals the spherical Fourier coefficient hf .ri; �; �/;YlmiS2 . The
computation of these inner sums thus amounts to the computation of all spherical
Fourier coefficients of f restricted to the sphere of radius ri for each i.

The fast spherical Fourier transforms described by Healy et al. [14] are a
suitable means to solve this task. At the same time, the corresponding fast inverse
transforms allow the function values f .ri; #j; 'k/ to be reconstructed from the
spherical Fourier coefficients hf .ri; �; �/;YlmiS2 for each sampling radius ri. This
constitutes the spherical part of our FSGLFTs and iFSGLFTs. We include a brief
discussion on fast spherical Fourier transforms based on the spherical quadrature
rule of Theorem 3.1 in the upcoming Section 3.3.1.

In order to compute the SGL Fourier coefficients Ofnlm from the precomputed
spherical Fourier coefficients hf .ri; �; �/;YlmiS2 , that is, to evaluate the outer sum
in (24), we use the above-mentioned discrete R transform, running through all
pairs of m and l with jmj � l < B (cf. (23) and (24)). This new transform is
presented in the upcoming Section 3.3.2. The inverse discrete R transform, also
presented in Section 3.3.2, allows the spherical Fourier coefficients hf .ri; �; �/;YlmiS2

to be reconstructed from the SGL Fourier coefficients Ofnlm with the same asymptotic
complexity as the forward transform. The discrete R transform and its inverse thus
make up the radial part of our FSGLFTs and iFSGLFTs.

3.3.1 Fast Equiangular Spherical Fourier Transforms

Let g be a polynomial of degree L�1 on S
2, i.e., g 2 spanfYlm W jmj � l < Lg,

L 2 N. Fast equiangular spherical Fourier transforms based on Theorem 3.1
allow the spherical Fourier coefficients hg;YlmiS2 of g to be computed with an
asymptotic complexity of less than O.L5/, which is associated with the naive
approach (cf. (15)). A large class of such fast transforms was derived and thoroughly
tested by Healy et al. [14]. In that work, the authors also presented corresponding
fast inverse transforms with the same asymptotic complexity. This is a major
advantage of their approach as compared with the preceding work by Driscoll and
Healy [8].

The fast spherical Fourier transforms of Healy et al. were developed in several
steps, which has led to different variants of the basic algorithm with different
asymptotic complexities, ranging from O.L4/, when using a separation of variables
only, to O.L2 log2L/, when using all techniques presented. We include the derivation
of one particular variant, the seminaive algorithm and its inverse, here. These
seminaive algorithms are later used in the numerical experiment of Section 4.

By (8), a rearrangement of the right-hand side of (15) yields

hg;YlmiS2 D Mlm

2L�1X

jD0

bj Plm.cos#j/

2L�1X

kD0

g.#j; 'k/e
�im'k; jmj � l < L; (25)
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denoting by Mlm the normalization constant of the spherical harmonic Ylm. This
separation of variables reduces the asymptotic complexity of the naive spherical
Fourier transform from O.L5/ to O.L4/, as indicated above.

Precomputation of the inner sum in (25) for all �L < m < L can be done in
O.L log L/ steps for each j by using a standard Cooley-Tukey FFT (see [6, Sect.
30.2], for example). This results in an asymptotic complexity of O.L2 log L/ for this
first step, while the total asymptotic complexity of O.L4/ remains the same.

The central tool in the fast transforms of Healy et al. is a fast discrete Legendre
transform (DLT), i.e., a tool to compute the collection of sums

Mlm

2L�1X

jD0

bj Plm.cos#j/ tj; l D jmj; : : : ;L � 1; (26)

for a fixed �L < m < L, Œtj�jD0;:::;2L�1 being arbitrary input data. Such fast DLT can
be used to evaluate the outer sum in (25), running through all �L < m < L.

In the seminaive algorithm, the asymptotic complexity of the naive DLT is
reduced by a fast discrete cosine transform (DCT). The general DCT is defined
as follows (cf. [15, Sect. 5.6]): Let u :D Œuj�jD0;:::;N�1 be some data of length N 2 N

and set, in this subsection only, #j :D .2j C 1/�=2N. Any method for computation
of the matrix-vector product

2

6664

p
1=Np

2=N
: : :p

2=N

3

7775 �

2

6664

1 � � � 1

cos#0 � � � cos#N�1

:::
:::

cos..N�1/#0/ � � � cos..N�1/#N�1/

3

7775

„ ƒ‚ …
D: CN

� u (27)

is referred to as a DCT. Such computation is apparently associated with an
asymptotic complexity of O.N2/ if no fast algorithm is used. By a factorization
of the DCT matrix CN , the asymptotic complexity of the naive DCT can be reduced
to O.N log N/ (see [27] or [15, Sect. 5.6], for example).

Two properties of such DCT are particularly important in our context: Firstly,
the DCT matrix CN is orthogonal. If v and w are two vectors of length N, and
h�; �iCN denotes the standard Euclidean inner product, this means that hv;wiCN D

hCNv;CNwiCN. Secondly, if p :D Œp.#j/�jD0;:::;N�1, p being an arbitrary trigonometric
polynomial of degree at most N, then the elements ŒCNp�j vanish for j > deg.p/.

We now consider the case m D 0 in (26); all other cases can be treated similarly.
Choose N D 2L above, and set

t :D Œbj tj�jD0;:::;2L�1 and Pl :D Ml;0 � ŒPl;0.cos#j/�jD0;:::;2L�1; l < L:

Computation of the collection of sums (26) then amounts to the computation of the
inner product ht;PliC2L for each l. Since Pl;0.cos#/ is a trigonometric polynomial of
degree l, we have that
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ht;PliC2L D hC2Lt;C2LPliC2L D

2L�1X

jD0

ŒC2Lt�j ŒC2LPl�j D

lX

jD0

ŒC2Lt�j ŒC2LPl�j: (28)

Equation (28) shows that the inner product ht;PliC2L can be computed in l steps
instead of 2L � 1, if the vectors C2Lt and C2LPl are readily available. When this
approach is used for all m, this does not yet change the asymptotic complexity,
but reduces the total required computation work significantly for sufficiently large
L. A truly fast DLT can now be obtained in the following way: Let Plm :D Mlm �

ŒPlm.cos#j/�jD0;:::;2L�1, jmj � l < L. Since the vectors C2LPlm do not depend on
the input data, and a significantly large part of their elements are zero, we may
assume them to be stored and readily available during runtime. This results in a fast
DLT with an asymptotic complexity of O.L2/ instead of O.L3/, and, hence, in a
fast spherical Fourier transform with an asymptotic complexity of O.L3/ instead of
O.L4/.

To close this subsection, we revise the derivation of the inverse seminaive
spherical Fourier transform. The task is to reconstruct the function values g.#j; 'k/

from the spherical Fourier coefficients hg;YlmiS2 . For this purpose, Healy et al. again
use a separation of variables to get

g.#j; 'k/ D

L�1X

mD�LC1

eim'k

L�1X

lDjmj

Mlm Plm.cos#j/hg;YlmiS2 ; j; k D 0; : : : ; 2L�1: (29)

It is clear that the function values g.#j; 'k/ can be reconstructed from the
collection of inner sums in (29) by means of a standard iFFT, which has the same
asymptotic complexity O.L log L/ as the forward transform (again, see [6, Sect.
30.2]).

We again consider the case m D 0 only. The collection of inner sums in (29) can
then be written as the matrix-vector product

2

64
P0;0.cos#0/ � � � PL�1;0.cos#0/

:::
:::

P0;0.cos#2L�1/ � � � PL�1;0.cos#2L�1/

3

75 �

2

64
M0;0

: : :

ML�1;0

3

75

„ ƒ‚ …
D: PT

0

� Œhg;Yl;0iS2 �lD0;:::;L�1:

Due to Theorem 3.1 and the orthonormality of the spherical harmonics, the non-
transposed matrix P0 is associated with the forward transform (we encounter the
same phenomenon in the upcoming Sections 3.3.2 and 3.4). In particular, P0
represents the forward DLT when dropping the weights bj (cf. (26)). The above
discussion shows that P0 possesses the factorization

P0 D ŒC2LP0;0 ; : : : ;C2LPL�1;0�
T � C2L:
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This immediately reveals

PT
0 D CT

2L � ŒC2LP0;0 ; : : : ;C2LPL�1;0�

for the inverse transform.
At this point, we recall the identity CT

2L D C�1
2L , i.e., the orthogonality of the DCT

matrix C2L. By the use of a fast inverse DCT (iDCT) with an asymptotic complexity
of O.L log L/ (again, see [27] or [15, Sect. 5.6]), the same ideas as above now easily
yield the inverse seminaive spherical Fourier transform of Healy et al., which has
the same asymptotic complexity O.L3/ as the forward transform.

3.3.2 Completion: Discrete R Transforms

We now discuss our discrete R transform (DRT) and its inverse (iDRT) to finalize
the above-described class of fast SGL Fourier transforms. To this end, let s :D
Œsi�iD0;:::;2B�1 be some input data. For a fixed l, we bring the right-hand side of (23)
into matrix-vector notation:

8
<̂

:̂

2

64
NlC1;l

: : :

NB;l

3

75

2

64
RlC1;l.r0/ � � � RlC1;l.r2B�1/

:::
:::

RB;l.r0/ � � � RB;l.r2B�1/

3

75

„ ƒ‚ …
D: Rl

D: E‚ …„ ƒ2

64
e�r20

: : :

e�r22B�1

3

75

9
>=

>;

˚
diagŒQai�iD0;:::;2B�1 � s


:

(30)
Running the forward DRT of order l, which we now rigorously define as the
evaluation of (30), can be done in O.B2/ steps by using the Clenshaw algorithm
[4]. This is possible, since the Laguerre polynomial L.lC1=2/n�l�1 is included in the radial
part Rnl of the SGL basis functions as a factor, and the radial functions Rnl thus
satisfy the following three-term recurrence relation:

Lemma 3.7. Let 0 � l < B and r 2 Œ0;1/ be given. Then

RnC1;l.r/ D
2n � l � 1=2 � r2
p
.n C 1=2/.n � l/

Rnl.r/ �

s
.n � 1=2/

.n C 1=2/

.n � l � 1/

.n � l/
Rn�1;l.r/

for n > l, and

RlC1;l.r/ D

s
2

� .l C 3=2/
rl; Rll 
 0:
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In view of the iDRT, we observe that for all 0 � m; n � B � l,

�
Rl � diagŒai r

2
i �iD0;:::;2B�1 � RT

l

�
mn D

2B�1X

kD0

ak r2k NlCm;l

deg � 2B�2‚…„ƒ
RlCm;l .rk/NlCn;l

deg � 2B�2‚…„ƒ
RlCn;l .rk/

D

Z 1

0

NlCm;l RlCm;l.r/NlCn;l RlCn;l.r/r
2 e�r2dr

D ımn;

by Theorem 3.3 and the orthogonality of the polynomials RlCm;l and RlCn;l (cf.
Section 2). Note that we dropped the factors exp.r2i / and exp.�r2i / here (again, see
Section 5). Hence,

RT
l D

˚
Rl � diagŒai r

2
i �iD0;:::;2B�1

�1
:

For a given data vector t :D Œtk�kD0;:::;B�l, we thus define the iDRT of order l as the
evaluation of the product RT

l � t. This can be done in O.B2/ steps, just as one run of
the forward transform (cf. Section 3.4).

Summarizing all of the above, we state the layout of our FSGLFTs and
iFSGLFTs as Algorithm 3 and 4, respectively. Note that all of these transforms
have an asymptotic complexity of O.B4/ instead of the naive O.B7/.

Algorithm 3: Prototypical FSGLFT

Data: Sample values f .ri; #j; 'k/; i; j; k D 0; : : : ; 2B�1, of a function f with bandlimit B 2 N

Result: SGL Fourier coefficients Ofnlm, jmj � l < n � B

for i D 0 to 2B � 1 do

Compute Fourier coefficients hf .ri; �; �/;YlmiS2 , jmj � l < B, from function samples
f .ri; #j; 'k/; j; k D 0; : : : ; 2B � 1, by using a fast spherical Fourier transform;

end

for m D 1� B to B � 1 do
for l D jmj to B � 1 do

Compute SGL Fourier coefficients ŒOfnlm�nDlC1;:::;B by using the DRT in

ŒOfnlm�nDlC1;:::;B D fRl � Eg �
˚
diagŒQai�iD0;:::;2B�1 � Œhf .ri; �; �/;YlmiS2 �iD0;:::;2B�1


I

end
end
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Algorithm 4: Prototypical iFSGLFT

Data: SGL Fourier coefficients Ofnlm, jmj � l < n � B, of a function f with bandlimit B 2 N

Result: Function values f .ri; #j; 'k/; i; j; k D 0; : : : ; 2B � 1

for m D 1� B to B � 1 do
for l D jmj to B � 1 do

Reconstruct spherical Fourier coefficients hf .ri; �; �/;YlmiS2 , i D 0; : : : ; 2B � 1, by
using the iDRT in

Œhf .ri; �; �/;YlmiS2 �iD0;:::;2B�1 D RT
l � ŒOfnlm�nDlC1;:::;BI

end
end

for i D 0 to 2B � 1 do
Reconstruct function values f .ri; #j; 'k/; j; k D 0; : : : ; 2B � 1, from Fourier coefficients
hf .ri; �; �/;YlmiS2 , jmj � l < B, by using a fast inverse spherical Fourier transform;

end

3.4 Matrix-Vector Notation of the Transforms

In this section, we give a description of the transforms presented in Sections 3.2
and 3.3 in terms of matrix-vector products. We shall use the standard Kronecker
product, denoted by ˝. To simplify the notation further, for a fixed bandlimit B 2 N,
we introduce the linear indices


 D 
.j; k/ :D 2Bj C k;

 D  .i; j; k/ :D 4B2i C 2Bj C k;

� D �.l;m/ :D l.l C 1/C m;

! D !.n; l;m/ :D n.n � 1/.2n � 1/=6C l.l C 1/C m;

so that 
 enumerates the sampling angles a
 :D .#j; 'k/ and corresponding weights
c
 :D bj; j; k D 0; : : : ; 2B � 1,  enumerates the sampling points x :D .ri; #j; 'k/

and corresponding weights w :D Qai bj; i; j; k D 0; : : : ; 2B � 1, � enumerates the
spherical harmonics Y� :D Ylm, jmj � l < B, while ! enumerates the SGL basis
functions H! :D Hnlm, jmj � l < n � B. The indices of the rows and columns of
a matrix shall be separated by a semicolon. Because the following considerations
are mainly theoretical, we omit all brackets solely relevant in practice, i.e., those
specifying the order of operations.

Let a function f with bandlimit B 2 N and SGL Fourier coefficients Of! :D Ofnlm be
given. Furthermore, let � :D 8B3 denote the total number of sample points x , and
let ˝ :D B.B C 1/.2B C 1/=6 denote the total number of SGL Fourier coefficients
Of! to be computed. We define the sample vector f :D Œf .x /� D0;:::;��1 and the
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vector Of :D ŒOf!�!D0;:::;˝�1 containing the SGL Fourier coefficients of f . The naive
DSGLFT/iDSGLFT of Section 3.2 can thus be restated as

Of D ŒH!.x / exp.�jx j2/�!D0;:::;˝�1I D0;:::;��1 � diagŒw � D0;:::;��1 � f ;

f D ŒH!.x /�H!D0;:::;˝�1I D0;:::;��1 � Of;

respectively. Note that the quadrature weights w appear only in the forward trans-
form. Furthermore, it becomes apparent that the inverse transform is represented
by precisely the Hermitian transpose of the matrix associated with the forward
transform, when the weighting of the SGL basis function samples H!.x / and
of the function samples f is dropped (compare also Sections 3.3.1 and 3.3.2).
This is a consequence of the orthonormality of the SGL basis functions and
our SGL sampling theorem. Recall that the computation of each element of the
transformation matrices requires O.B/ steps. Because the size of these matrices is
both B.B C1/.2B C1/=6�8B3, this gives the total asymptotic complexity of O.B7/
of both forward and inverse transform.

Let the matrices Rl, 0 � l < B, and E be defined as in (30). Set further

Y :D ŒY�.a
/��D0;:::;B2�1I
D0;:::;4B2�1;

A :D diagŒQai�iD0;:::;2B�1;

C :D diagŒc
�
D0;:::;4B2�1;

and let IN denote the N � N identity matrix (N 2 N). Note that B2 is the total number
of spherical harmonics Ylm, jmj � l < B, while 4B2 is the total number of sampling
angles .#j; 'k/; j; k D 0; : : : ; 2B � 1. After the separation of variables described in
Section 3.3, we find that

Of D P �

2B�1 blocks (see below)‚ …„ ƒ2

6664

QR1�B
: : :

QRB�1

3

7775 �

diagonal‚ …„ ƒ
fIB2 ˝ Eg �

diagonal‚ …„ ƒ
fIB2 ˝ Ag � Q �

2B blocks of size B2�4B2‚ …„ ƒ2

664

Y
: : :

Y

3

775�

diagonal‚ …„ ƒ
fI2B ˝ Cg � f ;

f D

2

664
YH

: : :

YH

3

775� QT �

2

66664

QRT
1�B

: : :

QRT
B�1

3

77775
� PT � Of;
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where the matrices QR1�B; : : : ; QRB�1 have again a block structure,

QRm D

2

6664

Rjmj

: : :

RB�1

3

7775

„ ƒ‚ …
B�jmj blocks Rl of size B�l �2B

;

while P and Q are suitable permutation matrices. We introduce these permuta-
tion matrices here for an improved structural depiction; they do not change the
asymptotic complexity. Note that the separation variables results in a factorization
of the transformation matrices. The asymptotic complexity is reduced to O.B6/
by evaluating the matrix-vector products successively. The factorization of the
matrix of the inverse transform is obtained by taking the Hermitian transpose of
the factorized matrix of the forward transform and dropping the diagonal weight
matrices (compare with Section 3.3.1).

Finally, as explained in Section 3.3, a fast spherical Fourier transform and inverse
can be used to reduce the asymptotic complexity to O.B5/. This amounts to a
factorization of the matrices Y and YH. Employing the Clenshaw algorithm in the
DRT and iDRT further reduces the asymptotic complexity to O.B4/. This amounts
to a factorization of the matrices Rl and RT

l , 0 � l < B.

4 Numerical Experiment

We realized the naive DSGLFT and iDSGLFT of Section 3.2, as well as the
FSGLFT and iFSGLFT of Section 3.3 in MathWorks’ Matlab R2015a. For the
spherical subtransform in the FSGLFT/iFSGLFT, we implemented the seminaive
spherical Fourier transform and inverse of Healy et al. [14], described in Sec-
tion 3.3.1, using the built-in FFT and inverse as well as the built-in fast DCT and
inverse. No parallelization was done.

In both the DSGLFT/iDSGLFT and the FSGLFT/iFSGLFT, we precomputed the
sampling radii ri and transformed sampling angles .cos#j; 'k/ for the bandlimits
listed below with high precision in Wolframs’ Mathematica 10, and stored them
double format. We did the same for the corresponding spherical quadrature weights
bj and the modified radial quadrature weights Qai. For the seminaive spherical
Fourier transform and inverse, we precomputed the transformed vectors C2BPlm (cf.
Section 3.3.1) for all bandlimits below in Matlab, and stored them in double format.

The actual testruns were performed on a Unix system with a 3.40 GHz Intel
Core i7-3770 CPU. We iterated through the bandlimits B D 2; 4; 8; 16; 32. For each
bandlimit, we generated random SGL Fourier coefficients Ofnlm. Both the real part
and the imaginary part were uniformly distributed between �1 and 1. We then
performed the iDSGLFT as well as the iFSGLFT on these Fourier coefficients
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to reconstruct the corresponding function values f .ri; #j; 'k/. Subsequently, we
transformed the function values back into SGL Fourier coefficients Of ı

nlm, using
the DSGLFT and FSGLFT, respectively. We measured the total runtime of one
forward and subsequent inverse transform, and the absolute and relative (maximum)
transformation error,

max
jmj�l<n�B

jOfnlm � Of ı
nlmj and max

jmj�l<n�B

jOfnlm � Of ı
nlmj

jOfnlmj
;

respectively. We repeated the above procedure 10 times, and determined the
average runtime, the average absolute transformation error, and the average relative
transformation error for each bandlimit. We then performed the entire testrun again
for B D 64 with the fast transforms.

Table 1 shows the results of the error measurement. The results of the runtime
measurement are listed in Table 2.

Table 1 (First row) average
absolute and (second row)
average relative
transformation error of one
inverse and subsequent
forward DSGLFT/FSGLFT,
respectively.

B iDSGLFT/DSGLFT iFSGLFT/FSGLFT

2 (5.57 ˙ 1.67) E �16 (3.85 ˙ 1.08) E �16

(7.70 ˙ 1.69) E �16 (4.64 ˙ 1.36) E �16

4 (1.35 ˙ 0.25) E �15 (8.45 ˙ 1.23) E �16

(3.32 ˙ 2.10) E �15 (2.23 ˙ 1.60) E �15

8 (5.45 ˙ 0.63) E �15 (1.66 ˙ 0.18) E �15

(2.30 ˙ 2.18) E �14 (4.51 ˙ 1.11) E �15

16 (2.01 ˙ 0.33) E �14 (3.96 ˙ 0.51) E �15

(1.99 ˙ 1.25) E �13 (2.98 ˙ 1.31) E �14

32 (6.39 ˙ 0.89) E �14 (6.36 ˙ 0.55) E �15

(6.82 ˙ 1.75) E �13 (1.79 ˙ 1.41) E �13

64 - (3.50 ˙ 0.41) E �14

- (8.45 ˙ 2.87) E �13

Table 2 Average runtime of
one inverse and subsequent
forward DSGLFT/FSGLFT,
respectively.

B iDSGLFT/DSGLFT iFSGLFT/FSGLFT

2 2.34 E �2 s 7.86 E �3 s

4 3.80 E �1 s 2.93 E �2 s

8 1.56 E C1 s 1.44 E �1 s

16 9.10 E C2 s 8.68 E �1 s

32 5.27 E C4 s 6.00 E C0 s

64 - 4.85 E C1 s
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5 Discussion, Conclusions, and Future Developments

As mentioned in Section 1, the SGL basis functions are nowadays used extensively
in the simulation of biomolecular recognition processes, such as protein-protein or
protein-ligand docking. This is due to the existence of an elaborate machinery of fast
SGL matching algorithms (see [24, 25], and the references contained therein). All
of these algorithms are spectral methods, i.e., they require the computation of the
SGL Fourier coefficients of so-called affinity functions prior to the actual (docking)
simulation. This task is currently accomplished by sampling the affinity function f
of interest onto a regular Cartesian grid and using a midpoint method for numerical
integration:

Ofnlm �
X

k

f .xk/Hnlm.xk/�V;

where xk is the midpoint of the kth cell, and �V is the cell volume.
While this approach is easily realized and useful for moderate problem sizes, it

does benefit from the special structure (2) of the SGL basis functions, and there
is no guarantee for exactness. Our fast SGL Fourier transforms, on the other hand,
crucially benefit from the special structure of the SGL basis functions and guarantee
exactness in the sense of our SGL sampling theorem (Theorem 3.4). Specifically,
the special structure of the SGL basis function allows to separate our discrete SGL
Fourier transforms into a spherical and a radial subtransform, and, thus, to avoid
computational redundancy to a large extent.

The results in Tables 1 and 2 clearly show that the FSGLFT and iFSGLFT tested
in Section 4 work very well for all bandlimits considered: The absolute and relative
transformation errors are significantly smaller than those of the naive DSGLFT
and iDSGLFT. This is due to the smaller total number of operations in the fast
transforms, resulting in less round-off error. The total runtime of FSGLFT and
iFSGLFT was significantly lower in all cases – even for the smallest bandlimits,
which is typically not the case. Since the bandlimits B � 32 are of most practical
relevance, an interesting question for further research is how the SGL matching
algorithms of Ritchie et al. perform in combination with these fast transforms.

In the spherical subtransform of the fast SGL Fourier transforms tested in
Section 4, we used the seminaive fast spherical Fourier transform and inverse
of Healy et al. [14]. The seminaive variant appears to be the optimal choice for
bandlimits B � 128. For larger bandlimits, there are other variants described by
Healy et al., which should be considered. Note, however, that all of these variants
result in the same asymptotic complexity O.B4/ of our fast transforms.

The spherical quadrature rules of Driscoll and Healy [8] (Theorem 3.1) and the
Gaussian quadrature rules (Theorem 3.3) yield an asymptotically optimal relation
between the number of SGL Fourier coefficients (O.B3/) and sampling points on R

3

(O.B3/). Spherical quadrature rules with a lower total number of sampling points
and corresponding fast spherical Fourier transforms are described in McEwen and
Wiaux [20]. These fast transforms can easily be used in our framework as well,
leaving the total asymptotic complexity again untouched.
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In Section 3.2, we introduced the factor exp.r2i / to compensate for the fast decay
of the quadrature weights ai. This modification was accounted for by weighting
the SGL basis function samples Hnlm.ri; #j; 'k/ by the factor exp.�r2i /, which was
done during runtime in Section 4. We found that such adjustment is essential for
bandlimits B � 64, when working with double precision. For bandlimits B < 64,
the above modification results in slightly lower transformation errors, which is why
we used this adjustment consistently for all bandlimits. Of course, our approach
requires the precomputation of the modified weights Qai using a high precision; it
does not affect the asymptotic complexity. Due to the absence of the weights ai,
there is generally no modification required in the inverse transforms.

For all bandlimits considered in this paper, the storage requirements of the
precomputed data are not an issue. In the case B D 64, for example, the
precomputed data for the FSGLFT and iFSGLFT of Section 4 require approximately
25 MB of free disk space. For completeness, we record that the storage complexity
of these fast transforms is O.B3/ for both disk space and memory. This due to the
precomputed data C2BPlm of Section 3.3.1, which are stored on the disk and loaded
during runtime, and the data in memory being processed. In general, the disk space
requirements of our fast transforms are essentially the same as those of the particular
spherical Fourier transforms employed.

As a more theoretical remark, we note that it is possible to obtain a true
O.B3 log2B/ FSGLFT/iFSGLFT by using an O.B2 log2B/ variant of the spherical
Fourier transforms of Healy et al., and interchanging the Clenshaw algorithm in our
discrete R transform of Section 3.3.2 with an O.B log2B/ fast discrete polynomial
transform (refer to Driscoll et al. [9], for instance). Note, however, that the smaller
asymptotic complexity has to be traded with an increased storage complexity and
a larger constant prefactor in runtime. Therefore, we do not expect a benefit of this
approach for the bandlimits currently used in practice.

Another interesting task for future research is to extend our fast SGL Fourier
transforms in such a way that they can be applied to scattered (i.e., non-gridded)
data. This has already been achieved successfully in the classical FFT (see, e.g.,
[22]), as well as in other generalized FFTs (see [17, 23], for example).

Finally, we would like to emphasize that our fast SGL Fourier transforms are
polynomial transforms. With little adaptions, our approach can also be used for
similar combinations of spherical harmonics and generalized Laguerre polynomials,
such as those stated in Dunkl and Xu [11, Sect. 5.1.3], or the radially scaled SGL
basis functions of Ritchie and Kemp. Moreover, the underlying domain R

3 of our
transforms is non-compact. Notably, the experiments of Section 4 are one of the
first performances of generalized FFTs on a non-compact domain. Other examples
in this direction can be found in Chirikjian and Kyatkin [3].
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Multiscale Radial Basis Functions

Holger Wendland

1 Introduction

For the past few decades, radial basis functions have been established as one of the
main tools in multivariate approximation theory. They allow the user to build high-
order, meshfree approximation spaces and provide an extremely flexible tool for the
reconstruction of functions from scattered data, see [6, 15, 46].

The main ingredient are, of course, radial functions, though many of the results
are also true for non-radial functions.

Definition 1. A radial function is a function ˚ W R
d ! R of the form ˚.x/ D

�.kxk2/, x 2 R
d, where � W Œ0;1/ ! R is a univariate function and kxk2 D

.x21 C : : :C x2d/
1=2 denotes the Euclidean norm of x 2 R

d.

Sometimes, the univariate function � in the above definition is referred to as the
radial function but we will not do this here. We will however make the following
general assumption.

Remark 1. We will always assume that the univariate function � W Œ0;1/ ! R is
defined on all of R by even extension, i.e. by �.�r/ WD �.r/ for r > 0.

We will say that such a � W Œ0;1/ generates or induces a multivariate function
on R

d. This induced function is simply defined to be ˚.x/ WD �.kxk2/, x 2 R
d.

In this article, we will predominantly be dealing with radial functions ˚ W Rd !

R having a compact support, i.e. with functions for which

supp˚ WD fx 2 Rd W ˚.x/ ¤ 0g
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is bounded. In general, we will simply assume that the support of ˚ is given by the
unit ball. In that case, we can introduce scaled versions, i.e.

˚ı.x/ WD ı�d˚.x=ı/

with ı > 0, which obviously have support in the ball about the origin with radius
ı. Besides scaling we can also shift a scaled basis function. This allows us to define
our basic approximation spaces. To this end let ˝ 	 R

d be a bounded domain and
let X D fx1; : : : ; xNg 	 ˝ be a set of distinct points, the data sites. Associated to
such a point set are two geometric quantities, the fill distance or mesh norm hX;˝

and the separation distance qX , which are defined to be

hX;˝ WD sup
x2˝

min
1�j�N

kx � xjk2;

qX WD min
1�j¤k�N

kxj � xkk2;

respectively. The fill distance describes how well the scattered points X “cover”
the domain ˝ in the following sense. The fill distance hX;˝ gives the radius of the
largest ball completely contained in ˝ without a data site within its interior. The
fill distance is important for understanding approximation orders. The separation
distance defines the smallest distance between the two closest data sites. It becomes
important when looking at stability issues.

A scaled, compactly supported kernel and a set of data sites are enough to define
a first approximation space via

WX D WX;˚ı WD spanf˚ı.� � x/ W x 2 Xg: (1)

We will refer to this as a local approximation space since we will not deal with
only one data set and one associated approximation space, but with a sequence
of data sets X1;X2; : : : with mesh norms hj D hXj;˝ , which are supposed to be
monotonically decreasing. To ensure a certain uniformity in decrease, we will
assume that hjC1 � 
hj for some fixed 
 2 .0; 1/. For some of our results we
will require that the sequence is quasi-uniform, which means that there is a constant
cq such that, with qj D qXj ,

qj � hj � cqqj:

Having this sequence of data sets Xj, it is clear that we can build a local
approximation space Wj D WXj for each Xj. To this end, we will define a kernel
˚j W ˝ � ˝ ! R for each level. In our application this kernel will be given by
the scaled version of a fixed translation invariant radial basis function. To be more
precise, we assume that there is a compactly supported function ˚ W Rd ! R with
support in the unit ball B.0; 1/ and that, for each level, there is a scaling parameter
ıj > 0 such that we can define

˚j.x; y/ D ı�d
j ˚..x � y/=ıj/:
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If we consider y to be fixed, it follows that the function ˚j.�; y/ has support in
B.y; ıj/, the ball with radius ıj and centre y.

As we assume that the data sets become denser and denser, we will also assume
that the support radii become smaller and smaller, usually in the same way, i.e., we
will assume that ıj D vhj with a constant � > 0, which we will link to 
 later on.
Note that this also leads to ıjC1 � 
ıj.

With the data sets and the associated kernels at hand, we can build approximation
spaces of the form

Wj D spanf˚j.�; x/ W x 2 Xjg: (2)

representing details on level j. Thus, the approximation of our function will come
from the sum of these spaces, i.e., we have to investigate the approximation power of

Vn WD W1 C W2 C � � � C Wn

for n ! 1.
The rest of the paper is organised as follows. In the next section, we will

discuss the relevant material on optimal recovery, reproducing kernel Hilbert spaces
and Sobolev spaces. After that, we will discuss compactly supported radial basis
functions. In the fourth section, we will then address multiscale interpolation and
approximation.

2 Optimal Recovery and Reproducing Kernel Hilbert Spaces

2.1 The Reconstruction Problem

Our main tool in using discrete approximation spaces WX of the form (1) will be
optimal recovery and interpolation, which turns out to be the same in this context.
Throughout this section, we will consider only local approximation spaces WX;˚ı . In
particular, we want to keep the scaling factor ı fixed but might vary the data set X.

To understand why radial basis functions, or, more generally, positive definite
functions are natural tools in multivariate approximation theory, we start with an
abstract result from linear algebra.

To this end, let H be a Hilbert space and denote its dual by H�. Suppose
� D f�1; : : : ; �Ng 	 H� is a set of linearly independent functionals on H and
f1; : : : ; fN 2 R are certain given values. Then a generalised recovery problem would
ask for finding a function s 2 H so that �j.s/ D fj, 1 � j � N. We will call s a
generalised interpolant. Usually, there are an infinite number of possible generalised
interpolants and hence there is need to distinguish one of them. Moreover, if the data
contain noise, interpolation is not an appropriate way of reconstructing the unknown
function f . Hence, we will also consider a method, which was originally introduced
in the context of splines (see [42]).
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Definition 2. The norm-minimal generalised interpolant is the element s0 2 H
satisfying

ks0k D minfksk W s 2 H; �j.s/ D fj; 1 � j � Ng: (3)

Given a smoothing parameter " > 0, the optimal recovery or smoothing spline is
the element s" 2 H satisfying

min

8
<

:

NX

jD1

j�j.s/ � fjj
2 C "ksk2H

9
=

; : (4)

The solutions to both problems (3) and (4) are unique. A proof of the following
result can be found in [42, 46].

Theorem 1. Let H be a Hilbert space, �1; : : : ; �N 2 H� linearly independent
functionals with Riesz representers vj, 1;� j � N, and let f1; : : : ; fN 2 R be given.
The unique solutions s0 of (3) and s" of (4) can be written as

s" D

NX

jD1

˛jvj; (5)

" � 0, where the coefficients f˛jg are the solution of the linear system

.A C "I/˛ D f (6)

where A D .�i.vj// and f D .f1; : : : ; fN/T .

Hence, the optimal recovery problem can constructively be solved once the Riesz
representer of the functionals are known. For general Hilbert spaces of functions this
is not an easy task. However, for reproducing kernel Hilbert spaces this becomes
simple once the reproducing kernel is known.

Definition 3. A Hilbert space H of functions f W ˝ ! R is a reproducing kernel
Hilbert space if there is a kernel ˚ W ˝ �˝ ! R with

1. ˚.�; x/ 2 H for all x 2 ˝,
2. f .x/ D hf ; ˚.�; x/iH for all x 2 ˝ and all f 2 H.

In such a reproducing kernel Hilbert space, the Riesz representer of any
functional � 2 H� is simply given by applying � to one of the arguments of the
kernel, i.e. v� D �y˚.�; y/. In this paper, we will exclusively be concerned with
point evaluation functionals, i.e. �j.f / D f .xj/. Hence, the optimal recovery takes
the simple form

s" D

NX

jD1

˛j˚.�; xj/

and the matrix A has thus entries ˚.xi; xj/.
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2.2 Sobolev Spaces

The reproducing kernel Hilbert spaces we will be concerned with are Sobolev
spaces. For an integer 	 D k 2 N0 the Sobolev space Hk.˝/ consists of all those
functions u 2 L2.˝/ which have weak derivatives D˛u in L2.˝/ for all j˛j � k.
For non-integer 	 > 0, the Sobolev space H	 .˝/ can be defined using interpolation
theory, see, for example, [1].

The Sobolev embedding theorem guarantees that H	 .˝/ is a reproducing kernel
Hilbert space for any 	 > d=2. However, since the reproducing kernel is uniquely
determined by the inner product and also depends upon ˝ in our setting, it is in
general not possible to give an explicit formula for the reproducing kernel. We will
circumvent this problem by two means. First of all, we will assume that we can
extend our functions defined on ˝ to all of Rd, see [4].

Proposition 1. Let˝ 	 R
d be a bounded domain with a Lipschitz boundary. Then,

there is a universal extension operator E W H	 .˝/ ! H	 .Rd/ satisfying

1. Ef j˝ D f
2. kEf kH	 .Rd/ � C	kf kH	 .˝/

for all f 2 H	 .˝/ and all 	 � 0.

It is important that though the constant C	 > 0 might depend on 	 , the operator
E itself does not. The existence of such an operator means that we can equip
H	 .˝/ with an equivalent norm f 7! kEf kH	 .Rd/ and thus we can concentrate
on determining the reproducing kernel of H	 .Rd/ for 	 > d=2. This becomes
particularly easy if we write the norm on H	 .Rd/ using the Fourier transformbf
of f 2 H	 .Rd/, 	 > d=2 defined by

bf .!/ D .2�/�d=2
Z

Rd
f .x/e�ixT !dx:

With this, we can define the norm on H	 .Rd/ to be

kf k2H	 .Rd/
D

Z

Rd
jbf .!/j2.1C k!k22/

	d!: (7)

The reproducing kernel can then be written in translation-invariant form, i.e. it
satisfies ˚.x; y/ D ˚0.x � y/ with ˚0 W Rd ! R for which we will simply write
˚.x; y/ D ˚.x � y/ in an abuse of notation. The function ˚ W R

d ! R is then
simply the inverse Fourier transform of one over the weight function, i.e.

b̊.!/ D .1C k!k22/
�	 ;

which is a consequence of the following general result, see [46].
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Proposition 2. Suppose ˚ 2 L1.Rd/ has a Fourier transform satisfying

c1.1C k!k22/
�	 � b̊.!/ � c2.1C k!k22/

�	 (8)

Then, ˚ also defines a reproducing kernel on H	 .Rd/ with respect to the inner
product defined by

hf ; gi˚ WD

Z

Rd

bf .!/bg.!/
b̊.!/

d!:

The norm associated to this inner product is equivalent to the Sobolev norm (7).

This also opens the door to the construction of a variety of kernels, which are
also reproducing kernels in H	 .Rd/. We will only consider compactly supported
˚’s having a Fourier transform with such a decay. However, since for t � 0 and
	 � 0, we have

1C t	 � .1C t/	 � 2	.1C t	 /

we see that the decay property (8) is equivalent to the decay property

c1.1C k!k2	2 /
�1 � b̊.!/ � c2.1C k!k2	2 /

�1; (9)

which is slightly easier to handle in what follows. An immediate consequence of
these observations is the following one.

Corollary 1. Let ˚ 2 L1.Rd/ be a reproducing kernel of H	 .Rd/, 	 > d=2, i.e.
its Fourier transform satisfies (9). For ı 2 .0; 1� let ˚ı WD ı�d˚.�=ı/. Then, ˚ı is
also a reproducing kernel of H	 .Rd/ and for every g 2 H	 .Rd/, we have the norm
equivalence

c1=21 kgk˚ı � kgkH	 .Rd/ � c1=22 ı�	kgk˚ı ;

Proof. This follows immediately from c̊
ı D b̊.ı�/. ut

It is important to note that the Hilbert space in which the scaled kernel ˚ı is the
reproducing kernel is always H	 .Rd/, i.e. the space itself does not depend on the
scaling parameter. However, the norm associated to the inner product in which ˚ı
is the reproducing kernel does depend on ı > 0. Also the equivalence constants
depend on ı. While we always have kf k˚ı � Ckf kH	 .Rd/ with C > 0 being
independent of ı > 0, the constant in the other estimate kf kH	 .Rd/ � Cı�	kf k˚ı
tends to infinity with ı ! 0. This is not surprising at all, since k � k˚ı ! k � kL2.Rd/

for ı ! 0 and the constant has to balance this loss of derivative in the norm.
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3 Compactly Supported Radial Basis Functions

In this section we will review recent results on compactly supported radial basis
functions. We are particularly interested in the construction of such basis functions
and in those compactly supported RBFs which are reproducing kernels of Sobolev
spaces.

Much of the general theory in this section can be found in [48]. Newer results are
based on [8, 9, 22, 35, 37, 43, 50, 51].

3.1 Construction of Compactly Supported RBFs

A famous result of Bochner states that a continuous, integrable function ˚ W Rd !

R is positive definite and hence the reproducing kernel of its associated reproducing
kernel Hilbert space, if and only if it possesses a non-negative, non-vanishing
Fourier transform

b̊.!/ WD .2�/�d=2
Z

Rd
˚.x/e�ixT !dx; ! 2 R

d;

see [46] for a proof. For a radial, positive definite function, it is well-known that
the Fourier transform is also radial and can be reduced to a one-dimensional Hankel
transform. This will be essential in what we now want to do. To formulate this, we
need to introduce Bessel functions of the first kind.

Definition 4. The Bessel function of the first kind of order � 2 C is defined by

J�.z/ WD

1X

mD0

.�1/m. 1
2
z/2mC�

mŠ� .� C m C 1/
; z 2 C:

This gives the desired representation in the case of a positive definite, radial
function.

Theorem 2. Suppose ˚ 2 L1.Rd/\ C.Rd/ is radial, i.e. ˚.x/ D �.kxk2/, x 2 R
d.

Then its Fourier transform b̊ is also radial, i.e. b̊.!/ D Fd�.k!k2/ with

Fd�.r/ D r� d�2
2

Z 1

0

�.t/t
d
2 J d�2

2
.rt/dt: (10)

Hence, ˚ is positive definite if and only if Fd� � 0 and Fd� 6
 0.

An interesting consequence of (10) is that the operator Fd cannot only be defined
for d 2 N but actually for all d 2 Œ0;1/, which we will from now on do. However,
the connection to a multivariate Fourier transform is, of course, only given if d 2 N.
Also, the existence of the integral has to be ensured.
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Next, we introduce the key operators to construct compactly supported radial
basis functions.

Definition 5. 1. Let � be given so that t 7! �.t/t is in L1Œ0;1/, then we define for
r � 0,

.I �/.r/ D

Z 1

r
t�.t/dt:

2. For even � 2 C2.R/ we define for r � 0,

.D�/.r/ D �
1

r
�0.r/:

In both cases the resulting functions should be seen as even functions by even
extension.

Obviously, these operators are inverse to each other in the sense that I D D I and
DI D I whenever these operations are well-defined, where I denotes the identity
operator.

The importance of these operators comes from the fact that they nicely work
together with the Fourier transform operator Fd. We will formulate this in a moment
but before that, we want to generalise them.

Definition 6. Let ˛ > 0 and assume that t 7! t�.t/ is integrable over Œ0;1/. Then,
we define for r � 0,

I˛�.r/ WD
1

2˛�1� .˛/

Z 1

r
�.t/t.t2 � r2/˛�1dt

and for r < 0 the function I˛� is defined by even extension.

Note that we can rewrite the integral in the definition as

Z 1

r
�.t/t.t C r/˛�1.t � r/˛�1dt:

Hence, for ˛ 2 .0; 1/, the singularity at t D r is integrable. Since we will be
merely be concerned with continuous compactly supported functions in this paper,
the operator I˛ can always be applied to such a function for any ˛ > 0.

We also see that for ˛ D 1 we have I1 D I , i.e. both definitions coincide.
Finally, we will particularly be interested in the case ˛ D 1=2. In this case the
operator reduces to

I1=2�.r/ D

r
2

�

Z 1

r
�.t/t.t2 � r2/�1=2dt:
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Since we are merely interested in compactly supported functions, it is important
for us to note that I˛ respects a compact support in the following sense.

Lemma 1. Assume that the even function � W R ! R has a compact support
contained in the interval Œ�R;R�. Then, for each ˛ > 0 the function I˛� has also
compact support contained in Œ�R;R�.

We are now going to extend the range of possible operators I˛ by defining them
also for ˛ � 0. We will do this first formally in the following definition.

Definition 7. 1. We define I0 to be the identity operator, i.e. I0� D � for all even
functions � W R ! R.

