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Chapter 5
Voltage-Dependent Anion Channels 
and Tubulin: Bioenergetic Controllers 
in Cancer Cells

Eduardo N. Maldonado, David N. DeHart, and John J. Lemasters

5.1  �Introduction

5.1.1  �Warburg Phenotype and Cell Proliferation

The interdependence between bioenergetics, catabolism, and anabolism differs in 
cancer and other proliferating cells compared to differentiated cells. A metabolic 
phenotype characterized by enhanced glycolysis and suppression of mitochondrial 
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metabolism even in the presence of physiological levels of oxygen was first 
described by Otto Warburg in the early twentieth century (Warburg et  al. 1927; 
Warburg 1956). Warburg also postulated that irreversible but not completely dam-
aged respiration led to cancer. According to Warburg, cells compensate for lower 
energy production associated with damaged respiration by increasing the conver-
sion of glucose to lactic acid (fermentation). Cells capable of increasing fermenta-
tion through successive divisions to compensate for defective respiration eventually 
become neoplastic (Warburg 1956). The lack of function of mitochondria in tumor 
tissues was challenged by Weinhouse and others demonstrating both high glycolysis 
and oxidative metabolism in cancer tissues (Weinhouse 1956). Since the early work 
of Warburg, several investigations showed active mitochondrial metabolism in can-
cer cells and their isolated mitochondria as determined by measurements of ATP 
generation, NADH production, and mitochondrial membrane potential (ΔΨ) among 
other functional parameters (Lim et al. 2011; Maldonado et al. 2010; Mathupala 
et al. 2010; Moreno-Sanchez et al. 2014; Nakashima et al. 1984; Pedersen 1978; 
Singleterry et al. 2014).

Although functional, the contribution of mitochondria to ATP generation in can-
cer cells through oxidative phosphorylation (OXPHOS) is lower compared to dif-
ferentiated cells. Differentiated cells produce about 95% of total ATP by OXPHOS 
and the remaining 5% through aerobic glycolysis. By contrast in cancer and other 
proliferating cells, 20–90% of total ATP production derives from glycolysis with the 
remainder coming from mitochondrial oxidation of pyruvate, fatty acids, and gluta-
mine (6, 11). Accordingly, tumor cells have increased uptake of glucose compared 
to differentiated cells. This glucose avidity of tumors can be used to diagnose pri-
mary tumors, recurrences, and metastases by positron emission tomography (PET) 
of the glucose analog 18fluorodeoxyglucose (Zhu et al. 2011). Enhanced glycolysis 
in cancer cells is associated with a high rate of cell proliferation (Griguer et  al. 
2005; Guppy et al. 2002; Moreno-Sanchez et al. 2007; Scott et al. 2011). Nonetheless, 
bioenergetic profiles can be different among tumor types and even in cells from the 
same type of tumor. Subsets of cells with either high glycolysis or high levels of 
OXPHOS have been identified in gliomas and large B cell lymphomas (Beckner 
et al. 2005; Bouzier et al. 1998; Caro et al. 2012).

Incomplete breakdown of glucose through glycolysis generates only 2 moles of 
ATP per mole of glucose, whereas mitochondrial oxidation of the 2 moles of pyru-
vate generated from glucose to CO2 and H2O generates about an additional 31 moles 
of ATP taking into account currently accepted proton stoichiometries for respira-
tion, ATP synthesis, ATP/ADP•Pi exchange, and the malate/aspartate shuttle, 
although actual ATP yields will be less due to proton leak and possible molecular 
“slippage” of the respiratory complexes (Brand 2005; Rich 2003; Rich and Marechal 
2010; Walker 2013; Wikstrom et al. 2015). In cancer cells, lower efficiency of ATP 
generation by aerobic glycolysis appears to be offset by greater glycolytic rates 
(Locasale and Cantley 2010). It is also proposed that the ATP necessary for biosyn-
thesis of macromolecules is lower than the energy requirements of basal cellular 
processes making unlikely that ATP generation is rate limiting in proliferating cells 
(Kilburn et al. 1969).
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The metabolic requirements of cell division are not simply limited to energy 
generation. A dividing cell must double its biomass (lipids, proteins, and nucleic 
acids) before mitosis. This biosynthetic demand requires carbon backbones for the 
synthesis of new macromolecules. Full oxidation of glucose, glutamine, and fatty 
acids in mitochondria generates maximum ATP but not residual carbon backbones. 
By contrast, incomplete breakdown of glucose to lactate and possibly decreased 
mitochondrial degradation of glutamine and fatty acids provides precursors for bio-
mass formation (Cairns 2015; DeBerardinis et al. 2008; Keibler et al. 2016; Liberti 
and Locasale 2016; Lunt and Vander Heiden 2011). Specifically, the by-products of 
glucose catabolism, glucose-6-phosphate, glyceraldehyde-3-phosphate, and 
3-phosphoglycerate contribute to the synthesis of nucleotides, lipids, and amino 
acids, respectively. High glycolytic flux also increases NADPH production by the 
pentose phosphate pathway for reductive biosynthesis. Glutamine and other fuels 
also generate biosynthetic precursors in the Krebs cycle, including citrate for lipid 
biosynthesis and oxaloacetate and α-ketoglutarate for synthesis of nonessential 
amino acids (Fig.  5.1) (DeBerardinis and Cheng 2010). In addition, one-carbon 
metabolism, a set of reactions that transfer one carbon units from serine and glycine, 
plays an important role for de novo synthesis of purines and thymidylate during 
rapid tumor growth (Meiser and Vazquez 2016). In summary, the Warburg meta-
bolic phenotype is a complex network of interrelated processes involving glycolysis 
and mitochondrial metabolism.

