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Abstract
Lipoprotein lipase (LPL) is the key enzyme involved in the intravascular lipolysis
of triglyceride (TG)-rich lipoproteins. The regulation of LPL expression and
activity is complexed, tightly regulated by hormonal, nutritional, and genetic
mechanisms, which remain partially unknown. LPL is highly regulated at a
posttranscriptional level that could involve miRNA. miR-27 and miR-29 families
are the most studied miRNAs responsible for a decreased LPL expression, mainly
in adipose tissue but also in hepatocytes. These miRNAs and several others, miR-
467 and miR-590, have been shown to directly target LPL in macrophages and
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prevent atherosclerosis in animal models. Moreover, a LPL haplotype associated
with lower TG was shown to disrupt several miRNA-binding sites. LPL activity
can also indirectly be regulated by miRNA which regulates the expression of its
cofactors such as APOA5 and ANGPTL3/4.
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binding protein 1
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miRNA MicroRNA
SNP Single-nucleotide polymorphism
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UTR Untranslated region

Introduction

Lipoprotein lipase (LPL) is the key enzyme involved in the intravascular catabolism
of triglyceride (TG)-rich lipoproteins and a major player in the regulation of plasma
TG concentration. It is submitted to a complex transcriptional and posttranscriptional
regulation, both direct and indirect, via its cofactors. MicroRNA (miRNA) provide a
new layer of regulation to optimize the continuous adjustment of LPL activity,
between fasting and post-prandial state.

LPL is mainly expressed in adipose tissue and muscles. After a complex matu-
ration in the endoplasmic reticulum involving lipase maturation factor 1, LPL is
transported to the luminal side of the capillary endothelium by glycosylphosphati-
dylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). LPL is
active as dimers bound to GPIHBP1 and hydrolyzes the TG into fatty acids (Fig. 1).
Additionally, LPL is expressed in macrophages, mammary gland cells, and fetal
hepatocytes (Kersten 2014).

The major role of LPL in plasma TG metabolism is illustrated by the severe
hypertriglyceridemia (HTG) in patients carrying homozygous or compound hetero-
zygous mutations. Many LPL polymorphisms are associated with either lowered or
increased plasma TG concentrations (Hegele et al. 2014).

The regulation of LPL is complexed, tightly regulated at both transcriptional and
posttranscriptional levels involving hormonal, nutritional, and genetic mechanisms
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which remain partially unknown (Li et al. 2014). Several arguments are in favor of
a posttranscriptional regulation of LPL. First, the LPL 30untranslated region (UTR)
is particularly long. This region was suggested to play an important role in the
downregulation of LPL translation, as deletion of the 30UTR increases LPL mass and
activity without affecting LPL transcription, both in vivo and in vitro (Ranganathan
et al. 2000; Hensley et al. 2003). miRNAs are evolutionally conserved 19–22
nucleotides of noncoding RNA that posttranscriptionally downregulate gene expres-
sion by binding target mRNAs. This process leads to mRNA degradation or trans-
lation repression. Recent data have suggested that miRNAs predominantly decrease
mRNA stability through base pairing with the 30UTR of target mRNAs (Bartel 2009;
Fabian and Sonenberg 2012). Therefore, the discovery of miRNAs, which have
emerged as major posttranscriptional regulators of most mammalian mRNAs, had
offered new keys to improve the knowledge of the complex regulation of LPL and
TG metabolism.

miRNAs Involved in LPL Regulation

miR-29 Family

The most studied miRNAs in LPL regulation belong to the miR-29 family which
includes in humans miR-29a, miR-29b1/b2, and miR-29c. miR-29b1 and miR-29b2
have identical mature sequences and are together called miR-29b. miR-29’s mature
sequences are highly conserved between species, with large overlap of their
sequence and an identical seed region, critical for the recognition of target gene

Fig. 1 LPL and its main regulator genes or cofactors. Angptl angiopoietin-like protein, apo
apolipoprotein, FA fatty acids, GPIHBP1 glycosylphosphatidylinositol-anchored high-density lipo-
protein-binding protein 1, LMF1 lipase maturation factor 1, LPL lipoprotein lipase, TG triglycer-
ides, TGRL triglyceride-rich lipoproteins
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sequences (Fig. 2). The miR-29 family plays a major role in anti-fibrotic and
proapoptotic processes in several organ diseases such as cardiac, pulmonary, hepatic,
or renal fibrosis (Kriegel et al. 2012; Deng et al. 2017).