2. For n 2 N we define I�n WD Dn.
3. For ˛ > 0 we let k WD d˛e and define I�˛ WD I�kIk�˛ .

To see to what functions � we can apply these operators, we restrict ourselves
to compactly supported and even functions. If such a function possesses ` C 1

continuous derivatives then we first note that the derivatives must satisfy �.j/.r/ D

.�1/j�.j/.�r/. In particular, we see that for odd j the derivative at zero has to vanish.
The Taylor expansion about the origin is thus

�.r/ D
X̀

jD0

�.j/.0/

jŠ
rj C

1

`Š

Z r

0

.r � t/`�.`C1/.t/dt

D

b`=2cX

jD0

�.2j/.0/

.2j/Š
r2j C

1

`Š

Z r

0

.r � t/`�.`C1/.t/dt:

Applying I�1 D D to this expansion yields

I�1�.r/ D �
1

r

d

dr
�.r/

D �

b`=2cX

jD1

�.2j/.0/

.2j � 1/Š
r2j�2 �

1

.` � 1/Š

1

r

Z r

0

.r � t/`�1�.`C1/.t/dt:

The critical term on the right-hand side behaves like

lim
r!0

1

r

Z r

0

.r � t/`�1�.`C1/.t/dt D lim
r!0

.` � 1/

Z r

0

.r � t/`�2�.`C1/.t/dt D 0

as long as ` � 2 and like �.2/.0/ for ` D 1. Hence, for even � 2 C2.R/ with
compact support I�1� is well-defined and continuous. We can iterate this process
to derive the following result.

Corollary 2. Let ˛ > 0 and k D d˛e. If � 2 C2k.R/ is even and compactly
supported, then I�˛� is well-defined, continuous and compactly supported.
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However, more important to us is the following observation, which can be derived
from the above corollary but also straight-forward by induction.

Corollary 3. If k 2 N, then for every even � 2 C.R/ with compact support,  WD

Ik� and I�k are well-defined and satisfy

I�kIk� D �:

Proof. We already know that  is well-defined. To see that I�k is also well-
defined, we first recall that the fundamental theorem of calculus immediately yields
I�1I1� D �. For k � 2, we first compute

I�1Ik�.r/ D �
1

2k�1.k � 1/Š

1

r

d

dr

Z 1

r
�.t/t.t2 � r2/k�1dt

D
2r.k � 1/

2k�1.k � 1/Š

1

r

Z 1

r
�.t/t.t2 � r2/k�2dt

D
1

2k�2.k � 2/Š

Z 1

r
�.t/t.t2 � r2/k�2dt

D Ik�1�.r/

and the rest follows by induction. ut

To understand the interaction of the operators I˛ and Fd, we need the following
relation on Bessel functions.

Lemma 2. For 
 > �1=2 and � > �1 we have

J
CvC1.t/ D
t�C1

2v� .� C 1/

Z 1

0

J
.tu/u

C1.1 � u2/vdu; t > 0:

The proof of this lemma starts with the integral on the right-hand side. It uses
the definition of the Bessel function as an infinite series, exchanges integration
and summation, integrates the resulting terms and interprets the result as a Bessel
function again. Details can be found in [38, Lemma 4.13].

Theorem 3. For each d; ˛ > 0 we have

FdI˛� D FdC2˛� (11)

Hence, � defines a positive definite function on R
dC2˛ if and only if I˛ defines a

positive definite function on R
d.

Proof. We compute FdI˛ using Theorem 2 and Fubini’s theorem
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FdI˛�.r/ D
1

2˛�1� .˛/
r� d�2

2

Z 1

0

Z 1

t
�.s/s.s2 � t2/˛�1t

d
2 J d�2

2
.rt/dsdt

D
1

2˛�1� .˛/
r� d�2

2

Z 1

0

�.s/s
Z s

0

.s2 � t2/˛�1t
d
2 J d�2

2
.rt/dtds:

After a change of variables u WD t=s, the inner integral can be computed using
Lemma 2:

Z s

0

.s2 � t2/˛�1t
d
2 J d�2

2
.rt/dt D

Z 1

0

.s2 � u2s2/˛�1.us/
d
2 J d�2

2
.rsu/sdu

D s2˛�1C d
2

Z 1

0

.1 � u2/˛�1u
d
2 J d�2

2
.rsu/du

D s2˛�1C d
2 2˛�1� .˛/.rs/�˛J d�2

2 C˛.rs/:

Inserting this into the above formula for FdI˛ immediately yields

FdI˛�.r/ D r� d�2
2 �˛

Z 1

0

�.s/ss˛�1C d
2 J d�2

2 C˛.rs/ds

D r� dC2˛�2
2

Z 1

0

�.s/s
dC2˛
2 J dC2˛�2

2
.rs/ds

D FdC2˛�.r/:

ut

This means particularly for the operators I D I1 and I1=2 the following.

Corollary 4. • A function � induces a positive definite function on R
dC2 if and

only if I � induces a positive definite function on R
d.

• A function � induces a positive definite function on R
dC1 if and only if I1=2�

induces a positive definite function on R
d.

However, (11) has another important consequence. If � 2 C.R/ has compact
support, then we can interpret the classical Fourier transform of � also in the L2
sense. In the L2-sense, � is uniquely determined by its Fourier transform and hence
we have the following result.

Corollary 5. Let ˛; ˇ > 0. Assume that � 2 C.R/ is even and has compact support
then we have

I˛Iˇ� D I˛Cˇ� D IˇI˛ (12)

and

I�˛I˛� D �: (13)
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Proof. Using (11) yields

FdI˛Iˇ� D FdC2˛Iˇ� D FdC2˛C2ˇ�:

The other expressions in the first identity have the same Fourier transform and hence
all of the stated functions must be the same.

To prove the second equality, let k D d˛e. By definition, we have I�˛ D

I�kIk�˛ . Hence,

I�˛I˛� D I�kIk�˛I˛� D I�kIk� D �;

where we first have used (12) and then Corollary 3. ut

3.2 Wendland Functions and Generalised Wendland Functions

We will now describe a popular class of compactly supported radial basis functions,
which is widely used in applications. The starting point is the cut-off power function

��.r/ D .1 � r/vC (14)

which is known to induce a positive definite function on R
d if � � .d C 1/=2, see

[3, 46].

Definition 8. The Wendland function of smoothness 2k for space dimension d is
defined by

�d;k.r/ D Ik�bd=2cCkC1.r/

D
1

2k�1.k � 1/Š

Z 1

r
.1 � t/bd=2cCkC1t.t2 � r2/k�1dt; 0 � r � 1:

The definition shows that we will have the same function for even d D 2n and
odd d D 2n C 1. We will address this issue later on. However, it is also clear from
this definition that �d;k restricted to Œ0; 1� is a polynomial of degree bd=2c C 3k C 1,
which can easily be computed. Some of them are, up to a constant factor, listed in
Table 1.

The reason why these functions have become quite popular is summarised in the
following theorem.

Theorem 4. The functions �d;k are positive definite on R
d and are of the form

�d;k.r/ D

	
pd;k.r/; 0 � r � 1;

0; r > 1;
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Table 1 Wendland functions.

Space dimension Function Smoothness

d D 1 �1;0.r/ D .1� r/C C0

�1;1.r/ PD.1� r/3
C
.3r C 1/ C2

�1;2.r/ PD.1� r/5
C
.8r2 C 5r C 1/ C4

d � 3 �3;0.r/ D .1� r/2
C

C0

�3;1.r/ PD.1� r/4
C
.4r C 1/ C2

�3;2.r/ PD.1� r/6
C
.35r2 C 18r C 3/ C4

�3;3.r/ PD.1� r/8
C
.32r3 C 25r2 C 8r C 1/ C6

d � 5 �5;0.r/ D .1� r/3
C

C0

�5;1.r/ PD.1� r/5
C
.5r C 1/ C2

�5;2.r/ PD.1� r/7
C
.16r2 C 7r C 1/ C4

with a univariate polynomial pd;k of degree bd=2cC3kC1. They possess continuous
derivatives up to order 2k. The degree of pd;k is minimal for a given space dimension
d and smoothness 2k and are up to a constant factor uniquely determined by this
setting.

The above defined functions have been generalised in the following way, see
[8, 9, 22, 35].

Definition 9. Let ˛ > 0 and � > �1 such that ˛ C � > 0. The generalised
Wendland functions are defined to be

 �;˛.r/ WD I˛��.r/ D
1

2˛�1� .˛/

Z 1

r
.1 � t/vt.t2 � r2/˛�1dt:

Obviously, we have

�d;k D  bd=2cCkC1;k

so that the new functions are indeed a generalisation of the old once. However, for
arbitrary ˛ and �, we can neither expect  �;˛ to be positive definite on R

d nor will
 �;˛ in general be representable by a univariate polynomial within its support.

Nonetheless, using the machinery so far, we can compute the Fourier transform
of these functions as

Fd �;˛.r/ D FdC2˛�v.r/ D r�.d�2/=2�˛

Z 1

0

sd=2C˛.1 � s/vJ.d�2/=2C˛.rs/ds

D r�d�2˛��

Z r

0

td=2C˛.r � t/vJ.d�2/=2C˛.t/dt:
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The latter integral has intensively been studied and can be expressed using hyper-
geometric series. Recall that such a series is formally defined to be

pFq.z/ 
 pFqŒa1; : : : ; apI b1; : : : ; bqI z�

WD

1X

nD0

.a1/n � � � .ap/n

.b1/n � � � .bq/n

zn

nŠ
DW

1X

nD0

.a/n

.b/n

zn

nŠ
;

where we assume that neither of the b1; : : : bq is a non-positive integer and use the
Pochhammer symbol defined as .a/n WD 1 for n D 0 and .a/n WD a.a C 1/ � � � .a C

n � 1/ D � .a C n/=� .a/ and .a/n WD .a1/n � � � .ap/n. Such a series is known to
converge point-wise if p � q, which is the case we are interested in.

A few simple properties and the connection to the integrals we are interested in
are collected in the next lemma.

Lemma 3. 1. If ap D bq, then pFq D p�1Fq�1.
2. For ˇ C 
 > �1 and � > �1 we have

Z r

0
.r � t/�t
Jˇ.t/dt D

� .�C 1/� .ˇ C 
C 1/

� .ˇ C 1/� .ˇ C �C 
C 2/
2�ˇrˇC�C
C1

� 2F3

�
ˇ C 
C 1

2
;
ˇ C 
C 2

2
Iˇ C 1;

ˇ C �C 
C 2

2
;
ˇ C �C 
C 3

2
I �r2=4

�
:

3. The derivatives of the hyper-geometric functions satisfy for n 2 N:

dn

dzn pFqŒa1; : : : ; apI b1; : : : ; bqI z�

D
.a1/n � � � .ap/n

.b1/n � � � .bq/n
pFqŒa1 C n; : : : ap C nI b1 C n; : : : ; bq C nI z�:

4. For r > 0 we have

1F2

�
aI a C

b

2
; a C

b C 1

2
I �r2=4

�
> 0

if a and b satisfy b � 2a � 0 or b � a � 1 or 0 � a � 1; b � 1. The hyper-
geometric series cannot be strictly positive if 0 � b < a or if a D b 2 .0; 1/.

Proof. The first statement is obvious, the third statement can simply be checked by
differentiation under the sum. The second statement can be found, for example, in
[11, 13.1(56)]. The final statement is a consequence of the findings in [30]. ut

Hence, we can continue to compute our Fourier transform. Setting 
 WD d=2C˛,
� WD � and ˇ WD .d � 2/=2 C ˛, we see that the second statement of the lemma
yields
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Fd �;˛.r/ D r�d�2˛��

Z r

0
td=2C˛.r � t/vJ.d�2/=2C˛.t/dt

D
� .� C 1/� .d C 2˛/

2d=2C˛�1� .d=2C ˛/� .d C 2˛ C � C 1/

� 2F3

"
d

2
C ˛;

d C 1

2
C ˛I

d

2
C ˛;

d C � C 1

2
C ˛;

d C � C 2

2
C ˛I �

r2

4

#

D Cd
�;˛1F2

"
d C 1

2
C ˛I

d C � C 1

2
C ˛;

d C � C 2

2
C ˛I �

r2

4

#
:

with

Cd
�;˛ WD

� .� C 1/� .d C 2˛/

2d=2C˛�1� .d=2C ˛/� .d C 2˛ C � C 1/
: (15)

This allows us to make the following general statement on the generalised
Wendland functions, which comes from [8].

Theorem 5. Let ˛ > 0 and � > �1 with ˛ C � > 0. Then, the d-variate Fourier
transform of the generalised Wendland function is given by

Fd �;˛.r/ D Cd
�;˛ 1F2

�
d C 1

2
C ˛I

d C � C 1

2
C ˛;

d C � C 2

2
C ˛I �

r2

4

�
:

Hence,  �;˛ induces a positive definite function on R
d if

� �
d C 1

2
C ˛: (16)

Furthermore, the Fourier transform satisfies

d

dr
Fd �;˛.r/ D �rFd �;˛C1.r/: (17)

Proof. Setting a D dC1
2

C ˛ and b D � shows that (16) is equivalent to b � a � 1.
Hence, we can conclude from Lemma 3 that  �;˛ is positive definite. To see (17),
we also use Lemma 3, which yields

d

dr
Fd �;˛.r/ D Cd

�;˛

d

dr
1F2

"
d C 1

2
C ˛I

d C � C 1

2
C ˛;

d C � C 2

2
C ˛I �

r2

4

#

D �
r

2
Cd
�;˛

dC1
2 C ˛

�
dC�C1

2 C ˛
� �

dC�C2
2 C ˛

�
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� 1F2

"
d C 1

2
C ˛ C 1I

d C � C 1

2
C ˛ C 1

d C � C 2

2
C ˛ C 1I �

r2

4

#

D � r
Cd
�;˛

Cd
�;˛C1

d C 2˛ C 1

.d C � C 2˛ C 1/.d C � C 2˛ C 2/
Fd �;˛C1.r/

D � rFd �;˛C1.r/;

where the constant expression in the last but one line can be simplified to 1 using
the recurrence formula of the � -function. ut

Note that the last property can also be expressed as I�1Fd �;˛ D Fd �;˛C1. It
also has the following interesting consequence.

Corollary 6. The Fourier transform of the generalised Wendland function  �;˛ is
monotonically decreasing if

v �
d C 1

2
C ˛ C 1: (18)

Since the classical Wendland functions �d;k are a special case of the generalised
Wendland functions  �;˛ , using the parameters � D bd=2c C k C 1 and ˛ D k, we
see that (16) is satisfied, i.e. we have an alternative proof for them being positive
definite. However, for d � n, the function �d;k induces not only a positive definite
function on R

d but also on all Rn with n � d and the monotony condition (18)
becomes

bd=2c C k C 1 �
n C 1

2
C k C 1

or

bd=2c �
n C 1

2
:

Corollary 7. The Wendland function �d;k induces a positive definite function on R
n

with a monotonically decreasing Fourier transform for all n � 2bd=2c � 1.

In [9], there is also a discussion of the decay of the Fourier transform of the
generalised Wendland functions. This generalises earlier results from [44].

Theorem 6. The d-dimensional Fourier transform Fd 
;˛ of the generalised
Wendland function  �;˛ with � � ˛ C dC1

2
and ˛ > 0 satisfies

c1.1C r2/�˛� dC1
2 � Fd �;˛.r/ � c2.1C r2/�˛� dC1

2 ; r 2 R

with certain constants c1; c2 > 0 independent of r. Hence,  �;˛ defines a reproduc-
ing kernel of

H˛C dC1
2 .Rd/
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As mentioned above, this recovers and generalises the decay rate established
in [44] for Fd�d;k, showing that they are reproducing kernels for H	 .Rd/ with
	 D dC1

2
Ck. While these are integer order Sobolev spaces in odd space dimensions,

they are of order integer plus a half in even dimensions. But we are now also in
the situation to explicitly state compactly supported RBFs which are reproducing
kernels in Sobolev spaces of integer order in even dimensions. We only have to
work with ˛ D k � 1=2, k 2 N, and � � k C d=2 to have a kernel for HkCd=2.Rd/.
These kernels have a more complicated structure than the original Wendland kernels
but are still easily computable. They can best be described by introducing the
elementary functions

S.r/ WD
p
1 � r2; L.r/ WD log

�
r

1C S.r/

�
; r 2 .0; 1/:

Then, some of the functions together with the space dimension d and the order 	 of
the Sobolev space in which they are reproducing kernels are, up to a constant factor,
given in Table 2. We have always chosen � D k C d=2 D 	 , since the decay of
the Fourier transform and hence the Sobolev space is independent of � as long as
� � ˛ C .d C 1/=2 D k C d=2.

Yet another consequence is the existence of compactly supported reproducing
kernels in Sobolev spaces.

Corollary 8. Each H	 .Rd/ with 	 > d=2 possesses a compactly supported, radial
reproducing kernel.

Proof. The results of Theorem 6 show that H	 .Rd/ has such a reproducing kernel,
namely �;˛ as long as 	 D ˛� dC1

2
> dC1

2
. The case of 	 2 .d=2; .dC1/=2/ cannot

be handled with this technique but follows from another construction technique
in [23]. ut

Table 2 The missing Wendland functions.

Space dimension Function Sobolev

d D 2  2;1=2.r/ PD3r2L.r/C .2r2 C 1/S.r/ H2.R2/

 3;3=2.r/ PD � 15r4.r2 C 6/L.r/� .81r4 C 28r2 � 4/S.r/ H3.R2/

 4;5=2.r/ PD 315r6.3r2 C 8/L.r/

C .256r8 C 2639r6 C 690r4 � 136r2 C 16/S.r/
H4.R2/

d D 4  3;1=2.r/ PD3r2.r2 C 4/L.r/C .13r2 C 2/S.r/ H3.R4/

 4;3=2.r/ PD � 105r4.r2 C 2/L.r/� .32r6 C 247r4 C 40r2 � 4/S.r/ H4.R4/

 5;5=2.r/ PD 315r6.3r4 C 60r2 C 80/L.r/

C .9295r8 C 31670r6 C 4704r4 � 688r2 C 64/S.r/
H5.R4/

d D 6  4;1=2.r/ D 15r2.3r2 C 4/L.r/C .16r4 C 83r2 C 6/S.r/ H4.R6/

 5;3=2.r/ PD �105r4.r4 C 16r2 C 16/L.r/

� .919r6 C 2346r4 C 216r2 � 16/S.r/
H5.R6/
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As a matter of fact, in [23] Johnson constructed compactly supported radial
functions � having a d-variate Fourier transform satisfying (8) for a 	 D k 2 N

with k � d=4 if d is even and k � max..d C 1/=4; 2/ if d is odd.
For k 2 Œd=4; d=2� for even d and k 2 Œ.dC1/=4; d=2� for odd d, this seems at first

to be problematic, since it is well-known that an integrable, continuous function with
a non-negative Fourier transform has automatically an integrable Fourier transform
(see [46, Corollary 6.12]). The resolution of this seeming contradiction is quite
simple, for such values of k the constructed � in [23] is not continuous on all of
R any more, it might even have a pole at the origin.

When it comes to the actual computation of the Fourier transform of a generalised
Wendland function, it is better to reduce the d-variate Fourier transform to a
univariate one:

Fd �;˛.r/ D F1I˛C d�1
2
��.r/

D

p
2=�

2˛�1C d�1
2 � .˛ C d�1

2
/

Z 1

0

Z 1

s
.1 � t/vt.t2 � s2/˛�1C d�1

2 cos.rs/dtds:

Specifying this to the case of �d;k shows that we will naturally have a different
Fourier transform for d even or d odd. The Fourier transform for odd d is easily
calculated for the classical Wendland functions. As an example, we give the three-
dimensional Fourier transform of

�d;1.r/ D
1

20
.1 � r/4.4r C 1/:

Lemma 4. The Fourier transform of �d;1 for d D 3 is given as

F3�3;1.r/ D �
6
p
2

r8
p
�

�
r2 � 24/ cos r � 9r sin r � 4r2 C 24

�
:

Clearly, we see that the Fourier transform decays like O.r�6/, so that the
corresponding Sobolev space is H3.R3/ as predicted. However, note that the
numerical evaluation near the origin is highly ill-conditioned because of severe
cancellation.

3.3 Other Compactly Supported Radial Basis Functions

Besides the functions introduced and discussed in the previous sections, there are
plenty of others which can be found in the literature. There is the construction
by Buhmann in [5], which produces also “one piece” radial functions, but the
decay of their Fourier transform is unknown. There are the earlier constructions
by Wu in [50], which are also one piece polynomials but with a higher degree
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than those mentioned above, having also a Fourier transform with isolated zeros.
Then, there is the construction by Johnson in [2, 23], which produces functions with
multiple radial pieces. Each of these pieces is poly-harmonic. The functions are
again reproducing kernels in integer order Sobolev spaces.

4 Multiscale Interpolation and Approximation

We are now coming to the second main part of this paper, the discussion of
multiscale approximation using compactly supported radial basis functions.

Let us first point out why we need a multiscale approach when working with
compactly supported radial basis functions. We start with the following negative
result (see, for example, [47, 49]).

Recall that the norm-minimal interpolant s D s0 D IX;˚ı to a function f 2 C.˝/,
which is based upon the data sites X D fx1; : : : ; xNg 	 ˝ and uses the basis
function ˚ı W Rd ! R can be written as

IX;˚ı f .x/ D

NX

jD1

˛j˚ı.x � xj/; x 2 ˝:

where the coefficients ˛ 2 R
N are determined by the linear system A˛ D f with

the interpolation matrix A D .˚ı.xi � xj//. From now on, we will refer to this
norm-minimal interpolant just as the interpolant.

Theorem 7. Let ˝ 	 R
d be a bounded domain with a Lipschitz boundary. Let ˚

be a reproducing kernel of H	 .Rd/ with 	 > d=2, i.e. b̊ satisfies (9). Let ˚ı D

ı�d˚.�=ı/. Finally, let X D fx1; : : : ; xNg 	 ˝ be given. Then, there is a constant
C > 0 such that the error between any f 2 H	 .˝/ and its interpolant s D IX;˚ı f
can be bounded by

kf � IX;˚ı f kL2.˝/ � C

�
hX;˝

ı

�	
kf kH	 .˝/: (19)

Consequently, if we denote the interpolant to a function f from our local
approximation spaces Wj from (2) as sj and choose the support radii ıj proportional
to the fill distances hj D hXj;˝ , we cannot expect sj to converge to f with j ! 1.
We can only expect convergence if hj=ıj ! 0 for j ! 1, which means that
we essentially lose the advantage of the compact support, since the interpolation
matrices become more and more dense.
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4.1 Quasi-Interpolation, Principle Shift-Invariant Spaces
and the Strang-Fix Conditions

Even in the more ideal situation of infinite, regular data sites and even if the
interpolation process is replaced by a best approximation process the above negative
result remains true. This follows from the following short discussion on quasi-
interpolation in principle shift-invariant spaces.

For a compactly supported, continuous function ˚ W R
d ! R and h > 0, we

define the space

Sh WD span
˚
˚.h�1 � �˛/ W ˛ 2 Z

d


D spanf˚h.� � h˛/ W ˛ 2 Z
dg:

Such spaces are called principal shift-invariant spaces and they mimic our local
approximation spaces in the case of the data sites being a regular grid of grid size
h. These spaces have extensively been studied and their approximation properties
are intrinsically connected to polynomial reproduction, i.e. to the question whether
�m.R

d/ 	 Sh, or alternatively, to the so-called Strang-Fix conditions.

Definition 10. An integrable function ˚ W R
d ! R satisfies the Strang-Fix

conditions of order m if b̊.0/ ¤ 0 and Dˇ b̊.2�˛/ D 0 for all ˛ 2 Z
d n f0g

and ˇ 2 N
d
0 with jˇj � m.

The following result summarises these ideas. Its proof can be found in [39].

Theorem 8. Let ˚ W R
d ! R be a compactly supported, continuous function.

Then, the following statements are equivalent:

1. ˚ satisfies the Strang-Fix conditions of order m.
2. For ˇ 2 N

d
0 with jˇj � m the function

x 7!
X

˛2Zd

˛ˇ˚.x � ˛/

is a polynomial from �j˛j.R
d/.

3. For each f 2 HmC1.Rd/ and each h > 0 there are weights wh
˛ such that as h ! 0,

�����f �
X

˛2Zd

wh
˛˚.h

�1 � �˛/

�����
Hs.Rd/

� Csh
mC1�skf kHsC1.Rd/; 0 � s � p

X

˛2Zd

jwh
˛j2 � Kkf k2L2.Rd/

:

The constants Cs and K are independent of f .
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Hence, in our terminology, at least if working on an infinite uniform grid, we
could get away with just one of the approximation spaces Sh D WhZd if our
compactly supported function was satisfying the Strang-Fix conditions.

However, as we will see now, if the kernel is in addition radial, it will not satisfy
the Strang-Fix conditions. To prove this negative result, which goes back to Wu [51],
we need two auxiliary results.

The first one is concerned with a question about the density of functions of the
form exp.imx/ in the continuous functions. It was first stated by Pólya as a problem
in 1931 ([34]) and then solved by Szász in 1933 ([40]).

Lemma 5 (Pólya). Let the real numbers m1;m2; � � � have the properties 0 < m1 <

m2 < � � � and

lim inf
n!1

n

mn
>

b � a

2�
> 0:

Furthermore, let f be continuous in the closed interval Œa; b�. Then it will follow
from

Z b

a
f .x/ cos.max/dx D

Z b

a
f .x/sin.mnx/dx D 0

that f vanishes identically on Œa; b�.

The second auxiliary result comes from number theory. It deals with the question
which natural numbers can be represented as the sum of two squares, see, for
example, [24].

Lemma 6. Let an be the nth natural number which can be expressed as a sum of
two integer squares. There are constants c1; c2 > 0 and n0 2 N such that

c1n <
anp

log.n/
< c2n; n � n0:

Using the operators introduced in Section 3.1, we are now able to show that there
are no compactly supported radial functions, which satisfy the Strang-Fix conditions
in dimensions larger than one.

Theorem 9. For d � 2, there is no non-vanishing, continuous, radial, compactly
supported function ˚ W Rd ! R, which satisfies the Strang-Fix conditions.

Proof. Assume that ˚ W R
d ! R is such a function, i.e. ˚ D �.k � k2/ with an

even, compactly supported and continuous function � W R ! R. Then, its Fourier
transform is given by

b̊.!/ D Fd�.k!k2/ D F1I d�1
2
�.k!k2/ DW F1 .k!k2/:
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with a new compactly supported, continuous function  WD I d�1
2
�. If ˚ would

satisfy the Strang-Fix condition, then we must therefore have

0 D F1 .2�k˛k2/; ˛ 2 Z
d n f0g:

Next, let an be the nth natural number, which can be represented by two squared
integers. Since d � 2, for each such an we can therefore pick an ˛n 2 Z

d n f0g such
that an D k˛nk22. Thus, if we define mn WD 2�k˛nk2 D 2�

p
an, then Lemma 6 tells

us that

n

mn
D

1

2�

n
p

an
>

1

2�
p

c2

n
p

n.log n/1=4
:

This particularly means that lim infn!1.n=mn/ D 1 and hence that according to
Lemma 5, we must have that  D I.d�1/=2� 
 0. But from (13) we can finally
conclude that � D I�.d�1/=2 D 0. ut

4.2 Multilevel Interpolation

In this section, we want to discuss and analyse the simplest case of a multilevel
algorithm, which produces a global approximant from the space Vn. Let us recall
the general setting. We assume that we have a sequence of increasingly finer and
finer finite point sets

X1;X2; : : : ;Xn; : : :

and a decreasing sequence of support radii

ı1 � ı2 � : : : � ın � : : :

Then, using a compactly supported RBF ˚ W Rd ! R and its scaled versions

˚j.x; y/ WD ı�d
j ˚..x � y/=ıj/; (20)

we build, as mentioned in the introduction, local approximation spaces

Wj D spanf˚j.�; x/ W x 2 Xjg: (21)

and global approximation spaces

Vn WD W1 C W2 C : : :C Wn: (22)
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Algorithm 1: Multilevel Approximation
Input : Right-hand side f , Number of levels n
Output : Approximate solution fn 2 W1 C : : :C Wn

Set f0 D 0, e0 D f
for j D 1; 2; : : : ; n do

Determine a local approximant sj 2 Wj to ej�1.
Set fj D fj�1 C sj.
Set ej D ej�1 � sj.

In this situation, the simplest possible algorithm to compute an approximation
fn 2 Vn to a function f 2 H is a residual correction scheme as described in
Algorithm 1.

We will now analyse the approximation properties of this algorithm. To this end,
we need a general sampling inequality. The following result comes from [32].

Lemma 7. Let ˝ 	 R
d be a bounded domain with Lipschitz boundary. Let 	 >

d=2. Let X 	 ˝ be a finite point set with sufficiently small mesh norm hX;˝ . Then,
there is a constant C > 0, independent of X, such that for all f 2 H	 .˝/ vanishing
on X, we have

kf kH
.˝/ � Ch	�

X;˝ kf kH	 .˝/:

for 0 � 
 � 	 .

Using sj D IXj;˚j ej�1 as the interpolant to ej�1 on Xj with kernel ˚j, we have the
following theorem.

Theorem 10. Let ˝ 	 R
d be a bounded domain with Lipschitz boundary. Let

X1;X2; : : : be a sequence of point sets in ˝ with mesh norms h1; h2; : : : satisfying
hjC1 D 
hj for j D 1; 2; : : : with fixed 
 2 .0; 1/ and h1 D 
 sufficiently small. Let
˚ be a kernel generating H	 .Rd/, i.e. satisfying (9) and let ˚j be defined by (20)
with scale factor ıj D vhj. Let the target function f belong to H	 .˝/. Then, there
exists a constant C1 > 0 such that

kEejk˚jC1
� C1 .


	 C ��	 / kEej�1k˚j for j D 1; 2; 3; : : : (23)

and hence there exists a constant C > 0 such that

kf � fnkL2.˝/ � C ŒC1

	 C C1�

�	 �n kf kH	 .˝/ for n D 1; 2; : : : ;

provided that 
v � � > 0 with a constant � > 0. Thus there are constants 
0 2

.0; 1/ and �0 > 1 such that the multiscale approximation fn converges linearly to f
in the L2 norm for all 
 � 
0 and � � �0 with 
� � � .
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Proof. The proof of this theorem can be found in [49]. We will thus only review
its critical steps. The first, important auxiliary observation is that the interpolant at
Xj to ej�1 is the same as the interpolant to Eej�1 since both functions coincide on
Xj 	 ˝. Here, E denotes the extension operator from Proposition 1. From this, it
follows that

kejkH	 .˝/ D kej�1 � IXj;ıj ej�1kH	 .˝/

D kEej�1 � IXj;ıj Eej�1kH	 .˝/

� kEej�1 � IXj;ıj Eej�1kH	 .Rd/

� Cı�	
j kEej�1 � IXj;ıj Eej�1k˚j

� Cı�	
j kEej�1k˚j ; (24)

where we have used Lemma 1 and the fact that the interpolant is norm-minimal with
respect to the ˚j-norm.

Then, we have

kEejk
2
˚jC1

�
1

c1

Z

Rd
jcEej.!/j

2.1C .ıjC1k!k2/
2	 /d! DW

1

c1
.I1 C I2/

with

I1 WD

Z

Rd
jcEej.!/j

2d!;

I2 WD ı2	jC1

Z

Rd
jcEej.!/j

2k!k2	2 d!:

Obviously, using Plancharel’s theorem, the properties of the extension operator
and (19), we see that the first integral can be bounded by

I1 D kEejk
2
L2.Rd/

� ckejk
2
L2.˝/ D ckej�1 � sjk

2
L2.˝/

� c

�
hj

ıj

�2	
kej�1k

2
H	 .˝/ � c��2	kEej�1k

2
˚j
:

Similarly, for the second integral, we can use (24) to derive the bound

I2 D ı2	jC1

Z

Rd
jcEej.!/j

2k!k2	2 d! � ı2	jC1

Z

Rd
jcEej.!/j

2.1C k!k2	2 /d!

D ı2	jC1kEejk
2
H	 .Rd/

� ı2	jC1kejk
2
H	 .˝/ � C

�
ıjC1

ıj

�2	
kEej�1k

2
˚j

� C
2	kEej�1k
2
˚j
:
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Piecing these bounds together gives estimate (23). The rest then more or less
follows by applying (23) iteratively and the following observation. Since en D f � fn
vanishes on Xn, we have by Lemma 7 and Lemma 1 that

kf � fnkL2.˝/ D kenkL2.˝/ � Ch	n kenkH	 .˝/ � Ch	n kEenkH	 .Rd/

� Ch	n ı
�	
nC1kEenk˚nC1

D CkEenk˚nC1
; (25)

since hn=ınC1 D hn=.vhnC1/ �D 1
�


� 1
�

. ut

Though we cannot directly determine
0 and �0, equation (23) gives some insight
into the influence of the two critical parameters 
 and �. On the one hand, the
parameter 
 determines how much we have to refine our data set from level to level.
Hence, the smaller 
 the more points we have to use in the next level.

On the other hand, the parameter � determines the relation between the support
radius and the fill distance. Here, a larger � means that we have more non-zero
entries per row in the interpolation matrix, which increases the computational cost.
Nonetheless, increasing � is less critical than decreasing 
.

But there is yet another consequence of this theorem. For simplicity, let us
eliminate one of the parameters by setting � D 
�1 so that (23) becomes

kEejk˚jC1
� C1


	kEej�1k˚j (26)

and we have convergence for all 
 > 0 with C1
	 < 1. However, we even have
convergence if for an arbitrary 	 > " > 0 we have C1
" � 1. In this case, (26)
becomes

kEejk˚jC1
� 
	�"kEej�1k˚j : (27)

We can also revisit (25) by choosing an 0 � ˇ � 	 � ". Then, Lemma 7 applied in
the derivation of (25) yields

kf � fnkHˇ.˝/ � Ch	�ˇ
n kenkH	 .˝/ � Ch	�ˇ

n ı�	
n�1kEenk˚nC1

D Ch�ˇ
n kEenk˚nC1

:

Using (27) n times yields the estimate

kf � fnkHˇ.˝/ � Ch�ˇ
n 
n.	�"/kf kH	 .˝/:

Finally, the fact that h1 D 
 and hjC1 D 
hj shows that hn D 
n so that we can
rephrase the last estimate as

kf � fnkHˇ.˝/ � Ch	�"�ˇ
n kf kH	 .˝/;

i.e., we have not only derived an estimate also for derivatives but have expressed
the error in terms of the fill-distance of the finest data set. The exponent is almost
optimal.
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Corollary 9. Under the assumptions of Theorem 10 with � D 1=
 and 0 � ˇ �

	 � " we have the error bound

kf � fnkHˇ.˝/ � Ch	�"�ˇ
n kf kH	 .˝/;

provided that 
 is sufficiently small.

There are several possible extensions to this theorem. First of all, the condition
hjC1 D 
hj can be relaxed to something like c
hj � hjC1 � 
hj with fixed 
; c 2

.0; 1/ without altering the result. Secondly, the algorithm also converges if the target
function f is rougher, say f 2 H� .˝/ with d=2 < � < 	 . Details can be found in
[49].

From a numerical point of view, the multilevel scheme is extremely efficient.
Once, the neighbourhood information are known, i.e. once we know for each level
` and each data site x.`/j those data sites x.`/k which are relevant for the computation,

i.e. those with kx.`/k � x.`/j k2 � ı`, we have the following computational cost.

Corollary 10. If the data sets Xj are quasi-uniform, i.e qj � hj, then we have for
the involved linear systems:

• The number of non-zero entries per row is independent of the level.
• The condition number is independent of the level.
• The number of steps required by a non-preconditioned CG method is independent

of the level.
• The computational cost is linear in each level.

The neighbourhood information can be assembled in O.Nj log Nj/ time using
tree-based search structures. Finally, we also have to compute the residuals. If the
data sets are nested, we can restrict ourselves to compute residuals only on the finest
level. If they are not nested, then we have to do this in step j for the remaining
point sets XjC1; : : : ;Xn. Again, the neighbourhood information can be collected in
O.Nj log Nj/ time for level j. Moreover, the number of levels is, because of the
uniform refinement, at most O.log Nn/.

Before we come to numerical results, we want to discuss briefly two versions
of this algorithm, one which discards unnecessary coefficients and one which only
considers necessary data sites.

The first one was introduced in [25] as one of two discarding strategies for
multilevel algorithms on the sphere. The general idea is that after computing the
local interpolant at level j, which has a representation of the form

sj D

NjX

kD1

˛
.j/
k ˚j.�; x

.j/
k /;

to discard all coefficients ˛
.j/
k which have an absolute value smaller than a given

threshold. This threshold can and should be level dependent. Since the discarding
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Algorithm 2: Multilevel Approximation with Dynamical Discarding
Input : Right-hand side f , Number of levels n
Output : Approximate solution fn 2 Vn D W1 C � � � C Wn

Setef 0 D 0,ee0 D f ;
for j D 1; 2; : : : ; n do

Determine the local interpolant sj 2 Wj toeej�1.

Drop all coefficients j˛
.j/
k j � epsj in sj to defineesj.

Setef j Def j�1 Cesj.
Seteej Deej�1 �esj.

is done during each level, it was named discarding dynamically in contrast to the
strategy of discarding after all steps have been computed. The Algorithm is formally
given in Algorithm 2.

It is possible to show convergence of this algorithm in a very similar way as it
has been done in the proof of Theorem 10. Details can be found in [25].

Theorem 11. Let " > 0 be given. Assume that the assumption of Theorem 10 are
satisfied. Let "j � c1"ı

d=2
j with a constant c1 > 0. Finally, let ˛ WD C1.
	 C ��	 /.

Then there is a constant C > 0 such that

keejk˚jC1
� ˛keej�1k�j C C":

Hence, after n steps the error can be bounded by

kf �ef nkL2.˝/ � C˛nkf kH	 .˝/ C C"
1 � ˛n

1 � ˛
:

The second variation of our standard multilevel interpolation algorithm is an
adaptive version. After computing the local interpolant sj on Xj to ej�1, we can check
the error ej D ej�1� sj on the upcoming data set XjC1. Then, instead of interpolating
this error on all of XjC1, we will actually only use those points of XjC1 on which ej

has an absolute value larger than a given threshold "j > 0. To describe this algorithm
in more detail let us denote the initial point sets byeXj and let us denote the adaptive
point sets which are actually used by Xj. Then, the algorithm can be stated as in
Algorithm 3.

An error analysis of this algorithm is more problematic since it would require to
know ej on all of eXj but we only know ej on Xj 	 eXj. We could avoid this problem
by creating an inner loop in which we check ej oneXj and add those points for which
ej is still too large. However, in practice this does not seem to be necessary.
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Algorithm 3: Adaptive Multilevel Approximation

Input : Right-hand side f , Number of levels n, thresholds "i, point setseX1; : : : ;eXn

Output : Approximate solution fn 2 W1 C : : :C Wn

Set f0 D 0, e0 D f , X1 DeX1
for j D 1; 2; : : : ; n do

Determine sj D IXj ;˚j ej�1 2 Wj .
Set fj D fj�1 C sj.
Set ej D ej�1 � sj.
for x 2eXjC1 do

if jej.x/j > "j then
XjC1 D XjC1 [ fxg

Fig. 1 Franke function (left), step function (right).

4.3 Numerical Examples

We will now look at two examples. In the first example, we are interested in
understanding the importance of the parameters �, which is responsible for the
relation between the support radius and the fill distance on each level, and the
parameter 
, which is responsible for the refinement of the data sets from level
to level.

In this example, we will only be interested in varying the parameter �. We will
work on˝ D Œ0; 1�2 and use the Franke function, see, for example, [20] and the left
half of Figure 1, as our target function. The RBF is given by �.r/ D .1�r/4C.4rC1/,
i.e. the C2-Wendland function in R

2. We will work only on equidistant grids Xj with
grid size qj D 2�j�2, 1 � j � 8, which is also the separation distance of the data
set Xj and hence equivalent to its fill distance. This means that we fix the refinement
factor to be 
 D 1=2. We then vary the overlap factor �, by defining ıj D e�qj and
changinge�. Finally, we measure the error on a fine grid of grid size q D 2�11.

A typical result can be found in Table 3, where we have chosen the overlap factor
to be e� D 3, which means that we have at most 25 non-zero entries per row in
our matrix, independent of the level. The table contains the number of points per
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Table 3 Approximation of the Franke function. Basis function �2;1 2 C2,e� D 3.

level N l2 l1 l2 order l1 order CG

1 81 1.087e-02 7.201e-02 27

2 289 2.464e-03 2.724e-02 2.14 1.40 38

3 1089 5.420e-04 8.947e-03 2.18 1.61 40

4 4225 1.218e-04 2.994e-03 2.15 1.60 40

5 16641 2.775e-05 1.015e-03 2.13 1.56 40

6 66049 6.360e-06 3.466e-04 2.13 1.55 39

7 263169 1.458e-06 1.151e-04 2.12 1.59 39

8 1050625 3.207e-07 3.605e-05 2.19 1.68 39

expected 2.5 1.5

Table 4 Approximation of the Franke function. Basis function �2;1 2 C2, variouse�.

e� D 5 e� D 7 e� D 9 e� D 11

level l2 order l2 order l2 order l2 order

1 6.44e-3 5.45e-3 5.13e-3 5.02e-3

2 8.33e-4 2.95 4.82e-4 3.50 3.47e-4 3.89 2.81e-4 4.16

3 1.53e-4 2.45 8.12e-5 2.57 5.34e-5 2.70 4.04e-5 2.80

4 2.90e-5 2.40 1.43e-5 2.51 8.89e-6 2.59 6.45e-6 2.65

5 5.56e-6 2.38 2.54e-6 2.49 1.49e-6 2.57 1.04e-6 2.63

6 1.07e-6 2.37 4.53e-7 2.48 2.52e-7 2.57 1.69e-7 2.62

7 2.07e-7 2.37 8.10e-8 2.48 4.26e-8 2.57 2.74e-8 2.63

8 3.82e-8 2.44 1.38e-8 2.55 6.86e-9 2.63 4.23e-9 2.69

level, the discrete `2- and `1-error and the approximation order computed from
comparing two successive level. Since �2;1 is a reproducing kernel in H	 .Rd/ with
	 D k C .d C 1/=2 D 2:5, which means we would expect an L2-approximation
order 	 D 2:5 and an L1-approximation order of 	 � d=2 D 1:5. Finally, the
table also contains the number of steps an unpreconditioned CG method requires
to compute an approximate solution of the linear system with a relative accuracy
of 10�6 a higher accuracy does not lead to a significant change in the solutions but
only to a larger number CG steps.

In Table 4 we have collected the error and convergence order estimates for
increasing overlaps. It seems that the expected order of 2:5 cannot only be matched
but is actually exceeded. The number of non-zero entries per row increases to at most
373 in the case ofe� D 11. The example also indicates that halving the fill distance,
i.e. choosing 
 D 1=2 seems to be an appropriate choice and that the convergence
order can be achieved solemnly by increasing the initial support radius.