5.1.2  �Cytosolic ATP/ADP Ratio: A Key to Sustain Glycolysis

Maximal mitochondrial oxidation of respiratory substrates, including pyruvate, 
fatty acyl-CoA, glutamine, and amino acids, by OXPHOS generates a maximum 
yield of ATP per mole of respiratory substrates and minimal residual carbon 
backbones. Newly synthesized ATP in the mitochondrial matrix is transported to 
the cytosol by the electrogenic adenine nucleotide translocator (ANT) because 
of the coupling to ΔΨ of mitochondrial ATP−4 release for ADP−3 uptake. In dif-
ferentiated cells with predominantly oxidative metabolism, cytosolic ATP/ADP 
ratios can be 50–100 times higher than in the mitochondrial matrix (Schwenke 
et al. 1981). A high cytosolic ATP/ADP ratio suppresses glycolysis through inhi-
bition of phosphofructokinase-1 (PFK-1) although other mechanisms may be 
involved. ATP is a strong allosteric inhibitor, and ADP and AMP are activators 
of PFK-1 (Mor et al. 2011; Moreno-Sanchez et al. 2007). In cancer cells, sup-
pression of mitochondrial metabolism contributes to a low cytosolic ATP/ADP 
ratio, which releases this brake on glycolysis. Recently, we demonstrated that 
closing of the voltage-dependent anion channels (VDAC) promoted by free 
tubulin limits ingress of respiratory substrates into mitochondria and limits ATP 
production, whereas replacement of electrogenic ATP/ADP exchange by ANT 
with a non-electrogenic exchange mechanism decreases cytosolic ATP/ADP 
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ratios. These two independent mechanisms contribute to suppress mitochondrial 
metabolism and to maintain a low cytosolic ATP/ADP ratio favoring aerobic 
glycolysis in cancer cells (Maldonado et  al. 2013, 2016; Maldonado and 
Lemasters 2014).

5.2  �VDAC Modulation of Cancer Bioenergetics

5.2.1  �VDAC and the Warburg Phenotype

The bioenergetics of cancer cells depends on chemical reactions occurring in two 
functional, interconnected, and interdependent cellular compartments separated by 
the mitochondrial outer membrane (MOM) (Fig. 5.1). VDAC, the most abundant 
protein in the MOM, is the gateway through which most respiratory substrates, 
ADP, and Pi enter mitochondria and ATP exits. The subcellular localization of 
VDAC determines that the closing or the opening of the channels regulates the flux 
of metabolites that enter or leave mitochondria. Thus, VDAC is positioned to be a 
global controller or governator of mitochondrial metabolism and whole cellular bio-
energetics (Lemasters and Holmuhamedov 2006; Maldonado et al. 2013; Maldonado 
and Lemasters 2012, 2014).

The influx of polar metabolites through VDAC is determined mostly by their 
charge and size (Colombini 1980, 2004). Metabolites that reach the intermembrane 
space are further transported to the matrix by numerous different transporters 
located in the mitochondrial inner membrane (MIM). Respiratory substrates in the 
matrix are catabolized in the Krebs cycle generating NADH and FADH2 that enters 
the respiratory chain. The transfer of electrons from NADH and FADH2 to the final 
acceptor O2 produces proton translocation across MIM by Complexes I, III, and IV 
to generate a negative transmembrane ΔΨ and positive ΔpH, the components of the 
proton motive force (Δp). Δp then drives ATP synthesis from ADP and Pi by 
Complex V (F1FO-ATP synthase) (Fig. 5.1).