Chen et al. were the first to report a role of miR-29a in LPL posttranscriptional
regulation. They showed that the inhibition of miR-29a expression in dendritic cells
increased LPL mRNA levels, whereas enhancing miR-29a expression decreased
LPL mRNA expression (Chen et al. 2011). LPL is mainly expressed in adipose
tissue and muscles. miR-29a repression on LPL mRNA was shown during 3T3-L1
adipocyte differentiation (Bouvy-Liivrand et al. 2014) and recently in human sub-
cutaneous adipose tissue biopsies with a significant inverse correlation between LPL
mRNA levels and miR-29a expression (Kristensen et al. 2017).

LPL expression is repressed in adult hepatocytes. In a mice model, Mattis et al.
identified miR-29a as the miRNA responsible for repressing LPL in hepatocytes.
Interestingly, in this model of fatty liver disease, the inhibition of miR-29a is
responsible for both a decreased hepatic LPL expression and an increased hepatic
lipid accumulation (Mattis et al. 2015). These findings suggest that the loss of
hepatic miR-29a expression could be involved in the pathogenesis of fatty liver
diseases. In agreement, previous studies have shown that miR-29a levels were
decreased in livers of animals or humans with fatty liver diseases (Jin et al. 2009;
Roderburg et al. 2011; He et al. 2016) and that LPL levels were increased in biopsies
of human fatty livers (Pardina et al. 2009).

miR-27 Family

The miR-27 family is composed of two homologous isoforms, miR-27a and miR-
27b, sharing 20 out of 21 nucleotides and highly conserved during evolution (Fig. 2).
Several studies suggested that miR-27 family plays an important role in angiogen-
esis, adipogenesis, lipid metabolism, inflammation, oxidative stress, insulin resis-
tance, and type 2 diabetes (Chen et al. 2012).

Both miR-27a and miR-27b were also shown to be abundantly expressed in
mouse and human adipocytes. They were shown to be downregulated during
adipogenesis and to target both PPAR gamma and LPL gene (Karbiener et al.
2009; Kim et al. 2010; Bouvy-Liivrand et al. 2014).

Fig. 2 Mature sequences of
the miR-27 and miR-29
families’ members share
identical seed sites.
Nucleotides that differ among
the families’ members are
shown in red (Adapted from
Kriegel et al. and Zhang et al.
(Kriegel et al. 2012; Zhang
et al. 2014))
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Karbiener et al. have identified miR-27b as the first negative miRNA regulator on
adipogenesis in human. They found a decreased expression of miR-27b during
adipogenesis in a cell model of human adipogenesis (human multipotent adipose-
derived stem cells). They also showed that overexpression of miR-27b was respon-
sible for an impaired TG accumulation in adipose cells and for the repression of
several adipogenic marker genes including PPAR gamma and LPL, decreasing their
mRNA expression (Karbiener et al. 2009). In addition, miR-27b could indirectly
decrease LPL activity by repressing ANGPTL3 mRNA expression in the liver,
decreasing angptl3 plasma circulating concentration (see further) (Vickers et al.
2013). Interestingly, circulating miR-27 levels were found to be elevated in obese
children and to be associated with elevated TG (Can et al. 2016).

Kim et al. also showed that miR-27a was a negative regulator of adipogenesis in
3T3-L1 cells and repressed PPAR gamma and LPL (Kim et al. 2010). Bouvy-
Liivrand et al. demonstrated that miR-27a is inversely correlated with the mRNA
level of LPL. They showed that both miR-27a and miR-29a acted in a combinatorial
manner to increase their repressive effect on LPL expression. miR-27a was also
shown to inhibit the translation of PPAR gamma, the key transcriptional regulator of
LPL. Therefore, the authors suggested that these miRNA’s and transcription factor’s
actions might form a feedforward loop to enhance the repressive effect on LPL
expression (Bouvy-Liivrand et al. 2014; Li et al. 2014). Interestingly, both miR-27a
and miR-29a were shown to be upregulated in adipocytes of diabetic rats (He et al.
2007; Herrera et al. 2010), suggesting that they could play a role in the decrease of
LPL which contribute to the hypertriglyceridemia observed in diabetes. In addition,
miR-27a/b could also play an important role in the adipogenesis and the pathophys-
iology of obesity.