In our second example, we also want to test the other two algorithms. To this end,
we keep the general set-up of our first example but change the test function to a C1

step function given by

f .x/ D
1

2
tanh.2000.x2 C x1 � 1//; x 2 Œ0; 1�2; (28)
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Table 5 Approximation of the step function (28). Basis function �2;1 2 C2,e� D 3.

level N l2 l1 l2 order l1 order CG

1 81 1.329e-01 4.935e-01 19

2 289 9.378e-02 4.869e-01 0.50 0.02 36

3 1089 6.563e-02 4.756e-01 0.51 0.03 41

4 4225 4.520e-02 4.528e-01 0.54 0.07 44

5 16641 3.018e-02 4.203e-01 0.58 0.11 44

6 66049 1.883e-02 3.548e-01 0.68 0.24 44

7 263169 9.965e-03 2.505e-01 0.92 0.50 44

8 1050625 3.398e-03 1.226e-01 1.55 1.03 44

expected 2.5 1.5

Fig. 2 Approximation of the step function, levels 0 (upper left) to 7 (lower right).

which is shown in Figure 1 (right). We keep the overlap fixed ate� D 3. The results
of the standard multilevel algorithm are given in Table 5 and Figure 2. Clearly,
convergence is much slower. In particular we have typical overshoots near the edge
of the step function, at least in the first few levels.

The result of the dynamically discarding algorithm, Algorithm 2, is given in
Table 6. For these results we have set the overall threshold to " D 10�5 and have on
level j then discarded all the coefficients with absolute value less than "ıj. Clearly,
the results are very similar to those of the standard algorithm, Algorithm 1. But the
total number of point information used reduces from 1,402,168 in Algorithm 1 to
just 31,506 in Algorithm 2, i.e. we use only 2.25% of the original points. As we can
see from Figure 3, the reason for this is that only those basis functions centred at
data sites near the edge of the step function or near the boundary of the domain have
large coefficients.
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Table 6 Approximation of the step function with dynamical discarding. Basis function �2;1 2
C2,e� D 3.

level N l2 l1 l2 order l1 order CG

1 72 1.329e-01 4.935e-01 19

2 268 9.378e-02 4.869e-01 0.50 0.02 36

3 1018 6.563e-02 4.756e-01 0.51 0.03 41

4 2080 4.520e-02 4.528e-01 0.54 0.07 44

5 2880 3.018e-02 4.208e-01 0.58 0.11 44

6 4774 1.884e-02 3.548e-01 0.68 0.24 44

7 7134 9.974e-03 2.505e-01 0.92 0.50 44

8 13280 3.453e-03 1.226e-01 1.53 1.03 44

expected 2.5 1.5

Fig. 3 Approximation of the step function with dynamical discarding, used data sites for levels 0
(upper left) to 7 (lower right).

The results of the adaptive algorithm are given in Table 7. Here we have used
the thresholding strategy that we only considered points on the next level where the
error of the current level is larger than 10�3 times the maximum error of the current
interpolant on the next level. Again, the errors are comparable, though slightly
worse. The total number of points used is now 74; 029 out of 1; 402; 168, or 5:3%.
Figure 4 shows the data sites which are actually used. The pattern is similar to the
one created by the dynamically discarding algorithm, though more points are kept
towards the boundary of the computational domain.
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Table 7 Adaptive Approximation of the step function. Basis function �2;1 2 C2,e� D 3.

level N l2 l1 l2 order l1 order CG

1 81 1.329e-01 4.935e-01 19

2 200 1.010e-01 4.882e-01 0.40 0.02 26

3 812 6.977e-02 4.786e-01 0.53 0.03 30

4 2318 4.828e-02 4.588e-01 0.53 0.06 31

5 5514 3.249e-02 4.283e-01 0.57 0.10 31

6 10094 2.066e-02 3.699e-01 0.65 0.21 30

7 18480 1.159e-02 2.656e-01 0.83 0.48 30

8 36530 4.934e-03 1.441e-01 1.23 0.88 31

expected 2.5 1.5

Fig. 4 Adaptive approximation of the step function, used data sites for levels 0 (upper left) to 7
(lower right).

5 Other Multilevel Schemes

So far, we have discussed multilevel and multiscale methods for interpolation
problems. It is straight-forward to extend the result to the optimal recovery or
smoothing spline approach (4). The results of Theorem 10 and Corollary 9 remain
valid if the smoothing parameter " is chosen level dependent satisfying "j �

c.hj=ıj/
2	 , see [49].

In [41], the multilevel scheme is analysed for target functions being zero on the
boundary. The centres and the support radii on each level are chosen such that
the multilevel interpolant is satisfying zero boundary conditions, as well, i.e. the
supports of the basis functions are always contained in the domain ˝.

In [13], a multilevel scheme for vector-valued, divergence-free functions is
analysed. Here, matrix-valued kernels are employed. In this situation, it is not
possible anymore to keep the ratio between fill distance and support radius constant.
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The paper [29] follows closely the original papers [26, 27] and discusses
convergence orders for interpolation on the sphere, similar to those derived in
Corollary 9. It also deals with inverse estimates, i.e. statements that show that a
certain convergence rate must lead to a certain smoothness of the target function.
These are mainly based upon the results from [36].

Shortly after the introduction of compactly supported RBFs and the initial,
purely numerical papers on multilevel interpolation schemes such as [18, 19] and
the first theoretical results such as [21, 31], which all differ substantially from the
theoretical results given in this paper, also first attempts based upon collocation for
solving PDEs numerically with such a multilevel scheme have been derived, see, for
example, [14, 16] and [7]. However, only recently, the numerical observations could
be underpinned with theoretical proofs in [12, 28]. There have also been first papers
on the solution of PDEs based upon a weak formulation and a Galerkin method, see
[10, 45]. The first of these two papers is purely numerically, while the second one
contains theoretical results, which seem, however, to be too optimistic.

Finally, multiscale schemes like those discussed here have been used in computer
graphics (see [33]), in the context of neural networks (see [17]) and in the context
of machine learning (see [52]).
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on Manifolds and Groups



Orthogonal Wavelet Frames on Manifolds
Based on Conformal Mappings

Swanhild Bernstein and Paul Keydel

1 Introduction

Wavelets have been proven to be very useful in signal analysis and function
approximation as well as in a lot of practical applications. There are many wavelets,
curvelets, and shearlets on R

n. But many real life signals live on curved manifolds,
such as those on a sphere or spheroid, a hyperboloid or a cone. Unfortunately there
is no simple way to construct wavelets on general manifolds. There are different
approaches which are close to the classical theory on R

n: We start with a simple
definition of a wavelet transform. The wavelet transform is a generalized windowed
Fourier transform. We denote by Tb the translation operator Tbf .x/ D f .x � b/;
b 2 R; and by Da the dilation operator Daf .x/ D 1p

a
f . x

a /; a 2 RC: Then the wavelet
transform is defined as

Wf .aI b/ WD

Z 1

�1

f .t/
1

p
a
 

�
t � b

a

�
dt

D

Z 1

�1

f .t/Da .t � b/ dt D hf ; DaTb iL2

D

Z 1

�1

f .t/ � DaTb L .t/ dt:

with an admissible mother wavelet  (cf. Definition 6). A continuous wavelet
transform is an integral transform, a convolution-type operator and a singular
integral operator. The inversion of the wavelet transform is a result of the Calderon
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reproducing formula. Group theory shows that continuous wavelets can be inter-
preted as coherent states [1]. Unfortunately, this approach breaks down on the
sphere. There had been several different approaches to defining successfully
continuous wavelets on the sphere by [2, 3, 15, 16, 18]. There are also discrete
wavelets on the sphere and these wavelets form a multiresolution analysis [4].

But even in that case there are problems to obtain good, i.e. smooth, orthogonal,
locally supported wavelet basis on S

2: Here is a list of known approaches:

(1) Discretization of the continuous wavelet transform. The advantage of this
approach is that it is easy to implement if the mother wavelet is given explicitly,
and there is much freedom in choosing a smooth wavelet. The disadvantages
are that we get only frames and not bases. There is a problem of finding an
appropriate discretization grid which leads to good frames.

(2) One can consider diffusive wavelets on manifolds or wavelets on spheres
constructed by using spherical harmonic kernels. These wavelets are smooth
and there are no poles, but they are not localized, the support covers the whole
sphere/manifold.

(3) Let a sphere be centered at the origin and assume it contains a convex
polyhedron with triangular faces also centered at the origin. Then wavelets can
be constructed by radial projection from the polyhedron to the sphere.

But there seem to be easier ways to obtain “wavelets” on manifolds. In many cases it
is possible to transform wavelets in R

n to the manifold as a whole or locally by using
finite or countable covering of the manifold. To some extent, the papers by Antoine
and Vandergeynst [3, 5] contain this idea for the case spheres. Another approach by
Holschneider [22] and Freeden and Windheuser [17] uses the so-called harmonic
dilations instead of stereographic ones. A specific projection approach to wavelets
was also done by D. Roşca [6, 27, 28] which is based on area preserving projections,
which are not conformal. Area preserving projections preserve the scalar product
which is not the case for conformal mappings, but there are many more conformal
mappings compared to area preserving which widens the range of applications
considerably.

The sphere seems to be the most studied compact manifold. In [8, 14] diffusion
wavelets on manifolds are discussed. These wavelets are a continuous analogue to
the discrete diffusion wavelets [9, 12]. Another way to define wavelets and frames
on manifolds is based on splines [25, 26]. [19] contains a construction of Parseval
(tight) bandlimited and strongly localized frames on general compact homogeneous
manifolds by using harmonic kernels on them.

The aim of this paper is to construct continuous wavelet transforms, discrete
wavelet transforms, and frames on manifolds which are locally conformally flat.
These wavelets are called lifted wavelets and they are defined in Definition 9. Our
main results are formulated in Theorems 4, 5, and 6 in which we assume that there
exists a conformal map between M and R

2 which does not have singular points.
In section 5.1 we consider the case when a conformal map between M and R

2 has
singularities.
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The chapter is organized as follows. After the introduction in Section 2 we define
conformal and locally conformal flat mappings, their properties and give some
examples. Continuous wavelets transforms are considered in Section 3. We present
the group theoretic approach and define continuous wavelets in R

2 accordingly.
Then we explain why the group theoretic approach fails for the sphere and define
the lifted continuous wavelet transform. In Section 4 a multiresolution analysis
for L2.R2/ is defined and the lifted discrete wavelet transform is constructed. In
Section 5 in contrast to previous sections we assume that corresponding conformal
maps can have singular points. Some examples are given in Section 6, and Section 7
contains some remarks.

2 Conformal Maps and Their Properties

Let us consider Riemannian manifolds [7], which provide the basis for our work.
We want to define a conformal map on these manifolds:

Definition 1 ([20]). A map f W .M I g/ ! . QM I Qg/ between Riemannian manifolds
is called conformal1 if the induced metric has the form f � Qg D e2ug with some
function u W M ! R:

With the aid of g one may define angles on the manifold and the most important
property of conformal mappings for our purpose follows.

Lemma 1. Let f W .M I g/ ! . QM I Qg/ be a map between Riemannian manifolds.
Then f is conformal if and only if f is angle-preserving.

Here are some examples of conformal mappings of S2:

Example 1 ([20]).

• The stereographic projections 	˙, defined in terms of their inverses by

	�1
˙ W Rn ! S

n � R
nC1 D R � R

n; p 7!
1

1C jpj2
.˙.1 � jpj2/; 2p/;

are conformal.
• The Mercator map of the world (2-sphere), given by the parametrization

.u; v/ 7!

�
1

cosh.u/
cos.v/;

1

cosh.u/
sin.v/; tanh.u/

�
;

is conformal.

1By our definition the conformal factor e2u > 0 is strictly positive. If a conformal factor is allowed
to have zeros, then the map is called “weakly conformal.”
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• The Archimedes-Lambert projection (projection of the sphere to the cylinder
along lines perpendicular to the axis) is area-preserving but not conformal. The
system of meridians and parallels of latitude still forms an orthogonal net.

Remark 1. No map from the sphere of the plane R
2 can be both conformal and

area-preserving.

Example 2 ([20]). The metric

1

p20
.dp20 C dp2/; p0 2 .0;1/; p 2 R

n;

on .0; 1/ � R
n is clearly conformally equivalent to the standard Euclidean metric

on that set as a subset of RnC1: This metric has constant sectional curvature �1:

This is the Poincarè half-space model of hyperbolic space.

2.1 Conformal Flatness

It is essential to know when a Riemannian manifold can be mapped to a flat space
by a conformal transformation.

Definition 2. A C1 locally conformally flat manifold .M I g/ is a Riemannian
manifold so that M is of class C1, the metric is of class C0 and every point has
a C1 coordinate system x1; : : : ; xn so that in this coordinate patch the metric has the
form g D f .x/..dx1/2 C : : :C .dxn/2/ for a function f > 0:

The definition is equivalent to

Theorem 1. A Riemannian manifold is C1 locally conformally flat if and only if
M has a cover by open sets fU˛g which are the domain of C1 diffeomorphisms
'˛ W U˛ ! '˛ŒU˛� � R

n onto open sets so that the transition functions

˚˛;ˇ WD '˛ ı '�1
ˇ

ˇ̌
ˇ
'ˇŒU˛\Uˇ�

W 'ˇŒU˛ \ Uˇ� ! '˛ŒU˛ \ Uˇ� are of class C1 and

if g0 is the flat metric on R
n then '�

˛ g0 D �˛g for some positive continuous function
�˛ defined on U˛ .

Theorem 2 (Kuiper). Let .M I g/ be a simply connected, locally conformally flat
manifold of class C1. Then there is a conformal immersion2 f W M ! S

n: If M is
compact, then this map is a conformal diffeomorphism of M with S

n.

Remark 2. The definition of a locally conformally flat manifold is local, but there
are global conformal maps, for example the stereographic projection. Further, due

2An immersion is a differentiable function between differentiable manifolds whose derivative is
everywhere injective.
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to the properties of the covering and the transition functions it is possible to define
a covering map that is conformally flat and defined for the whole manifold.

We would like to restrict our consideration in this section to isothermic surfaces.

Definition 3 (Isothermic surface). A surface f W M 2 ! S
n is called isothermic

if, around each (nonumbilic3) point, there exist conformal curvature line coordinates
.x; y/, i.e.

jfxj2 D jfyj2

fx � fy D 0



” fxf �1

y C fyf �1
x D 0 and fxy 2 span ffx; fyg:

The importance of locally conformally flat manifolds is explained in the follow-
ing theorem.

Theorem 3 (Korn-Lichtenstein). Any two-dimensional Riemannian manifold is
locally conformally flat.

This follows from the existence of isothermal coordinates. We will construct
them explicitly for surfaces of revolution.

Example 3 (Square Clifford torus). Equip the Minkowski space R
5
1 with an

orthonormal basis fe0; e1; : : : ; e4g; that is, hei; eji D ˙ıij with �1 for i D 0

and C1 otherwise. Then

R
2=2�Z2 3 .u; v/ 7!

�
1; 1p

2
cos u; 1p

2
sin u; 1p

2
cos v; 1p

2
sin v

�

parametrizes the square Clifford torus.

Example 4 (Ellipsiod). A curvature line parametrization of the ellipsoid with semi-
axes 0 < a < b < c using Jacobi elliptic functions M ! R

3 is

.x; y/ 7! .ap cdp.x/ ndq.y/; bpq sdp.x/ sdq.y; / cq ndp.x/ cdq.y//;

where sdp; cdp; and ndp denote the Jacobi elliptic functions of pole type d and
module p; and q is the comodule, p2 C q2 D 1: Note that the metric degenerates
exactly at the points where ndp.x/ D ndq.y/ D 1 W There are the points that give the
umbilics (singularities).

Example 5 (Catenoid). A curvature line parametrization of the catenoid with 0 <
a < b < c using Jacobi elliptic functions M ! R

3 is

.x; y/ 7!
�
� a

p artanh
�

cdp.x/
ndq.y/

�
; � b

pq arctan
�

sdp.x/
sdq.y/

�
; � c

q artanh
�

cdq.y/
ndp.x/

��
:

3In the differential geometry of surfaces, umbilics or umbilical points are points on a surface
that are locally spherical. At such points the normal curvature in all directions are equal, hence,
both principal curvatures are equal, and every tangent vector is a principal direction. The name
“umbilic” comes from the Latin umbilicus - navel [29].



308 S. Bernstein and P. Keydel

This definition works globally. Nevertheless, since isothermic surfaces need not
to be analytic, arbitrarily unpleasant configurations of umbilics can occur. Therefore
it is better to work with umbilic-free surface patches or with surface patches that
carry regular curvatures line parameters.

2.2 Conformal Maps on Rotationally Symmetric Surfaces

We want to construct a conformal map from a surface of revolution onto the plane.
We suppose a surface S � R

3 which is formed by rotating a curve f.x; z/ D

.u.�/; v.�//; 0 6 � 6 �g in the x-z-plane around the z axis (u, v are differentiable
and non-negative functions). We obtain

S D
˚
.x; y; z/ 2 R

3 W .x; y; z/T D X.�; �/; � 2 Œ0; 2��; � 2 Œ0; ��


with the parametrization X.�; �/ D

0

@
cos.�/u.�/
sin.�/u.�/
v.�/

1

A : One should note that the

parameter � does not need to be a real angle.
Using the fact that we have a surface of revolution we can obtain a projection

p D .f ı X/.�; �/ D r.�/

�
cos.'/
sin.'/

�
; r > 0:

That means, that all points on the great circle S \ f� D constg are mapped onto a
half-line

ft.cos�; sin�/T ; t > 0g

in R
2 with respect to a rescaling function r D r.�/ > 0. A straightforward

calculation yields an ordinary differential equation for r and the solution reads as

r.�/ D C exp

 Z �
p

u0.�/2 C v0.�/2

u.�/
d�

!
; C 2 R

C

The inverse projection p�1 is given by

p�1 W R2 3

�
x
y

�
7!

�
�

�

�
D

 
arctan 2.y; x/

r�1
�p

x2 C y2
�
!

2 S

where r�1 is the inverse of r and arctan 2.y; x/ is the modified arctan.y=x/. The hard
part is obviously to find r�1:
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Example 6 (Stereographic projection and the sphere). First we consider the unit
sphere S

2 around the center .0; 0; 1/T 2 R
3. We have

S
2 D f.�1; �2; �3/ 2 R

3 W �21 C �22 C .�3 � 1/2 D 1g

The standard parametrization is obviously given by

�1 D cos.�/ sin.�/

�2 D sin.�/ sin.�/; � 2 Œ0; �/; � 2 Œ0; 2�/

�3 D 1 � cos.�/

The so-called stereographic projection consists in the following. For any point P
on the sphere exists a unique line through the same point and the North pole N D

.0; 0; 2/T . This connection line intersects with the x-y-plane and the image P0 of the
stereographic projection is defined by the resulting intersection. With r.�/ we want
to denote the distance between the point P0 and the South pole S. With the aid of the
Intercept theorem we get immediately

2

r.�/
D
2 � .1 � cos.�//

sin.�/
D cot

�
�

2

�

Thus, the stereographic projection p W S
2 n fNg ! R

2 from North pole N onto
tangent plane at South pole is given by

p.�; �/ D 2 tan
�

2

�
cos.�/
sin.�/

�

or equivalently

p.�/ D
2

2 � �3

�
�1
�2

�

where � D .�1; �2; �3/ 2 S
2.

We could have gotten the stereographic projection also with u.�/ D sin.�/,
v.�/ D 1 � cos.�/ and C D 2 from our previous considerations:

r.�/ D 2 exp

 Z �
p

cos.�/2 C sin.�/2

sin.�/
d�

!
D 2 tan

�

2

An easy calculation yields the inversion p�1 W R2 ! S
2.

p�1.x; y/ D .�1; �2; �3/ D

�
4x

x2 C y2 C 4
;

4y

x2 C y2 C 4
;
2x2 C 2y2

x2 C y2 C 4

�



310 S. Bernstein and P. Keydel

Since we should use adjusted coordinates .�; �/ we obtain

p�1.x; y/ D .�; �/ D

 
arctan 2.y; x/; 2 arctan

 p
x2 C y2

2

!!

The weight factors read

� D
r.�/

u.�/
D

1

cos2.�=2/

� D
u
�

r�1
�p

x2 C y2
��

p
x2 C y2

D
4

4C x2 C y2

Remark 3. It is possible to generalize from the spherical projection to an ellipsoidal
projection. Any ellipsoid has the form

X.�; �/ D

0

@
a cos.�/ sin.�/
b sin.�/ sin.�/
1 � cos.�/

1

A

In the case a D b D 1 we have a sphere and for a D 1 or b D 1 we have an ellipsoid
of revolution. But for a ¤ 1 and b ¤ 1 we obtain the most complex case. Then
we call the ellipsoid triaxial and a big effort is necessary to find a conformal map
from the triaxial ellipsoid to R

2, because we cannot use the ellipsoidal stereographic
projection p:

p W .�; �/ 7! 2

q
a2 cos2.�/C b2 sin2.�/ tan

�

2

�
cos.�/
sin.�/

�

It is easy to see that this map is not conformal for a ¤ 1 and b ¤ 1.

Example 7 (Rotated cardioid). In the previous section we considered the sphere
and the stereographic projection. That is a comparatively slight geometry and we
want to make it a bit more difficult by creating a more “realistic” surface. We choose
a so-called cardioid in the x-z-plane, its parametrization is given by

u D x D 2.1 � cos.�// sin.�/ D 2 sin.�/ � sin.2�/

v D z D 2.1 � cos.�// cos.�/C 4 D 2 cos.�/ � cos.2�/C 3

where � 2 Œ0; 2��. Rotating the curve around the z-axis yields an apple-like surface
of revolution. We get the new parametrization

x D 2 cos.�/ sin.�/.1 � cos.�//
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y D 2 sin.�/ sin.�/.1 � cos.�//

z D 2 cos.�/ � cos.2�/C 3

that leads to

r.�/ D C exp

 Z �
p
4.cos � � cos 2�/2 C 4.sin � � sin 2�/2

2 sin.�/ � sin.2�/
d�

!

D C exp

 Z �
p
8 � 8 cos �

2 sin.�/ � sin.2�/
d�

!
D C exp

�
�

1

sin.�=2/

�
tan

�
� C �

4

�

where C 2 R
C is an arbitrary positive constant.

The map as a projection is bijective. The inversion itself has to be done numeri-
cally because we can’t get a closed form for r�1. Only � is always reconstructable
because of � D arctan 2.y; x/.

The weight factors are given by

� D
r.�/

u.�/
D

C exp
�
� 1

sin.�=2/

�
tan

�
�C�
4

�

2 sin.�/ � sin.2�/

� D
u
�

r�1
�p

x2 C y2
��

p
x2 C y2

Example 8 (Rotated nephroid). The planar nephroid is given by the parametriza-
tion

u D x D 3 sin.�/ � sin.3�/

v D z D 3 cos.�/ � cos.3�/C 2
p
2

where � 2 Œ0; 2��, and we obtain

r.�/ D C exp

 Z �
p
9.cos � � cos 3�/2 C 9.sin � � sin 3�/2

2 sin.�/ � sin.2�/
d�

!

D C exp

 Z �
p
36 sin2 �

3 sin.�/ � sin.3�/
d�

!
D C exp

�
�
3 cot.�/

2

�

As we can see, the nephroid is one of the rare examples where we have a closed-
form inverse projection and we do not need numerical algorithms to compute p�1.
We get immediately:
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p�1.x; y/ D .�; �/ D

�
arctan 2.y; x/; arccot

�
�

ln.x2 C y2/

3

��

for C D 1 and finally

� D
r.�/

u.�/
D

C exp
�
�
3 cot.�/
2

�

3 sin.�/ � sin.3�/

� D
u
�

r�1
�p

x2 C y2
��

p
x2 C y2

D
1

p
x2 C y2

"
3 sin

 
arccot

 
�

ln.x2 C y2/

3

!!
� sin

 
3arccot

 
�

ln.x2 C y2/

3

!!#

3 Continuous Wavelet Transforms

We will explain the group theoretic approach in detail.

3.1 Group Theoretic Approach

Definition 4. A group G D .G; ı/ is called a topological group if it is equipped
with a topology, such that the group multiplication G � G ! G, .a; b/ 7! a ı b and
the inversion G ! G, a 7! a�1 are continuous mappings. A topological group is
compact if it is compact as topological (Hausdorff-)space and locally compact if for
every group element a 2 G there exists a neighborhood with compact closure.

Definition 5. Let G D .G; ı/ be a topological group, H a linear space, � W G !

L .H/ a homomorphic (structure preserving) mapping into the group L .H/ of
continuous linear operators from H into itself, i.e. we require

�.g1 ı g2/ D �.g1/�.g2/ and �.e/ D idH

Then the pair .H; �/ is called group representation of G in H.

Some specific definitions about the properties of group representations in Hilbert-
spaces H with an inner product h�; �iH:

• � is said to be unitary if for any g 2 G the operator �.g/ is unitary.
• The representation is called continuous if for any u 2 H the map G 3 g 7!

�.g/u 2 H is continuous on G.
• We call the representation irreducible if there is no proper subspace of H which

is invariant under �.g/ for all g 2 G.
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Definition 6. Let � be a continuous unitary representation of the group G in a
Hilbert-space H with an inner product h�; �iH . An element v 2 H is called an
admissible vector, if

Z

G
jhv; �.g/viHj2 d
.g/ < 1

If there exists an admissible nontrivial element v and � is irreducible, we call �
square-integrable.

Putting all this together leads to the group theoretical definition of the wavelet
transform:

Definition 7. Let G D .G; ı/ be a locally compact, topological group and � a
square-integrable unitary representation of G in a Hilbert-space H. Further let f 2

H. An element  2 H n f0g is called wavelet if  is an admissible vector. The (left)
wavelet transform of f is defined by

L W H ! L2.G/; L .f /.g/ D hf ; �.g/ iH

This approach works well for R
2 and will be explained in the following

subsection.

3.2 Construction of the Continuous Wavelet Transform on R
2

There are many books on wavelets, for example [13, 21, 23, 24]. Continuous
wavelets on R

2 (and analogously on R
n) are defined by the Euclidean group

G D .R2;C/ Ì .RC; �/ � .R;C/ DW .R2 � R
C � R;�/ and consist of motions

Tb W L2.R2/ ! L2.R2/ (translations), R˛ W L2.R2/ ! L2.R2/ (rotations), and the
dilation Da W L2.R2/ ! L2.R2/; where

Tbf .x/ D f .x � b/; b 2 R
2

R˛f .x/ D f .r�˛x/; r�˛ 2 SO.2/
Daf .x/ D a�1f .a�1x/; a 2 R

C WD .0;1/

:

The group law in G reads as

.b1; a1; ˛1/ � .b1; a1; ˛1/ D .b1 C a1r˛1b2; a1a2; ˛1 C ˛2/

The left invariant Haar measure on G is d
L D a�3d2b da d˛ and

.a; b; ˛/ DW g 7! �.g/ D �.b; a; ˛/ D TbDaR˛
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is a square-integrable and unitary representation of the (affine) group G in the
Hilbert-space L2.R2/.

Therefore wavelets can be defined in the following way:

Definition 8 (2D continuous wavelet transform (CWT)). A complex-valued
function  2 L2.R2/ is a (mother-)wavelet, if

Z

G
jh ;�.b; a; ˛/ iHj2 d
L.g/ D kL . /k

2
L2.G/ < 1

and the left wavelet transform L W L2.R2/ ! L2.G; d
L/ is given by

L .f /.g/ D hf ; �.g/ iL2.R2/ D a�1

Z

R2

 .a�1r�˛.x � b//f .x/d2x

But this construction fails on manifolds M . The irreducibility of the represen-
tation ensures the invertibilty of the wavelet transform on its range, but unitary
representations of compact groups in infinite dimensional spaces such as L2.M /

are always reducible.
There are ways to overcome this difficulties. In [2, 3] quasi-regular representa-

tions of the Lorentz group SO.n C 1; 1/ were used to define rotations and dilations
on the sphere S

n ' SO.n C 1; 1/=SO.n; 1/: To ensure square-integrability, one
considers only the admissible sections of the Lorentz group SO.n C 1; 1/: In some
sense that might be interpreted as a “point-wise” projection of wavelets on R

n to the
sphere S

n:

An alternative approach by [18] goes back to definition of a continuous wavelet
transform by singular integrals. Translations are defined as rotations of the sphere
and the wavelets can be defined as a convolution with an approximate identity.
Typical kernels are the Gauß-Weierstraß kernel and the Abel-Poisson kernel. That
idea can be generalized to so-called diffusive wavelets [8, 14]. Here the translation is
the group action on the manifold and the dilations are defined by a diffusion kernel.

The discrete analogue of these are diffusion wavelets by [12].

3.3 Projections and Inner Products in L2.M /

We already know that a strict group theoretical approach fails. Our goal is to lift the
wavelet theory in R

2 onto a C1-surface M .
Let M � R

3 be a C1-surface defined by the parametrization

M D f.�1; �2; �3/ 2 R
3 W .�1; �2; �3/

T D X.�; �/; � 2 I� ^ � 2 I�g
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where I� and I� are open intervals and X 2 C1.I� � I� /. The length of the normal is
represented as a function L W I� � I� ! R

C [ f0g,

L.�; �/ D kX� � X�k2 D

����
@X

@�
�
@X

@�

����
2

;

and the area element on M is d
.�/ D d
.�; �/ D L.�; �/d� d� . Next, we
consider a global bijective projection p W M ! R

2. We immediately obtain the
following relations between d
 and the Lebesgue measure dx in the plane:

dx D
j det Jp.�; �/j

L.�; �/„ ƒ‚ …
DW�.�;�/

d
 and d
 D
.L ı p�1/.x; y/

j det.Jp ı p�1/.x; y/j
„ ƒ‚ …

DW�.x;y/

dx

The functions � W M ! R
C [ f0g and � W R2 ! R

C [ f0g are weights and Jp

denotes the Jacobian of p.
In L2.M / we define the inner product h�; �i� as

hQf ; Qgi� WD hQf ı p�1; Qg ı p�1iL2.R2/ for all Qf ; Qg 2 L2.M /

This definition yields further

hf ı p; g ı pi� D hf ı p ı p�1; g ı p ı p�1iL2.R2/ D hf ; giL2.R2/

and leads us finally to the following

Proposition 1. Let ˘ W L2.M / ! L2.R2; dx/ be an operator defined by

˘ Qf WD � � .Qf ı p�1/; for all Qf 2 L2.M /

Its inverse reads then ˘�1f D � � .f ı p/; f 2 L2.R2; dx/.
Moreover ˘ (˘�1, respectively) is a unitary operator.

Consequently the orthogonality in L2.R2; dx/ is transferred to L2.M /! That will
allow us to use our known orthogonal wavelet bases in order to construct orthogonal
wavelet bases on M .

Remark 4. If there exist constants 0 < m 6 M < 1 such that

m 6 �.�/ 6 M for all � 2 M

then the norm k � k� D
p

h�; �i�, induced by the above defined inner product, is
equivalent to the usual 2-norm of L2.M ; d
/.

Remark 5. For specific projections see Example 6, page 309, Example 7, page 310,
Example 8, page 311, and Remark 3, page 310.
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3.4 The Lifted Continuous Wavelet Transform

Following the paragraph before we aim for a “projected” continuous wavelet
transform, that is, we lift the usual transform from R

2 to our surface M . Therefore
our starting point is the left CWT:

L W L2.R2/ ! L2.G/; L .f /.g/ D hf ; �.g/ iL2.R2/

where G is the Euclidean group (cf. Section 3.2), i.e.

G D .R2;C/ Ì ..RC; �/ � .R;C//

and �.g/ D �.b; a; ˛/ D TbDaR˛ is the known group representation, that is,
�.g/ D a�1 .a�1r�˛.� � b//

Now we consider a conformal, global bijective projection p W M ! R
2 between

our surface and the plane. That leads us to lifted/projected wavelets and signals:

L2.R2/ 3  .x; y/
p

Ý Q .�; �/ WD . ı p/.�; �/ 2 L2.M /

L2.R2/ 3 f .x; y/
p

Ý Qf .�; �/ WD .f ı p/.�; �/ 2 L2.M /

However we require that  .x; y/ is an admissible vector in L2.R2/ that means  
satisfies the admissibility condition

Z

G
jh ;�.g/ iL2.R2/j

2d
L.g/ < 1

with the known Haar measure d
L D a�3d2b da d˛.

Definition 9. For Qf 2 L2.M / the lifted continuous wavelet transform LM
Q 

W

L2.M / ! L2.G/ is defined by

LM
Q 
.Qf /.g/ WD hQf ; Q gi� D

Z

M

Q g.�/Qf .�/�
2.�/d!.�/

D

Z

R2

. Q g ı p�1/.x; y/.Qf ı p�1/.x; y/dx dy D L Q ıp�1 .Qf ı p�1/.g/;

where

Q g WD .�.g/. Q ı p�1// ı p D .�.g/ / ı p D  g ı p D a�1 .a�1r�˛.p. ; �/� b// 2 L2.M /

Remark 6. It should be mentioned that Q D  ıp is strictly speaking no admissible
vector in the Hilbert-space L2.M /. Although h Q ; Q gi� D h ; giL2.R2/, we obtain

Z

GM

jh Q ; Q gi�j2d
L.g/ ¤

Z

G
jh ; giL2.R2/j

2d
L.g/
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since the parameter space G depends on the manifold and it holds generally
GM ¤ G.

Due to L Q ıp�1 .Qf ı p�1/.g/ D LM
Q 
.Qf /.g/ it is easily seen that all properties of

the wavelet transform are transferred by the global bijective projection p. More
precisely we can state:

Theorem 4. The lifted continuous wavelet transform has the following
properties:

1. Plancherel identity: For Qf1; Qf2 2 L2.M / we have

Z

G
LM

Q 
.Qf1/.g/LM

Q 
.Qf2/.g/d
L.g/ D Qc Q hQf1; Qf2i�

with Qc Q D kC. Q ı p�1/k2
L2.R2/

and C is a uniquely determined operator.

2. Unitarity and invertibility: The wavelet operator WM
Q 

WD .Qc Q /
�1=2LM

Q 
is unitary

and thus invertible. Further

.LM
Q 
/�1 D .WM

Q 
/� D

1

Qc Q 

Z

G
w.g/ Q gd
L.g/; w 2 L2.G; d
L/:

Remark 7. The same results can be obtained for the lifted right continuous wavelet
transform.

Proof. We have

Z

G
LM

Q 
.Qf1/.g/LM

Q 
.Qf2/.g/d
L.g/ D

Z

G
L .f1/.g/L .f2/.g/d
L.g/:

For the wavelet transform in R
2 there exists a uniquely determined operator C with

Z

G
L .f1/.g/L .f2/.g/d
L.g/ D hC 1; C 2iL2.R2/ hf1; f2iL2.R2/

D jjC. Q ı p�1/jj2L2.R2h
Qf1; Qf2i�:

Further, the map f 7! 1p
Qc

Q 

LM
Q 

is an isometry between L2.M / and L2.G; d
L/:

That implies that WM
Q 

D .Qc Q /
�1=2LM

Q 
is unitary and the inverse transform is given

by .LM
Q 
/�1 D .WM

Q 
/�: ut
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4 Multiresolution Analysis of L2.M /

Let D be an n � n nonsingular matrix with the properties:

1. D has only integer entries, i.e. DZ
2 � Z

2

2. � 2 	.D/ ) j�j > 0

Then D is called dilation matrix.

Definition 10 (Multiresolution Analysis of R
2). A multi-resolution analysis of

L2.Rn/ is an increasing sequence of closed subspaces

: : : � V�2 � V�1 � V0 � V1 � V2 � : : :

where we require

\

j2Z

Vj D f0g and
[

j2Z

Vj D L2.R2/

together with

1. f .x/ 2 Vj , f .Dx/ 2 VjC1; x 2 R
2:

2. There exists a function � 2 V0 such that f�.x � k/; k 2 Z
2g is an orthonormal

basis of V0.

A particular case is that of tensor product wavelets. Then we obtain a 2D-multi-
resolution simply by taking the direct product of two one-dimensional structures
([5]). We take a multi-resolution analysis of L2.R/, namely fVj; j 2 Zg, and
define by

˚
.2/Vj WD Vj ˝ Vj; j 2 Z



the resulting multi-resolution analysis associated to the dilation matrix D D

diag.2; 2/ in L2.R2/. The orthogonal complement of .2/Vj in .2/VjC1 is

.2/VjC1 D .2/Vj ˚ .2/Wj

and

.2/VjC1 D V.x/
jC1 ˝ V.y/

jC1

D .V.x/
j ˚ W.x/

j /˝ .V.y/
j ˚ W.y/

j /

D .V.x/
j ˝ V.y/

j /˚ .V.x/
j ˝ W.y/

j /
„ ƒ‚ …

DW.2/Wh
j

˚ .W.x/
j ˝ V.y/

j /
„ ƒ‚ …

DW.2/Wv
j

˚ .W.x/
j ˝ W.y/

j /
„ ƒ‚ …

DW.2/Wd
j

D.2/ Vj ˚ .2/Wj

where .2/Wj decomposes in three subspaces .2/Wj D .2/Wh
j ˚ .2/Wv

j ˚ .2/Wd
j .
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The two-dimensional multi-resolution analysis requires only one scaling function

˚.x; y/ WD �.x/�.y/ 2 .2/V0;

but three wavelet functions which detect either horizontal and vertical edges or
oblique edges, as the notation suggests (by horizontal edges we mean discontinuities
in the vertical direction and vertical edges are discontinuities in the horizontal
direction):

� h.x; y/ WD �.x/ .y/ 2 .2/Wh
0 ; �v.x; y/ WD  .x/�.y/ 2 .2/Wv

0 ;

� d.x; y/ WD  .x/ .y/ 2 .2/Wd
0 :

The usual convention

˚
j
k;l.x; y/ WD �j;k.x/�j;l.y/; �

j;h
k;l .x; y/ WD �j;k.x/ j;l.y/;

�
j;v
k;l .x; y/ WD  j;k.x/�j;l.y/; �

j;d
k;l .x; y/ WD  j;k.x/ j;l.y/;

leads immediately to filter-based representations, i.e.

˚.x; y/ D 2
X

k;l2Z

hkhl�1;k.x/�1;l.y/ D 2
X

k;l2Z

hk;l˚
1
k;l.x; y/ hk;l WD hkhl;

� h.x; y/ D 2
X

k;l2Z

hkgl�1;k.x/�1;l.y/ D 2
X

k;l2Z

gh
k;l˚

1;h
k;l .x; y/; gh

k;l WD hkgl;

�v.x; y/ D 2
X

k;l2Z

gkhl�1;k.x/�1;l.y/ D 2
X

k;l2Z

gvk;l˚
1;v
k;l .x; y/; gvk;l WD gkhl;

� d.x; y/ D 2
X

k;l2Z

gkgl�1;k.x/�1;l.y/ D 2
X

k;l2Z

gd
k;l˚

1;d
k;l .x; y/; gd

k;l WD gkgl;

and we may choose gk D .�1/kh1�k.
Furthermore it can easily be seen that the sets f˚

j
k;l; k; l 2 Zg together with

f�
j;h
k;l ; k; l 2 Zg [ f�

j;v
k;l ; k; l 2 Zg [ f�

j;d
k;l ; k; l 2 Zg form orthonormal bases in .2/Vj

and .2/Wj.
Thus, a given signal f 2 L2.R2/ is represented at resolution 2j by

fj D
X

k;l2Z

cj;k;l˚
j
k;l C

X

˛2fh;v;dg

X

k;l2Z

d˛j;k;l�
j;˛
k;l ;

where cj;k;l D hf ; ˚ j
k;liL2.R2/ and d˛j;k;l D hf ; � j;˛

k;l iL2.R2/:



320 S. Bernstein and P. Keydel

4.1 The Lifted Discrete Wavelet Transform

We lift a multi-resolution analysis of L2.R2/ to L2.M /. In order to be able to transfer
the results easily, we choose again the particular case of tensor product wavelets, i.e.
D D diag.2; 2/:

n
.2/V j WD

n
f ı p W f 2 V.x/

j ˝ V.y/
j

oo

j2Z

Thus, we obtain .2/VjC1 D .2/Vj ˚ .2/W h
j ˚ .2/W v

j ˚ .2/W d
j .

Moreover the lifting leads to a family of scaling functions Q̊ j
k;l and to three

families of wavelet functions Q�
j;˛
k;l ; ˛ 2 fh; v; dg:

Q̊ j
k;l.�; �/ WD .˚

j
k;l ı p/.�; �/ D .�j;k ı p1/.�; �/ � .�j;l ı p2/.�; �/;

Q�
j;h
k;l .�; �/ WD .�

j;h
k;l ı p/.�; �/ D .�j;k ı p1/.�; �/ � . j;l ı p2/.�; �/;

Q�
j;v
k;l .�; �/ WD .�

j;v
k;l ı p/.�; �/ D . j;k ı p1/.�; �/ � .�j;l ı p2/.�; �/;

Q�
j;d
k;l .�; �/ WD .�

j;d
k;l ı p/.�; �/ D . j;k ı p1/.�; �/ � . j;l ı p2/.�; �/;

where p1 and p2 are the components of the projection p, that is, .x; y/ D

.p1.�; �/; p2.�; �//. For each j 2 Z, f�
j;˛
k;l W k; l 2 Z; ˛ 2 fh; v; dgg is an

orthonormal basis for Wj.
Next, we want to obtain scaling and wavelet filters Qhk;l and Qgk;l. The defining

equations are

Q̊ WD Q̊ 0
0;0 D 2

X

k;l2Z

Qhk;l Q̊ 1
k;l (two-scale relation);

Q�˛ WD Q�0;˛
0;0 D 2

X

k;l2Z

Qgk;l Q�1;˛
k;l ˛ 2 fh; v; dg:

The projection does not have an influence on these filters since

Qhk;l D h Q̊ ; Q̊ j
k;li� D h˚;˚

j
k;liL2.R2/ D hk;l

and

4
X

k;l2Z

hk;l Qg˛k;l D h Q̊ ; Q�˛i� D h˚;�˛iL2.R2/ D 4
X

k;l2Z

hk;lg˛k;l:

That also implies Qg˛k;l D g˛k;l, ˛ 2 fh; v; dg.
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Moreover, the lifting leads to

Q̊ j
k;l.�; �/ WD .˚

j
k;l ı p/.�; �/ and Q�

j;˛
k;l .�; �/ WD .�

j;˛
k;l ı p/.�; �/:

The lifted DWT gives again a recursion to calculate the orthogonal projection of a
signal Qf 2 L2.M / onto the spaces .2/Vj and .2/Wj:

hQf ; Q̊ j
k;li� D

X

m;n2Z

hm�2k;n�2lhQf ; Q̊ jC1
m;n i�

D
X

m;n2Z

hm�2k;n�2lhQf ı p�1; ˚ jC1
m;n iL2.R2/;

hQf ; Q�
j;˛
k;l i� D

X

m;n2Z

g˛m�2k;n�2lh
Qf ; Q̊ jC1

m;n i�

D
X

m;n2Z

g˛m�2k;n�2lh
Qf ı p�1; ˚ jC1

m;n iL2.R2/:

In general we obtain

Theorem 5. Let p W M ! R
2 be the projection and fVj; j 2 Zg be a general

multi-resolution analysis of L2.R2/ with dilation matrix D 2 R
2�2. We define V j WD

ff ıp; f 2 Vjg. Then the family of sets fV j; j 2 Zg yields a multi-resolution analysis
of L2.M / with the same dilation matrix.

Proof. We must check five conditions:

1. increasing sequence of closed subspaces: Vj � VjC1 for all j 2 Z:

The sequence is obviously increasing. Using the unitarity of the map � W

L2.M / ! L2.R2/ it is obvious that Vj is a closed subspace of L2.M /.

2.
\

j2Z

Vj D f0g This follows immediately from the definition.