Based on its role in metabolite exchange between mitochondria and the cytosol, 
VDAC is proposed to be a regulated governor or “governator” that limits global 
mitochondrial metabolism (Lemasters and Holmuhamedov 2006). Interactions 
with tubulin and possibly other proteins, such as hexokinase (Pastorino and Hoek 
2003; Wolf et al. 2011), modulate the open/closed sate of VDAC. Single and dou-
ble knockdown of the three different VDAC isoforms support this concept that 
VDAC serves as a master regulator of mitochondrial metabolism in cancer cells 
(Maldonado et  al. 2013). Thus, VDAC regulation by free tubulin emerges as a 
mechanism to block or promote OXPHOS and indirectly regulate glycolysis 
through the cytosolic ATP/ADP ratio. Ultimately, disruption of VDAC-tubulin 
interactions may be a pharmacological target to increase mitochondrial metabolism 
in cancer cells and to revert Warburg metabolism.
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5.2.2  �VDAC Structure and Regulation of Mitochondrial 
Metabolism

The three isoforms of VDAC present in all eukaryotic cells, VDAC1, VDAC2, and 
VDAC3, are encoded by separate genes. VDAC1 and VDAC2 are the main isoforms 
in most differentiated mammalian cells. The minor isoform VDAC3 is abundant 
only in testis (Sampson et al. 1997, 2001). In cancer cells VDAC1 and VDAC2 are 
also the major isoforms accounting for 90% of the total. The least abundant isoform, 
VDAC3, comprises the remaining 10% (De Pinto et al. 2010; Huang et al. 2014; 
Maldonado et al. 2013). Gating and selectivity of VDAC1 and VDAC2 are highly 
conserved among mammals (Blachly-Dyson and Forte 2001).
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Fig. 5.1  VDAC in Warburg metabolism. Metabolites cross mitochondrial outer membranes 
through VDAC. Oxidation of respiratory substrates in the tricarboxylic acid cycle generates NADH 
and FADH2, which feed into the respiratory chain (Complexes I–IV). Proton translocation by the 
respiratory chain across MIM generates ΔΨ. ATP is synthesized from ADP and Pi by the F1FO-ATP 
synthase (Complex V) driven by protons moving back across MIM into the matrix. Glucose-6-
phosphate (G-6-P), glyceraldehyde 3-phosphate (Glyc-3-P), and 3-phosphoglycerate (3-PG) origi-
nating from the catabolism of glucose and intermediates of the Krebs cycle are used for synthesis 
of nucleotides, lipids, and amino acids. In cancer cells, high free tubulin blocks VDAC conduc-
tance, suppresses mitochondrial metabolism, and decreases cytosolic ATP/ADP to favor glycoly-
sis. α-KG α-ketoglutarate; MIM Mitochondrial inner membrane
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VDAC in humans and mice is a ~30 kDa protein enclosing an aqueous channel 
of ~3-nm internal diameter that allows the passage of molecules up to ~5  kDa 
(Colombini 1980, 2012; Song and Colombini 1996). In the closed state, the flux 
through VDAC of respiratory substrates, ATP, ADP, Pi, and other mostly anionic 
metabolites is blocked. Structural studies reveal that VDAC1 has a barrel configura-
tion with staves formed by 19 β-strands (Hiller et al. 2010; Ujwal et al. 2008). An 
additional N-terminal sequence forms the only α-helical segment. The N-terminal 
helix appears to move to the center of the channel, blocking the passage of metabo-
lites. Recently, a similar β barrel structure with 19 β-strands has been shown for 
VDAC2 from zebra fish (Schredelseker et al. 2014).