LPL Regulation by miRNAs in Macrophages

Apart from its role in intravascular lipolysis, LPL is also expressed in macrophages.
It stimulates lipid accumulation in macrophages by increasing the uptake of lipo-
proteins, such as LDL and oxidized LDL, and thus might promote atherosclerosis (Li
et al. 2014).

Several miRNAs, previously identified to have protective effects on cardiovas-
cular diseases, have been involved in macrophage LPL downregulation. miR-27a/b
(Zhang et al. 2014; Xi 2016), miR-29a (Chen et al. 2011), miR-467b (Tian et al.
2012; Tian et al. 2014), and miR-590 (He et al. 2014; He et al. 2015) have been
shown to inhibit both lipid uptake and pro-inflammatory cytokine secretion in
macrophages or dendritic cells, by directly targeting the 30UTR LPL in macro-
phages. These mechanisms were involved in atherosclerosis prevention by miR-27
and miR-467b and miR-590 in APOE KO mice model (Tian et al. 2014; He et al.
2015; Xie et al. 2016).

Conversely, miR-134 was shown to exert pro-atherogenic properties, promoting
LPL-mediated lipid accumulation and inflammatory response by targeting
ANGPTL4 in THP-1 macrophages (Lan et al. 2016).
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Therefore, targeting miRNA could offer novel strategies to prevent atheroscle-
rotic cardiovascular diseases. Nevertheless, as miRNAS target multiples genes, to
date, it is not possible to have a specific effect on a single gene, inhibiting one
miRNA.

miRNA Interactions with LPL Genetic Variants

The recognition of target mRNA by miRNA involves a small complementary
sequence from two to seven nucleotides long. Sequence alteration by single-
nucleotide polymorphisms can either generate or suppress miRNA-binding sites in
mRNAs (Gong et al. 2012). For example, such a finding was previously reported for
obesity-associated c.*2270A>G (rs8887) which creates an illegitimate miR-522-
binding site in the 30UTR of perilipin 4 (PLIN4) and promotes its downregulation in
adipose tissue (Richardson et al. 2011) (Fig. 3).

Richarson et al. were the first to investigate the potential regulation by miRNA of
LPL variants associated with TG. They showed that the rs13702 minor C allele,
strongly associated with both lower TG and greater HDLc in large populations,
disrupts a miRNA recognition element seed site and abolished the response of a
functional miR-410 site in the LPL 3UTR (Richardson et al. 2013) (Fig. 4).

Interestingly, Corella et al. report in the PREDIMED study that the rs13702 C
allele carriers had both lower TG and stroke risk; these associations were reenforced
by a high-unsaturated fat MedDiet intervention (Corella et al. 2014).

This rs13702 belongs to a specific LPL haplotype harboring the rare alleles of
several polymorphisms including the four single nucleotide polymorphisms (SNPs)
rs328, rs13702, rs1059611, and rs10645926. This haplotype (Hap4) associates with
lower TG levels in large population studies. Caussy et al. went further into
deciphering the miRNA regulation of this specific haplotype associated with lower
TG. They first identified several putative miRNA-binding sites on the wild-type LPL
haplotype, lost on Hap4. Then, they evidenced in cell models the presence of
functional binding sites for the miR-410 and also miR-29a, miR-29b, and miR-
1277 on the human LPL transcripts harboring the wild-type Hap1 haplotype,
disrupted by the minor alleles of the Hap4 haplotype SNPs (Fig. 5). This loss of

Fig. 3 Creation of a novel
miR-522-binding site in the
PLIN4 30UTR by the rs8887
minor A allele. The rs8887
variants are in bold (Adapted
from Richardson et al (2011))
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specific miRNA-binding site in the presence of Hap4 was independent of the allelic
variation of p.Ser474Ter (rs328) (Caussy et al. 2016).