3. The closure clL2.M /

[

j2Z

Vj D L2.M /:

Again, that follows immediately from the definition.
4. Qf .�/ 2 Vj , Qf .D�/ 2 VjC1 for all j 2 Z:

We have f .x/ 2 Vj if and only if f .Dx/ 2 VjC1. Thus we obtain f .p.�// 2 Vj

if and only if f .D � p.�// 2 VjC1.
5. 9 Q� 2 V0 W f Q�.� � k/; k 2 Z

2g is an orthonormal basis in V0:
We have f .x/ 2 Vj if and only if f .Dx/ 2 VjC1. Thus we obtain f .p.�// 2 Vj

if and only if f .D � p.�// 2 VjC1.
ut
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5 Frame Theory

We will briefly recall definitions and properties of frames. See, for example, [11].
Let H be a separable Hilbert space. A family ffigi2I is a frame for H; if there exist
0 < A � B < 1 such that for all f 2 H;

Ajjf jj2 �
X

i2I

jhf ; fiij
2 � Bjjf jj2:

The constants A and B are called lower and upper frame bound for the frame. Those
sequences which satisfy only the upper inequality are called Bessel sequences. A
frame is tight, if A D B; and a Parseval frame if A D B D 1:

Two frames ffigi2I ; fgigi2I for H are equivalent, if there exists an invertible
operator U W H ! H satisfying Ufi D gi for all i 2 I: If U is an unitary operator,
ffigi2I and fgigi2I are called unitarily equivalent.

The synthesis operator T W `2.I/ ! H is defined by T.c/ D
P

i2I cifi: The adjoint
operator T� W H ! `2.I/, the so-called analysis operator is given by T�.f / D

fhfi; f igi2I :

Then the frame operator S.f / D TT�.f / D
P

i2Ihf ; fiifi is a bounded, invertible,
and positive operator mapping H onto itself. This provides the reconstruction
formula

f D S�1S.f / D
X

i2I

hf ; fiiQfi D
X

i2I

hf ; Qfiifi; Qfi D S�1fi:

For practical purposes one must discretize the continuous wavelet transform. We
emphasize the following:

Theorem 6. Let f m0;m1;j;l W .m0;m1; j; l/ 2 Z
2 � Z � ZL0g be a frame for the

Hilbert-space L2.R2/, where the set Z2�Z�ZL0 is the discretized parameter space.
Moreover, let p W M ! R

2 be the projection. Then the set
˚

Q m0;m1;j;l WD  m0;m1;j;l ı p W .m0;m1; j; l/ 2 Z
2 � Z � ZL0


� L2.M /

is a frame for L2.M / with the same frame bounds.

Proof. The frame f m0;m1;j;l W .m0;m1; j; l/ 2 Z
2 � Z � ZL0g satisfies the frame

condition, that is

Akf k2L2.R2/ 6
X

Z2�Z�ZL0

jhf ;  m0;m1;j;liL2.R2/j
2 6 Bkf k2L2.R2/

Due to kQf k2� D kf k2
L2.R2/

and hQf ; Q i� D hf ;  iL2.R2/ we obtain immediately

AkQf k2� 6
X

Z2�Z�ZL0

jhQf ; Q m0;m1;j;li�j2 6 BkQf k2� 8Qf 2 L2.M /

ut
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5.1 Frames for Locally Conformally Flat Manifolds

A conformal mappings can have umbilic points (singularities). These singularities
create problems for the projection wavelets, just think of the north pole of the
stereographic projection. On the other hand, a locally conformal manifold can be
covered in many different ways by countable family of sets Ui, where the Ui can be
conformally mapped to a compact set in R

2 and the mapping has no singularities.

Example 9. The sphere can be covered by a finite set of spherical caps of fixed size.
Now, we project each cap by a stereographic projection where center of the cap is
in the south pole. That means there are no singularities.

The new problem that arises is that we don’t know how our projected wavelets on
different sets fit to each other. Due to the different conformal projections we don’t
get a global wavelet transform. We will build a new Hilbert space on the union of
all coverings and prove that the union of all projected frames is a frame for this new
Hilbert space.

This idea fits the general concept known as frames of subspaces which are
discussed in [10]. Based on the covering we define a Hilbert space

H D ˚i2IL
2.Vi; d
i/ D fffigi2I W fi 2 L2.Vi; d
i/ and

X

i2I

jjfijj
2
L2.Vi;d
i/

< 1g

with inner product

hffigi2I ; fgigi2Ii D
X

i2I

hfi; gii� D

Z

Vi

fi.x/gi.x/ d
i;

where d
i D �2.�/d!.�/ is determined by the (local) conformal transform. There
can be different Hilbert spaces for the same manifold .M I g/:

Remark 8. The covering fVig of M should be chosen such that each point of M
is an inner point of at least one subset Vi, because singularities have usually their
support on set of measure zero and the boundary of Vi is a set of measure zero which
is neglected in L2.Vi; d
i/:

Definition 11 ([10]). The family of closed subspaces fWigi2I of the Hilbert space
H is a frame of subspaces for H, if there exist constants 0 < C � D < 1 such that

Cjjf jj2 �
X

i2I

jj�Wi.f /jj
2 � Djjf jj2 for all f 2 H:

We have already frames for L2.Vi; d
i/ D Wi and we want to build a frame for
H from these wavelet frames.
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Definition 12. Let fL2.Vi; d
i/gi2I be a frame of subspaces for H. Then the
synthesis operator H is the operator

TV W ˚i2IL
2.Vi; d
i/ ! H

defined by

TV.f / D
X

i2I

fi for all f D ffig D
X

i

fi�Vi 2 ˚i2IL
2.Vi; d
i/:

Theorem 7 ([10]). For each i 2 I let ffijgj2Ji be a sequence of frames in H with
frame bounds Ai and Bi. Define L2.Vi; d
i/ D spanj2Ji

ffijg for all i 2 I and choose
an orthonormal basis feijgj2Ji for each subspace L2.Vi; d
i/: Suppose that 0 < A D

infi2I Ai � B D supi2I Bi < 1: The following conditions are equivalent:

• ffijgi2I;j2Ji is a frame for H:
• feijgi2I;j2Ji is a frame for H:
• fL2.Vi; d
i/gi2I is a frame of subspaces for H:

Remark 9. In what follows we denote by �Vi the projection onto L2.Vi; d
i/:

The following results are adaptions of results from [10] to our case.

Proposition 2. Let fL2.Vi; d
i/gi2I be a frame of subspaces for H. Then the
analysis operator T�

V W H ! ˚i2IL2.Vi; d
i/ is given by

T�
V .f / D f�Vi.f /gi2I :

Proof. Let f 2 H and g D fgigi2I 2 ˚i2IL2.Vi; d
i/. By definition we get

hT�
V .f /; gi D hf ; TV.g/i D hf ;

X

i2I

gii D
X

i2I

hf ; gii

D
X

i2I

h�Vi.f /; gii� D hf�Vi.f /gi2I ; fgigi2Ii:

ut

The standard frame theory can be extended to our case.

Theorem 8. Let fL2.Vi; d
i/gi2I be a family of subspaces in H: Then the following
conditions are equivalent:

(i) fL2.Vi; d
i/gi2I is a frame of subspaces.
(ii) The synthesis operator TV is bounded, linear, and onto.

(iii) The analysis operator T�
V is a (possibly into) isomorphism.
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Proof. .ii/ ” .iii/ is a general result for operators on a Hilbert space. The
equivalence .i/ ” .iii/ follows immediately from

jjT�
V .f /jj

2 D jjf�Vi.f /gi2Ijj
2 D

X

i2I

jj�Vi.f /jj
2:

ut

The next step is to define equivalence classes of frames of subspaces.

Definition 13. Let fL2.Vi; d
i/gi2I and fL2.eVi; d Q
igi2I be frames of subspaces.
Then the following two conditions are equivalent:

(i) fL2.Vi; d
i/gi2I and fL2.eVi; d Q
igi2I are equivalent.
(ii) There exists an invertible operator U on H such that TV D U�1T QVU:

If the operator U is unitary, the frames are called unitarily equivalent.

The frame can be built from the frames for each subspaces.

Definition 14. Let fL2.Vi; d
i/gi2I be a frame of subspaces. Then the frame
operator SV is defined by

SV.f / D TVT�
V .f / D TV.f�Vi.f /gi2I/ D

X

i2I

�Vi.f /:

Theorem 9. Let fL2.Vi; d
i/gi2I be a frame of subspaces with frame bounds C and
D. Then the frame operator SV is a positive, self-adjoint, invertible operator on H
with CI � SV � DI: Further,

f D
X

i2I

S�1
V �Vi.f / for all f 2 H:

Proof. The operator Sv is positive because for any f 2 H we have

hSV.f /; f i D h
X

i2I

�Vi.f /; f i D
X

i2I

h�Vi.f /; f i D
X

i2I

jj�Vi.f /jj
2:

Further, we obtain

hCf ; f i D Cjjf jj2 �
X

i2I

jj�Vi.f /jj
2 D hSV.f /; f i � hDf ; f i

and we conclude that CI � SV � DI and hence SV is an invertible operator on H:
For f ; g 2 H we have

hSV.f /; gi D
X

i2I

h�Vi.f /; gi D
X

i2I

hf ; �Vi.g/i D hf ; SV.g/i:
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Thus SV is self-adjoint. The reconstruction formula follows from

f D S�1
V SV.f / D

X

i2I

S�1
V �Vi.f /:

ut

6 Examples

In the last section we present three different examples of projection wavelets, where
the last two examples are variations of the first.

6.1 Example 1

Our aim is the illustration of a discrete wavelet transform on the sphere and on the
rotated nephroid.

We consider the function f .�; � C �0/ 2 L2.M /, which was also used in [28],
defined by

f .�; �/ WD

(
1; � > �

2

.1C 3 cos2 �/�1=2; � < �
2

where �0 2 Œ0; �� is an arbitrary constant. It can easily be seen that the function
f .�; � C �0/ and its gradient rf are continuous. However, the second partial
derivative with respect to � has a discontinuity on the circle � D �

2
� �0 since

lim
�!�=2��0�0

@2� f .�; �/ D �3 but lim
�!�=2��0C0

@2� f .�; �/ D 0:

Figure 1a,b illustrates the data where the green dashed line represents the circle
� D �

2
� �0:

That jump discontinuity is supposed to be detected by a discrete wavelet trans-
form, i.e. the discontinuity should be seen in the wavelet coefficients. Therefore, we
need appropriate wavelets. To find such wavelets we expand f0 WD f

ˇ̌
fconst:g�Œ0;��

into
its Taylor series around point �0:

f0.�/ D f0.�0/C
@f0
@�
.�0/.� � �0/

„ ƒ‚ …
continuous for all �02Œ0;��

C
1

2

@2f0
@�2

.�0/.� � �0/
2 C : : :
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Fig. 1 (a) Data on the sphere with �0 D 40ı. (b) Data on the rotated nephroid with �0 D 40ı.

Since we have a discontinuous second derivative and a continuous function and first
derivative the affine-linear term is continuous for all �0. That means that the left
term does not indicate the discontinuity and all necessary information are contained
in the right sum. Consequently we must suppress the constant and the linear term,
what can be achieved by using a wavelet with two vanishing moments at least. We
use the Daubechies D6 wavelet that has three vanishing moments.

It can easily be seen that scaling and wavelet filters do not depend on the manifold
and, furthermore, that a given signal on the plane R

2 or on the manifold M can be
represented by the same matrix F D .fi;j/ (its discretization). After generating the
discrete data set

F WD

�
f

�
k
2�

K
; �0 C l

�

L

��K;L

k;lD0

2 R
.KC1/�.LC1/

we obtain the discrete wavelet transform of F. Detecting the discontinuity is then
equivalent with detecting either a horizontal edge or vertical edge in the matrix
F, depending on how one chooses the axes. Since crucial information for edge
detection are stored in the wavelet spaces Wj we are interested in the coefficients
Qdj;˛

k;l where ˛ D v or ˛ D h. Moreover, it becomes apparent that a one-level
decomposition is already sufficient and we obtain finally

Qd�1;˛
k;l D

X

m;n

g˛m�2k;n�2lFm;n

where Fm;n is the matrix entry of F at position .m; n/ and ˛ 2 fv; hg.
Figure 2 shows the mentioned wavelet coefficients as a discrete plot where the

angle � is fixed. The horizontal axis represents the polar angle � . We see that the
critical point � D 90ı � 40ı D 50ı was detected and the chosen Daubechies D6
wavelet does the job easily as expected.
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Fig. 2 Discrete plot with
�0 D 40ı.
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Fig. 3 (a) DWT on the sphere, �0 D 40ı. (b) DWT on the rotated nephroid, �0 D 40ı.

The next step is to lift everything back onto the manifold. The corresponding
results are illustrated in Figure 3.

The critical circle � D �
2

� �0 is distinctly recognizable.

6.2 Example 2

So far, we have dealt with rather simple manifolds. But our implementation of the
discrete wavelet transform is not limited to these manifolds. In order to demonstrate
this we extend the previous example and consider more “distorted” surfaces.
Such surfaces can be obtained by combining the original parametrization with an
additional trigonometrical term. In our case we replace the two-sphere from the first
example with a modified sphere M whose parametrization is given by

8
ˆ̂<

ˆ̂:

x D cos�
�
sin � C 1

30
sin.19�/

�

y D sin�
�
sin � C 1

30
sin.19�/

�
� 2 Œ0; 2��; � 2 Œ0; ��

z D 1 � cos � � 1
30

cos.19�/
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Fig. 4 (a) The modified sphere. (b) DWT on the modified sphere, �0 D 35ı.

Now, let us apply the method from Example 1 to the modified sphere. The modified
manifold does not affect numerical results since all filters and the discretization of
the signal are independent of the chosen surface (Figure 4).

The function f 2 L2.M / remains unchanged, but is now defined on the modified
sphere. The green dashed line represents again the critical circle � D �

2
� �0.

As we have already mentioned, there are no quantitative differences between the
wavelet coefficients. We can proceed as described in Example 1 (with adjusted �0),
but at the end we lift our results onto M instead of lifting them onto the two-sphere.

The jump discontinuity is just as well detected.

6.3 Example 3

In the last example we want to construct a more complicated function, but our aim
is again a discrete wavelet transform on the two-sphere. Let us start by modifying
the function f 2 L2.M / such that the occurring jump discontinuities of the second
partial derivative (with respect to � ) are no longer on a circle � D const. We require
that all points of discontinuity vary sinusoidally from the equatorial angle �. That
leads to

f .�; �/ WD

8
<

:
1; � > �

2
C sin.4�/=7

�
1C 3 cos2

�
�

�C2 sin.4�/=7�
���1=2

; � < �
2

C sin.4�/=7
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Fig. 5 The modified function on the two-sphere with �0 D 40ı.

The function f .�; � C �0/, �0 2 Œ0; ��, and the gradient rf are still continuous, but
the second partial derivative with respect to � has all discontinuities located on the
critical line

� D
�

2
C

sin.4�/

7
� �0:

Figure 5 illustrates the effect on the two-sphere (the dashed line represents the
critical line):

We generate the new discrete data set

F D

�
f

�
k
2�

K
; �0 C l

�

L

��K;L

k;lD0

2 R
.KC1/�.LC1/

But we do not know which wavelet space W ˛
�1 contains the most significant

information to detect the discontinuity. In the first example the decision was quite
easy since we had to detect either a horizontal edge or a vertical edge. Here we have
a curved edge and it might be that even all three wavelet spaces are qualified for
detecting. Hence we must experiment and choose coefficients which are related to
two different wavelet spaces:
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1. In order to achieve comparability we choose the same wavelet that we have
already used in example 1 (˛ D v or ˛ D h, depending on the axes)

2. Furthermore, we consider the case ˛ D d since the diagonal wavelet detects
normally oblique edges very well.

It turns out that the diagonal wavelet detects indeed only the oblique part and is not
able to detect the discontinuity completely.

7 Final Comments

We have demonstrated that projection wavelets can be defined on a conformal
manifold. Any 2-dimensional Riemannian manifold is locally conformally flat
which gives a wide range of applications to the projection method.

Although a locally conformally flat manifold can have a global conformal
mapping, this mapping might have singularities. To avoid these singularities a patch
of locally conformally flat manifolds can be used. Similar problems occur in the
case of a simple grid of R2 that becomes distorted on the manifold.

The overall advantage of projections methods is that they are simple to apply to a
large number of manifolds. The main examples are the two-dimensional isothermic
manifolds. But the method is not restricted to two-dimensional manifolds.
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27. D. Roşca, Wavelets on two-dimensional manifolds, Habilitation Thesis, University of Cluj-
Napoca (Romania), 2012
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Quasi Monte Carlo Integration
and Kernel-Based Function Approximation
on Grassmannians

Anna Breger, Martin Ehler, and Manuel Gräf

1 Introduction

The present paper is dedicated to numerical experiments concerning two classical
problems in numerical analysis, numerical integration and function approximation.
The novelty of our experiments is that we work on the Grassmannian manifold as
an example of a compact Riemannian manifold illustrating theoretical results in the
recent literature.

Indeed, recent data analysis methodologies involve kernel-based approximation
of functions on manifolds and other measure spaces, cf. [25, 26] and [17–19].
The kernels are build up by what is known as diffusion polynomials, which are
eigenfunctions of elliptic differential operators, commonly chosen as the Laplace-
Beltrami operator when dealing with compact Riemannian manifolds.

Numerical implementations of the approximation schemes require pointwise
evaluation of the eigenfunctions. However, explicit formulas for eigenfunctions are
only known in few special cases. If the manifold is the unit sphere Sd�1, for instance,
then the eigenfunctions of the spherical Laplacian are the spherical harmonics,
which are indeed polynomials in the usual sense. The corresponding kernels for
the sphere have been computed explicitly in [23, 24].

The kernel-based approximation requires the computation of the corresponding
integral operator, see (7) in Section 3. In the realm of numerical integration, the
integral itself is usually approximated by a weighted sum over sample values, see
also [15, 16]. The latter fits well to the common scenario when the target function
needs to be approximated from a finite sample in the first place.
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Numerical integration on Euclidean spaces is a classical problem in numerical
analysis. Recently, Quasi Monte Carlo (QMC) numerical integration on compact
Riemannian manifolds has been studied in [6] from a theoretical point of view, see
also [28]. If more and more samples are used, then the smoothness parameter of
Bessel potential spaces steers the decay of the integration error. QMC integration has
been introduced for the sphere in [7], where many explicit examples are provided
and extensive numerical experiments illustrate the theoretical claims.

The major aim of the present paper is to provide numerical experiments for the
above integration and approximation schemes when the manifold is the Grassman-
nian, i.e., the collection of k-dimensional subspaces in R

d, naturally identified with
the collection Gk;d of rank-k orthogonal projectors on R

d, cf. [8, Chapter 1].
Therefore, we require explicit formulas of the kernels used in [25, 26]. Indeed,

the degree of a diffusion polynomial, by definition, relates to the magnitude of the
corresponding eigenvalues. We check that diffusion polynomials of degree at most
2t=

p
k are indeed usual multivariate polynomials of degree t restricted to the Grass-

mannian. The explicit formula for the kernel is derived through generalized Jacobi
polynomials. By computing cubature formulas on Grassmannians through some
numerical minimization process, we are able to provide numerical experiments for
the approximation of functions on Grassmannians and for the QMC integration on
Grassmannians supporting the theoretical results in [6, 25, 26].

The outline is as follows: In Section 2 we recall QMC integration from [6, 7],
and we recall the approximation scheme from [25, 26] in the special case of
the Grassmannian in Section 3. Section 4 provides feasible formulations for
numerical experiments. Indeed, Section 4.1 is devoted to derive explicit formulas
for the involved kernel by means of generalized Jacobi polynomials. We check
the relations between diffusion polynomials and ordinary polynomials restricted to
the Grassmannian in Section 4.2, and we provide the framework for numerically
computing cubatures in Grassmannians in Section 4.3. The numerical experiments
are provided in Section 5.

2 Quasi Monte Carlo Integration

We identify the Grassmannian, the collection of k-dimensional subspaces in R
d,

with the set of orthogonal projectors on R
d of rank k, denoted by

Gk;d WD fP 2 R
d�d
sym W P2 D PI tr.P/ D kg:

Here, Rd�d
sym is the set of symmetric matrices in R

d�d and tr.P/ denotes the trace
of P. The dimension of the Grassmannian is dim.Gk;d/ D k.d � k/. The canonical
Riemannian measure on Gk;d is denoted by 
k;d, which we assume to be normalized
to one. Without loss of generality, we assume k � d

2
throughout since Gd�k;d can be

identified with Gk;d.
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As a classical problem in numerical analysis, we aim to approximate the integral
over a continuous function f W Gk;d ! C by a finite sum over weighted samples, i.e.,
we consider points fPjg

n
jD1 � Gk;d and nonnegative weights f!jg

n
jD1 such that

nX

jD1

!jf .Pj/ �

Z

Gk;d

f .P/d
k;d.P/:

In order to quantify the error by means of the smoothness of f , we shall define
Bessel potential spaces on Gk;d, for which we need some preparation. Let f'`g

1
`D0

be the collection of orthonormal eigenfunctions of the Laplace-Beltrami operator
� on Gk;d, and f��`g

1
`D0 are the corresponding eigenvalues arranged, so that 0 D

�0 � �1 � : : :. Without loss of generality, we choose each '` to be real-valued, in
particular, '0 
 1. The Fourier transform of f 2 Lp.Gk;d/, where 1 � p � 1, is
defined by

Of .`/ WD

Z

Gk;d

f .P/'`.P/d
k;d.P/; ` D 0; 1; 2; : : : :

Essentially following [6, 26], we formally define .I � �/s=2f to be the distribution
on Gk;d, such that h.I ��/s=2f ; '`i D .1C �`/

s=2hf ; '`i, for all ` D 0; 1; 2; : : :. The
Bessel potential space Hs

p.Gk;d/, for 1 � p � 1 and s � 0, is

Hs
p.Gk;d/ WD ff 2 Lp.Gk;d/ W kf kHs

p
< 1g; where

kf kHs
p

WD k.I ��/s=2f kLp ;

i.e., f 2 Hs
p.Gk;d/ if and only if f 2 Lp.Gk;d/ and .I ��/sf 2 Lp.Gk;d/. Note that this

definition is indeed consistent with [6, 26], see [6, Theorem 2.1, Definition 2.2]
in particular. For s > k.d � k/=p with 1 � p � 1, the space Hs

p.Gk;d/ is
embedded into the space of continuous functions on Gk;d, see, for instance, [6]. For
1 < p < 1, this embedding also follows from results on Bessel potential spaces
on general Riemannian manifolds with bounded geometry, cf. [32, Theorem 7.4.5,
Section 7.4.2], and on R

d with 1 � p � 1, see [31, Chapter V, 6.11]. According to
[6], for any sequence of points fPt

jg
nt
jD1 � Gk;d, t D 0; 1; 2; : : :, and positive weights

f! t
j g

nt
jD1 � R with nt ! 1, there is a function f 2 Hs

p.Gk;d/ such that�

ˇ̌
ˇ
Z

Gk;d

f .P/d
k;d.P/ �

ntX

jD1

! t
j f .P

t
j/
ˇ̌
ˇ & n

� s
k.d�k/

t kf kHs
p
; (1)

�We use the notation &, meaning the right-hand side is less or equal to the left-hand side up to
a positive constant factor. The symbol . is used analogously, and 	 means both hold, . and &.
If not explicitly stated, the dependence or independence of the constants shall be clear from the
context.
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where the constant does not depend on t. Thus, we cannot do any better than the rate

n
� s

k.d�k/
t :

In order to quantify the quality of weighted point sequences f.Pt
j; !

t
j /g

nt
jD1,

t D 0; 1; 2; : : : , for numerical integration, we make the following definition, whose
analogous formulation on the sphere (with constant weights) is due to [7].

Definition 1. Given s > k.d � k/=p, a sequence f.Pt
j; !

t
j /g

nt
jD1, t D 0; 1; 2; : : :, of

nt points in Gk;d and positive weights with nt ! 1 is called a sequence of Quasi
Monte Carlo (QMC) systems for Hs

p.Gk;d/ if

ˇ̌
ˇ
Z

Gk;d

f .P/d
k;d.P/ �

ntX

jD1

! t
j f .P

t
j/
ˇ̌
ˇ . n

� s
k.d�k/

t kf kHs
p

holds for all f 2 Hs
p.Gk;d/.

In case p D 2, given s > k.d�k/=2, any sequence of QMC systems f.Pt
j; !

t
j /g

nt
jD1

for Hs
2.Gk;d/ is also a sequence of QMC systems for Ws0

2 .Gk;d/, for all s0 satisfying
s � s0 > k.d � k/=2, cf. [6].

Especially for the integration of smooth functions, random points lack quality
when compared to QMC systems.

Proposition 1. For s > k.d � k/=2, suppose P1; : : : ;Pn are random points on Gk;d,
independently identically distributed according to 
k;d then it holds

vuuuut
E

h
sup

f 2Hs
2.Gk;d/

kf kHs
2
�1

ˇ̌
ˇ
Z

Gk;d

f .P/d
k;d.P/ �
1

n

nX

jD1

f .Pj/
ˇ̌
ˇ
2i

D cn� 1
2

with c2 D
P1

`D1.1C �`/
�s.

Note that the condition s > k.d � k/=2 implies that s
k.d�k/ >

1
2
, so that on average

QMC systems indeed perform better than random points for smooth functions. The
proof of Proposition 1 is derived by following the lines in [7]. In fact, the result is
already contained in [20, Corollary 2.8], see also [27], within a more general setting.

In order to derive QMC systems, we shall have a closer look at cubature points,
for which we need the space of diffusion polynomials of degree at most t, defined by

˘t WD spanf'` W �` � t2g; (2)

see [26], and references therein.
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Definition 2. For fPjg
n
jD1 � Gk;d and positive weights f!jg

n
jD1, we say that

f.Pj; !j/g
n
jD1 is a cubature for ˘t if

Z

Gk;d

f .P/d
k;d.P/ D

nX

jD1

!jf .Pj/; for all f 2 ˘t: (3)

The number t refers to the strength of the cubature.

In the following result, cf. [6, Theorem 2.12], the cubature error is bounded by the
cubature strength t, not the number of points.

Theorem 1. Suppose s > k.d � k/=p and assume that f.Pt
j; !

t
j /g

nt
jD1 is a cubature

for ˘t. Then we have, for f 2 Hs
p.Gk;d/,

ˇ̌
ˇ
Z

Gk;d

f .P/d
k;d.P/ �

ntX

jD1

! t
j f .P

t
j/
ˇ̌
ˇ . t�skf kHs

p
:

Weyl’s estimates on the spectrum of an elliptic operator yield

dim.˘t/ � tk.d�k/;

cf. [21, Theorem 17.5.3]. This implies that any sequence of cubatures f.Pt
j; !

t
j /g

nt
jD1

of strength t, respectively, must obey nt & tk.d�k/ asymptotically in t, cf. [10]. There
are indeed sequences of cubatures f.Pt

j; !
t
j /g

nt
jD1 of strength t, respectively, satisfying

nt � tk.d�k/; (4)

cf. [10]. In this case, Theorem 1 leads to

ˇ̌
ˇ
Z

Gk;d

f .P/d
k;d.P/ �

ntX

jD1

! t
j f .P

t
j/
ˇ̌
ˇ . n

� s
k.d�k/

t kf kHs
p
; (5)

so that we have settled that QMC systems do exist, for any s > k.d � k/=p, and can
be derived via cubatures.

Remark 1. Cubature points fPjg
n
jD1 for ˘t with constant weights !j D 1

n are called
t-designs. For all t D 1; 2; : : :, there exist t-designs, cf. [30]. The results in [5] imply
that there are t-designs satisfying (4) provided that k D 1. By invoking the results
in [14], the latter also extends to 2 � k � d=2.
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3 Approximation by Diffusion Kernels

One example, where integrals over the Grassmannian are replaced with weighted
finite sums, is the approximation of a function f W Gk;d ! C from finitely many
samples. The approximation scheme developed in [25, 26] works for manifolds
and metric measure spaces in general, but we shall restrict the presentation to the
Grassmannian.

For a function f 2 Lp.Gk;d/, we denote the (polynomial) best approximation
error by

dist.f ; ˘t/Lp WD inf
g2˘t

kf � gkLp ;

where t � 0. It is possible to quantify the best approximation error in dependence
of the function’s smoothness, see [26, Proposition 5.3] for the following result.

Theorem 2. If f 2 Hs
p.Gk;d/, then

dist.f ; ˘t/Lp . t�skf kHs
p
:

Given f 2 Hs
p.Gk;d/ we now construct a particular sequence of functions 	t.f / 2

˘t, t D 1; 2; : : :, that realizes this best approximation rate. Note that, since the
collection f'`g

1
`D0 is an orthonormal basis for L2.Gk;d/, any function f 2 L2.Gk;d/

can be expanded as a Fourier series by

f D

1X

`D0

Of .`/'`:

The approach in [25, 26] makes use of a smoothly truncated Fourier expansion of f ,

	t.f / WD

1X

`D0

h.t�2�`/Of .`/'` 2 ˘t;

where h W R�0 ! R is an infinitely often differentiable and nonincreasing function
with h.x/ D 1, for x � 1=2, and h.x/ D 0, for x � 1. Using the kernel Kt on
Gk;d � Gk;d defined by

Kt.P;Q/ D

1X

`D0

h.t�2�`/'`.P/'`.Q/ (6)

we arrive after interchanging summation and integration at the following alternative
representation

	t.f / D

Z

Gk;d

f .P/Kt.P; �/d
k;d.P/: (7)
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Note, that the function 	t.f / is well-defined for general f 2 Lp.Gk;d/, 1 � p � 1,
and it turns out that 	t.f / approximates f up to a constant as good as the best
approximation from ˘t, cf. [26, Proposition 5.3].

Theorem 3. If f 2 Hs
p.Gk;d/, then

kf � 	t.f /kLp . t�skf kHs
p
:

If f needs to be approximated from a finite sample, then 	t.f / in (7) cannot be
determined directly and is replaced with a weighted finite sum in [26]. Indeed, for
sample points fPjg

n
jD1 � Gk;d and weights f!jg

n
jD1, we define

	t.f ; f.Pj; !j/g
n
jD1/ WD

nX

jD1

!jf .Pj/Kt.Pj; �/: (8)

Note that we must now consider functions f in Bessel potential spaces, for which
point evaluation makes sense. We shall observe in the following that if samples
and weights satisfy some cubature type property, then the approximation rate is
still preserved when using 	t.f ; f.Pj; !j/g

n
jD1/ in place of 	t.f /. However, we need

an additional technical assumption on the points fPjg
n
jD1, for which we denote the

geodesic distance between P;Q 2 Gk;d by

�.P;Q/ D

q
�21 C : : :C �2k ;

where �1; : : : �k are the principal angles between the associated subspaces of P and
Q, respectively, i.e.,

�i D arccos.
p

yi/; i D 1; : : : ; k;

and y1; : : : ; yk are the k largest eigenvalues of the matrix PQ.

Br.P/ WD fQ 2 Gk;d W �.P;Q/ � rg:

The following approximation from finitely many sample points is due to [26,
Proposition 5.3].

Theorem 4. For t D 1; 2; : : :, suppose we are given a sequence of point sets
fPt

jg
nt
jD1 � Gk;d and positive weights f! t

j g
nt
jD1 such that

Z

Gk;d

g1.P/g2.P/d
k;d.P/ D

ntX

jD1

! t
j g1.P

t
j/g2.P

t
j/; g1; g2 2 ˘t: (9)
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Then the approximation error, for f 2 Hs
1.Gk;d/, is bounded by

kf � 	t.f ; f.P
t
j; !

t
j /g

nt
jD1/kL1

. t�s.kf kL1
C kf kHs

1
/: (10)

Note that the original result stated in [26] requires an additional regularity condition
on the samples. This condition is satisfied since we restrict us to positive weights,
cf. [16, Theorem 5.5 (a)]. The assumption (9) is a cubature type condition, for which
our results in Section 4.2 shall provide further clarification. It indeed turns out that
there are sequences f.Pt

j; !
t
j /g

nt
jD1 satisfying (9) with nt � tk.d�k/, in which case (10)

becomes

kf � 	t.f ; f.P
t
j; !

t
j /g

nt
jD1/kL1

. n
� s

k.d�k/
t .kf kL1

C kf kHs.L1//: (11)

Note that the approximation rate in (11) matches the one in (5) for the integration
error. The proof of Theorem 4 in [26] is indeed based on Theorem 3 and
on the approximation of the integral 	t.f / in (7) by the weighted finite sum
	t.f ; f.Pt

j; !
t
j /g

n
jD1/ in (8). For related results on local smoothness and approxima-

tion, we refer to [13].

4 Numerically Feasible Formulations

This section is dedicated to turn the approximation schemes presented in the
previous sections into numerically feasible expressions. In other words, we deter-
mine explicit expressions for the kernel Kt in (6) and provide an optimization
method for the numerical computation of cubature points or QMC systems on the
Grassmannian.

4.1 Diffusion Kernels on Grassmannians

The probability measure 
k;d is invariant under orthogonal conjugation and induced
by the Haar (probability) measure 
O.d/ on the orthogonal group O.d/, i.e., for any
Q 2 Gk;d and measurable function f , we have

Z

Gk;d

f .P/d
k;d.P/ D

Z

O.d/
f .OQO>/d
O.d/.O/:

By the orthogonal invariance of the Laplace-Beltrami operator � on Gk;d it
is convenient for the description of the eigenfunctions to recall the irreducible
decomposition of L2.Gk;d/ with respect to the orthogonal group. Given a non-
negative integer t, a partition of t is an integer vector � D .�1; : : : ; �t/ with
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�1 � : : : � �t � 0 and j�j D t, where j�j WD
Pt

iD1 �i is the size of � . The length
l.�/ is the number of nonzero parts of � . The space L2.Gk;d/ decomposes into

L2.Gk;d/ D
M

l.�/�k

H�.Gk;d/; H�.Gk;d/ ? H� 0.Gk;d/; � ¤ � 0; (12)

where H�.Gk;d/ is equivalent to Hd
2� , the irreducible representation of O.d/

associated to the partition 2� D .2�1; : : : ; 2�t/, cf. [3, 22].
By orthogonal invariance the spaces H�.Gk;d/ are eigenspaces of the Laplace-

Beltrami operator � on Gk;d where, according to [22, Theorem 13.2], the associated
eigenvalues are

�.�/ D 2j�jd C 4

kX

iD1

�i.�i � i/: (13)

Note, for a given eigenvalue �` the corresponding eigenspace can decompose into
more than one irreducible subspace H�.Gk;d/.

Note that the following results are translations from representation theory used
in [22], see also [2, 3], into the terminology of reproducing kernels, where we
have only adapted the scaling of the kernels. The space H�.Gk;d/ equipped with
the L2 inner product is a finite dimensional reproducing kernel Hilbert space, and its
reproducing kernel K� is given by

K�.P;Q/ D
X

'`2H� .Gk;d/

'`.P/'`.Q/: (14)

Moreover, K� is zonal, i.e., the value K�.P;Q/ only depends on the k largest
eigenvalues

y1.P;Q/; : : : ; yk.P;Q/;

of the matrix PQ counted with multiplicities, see [22]. It follows that the kernel Kt

in (6) is also zonal since it can be written as

Kt.P;Q/ D
X

l.�/�k

h.t�2�.�//K�.P;Q/: (15)

According to [22], the kernels K� are in one-to-one correspondence with general-
ized Jacobi polynomials. For parameters ˛; ˇ 2 R satisfying 1

2
.m � 1/ < ˛ <

ˇ� 1
2
.m�1/, the generalized Jacobi polynomials, J˛;ˇ� W Œ0; 1�m ! R with l.�/ � m,
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are symmetric polynomials of degree j�j and form a complete orthogonal system
with respect to the density

w˛;ˇ.y1; : : : ; ym/ WD

mY

iD1

�
y
˛� 1

2 .mC1/

i .1 � yi/
ˇ�˛� 1

2 .mC1/
� mY

jDiC1

jyi � yjj; (16)

where 0 < y1; : : : ym < 1, cf. [9, 11]. For the special parameters ˛ D k
2

with k � d
2

and ˇ D d
2
, and the normalization J

k
2 ;

d
2

� .1; : : : ; 1/ D dim.H�.Gk;d// the generalized
Jacobi polynomials in m D k variables can be identified with the reproducing
kernels K� of H�.Gk;d/, i.e.,

K�.P;Q/ D J
k
2 ;

d
2

� .y1.PQ/; : : : ; yk.PQ//; P;Q 2 Gk;d: (17)

Now, (15) and (17) yield that the expression for the kernel Kt in (6) can be computed
explicitly by

Kt.P;Q/ D
X

l.�/�k

h.t�2�.�//J
k
2 ;

d
2

� .y1.PQ/; : : : ; yk.PQ//:

Thus, avoiding the actual computation of f'`g
1
`D0, we have derived the expression

of Kt by means of generalized Jacobi polynomials.

4.2 Diffusion Polynomials on Grassmannians

This section is dedicated to investigate on the relations between diffusion polyno-
mials ˘t and multivariate polynomials of degree t restricted to the Grassmannian.
Indeed, the space of polynomials on Gk;d of degree at most t is defined as restrictions
of polynomials by

Polt.Gk;d/ WD ff jGk;d W f 2 CŒX�tg; (18)

where CŒX�t is the collection of multivariate polynomials of degree at most t with d2

many variables arranged as a matrix X 2 C
d�d. Here, f jGk;d denotes the restriction

of f to Gk;d. It turns out that Polt.Gk;d/ is a direct sum of eigenspaces of the Laplace-
Beltrami operator, i.e.,

Polt.Gk;d/ D
M

j�j�t
l.�/�k

H�.Gk;d/; (19)
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cf. [22, Corollary in Section 11] and also [4, Section 2], which enables us to relate
diffusion polynomials to regular polynomials restricted to the Grassmannian. For
k D 1, the eigenvalues (13) directly lead to

˘p
4t2C2t.d�2/

D Polt.G1;d/:

For general k, the situation is more complicated and needs some preparation.

Lemma 1. Let d; k; t 2 N with k � d
2

be fixed. Then for any partition � with
l.�/ � k and j�j � t it holds

�.�/ � d 4k t2 C 2t.d � k � 1/e: (20)

Note that the right-hand side of (20), up to the square root and the ceiling function,
is (13) with �i D t=k, for i D 1; : : : ; k.

Proof. In view of (13), let us define

f .x1; : : : ; xk/ WD 2d
kX

iD1

xi C 4

kX

iD1

xi.xi � i/:

For partitions � with j�j � t, we obtain the lower bound (20) by solving the
following convex optimization problem

min
x2Rk

f .x1; : : : ; xk/ such that gi.x/ � 0; i D 0; : : : ; k;

where g0.x/ D t �
Pk

iD1 xi and

gi.x/ D xiC1 � xi; i D 1; : : : ; k � 1; gk.x/ D �xk:

Indeed, we shall verify that the minimum is attained at x� WD . t
k ; : : : ;

t
k / with

f .x�/ D 4
k t2 C 2.d � k � 1/t

by checking the Karush-Kuhn-Tucker (KKT) conditions

rf .x�/C

kX

iD0


irgi.x
�/ D 0;

gi.x
�/ � 0; 
i � 0; 
igi.x

�/ D 0; i D 0; : : : ; k;

with 
0 D 8 t
k C 2d � 2.k C 1/ and 
i D 2i.k � i/, for i D 1; : : : ; k. More precisely,

denoting the canonical basis in R
k by feig

k
iD1, we obtain
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�

kX

iD0


irgi.x
�/ D 
0

kX

iD1

ei �

k�1X

iD1


i.eiC1 � ei/

D .
0 C 
1/e1 C .
0 � 
k�1/ek C

k�1X

iD2

.
0 C 
i � 
i�1/ei

D .
0 C 2.k � 1//e1 C .
0 � 2.k � 1//ek

C

k�1X

iD2

.
0 � 4.i � 1/C 2.k � 1//ei

D

kX

iD1

.
0 � 4i C 2.k C 1//ei

D

kX

iD1

.8 t
k C 2d � 4i/ei D rf .x�/

and conclude that the KKT-conditions are satisfied. Hence, (20) holds.

Theorem 5. Polynomials and diffusion polynomials on the Grassmannian Gk;d

satisfy the relation

˘s.tC1/� � Polt.Gk;d/ � ˘p
4t2C2t.d�2/

; for all 0 <  < 2s.t C 1/;

where s.t/ D
q

d 4k t2 C 2t.d � k � 1/e.

Proof. Due to (12), we are only dealing with partitions � satisfying l.�/ � k. For
j�j � t, we derive

�.�/ D 2j�jd C 4

kX

iD1

�i.�i � i/ � 2j�jd C 4

kX

iD1

�2i � 4

kX

iD1

�i

� 4t2 C 2t.d � 2/;

which yields the second set inclusion.
Lemma 1 yields that �.�/ < s2.t C 1/ implies j�j < t C 1, the latter being

equivalent to j�j � t since both j�j and t are integers. The range of  yields .s.t C 1/

�/2 < s2.t C 1/, so that we deduce the first set inclusion.

Asymptotically in t, diffusion polynomials of order 2p
k
t are indeed polynomials of

degree at most t, and Theorem 3 yields, for f 2 Hs
p.Gk;d/,

dist .f ;Polt.Gk;d//Lp � dist.f ; ˘t/Lp . t�skf kHs
p
:

For related further studies on dist.f ;Polt.Gk;d//, see [29].
In view of Theorem 5, we shall also define cubatures for Polt.Gk;d/.
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Definition 3. For fPjg
n
jD1 � Gk;d and positive weights f!jg

n
jD1, we say that

f.Pj; !j/g
n
jD1 is a cubature for Polt.Gk;d/ if

Z

Gk;d

f .P/d
k;d.P/ D

nX

jD1

!jf .Pj/; for all f 2 Polt.Gk;d/: (21)

We say that the points fPjg
n
jD1 � Gk;d are a t-design for Polt.Gk;d/ if (21) holds for

constant weights !1 D : : : D !n D 1=n.

It turns out that the numerical construction of cubature points and t-designs
for Polt.Gk;d/ is somewhat easier than for ˘t directly, which is outlined in the
subsequent section.

Remark 2. Since Polt.Gk;d/ are restrictions of ordinary polynomials, we observe
Polt1 .Gk;d/ � Polt2 .Gk;d/ � Polt1Ct2 .Gk;d/. Thus, f.Pt

j; !
t
j /g

nt
jD1 being cubatures

for Pol2t.Gk;d/ yields that (9) is satisfied when ˘t is replaced with ˘s.tC1/� .
The latter implies that we must then also replace 	t.f ; f.Pt

j; !
t
j /g

nt
jD1/ with

	s.tC1/�.f ; f.Pt
j; !

t
j /g

nt
jD1/ in Theorem 4.

For general k, the second set inclusion in Theorem 5 is sharp because
�.t; 0; : : : ; 0/ D 4t2 C 2t.d � 2/. The first set inclusion in Theorem 5 may only be
optimal for t being a multiple of k. To prepare for our numerical experiments later,
we shall investigate on G2;d more closely.

Theorem 6. For k D 2, we obtain

˘s.tC1/� � Polt.G2;d/; for all 0 <  < 2s.t C 1/;

where s.t/ D
p
2t2 C 2t.d � 3/C 2.1C .�1/tC1/.

Note that s.t/ in Theorem 6 satisfies s2.t/ D �.d t
2
e; b t

2
c/. It matches the definition

in Theorem 5 provided that t is even. For odd t, s.t/ in Theorem 6 is indeed larger
than in Theorem 5, and the difference of the squares is 4.

Proof. Any partition � of length k D 2 with j�j D t can be parameterized by
�.r/ D .t � r; r/, r D 0; : : : ; b t

2
c. We have checked that �.�.r// is a quadratic

function in r, which is strictly decreasing in r. Observing furthermore that �.� 0/ �

�.�/ if � 0
i � �i, i D 1; : : : ; k, we infer that j�j � t implies

�.�/ � �.d t
2
e; b t

2
c/ D s2.t/: (22)

Therefore, �.�/ < s2.t C 1/ implies j�j � t since j�j and t are integers.