Because of its localization in the MOM and central role in mediating 
mitochondria-cytosol fluxes of metabolites, VDAC was initially considered consti-
tutively open, but numerous studies show regulation by multiple factors, including 
hexokinase (Al Jamal 2005; Azoulay-Zohar et al. 2004; Nakashima et al. 1988), 
Bcl2 family members (Tsujimoto and Shimizu 2000), glutamate (Gincel et  al. 
2000), ethanol (Holmuhamedov and Lemasters 2009; Lemasters and Holmuhamedov 
2006), and NADH (Zizi et al. 1994). VDAC phosphorylation by protein kinases, 
including glycogen synthase 3β (GSK3β), protein kinase A (PKA), and protein 
kinase C epsilon (PKCε), blocks or inhibits association of VDAC with other pro-
teins, such as Bax and tBid, and also regulates VDAC opening (Azoulay-Zohar 
et al. 2004; Baines et al. 2003; Das et al. 2008; Lee et al. 1994; Rostovtseva et al. 
2004; Vander Heiden et al. 2000, 2001). PKA-dependent VDAC phosphorylation 
decreases VDAC conductance (Bera et al. 1995), whereas GSK3β-mediated VDAC2 
phosphorylation induces VDAC opening (Das et al. 2008). Here, we will focus on 
the inhibitory effect of free tubulin on VDAC in cancer cells as a regulatory mecha-
nism of VDAC opening (Maldonado et al. 2010, 2013; Palmieri and Pierri 2010).

5.3  �VDAC-Tubulin Interaction

5.3.1  �VDAC Inhibition by Free Tubulin

Mitochondrial ΔΨ in cancer cells can be generated both by the respiratory chain 
and from hydrolysis of glycolytic ATP by the mitochondrial F1FO-ATPase working 
in reverse. Pharmacological interventions to destabilize microtubules with 
nocodazole and colchicine or stabilize microtubules with paclitaxel increase and 
decrease, respectively, cytosolic free tubulin. Such high and low cytosolic free tubu-
lin promotes low and high mitochondrial ΔΨ, respectively (Maldonado et al. 2010). 
In nonproliferating cells like cultured rat hepatocytes, free tubulin is much lower 
compared to hepatoma cells, since nonproliferating hepatocytes do not need a res-
ervoir of tubulin for spindle formation at mitosis. Thus, microtubule stabilization 
with paclitaxel does not increase ΔΨ in hepatocytes, because free tubulin is already 
very low, whereas microtubule destabilization still increases tubulin and, in turn, 
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decreases ΔΨ. These findings imply that VDAC is indeed constitutively open in 
nonproliferating hepatocytes under normal incubation. By contrast, since paclitaxel 
increases and nocodazole/colchicine decreases ΔΨ in tumor cells, the conclusion 
can be made that VDAC is partially closed in tumor cells under the regulation of 
endogenous free tubulin (Maldonado et al. 2010). Negative modulation of ΔΨ by 
tubulin through VDAC closure is a mechanism that explains, at least in part, the 
suppression of mitochondrial metabolism in the Warburg phenotype. Our studies 
performed in intact cancer cells are in agreement with earlier work showing that 
heterodimeric αβ-tubulin closes VDAC inserted into lipid bilayers and decreases 
respiration in isolated brain mitochondria and permeabilized synaptosomes 
(Rostovtseva et al. 2008; Timohhina et al. 2009).

Knockdown studies of VDAC1, VDAC2, and VDAC3  in HepG2 cells further 
characterized the role of VDAC in mitochondrial metabolism in cancer cells. Single 
knockdown of each of the three VDAC isoforms, especially the minor isoform 
VDAC3, decreased mitochondrial ΔΨ, indicating that all VDAC isoforms contrib-
ute to ΔΨ formation. Knockdown of VDAC3 not only caused the greatest drop in 
ΔΨ but also decreased cellular ATP and ADP and the NAD(P)H/NAD(P)+ ratio, 
suggesting that the VDAC3 contributed most to MOM permeability despite being 
the least abundant isoform (Maldonado et al. 2013). Double knockdown of VDAC 
isoforms in all possible combinations allowed determination of the response of each 
individual isoform to tubulin inhibition. All single and double knockdowns partially 
blocked suppression of ΔΨ induced by increased free tubulin (Maldonado et  al. 
2013). Further studies showed an almost identical voltage gating and response to 
dimeric αβ-tubulin of constitutive VDAC isolated from wild-type HepG2 cells com-
pared to VDAC from heart and liver mitochondria. VDAC1 and VDAC2 isolated 
from double knockdown HepG2 cells inserted in lipid bilayers were almost equally 
sensitive to tubulin inhibition, whereas VDAC3 was insensitive even at tubulin con-
centrations fivefold higher than those used to inhibit VDAC1 and VDAC2 
(Maldonado et  al. 2013). The knockdown studies supported the conclusion that 
VDAC3, at least in HepG2 cells, is constitutively open, whereas VDAC1 and 
VDAC2 are totally or partially closed by free tubulin.