Thus, Caussy et al. highlighted a new concept of a multiple miRNA regulation of
a specific LPL TG-lowering haplotype. They also suggested that the well-known
coding rare variant rs328 (p.Ser474Ter), associated with lower TG concentration,
whose functionality is not clearly explained in literature, could be at least partially
explained by its strong linkage disequilibrium with these functional 30UTR SNPs
(Caussy et al. 2016).

miRNA Regulation of LPL Cofactors

LPL activity could also be indirectly regulated by a miRNA regulation of its
cofactors or regulatory genes (Fig. 1).

miR29a

SNP rs328 rs3208305 rs1803924 rs3735964 rs13702 rs1059611 rs10645926 rs15285

miR1277 miR410

miR29a miR29a

miR29b miR29b miR29b

LPL mRNA 3´5´

20 bp

36443604350434693022265126251791

SNP of LPL Hap4 haplotype

miRNA4 binding site potentialy disrupted by a genetic variant of LPL Hap4 haplotypemiR

mRNA
position

miR29b

STOP

Fig. 5 miRNA-binding sites lost in the presence of rare variants of LPL Hap4 haplotype (Adapted
from Caussy et al. (2016))

Fig. 4 rs13702 allele-specific
consequences on miR-410
binding and LPL expression
The rs13702 T allele in the
LPL 30UTR creates a binding
site for miR-410, which leads
to lower LPL concentrations,
whereas in the presence of the
rs13702 C allele, LPL
expression is not affected by
miR-410 (Adapted from
Richardson et al. (2013))
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APOA5

ApoA5, encoded by APOA5 gene, is a liver-expressed 366 amino acid apolipopro-
tein that binds to very-low-density lipoprotein, high-density lipoprotein, and chylo-
microns in plasma. Its involvement in TG metabolism was first demonstrated in
mouse models: Apoa5 KO mice showed a fourfold increase in plasma TG concen-
trations, whereas Apoa5 overexpression in mice significantly reduced TG levels
(Pennacchio et al. 2001).

In mice, apoA5 lowers plasma TG levels by increasing LPL activity, as confirmed
by in vitro and in vivo studies (Grosskopf et al. 2005; Merkel et al. 2005). However,
the underlying mechanism is still not completely understood. In humans, APOA5
plays a critical role in HTG physiopathology. Deleterious APOA5 mutations were
found to be involved in familial hyperchylomicronemia by inducing a LPL activity
defect (Marçais et al. 2005). Moreover, two common APOA5 variant haplotypes
tightly modulate triglyceridemia either in mild or severe HTG (Pennacchio et al.
2002; Charriere et al. 2008; Charrière et al. 2009). One of these APOA5 haplotypes
(APOA5*2) includes the C rare allele of the c.*158C>T SNP (rs2266788), which is
located in the APOA5 30UTR, and is in strong linkage disequilibrium with three
additional SNPs: g.4430C>T (rs662799), c.-3A>G (rs651821), and c.162-43A>G
(rs2072560). This haplotype is strongly associated with plasma TG concentrations in
general population in genome-wide association studies (Willer et al. 2008).

Several studies in literature have suggested that APOA5*2 might modulate
APOA5 expression at the posttranscriptional level. Caussy et al. demonstrated that
the rare c.*158C APOA5 allele creates a functional target site for liver-expressed
miR-485-5p, which could account for the hypertriglyceridemic effect of APOA5*2
(Caussy et al. 2014).

APOC3

ApoC3 is also a major regulator of plasma triglyceride (TG) metabolism by pro-
moting liver VLDL assembly and secretion, inhibiting hydrolysis of TG-rich lipo-
proteins by lipoprotein lipase and decreasing the uptake of TG-rich remnant
lipoproteins by the liver. Several APOC3 30UTR noncoding variants are strongly
associated with TG, but their functionality is not clearly established (Hoffer et al.
1998; Groenendijk et al. 2001).

The S2 rare allele of SStI 30UTR variant (c.*40G>C, rs5128) was shown to be
associated with both moderate and severe HTG (Marçais et al. 2000). Dancer et al.
investigated if this APOC3 variant could be responsible for the loss of a miRNA-
binding site, could increase APOC3 mRNA expression, and could consequently raise
plasma TG concentration. In silico studies predicted a potential loss in the binding of
five miRNAs induced by the SStI S2 rare variant. However in vitro, the S2 variant did
not modulate the APOC3 30UTR reporter gene expression in several hepatic and
intestinal human cell lines. Thus, the hypothesis of a direct regulation of the APOC3
SstI variant by hepatic or intestinal miRNAs was not confirmed. (Dancer et al. 2016).
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Another APOC3 30UTR common variant BbvI (c.*71 G>T, rs4225) was studied
for miR regulation by Hu et al., although this variant is inconstantly associated with
TG in literature. They reported, in a large Chinese Han population, that the rare allele
T of rs4225 was significantly associated with decreased triglyceride levels and
reduced CHD risk. T allele carriers (GT and TT groups) had also lower apoC3 levels
compared to GG group. They demonstrated that, in vitro, the T allele of BbvI
APOC3 variant created a functional miR-4271-binding site, which could be respon-
sible for a decreased APOC3 expression and the hypertriglyceridemic effect of this
30UTR variant (Hu et al. 2016).