Example 1. The particular case G2;4 yields

˘s.tC1/� � Polt.G2;4/; for all 0 <  < 2s.t C 1/;



346 A. Breger et al.

where s.t/ WD
p
2t2 C 2t C 2.1C .�1/tC1/, which implies

˘s.tC1/� �˘s.tC1/� � Pol2t.G2;4/:

Thus, given a cubature for Pol2t.G2;4/, the condition (9) in Theorem 4 is satisfied
with respect to ˘s.tC1/� .

4.3 Worst Case Error of Integration on Grassmannians

Given some subspace H of continuous functions on Gk;d the worst case error of
integration (with respect to some norm k � k on H) for points fPjg

n
jD1 � Gk;d and

weights f!jg
n
jD1 is defined by

wceH;k�k.f.Pj; !j/g
n
jD1/ WD sup

f 2H
kf kD1

ˇ̌
ˇ
Z

Gk;d

f .P/d
k;d.P/ �

nX

jD1

!jf .Pj/
ˇ̌
ˇ;

see also [20, 27]. If H D HK is a reproducing kernel Hilbert space, whose
reproducing kernel K is

K.P;Q/ D
X

l.�/�k

r�K�.P;Q/ D
X

l.�/�k

r�
X

�`D�.�/

'`.P/'`.Q/; P;Q 2 Gk;d;

with r� � 0, j�j � 0, and sufficient decay of the coefficients, then the associated
inner product is

.f ; g/K D
X

l.�/�k
r�>0

r�1
�

X

�`D�.�/

Of .`/Og.`/;

and the Riesz representation theorem yields

wceHK ;k�kK .f.Pj; !j/g
n
jD1/

2 D
X

l.�/�k

r�
X

�`D�.�/

ˇ̌
ˇ
Z

Gk;d

'`.P/d
k;d.P/ �

nX

jD1

wj'`.Pj/
ˇ̌
ˇ
2

D r.0/ � 2r.0/

nX

jD1

!j C

nX

i;jD1

!i!jK.Pi;Pj/:

(23)

Note that the worst case error is a weighted `2-average of the integration errors of
the basis functions '0; '1; '2; : : :.
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Recall, for instance, Hs
2.Gk;d/ is a Hilbert space with inner product

hf ; giHs
2

D

1X

`D0

.1C �`/
sOf .`/Og.`/; f ; g 2 Hs

2.Gk;d/; (24)

and the Bessel kernel on the Grassmannian is Ks
B W Gk;d � Gk;d ! R with

Ks
B.P;Q/ D

1X

`D0

.1C �`/
�s'`.P/'`.Q/

D

1X

l.�/�k

.1C �.�//�sJ
k
2 ;

d
2

� .y1.P;Q/; : : : ; yk.P;Q//:

If s > k.d � k/=2, then it is easily checked that Ks
B is the reproducing kernel for

Hs
2.Gk;d/ with respect to the inner product (24), see also [6].
Note that the polynomial space Polt.Gk;d/ is also a reproducing kernel Hilbert

space. Indeed, given a partition � with j�j � t and l.�/ � k, the reproducing kernel
of H�.Gk;d/ with respect to the L2 inner product is K� in (14). Due to (19), the
reproducing kernels for Polt.Gk;d/ are exactly

Rt.P;Q/ D
X

j�j�t
l.�/�k

r�K�.P;Q/ D
X

j�j�t
l.�/�k

r�
X

�`D�.�/

'`.P/'`.Q/; P;Q 2 Gk;d;

with r� > 0, j�j � 0. Note that Rt is indeed reproducing as a finite linear
combination with nonnegative coefficients of reproducing kernels, and it reproduces
Polt.Gk;d/ because of (19) and none of the coefficients vanish. Now, by Definition 3
any cubature for Polt.Gk;d/ has zero worst case error independent of the chosen
norm, and thus independent of Rt. A particularly simple reproducing kernel for
Polt.Gk;d/ is

Rt.P;Q/ D tr.PQ/t; P;Q 2 Gk;d;

see, for instance, [12]. Hence, formula (23) provides us with a simple method to
numerically compute cubature points by some minimization method. In particular,
t-designs f.Pj;

1
n /g

n
jD1 are constructed by minimizing

1

n2

nX

i;jD1

tr.Pi;Pj/
t �

Z

Gk;d

Z

Gk;d

tr.P;Q/td
k;d.P/d
k;d.Q/

and checking for equality, which implies wcePolt ;k�kRt
.f.Pj; !j/g

n
jD1/ D 0.
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5 Numerical Experiments

We now aim to illustrate theoretical results of the previous sections. The projective
space G1;d can be dealt with approaches for the sphere by identifying x and �x. The
space Gd�1;d can be identified with G1;d, so that the first really new example to be
considered here is G2;4.

We computed points fPt
jg

nt
jD1 � G2;4, for t D 1; : : : ; 14, with worst case error

wcePolt ;k�kL2
.f.Pt

j; 1=nt/g
nt
jD1/ < 10

�7

by a nonlinear conjugate gradient method on manifolds, cf. [20, Section 3.3.1], see
also [1, Section 8.3]. Although the worst case error may not be zero exactly, we shall
refer to fPt

jg
nt
jD1 in the following simply as t-designs. Note that G2;4 has dimension

dim.G2;4/ D 4, so that the number of cubature points must satisfy nt & t4. Indeed
we chose

nt WD
j1
3

dim.Polt.G2;4//
k

D
j
1
3
.t C 1/2.1C t C 1

2
t2/
k
:

We emphasize that for t D 14 we computed n14 D 8:475 projection matrices which
almost perfectly integrate 25:425 polynomial basis functions.

5.1 Integration

In what follows we consider two positive definite kernels

K1.P;Q/ D
p
.2 � tr.PQ//3 C 2 tr.PQ/;

K2.P;Q/ D exp.tr.PQ/ � 2/:

It can be checked by comparison to the Bessel kernel, cf. [6], that the reproducing

kernel Hilbert space HK1 equals the Bessel potential space H
7
2

2 .G2;4/, i.e., the
corresponding norms are comparable. In contrast, the reproducing kernel Hilbert
space HK2 is contained in the Bessel potential space Hs

2.G2;4/ for any s > 2. The
worst case errors can be computed by

wceHK1 ;k�kK1
.f.Pj;

1

n
/gn

jD1/
2 D

1

n2

nX

i;jD1

K1.Pi;Pj/ �
�
2C

74

75

p
2 �

2

5
log.1C

p
2/
�
;

wceHK2 ;k�kK2
.f.Pj;

1

n
/gn

jD1/
2 D

1

n2

nX

i;jD1

K2.Pi;Pj/ � exp.�1/Shi.1/;

where Shi.x/ D
R x
0

sinh.t/
t dt is the hyperbolic sine integral.
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Fig. 1 Random sampling according to 
2;4 vs. integration by t-designs.

In view of illustrating Proposition 1, note that random P 2 Gk;d distributed
according to 
k;d can be derived by P WD Z.Z>Z/�1Z>, where Z 2 R

d�k with
entries that are independently and identically standard normally distributed, cf. [8,
Theorem 2.2.2].

Figure 1 depicts clearly the superior integration quality of the computed cubature
points over random sampling. Moreover, it can be seen that the theoretical results in
Proposition 1 and Theorem 1 with (5) are in perfect accordance with the numerical
experiment, i.e., the integration errors of the random points scatter around the
expected integration error and cubature points achieve the optimal rate of n� 7

8 for

functions in H
7
2

2 .G2;4/.
In Figure 2 we aim to show the contrast between the integration of functions in

HK1 and HK2 by using the computed t-designs. We know by Theorem 1 that the
sequence of t-designs with a number of cubature points nt � t4 is a QMC system
for any s > 2. Since HK2 is contained in any Bessel potential space Hs

2.G2;4/, for
s > 2, we expect a super linear behavior in our logarithmic plots. Indeed, Figure 2
confirms our expectations. For t � 11, the effect of the accuracy of the t-designs
used becomes significant for integration of smooth functions. For that reason, we
added the dashed red line, which represents the accuracy 10�7 of the computed
t-designs.
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Fig. 2 Integration of smooth vs. integration of nonsmooth functions.

5.2 Approximation

Similar, as in the previous section we aim to approximate a smooth and a nonsmooth
function, namely

f1.P/ D K1.I2;P/; f2.P/ D K2.I2;P/; P 2 G2;4;

where K1, K2 are from the previous section and I2 is a projection matrix with 2 ones
on the upper left diagonal. This time we observe that the function f1 is contained in
H3

1.G2;4/ but f1 62 H3C
1 .G2;4/, for all  > 0. For the smooth function f2, we have

f2 2 Hs
1.G2;4/, for any s > 0.

Since the computed t-designs are with respect to Polt.G2;4/ and not ˘t.G2;4/, we
need an additional scaling of s.t/ in 	t. According to Example 1, the choice

s.t/ D
p
2.t2 C 3t C 3C .�1/t/ �  � t

p
2;

for small  > 0, yields ˘s.t/ � ˘s.t/ � Pol2t.G2;4/. For numerical experiments, we
take  to be smaller than the machine precision, so that it is effectively zero. Hence,
in accordance with Theorem 4, we use the following kernel-based approximation

	s.t/.f ;X2t/ D
1

n2t

n2tX

jD1

f .Pj/
X

l.�/�2

h.s.t/�2�.�//K�.Pj; �/;
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Fig. 3 Approximation of a smooth vs. approximation of a nonsmooth function.

where

h.x/ D

8
ˆ̂<

ˆ̂:

�
1C exp. 3�4x

2�6xC4x2
/
��1
; 1=2 < x < 1;

1; x � 1=2;

0; otherwise.

The approximation error is determined by randomly sampling altogether 50000
points. The first 25000 are pseudo random according to 
2;4. Since f1 has a
nonsmooth point at I2 the maximal error is expected around this point. Therefore,
we sampled the other 25000 from normally distributed points around that point I2
with variance 0:15 and 0:5 in the matrix entries, i.e., we choose Z 2 R

4�4 with
independent and identically distributed entries according to a normal distribution
with mean zero and variance 0:15 and 0:5, respectively, and then project I2C Z onto
G2;4, which we accomplished by a QR-decomposition in Matlab.

In Figure 3, we can observe the predicted decay in Theorem 4 for the function
f1 2 H3

1.G2;4/. Furthermore, as expected for the smooth function f2, the error
appears to decrease super linearly.
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Construction of Multiresolution Analysis Based
on Localized Reproducing Kernels

K. Nowak and M. Pap

1 Introduction

We will consider Hilbert spaces over either the field of real numbers, R, or of
complex numbers, C. We will use F to denote either R or C, so that when we wish
to state a definition or result that is true for either the real or complex numbers, we
will use F. Given a set X, if we equip the set of all functions from X to F, F .X;F/
with the usual operations of addition, and scalar multiplication, then F .X;F/ is a
vector space over F.

Definition 1. Given a set X, we will say that H is a reproducing kernel Hilbert space
(RKHS) on X over F, provided that:

1. H is a vector subspace of F .X;F/,
2. H is endowed with an inner product, h:; :i, making it into a Hilbert space,
3. for every y 2 X, the linear evaluation functional, Ey W H ! F, defined by Ey.f / D

f .y/, is bounded.

If H is a RKHS on X, then since every bounded linear functional is given by the
inner product with a unique vector in H, we have that for every y 2 X, there exists a
unique vector, ky 2 H, such that for every f 2 H, f .y/ D hf ; kyi.

Definition 2. The function ky is called the reproducing kernel for the point y. The 2-
variable function defined by K.x; y/ D ky.x/ is called the reproducing kernel for H.
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K completely determines the space H and characterizes the functions that are the
kernel functions of some RKHS.

Theorem 1. Let H be a RKHS on the set X with kernel K. Then the linear span of
the functions, ky.�/ D K.�; y/; y 2 X is dense in H.

A collection of the most important results connected to the reproducing kernel
Hilbert spaces can be found, for example, in [Aronszajn 1950] [1], [Paulsen,
Raghupati] [42], [Zhu 1997] [52].

The countable set fyn 2 X; n 2 Ng is a sampling set for a RKHS space H if every
f 2 H can be reconstructed uniquely from the measurements ff .yn/; n 2 Ng.

Because of the reproducing property f .yn/ D hf ; kyni this is equivalent to the fact
that the countable set of localized reproducing kernels fkyn.�/ D K.�; yn/; n 2 Ng is
dense in H.

How to choose the sampling points and how to construct the related multireso-
lution analysis are two important questions of applied science. It turns out that the
solution of this problem is dependent on the properties of the considered Hilbert
space H.

In this survey paper we consider the case of the Hardy space and the Bergman
space of the unit disc. In both cases we choose properly the sampling set, and
construct the corresponding multiresolution analysis out of it, via the means
of localized reproducing kernels. Our constructions lead to new reconstruction
algorithms. It is still an open problem to what degree the approach presented in
current paper can be adapted to other classes of reproducing kernel Hilbert space,
and to weighted Bergman spaces in particular.

2 Wavelet Transform and Its Generalization to Voice
Transforms

In order to define the continuous version of the wavelet transform let us start from
a basic function  2 L2.R/; called mother wavelet, and use dilation and translation
to obtain the collection of functions

 pq.x/ D
 ..x � q/=p/

p
p

.x 2 R; .p; q/ 2 L WD .0;1/ � R/:

By means of this kernel function we can construct an integral operator

.W f /.p; q/ WD
1

p
p

Z

R

f .x/ ..x � q/=p/ dx D hf ;  pqi ..p; q/ 2 L; f 2 L2.R//

called wavelet transform. It is known that under general conditions made on  the
function f can be reconstructed from its wavelet transform and the analogue of the
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Plancherel formula, in other words the energy conservation principle holds for it
[Daubechies 1992] [10], [Heil, Walnut 1989] [26], [Meyer 1990] [32].

Similarly to the Fourier transform there can be given a group theoretical
interpretation for W by means of the collection L of affine maps

`a.x/ WD px C q .x 2 R; a D .p; q/ 2 L/:

The function set L is closed for composition ı. The group .L; ı/ is called affine
group. Introducing the group operation

a1 ı a2 WD .p1p2; q1 C p1q2/ .aj WD .pj; qj/ 2 L; j D 1; 2/

on L we obtain the group .L; ı/which is isomorphic with the affine group, and `a D

`a1 ı `a2 . The group operations are continuous with respect to the usual topology in
L; therefore .L; ı/ is a (noncommutative, locally compact) topological group.

The wavelet transform can be described by the family of operators

Ua WD
1

p
p
 ı `�1

a .a D .p; q/ 2 L;  2 L2.R//

as

.W f /.a/ D hf ;Ua i .a D .p; q/ 2 L; f ;  2 L2.R//: (1)

It is easy to show that the operators Ua W L2.R/ ! L2.R/ .a 2 L/ form a unitary
representation of .L; ı/ on the space L2.R/; i.e.

i/ kUa k D k k; ii/ Ua1 .Ua1 / D Ua1ıa2 .a; a1; a2 2 L;  2 L2.R//:

Moreover the representation is continuous in the following sense: For every function
 2 L2.R/ we have

iii/ kTan � Ta k ! 0; if an ! a .n ! 1/:

Taking the discrete subgroup .L0; ı/;L0 WD f.2�n; k2�n/ W k; n 2 Zg instead
of .L; ı/ we obtain, as a generalization of Haar-Fourier coefficients, the discrete
version of the wavelet transform

.W f /.2�n; k2�n/ D
p
2n

Z

R

f .x/ .2nx � k/ dx .k; n 2 Z/:

Referring to the relation with the affine group the map W is usually called affine
wavelet transform.

There is a rich bibliography of the affine wavelet theory (see, for example,
[Grossman, Morlet 1984] [21], [Grossman, Morlet, Paul 1985] [22], [Daubechies
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1988] [9], [Mayer 1990] [32], etc.). One important question is the construction of
the discrete version, i.e., to find  so that the discrete translates and dilates

 n;k D 2�n=2 .2�nx � k/

form a (orthonormal) basis in L2.R/ which generate a multiresolution (see
[Daubechies 1988] [9], [Heil, Walnut 1989] [26], [Mallat 1989] [30], etc.). In
the classical theory of affine wavelets the definition of multiresolution analysis is
the following:

Definition 3. Let Vj; j 2 Z be a sequence of subspaces of L2.R/. The collections
of spaces fVj; j 2 Zg is called a multiresolution analysis with wavelet function � if
the following conditions hold:

1. (nested) Vj � VjC1

2. (density) [j2ZVj D L2.R/
3. (separation) \j2ZVj D f0g

4. (basis) The function � belongs to V0 and the set f2n=2�.2nx � k/; k 2 Zg is a
(orthonormal) basis in Vn.

The dilation is used to obtain a higher resolution level (f .x/ 2 Vn , f .2x/ 2

VnC1) and applying the translation we remain on the same level of the resolution.
The simplest example is due to [Alfréd Haar 1909] [24] the multiresolution

generated by the Haar-wavelets. The Haar-wavelets can be derived from the
following function using the dilation and translation:

h.x/ D

8
ˆ̂<

ˆ̂:

1 .x 2 Œ0; 1=2//

�1 .x 2 Œ1=2; 1//

0 .x 2 R n Œ0; 1//;

h0.x/ D h.x/; hnk.x/ WD 2�n=2h.2nx � k/

.x 2 Œ0; 1/; n; k 2 N/:

The Haar-system is orthogonal in the Hilbert space L2 WD L2.Œ0; 1// with respect
to the usual scalar product, and the Haar-Fourier series of a function f 2 L1.Œ0; 1//
converges to the function in both norm and almost everywhere. In particular, if the
function is continuous, then the convergence is uniform. In this respect the Haar
wavelet system is essentially different from the trigonometric system.

The fact that the members of the system are not continuous make them
inappropriate for approximating smooth functions. Starting from 1980 Y. Meyer,
I. Daubechies, P. Auscher among others started to construct smooth orthonormal
systems, so-called wavelets from a single function ' called mother wavelet, of the
form

'n;k.x/ D 2n=2'.2nx � k/ .x 2 R; ' 2 L2.R/; k'k2 D 1/:
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Except for the Haar system the construction of such systems is a hard task. Then
the Fourier transform b' instead of the mother wavelet ' itself turned to be a good
starting point. Despite the fact that ' cannot be given in an explicit form generally
the wavelet Fourier series enjoy nice convergence and approximation properties.
The kernel functions of the partial sums can be well estimated and the wavelet
Fourier coefficients can be calculated by a fast algorithm.

This model can serve as an example for the construction of useful function
transformations. Instead of the affine group one may take a locally compact
topological group .G; �/ and a unitary representation Vg W H ! H .g 2 G/ of
it. Then similarly to

.V f /.g/ WD hf ;Vg i .g 2 G; f ;  2 H/

will be a bounded linear operator from the Hilbert space H to the space of
bounded continuous functions C.G/ defined on G: According to [P Goupillaud,
A Grossmann, J Morlet 1984] [23], and [Feichtinger, Gröchenig] [14], the map V 
is called voice-transform generated by the representation .Vg; g 2 G/. We say that
the representation is irreducible if it has no proper closed invariant subspace, i.e.
Vg .g 2 G/ is a closed system in H for any  2 H;  ¤ �: It can be shown
that if the representation is irreducible then the voice transform is injective. Let
the left invariant Haar measure on the group G be denoted by m; and the Hilbert
space generated by the measure m on G by L2m.G/: The elements  2 H for which
V .H/ � L2m.G/ are called admissible elements.

The set H0 of admissible elements is dense in H: Moreover,  2 H0;  ¤ � if
and only if V  2 L2m.G/. The classical result due to [Duflo and Moore 1976] [11],
later applied to the current context by a slightly different argument by [Grossman,
Morlet, Paul, 1985], [22], [Heil, Walnut 1989] [26], shows that there is positive
definite quadratic form C W H0 ! RC for which

hV 1 f1;V 2 f2iL2m.G/ D C. 1;  2/hf1; f2iH .f1; f2 2 H;  1;  2 2 H0/:

This can be considered as the analogue of the Plancherel-theorem for voice
transforms. In particular, if the group G is unimodular, i.e. every left invariant
measure is right invariant as well, then there is an absolute constant C0 for which
the equality

kV f kL2m.G/ D C0k kHkf kH .f 2 H;  2 H0/

holds. Consequently, with k kH D 1=C0 the voice transform becomes unitary. This
means not only that the analogue of the Plancherel theorem holds true under a very
general condition but also it explains the special form of the formula in the particular
cases by enlightening the role of the group G:

Atomic decompositions of Coifman-Rochberg proceeded the developments of
affine wavelet theory (see [Rochberg 1985] [45] for a comprehensive summary of
results). For many delicate analytic estimates orthogonality is not critical, e.g. weak
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type estimates for singular values of commutators on weighted Bergman spaces of
[Nowak 1991] [33] follow from the atomic decompositions of Coifman-Rochberg.
It should be mentioned, however, that orthogonality reduces redundancy to the
minimum, and it is of critical importance in many applications.

The transform introduced by Dénes Gábor in 1946 can be understood also as a
special voice transform by taking a special representation of the Heisenberg group.
This explains that the Gábor-transform is also called as Weyl-Heisenberg wavelet
transform. Another special voice transform which is important from the point of
view of the applications is the shearlet transform (see [Labate, Lim, Kutyniok,
Weiss, 2005] [29], [Kutyniok, Sauer, 2007] [28], [Kutyniok, Labate, 2007], [27]
etc.).

If the representation is a unitary, irreducible, and square integrable, normalizing
the vector g 2 H2 if necessary, the voice transform Vg W H ! L2m.G/ will be
isometric, i.e.,

ŒVgf ;Vgh� D hf ; hi ; .f ; h 2 H/; (2)

where the left-hand side is the scalar product generated by the left Haar measure of
the group G.

An important consequence of this is the following reproducing formula: For
convenient normalized g 2 H2 we have the following convolution relation (on G):

Vgf D Vgf � Vgg; f 2 H: (3)

In the papers [Feichtinger, Gröchenig] [15, 16], [Gröchenig, 1991] [19] stronger
integrability condition on U is imposed in order to handle other spaces than Hilbert
spaces. Let us consider a positive, continuous submultiplicative weight w on G,
i.e., w.xy/ � w.x/w.y/; w.x/ � 1; 8x; y 2 G. Assume that the representation is
integrable, i.e., the set of analyzing vectors is not trivial:

Aw D fg 2 H W Vgg 2 L1w.G/g ¤ f0g: (4)

With this assumption the reproducing formula given by the convolution (3) can be
discretized. Let us define the simplest Banach space where atomic decompositions
can be obtained:

H 1
w D ff 2 H W Vgf 2 L1w.G/g: (5)

The definition of H 1
w is independent of the choice of g 2 Aw.

In [Feichtinger, Gröchenig, 1988] [14], [Feichtinger, Gröchenig, 1989] [15, 16],
[Gröchenig, 1991] [19] it was described a unified approach to atomic decomposition
through integrable group representations. The simplest result is for the space H 1

w :
For any g 2 Aw n f0g there exists a collection of points fxig � G such that any

f 2 H 1
w can be written

f D
X

�i.f /Uxi g; with
X

i

j�i.f /jw.xi/ � C0kf kH 1
w

(6)
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where the sum is absolutely convergent in H 1
w .

This atomic decomposition result was extended also for more general Banach
spaces: for the coorbit spaces.

In the last period the coorbit theory was developed for non-integrable repre-
sentations too. The requirement is to have some Lp.G/; p > 1 condition instead
of the integrability of the representation, see [Dahlke, Steidel, Teschke, 2004][5],
[Dahlke, Teschke, 2007][4], [Dahlke, Kutyniok, Steidl, Teschke, 2007][6], [Dahlke,
Fornasier, Rauhut, Steidel, Teschke, 2008] [7], [Christensen, Olafson, 2011] [2],
[Dahlke, De Mari, De Vito, Labate, Teschke, Vigogna, 2014] [8].

The classical theory of atomic decompositions can be applied in the case of the
Gábor transform, but not in the case of the affine wavelet transform, because in the
affine case the integrability condition is not satisfied.

Beside the affine wavelet transform there are other cases when the integrability or
the square integrability conditions are not satisfied by the special voice transforms.
In these cases it is a natural question to analyze, whether it is possible, to achieve
the discretization in a similar way like in the affine wavelet case, by constructing a
multiresolution analysis.

Avoiding the Fourier technique used in the construction of the affine multires-
olution, we show through two examples how can be constructed multiresolution
by means of localized reproducing kernels. In the case of the Hardy and Bergman
spaces, in [Pap 2011] [34] and [Pap 2013] [36], based on the discretization of the
two special voice transforms of the Blaschke group, it was introduced the analogue
of the multiresolution analysis in these spaces.

3 The Blaschke Group

Let us denote by D the open unit disc and by T the unit circle. Instead of linear
functions let us consider the following rational linear functions:

Ba.z/ WD 
z � b

1 � Nbz
.z 2 C; bz ¤ 1/

the so-called Blaschke functions. Let us denote the set of the parameters B WD D�T

and a D .b; / 2 B. If a 2 B, then Ba is a 1-1 map on T and D, respectively.
The Blaschke functions play an important role not only in system identification

but also in factorization of functions belonging to Hardy spaces. For instance, they
can be used to represent the congruences in the Poincaré model of the Bolyai-
Lobachevsky geometry. This suggests that in the construction of analytic wavelets
and multiresolution in the Hardy respectively Bergman spaces Blaschke functions
can be taken instead of the affine transforms in R and the hyperbolic wavelets
transforms induced by representations of the Blaschke group on these spaces.

The disc D with the pseudohyperbolic metric
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�.z1; z2/ WD
jz1 � z2j

j1 � z1z2j
D jB.z2;1/.z1/j .z1; z2 2 D/

is a complete metric space. This metric is invariant with respect to Blaschke-
functions:

�.B.b;1/.z1/;B.b;1/.z2// D �.z1; z2/ .z1; z2 2 D; b 2 D/:

This property characterizes the Blaschke-functions. Namely, for every f which is
analytic and bounded in D with kf k1 � 1 we have �.f .z1/; f .z2// � �.z1; z2/; and
equality holds if and only if f is a Blaschke-function.

The restrictions of the Blaschke functions on the set D or on T with the operation
.Ba1 ı Ba2 /.z/ WD Ba1 .Ba2 .z// form a group. In the set of the parameters B WD D�T

let us define the operation induced by the function composition in the following
way: Ba1 ı Ba2 D Ba1ıa2 . The set of the parameters B with the induced operation is
called the Blaschke group. The Blaschke group .B; ı/ will be isomorphic with the
group .fBa; a 2 Bg; ı/.

If we use the notations aj WD .bj; j/; j 2 f1; 2g and a WD .b; / DW a1 ı a2, then

b D
b12 C b2
1C b1b22

D B.�b2;1/.b12/;  D 1
2 C b1b2
1C 2b1b2

D B.�b1b2;1/.2/:

The neutral element of the group .B; ı/ is e WD .0; 1/ 2 B and the inverse element
of a D .b; / 2 B is a�1 D .�b; /.

The integral of the function f W B ! C with respect to the left invariant Haar-
measure m of the group .B; ı/ can be expressed as

Z

B
f .a/ dm.a/ D

1

2�

Z �

��

Z

D

f .b; eit/

.1 � jbj2/2
db1db2dt;

where a D .b; eit/ D .b1 C ib2; eit/ 2 D � T.
It can be shown that this integral is invariant with respect to the left translation

a ! a0 ı a and under the inverse transformation a ! a�1. Consequently the group
.B; ı/ is unimodular.

The one parameter subgroups

B1 WD f.r; 1/ W r 2 .�1; 1/g; B2 WD f.0; / W  2 Tg

generate B, i.e. if 1 is the conjugate of 1, we have

a D .0; 2/ ı .0; 1/ ı .r; 1/ ı .0; 1/ .a D .r1; 2/; r 2 Œ0; 1/; 1; 2 2 T/:

B1 is the analogue of the group of dilatation, B2 is the analogue of the group of
translations.
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4 Construction of Multiresolution in the Hardy Spaces Based
on Localized Reproducing Kernels

4.1 Hardy Spaces

Let us denote by A .D/ the set of analytic functions on the unit disc D. Taking the
integral means

kfrk2 WD

�
1

2�

Z 2�

0

jf .reit/j2 dt

�1=2

of a function f 2 A .D/we define the Hardy space of the unit disc H2.D/ as the class
of functions in A .D/ for which sup0<r<1 kfrk2 < 1. It is known that the boundary
function f .eit/ WD limr!1 f .reit/ exists a.e. for every f 2 H2.D/ and f belongs to
L2.T/ on T. Moreover, kf kH2 D kf kL2.T/: The Hardy space of the unit circle H2.T/

is a Hilbert space and contains the boundary values of the functions from H 2.D/.
The space H1.D/ is the collection of functions f 2 A .D/ for which kf kH1 WD

supz2D jf .zj < 1. The disc algebra A.D/, i.e. the set of functions analytic on D and
continuous on its closure is a closed subspace of H1.D/.

The Hardy spaces are applied intensively not only in the theories of complex
functions and Fourier series but as it turned out in the 1960s that, in particular
H2.D/; and H1.D/; are the proper Banach spaces for mathematical modeling of
problems in control and operator theories (see for ex. [Chui, Chen, 1992] [3], [Ward,
Partington, 1996] [50], [Partington, 1997] [41].

The transfer function f of a discrete linear time invariant system belongs to H2.T/

or to H1.D/. The main problem is to give a good approximation of f from some
measurements made on the unit circle or in the unit disc.

The linear space H2.T/ is a Hilbert space with the scalar product hf ; gi WD
1
2�

R 2�
0

f .eit/g.eit/ dt:
The reproducing kernel of this space is

K.z;w/ D kw.z/ D

1X

nD0

wnzn D
1

1 � wz
z;w 2 D:

This function is called the Szegő or Cauchy kernel on the disk.

4.2 Multiresolution in H2.T/

The representation of the Blaschke group on H2.T/ is defined by

.Ua�1 f /.z/ WD

p
ei� .1 � jbj2/

.1 � bz/
f

�
ei� .z � b/

1 � bz

� �
z D eit 2 T; a D .b; ei� / 2 B

�
;

(7)
where we take the principal rank of the square root.
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Pap and Schipp in [37–39, 46] studied the properties of this representation and
the properties of the induced voice transform, the so-called hyperbolic wavelet
transform:

.Vgf /.a�1/ WD hf ;Ua�1gi .f ; g 2 H2.T//: (8)

For this hyperbolic wavelet transform the square integrability required for the
discretization theory developed by Feichtinger, Gröchenig is not satisfied (see [37]).
But in [34] Pap introduced a multiresolution in H2.T/. Using the localized Cauchy
kernels corresponding to a discrete countable subset A of the unit disc, based on the
discretization of hyperbolic voice transform, a multiresolution analysis in H2.T/

was introduced. This can be used for H2.D/ identification if we measure the values
of function on this set. It has been showed that the resolution levels are spanned
by a special rational analytic orthonormal wavelet system, i.e., by the Malmquist-
Takenaka system with a special localization of the poles. In this subsection we give
an overview of the construction given in [34]. In [37] it was proved that the levels of
the multiresolution form a complete model set for the disc algebra of the unit disc,
and it was given an estimation of the error them for the proposed approximation
process.

Let us remind that in the construction of affine wavelet multiresolutions the
dilatation is used to obtain a higher resolution level (f .x/ 2 Vn , f .2x/ 2 VnC1),
and applying the translation we remain on the same level of resolution. If we want
to construct a multiresolution in H2.T/, we have to find the analogue of dilation by
2 and the analogue of translation. The analogue of dilation will be the action of the
representation through a discrete subgroup B1 of the Blaschke group.

Let us consider the following discrete subgroup of the Blaschke group

B1 D

	
.rk; 1/ W rk D

2k � 2�k

2k C 2�k
; k 2 Z



: (9)

It can be proved that .rk; 1/ ı .rn; 1/ D .rkCn; 1/ and

�.rk; rn/ WD
jrk � rnj

j1 � rkrnj
D

ˇ̌
ˇ̌
ˇ

2k�2�k

2kC2�k � 2n�2�n

2nC2�n

1 � 2k�2�k

2kC2�k
2n�2�n

2nC2�n

ˇ̌
ˇ̌
ˇ D jrk�nj:

As a consequence we get that the sequence .rk; k 2 N/ forms an equidistant
division of the interval Œ0; 1/ in the pseudohyperbolic metric.

Let us consider the following discrete subset in the unit disc:

A D fzk` D rkei 2�`
22k ; ` D 0; 1; � � � ; 22k � 1; k D 0; 1; 2; � � � ;1g (10)

and for a fixed k 2 N let the level k be the collection of the points from circle with
radius rk

Ak D fzk` D rkei 2�`
22k ; ` 2 f0; 1; � � � ; 22k � 1g g: (11)
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The points of A determine a similar decomposition to the Whitney cube decompo-
sition of the unit disc (see, e.g., [Partington, 1997] [41], pp.80). For our purpose it
is more convenient to choose .rk; n 2 N/ as radius of the concentric circles because
they are related to the Blaschke group operation, i.e., .rk; 1/ ı .rn; 1/ D .rkCn; 1/,
and from this property we can derive the analogue property of the dilatation.

Let us consider the scaling function ' D 1. Let us define the 0th resolution level
by: V0 D fc'; c 2 Cg. Let us consider the non-orthogonal wavelets on the n-th
level the localized and normalized Cauchy kernels corresponding to points [n

kD0Ak,
given by

'k`.z/ D

q
.1 � r2k/

.1 � zk`z/
; k D 0; � � � ; n; ` D 0; 1; � � � ; 22k � 1; (12)

which can be obtained from ' using the representation U.rn;1/�1 , and the translations

'k`.e
it/ D .U..rk ;1/�1'/.e

i.t� 2�`

22k //:

Let us define the n-th resolution level by

Vn D ff W D ! C; f .z/ D

nX

kD0

22k�1X

`D0

ck`'k`; ck;` 2 C g: (13)

In [34] it has been proved that the collections of spaces fVj; j 2 Ng satisfy
analogue conditions of the affine multiresolution, i.e.:

1. (nested) Vj � VjC1,
2. (density) [Vj D H2.T/
3. (analog of dilatation) U.r1;1/�1 .Vj/ � VjC1

4. (basis) There exist f k`; k D 0; � � � ; n; ` D 0; 1; � � � ; 22k � 1g (orthonormal)
bases in Vn.

In order to construct the orthonormal bases f k`; k D 0; � � � ; n; ` D 0;

1; � � � ; 22k � 1g in Vn we apply the Gram-Schmidt orthogonalization to the following
non-orthogonal basis in Vn:

	
1

1 � zk`z
; ` D 0; 1; � � � ; 22k � 1; k D 0; 1; � � � ; n:



:

The result of the Gram-Schmidt orthogonalization for this set of analytic linearly
independent functions can be written in closed form. As a result we obtain the
Malmquist–Takenaka system corresponding to the set [n

kD0Ak (see [31, 49]):
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 m`.z/ D

p
1 � r2m

1 � zm`z

m�1Y

kD0

22k�1Y

jD0

z � zkj

1 � zkjz

`�1Y

j0D0

z � zmj0

1 � zmj0z
(14)

.` D 0; 1; � � � ; 22m � 1; m D 0; 1; 2; � � � ; n/:

In this way we have constructed an analytic rational orthonormal wavelet system
on the resolution level Vn, i.e.,

h m`;  m0`0i D
1

2�

Z 2�

0

 m`.e
it/ m0`0.eit/dt D ımm0ı``0 ; (15)

.` D 0; 1; � � � ; 22k � 1; k D 0; 1; 2; � � � ;1/:

From the Gram-Schmidt orthogonalization process it follows that:

Vn D spanf k`; ` D 0; 1; � � � ; 22k � 1; k D 0; � � � ; ng:

Because the points of the set A satisfy the non-Blaschke condition

X

k;`

.1 � jzk`j/ D
X

k

22k

�
1 �

2k � 2�k

2k C 2�k

�
D
X

k

2 � 2k

2k C 2�k
D 1; (16)

the Malmquist–Takenaka system corresponding to the set A is a basis in H2.T/, i.e.

[

n2N

Vn D H2.T/

in H2.T/ norm, consequently the density property is also valid.
In signal processing and system identification the Malmquist–Takenaka system

is more efficient than the trigonometric system in the determination of the transfer
functions.

The wavelet space Wn is the orthogonal complement of Vn in VnC1. In [34] it has
been proved that

Wn D spanf nC1`; ` D 0; 1; � � � ; 22nC2 � 1g:

Consequently we have generated a multiresolution in H2.T/ and we have
constructed an analytic rational orthogonal wavelet system. According to the results
obtained in [34] and [37] we can conclude the following advantages of the
constructed multiresolution in the Hardy space of the unit disc comparing with the
classical affine multiresolution :

1. The levels of the multiresolution are finite dimensional, which makes easier to
find a basis on every level, but in the same time the density condition remains valid.
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2. We have constructed analytic orthonormal rational wavelet bases on the
resolution levels given by an explicit formula.

3. We can compute the wavelet coefficients exactly measuring the values of the
function f at the points of the set A D

Sn
kD0 Ak � D. We can write exactly the

projection operator .Pnf ; n 2 N/ on the n-th resolution level which is convergent in
H2.T/ norm on the unit circle to f , and Pnf .z/ ! f .z/ uniformly on every compact
subset of the unit disc (see [34]).

4. At the same time Pnf .z/ is the best approximant interpolation operator on the
set
Sn

kD0 Ak inside the unit circle for the analytic continuation of f .
Similar multiresolution construction can be made also in the Hardy space of the

upper-half plane, see [17]. Here we mention that for the upper half plane I. Pesenson
and H. Feichtinger developed reconstruction algorithms based on frames for band
limited signals from Paley-Wiener spaces based on measurements (see [18, 43, 44]).

5 Construction of Multiresolution in the Bergman Space
Based on Localized Reproducing Kernels

5.1 The Bergman Space

We present some basic results connected to the Bergman spaces. For more detailed
exposition, see, for example, in [12, 53]. Recall that if z D x C iy 2 D, then the
normalized area measure is dA.z/ D 1

�
dxdy. An analytic function f W D ! C

belongs to the Bergman space A2.D/ if

Z

D

jf .z/j2 dA.z/ < 1:

The scalar product in A2 D A2.D/ is given by

hf ; gi WD

Z

D

f .z/g.z/ dA.z/:

The Bergman space A2.D/ is a closed subspace of L2.D/. For each z 2 D the
point-evaluation map is a bounded linear functional on A2.D/, consequently A2.D/
is a reproducing kernel Hilbert space.

The function

K W D � D ! C with K.:; z/ 2 A2.D/

K.�; z/ D
1

.1 � z�/2
:



368 K. Nowak and M. Pap

is called the Bergman kernel for D. The explicit formula for the kernel function
shows that we have the following reproducing formula:

f .z/ D
1

�

Z

D

f .�/
1

.1 � �z/2
d�1d�2 .f 2 A2.D/; z; � 2 D; � D �1 C i�2/:

A sequence of points � D fzk W k 2 Ng of points in the unit disc is sampling
sequence for A2, if there exist positive constants A and B such that

Ajjf jj2 �

1X

kD1

jf .zk/j
2.1 � jzkj

2/2 � Bjjf jj2; f 2 Ap:

This is equivalent to the following inequalities:

Ajjf jj2 �

1X

kD1

jhf ; 'kij
2 � Bjjf jj2; f 2 A2;

where 'k.z/ D K.z; zk/=kK.z; zk/k are the normalized Bergman and localized
kernels in zk. This last inequality shows that these functions will constitute a frame
for A2 if and only if � D fzk W k 2 Ng is a sampling set for A2. Some explicit
examples for sampling sequences in the Bergman space are due to Seip, Duren,
Schuster, Horowitz, Luecking (see, e.g., in [12, 48]). An A2 sampling sequence
is never an A2 zero-set. A total characterization of sampling sequences is due to
Kristian Seip and can be given with the uniformly discrete property and lower
density of the set (see [12, 47]). But the computation of the lower density of a set
in general is a difficult task. Duren, Schuster, and Vukotic in [13] gave for sampling
sufficient conditions based on the pseudohyperbolic metric, that are relatively easy
to verify.

5.2 The Continuous Voice Transform on Bergman Space

The voice transform on Bergman space is induced by a unitary representation of the
Blaschke group on the Bergman space. Results connected to the voice transform
on Bergman space were published in [40]. Let us consider the following set of
functions:

Fa.z/ WD

p
.1 � jbj2/

1 � Nbz
.a D .b; / 2 B; z 2 D/:

These functions induce a unitary representation on the space A2. Namely let us
define

Uaf WD ŒFa�1 �2f ı B�1
a .a 2 B; f 2 A2/;
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then this is a representation of Blaschke group on the A2, i.e.:

• Uxıy D Ux ı Uy .x; y 2 B/;
• B 3 x ! Uxf 2 A2 is continuous for all f 2 A2.

In [40] it was proved that Ua.a 2 B/ is a unitary, irreducible square integrable
representation of the group B on the Hilbert space A2.

The voice transform of f 2 A2 generated by the representation Ua and by the
parameter g 2 A2 is the (complex-valued) function on B defined by

.Vgf /.a/ WD hf ;Uagi .a 2 B; f ; g 2 A2/:

In a recent paper (see [35]) it is shown that the integrability condition in the
Bergman space is not satisfied. This motivated the construction of a multiresolution
in the Bergman space. The first step was the construction of a sampling set which
is connected to the Blaschke group and the second to generate a multiresolution
analysis based on localized Bergman kernels on this set in the Bergman space A2.D/.

In [36] it was considered again the following discrete subgroup of .B; ı/

B1 D

	
.rk; 1/ W rk D

2k � 2�k

2k C 2�k
; k 2 Z



:

with composition rule: .rk; 1/ ı .rn; 1/ D .rkCn; 1/.
Let N D N.2; k/ D 22kC3; k � 1, N.2; 0/ WD 1, and consider the following set of

points z00 WD 0,

A D fzk` D rkei 2�`N ; ` D 0; 1; : : :;N � 1; k D 0; 1; 2; : : :g

and for a fixed k 2 N let the level k be

Ak D fzk` D rkei 2�`N ; ` 2 f0; 1; : : :;N � 1g g:

Due to Theorem 2.1 of [36] this is be a sampling set in the Bergman space.
This implies that the set of normalized kernels

	
'kl.z/ D

.1 � r2k /

.1 � zk`z/2
; k D 0; 1; � � � ; ` D 0; 1; � � � N � 1




will constitute a frame system for A2. From the frame theory (see, for example, in
[20]), or from the atomic decomposition results (see Theorem 3 of [51]), follows
that every function f from A2 can be represented

f .z/ D
X

.k;`/

ck`'kl.z/
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for some fck`g 2 `2, with the series converging in A2 norm. The determination
of the coefficients is related to the construction of the inverse frame operator (see
[20]), which is not an easy task in general. This is the reason why in [35] it was
proposed other approximation process for f 2 A2 such that the determination of
the coefficients follows an exactly defined algorithmic scheme. Here follows a short
exposition of the construction.