5.3.2  �VDAC-Tubulin Influence on Warburg Metabolism 
During Cell Cycle

During the cell cycle, biosynthetic processes to generate a new cell occur during G1, 
S, and G2. Presumably, Warburg metabolism is maximal during these phases, and 
mitochondrial metabolism is suppressed. VDAC closing by a pool of constitutive 
free tubulin appears to contribute to mitochondrial suppression during these growth 
stages. Most of the cell cycle of cancer cells is composed by G1, S, and G2 phases. 
The actual cell division occurs during the M or mitotic phase lasting only about 
30 min of a cell cycle lasting 30 h or more (Hahn et  al. 2009). During mitosis, 
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energy demand increases sharply to support chromosome separation and cytokine-
sis. At this point, a Warburg metabolic phenotype may not be beneficial since all the 
new macromolecules have been already synthesized. Moreover, mitochondrial acti-
vation and full oxidation of respiratory substrates may be required to meet the ATP 
demands of cell division. A possible scenario is that as the spindle forms during 
prophase, the free tubulin pool decreases abruptly, releasing tubulin inhibition of 
VDAC. VDAC opening then promotes increased mitochondrial metabolism revert-
ing the Warburg phenotype precisely when the energy demand is maximal. After 
mitosis, the pool of free tubulin increases again, and cells return to a high glycolytic, 
pro-proliferative phenotype during the non-mitotic stages of the cell cycle 
(Maldonado and Lemasters 2012).

5.3.3  �Mitochondrial Contribution to Metabolic Heterogeneity 
in Tumors

The extent to which cancer cell metabolism is glycolytic or oxidative is not a per-
manent feature and is under epigenetic control. Tumor cells are metabolically flex-
ible, and the relative contribution of OXPHOS can vary substantially over time 
depending on multiple factors, including availability to different fuels, proximity to 
newly formed vs. mature blood vessels, and the release of soluble factors such as 
lactate from neighboring cells, both cancerous and noncancerous. Hypoxia can 
decrease the OXPHOS flux depending on time of hypoxic exposure, cell type, and 
environmental conditions. In MCF-7 and HeLa cells that predominantly depend on 
OXPHOS for ATP supply, prolonged hypoxia increases glycolysis only in MCF-7 
(Rodriguez-Enriquez et al. 2010). The respiratory chain of tumor cells can be fully 
functional at oxygen levels as low as 0.5%, which is biologically relevant because 
in solid tumors with heterogeneous perfusion, tumor cells exposed to 2% or less of 
oxygen can still produce ATP by OXPHOS.

Inadequate blood perfusion in rapidly growing tumors not only exposes cells to 
hypoxia but to a less frequently considered lower supply of nutrients such as glu-
cose. The importance of nutrient availability on the bioenergetic profile of cancer 
cells is illustrated by the switch from aerobic glycolysis to OXPHOS in breast can-
cer cell lines and lymphoma cells cultured in glucose-free media (Robinson et al. 
2012; Smolkova et  al. 2010). Tumor cells also adapt to oxidize other substrates 
when glucose or glutamine are limited, including lactate, methionine, asparagine, 
leucine, arginine, cysteine, acetate, and even proteins and lipids from the environ-
ment (Chung et  al. 2005; Clavell et  al. 1986; Comerford et  al. 2014; Commisso 
et al. 2013; Keenan and Chi 2015; Kennedy et al. 2013; Kreis et al. 1980; Mashimo 
et al. 2014; Scott et al. 2000; Sheen et al. 2011; Sonveaux et al. 2008). While glu-
cose deprivation promotes a switch to oxidative metabolism, inhibition of Complex 
III by antimycin and Complex I by piericidin A triggers a compensatory increase in 
the uptake and consumption of glucose in myoblasts. Total cellular ATP production 
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before and after OXPHOS inhibition was similar indicating that the loss of ATP 
generation by OXPHOS was fully compensated by increased glycolytic ATP gen-
eration (Liemburg-Apers et al. 2015). This metabolic flexibility of tumors and the 
potential to switch from a predominantly glycolytic to an oxidative metabolism and 
vice versa underscore the importance of mechanisms like VDAC regulation that 
underlie these adaptive changes.