ANGPTL3 and 4

ANGPTL3 and ANGPTL4 are both potent LPL inhibitors, decreasing LPL activity.
ANGPTL3 is specifically expressed in the liver and secreted in the circulation. Loss
of function mutations or SNPs of ANGPTL3/4 are responsible in humans of low TG
concentration and decreased LPL activity (Musunuru et al. 2010; Dewey et al.
2016). ANGPTL4, expressed mainly in adipocytes, downregulates LPL activity
during fasting and exercise. ANGPTL4 irreversibly inhibits LPL activity by
disrupting its dimerization, converting the enzyme into inactive monomers, and
reduces LPL affinity for GPIHBP1 (Dijk and Kersten 2016). Both ANGPTL3 and
ANGPTL4 were shown to be regulated by miRNAs.

Vickers et al. showed that miR-27b regulated the mRNA expression of several
lipid metabolism genes including ANGPTL3 in a human hepatocyte cell line
(HuH7). Moreover, they found that in APOE KO mice under high-fat diet, TG
were decreased by about two/three, miR-27b was upregulated by about 1.5-fold in
the liver, and miRNA levels of ANGPTL3 were reduced by 30% (Vickers et al.
2013).

ANGPTL4 was shown to be regulated by miR-134 in THP-1 macrophages (Lan
et al. 2016). Nevertheless, to date, no data about a potential regulation of ANGPTL4
in adipocytes by miR-134 or other miRNAs is available in literature.

Conclusion

In this review, we have described several miRNAs involved into the direct
regulation of LPL expression or the indirect regulation of its activity by LPL
cofactors targeting mechanisms likely to modulate plasma TG concentration.
miRNAs are also new keys to understand the functionality of 30UTR variants.
Collective consideration of these data reveals that miRNAs must be integrated
in the multilayer system that regulates LPL activity and TG metabolism. Many
work remains to decipher the relative contribution of each miRNA, their potential
regulation by nutrition, and their correlation with dyslipidemia, in order to identify
miRNAs as new therapeutic targets in the treatment of HTG and cardiometabolic
disorders.
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Key Facts of miRNA Regulation of LPL

• The complex regulation of LPL involves direct or indirect regulation of LPL
expression or activity by miRNAs.

• miR-27 and miR-29 families are involved in the downregulation of LPL expres-
sion in adipocytes.

• The LPL of macrophages, which control lipid accumulation and promotes ath-
erosclerosis, is also regulated by miRNA such as miR-27, miR-29, miR-467, and
miR-590.

• Polymorphisms of LPL and its cofactor APOA5 could modulate miRNA regula-
tion, disrupting or creating miRNA-binding sites.

Summary Points

• Lipoprotein lipase is the key enzyme of the catabolism of triglyceride-rich
lipoproteins.

• The regulation of LPL is complex, involving a posttranscriptional level.
• miRNAs are major posttranscriptional regulators of mRNAs and offer new keys

to improve the knowledge of the complex regulation of LPL and TG metabolism.
• miR-27 and miR-29 families are the most studied miRNAs in LPL regulation.

They are involved in LPL decrease during adipogenesis and hepatocytes matu-
ration. The dysregulation of miRNAs regulating LPL could be involved in the
pathophysiology of metabolic disease.

• miR-27, miR-29, miR-467, and miR-590 target LPL in macrophages and prevent
atherosclerosis in animal models.

• A LPL haplotype associated with lower TG was shown to disrupt several
miRNA-binding sites.

• The regulation of LPL cofactors such as APOA5 or ANGTL3/4 by miRNAs can
also indirectly regulate LPL activity.
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