Let us consider the function '00 D 1 and let V0 D fc; c 2 Cg. Let us consider
the nonorthogonal wavelets on the n-th level, n � 1 given by

'n;`.z/ D .U.zn`;1/�1
p0/.z/ D

.1 � r2n/

.1 � zn`z/2
; ` D 0; 1; : : :;N � 1:

Let us define the n-th resolution level by

Vn D

(
f W D ! C; f .z/ D

nX

kD0

N�1X

`D0

ck;`'k;`; ck;` 2 C

)

The closed subset Vn is spanned by

f'k;`; ` D 0; 1; : : :;N � 1; k D 0; : : :; ng:

Continuing this procedure we obtain a sequence of closed, nested subspaces of A2

for z 2 D

V0 � V1 � V2 � : : :::Vn � : : ::A2:

Due to Theorem 2.1 of [36] the normalized kernels f'kl.z/ D
.1�r2k /
.1�zk`z/2

; k D

0; 1; � � � ; ` D 0; 1; � � � N � 1g form a frame system for A2 which implies that this is
a complete and a closed set in norm, i.e.,

[

n2N

Vn D A2;

consequently the density property is satisfied.
We observe that in the case of the Bergman space we have to divide the n circle

in N D 22nC3 points, more than in the case of the Hardy space, where it was enough
22n points to achieve the density property of the multiresolution levels.

If a function f 2 Vn, then U.r1;1/�1 f 2 VnC1. This is the analogue of the dilation.
For this it is sufficient to show that

U.r1;1/�1 .'k;`/.z/ D U.r1;1/�1 Œ.U.rk ;1/�1p0/�.ze�i 2�`

22kC3 // D

D Œ.U.rkC1;1/
�1p0/�.ze

�i 2�4`

22.kC1/C3 / 2 VnC1; k D 1; ::; n; ` D 1; : : :22kC3 � 1:
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Since the set fzk`; ` D 0; 1; : : :;N�1; k D 0; : : :;1g is a sampling set, it follows
that is a set of uniqueness for A2. This means that every function f 2 A2 is uniquely
determined by the values ff .zk`/ ` D 0; 1; : : :;N � 1; k D 0; : : :;1g. In the paper
of Kehe Zhu [52] is described in general, how can be recaptured a function from
a Hilbert space when the values of the function on a set of uniqueness are known
and is developed in detail this process in the Hardy space. At the beginning we
will follow the steps of the recapitulation process but we will combine this with the
multiresolution analysis. The elements of the set

	
1

.1 � zk`z/2
; ` D 0; 1; : : :; 22kC3 � 1; k D 0; 1; : : :; n:




are linearly independent and constitute a nonorthogonal basis in Vn.
Using Gram-Schmidt orthogonalization process they can be orthogonalized, but

in this case the result of the process cannot be written in close form like in the case
of the Hardy space of the unit disc. Denote by  k;` the resulting functions. They
can be seen as the analogue of the Malmquist -Takenaka system in the Hardy space.
This function can be obtained using the following two methods. The first arises
from the orthogonalization procedure. To describe the method let us reindex the
points of the set A as follows: a1 D z00; a2 D z10; a3 D z11; a4 D z12; : : :; a33 D

z1;31; a34 D z2;0; � � � am D zk` � � � ; k D 0; 1; : : ::; ` D 0; 1; : : :; 22kC3 � 1, and denote
by K.z; zk`/ D 1

.1�zk`z/2
WD K.z; am/, then the resulted orthonormal system is

�00.z/ D �.a1; z/ D
K.z; a1/

kK.:; a1/k
; �k`.z/ D �.a1; a2; : : :; am; z/ D

K.z; am/ �

m�1X

iD1

�.a1; a2; : : :; ai; z/
hK.:; am/; �.a1; a2; : : :; ai; :/i

k�.a1; a2; : : :; ai; :/k2
:

Thus the normalized functions
	
 k`.z/ D

�k`.z/

k�k`k
; k D 1; 2; � � � ; ` D 0; 1; � � � 22kC3




became an orthonormal system. Applying similar construction in Hardy space we
get in this way the Malmquist-Takenaka system. They can be written in a nice closed
form using the Blaschke products. Unfortunately in our situation this is not the case
and the properties of the system cannot be seen from the previous construction.

Another approach is given by Zhu in [52]. He proved that the result of the
Gram-Schmidt process is connected to some reproducing kernels and the contractive
divisors on Bergman spaces. Let denote Am D fa1; a2; � � � amg a set of distinct points
in the unit disc. Let HAm be the subspace of A2 consisting of all functions in A2 which



372 K. Nowak and M. Pap

vanish on Am. HAm is a closed subspace of A2 and denote by KAm the reproducing
kernel of HAm . These reproducing kernels satisfy the following recursion formula:

KAmC1
.z;w/ D KAm.z;w/ �

KAm.z; amC1/KAm.amC1;w/

KAm.amC1; amC1/
;m � 0;

KA0 WD K.z;w/ D
1

.1 � wz/2
:

The result of the Gram-Schmidt process can be expressed as

K.z; a1/p
K.a1; a1/

;
KA1 .z; a2/p
KA1 .a2; a2/

; � � �
KAm�1 .z; am/p
KAm�1 .am; am/

; � � � :

Then

 k`.z/ D
KAm�1 .z; am/p
KAm�1 .am; am/

and is the solution of the following problem

supfRef .am/ W f 2 HAm�1 ; kf k � 1g:

This extremal functions in the context of the Bergman spaces have been studied
extensively in recent years by Hedenmalm [25]. The main result in [25] is that the
function

KAm�1 .z; am/p
KAm�1 .am; am/

is a contractive divisor on the Bergman space, vanishes on Am�1, and if A is not a
zero set for A2, as is in our case, the functions converge to 0 as m ! 1. In Hardy
space the partial products of a Blaschke product corresponding to a nonzero set own
all these nice properties.

From the Gram-Schmidt orthogonalization process it follows that

Vn D spanf k;`; ` D 0; 1; : : :; 22kC3 � 1; k D 0; ng:

The wavelet space Wn is the orthogonal complement of Vn in VnC1. We will prove
that

Wn D spanf nC1;`; ` D 0; 1; : : :; 22nC5 � 1g:
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The constructed multiresolution in the Bergman space (see [36]) and the
projection on the resolution levels have all the nice properties of the multiresolution
constructed in the case of the Hardy space of the unit disc.
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Regular Sampling on Metabelian Nilpotent Lie
Groups: The Multiplicity-Free Case

Vignon S. Oussa

1 Introduction

It is a well-established fact that a function on the real line with its Fourier transform
vanishing outside of an interval

�
� 1
2
; 1
2

�
can be reconstructed by the Whittaker-

Kotel’nikov-Shannon sampling series from its values at points in the lattice Z (see
[10]). This series expansion takes the form

f .t/ D
X

k2Z

f .k/
�

sin .� .t � k//

� .t � k/

�

with convergence in L2 .R/ as well as convergence in L1 .R/. A relatively novel
problem in harmonic analysis has been to find analogues of Whittaker-Kotel’nikov-
Shannon sampling series for non-commutative groups. Since R is a commutative
nilpotent Lie group, it is natural to investigate if it is possible to extend Whittaker-
Kotel’nikov-Shannon’s theorem to nilpotent Lie groups which are not commutative.

Let G be a locally compact group and � a discrete subset of G: Let H be a left-
invariant closed subspace of L2 .G/ consisting of continuous functions. We say that
H is a sampling space with respect to the set � [6] if the following conditions
are satisfied. Firstly, the restriction map f 7! fj� defines a constant multiple of an
isometry of H into the Hilbert space of square-summable sequences defined over �:
In other words, there exists a positive constant cH such that

X

�2�

jf .�/j2 D cH kfk22 (1)
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for all f in H. Secondly, there exists a vector s in H such that an arbitrary element f
in the given Hilbert space has the expansion

f .x/ D
X

�2�

f .�/ s
�
��1x

�
(2)

with convergence in the norm of L2 .G/ : If � is a discrete subgroup of G, we say that
H is a regular sampling space with respect to �: Also, if H is a sampling space
with respect to � and if the restriction mapping f 7! fj� 2 l2 .� / is surjective,
then we say that H has the interpolation property with respect to �: This notion
of sampling space is taken from [6] and is analogous to Whittaker-Kotel’nikov-
Shannon’s theorem. In [7], the authors used a less restrictive definition. They
defined a sampling space to be a left-invariant closed subspace of L2 .G/ consisting
of continuous functions with the additional requirement that the restriction map
f 7! fj� is a topological embedding of H into l2 .� / in the sense that there exist
positive real numbers a � b such that a kfk22 �

P
�2� jf .�/j2 � b kfk22 for all f 2 H:

The positive number b=a is called the tightness of the sampling set. Notice that
in (1) the tightness of the sampling is required to be equal to one. Using oscillation
estimates, the authors in [7] provide general but precise results on the existence
of sampling spaces on locally compact groups. The band-limited vectors in [7] are
functions that belong to the range of a spectral projection of a self-adjoint positive
definite operator on L2.G/ called the sub-Laplacian. This notion of band-limitation
is essentially due to Pesenson [14] and does not rely on the group Fourier transform.

We shall employ in this work a different concept of band-limitation which
in our opinion is consistent with the classical one (the Whittaker-Kotel’nikov-
Shannon band-limitation), and the main objective of the present work is to prove that
under reasonable assumptions (see Condition 1) Whittaker-Kotel’nikov-Shannon
Theorem naturally extends to a large class of non-commutative nilpotent Lie groups.

Let G be a simply connected, connected nilpotent Lie group with Lie algebra
g: A subspace H of L2.G/ is said to be a band-limited space with respect to the
group Fourier transform if there exists a bounded subset E of the unitary dual of
the group G such that E has positive Plancherel measure, and H consists of vectors
whose group Fourier transforms are supported on the bounded set E: In this work,
we address the following.

Problem 1. Let N be a simply connected and connected nilpotent Lie group with
Lie algebra n with rational structure constants. Are there conditions on the Lie
algebra n under which there exists a uniform discrete subgroup � � N D exp n
such that L2 .N/ admits a band-limited (in terms of the group Fourier/Plancherel
transform) sampling subspace with respect to � ‹

Here are some partial answers to Problem 1.

• If N D R
d, then � can be taken to be an integer lattice, and the Hilbert space of

functions vanishing outside the cube
�
� 1
2
; 1
2

�d
is a sampling space which enjoys

the interpolation property with respect to Z
d.
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• Put

N D

8
<

:

2

4
1 x z
0 1 y
0 0 1

3

5 W x; y; z 2 R

9
=

; and � D

8
<

:

2

4
1 m k
0 1 l
0 0 1

3

5 W k; l;m 2 Z

9
=

; :

Then N is the three-dimensional Heisenberg Lie group and � is a discrete
uniform subgroup of N. The unitary dual of N is up to a null set parametrized by
the punctured line Rn f0g, and the Plancherel measure is the weighted Lebesgue
measure j�j d�: It is shown in [4, 6] that there exist band-limited subspaces with
respect to the group Fourier transform of L2 .N/ which are sampling subspaces
with respect to � .

• Let N be a step-two nilpotent Lie group with Lie algebra n of dimension n with
center z such that n D z ˚b ˚ a where Œa; b� 	 z; a; b are commutative Lie
algebras,

a D

dX

kD1

RXk; b D

dX

kD1

RYk; z D

n�2dX

kD1

RZk (d � 1; n > 2d)

and

det

2

64
ŒX1;Y1� � � � ŒX1;Yd�
:::

: : :
:::

ŒXd;Y1� � � � ŒXd;Yd�

3

75 (3)

is a non-vanishing polynomial in the variables Z1; � � � ;Zn�2d: The map

n D z ˚ b ˚ a Ö Z C Y C X 7! exp .Z C Y/ exp .X/ 2 N

defines an analytic diffeormorphism between n and N which is used to
endow N with a coordinate system. Moreover, given Z;Z0 2 z; Y;Y 0 2 b
and X;X0 2 a; the multiplication law for N is given by

.exp .Z C Y/ exp .X//
�
exp

�
Z0 C Y0

�
exp

�
X0
��

D exp
�

Z C Z0 C Y C eadX0

Y0

�
exp

�
X C X0

�

where the linear operator adX is defined as follows: adX .Y/ D ŒX;Y� : The
unitary dual of N is up to a null set parametrized by

f� 2 z� W det B .�/ ¤ 0g where B .�/ D

2

64
h�; ŒX1;Y1�i � � � h�; ŒX1;Yd�i

:::
: : :

:::

h�; ŒXd;Y1�i � � � h�; ŒXd;Yd�i

3

75
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and the corresponding Plancherel measure is the weighted Lebesgue measure
jdet B .�/j d�: It is proved in [13] that L2 .N/ admits band-limited sampling
subspaces with respect to the discrete subset

� D exp

 
n�2dX

kD1

ZZk C

dX

kD1

ZYk

!
exp

 
dX

kD1

ZXk

!
� N:

In the case where the structure constants of the Lie algebra are integers then � is
a discrete uniform subgroup of N:

The main objective of the present work is to exploit well-known representation
theoretic tools for nilpotent Lie groups to establish in a unified manner the existence
of regular sampling spaces on a large class of nilpotent Lie groups (see Condition 1).
It is worth pointing out that the class of groups considered here contains nilpotent
Lie groups of arbitrary step.

1.1 Overview of the Paper

Let us start by fixing notation and by recalling some relevant concepts.

• Let Q be a linear operator acting on an n-dimensional real vector space V: The
norm of the matrix Q induced by the max-norm of the vector space V is given by

kQk1 D sup fkQvkmax W v 2 V and kvkmax D 1g

and the max-norm of an arbitrary vector is given by kvkmax D max fjvkj W 1 � k
� ng : Next, letting ŒQ� be the matrix representation of Q with respect to a fixed
basis, the transpose of this matrix is denoted ŒQ�T : Additionally, the adjoint of a
linear operator Q is denoted Q�:

• Given a countable sequence .fi/i2I of vectors in a Hilbert space H; we say
that.fi/i2I forms a frame [1, 9, 15] if and only if there exist strictly positive real
numbers a; b such that for any vector f 2 H, a kf k2 �

P
i2I jhf ; fiij

2 � b kf k2 : In
the case where a D b, the sequence .fi/i2I is called a tight frame. If a D b D 1,
.fi/i2I is called a Parseval frame.

• Let � be a unitary representation of a locally compact group G acting on a Hilbert
space H� : We say that the representation � is admissible [6] if there exists a
vector h in H� such that the linear map V�

h given by

V�
h f .x/ D hf ; � .x/ hi (4)

defines an isometry of the Hilbert space H� into L2 .G/ : In this case, the vector
h is called an admissible vector for the representation �:
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• Let .A;M/ be a measurable space. A family .Ha/a2A of Hilbert spaces indexed
by the set A is called a field of Hilbert spaces over A [5]. An element f of˘a2AHa

is a vector-valued function a 7! f .a/ 2 Ha defined on the set A: Such a map is
called a vector field on A: A measurable field of Hilbert spaces defined on a
measurable set A is a field of Hilbert spaces together with a countable set

�
ej
�

j2J

of vector fields such that the functions a 7!
˝
ej .a/ ; ek .a/

˛
Ha

are measurable for

all j; k 2 J; and the linear span of
˚
ej .a/


j2J is dense in Ha for each a: A vector

field f is called a measurable vector field if a 7!
˝
f .a/ ; ej .a/

˛
Ha

is a measurable
function for each index j:

• Let n be a nilpotent Lie algebra of dimension n, and let n� be the dual
vector space of n: A polarizing subalgebra p .�/ subordinated to a linear
functional � 2 n� (see [2, 12]) is a maximal algebra satisfying Œp .�/ ; p .�/� D

Span- fŒX;Y� 2 n W X;Y 2 p .�/g 	 ker .�/ :
• The coadjoint action on the dual of n is the dual of the adjoint action of N D exp n

on n. In other words, for X 2 n; and a linear functional � 2 n�, the coadjoint
action is defined as follows:

.exp X � �/ .Y/ D
D�

e�ad.X/
��
�;Y

E
D
h�

e�ad.X/
��
�
i
.Y/ : (5)

The following is a concept which is central to our results.

Definition 1. Let p be a subalgebra (or ideal) of n: We say that p is a constant
polarization subalgebra (or ideal) of n if there exists a Zariski open set ˝ � n�

which is invariant under the coadjoint action of N and p is a polarization subalgebra
subordinated to every linear functional in ˝:

In other words, p is a constant polarization subalgebra of n if p is a polarization
algebra for all linear functionals in general position, and it can then be shown (see
Proposition 2) that p is necessarily commutative.

1.1.1 Summary of Main Results

Let us suppose that N D PÌM D exp .p/Ìexp .m/ is a simply connected, connected
non-commutative nilpotent Lie group with Lie algebra n D p C m such that

Condition 1.

1. p is a constant polarization ideal of n (thus commutative) m is commutative as
well, p D dim p, m D dimm and p � m > 0:

2. There exists a strong Malcev basis
˚
Z1; � � � ;Zp;A1; � � � ;Am


for n such that˚

Z1; � � � ;Zp


is a basis for p, fA1; � � � ;Amg is a basis for m and � D

exp
�
ZZ1 C � � � C ZZp

�
exp .ZA1 C � � � C ZAm/ is a discrete uniform subgroup

of N: This is equivalent to the fact that n has rational structure constants (see
Chapter 5; [2]).
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First of all, we observe that the mapping p C m Ö Z C A 7! exp .Z/ exp .A/ 2 N
defines an analytic diffeomorphism between n and N which provides a coordinate
system on the Lie group N: This diffeomorphism takes the canonical Lebesgue
measure on the algebra n to a Haar measure on the Lie group N which is both
left and right invariant. The multiplication law on N is given by

.exp .Z/ exp .A//
�
exp

�
Z0
�

exp
�
A0
��

D exp
�

Z C ead.A/Z0
�

exp
�
A C A0

�

where Z;Z0 2 p and A;A0 2 m:

In order to properly introduce the concept of band-limitation with respect to the
group Fourier transform, we appeal to Kirillov’s theory [2] which states that the
unitary irreducible representations of N are parametrized by orbits of the coadjoint
action of N on the dual of its Lie algebra and can be modeled as acting in the
Hilbert space L2.Rm/: Let ˙ be a parameterizing set for the unitary dual of N: In
other words, ˙ is a cross-section for the coadjoint orbits in an N-invariant Zariski
open set ˝ � n�: If the ideal p is a constant polarization subalgebra for n, then
the orbits in general position are 2m-dimensional submanifolds of n� and we shall
(this is a slight abuse of notation) regard ˙ as a Zariski open subset of Rp�m D

R
n�2m. Next, let L be the left regular representation of N acting on L2 .N/ by left

translations. Let P W L2 .N/ �����! L2
�
˙; L2 .Rm/˝ L2 .Rm/ ; d
 .�/

�
be the

Plancherel transform which defines a unitary map on L2 .N/ (see Subsection 2.2.2).
The Plancherel transform intertwines the left regular representation with a direct
integral of irreducible representations of N: The measure used in the decomposition
is the so-called Plancherel measure: d
I which is a weighted Lebesgue measure on
˙: More precisely d
 .�/ is equal to jP .�/j d�: P .�/ is a polynomial defined over
˙ and d� is the Lebesgue measure on ˙ (see Lemma 8.) Given a 
-measurable
bounded set A � ˙ , and a fixed measurable field of unit vectors .u .�//�2A in
L2 .Rm/ ; we define the Hilbert space HA as follows. HA consists of vectors f 2

L2.N/ such that

Pf .�/ D

	
v .�/˝ u .�/ if � 2 A

0˝ 0 if � … A

and .v .�/˝ u .�//�2A is a measurable field of rank-one operators. Consequently,
HA is a left-invariant multiplicity-free band-limited subspace of L2 .N/ which is
naturally identified with the function space L2.A � R

m/ (see Subsection 2.3.)
Conjugating the operators L.x/ by the Plancherel transform, we obtain that ŒP ı

L.�/ ı P�1�.v .�/ ˝ u .�//�2˙ D .Œ	�.�/v.�/� ˝ u.�//�2˙ where 	� is the unitary
irreducible representation corresponding to the linear functional � 2 ˙ , and the
action of 	� on L2.Rm/ is given by (see Lemma 7)

	�.exp T/f .x/ D

(
f .x � a/ if T D

Pm
jD1 ajAj

e2� i
D
�;e�ad.x1A1C���CxmAm/

Pm
jD1 zjZj

E

f .x/ if T D
Pm

jD1 zjZj

:
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Let LHA be the representation induced by the action of the left regular representation
on the Hilbert space HA: It can be shown that if the spectral set A satisfies precise
conditions specified in Theorem 2 then the restriction of LHA to the discrete group
� is unitarily equivalent with a subrepresentation of the left regular representation
of � acting on l2 .� / : More precisely if A satisfies the conditions described in
Theorem 2, it can be proved that there exists a vector � 2 HA such that HA Ö
F 7!

�˝
F;L

�
��1

�
�
˛�
�2�

defines an isometric embedding of HA into l2 .� / which
intertwines the representation LHA with a subrepresentation of the right regular
representation of �: Let projp� W n� ! p� be the restriction mapping given by

projp�

0

@
pX

jD1

�
�jZ

�
j

�
C

mX

jD1

�
�jA

�
j

�
1

A D

nX

jD1

�jZ
�
j (6)

where
˚
Z�
1 ; � � � ;Z

�
p ;A

�
1 ; � � � ;A

�
m


is a dual basis for

˚
Z1; � � � ;Zp;A1; � � � ;Am


: Next

define the map ˇ W ˙ � R
m ! R

p by

ˇ .�; t/ D projp�

0

@exp

0

@
mX

jD1

tjAj

1

A � �

1

A D projp�

��
e�ad

Pm
jD1 tjAj

��

�
�

(7)

where � denotes the coadjoint action of N on the dual of its Lie algebra and t D

.t1; � � � ; tm/. Under the assumptions listed in Condition 1, we prove in Lemma 6 that
ˇ is a diffeomorphism with rational inverse, and the following holds true.

Theorem 2. Let N D PÌM D exp .p/Ìexp .m/ be a simply connected, connected
nilpotent Lie group with Lie algebra n satisfying Condition 1. Let A be a 
-
measurable bounded subset of ˙:

1. If ˇ .A � Œ0; 1/m/ has positive Lebesgue measure in R
p and is contained in a

fundamental domain of Zp, then there exists a vector � 2 HA such that VL
� .HA/

is a left-invariant subspace of L2 .N/ which is a sampling space with respect to �:
2. If ˇ .A � Œ0; 1/m/ is equal to a fundamental domain of Zp, then there exists a

vector � 2 HA such that VL
� .HA/ is a left-invariant subspace of L2 .N/ which is

a sampling space with the interpolation property with respect to �:

Let s D .s1; s2; � � � ; sm/ be an element of Rm and define A .s/ to be the restriction

of the linear map ad
�
�
Pm

jD1 sjAj

�
to the ideal p � n: Let ŒA .s/� be the matrix

representation of the linear map A .s/ with respect to the basis
˚
Z1; � � � ;Zp


. Let

eŒA.s/� be the matrix obtained by exponentiating ŒA .s/� : Since s 7!
���eŒA.s/�

T
���

1
is a

continuous function of s; it is bounded over any compact set and in particular over
the cube Œ0; 1�m: As such, letting " be a positive real number satisfying

" � ı D
1

2

�
sup

n���eŒA.s/�
T
���

1
W s 2 Œ0; 1/m

o��1

< 1; (8)
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we shall prove that under the assumptions provided in Condition 1, the set

ˇ
�
.�"; "/n�2m � Œ0; 1/m

�
has positive Lebesgue measure and is contained in a

fundamental domain of Zp: Appealing to Theorem 2, we are then able to establish
the following result which provides us with a concrete formula for the bandwidth of
various sampling spaces.

Corollary 1. Let N D PM D exp .p/ exp .m/ be a simply connected, connected
nilpotent Lie group with Lie algebra n satisfying Condition 1. For any positive
number " satisfying (8) there exists a band-limited vector � D �" in the Hilbert

space H.�";"/n�2m such that VL
�

�
H.�";"/n�2m

�
is a left-invariant subspace of L2 .N/

which is a sampling space with respect to � .

Next, we exhibit several examples to illustrate that the class of groups under
consideration is fairly large.

Example 1.

1. Let N be a simply connected, connected nilpotent Lie group with Lie algebra n of
dimension four or less. Then, there is a basis for the Lie algebra n with respect to
which there exists a uniform discrete subgroup � � N such that L2 .N/ admits a
band-limited sampling subspace with respect to �: Additionally, the Heisenberg
Lie group admits a sampling space which has the interpolation property with
respect to a uniform discrete subgroup (this result for the Heisenberg group was
originally proved by Currey and Mayeli in [4]).

2. (Nilpotent Lie groups of the type RpÌR) Let N be a simply connected, connected
nilpotent Lie group with Lie algebra spanned by Z1;Z2; � � � ;Zp;A1; the vector
space generated by Z1;Z2; � � � ;Zp is a commutative ideal, ŒadA1�jp D A is a
nonzero rational upper triangular nilpotent matrix of order p, and eA

Z
p 	 Z

p:

Then L2 .N/ admits a band-limited sampling subspace with respect to the discrete
uniform subgroup exp

�
ZZ1 C � � � C ZZp

�
exp .ZA1/ :

3. Let N be a simply connected, connected nilpotent Lie group with Lie algebra
spanned by the vectors Z1;Z2; � � � ,Zp;A1; � � � ;Am where p D m C 1; the
vector space generated by Z1;Z2; � � � ;Zp is a commutative ideal, the vector
space generated by A1; � � � Am is commutative and the matrix representation of
ad
�Pm

kD1 tkAk
�

restricted to p is given by

A .t/ D

"
ad

mX

kD1

tkAk

#ˇ̌
ˇ̌
ˇ p D mŠ

2

66666666664

0 t1 t2 � � � tm�1 tm

0 t1 t2
: : : tm�1

0 t1
: : :

:::

0
: : : t2
: : : t1

0

3

77777777775

: (9)
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Then L2 .N/ admits a band-limited sampling subspace with respect to the discrete
uniform subgroup exp

�
ZZ1 C � � � C ZZp

�
exp .ZA1 C � � � C ZAm/ :

The work is organized as follows. In Section 2, we present general well-known
results of harmonic analysis on nilpotent Lie groups. Section 3 contains intermediate
results leading to the proofs of Theorem 2, Corollary 1, and Example 1 which are
given in Section 4.

2 Harmonic Analysis on Nilpotent Lie Groups

2.1 Parametrization of Coadjoint Orbits

Let n be a finite-dimensional nilpotent Lie algebra of dimension n. We say that n
has a rational structure [2] if there is a real basis fZ1; � � � ;Zng for the Lie algebra
n having rational structure constants. Moreover, the rational span nQ fZ1; � � � ;Zng

provides a rational structure such that n is isomorphic to the vector space nQ˝R. Let
B D fZ1; � � � ;Zng be a basis for the Lie algebra n such that for any Zi;Zj 2 B; we
have:

�
Zi;Zj

�
D
Pn

kD1 cijkZk and cijk 2 Q: We say that B is a strong Malcev basis
(see Page 10; [2]) if and only if for each 1 � j � n the real span of

˚
Z1;Z2; � � � ;Zj



is an ideal of n: Now, let N be a connected, simply connected nilpotent Lie group
with Lie algebra n having a rational structure. The following result is taken from
Corollary 5.1.10, [2]. Let fZ1; � � � ;Zng be a strong Malcev basis for the Lie algebra
n: There exists a suitable integer q such that �q D exp .qZZ1/ � � � exp .qZZn/ is a
discrete uniform subgroup of N (there is a compact set K � G such that � K D

N). Setting Xk D qZk for 1 � k � n, from now on, we fix fX1; � � � ;Xng as a
strong Malcev basis for the Lie algebra n such that � D exp .ZX1/ � � � exp .ZXn/ is
a discrete uniform subgroup of N.

We shall next discuss the Plancherel theory for N: This theory is well exposed
in [2] for nilpotent Lie groups. Let s be a subset of n D log.N/: For each linear
functional � 2 n�; we define the corresponding set

s .�/ D fZ 2 n W h�; ŒZ;X�i D 0 for every X 2 sg :

Next, we consider a fixed strong Malcev basis B0 D fX1; � � � ;Xng and we construct
a sequence of ideals n1 	 n2 	 � � � 	 nn�1 	 n where each ideal nk is spanned
by fX1; � � � ;Xkg : It is easy to see that the differential of the coadjoint action on �
at the identity is given by the matrix

�˝
�;
�
Xj;Xk

�˛�
1�j;k�n D

�
�
��

Xj;Xk
���

1�j;k�n :

Defining the skew-symmetric matrix-valued function

� 7! M .�/ D

2

64
� ŒX1;X1� � � � � ŒX1;Xn�

:::
: : :

:::

� ŒXn;X1� � � � � ŒXn;Xn�

3

75 (10)
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on n�; it is worth noting that n .�/ is equal to the null-space of M .�/, if M .�/ is
regarded as a matrix with respect to the ordered basis B0 acting on n [12]. According
to the orbit method [2], the unitary dual of N is in one-to-one correspondence with
the set of coadjoint orbits in the dual of the Lie algebra. For each � 2 n� we define

e .�/ D f1 � k � n W nk ª nk�1 C n .�/g : (11)

The set e .�/ collects all basis elements fXi W i 2 e .�/g � B0 such that
if e .�/ D fe1 .�/ < � � � < e2m .�/g then the dimension of the manifold
exp

�
RXe1.�/

�
� � � exp

�
RXe2m.�/

�
� � is equal to the dimension of the N-orbit of

�. Each element of the set e .�/ is called a jump index and clearly the cardinality of
the set of jump indices e .�/ must be equal to the dimension of the coadjoint orbit
of �:

Referring to Theorem 3.1.6, [2], the following holds true.

Proposition 1. For each subset eı 	 f1; 2; � � � ; ng ; the set ˝eı D f� 2 n� W

e .�/ D eıg is algebraic and N-invariant [3]. Moreover, there exists a set of jump
indices e such that ˝e D ˝ is a Zariski open set in n� which is invariant under the
action of N:

Put ˝ D ˝e: We recall that a polarization subalgebra subordinated to the
linear functional � is a maximal subalgebra p.�/ of n� satisfying the condition
Œp.�/; p.�/� 	 ker�: Notice that if p.�/ is a polarization subalgebra associated with
the linear functional � then ��.exp X/ D e2� i�.X/ defines a character on exp.p.�/. It
is also well-known that dim .n.�// D n � 2m and dim .n=p.�// D m: Finally, the
algebra defined by the formula p.�/ D

Pn
kD1 nk .�jnk/ (see Page 30; [2] and [12])

is called a Vergne polarization.

Proposition 2. If p is a constant polarization subalgebra for n, then p is commuta-
tive.

Proof. Let ˝ be a Zariski open and N-invariant subset of n� such that p is a
subalgebra subordinated to every linear functional � 2 ˝: Next, let fW1; � � � ;Wrg

be a basis for Œp; p� : Define Œp; p�� to be the vector subspace of n� spanned by
the elements

˚
W�
1 ; � � � ;W

�
r


: Here W�

k is the unique element in n� satisfying the
property

˝
W�

k ;Wj
˛

D ık;j: Observe that ˝ \ Œp; p�� is open in Œp; p��: Next, for
arbitrary ` 2 ˝ \ Œp; p��; by assumption Œp; p� is contained in the kernel of `: Thus,
Œp; p� must be a trivial vector space and it follows that p is commutative.

The following result is established in Theorem 3.1.9, [2]

Proposition 3. A cross-section for the coadjoint orbits in ˝ is given by

˙ D f� 2 ˝ W � .Zk/ D 0 for all k 2 e g : (12)
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2.2 Unitary Dual and Plancherel Theory

The setting in which we are studying sampling spaces requires the following
ingredients:

1. An explicit description of the irreducible representations occurring in the decom-
position of the left regular representation of N:

2. The Plancherel measure and a formula for the group Fourier/Plancherel trans-
form.

3. A description of left-invariant multiplicity-free spaces.

2.2.1 A Realization of the Irreducible Representations of N

The following discussion is taken from Chapter 6, [5]. Let G be a locally compact
group, and let K be a closed subgroup of G: Let us define q W G ! G=K to be the
canonical quotient map and let ' be a unitary representation of the group K acting in
some Hilbert space which we call H: Next, let K1 be the set of continuous H-valued
functions f defined over G satisfying the following properties:

• The image of the support of f under the quotient map q is compact.

• f .gk/ D
h
' .k/�1 f

i
.g/ for g 2 G and k 2 K:

Clearly, G acts on the set K1 by left translation. Now, to simplify the presentation,
let us suppose that G=K admits a G-invariant measure (this assumption is not
always true.) However, since we are mainly dealing with unimodular groups, the
assumption holds. First, we endow K1 with the following inner product: hf ; f 0i DR

G=K hf .g/ ; f 0 .g/iH d .gK/ for f ; f 0 2 K1: Second, let K be the Hilbert completion
of the space K1 with respect to this inner product. The translation operators extend
to unitary operators on K inducing the unitary representation IndG

K .'/ which acts
on K as follows:

�
IndG

K .'/ .x/ f
�
.g/ D f

�
x�1g

�
for f 2 K: We notice that if ' is a

character, then the Hilbert space K can be naturally identified with L2 .G=K/ : The
reader who is not familiar with these notions is invited to refer to Chapter 6 of the
book of Folland [5] for a thorough presentation.

For each linear functional in the set˙ (see (12)), there is a corresponding unitary
irreducible representation of N which is realized as acting in L2 .Rm/ as follows.
Define a character �� on the normal subgroup exp .p.�// such that �� .exp X/ D

e2� i�.X/ for X 2 p.�/: In order to realize an irreducible representation corresponding
to the linear functional �, we induce the character �� as follows:

	� D IndN
P�
.��/ ; where P� D exp .p.�// : (13)

The induced representation 	� acts by left translations on the Hilbert space

H� D
n
f W N �����! C W f .xy/ D �� .y/

�1 f .x/ for y 2 P�

and
R

N=P�
jf .x/j2 d .xP�/ < 1

o
;

(14)



388 V.S. Oussa

which is endowed with the following inner product: hf ; f 0i D
R

N=P�
f .n/ f 0 .n/d .nP�/ :

Picking a cross-section in N (which we may identify with R
dim N) for N=P�; since

�� is a character there is an obvious identification between H� and the Hilbert space
L2 .N=P�/ D L2 .Rm/ :

2.2.2 The Plancherel Measure and the Plancherel Transform

For a linear functional � 2 ˝; put e D fe1 < e2 < � � � < e2mg and define

B .�/ D
�˝
�;
�
Xei ;Xej

�˛�
1�i;j�2m

D
�
�
�
Xei ;Xej

��
1�i;j�2m

: (15)

Then B .�/ is a skew-symmetric invertible matrix of rank 2m: Let d� be the
Lebesgue measure on ˙ which is parametrized by a Zariski subset of Rn�2m: Put
d
 .�/ D jdet B .�/j1=2 d�: It is proved in Section 4.3 [2] that up to multiplication
by a constant, the measure d
 .�/ is the Plancherel measure for N; which can
be understood as follows. The group Fourier transform F is an operator-valued
bounded operator which is weakly defined on L2.N/ \ L1.N/ as follows:

	� .f / D F .f / .�/ D

Z

N
f .n/ 	�

�
n�1

�
dn where f 2 L2.N/ \ L1.N/: (16)

	� .f / is weakly defined as follows. Given u; v 2 L2 .Rm/ ; h	� .f /u; vi DR
N f .n/

˝
	�
�
n�1

�
u; v

˛
dn: Next, the Plancherel transform is a unitary operator

P W L2.N/ ! L2
�
˙;L2 .Rm/˝ L2 .Rm/ ; d
 .�/

�

which is obtained by extending the Fourier transform to L2.N/. This extension

induces the equality kf k2L2.N/ D
R
˙

���bf .	�/
���
2

HS
d
 .�/ wherebf .	�/ D Pf .�/ and

k�kHS stands for the Hilbert-Schmidt norm. Let L be the left regular representation
of the nilpotent group N: It is easy to check that for almost every � 2 ˙ (with
respect to the Plancherel measure)

�
PL .n/P�1A

�
.�/ D 	� .n/ ı A .�/ :

In other words, the Plancherel transform intertwines the regular representation with
a direct integral of irreducible representations of N: The irreducible representations
occurring in the decomposition are parametrized up to a null set by the manifold
˙ and each irreducible representation occurs with infinite multiplicities in the
decomposition.



Regular Sampling on Metabelian Nilpotent Lie Groups: The Multiplicity-Free Case 389

2.3 Bandlimited Multiplicity-Free Spaces

Given a Lebesgue measurable set A 	 ˙ , it is easily checked that the Hilbert space

P�1
�
L2
�
A; L2 .Rm/˝ L2 .Rm/

�
; d
 .�/

�

is a left-invariant subspace of L2 .N/ : Let us suppose that A is a bounded subset of
˙ of positive Plancherel measure. Letting jAj be the Lebesgue measure of the set A


 .A/ D

Z

A
jdet B .�/j1=2 d� � jAj � sup

n
jdet B .�/j1=2 W � 2 A

o
: (17)

Next, since � 7! j det B.�/j
1
2 is a continuous function then 
.A/ is finite. Fixing a

measurable field .u .�//�2A of unit vectors in L2 .Rm/, we define

HA D

	
f 2 L2 .N/ W Pf .�/ D

	
v .�/˝ u .�/ if � 2 A

0˝ 0 if � … A
and

.v .�/˝ u .�//�2A is a measurable
field of rank-one operators



:

(18)

Then HA is a left-invariant, band-limited and multiplicity-free subspace of L2 .N/ :
Let h 2 HA such that the Plancherel transform of h is a measurable field of
projections. More precisely, let us assume that

Ph .	�/ Dbh .	�/ D

	
u .�/˝ u .�/ if � 2 A

0˝ 0 if � … A
(19)

and

�
VL

h .f /
�
.exp .X// D hf ;L .exp .X// hi D f � h� .exp .X//

where h� .x/ D h .x�1/ and � is the convolution operator given by f � g .n/ DR
N f .m/ g

�
m�1n

�
dm:

Proposition 4. If A is a bounded subset of˙ of positive Plancherel measure and if
h is as given in (19), then h is an admissible vector for the representation .L;HA/ :

Proof. To check that h is an element of the Hilbert space HA; it is enough to verify
that

khk2L2.N/ D

Z

A
ku .�/˝ u .�/k2HS d
 .�/ D 
 .A/



390 V.S. Oussa

is finite. Next, for any vector f 2 HA; the square of the norm of the image of f under
the map VL

h is computed as follows:

��VL
h .f /

��2
L2.N/ D

Z

A

���bf .	�/ .u .�/˝ u .�//
���
2

HS
d
 .�/

D

Z

A

D
bf .	�/ u .�/ ;bf .	�/u .�/

E

L2.Rm/
d
 .�/ :

Lettingbf .	�/ D v .�/˝ u .�/ where v .�/ is in L2 .Rm/ ; it follows that

��VL
h .f /

��2
L2.N/ D

Z

A
hv .�/ ; v .�/iL2.Rm/ d
 .�/ D kf k2L2.N/ :

In other words, the map VL
h defines an isometry from HA into L2 .N/ and the

representation .L;HA/which is a subrepresentation of the left regular representation
of N is admissible. Thus, the vector h is an admissible vector.

Remark 1. It is worth noting that h is convolution idempotent in the sense that h D

h � h� D h�: Next, VL
h .HA/ is a left-invariant vector subspace of L2 .N/ consisting

of continuous functions. Moreover, the projection onto the Hilbert space VL
h .HA/ is

given by right convolution in the sense that VL
h .HA/ D L2 .N/ � h:

In order to simplify our presentation, we shall naturally identify the Hilbert space
P .HA/ with the function space L2 .A � R

m; d
 .�/ dt/ : This identification is given
by the map

.v .�/˝ u .�//�2A 7! Œv .�/� .t/ WD v .�; t/

for any measurable field of rank-one operators .v .�/˝ u .�//�2A :

Lemma 1. Let � be a unitary representation of a group N acting in a Hilbert
space H� : Assume that � is admissible, and let h be an admissible vector for �:
Furthermore, suppose that � .� / h is a tight frame with frame bound Ch. Then
the vector space Vh .H�/ is a left-invariant closed subspace of L2 .N/ consisting
of continuous functions and Vh .H�/ is a sampling space with sinc-type function
1

Ch
Vh .h/ :

Lemma 1 is proved in Proposition 2.54, [6]. This result establishes a connection
between admissibility and sampling theories. This connection will play a central
role in the proof of our main results. The following result is a slight extension of
Proposition 2:61 [6], and the proof given here is essentially inspired by the one
given in the Monograph [6].

Lemma 2. Let � be a discrete subgroup of N with positive co-volume. Let � be
a unitary representation of N acting in a Hilbert space H� : If the restriction of
� to the discrete subgroup � is unitarily equivalent to a subrepresentation of the
left regular representation of � , then there exists a subspace of L2 .N/ which is a
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sampling space with respect to �: Moreover, if � is equivalent to the left regular
representation of � , then there exists a subspace of L2 .N/ which is a sampling
space with the interpolation property with respect to �:

Proof. Let T W H� ! H � l2 .� / be a unitary map which is intertwining the
restricted representation of � to � with a representation which is a subrepresenta-
tion of the left regular representation of the lattice �: Since � is a discrete group,
the left regular representation of � is admissible. To see this, let � be the sequence
which is equal to one at the identity of � and zero everywhere else. By shifting
the sequence � by elements in �; we generate an orthonormal basis for the Hilbert
space l2 .� / : Now, let P W l2 .� / ! H be an orthogonal projection. Next, we claim
that the vector � D T�1 .P .�// is an admissible vector for �j� as well. We recall
that V�

� .f / D hf ; � .�/ �i : Let N D A� where A is a set of finite measure with
respect to the Haar measure of N: Without loss of generality, let us assume that a
Haar measure for N is fixed so that jAj D 1: Then

���V�
� .f /

���
2

L2.N/
D

Z

N
jhf ; � .x/ �ij2 dx D

Z

A

X

�2�

ˇ̌˝
�
�
x�1

�
f ; � .�/ �

˛ˇ̌2
dx:

Next, since � .� / � is a Parseval frame in H� ;
P
�2�

ˇ̌˝
�
�
x�1

�
f ; � .�/ �

˛ˇ̌2
D

���
�
x�1

�
f
��2

H�
and it follows that

���V�
� .f /

���
2

L2.N/
D

Z

A

���
�
x�1

�
f
��2

H�
dx D kf k2H�

jAj D kf k2H�
:

Thus � is a continuous wavelet for the representation � , � .� / .�/ is a Parseval
frame, and the Hilbert space V�

� .H�/ is a sampling space of L2 .N/ with respect
to the lattice �: Now, for the second part, if we assume that � is equivalent to the
left regular representation, then the operator P described above is just the identity
map. Next, � .� / � D � .� /

�
T�1 .�/

�
is an orthonormal basis of H� and V� .�/ is

a sinc-type function. It follows from Theorem 2.56 [6] that V� .H�/ is a sampling
space of L2 .N/ which has the interpolation property with respect to the lattice �:

Remark 2. Let HA be the Hilbert space of band-limited functions as described
in (18). We recall that � D exp .ZX1/ � � � exp .ZXn/ is a discrete uniform subgroup
of N: Since HA is left-invariant, the regular representation of N admits a subrep-
resentation obtained by restricting the action of the left regular representation to
the Hilbert space HA: Let us denote such a representation by LHA : Furthermore,
let LHA;� be the restriction of LHA to �: If the representation LHA;� is unitarily
equivalent to a subrepresentation of the left regular representation of the discrete
group � , then according to arguments used in the proof of Lemma 2, there exists
a vector � such that VL

� .HA/ is a sampling space of L2 .N/ with respect to the
discrete uniform group �: In the present work, we are aiming to find conditions
on the spectral set A which guarantees that LHA;� is unitarily equivalent to a
subrepresentation of the left regular representation of the discrete group �:We shall
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also prove that under the assumptions given in Condition 1, it is possible to find
A such that VL

� .HA/ is a sampling subspace of L2 .N/ with respect to the discrete
uniform group �:

3 Intermediate Results

Let us now fix assumptions and specialize the theory of harmonic analysis of
nilpotent Lie groups to the class of groups being considered here (see Condition 1)

Let N be a simply connected, connected non-commutative nilpotent Lie group
with Lie algebra n with rational structure constants such that N D P Ì M D

exp .p/ exp .m/ where p and m are commutative Lie algebras, and p is an ideal of n:
We fix a strong Malcev basis

˚
Z1; � � � ;Zp;A1; � � � ;Am


(20)

for n such that
˚
Z1; � � � ;Zp


is a basis for p and fA1; � � � ;Amg is a basis for m:

Moreover it is assumed that

� D exp

 
pX

kD1

ZZk

!
exp

 
mX

kD1

ZAk

!

is a discrete uniform subgroup of N: Indeed, in order to ensure that � is a
discrete uniform group, it is enough to pick fA1; � � � ;Amg such that the matrix
representation of eadAk jp with respect to the basis

˚
Z1; � � � ;Zp


has entries in Z:

Let M .�/ be the skew-symmetric matrix defined in (10). Regarding M .�/ as the
matrix representation of a linear operator acting on n; we recall that the null-space
of M .�/ corresponds to n .�/ : Now, let Mk .�/ be the matrix obtained by retaining
the first k columns of M .�/ (see illustration below)

M .�/ D

2

6666666664

0
:::

0

� ŒA1;Z1�
:::

� ŒAm;Z1�„ ƒ‚ …
M1.�/

� � � 0
: : :

:::

� � � 0

� � � �
�
A1;Zp

�

: : :
:::

� � � �
�
Am;Zp

�

„ ƒ‚ …
Mp.�/

� ŒZ1;A1�
:::

�
�
Zp;A1

�

0
:::

0

„ ƒ‚ …
MpC1.�/

� � � � ŒZ1;Am�
: : :

:::

� � � �
�
Zp;Am

�

� � � 0
: : :

:::

� � � 0

3

7777777775

„ ƒ‚ …
M.�/DMn.�/

:

For convenience of notation, we use the convention rank .M0 .�// D 0: Put

X1 D Z1; � � � ;Xp D Zp;XpC1 D A1; � � � ;Xn�1 D Am�1;Xn D Am:
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Lemma 3. Given � 2 n�; the following holds true.

f1 � k � n W rank .Mk .�// > rank .Mk�1 .�//g D f1 � k � n W nk ª nk�1 C n .�/g D e .�/ :

Proof. First, assume that the rank of Mi.�/ is greater than the rank of Mi�1.�/:

Then it is clear that Xi cannot be in the null-space of the matrix M.�/: Thus, ni D

ni�1 CRXi ª ni�1 C n.�/: Next, if ni ª ni�1 C n.�/ and ni D ni�1 CRXi since the
basis element Xi cannot be in n C n.�/: Thus the rank of Mi.�/ is greater than the
rank of Mi�1.�/ and the stated result is established.