Most research efforts to target tumor metabolism have been directed toward inhi-
bition of glycolysis (Doherty and Cleveland 2013; Pelicano et  al. 2006). Only 
recently has mitochondrial metabolism emerged as a chemotherapeutic target (Bhat 
et al. 2015; Weinberg and Chandel 2015). Most approaches attempt to inhibit mito-
chondrial metabolism in cancer cells. The observation that the antidiabetic drug 
metformin decreased the prevalence of certain types of cancer triggered an interest 
in the role of mitochondrial inhibition as a mechanism to suppress abnormal cell 
proliferation (Giovannucci et  al. 2010; Libby et  al. 2009). Although metformin 
decreases OXPHOS by inhibiting Complex I of the respiratory chain, metformin 
also inhibits the mammalian target of rapamycin (mTOR), interferes with folate 
metabolism, and activates AMP kinase (AMPK) (Jara and Lopez-Munoz 2015). 
Other approaches to inhibit mitochondrial metabolism in various cancer cell models 
include etomoxir to inhibit carnitine O-palmitoyltransferase 1 and consequent mito-
chondrial fatty acid oxidation (leukemia), tigecycline to inhibit mitochondrial pro-
tein translation (leukemia), glutaminase inhibitors (breast cancer, lymphoma), and 
the compound VLX600 to inhibit OXPHOS (colon cancer) (Samudio et al. 2010; 
Skrtic et al. 2011; Wang et al. 2010; Zhang et al. 2014). By contrast, other antican-
cer, antiproliferative strategies attempt to promote mitochondrial metabolism. For 
example, the pyruvate analog dichloroacetate activates pyruvate dehydrogenase to 
increase mitochondrial metabolism, which promotes cell killing in several cancer 
cell lines and in some in vivo models (Sutendra and Michelakis 2013).

5.3.4  �VDAC Opening: A Metabolic Switch

The relative closure of VDAC by free tubulin in cancer cells and the broad meta-
bolic consequences of VDAC opening make VDAC-tubulin interaction a novel 
pharmacological target to revert the Warburg phenotype. Antagonizing the constitu-
tive inhibition of VDAC by free tubulin would be expected to increase mitochon-
drial metabolism and to have an anti-Warburg effect. Our group reported the first 
antagonist of the inhibitory effect of free tubulin on VDAC, the small molecule 
erastin (Maldonado et al. 2013). Erastin selectively induces non-apoptotic cell death 
in human cells engineered to harbor small T oncoprotein and the oncogenic allele of 
HRAS, v-Ha-ras Harvey rat sarcoma viral oncogene homologue RASv12 (Dolma 
et al. 2003). Erastin non-apoptotic-induced cell death is blocked by antioxidants, 
such as α-tocopherol, butylated hydroxytoluene, and desferal, but not by pan-
caspase inhibitors (Dolma et  al. 2003). Other cell lines harboring the v-Ki-ras2 
Kirsten rat sarcoma viral oncogene homologue (KRAS) and an activating V600E 
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mutation in v-raf-murine sarcoma viral oncogene homologue B1 (BRAF) are mod-
erately sensitive to erastin. Erastin is proposed to bind to VDAC2 and VDAC3, 
leading to oxidative stress and cell death in cells with activated RAS-RAF-MEK 
signaling (Yagoda et al. 2007).

Erastin in wild-type HepG2 cells and other cell lines promotes mitochondrial 
hyperpolarization and prevents depolarization induced by microtubule destabiliz-
ers. In addition, erastin added after microtubule destabilizers restores mitochondrial 
ΔΨ, indicating that erastin prevents and reverts the inhibitory effect of free tubulin 
on VDAC (Maldonado et al. 2013). Erastin also completely blocks the inhibitory 
effect of free tubulin on VDAC conductance of wild-type VDAC from HepG2 cells 
inserted into planar lipid bilayers. Erastin alone did not modify the voltage depen-
dence of VDAC closure, indicating that the effect of erastin was specific for tubulin-
dependent inhibition of VDAC (Maldonado et al. 2013). Following the identification 
of erastin as a VDAC-tubulin antagonist, we identified a group of “erastin-like” 
compounds using a high-throughput cell-based screening. These erastin-like com-
pounds were selected based on their capability of hyperpolarizing mitochondria in 
the presence of microtubule destabilizers (DeHart et al. 2015).