It is proved in Theorem 3.1.9, [2] that there exist a Zariski open subset
˝ of n� and a fixed set e � f1; 2; � � � ; ng such that the map � 7!

f1 � k � n W rank .Mk .�// > rank .Mk�1 .�//g D e is constant, ˝ is invariant
under the coadjoint action of N and ˙ D f� 2 ˝ W � .Xk/ D 0 for all k 2 e g is an
algebraic set which is a cross-section for the coadjoint orbits of N in ˝; as well as
a parameterizing set for the unitary dual of N:

Lemma 4. If p is a constant polarization for n, then the set fp C 1; p C 2; � � � ; g

fp C m D ng is contained in e and card .e/ D 2m:

Proof. Let � 2 ˙: Let us suppose that there exists one index k such that k 2

fp C 1; p C 2; � � � ; p C m D ng and k is not an element of the set e .�/ D e: Then
the dimension of the coadjoint orbit of the linear functional � is equal to 2.m � 1/:

However, the dimension of any polarization algebra subordinated to �must be equal
to n� .m�1/ D n�mC1. This contradicts the fact that the ideal p is a polarization
algebra subordinated to � and dim p D n � m: The second part of the lemma is true
because M.�/ is a skew symmetric rank of positive rank.

Remark 3. From now on, we shall assume that p is a constant polarization ideal for
n: Since P D exp p is normal in N; it is clear that the dual of the Lie algebra p is
invariant under the coadjoint action of the commutative group M.

We recall that ˇ W ˙ � R
m ! R

p and

ˇ .�; t/ D projp�

0

@exp

0

@
mX

jD1

tjAj

1

A � �

1

A D projp�

��
e�ad

Pm
jD1 tjAj

��

�
�
: (21)

Remark 4. In vector-form, ˇ .�; t1; � � � ; tm/ is easily computed as follows. Let
P .A.t// be the transpose of the matrix representation of e �ad.

Pm
kD1 tkAk/jp

with respect to the ordered basis fZk W 1 � k � pg : We write P .A.t// Dh
e �ad.

Pm
kD1 tkAk/jp

iT
and ˇ .�; t1; � � � ; tm/ is identified with

P .A.t//

2

64
f1
:::

fp

3

75 where � D

pX

kD1

fkZ�
k
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˚
Z�

k W 1 � k � p


is a dual basis to fZk W 1 � k � pg : We shall generally make no
distinction between linear functionals and their representations as either row or
column vectors. Secondly for any linear functional � D

Pp
kD1 fkZ�

k 2 ˙ since
P .A.t// is a unipotent matrix, the components of ˇ .�; t1; � � � ; tm/ are polynomials
in the variables fk where k … e and t1; � � � tm:

The following result is proved in [2], Proposition 1.3.6

Lemma 5. Let � 2 ˙: p is a polarizing ideal subordinated to the linear functional
� if and only if for any given X 2 n, p is also a polarizing ideal subordinated to the
linear functional exp .X/ � �:

Lemma 6. If for each � 2 ˙; p D R-span
˚
Z1; � � � ;Zp


is a commutative

polarizing ideal which is subordinated to the linear functional �, then ˇ defines
a diffeomorphism between ˙ � R

m and its range. Moreover, the inverse of ˇ is a
rational map.

Proof. In order to prove this result, it is enough to show that ˇ is a bijective
smooth map with constant full rank (see Proposition 6.5, [11]). First, we need
a formula for the coadjoint action. Let us define ˇe W ˙ � R

2m such that
ˇe .�; te1 ; � � � ; te2m/ D exp .te1Xe1 / � � � exp .te2m Xe2m/ �� and fe1 < e2 < � � � < e2mg D

e: For a fixed linear functional � in the cross-section ˙; the map .te1 ; � � � ; te2m/ 7!

exp .te1Xe1 / � � � exp .te2m Xe2m/ � � defines a diffeomorphism between R
2m and the N-

orbit of � which is a closed submanifold of the dual of the Lie algebra n: Next, since
all orbits in˝ are 2m-dimensional manifolds, the map ˇe is a bijection with constant
full-rank. Thus, ˇe defines a diffeomorphism between ˙ �R

2m and ˝ . Next, there
exist indices i1; � � � ; im � p such that for g D exp .te1Xe1 / � � � exp .te2m Xe2m/ we have

g � � D exp
�Pm

kD1 tik Zik

�
exp

�Pm
jD1 sjAj

�
� �: In order to compute the coadjoint

action of N on the linear functional �; it is quite convenient to identify n� with
p� � m� via the map $ W n� D p� C m� ! p� � m� given by

$ .f1 C f2/ D

�
f1
f2

�
where f1 2 p� and f2 2 m�: (22)

Thus, for any linear functional � 2 ˙; $ .�/ D

�
f
0

�
for some f 2 p: Put

A .s/ D
Pm

jD1

�
sjAj

�
2 m, Z .t/ D

Pm
kD1 .tik Zik/ 2 p where s D .s1; � � � ; sm/ ; t D

.ti1 ; � � � ; tim/ : Clearly, with the fixed choice of the Malcev basis described in (20), it
is easy to check that (see Remark 4)

$ .exp .A .s// � �/ D

�
P .A.s// f

0

�
and $ .exp .Z .t// � �/ D

�
f

	 .t; f /

�
(23)
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where 	 .t; f / is an m � 1 vector which depends on t and f : Next, (23) gives

exp .Z .t// exp .A .s// � � D

�
P .A.s// f

	 .t;P .A.s// f /

�
: Now, we consider the map

.f ; s; t/ 7!

�
P .A.s// f

	 .t;P .A.s// f /

�
: (24)

The Jacobian of (24) takes the form

T .f ; s; t/ D

�
A .f ; s/

C .f ; s; t/
0

D .f ; s; t/

�

where A .f ; s/ is a matrix of order p obtained by taking the partial derivatives
of the components of P .A.s// f with respect to the coordinates corresponding to
.f ; s/ 2 R

p:C .f ; s; t/ is an m�p matrix obtained by computing the partial derivatives
of the components of 	 .t;P .A.s// f / with respect to .f ; s/ : Finally D .f ; s; t/ is
a matrix of order m which is given by computing the partial derivatives of the
components of 	 .t;P .A.s// f / with respect to the coordinates of s 2 R

m: Observe
that det T .f ; s; t/ D det .A .f ; s// det .D .f ; s; t// ¤ 0. Since the Jacobian of ˇ
is the submatrix A .f ; s/ ; clearly det .A .f ; s// ¤ 0: It follows that the Jacobian
of the map ˇ has constant full rank as well. Since $ .ˇ .�; s// D P .A.s// f
and (24) is a bijection then it is clear that ˇ is a smooth bijection with constant
full-rank. Thus, ˇ is a diffeomorphism. For the second part we write ˇ .�; t/ D�
ˇ1 .�; t/ ; � � � ; ˇp .�; t/

�
where the range of each ˇk is a subset of R: Since N is

a nilpotent Lie group, for each index k the function ˇk is a polynomial function
in the variables � and t: Next we consider the system of equations sk D ˇk .�; t/
where the variables are given by the coordinates of .�; t/. Since each ˇk .�; t/ is
a polynomial, the solutions for the equations above are given by some rational
functions R1 .s/ ; � � � ;Rp .s/ in the variables s and ˇ�1 .s/ D

�
R1 .s/ ; � � � ;Rp .s/

�
:

Remark 5. For � 2 ˙ there exist real numbers fk such that � D
P

k…e fkZ�
k D

fk1Z
�
k1

C � � � C fkn�2m Z�
kn�2m

: Thus, defining j W fk1Z
�
k1

C � � � C fkn�2m Z�
kn�2m

7!

.fk1 ; � � � ; fkn�2m/ it is clear that the unitary dual of the Lie group N is parametrized by
j .˙/which is a Zariski open subset of Rdim˙:Although this is an abuse of notation,
we shall make no distinction between j .˙/ and ˙:

Lemma 7. Given a linear functional � 2 ˙ and a vector h 2 L2 .Rm/ ; the
irreducible representation 	� of N acts on L2 .Rm/ as follows

Œ	� .exp .Z .t// exp .A .a/// h� .x/ D e
2� i

D
�;e�ad.x1A1C���CxmAm/Z.t/

E

h .x1 � a1; � � � ; xm � am/ :

(25)

Proof. For each � 2 ˙; the corresponding unitary irreducible representation 	� of
N (see (13)) is obtained by inducing the character �� of the normal subgroup P
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which is defined as follows: ��
�
exp

�
t1Z1 C � � � C tpZp

��
D e2� ih�;t1Z1C���CtpZpi D

e2� i�.t1Z1C���CtpZp/: Put a D .a1; � � � ; am/ ; x D .x1; � � � ; xm/ ; t D
�
t1; � � � ; tp

�
:

Define A .a/ D a1A1 C � � � C amAm; and Z .t/ D t1Z1 C � � � C tpZp: We
observe that exp .A .a//�1 exp A .x/ D exp .A .x � a// and .exp Z .t//�1 exp A .x/ D

exp A .x/ exp
�
eadA.�x/Z .�t/

�
: Since exp .RA1 C � � � C RAm/ is a cross-section for

N=P in N; we shall realize the unitary representation 	� as acting on the Hilbert
space L2.N=P/ which we identify with L2 .Rm/ : Following the discussion given in
Subsection 2.2.1, if h 2 L2 .Rm/ ; then for every linear functional � 2 ˙

Œ	� .exp .Z .t// exp .A .a/// h� .x/ D e2� ih�;e�adA.x/Z.t/ih .x1 � a1; � � � ; xm � am/ :

(26)

We remark that although the Plancherel measure for an arbitrary nilpotent Lie
group has already been computed in general form in the book of Corwin and
Greenleaf [2], in order to prove the main results stated in the introduction, we
will need to establish a connection between the Plancherel measure of N and the
determinant of the Jacobian of the map ˇ: To make this connection as transparent as
possible, we shall need the following lemma.

Lemma 8. Let Jˇ .�; s1; � � � ; sm/ be the Jacobian of the smooth map ˇ defined in
(20). The Plancherel measure of N is up to multiplication by a constant equal to

d
 .�/ D
ˇ̌
det Jˇ .�; 0/

ˇ̌
d� (27)

where d� is the Lebesgue measure on R
dim˙:

Proof. Let N D P Ì M as defined above. Since the set of smooth functions of
compact support is dense in L2 .N/ ; it suffices to show that for any smooth function
F of compact support on the group N,

Z

˙

���bF .	�/
���
2

HS

ˇ̌
det Jˇ .�; 0/

ˇ̌
d� D kFk2L2.N/ :

In order to simplify our presentation, we shall identify the set N D PM with R
p�R

m

via the map

exp
�
t1Z1C � � � C tpZp

�
exp .a1A1C � � � CamAm/ 7!

�
t1; � � � ; tp; a1; � � � ; am

�
D .t; a/ :

As such the Haar measure on the group N is taken to be the Lebesgue measure on
R

p�R
m: For any smooth function F of compact support on the group N; the operator

bF .	�/ (see (16)) is defined as acting on L2 .Rm/ as follows. For � 2 L2 .Rm/we have

h
bF .	�/ �

i
.x/ D

Z

Rp

Z

Rm
F .t; a/ Œ.	� .t; a// �� .x/ dadt (28)
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D

Z

Rp

Z

Rm
F .t; a/ e2� ih�;e�adA.x/Z.t/i� .x � a/ dadt (29)

D

Z

Rp

Z

Rm
F .t; a/ e2� ihexp.A.x//��;Z.t/i� .x � a/ dadt: (30)

Next, we recall that P .A.x// f D
�
e�adA.x/jp

�T
f and

$ .exp .A .x// � �/ D

�
P .A.x// f

0

�
where $ .�/ D

�
f
0

�
:

Next,

h
bF .	�/ �

i
.x/ D

Z

Rp

Z

Rm
F .t; a/ e2� ihexp.A.x//��;Z.t/i� .x � a/ dadt

D

Z

Rp

Z

Rm
F .t; a/ e2� ihˇ.�;x/;Z.t/i� .x � a/ dadt

D

Z

Rp

Z

Rm
F .t; x � a/ e2� ihˇ.�;x/;Z.t/i� .a/ da dt

D

Z

Rp

�Z

Rm
F .t; x � a/ e2� ihˇ.�;x/;Z.t/i dt

�
� .a/ da:

Thus,bF .	�/ is an integral operator on L2 .Rm/ with kernel K�;F given by

K�;F .x; a/ D

Z

Rp
F .t; x � a/ e2� ihˇ.�;x/;Z.t/idt: (31)

Now, let F1 be the partial Euclidean Fourier transform in the direction of t: It is clear
that K�;F .x; a/ D ŒF1F� .ˇ .�; x/ ; x � a/ : Additionally, the square of the Hilbert-
Schmidt norm of the operatorbF .	�/ is given by

���bF .	�/
���
2

HS
D

Z

Rm

Z

Rm
jK�;F .x; a/j

2 dx da

D

Z

Rm

Z

Rm
jF1F .ˇ .�; x/ ; x � a/j2 dx da

D

Z

Rm

Z

Rm
jF1F .ˇ .�; x/ ; a/j

2 dx da:

Observing that $ .ˇ .�; x C t// D P .A.x//P .A.t// f ; the components of
ˇ .�; x C t/ may be computed by multiplying a unipotent matrix by the matrix
representation of ˇ .�; t/, the determinant of the Jacobian of the map ˇ at .�; x/ is
then given by
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det Jˇ ..�; x C t// D det
�h

e.�adx1A1�����adxmAm/jp
i�

det Jˇ .�; t/

D 1 � det Jˇ .�; t/ :

It follows that det Jˇ .�; x/ D det Jˇ .�; 0/ D P .�/ where P .�/ is a polynomial in
the coordinates of �. Next,

Z

˙

���bF .	�/
���
2

HS

ˇ̌
det Jˇ .�; 0/

ˇ̌
d�

D

Z

˙

�Z

Rm

Z

Rm
j.F1F/ .ˇ .�; x/ ; a/j

2 da dx
ˇ̌
det Jˇ .�; 0/

ˇ̌�
d�

D

Z

˙

Z

Rm

Z

Rm
j.F1F/ .ˇ .�; x/ ; a/j

2 da dx
ˇ̌
det Jˇ .�; 0/

ˇ̌
d�

D

Z

˙�Rm

Z

Rm
j.F1F/ .ˇ .�; x/ ; a/j

2 da
ˇ̌
det Jˇ .�; 0/

ˇ̌
d .�; x/

D

Z

˙�Rm

Z

Rm
j.F1F/ .ˇ .�; x/ ; a/j

2 da d .ˇ .�; x//

D

Z

˝

Z

Rm
j.F1F/ .z; a/j

2 da dz:

Finally, appealing to the Plancherel Theorem for Rm

Z

˙

���bF .	�/
���
2

HS

ˇ̌
det Jˇ .�; 0/

ˇ̌
d� D

Z

Rp

Z

Rm
jF .z; a/j2 dadz D kFk2L2.N/ :

We are now interested in finding conditions on the spectral set A which will
allow us to isometrically embed the Hilbert space L2 .A � R

m; d
 .�/ dt/ into the
sequence space l2 .� / : Moreover, this map should also intertwine the operators
P ı L .�/ ı P�1 with the right shift operators acting on l2 .� / ( � 2 � ). Let A be a
Lebesgue measurable subset of Rn�2m: Define (in a formal way) the map

JA W L2 .A � R
m; d
 .�/ dt/ ! Set of sequences over �

such that for l D .l1; � � � ; lm/ 2 Z
m we have

ŒJAF�

0

@exp

0

@
pX

jD1

kjZj

1

A exp

0

@
mX

jD1

ljAj

1

A

1

A D

Z

A

Z

Œ0;1/
m

F .�; t � l/ e2� i
D
ˇ.�;t/;

Pp
jD1 kjZj

E ˇ̌
det Jˇ .�; 0/

ˇ̌
dt d�

(32)

where exp
�Pp

jD1 kjZj

�
exp

�Pm
jD1 ljAj

�
2 �: Next, we define Z .k/ D

Pp
jD1 kjZj

and A .l/ D
Pm

jD1 ljAj: Let 1X denotes the indicator function for a given set X.
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Lemma 9. For any � 2 �; and F 2 L2 .A � R
m; d
 .�/ dt/ ;

jŒJAF� .�/j � kFk �

Z

A

Z

Œ0;1/m

ˇ̌
det Jˇ .�; 0/

ˇ̌
dt d�:

Proof. For � 2 � such that � D exp .Z .k// exp .A .l// we obtain:

ŒJAF� .�/ D

Z

A

Z

Œ0;1/m
F .�; t � l/ e

2� i
D
ˇ.�;t/;

Pp
jD1 kjZj

E ˇ̌
det Jˇ .�; 0/

ˇ̌
dt d�

D

Z

A

Z

Rm

�
F .�; t � l/ e

2� i
D
ˇ.�;t/;

Pp
jD1 kjZj

E�
�
�
1A�Œ0;1/m .�; t/

�
dt

„ ƒ‚ …
Dh	�.�/F.�;�/;1A�Œ0;1/m .�;�/iL2.Rm/

ˇ̌
det Jˇ .�; 0/

ˇ̌
d�

D

Z

A

˝
	� .�/F .�; �/ ; 1A�Œ0;1/m .�; �/

˛
L2.Rm/

ˇ̌
det Jˇ .�; 0/

ˇ̌
d�

D
˝
L .�/P�1 ..F .�; �/˝ u .�//�2A/ ;P�1

��
1A�Œ0;1/m .�; �/˝ u .�/

�
�2A

�˛
L2.N/ :

Applying Cauchy–Schwarz inequality

jŒJAF� .�/j � kFk �
��P�1

��
1A�Œ0;1/m .�; �/˝ u .�/

�
�2A

���

D kFk �

Z

A

Z

Œ0;1/m

ˇ̌
det Jˇ .�; 0/

ˇ̌
dt d�:

Recall that ˙ is identified with a Zariski open subset of Rn�2m:

Proposition 5. Let A be a d
-measurable bounded subset of ˙: If H 2

L2 .A � R
m; d
 .�/ dt/ is a smooth function of compact support, then JAH 2 l2 .� / :

Proof. First, observe that

ŒJAH� .exp .Z .k// exp .A .l/// D

Z

A

Z

Œ0;1/m
H .�; t � l/ e2� ihˇ.�;t/;Z.k/idt

ˇ̌
det Jˇ.�;0/

ˇ̌
d�

and for fixed Z .k/ ; the sequence .ŒJAH� .exp Z .k/ exp A .l///l2Zm has bounded
support. Making the change of variable s D t � l; we obtain that

ŒJAH� .exp Z .k/ exp A .l// D

Z

A

Z

Œ0;1/m�l
H .�; s/ e2� ihˇ.�;sCl/;Z.k/ids

ˇ̌
det Jˇ.�;0/

ˇ̌
d�:

Next, since ˇ .�; s C l/ D exp A .s/ exp A .l/ � � it follows that

ŒJAH� .exp Z .k/ exp A .l// D

Z

A�.Œ0;1/m�l/
H .�; s/ e2� ihˇ.�;sCl/;Z.k/i

ˇ̌
det Jˇ.�;0/

ˇ̌
d .�; s/

D

Z

A�.Œ0;1/m�l/
H .�; s/ e2� ihexp.A.s// exp.A.l//��;Z.k/i

ˇ̌
det Jˇ.�;0/

ˇ̌
d .�; s/
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D

Z

A�.Œ0;1/m�l/
H .�; s/ e2� ihexp.A.s//��;e�adA.l/Z.k/i

ˇ̌
det Jˇ.�;0/

ˇ̌
d .�; s/

D

Z

A�.Œ0;1/m�l/
H .�; s/ e2� ihˇ.�;s/;e�adA.l/Z.k/i

ˇ̌
det Jˇ.�;0/

ˇ̌
d .�; s/ :

Next, the change of variable r D ˇ .�; s/ yields

ŒJAH� .exp .Z .k// exp .A .l/// D

Z

ˇ.A�.Œ0;1/m�l//

�
H ı ˇ�1

�
.r/ e2� ihr;e�adA.l/Z.k/i dr

D

Z

ˇ.A�.Œ0;1/m�l// \ support.Hıˇ�1/

�
H ı ˇ�1

�
.r/ e2� ihr;e�adA.l/Z.k/i dr

where dr is the Lebesgue measure on R
p: Next for each fixed l 2 Z

m; we write

E D ˇ .A� .Œ0; 1/m � l// \
�
support

�
H ı ˇ�1

��

as a finite disjoint union of subsets of Rp; each contained in a fundamental domain
of Zp as follows:

E D

�[

j2J.H;l/

.KA;l C j/ where J.H; l/ is a finite subset of Z
p:

In the disjoint union given above, each KA;l is a measurable subset of Rp contained
in some fundamental domain of Zp: Letting 1KA;lCj be the indicator function of the
set KA;l C j; we obtain

ŒJAH� .exp .Z .k// exp .A .l/// D
X

j2J.H;l/

Z

KA;lCj

�
H ı ˇ�1

�
.r/ e2� ihr;e�adA.l/Z.k/i dr:

Since ˇ�1 is a diffeomorphism and since H is smooth and has compact support then
H ı ˇ�1 is smooth and has compact support as well. Put �Zp D

Pp
kD1 ZZk ' Z

p:

Since det
�

e�adA.l/
ˇ̌
p
�

D 1 and the entries of the matrix
�

e�adA.l/
ˇ̌
p
�

are all integers,
it is clear that e�adA.l/ .�Zp/ D �Zp : Let ˚ � R

p be a fundamental domain of Zp:

We define the Fourier transform on L2 .˚/ as follows:

�
F�Zp F

�
.Z .k// D

Z

˚

F .r/ e2� ihr;Z.k/idr where F 2 L2 .˚/ :

For a fixed l 2 Z
m, we have

ŒJAH� .exp Z .k/ exp A .l// D
X

j2J.H;l/

�
F�Zp

��
H ı ˇ�1

�
� 1KA;lCj

�� �
e�adA.l/Z .k/

�
:
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In order to avoid cluster of notation, we set e�adA.l/Z .k/ D al .k/ and �k;l D

exp .Z .k// exp .A .l// : Then

kŒJAH�k2l2.� / D
X

k2Zp

X

l2Zm

jJAH .�k;l/j
2

D
X

k2Zp

X

l2F

ˇ̌
ˇ̌
ˇ̌
X

j2J.H;l/

�
F�Zp

��
H ı ˇ�1

�
� 1KA;lCj

��
.al .k//

ˇ̌
ˇ̌
ˇ̌

2

where F is a finite subset of Zm (because H has compact support) and

kŒJAH�k2l2.� / D
X

l2F

X

k2Zp

ˇ̌
ˇ̌
ˇ̌
X

j2J.H;l/

�
F�Zp

��
H ı ˇ�1

�
� 1KA;lCj

��
.al .k//

ˇ̌
ˇ̌
ˇ̌

2

:

Letting �H;l;j D
�
H ı ˇ�1

�
� 1KA;lCj 2 L2 .KA;l C j/ and applying the Triangle

Inequality, since J .H; l/ is a finite set, it follows that

kŒJAH�k2l2.� / �
X

l2F

X

k2Zp

0

@
X

j2J.H;l/

ˇ̌�
F�Zp�H;l;j

�
.al .k//

ˇ̌
1

A
2

:

and

kŒJAH�k2l2.� /

�
X

l2F

X

k2Zp

X

j2J.H;l/

X

j02J.H;l/

ˇ̌�
F�Zp�H;l;j

�
.al .k//

ˇ̌ ˇ̌�
F�Zp�H;l;j0

�
.al .k//

ˇ̌

D
X

l2F

X

j2J.H;l/

X

j02J.H;l/

 
X

k2Zp

ˇ̌�
F�Zp

�
�H;l;j

��
.al .k//

ˇ̌
�
ˇ̌�
F�Zp

�
�H;l;j0

��
.al .k//

ˇ̌
!

D
X

l2F

X

j2J.H;l/

X

j02J.H;l/

˝�ˇ̌�
F�Zp

�
�H;l;j

��
.al .k//

ˇ̌�
k2Zp ;

�ˇ̌�
F�Zp

�
�H;l;j0

��
.al .k//

ˇ̌�
k2Zp

˛
l2.Zp/

:

By Cauchy–Schwarz inequality on l2 .Zp/ ;

˝�ˇ̌�
F�Zp

�
�H;l;j

��
.al .k//

ˇ̌�
k2Zp ;

�ˇ̌�
F�Zp

�
�H;l;j0

��
.al .k//

ˇ̌�
k2Zp

˛
l2.Zp/

is less than or equal to

���ˇ̌�F�Zp

�
�H;l;j

��
.al .k//

ˇ̌�
k2Zp

��
l2.Zp/

�
���ˇ̌�F�Zp

�
�H;l;j0

��
.al .k//

ˇ̌�
k2Zp

��
l2.Zp/
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and it follows that

kŒJAH�k2l2.� /

�
X

l2F

X

j2J.H;l/

X

j02J.H;l/

���ˇ̌�F�Zp

�
�H;l;j

��
.al .k//

ˇ̌�
k2Zp

��
l2.Zp/

�
���ˇ̌�F�Zp

�
�H;l;j0

��
.al .k//

ˇ̌�
k2Zp

��
l2.Zp/

D
X

l2F

X

j2J.H;l/

X

j02J.H;l/

���H;l;j

��
L2.KA;lCj/ �

���H;l;j0
��

L2.KA;lCj0/ :

The last equality above is due to Parseval equality. Next, appealing to the fact that
each �H;l;j D

�
H ı ˇ�1

�
� 1KA;lCj is square-integrable over KA;l C j; we obtain

kŒJAH�k2l2.� / �
X

l2F

X

j2J.H;l/

X

j02J.H;l/

���H ı ˇ�1
�

� 1KA;lCj

��
L2.KA;lCj/ �

���H ı ˇ�1
�

� 1KA;lCj

��
L2.KA;lCj0/

Thus, kŒJAH�k2l2.� / is a finite sum of finite quantities. Therefore, kŒJAH�kl2.� / is
finite and this completes the proof.

Let � be the unitary representation of � which acts on the Hilbert space SA D

L2 .A � R
m; d
 .�/ dt/ as follows:

Œ� .�/F� .�; t/ D 	� .�/F .�; t/ D e2� i
D
ˇ.�;t/;

Pp
jD1 kjZj

E

F .�; t � l/

where � D exp Z .k/ exp A .l/ 2 �: We shall prove the following three important
facts.

• JA intertwines � with the right regular representation of the discrete uniform
group � (Lemma 10)

• If jˇ .A � Œ0; 1/m/j > 0 and if ˇ .A � Œ0; 1/m/ is contained in a fundamental
domain of Zp then JA defines an isometry on a dense subset of SA into l2 .� /
which extends uniquely to an isometry of SA into l2 .� / (Lemma 11)

• If jˇ .A � Œ0; 1/m/j > 0 and if ˇ .A � Œ0; 1/m/ is up to a null set equal to a
fundamental domain of Zp then JA defines a unitary map (Lemma 12)

Lemma 10. The map JA intertwines � with R (the right regular representation
of � ).

Proof. Let F 2 SA and � 2 �: Then clearly, ŒJAF� .�/ D
˝
� .�/F; 1A�Œ0;1/m

˛
: Next,

given ˛ 2 � and letting R denotes the right regular representation of �; we obtain

ŒJA� .˛/F� .�/ D
˝
� .�˛/F; 1A�Œ0;1/m

˛
D ŒJAF� .�˛/ D R .˛/ ŒJAF� .�/ :

Lemma 11. If ˇ .A � Œ0; 1/m/ has positive Lebesgue measure in R
p and is con-

tained in a fundamental domain of Zp then JA defines an isometry on a dense subset
of SA into l2 .� / which extends uniquely to an isometry of SA into l2 .� / :
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Proof. Let F 2 SA: Furthermore, let us assume that F is smooth with compact
support in A � R

m. Computing the norm of F; we obtain

kFk2L2.A�Rm;d
.�// D

Z

A

Z

Rm
jF .�; t/j2 dt d
 .�/

D

Z

A

X

l2Zm

Z

Œ0;1/m
jF .�; t � l/j2 dt d
 .�/ : (33)

Letting Gl .�; t/ D F .�; t � l/ ; making the change of variable s D ˇ .�; t/
and using the fact that ˇ is a diffeomorphism (see Lemma 6) we obtain

Z

A

X

l2Zm

Z

Œ0;1/m
jF .�; t � l/j2 dt d
 .�/ D

X

l2Zm

Z

Œ0;1/m

Z

A
jGl .�; t/j

2 d
 .�/ dt

D
X

l2Zm

Z

A�Œ0;1/m
jGl .�; t/j

2
ˇ̌
det Jˇ .�; 0/

ˇ̌
d .�; t/

D
X

l2Zm

Z

ˇ.A�Œ0;1/m/

ˇ̌
Glˇ

�1 .s/
ˇ̌2 ˇ̌

det Jˇ .�; 0/
ˇ̌
d
�
ˇ�1 .s/

�

D
X

l2Zm

Z

ˇ.A�Œ0;1/m/

ˇ̌
Glˇ

�1 .s/
ˇ̌2

ds:

Since ˇ .A � Œ0; 1/m/ is contained in a fundamental domain of Zp then

Z

A

X

l2Zm

Z

Œ0;1/m
jF .�; t � l/j2 dt d
 .�/ D

X

l2Zm

��s 7! Glˇ
�1 .s/

��2

D
X

l2Zm

��F�Zp

�
Glˇ

�1
���2

D
X

l2Zm

X

k2Zp

ˇ̌
F�Zp

�
Glˇ

�1
�
.k/
ˇ̌2

D
X

l2Zm

X

k2Zp

ˇ̌
ˇ̌
Z

ˇ.A�Œ0;1/m/

�
Glˇ

�1
�
.s/ exp .2� i hs; ki/ ds

ˇ̌
ˇ̌
2

:

Thus

kFk2L2.A�Rm;d
.�// D
X

l2Zm

X

k2Zp

ˇ̌
ˇ̌
Z

ˇ.A�Œ0;1/m/

Glˇ
�1 .s/ exp .2� i hs; ki/ ds

ˇ̌
ˇ̌
2

: (34)

Next, since ˇ .A� Œ0; 1/m/ is contained in a fundamental domain of Z
p, the

trigonometric system

˚
�ˇ.A�Œ0;1/m/ .s/ � exp .2� i hs; ki/ W k 2 Z

p
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forms a Parseval frame in L2 .ˇ .A� Œ0; 1/m/ ; ds/ : Clearly this is true because the
orthogonal projection of an orthonormal basis is always a Parseval frame. Letting

1Glˇ
�1 D FL2.ˇ.A�Œ0;1/m//

�
s 7! Gl

�
ˇ�1 .s/

��

be the Fourier transform of the function s 7! Gl
�
ˇ�1 .s/

�
2 L2 .ˇ .A� Œ0; 1/m/ ; ds/

it follows that

X

l2Zm

X

k2Zp

ˇ̌
ˇ̌
Z

ˇ.A�Œ0;1/m/

Gl
�
ˇ�1 .s/

�
exp .2� i hs; ki/ ds

ˇ̌
ˇ̌
2

D
X

l2Zm

X

k2Zp

ˇ̌
ˇ1Glˇ

�1 .k/
ˇ̌
ˇ
2

:

Next,

X

l2Zm

X

k2Zp

ˇ̌
ˇ1Glˇ

�1 .k/
ˇ̌
ˇ
2

D
X

l2Zm

���1Glˇ
�1
���
2

l2.Zp/
D
X

l2Zm

Z

ˇ.A�Œ0;1/m/

ˇ̌
Gl
�
ˇ�1 .s/

�ˇ̌2
ds:

Now substituting .�; t/ for ˇ�1 .s/,

X

l2Zm

X

k2Zp

ˇ̌
ˇ̌
Z

ˇ.A�Œ0;1/m/

Gl
�
ˇ�1 .s/

�
exp .2� i hs; ki/ ds

ˇ̌
ˇ̌
2

D
X

l2Zm

Z

A

Z

Œ0;1/m
jGl .�; t/j

2
ˇ̌
det Jˇ .�; 0/

ˇ̌
dt d� (35)

D
X

l2Zm

Z

A

Z

Œ0;1/m
jF .�; t � l/j2 dt d
 .�/ : (36)

Equation (33) together with (36) gives

X

l2Zm

X

k2Zp

ˇ̌
ˇ̌
Z

ˇ.A�Œ0;1/m/

Gl
�
ˇ�1 .s/

�
exp .2� i hs; ki/ ds

ˇ̌
ˇ̌
2

D kFk2L2.A�Rm;d
.�// :

Finally, we obtain kFkL2.A�Rm;d
.�/dt/ D kJAFkl2.� / : Now, since the set of smooth
functions of compact support is dense in SA and since JA defines an isometry on a
dense set, then J extends uniquely to an isometry on SA:

The proof given for Lemma 11 can be easily modified to establish the following
result

Lemma 12. If ˇ .A � Œ0; 1/m/ has positive Lebesgue measure in R
p and is equal to

a fundamental domain of Zp then JA defines an isometry on a dense subset of SA

into l2 .� / which extends uniquely to a unitary map of SA into l2 .� / :

Remark 6. Suppose that ˇ .A � Œ0; 1/m/ has positive Lebesgue measure in R
p

and is contained in a fundamental domain of Z
p: We have shown that JA is an
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isometry. Moreover, the image of SA under the map JA is stable under the action
of the right regular representation of �: Now, let ˚ be the orthogonal projection
of l2 .� / onto the Hilbert space JA .SA/ and let � be the indicator sequence of the
singleton containing the identity element in �: Identifying SA with P .HA/ ; it is
clear that P�1

�
J�

A .˚�/
�

2 HA � L2 .N/ and L .� /
�
P�1

�
J�

A .˚�/
��

is a Parseval
frame for the band-limited Hilbert space HA. We remark that the vector � could be
replaced by any other vector which generates an orthonormal basis or a Parseval
frame under the action of the right regular representation of �: Additionally, we
observe that

ŒJAF� .�/ D
˝
L .�/P�1 ..F .�; �/˝ u .�//�2A/ ;P�1

��
1A�Œ0;1/m .�; �/˝ u .�/

�
�2A

�˛
L2.N/ :

Letting

F D P�1 ..F .�; �/˝ u .�//�2A/ and SA D P�1
��
1A�Œ0;1/m .�; �/˝ u .�/

�
�2A

�

then ŒJAF� .�/ D
˝
F;L

�
��1

�
SA
˛

D F � S�
A

�
��1

�
: Thus, if ˇ .A � Œ0; 1/m/ has

positive Lebesgue measure in R
p and is contained in a fundamental domain of Zp

then L .� /SA is a Parseval frame for HA � L2 .N/ : Next since kSAk � 1 it follows
that

kSAk2 D

Z

A

Z

Œ0;1/m

ˇ̌
det Jˇ .�; 0/

ˇ̌
dt d� D

Z

A

ˇ̌
det Jˇ .�; 0/

ˇ̌
d� � 1

and
R

A

ˇ̌
det Jˇ .�; 0/

ˇ̌
d� � 1: Thus if

R
A

ˇ̌
det Jˇ .�; 0/

ˇ̌
d� > 1 then JA cannot be

an isometry.

4 Proof of Main Results

4.1 Proof of Theorem 2

First, we observe that the right regular and left regular representations of � are
unitarily equivalent ([5], Page 69). To prove Part 1; we appeal to Lemma 11, and
Lemma 10. Assuming that ˇ .A � Œ0; 1/m/ has positive Lebesgue measure in R

p

and is contained in a fundamental domain of Zp, the restriction of the representation
.L;HA/ to the discrete group � is equivalent to a subrepresentation of the left
regular representation of �: Appealing to Lemma 2, there exists a vector � such that
VL
� .HA/ is a sampling space with respect to �: For Part 2; Lemma 11, Lemma 10

together with the assumption that ˇ .A � Œ0; 1/m/ is equal to a fundamental domain
of Zp imply that the restriction of the representation .L;HA/ to the discrete group
� is equivalent to the left regular representation of �: Finally, there exists a vector
� 2 HA such that VL

� .HA/ is a left-invariant subspace of L2 .N/ which is a sampling
space with the interpolation property with respect to �:
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4.2 Proof of Corollary 1

For s D .s1; � � � ; sm/ 2 R
m; let A .s/ D s1A1 C � � � C smAm 2 m: Since

the linear operators adA1; � � � ; adAm are pairwise commutative and nilpotent, and
e�adA.s/jp is unipotent, there is a unit vector which is an eigenvector for e�adA.s/jp

with corresponding eigenvalue 1: So, it is clear that
���
�
e�adA.s/jp

�T
���

1
� 1 and

sup
n���
�
e�adA.s/jp

�T
���

1
W s 2 E

o
� 1 for any nonempty E 	 R

m: We recall again

that

P .A.s// D
h
e ad.�

Pm
jD1 sjAj/jp

iT
: (37)

Lemma 13. Let E be an open bounded subset of Rm: If " is a positive number satis-

fying " � ı D .2 sup fkP .A.s//k1 W s 2 Eg/�1 then ˇ
��
.�"; "/dim˙ \˙

�
� E

�

is open in R
p and is contained in a fundamental domain of Zp.

Proof. Since the map ˇ is a diffeomorphism (see Lemma 6) and since the set�
.�"; "/dim˙ \˙

�
� E is an open set in ˙ � R

m, it is clear that its image under

the map ˇ is also open in R
p. Next, it remains to show that it is possible to find a

positive real number ı such that if 0 < " � ı then ˇ
��
.�"; "/dim˙ \˙

�
� E

�
is

an open set contained in a fundamental domain of Zp: Let � 2 ˙: Then there exists

a linear functional f in the dual of the ideal p such that $ .�/ D

�
f
0

�
and

$

0

@exp

0

@
mX

jD1

sjAj

1

A � �

1

A D

�
P .A.s// f

0

�
: (38)

Moreover, it is worth noting that
���exp

�Pm
jD1 sjAj

�
� �
���

max
D kP .A.s// f kmax : Let

ı be a positive real number defined as follows:

ı D .2 sup fkP .A.s//k1 W s 2 Eg/�1 : (39)

If f 2 .�"; "/dim˙ 	 .�ı; ı/dim˙ and if s 2 E then

kB.A.s//f k1 � kf kmax � sup fkP .A.s//k1 W s 2 Eg D
1

2
�

kf kmax

ı
:

Now since kf kmax < ı, it follows that kP .A.s// f kmax < 1
2
: As a result,

ˇ
��
.�"; "/dim˙ \˙

�
� E

�
	
�
� 1
2
; 1
2

�p
and clearly

�
� 1
2
; 1
2

�p
is contained in a

fundamental domain of Zp:

Appealing to Lemma 11, and Lemma 13 the following is immediate
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Proposition 6. If 0 < " � ı D .2 sup fkP .A.s//k1 W s 2 Œ0; 1/mg/
�1 then

J.�";"/n�2m\˙ defines an isometry between L2
��
.�"; "/n�2m \˙

�
� R

m; d
 .�/
�

and l2 .� /.

4.2.1 Proof of Corollary 1

Let ı be a positive number defined by ı D .2 sup fkP .A.s//k1 W s 2 Œ0; 1/mg/
�1
:

We want to show that for " 2 .0; ı� there exists a band-limited vector � D �" 2

H.�";"/n�2m such that the Hilbert space VL
�

�
H.�";"/n�2m

�
is a left-invariant subspace

of L2 .N/ which is a sampling space with respect to �: According to Lemma 13

the set ˇ
��
.�"; "/dim˙ \˙

�
� Œ0; 1/m

�
has positive Lebesgue measure and is

contained in a fundamental domain of Zp. The desired result follows immediately
from Theorem 2.

4.3 Proof of Example 1 Part 1

The case of a commutative simply connected, and connected nilpotent Lie group is
already known to be true. Thus, to prove this result, it remains to focus on the non
commutative algebras. According to the classification of four-dimensional nilpotent
Lie algebras [8] there are three distinct cases to consider. Indeed if n is a non-
commutative nilpotent Lie algebra of dimension three, then n must be isomorphic
with the three-dimensional Heisenberg Lie algebra. If n is four-dimensional then
up to isomorphism either n is the direct sum of the Heisenberg Lie algebra with a
one-dimensional algebra, or there is a basis Z1;Z2;Z3;A1 for n with the following
non-trivial Lie brackets ŒA1;Z2� D 2Z1; ŒA1;Z3� D 2Z2:

Case 1 (The Heisenberg Lie algebra) Let N be the simply connected, connected
Heisenberg Lie group with Lie algebra n which is spanned by Z1;Z2;A1 with
non-trivial Lie brackets ŒA1;Z2� D Z1:We check that N D PM where P D

exp .RZ1 C RZ2/ and M D exp .RA1/ : Put � D exp .ZZ1/ exp .ZZ2/ exp .ZA1/ : It
is easily checked that

M .�/ D

2

4
0 0 0

0 0 �� .Z1/
0 � .Z1/ 0

3

5 :

Next, since e .�/ D

	
; if � .Z1/ D 0

f2; 3g if � .Z1/ ¤ 0
we obtain that e D f2; 3g : It follows

that ˝e D f� 2 n� W � .Z1/ ¤ 0g : Next, the unitary dual of N is parametrized by
˙ D f� 2 ˝e W � .Z2/ D � .A1/ D 0g which we identify with the punctured line:
R

�: It is not hard to check that
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ı�1 D 2 sup

( ����
�
1 0

�s 1

�����
1

W s 2 Œ0; 1/

)
D 4:

So, there exists a band-limited vector � 2 H.� 1
4 ;
1
4 /

such that VL
�

�
H.� 1

4 ;
1
4 /

�
is a

sampling space with respect to �:
To prove that the Heisenberg group admits sampling spaces with the interpolation

property with respect to �; we claim that the set

B.1/ D ˇ ..�1; 1/ � Œ0; 1// D

	�
f

�sf

�
W f 2 .�1; 1/ ; s 2 Œ0; 1/




is up to a null set equal to a fundamental domain of Z
2 (see illustration of B.1/

below)

1.0

1.0

0.5

0.5

–0.5

–0.5

–1.0

–1.0

0.0

0.0

To prove this we write ˇ..�1; 1/ � Œ0; 1// D ˇ..0; 1/ � Œ0; 1// [

ˇ..�1; 0/ � Œ0; 1//: Next, it is easy to check that

�
ˇ ..0; 1/ � Œ0; 1//C

�
1

0

��
[

�
ˇ ..�1; 0/ � Œ0; 1//C

�
0

1

��
is up to a null set equal to the unit square Œ0; 1/2 :

Thus the set ˇ ..�1; 1/ � Œ0; 1// is up to a null set equal to a fundamental domain
of Z2: Appealing to Theorem 2, the following result confirms the work proved in
[4, 13]. There exists a band-limited vector � 2 H.�1;1/ such that VL

�

�
H.�1;1/

�
is a

sampling space with respect to � which also enjoys the interpolation property.

Case 2 (Four-dimensional and step two) Assume that n is the direct sum of the
Heisenberg Lie algebra with R: Let us suppose that the Lie algebra n is spanned by
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Z1;Z2;Z3;A1 with non-trivial Lie brackets ŒA1;Z2� D Z1: We check that

M .�/ D

2

664

0 0 0 0

0 0 0 � .Z1/
0 0 0 0

0 � .Z1/ 0 0

3

775

and e .�/ D

	
; if � .Z1/ D 0

f2; 4g if � .Z1/ ¤ 0
: Fix e D f2; 4g such that˝e D f� 2 n� W � .Z1/g

f¤ 0g : The unitary dual of N is parametrized by ˙ D f� 2 ˝e W � .Z2/ D � .A1/
D 0g : For any linear functional � 2 ˙; the ideal spanned by Z1;Z2;Z3 is a
polarization algebra subordinated to � and

ı D

0

@2 sup

8
<

:

������

2

4
1 0 0

�s 1 0
0 0 1

3

5

������
1

W s 2 Œ0; 1/

9
=

;

1

A
�1

D
1

4
:

So, there exists a band-limited vector � 2 H.� 1
4 ;
1
4 /

such that VL
�

�
H.� 1

4 ;
1
4 /

�
is a

sampling space with respect to � D exp .ZZ1 C ZZ2 C ZZ3/ exp .ZA1/ :

Case 3 (Four-dimensional and three step) Assume that n is a four-dimensional
Z1;Z2;Z3;A1 such that ŒA1;Z2� D 2Z1; ŒA1;Z3� D 2Z2: With respect to the ordered
basis Z1;Z2;Z3; we have

ŒadA1�j p D

2

4
0 2 0

0 0 2

0 0 0

3

5 and exp ŒadA1�j p D

2

4
1 2 2

0 1 2

0 0 1

3

5 :

Next, we check that

ı D

0

@2 sup

8
<

:

������

2

4
1 0 0

�2s 1 0

2s2 �2s 1

3

5

������
1

W s 2 Œ0; 1/

9
=

;

1

A
�1

D
1

2

�
max

n
1; 1C 2 jsj ; 1C 2 jsj C 2 jsj2 W s 2 Œ0; 1/

o��1

D
1

10
:

Indeed, the set ˇ
��

� 1
10
; 1
10

�2
� Œ0; 1/

�
�

�
� 1
2
; 1
2

�3
is contained in a fun-

damental domain of Z
3: Thus, there exists a band-limited vector � 2

H.� 1
10 ;

1
10 /

such that VL
�

�
H.� 1

10 ;
1
10 /

�
is a sampling space with respect to � D

exp .ZZ1 C ZZ2 C ZZ3/ exp .ZA1/ :
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4.4 Proof of Example 1 Part 2

Let N be a simply connected, connected nilpotent Lie group with Lie algebra
spanned by Z1;Z2; � � � ;Zp;A1 such that ŒadA1�jp D A is a nonzero rational upper
triangular nilpotent matrix of order p such that eA

Z
p 	 Z

p and the algebra generated
by Z1;Z2; � � � ;Zp is commutative. Then N is isomorphic to a semi-direct product
group R

p Ì R with multiplication law given by .x; t/ .x0; t0/ D
�
x C etAx0; t C t0

�
:

Clearly since A is not the zero matrix then max frank .M .�// W � 2 n�g D 2 and the
unitary dual of N is parametrized by a Zariski open subset of Rp�1: Finally, let

ı D

 
2 � sup

( �����

m�1X

kD0

�
�sAT

�k

kŠ

�����
1

W s 2 Œ0; 1/

)!�1

> 0:

For " 2 .0; ı� there exists a band-limited vector � D �" 2 H.�";"/p�1 such that

the Hilbert space VL
�

�
H.�";"/p�1

�
is a left-invariant subspace of L2 .N/ which is a

sampling space with respect to �:

4.5 Proof of Example 1 Part 3

Let A .t/ be as given in (9). Then exp A .t/ D
PmC1

kD0
A.t/k

kŠ and N is a nilpotent Lie
group of step p D m C 1. Moreover, the unitary dual of N is parametrized by the
manifold:

˙ D f� 2 n� W � .Z1/ ¤ 0

and � .ZkC1/ D � .Ak/ D 0 for 1 � k � mg ' R
�

and the Plancherel measure is up to multiplication by a constant given by j�jm d�:
The positive number ı described in Corollary 1 is equal to

ı D

 
sup

(
2

�����

mC1X

kD0

�
�A .t/T

�k

kŠ

�����
1

W t 2 Œ0; 1/m

)!�1

:

Thus, for " 2 .0; ı� there exists a band-limited vector � D �" 2 H.�";"/ such that the
Hilbert space VL

�

�
H.�";"/

�
is a left-invariant subspace of L2 .N/ which is a sampling

space with respect to �:
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Parseval Space-Frequency Localized Frames
on Sub-Riemannian Compact Homogeneous
Manifolds

Isaac Pesenson

1 Introduction

The objective of this chapter is to describe a construction of Parseval bandlimited
and localized frames in L2-spaces on a class of sub-Riemannian compact homoge-
neous manifolds.

The chapter begins with a brief review in section 2 of some results obtained in [4]
where a construction of Parseval bandlimited and localized frames was performed
in L2.M/;M being a compact homogeneous manifold equipped with a natural
Riemannian metric.

In section 3 we are using a sub-Riemannian structure on the two-dimensional
standard unit sphere S2 to explain the main differences between Riemannian and
sub-Riemannian settings. Each of these structures is associated with a distinguished
second-order differential operator which arises from a metric. These operators are
self-adjoint with respect to the usual normalized invariant (with respect to rotations)
measure on S2. The major difference between these operators is that in the case
of Riemannian metric the operator is elliptic (the Laplace-Beltrami operator L)
and in the sub-Riemannian case it is not (the sub-Laplacian L ). As a result, the
corresponding Sobolev spaces which are introduced as domains of powers of these
operators are quite different. In the elliptic case one obtains the regular Sobolev
spaces and in sub-elliptic one obtains function spaces (sub-elliptic Sobolev spaces)
in which functions have variable smoothness (compared to regular (elliptic) Sobolev
smoothness).

In section 4 we describe a class of sub-Riemannian structures on compact
homogeneous manifolds and consider a construction of Parseval bandlimited and
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localized frames associated with such structures. Leaving a detailed description of
sub-Riemannian structures for later sections we will formulate our main result now.

We consider compact homogeneous manifolds M equipped with the so-called
sub-Riemannian metric 
.x; y/; x; y 2 M (see Definition 5). To formulate our main
result we need a definition of a sub-Riemannian lattice on a manifold M. The precise
definitions of all the notions used below will be given in the text.

Lemma 1. Let M be a compact sub-Riemannian manifold and 
.x; y/; x; y 2 M
be a sub-Riemannian metric. Let B
.x; r/ be a ball in this metric with center x 2 M
and radius r. There exists a natural number N


M such that for any sufficiently small
r > 0 there exists a set of points M



r D fxig with the following properties:

1. the balls B
.xi; r=4/ are disjoint,
2. the balls B
.xi; r=2/ form a cover of M,
3. every point of M is covered by not more than N


M balls B
.xi; r/.

Definition 1. A set M


r D fxig constructed in the previous lemma will be called a

metric r-lattice.

The meaning of this definition is that points fxig are distributed over M “almost
uniformly” in the sense of the metric 
.

We will consider compact homogeneous manifolds M D G=H where G is a
compact Lie group and H � G is a closed subgroup. Let dx be an invariant (with
respect to natural action of G on M) measure on M and L2.M/ D L2.M; dx/
the corresponding Hilbert space of complex-valued functions on M with the inner
product

hf ; gi D

Z

M
f gdx:

The notation jB
.x; r/j will be used for the volume of the ball with respect
to the measure dx. An interesting feature of sub-Riemann structures is that balls
of the same radius may have essentially different volumes (in contrast to the case of
the Riemann metric and Riemann measure).

In the next theorem we will mention a sub-elliptic operator (sub-Laplacian) L
(see the precise definition in (26)) which is hypoelliptic [6], self-adjoint, and non-
negative in L2.M/. This operator is a natural analog of a Laplace-Beltrami operator
in the case of a Riemannian manifold.

Theorem 1. We assume that M is a compact homogeneous manifold equipped with
a sub-Riemann metric 
 (see section 4). Set rj D 2�j�1; j D 0; 1; 2; : : :; and let
M



rj D fxj

kg
mj

kD1; xj
k 2 M; j D 0; 1; 2; :: be a sequence of metric lattices.

With every point xj
k one can associate a function �j

k such that:

1. every�j
k is bandlimited in the sense that�j

k belongs to the space EŒ22j�2;22jC2�.L /

which is the span of all eigenfunctions of L whose corresponding eigenvalues
belong to the interval Œ22j�2; 22jC2/,
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2. every �j
k is essentially supported around xj

k in the sense that for any N > 0 there
exists a constant C.N/ > 0 such that for all j; k one has

ˇ̌
ˇ�j

k.y/
ˇ̌
ˇ � C.N/

ˇ̌
ˇB


�
xj

k; 2
�j
�ˇ̌
ˇ
�1=2 �

1C 2j
.xj
k; y/

��N
; (1)

3. f�
j
kg is a Parseval frame, i.e. for all f 2 L2.M/

X

j�0

X

1�k�mj

ˇ̌
ˇ
D
f ; �j

k

Eˇ̌
ˇ
2

D kf k2L2.M/; (2)

and as a consequence of the Parseval property one has the following reconstruc-
tion formula:

4.

f D
X

j�0

X

1�k�mj

D
f ; �j

k

E
�

j
k:

In Theorem 9 this frame is used to obtain characterization of sub-elliptic Besov
spaces in terms of the frame coefficients.

2 Parseval Localized Frames on Riemannian Compact
Homogeneous Manifolds

2.1 Hilbert Frames

Frames in Hilbert spaces were introduced in [2].

Definition 2. A set of vectors f vg in a Hilbert space H is called a frame if there
exist constants A;B > 0 such that for all f 2 H

Akf k22 �
X

v

jhf ;  vij
2 � Bkf k22: (3)

The largest A and smallest B are called lower and upper frame bounds.

The set of scalars fhf ;  vig represents a set of measurements of a signal f . To
synthesize the signal f from this set of measurements one has to find another (dual)
frame f�vg and then a reconstruction formula is

f D
X

v

hf ;  vi�v: (4)
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Dual frames are not unique in general. Moreover it is difficult to find a dual frame.
However, for frames with A D B D 1 the decomposition and synthesis of functions
can be done with the same frame. In other words

f D
X

v

hf ;  vi v: (5)

Such frames are known as Parseval frames. For example, three vectors in R2 with
angles 2�=3 between them whose lengths are all

p
2=3 form a Parseval frame.

2.2 Compact Homogeneous Manifolds

The basic information about compact homogeneous manifolds can be found in
[7, 8]. A homogeneous compact manifold M is a C1-compact manifold on which
a compact Lie group G acts transitively. In this case M is necessarily of the form
G=H, where H is a closed subgroup of G. The notation L2.M/ is used for the usual
Hilbert spaces, where dx is the normalized invariant measure on M.

The best known example of such manifold is a unit sphere Sn in RnC1: Sn D

SO.n C 1/=SO.n/ D G=H:
If g is the Lie algebra of a compact Lie group G, then there exists a such choice

of basis X1; : : :;Xd in g, for which the operator

� L D X21 C X22 C : : :C X2d ; d D dim G (6)

is a bi-invariant operator on G. Here X2j is Xj ı Xj where we identify each Xj with a
left-invariant vector field on G. We will use the same notation for its image under
differential of the quasi-regular representation of G in L2.M/. This operator L,
which is known as the Casimir operator is elliptic. There are situations in which
the operator L is, or is proportional to, the Laplace-Beltrami operator of an invariant
metric on M. This happens for example, if M is an n-dimensional torus, a compact
semi-simple Lie group, or a compact symmetric space of rank one.

Since M is compact and the operator L is elliptic it has a discrete spectrum 0 D

�0 < �1 � �2 � : : :: : : which goes to infinity without any accumulation points
and there exists a complete family fujg of orthonormal eigenfunctions which form a
basis in L2.M/.

The elliptic differential self-adjoint (in L2.M/) operator L and its powers
Ls=2; k 2 RC; can be extended from C1.M/ to distributions. The family of Sobolev
spaces Ws

p.M/; 1 � p < 1; s 2 R; can be introduced as subspaces of Lp.M/ with
the norm

kf kp C kLs=2f kp: (7)
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One can show that when s D k is a natural number this norm is equivalent to the
norm

jjjf jjjk;p D kf kp C
X

1�i1;:::;ik�d

kXi1 : : :Xik f kp; 1 � p < 1: (8)

We assume now that M is equipped with a G-invariant Riemann metric �. The
Sobolev spaces can also be introduced in terms of local charts [23]. We fix a finite
cover fB�.y�; r0/g of M

M D
[

�

B�.y�; r0/; (9)

where B�.y�; r0/ is a ball centered at y� 2 M of radius r0 contained in a coordinate
chart. Let consider � D f �g be a partition of unity � D f �g subordinate to
this cover. The Sobolev spaces Wk

p.M/; k 2 N; 1 � p < 1; are introduced as the
completion of C1.M/ with respect to the norm

kf kWk
p .M/ D

 
X

�

k � f k
p
Wk

p .B
�.y� ;r0//

!1=p

: (10)

Remark 1. Spaces Wk
p.M/ are independent of the choice of elliptic self-ajoint

second order differential operator. For every choice of such operators correspond-
ing norms (7) will be equivalent. Also, any two norms of the form (10) are
equivalent [23].

The Besov spaces can be introduced via the formula

B˛
p;q.M/ WD

�
Lp.M/;Wr

p.M/
�K

˛=r;q
; (11)

where 0 < ˛ < r 2 N; 1 � p < 1; 1 � q � 1: Here K is the Peetre’s
interpolation functor.

An explicit norm in these spaces was given in [11–14, 16]. For the same operators
as above fX1; : : :;Xdg; d D dim G, let T1; : : :;Td be the corresponding one-
parameter groups of translation along integral curves of the corresponding vector
fields, i.e.

Tj.�/f .x/ D f .exp �Xj � x/; x 2 M; � 2 R; f 2 L2.M/I (12)

here exp �Xj � x is the integral curve of the vector field Xj which passes through the
point x 2 M. The modulus of continuity is introduced as

˝r
p.s; f / D

X

1�j1;:::;jr�d

sup
0��j1�s

: : : sup
0��jr �s

k
�
Tj1 .�j1 / � I

�
: : :
�
Tjr .�jr / � I

�
f kLp.M/; (13)
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where f 2 Lp.M/; r 2 N; and I is the identity operator in Lp.M/: We consider the
space of all functions in Lp.M/ for which the following norm is finite:

kf kLp.M/ C

�Z 1

0

.s�˛˝r
p.s; f //

q ds

s

�1=q

; 1 � p < 1; 1 � q � 1; (14)

with the usual modifications for q D 1.

Theorem 2. The norm of the Besov space B˛q
p .M/ D .Lp.M/;Wr

p.M//K˛=r;q; 0 <

˛ < r 2 N; 1 � p < 1; 1 � q � 1; is equivalent to the norm (14). Moreover, the
norm (14) is equivalent to the norm

kf k
W
Œ˛�
p .M/

C
X

1�j1;:::;jŒ˛��d

�Z 1

0

�
sŒ˛��˛˝1

p .s;Xj1 : : :XjŒ˛� f /
�q ds

s

�1=q

(15)

if ˛ is not integer (Œ˛� is its integer part). If ˛ D k 2 N is an integer, then the
norm (14) is equivalent to the norm (Zygmund condition)

kf kWk�1
p .M/ C

X

1�j1;:::;jk�1�d

�Z 1

0

�
s�1˝2

p .s;Xj1 : : :Xjk�1 f /
�q ds

s

�1=q

: (16)

Definition 3. The space of !-bandlimited functions E!.L/ is defined as the span
of all eigenfunctions of L whose eigenvalues are not greater than !:

To describe our construction of frames we need the notion of a lattice on a
manifold M equipped with a Riemann metric �. This notion is similar to the
corresponding notion introduced in Lemma 1.

Lemma 2. If M is a compact Riemannian manifold then there exists a natural N�

M
such that for any sufficiently small r there exists a set of points M

�
r D fxig with the

following properties:

1. the balls B�.xi; r=4/ are disjoint,
2. the balls B�.xi; r=2/ form a cover of M,
3. the height of the cover by the balls B�.xi; r/ is not greater than N�

M:

The meaning of this definition is that points fxkg distributed over M almost
uniformly.

In [4] the following theorem was proved for compact homogeneous manifolds
considered with invariant Riemann metric.

Theorem 3. Set rj D 2�j�1; j D 0; 1; 2; : : :; and let M
�
rj D fxj

kg
mj

kD1; xj
k 2 M; j D

0; 1; 2; :: be a sequence of metric lattices.
With every point xj

k we associate a function � j
k such that:
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1. every � j
k is bandlimited in the sense that � j

k belongs to the space EŒ22j�2;22jC2�.L/
which is the span of all eigenfunction of L whose corresponding eigenvalues
belong to the interval Œ22j�2; 22jC2/,

2. every � j
k is essentially supported around xj

k in the sense that the following
estimate holds for every N > n:

ˇ̌
ˇ� j

k.y/
ˇ̌
ˇ � C.N/2jn

�
1C 2j� .xj

k; y/
��N

; dim M D n; (17)

3. f�
j
kg is a Parseval frame, i.e. for all f 2 L2.M/

X

j�0

X

1�k�mj

ˇ̌
ˇ
D
f ; � j

k

Eˇ̌
ˇ
2

D kf k2L2.M/; (18)

and

f D
X

j�0

X

1�k�mj

D
f ; � j

k

E
�

j
k: (19)

As an important application of Theorem 3 one can describe Besov spaces in
terms of the frame coefficients [4].

Theorem 4. The norm of the Besov space kf kB˛
p;q.M/; 1 � p < 1; 0 < q � 1 is

equivalent to the norm

k�.f /kb˛p;q D

0

@
1X

jD0

2jq.˛�n=pCn=2/

 
X

k

jhf ; � j
kij

p

!q=p
1

A
1=q

:

2.3 Example of S2 with Riemannian Metric

We consider M D S2. In this case the Casimir operator coincides with the Laplace-
Beltrami operator L on S2 and it can be written as a sum of the vector fields on S2:

L D

3X

i;jD1Ii<j

X2i;j D

3X

i;jD1Ii<j

.xi@xj � xj@xi/
2 D L:

Let Pl denote the space of spherical harmonics of degree l, which are restrictions
to S2 of harmonic homogeneous polynomials of degree l in R3.
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Each Pl is the eigenspace of L that corresponds to the eigenvalue �l.l C 1/. Let
Yn;l; n D 1; : : :; 2l C 1 be an orthonormal basis in Pl. One has

LYm;l D �l.l C 1/Ym;l:

Sobolev spaces Wk
p.L/; 1 � p < 1, can be introduced as usual by using a system

of local coordinates or by using vector fields Xi;j:

kf kWk
p .M/ D kf kp C

XX
kXi;j: : ::Xi;jf kp (20)

Corresponding Besov spaces B˛
p;q.L/ can be described either using local coordi-

nates or in terms of the modules of continuity constructed in terms of one-parameter
groups of rotations e�Xi;j [11–15]. In particular, when p D 2 the Parseval identity for
orthonormal bases and the theory of interpolation spaces imply descriptions of the
norms of Wk

2.L/ and B˛
2;2.L/ in terms of Fourier coefficients:

 
1X

lD0

2lC1X

nD1

.l C 1/2˛jcn;l.f /j
2

!1=2
; (21)

where

cn;l.f / D

Z

Sd
f Yn;l; f 2 L2.Sd/:

3 Sphere S2 with a Sub-Riemannian Structure. A
Sub-Laplacian and Sub-Elliptic Spaces on S2

To illustrate nature of sub-elliptic spaces we will consider the case of two-
dimensional sphere S2. We consider on S2 two vector fields Y1 D X2;3 and Y2 D X1;3
and the corresponding sub-Laplace operator

L D Y21 C Y22 :

Note that since the operators Y1; Y2 do not span the tangent space to S2 along a great
circle with x3 D 0 the operator L is not elliptic on S2. However, this operator is
hypoelliptic [6] since Y1; Y2; and their commutator Y3 D Y1Y2 � Y2Y1 D X1;2 span
the tangent space at every point of S2.

Let’s compute its corresponding eigenvalues. In the standard spherical coordi-
nates .'; #/ spherical harmonics Ym;l.'; #/; l D 0; 1; : : :; jmj � l are proportional to
eim'Pm

l .cos #/, where Pm
l are associated Legendre polynomials. This representation

shows that for Y3 D X1;2 one has

Y23Ym;l D �m2Ym;l:
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Since Ym;l is an eigenfunction of L with the eigenvalue �l.l C 1/ we obtain

LYm;l D �l.l C 1/Ym;l

and

LYm;l D LYm;l � Y23Ym;l D �
�
l.l C 1/ � m2

�
Ym;l:

It shows that spherical functions are eigenfunctions of both L and L.
The graph norm of a fractional power of L is equivalent to the norm

0

@
1X

lD0

X

jmj�l

�
.l C 1/2 � m2

�˛
jcm;l.f /j

2

1

A
1=2

;

cm;l.f / D

Z

Sd
f Ym;l; f 2 L2.L/: (22)

Note that these spaces W˛
2 .L / are exactly the Besov spaces B˛

2;2.L /.
We introduce subelliptic (anisotropic) Sobolev space W˛

2 .L /; ˛ � 0; as the
domain of L ˛ with the graph norm and define Besov spaces B˛

2;q.L / as

B˛
2;q.L / D .L2.S2/;Wr

2.L //K�;q; 0 < � D ˛=r < 1; 1 � q � 1:

where K is the Peetre’s interpolation functor.
Note that vector fields Y1;Y2 span the tangent space to S2 at every point away

from a great circle x3 D 0. For this reason around such points a function belongs to
the domain of L if and only if it belongs to the regular Sobolev space W2.L/.

At the same time the fields Y1; Y2 do not span the tangent space to S2 along a
great circle with x3 D 0. However, the fields Y1;Y2 and their commutator Y3 D

Y1Y2 � Y2Y1 D X1;2 do span the tangent space along x3 D 0. This fact implies that
along the circle x3 D 0, functions in the spaces Wr

2.L / and B˛
2;q.L / are losing 1=2

in smoothness compared to their smoothness at other points on S2. In other words,
the following embeddings hold true:

W˛
2 .L/ � W˛

2 .L / � W˛=2
2 .L/;

B˛
2;q.L/ � B˛

2;q.L / � B
˛=2
2;q .L/;

which follow from a much more general results in [10, 15, 17, 22].
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We would like to stress that subelliptic function spaces are different from the
usual (elliptic) spaces. For example, if W˛

2 .L/ is the regular Sobolev space than
general theory implies the embeddings

W˛
2 .L / � W˛=2

2 .L/; B˛
2;q.L / � B

˛=2
2;q .L/:

As the following Lemma shows, these embeddings are generally sharp.

Lemma 3. For every ˛ > 0 and ı > ˛=2 there exists a function that belongs to
W˛
2 .L / but does not belong to Wı

2.L/:

Proof. For a ı > ˛=2 > 0 pick any � that satisfies the inequalities

�
1

2
� ı < � < �

1

2
�
˛

2

Let cn;l be a sequence such that cn;l D 0 if n ¤ l and cl;l D .2l C 1/� . For a
function with such Fourier coefficients the norm (22) is finite since

1X

lD0

.2l C 1/˛.2l C 1/2� D

1X

lD0

.2l C 1/˛C2� < 1; ˛ C 2� < �1;

but the norm (21) is infinite

1X

lD0

.2l C 1/2ı.2l C 1/2� D

1X

lD0

.2l C 1/2.ıC�/; 2.ı C �/ > �1:

4 A Sub-Riemannian Structure and Corresponding Metric
on Compact Homogeneous Manifolds

Let M D G=H be a compact homogeneous manifold and X D fX1; : : :;Xdg be a
basis of the Lie algebra g, the same as in (6). Let

Y D fY1; : : :;Ymg (23)

be a subset of X D fX1; : : :;Xdg such that Y1; : : :;Ym and all their commutators

Yj;k D ŒYj; Yk� D YjYk � YkYj;

Yj1;:::;jn D ŒYj1 ; Œ: : ::ŒYjn�1 ;Yjn �: : :��; (24)

of order n � Q span the entire algebra g. Let
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Z1 D Y1;Z2 D Y2; : : :;Zm D Ym; : : : ;ZN ; (25)

be an enumeration of all commutators (24) up to order n � Q. If a Zj corresponds to
a commutator of length n, we say that deg.Zj/ D n.

Images of vector fields (25) under the natural projection p W G ! M D G=H
span the tangent space to M at every point and will be denoted by the same letters.

Definition 4. A sub-Riemann structure on M D G=H is defined as a set of vectors
fields on M which are images of the vector fields (23) under the projection p. They
can also be identified with differential operators in Lp.M/; 1 � p < 1; under the
quasi-regular representation of G.

One can define a non-isotropic metric 
 on M associated with the fields
fY1; : : :;Ymg.

Definition 5 ([10]). Let C./ denote the class of absolutely continuous mappings
' W Œ0; 1� ! M which almost everywhere satisfy the differential equation

'
0

.t/ D

mX

jD1

bj.t/Zj.'.t//;

where jbj.t/j < deg.Zj/. Then we define 
.x; y/ as the lower bound of all such  > 0
for which there exists ' 2 C./ with '.0/ D x; '.1/ D y.

The corresponding family of balls in M is given by

B
.x; / D fy 2 M W 
.x; y/ < g:

These balls reflect the non-isotropic nature of the vector fields Y1; : : :;Ym and their
commutators. For a small  > 0 ball B
.x; / is of size  in the directions Y1; : : :;Ym,
but only of size n in the directions of commutators of length n.

It is known [10] that the following property holds for certain c D

c.Y1; : : :;Ym/; C D C.Y1; : : :;Ym/:

c�.x; y/ � 
.x; y/ � C .�.x; y//1=Q

where � stands for an G-invariant Riemannian metric on M D G=H. We will be
interested in the following sub-elliptic operator (sub-Laplacian)

� L D Y21 C : : :C Y2m (26)

which is hypoelliptic [6] self-adjoint and non-negative in L2.M/.

Definition 6. The space of !-bandlimited functions E!.L / is defined as the span
of all eigenfunctions of L whose eigenvalues are not greater than !:
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Due to the uncertainty principle bandlimited functions in E!.L / are not
localized on M in the sense that their supports coincide with M.

Using the operator L we define non-isotropic Sobolev spaces Wk
p.L /; 1 � p <

1; and non-isotropic Besov spaces B˛
p;q.L /; 1 � p < 1; 1 � q � 1; by using

formulas (7) and (11), respectively.

5 Product Property for Subelliptic Laplace Operator

The results of this section play a crucial role in our construction of the Parseval
frames. In what follows we consider previously defined operators

�L D X21 C X22 C : : :C X2d ; d D dim G;

and

�L D Y21 C : : :C Y2m; m < d;

as differential operators in L2.M/.

Lemma 4 ([4, 20]). If M D G=H is a compact homogeneous manifold, then for
any f and g in E!.L/, their product fg belongs to E4d!.L/, where d is the dimension
of the group G.

Proof. For every Xj one has

X2j .fg/ D f .X2j g/C 2.Xjf /.Xjg/C g.X2j f /:

Thus, the function Lk .fg/ is a sum of .4d/k terms of the form

.Xi1 : : :Xim f /.Xj1 : : :Xj2k�m g/:

This implies that
��Lk .fg/

��
1

� .4d/k sup
0�m�2k

sup
x;y2M

jXi1 : : :Xim f .x/j
ˇ̌
Xj1 : : :Xj2k�m g.y/

ˇ̌
: (27)

Let us show that for all f ; g 2 E!.L/ the following inequalities hold:

kXi1 : : :Xim f kL2.M/ � !m=2kf kL2.M/ (28)

and

kXj1 : : :Xj2k�m gkL2.M/ � !.2k�m/=2kgkL2.M/: (29)

By construction (see (6)) the operator �L D X21 C : : :CX2d commutes with every Xj

and the same is true for .�L/1=2. From here one can obtain the following equality:
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kLs=2f k2L2.M/ D
X

1�i1;:::;is�d

kXi1 : : :Xis f k2L2.M/; s 2 N; (30)

which implies the estimates (28) and (29). The formula (27) along with the formula

kLm=2f kL2.M/ � !m=2kf kL2.M/: (31)

implies the estimate

kLk.fg/kL2.M/ � .4d/k sup
0�m�2k

kXi1 : : :Xim f kL2.M/kXj1 : : :Xj2k�m gk1 �

.4d/k!m=2kf kL2.M/ sup
0�m�2k

kXj1 : : :Xj2k�m gk1: (32)

Using the Sobolev embedding Theorem and the elliptic regularity of L, we obtain
for every s > dimM

2

kXj1 : : :Xj2k�m gk1 � C.M/kXj1 : : :Xj2k�m gkWs
2.M/ �

C.M/
˚
kXj1 : : :Xj2k�m gkL2.M/ C kLs=2Xj1 : : :Xj2k�m gkL2.M/


; (33)

where Ws
2.M/ is the Sobolev space of s-regular functions on M. The estimate (31)

gives the following inequality:

kXj1 : : :Xj2k�m gk1 � C.M/
˚
!k�m=2kgkL2.M/ C !k�m=2CskgkL2.M/


�

C.M/!k�m=2
˚
kgkL2.M/ C !s=2kgkL2.M/


D C.M; g; !; s/!k�m=2; s >

dim M
2

:

(34)

Finally we have the following estimate:

kLk.fg/kL2.M/ � C.M; f ; g; !; s/.4d!/k; s >
dim M
2

; k 2 N; (35)

which leads to our result.

Lemma 5. There exist positive c; C such that for ! > 1 the following embeddings
hold:

E!.L / � Ec!Q.L/; (36)

E!.L/ � EC!.L /: (37)

Proof. There exists a constant a D a.L; L / such that for all f in the Sobolev space
WQ
2 .M/ [10]
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kLf k � ak.I C L /Qf k:

Since L belongs to the center of the enveloping algebra of the Lie algebra g it
commutes with L . Thus one has for sufficiently smooth f :

kLlf k � alk.I C L /Qlf k; l 2 R:

It implies that if f 2 E!.L /, then for ! � 1

kLlf k � alk.I C L /Qlf k �
�
a.1C !/Q

�l
kf k �

�
2a!Q

�l
kf k; l 2 R;

which shows that f 2 E2a!Q.L/. Conversely, since for some b D b.L; L /

kL f k � bk.I C L/f k; f 2 W2
2 .M/;

we have

kL lf k � blk.I C L/lf k; f 2 W2l
2 .M/;

and for f 2 E!.L/

kL lf k � blk.I C L/lf k � .b.1C !//l kf k � .2b!/lkf k; f 2 W2l
2 .M/:

The product property of bandlimited functions is described in the following
Theorem.

Theorem 5. There exists a constant C0 D C0.L / > 0 such that for any f ; g 2

E!.L / the product fg belongs to EC0!Q.L /.

Proof. If f ; g 2 E!.L /, then f ; g 2 Ec!Q.L/. According to Lemma 4 their product
fg belongs to E4dc!Q.L/ which implies that for some C0 D C0.L / the product fg
belongs to EC0!Q.L /.

6 Positive Cubature Formulas on Sub-Riemannian
Manifolds

Now we are going to prove existence of cubature formulas which are exact on
E!.L /, and have positive coefficients of the right size.

Let Mr D fxkg be a r-lattice and fB
.xk; r/g be an associated family of balls that
satisfy only properties (1) and (2) of Lemma 1. We define

U1 D B
.x1; r=2/ n [i; i¤1B

.xi; r=4/;

and

Uk D B
.xk; r=2/ n
�
[j<kUj [i; i¤k B
.xi; r=4/

�
: (38)
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One can verify the following properties.

Lemma 6. The sets fUkg form a disjoint measurable cover (up to a set of measure
zero) of M and

B
.xk; r=4/ � Uk � B
.xk; r=2/ (39)

We have the following Plancherel-Polya inequalities [18, 19].

Theorem 6. There exist positive constants a1 D a1.M;Y/; a2 D a2.M;Y/, and
a0 D a0.M;Y/ such that, if for a given ! > 0 one has

0 < r < a0!; (40)

then for any metric r-lattice Mr D fxkg the following inequalities hold:

a1
X

k

jUkjjf .xk/j
2 � kf kL2.M/ � a2

X

k

jUkjjf .xk/j
2; (41)

for every f 2 E!.L /:

Proof. One has

jf .x/j � jf .xk/j C jf .x/ � f .xk/j;

Z

Uk

jf .x/j2dx � 2

�
jUkjjf .xk/j

2 C

Z

Uk

jf .x/ � f .xk/j
2dx

�
;

and

kf k2 �
X

k

Z

Uk

jf .x/j2dx � 2

 
X

k

jUkjjf .xk/j
2 C

X

k

Z

Uk

jf .x/ � f .xk/j
2dx

!
:

Take an X 2 g; jXj D 1; for which exp tX � xk D x for some t 2 R.
Since every such vector field (as a field on M) is a linear combination of the fields
ŒYi1 ; : : :ŒYil�1 ;Yil �: : :�; 1 � l � Q; 1 � ij � m, the Newton-Leibniz formula applied
to a smooth f along the corresponding integral curve joining x and xk gives

jf .x/ � f .xk/j
2 � Cr2

QX

lD1

X

1�i1;i2;:::il�m

 
sup

y2B
.xk ;r=2/
jYi1Yi2 : : :Yil f .y/j

!2
:

Applying anisotropic version of the Sobolev inequality [10] we obtain

jf .x/ � f .xk/j
2 � Cr2

QX

lD1

X

1�i1;i2;:::il�m

 
sup

y2B
.xk ;r=2/
jYi1Yi2 : : :Yil f .y/j

!2
�
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Cr2
QX

lD0

X

1�i1;i2;:::;il�m

kYi1Yi2 : : :Yil f k2HQ=2C".B
.xk ;r=2//
;

where x 2 Uk; " > 0; C D C."/: Next,

X

k

Z

B
.xk ;r=2/
jf .x/ � f .xk/j

2dx �

CrnC2

QX

lD0

X

1�i1;i2;::il�m

X

k

kYi1 : : :Yil f k2HQ=2C".B
.xk ;r=2//
�

CrnC2

QX

lD0

X

1�i1;:::;il�m

kYi1 : : :Yil f k2HQ=2C".M/
� CrnC2

�
kf k2 C kL Qf k2

�
:

All together we obtain the inequality

kf k2 � 2
X

k

jUkjjf .xk/j
2 C CrnC2

�
kf k2 C kL Qf k2

�
:

Note that for f 2 E!.L /

kL Qf k � C!Qkf k:

Thus, if for a given ! > 0 we pick an r > 0 a way that

CrnC2.1C !/Q < 1

then for a certain C1 D C1.M/ > 0 one obtains the right-hand side of (41)

kf k2 � C1
X

k

jUkjjf .xk/j
2:

The left-hand side of (41) follows from the Sobolev and Bernstein inequalities.

The Plancherel-Polya inequalities (41) can be used to prove the so-called sub-
elliptic positive cubature formula. The proof goes along the same lines as in [4, 21],
(see also [1, 3]).

The precise statement is the following.

Theorem 7. There exists a constant a D a.M;Y/ > 0 such that for a given ! > 0
if r D a!�1 then for any r-lattice Mr D fxkg there exist strictly positive coefficients
f˛kg, for which the following equality holds for all functions in E!.L /:
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Z

M
fdx D

X

k

f .xk/˛k: (42)

Moreover, there exists constants b1 > 0; b2 > 0; such that the following
inequalities hold:

b1jUkj � ˛k � b2jUkj; (43)

where the sets Uk are defined in (38).

7 Space Localization of Kernels

According to the spectral theorem if F is a Schwartz function on the line, then there
is a well defined operator F.L / in the space L2.M/ such that for any f 2 L2.M/

one has

.F.L /f / .x/ D

Z

M
K F.x; y/f .y/dy; (44)

where dy is the invariant normalized measure on M. If
˚
�j


and
˚
uj


are sets of
eigenvalues and eigenfunctions of L respectively then

K F.x; y/ D

1X

jD0

F.�j/uj.x/uj.y/: (45)

We will be especially interested in operators of the form F.t2L /, where F is a
Schwartz function and t > 0. The corresponding kernel will be denoted as K F

t .x; y/
and

K F
t .x; y/ D

1X

jD0

F.t2�j/uj.x/uj.y/: (46)

Note, that variable t here is a kind of scaling parameter.
The following important estimate was proved in [1] in the setting of the so-called

Dirichlet spaces. It is a consequence of the main result in [9] that sub-Riemannin
manifolds we consider in our article are the Dirichlet spaces.

Theorem 8. If F 2 C1
0 .R/ is even than for every N > 2Q, there exists a CN D

CN.F;M;Y/ > 0 such that

ˇ̌
K F

t .x; y/
ˇ̌

� CN .jB

.x; t/j jB
.y; t/j/�1=2

�
1C t�1
.x; y/

��N
; 0 < t � 1:

(47)
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8 Parseval Space-Frequency Localized Frames
on Sub-Riemannian Manifolds and Proof of Theorem 1

Let g 2 C1.RC/ be a monotonic function with support in Œ0; 22�; and g.s/ D 1

for s 2 Œ0; 1�; 0 � g.s/ � 1; s > 0: Setting G.s/ D g.s/ � g.22s/ implies that
0 � G.s/ � 1; s 2 supp G � Œ2�2; 22�: Clearly, supp G.2�2js/ � Œ22j�2; 22jC2�; j �

1: For the functions F0.s/ D
p

g.s/; Fj.s/ D
p

G.2�2js/; j � 1; one hasP
j�0 F2j .s/ D 1; s � 0. Using the spectral theorem for L one can define bounded

self-adjoint operators Fj.L / as

Fj.L /f .x/ D

Z

M
K F
2�j.x; y/f .y/dy;

where

K F
2�j.x; y/ D

X

�m2Œ22j�2;22jC2�

F.2�2j�m/um.x/um.y/: (48)

The same spectral theorem implies
P

j�0 F2j .L /f D f ; f 2 L2.M/; and taking inner
product with f gives

kf k2 D
X

j�0

˝
F2j .L /f ; f

˛
D
X

j�0

kFj.L /f k2: (49)

Moreover, since the function Fj.s/ has its support in Œ22j�2; 22jC2� the functions
Fj.L /f are bandlimited to Œ22j�2; 22jC2�.

Next, consider the sequence !j D 22jC2; j D 0; 1; : : :: . By (49) the equality
kf k2 D

P
j�0 kFj.L /f k2 holds, where every function Fj.L /f is bandlimited to

Œ22j�2; 22jC2�. Since for every Fj.L /f 2 E22jC2 .L / one can use Theorem 5 to
conclude that

jFj.L /f j2 2 EC02Q.2jC2/ .L /:

According to Theorem 7 there exists a constant a D a.M;Y/ > 0 such that for all
natural j if

rj D b2�Q.jC1/; b D aC0; (50)

then for any rj-lattice Mrj one can find positive coefficients ˛j;k with for which the
following exact cubature formula holds:

kFj.L /f k22 D

KjX

kD1

˛j;k

ˇ̌
Fj.L /f .xj;k/

ˇ̌2
; (51)
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where xj;k 2 Mrj , k D 1; : : : ;Kj D card.Mrj/. Using the kernel K F
2�j of the operator

Fj.L / we define the functions

�j;k.y/ D
p
˛j;k K F

2�j.xj;k; y/ D

p
˛j;k

X

�m2Œ22j�2;22jC2�

F.2�2j�m/um.xj;k/um.y/: (52)

One can easily see that for every f 2 L2.M/ the equality kf k22 D
P

j;k jhf ; �j;kij
2

holds. Moreover, the first two items of Theorem 1 are also satisfied. Thus,
Theorem 1 is proven.

As an application one can obtain description of sub-elliptic Besov spaces
B˛

p;q.L /; 1 � p < 1; 1 � q � 1; in terms of the Fourier coefficients with
respect to this frame

˚
�j;k


.

Consider the quasi-Banach space b˛p;q which consists of sequences s D fsj
kg (j �

0; 1 � k � Kj) satisfying

kskb˛p;q D

0

@
1X

j�0

2j˛q

 
X

k

ˇ̌
ˇB
.xj

k; 2
�j/
ˇ̌
ˇ
1=p�1=2

jsj
kj

p

!q=p
1

A
1=q

< 1; (53)

and introduce the following mappings

�.f / D fhf ; �j
kig; (54)

and

	.fsj
kg/ D

1X

j�0

X

k

sj
k�

j
k: (55)

It is not difficult to prove the following result (see [4, 5] for the Riemann case).

Theorem 9. Let�j
k be the same as above. Then for 1 � p < 1; 0 < q � 1; ˛ > 0

the following statements are valid:

1. � in (54) is a well-defined bounded operator � W B˛
p;q.L / ! b˛p;q;

2. 	 in (55) is a well-defined bounded operator 	 W b˛p;q ! B˛
p;q.L /;

3. 	 ı � D id;

Moreover, the following norms are equivalent:

kf kB˛
p;q.L / � k�.f /kb˛p;q ;
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where

k�.f /kb˛p;q D

0

@
1X

j�0

2j˛q

 
X

k

ˇ̌
ˇB
.xj

k; 2
�j/
ˇ̌
ˇ
1=p�1=2

jsj
kj

p

!q=p
1

A
1=q

:

The constants in these norm equivalence relations can be estimated uniformly
over compact ranges of the parameters p; q; ˛.
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