5.3.5  �VDAC Opening-Related Effects in Cancer Cells

VDAC opening leads to three main biological effects: increased mitochondrial 
metabolism, decreased glycolysis, and increased formation of reactive oxygen spe-
cies (ROS). After VDAC opening, flux of pyruvate, fatty acids, and other metabolic 
substrates into mitochondria fuels the tricarboxylic acid cycle to produce NADH 
that enters the electron transport chain. Increased mitochondrial ΔΨ and increased 
reduction of respiratory chain components lead to superoxide anion (O2•−) genera-
tion (Chance et  al. 1979; Suski et  al. 2012). Quantitatively mitochondria are the 
most important source of ROS, with Complex III (Site IIIQo), Complex I (Site IQ), 
and Complex II (Site IIF) being the main ROS-producing sites out of seven major 
mitochondrial sites (Chen et  al. 2003; Quinlan et  al. 2012; Tribble et  al. 1988), 
(Skulachev 1996). O2•− formed at Complexes I and II is released to the matrix, 
whereas O2•− generated at Complex III is released in large part to the intermembrane 
space and hence to the cytosol through VDAC (Brand 2010; Han et al. 2003; Muller 
et al. 2004). O2•− is rapidly converted to H2O2 by superoxide dismutases located in 
the mitochondrial matrix (manganese-containing enzyme MnSOD or SOD2) and 
the cytosol (copper-and-zinc-containing enzyme Cu, ZnSOD, or SOD1) (Fridovich 
1997). H2O2, the least reactive of ROS, diffuses across membranes and is a cell 
signaling molecule that does not necessarily disrupt redox homeostasis (Morgan 
et al. 2011; Veal et al. 2007). For example, H2O2 modulates the pro-survival HIF-1 
and MAP/ERK, PI3K/akt/mTOR pathways that favor tumorigenesis and metastasis 
(Clerkin et al. 2008; Giles 2006; Ushio-Fukai and Nakamura 2008). Alternatively, 
H2O2 can accept an electron from free and loosely bound Fe2+ to form the highly 
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reactive hydroxyl radical (OH•) by the Fenton reaction. O2•− and especially the 
highly reactive OH• are damaging for cells.

VDAC opening promotes mitochondrial ROS formation by increasing mito-
chondrial ΔΨ and the reduction of the respiratory chain. Continued ROS production 
eventually overcomes the antioxidant capacity of cancer cells leading to cytotoxic-
ity. Opening of VDAC by antagonism of the inhibitory effect of free tubulin on 
VDAC selectively affects cancer and other proliferating cells, since free tubulin is 
low and does not inhibit VDAC in differentiated cells (Maldonado et  al. 2010; 
Maldonado and Lemasters 2012). In cancer cells, ROS can be cytostatic, favor 
tumor growth, or be cytotoxic (Marengo et  al. 2016; Panieri and Santoro 2016; 
Sullivan and Chandel 2014). Although basal levels of ROS are higher in cancer cells 
compared to differentiated cells, these higher ROS levels are compensated by the 
higher content of scavenging enzymes and antioxidants, including glutathione-
linked enzymes that reduce protein disulfide bonds, catalase that converts H2O2 to 
H2O and O2, and SODs (Liou and Storz 2010; Panieri and Santoro 2016; Sullivan 
and Chandel 2014; Venditti et al. 2013). Oxidative stress is reported to induce can-
cer cell cycle arrest, senescence, apoptosis, or necrosis (Liou and Storz 2010). 
Chemotherapeutic agents including cisplatin, adriamycin, the anthracyclines doxo-
rubicin, epirubicin, and daunorubicin among others promote oxidative stress and 
depletion of the antioxidant capacity of tumor cells leading to a tumoricidal effect 
(Conklin 2004; Faber et al. 1995; Ladner et al. 1989; Weijl et al. 1998).

The effects of mitochondrially generated ROS on cellular structures depend on 
the specific ROS. The lifetimes of H2O2 and O2•− allow them to react both with 
mitochondria and extramitochondrial structures. By contrast, OH• is so reactive that 
its effects are almost completely restricted to mitochondria. Both O2•− and OH• 
inactivate mitochondrial proteins, including ATP synthase, NADH oxidase, and 
NADH dehydrogenase (Zhang et al. 1990). Beyond proteins, ROS damage mito-
chondrial DNA and lipids in the MIM. Cardiolipin, a MIM phospholipid rich in 
polyunsaturated fatty, is peroxidized by ROS, and peroxidized cardiolipin is consid-
ered an early event in apoptosis (Schenkel and Bakovic 2014). Cytosolic ROS, in 
turn, activate members of the MAPK family of serine/threonine kinases, especially 
c-Jun N-terminal kinase (JNK), the extracellular signal-regulated kinase (ERK 1/
ERK 2), and p38 whose signaling can cause mitochondrial dysfunction (Kamata 
et al. 2005; Son et al. 2011).

5.3.6  �A Metabolic Double Hit: Anti-Warburg Effect 
and Oxidative Stress

Heterogeneity of metabolism among cells within a tumor is a complicating factor 
for the success of cancer chemotherapy (Dang 2012; Eason and Sadanandam 2016; 
Gerlinger et  al. 2012; Yun et  al. 2012). However, nearly all cancer cells display 
some level of enhanced glycolysis, suggesting some degree of contribution of 
VDAC closure to suppression of mitochondrial metabolism (Griguer et al. 2005; 
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Guppy et al. 2002; Moreno-Sanchez et al. 2007; Scott et al. 2011). Antagonism of 
the inhibitory effect of tubulin on VDAC triggers two distinct and nearly simultane-
ous effects: (1) activation of OXPHOS with consequent decrease of glycolysis (anti-
Warburg effect) and (2) an increase in ROS formation leading to oxidative stress. 
The antiproliferative effect of derepression of mitochondrial function (anti-Warburg 
effect) may be quantitatively more important in highly glycolytic tumors, whereas 
oxidative stress may cause tumoristatic and tumoricidal effects on a more broad 
population of cells.

The VDAC-tubulin antagonist erastin and erastin-like compounds cause mito-
chondrial hyperpolarization followed by mitochondrial depolarization indicative of 
mitochondrial dysfunction in human hepatocarcinoma cells (Fig. 5.2). The initial 
increase in ΔΨ is just in advance of the increase in ROS generation, whereas subse-
quent JNK activation precedes mitochondrial dysfunction. A lead erastin-like com-
pound identified by small molecule screening also decreases glycolysis as evidenced 
by a decrease in lactate release (DeHart 2015). The combination of reversal of 
Warburg metabolism and oxidative stress by the lead compound causes cell death to 
human hepatocarcinoma cell lines in culture and to xenografted Huh7 hepatocarci-
noma cells (DeHart et al. 2015). Thus, erastin and lead erastin-like compound by 
causing “two hits” of anti-Warburg metabolism and promotion of oxidative stress 
represent a potential new class of cancer chemotherapeutic agents (Fig. 5.3).
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X1

Baseline 1 h 2 h

0

255
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Fig. 5.2  Erastin and X1-dependent mitochondrial dysfunction. Initial mitochondrial hyperpo-
larization induced by erastin (center upper panel) and X1 (center lower panel) was followed 
by mitochondrial depolarization indicative of mitochondrial dysfunction (right upper and 
lower panels)
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5.4  �Concluding Remarks

VDAC-tubulin interaction in cancer cells is a global bioenergetic controller. Drug-
induced VDAC opening increases mitochondrial metabolism and decreases glycol-
ysis. Opening of the VDAC switch triggers two “hits” – an anti-Warburg effect that 
promotes a nonproliferative metabolic phenotype and an increase in ROS formation 
leading to mitochondrial dysfunction and cell death. ROS may be lethal for some 
cells and sublethal for others, whereas the anti-Warburg effect will decrease or stop 
cell proliferation. In summary, VDAC-tubulin is a new pharmacological target to 
turn a pro-proliferative into a nonproliferative phenotype and to induce oxidative 
death to cancer cells.

Hit 1
Decreased 
glycolysis

Cell death 

0

25

50

75

100

C
el

l d
ea

th
 (%

)

Veh
icl

e

Veh
icl

e X1 X1 

HepG2 

Huh7

Hit 2
Oxidative stress 

Baseline

MitoSOX

+X1

+X1

CellROX
Baseline

Time (h)
0 1 2 3

 L
ac

ta
te

 (m
M

)

0.0

0.3

0.6
Vehicle
X1 

Fig. 5.3  Mechanisms to promote cell death after VDAC opening. X1 decreased lactate release by 
80% in Huh7 cells (anti-Warburg effect, Hit 1). Lead compound X1 also increased fluorescence of 
the cellular ROS indicator CellROX green and the mitochondrial superoxide anion indicator 
MitoSOX red in Huh7 cells (oxidative stress, Hit 2). The two-hit mechanism led to over 90% cell 
death in Huh7 cells and over 80% in HepG2 cells
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