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Abstract. Automated medical image analysis can play an important role in
diagnoses and treatment assessment, but integration and interpretation across
heterogeneous data sources remain significant challenges. In particular, auto-
mated estimation of tumor extent in glioblastoma patients has been challenging
given the diversity of tumor shapes and appearance characteristics due to dif-
ferences in magnetic resonance (MR) imaging acquisition parameters, scanner
variations and heterogeneity in tumor biology. With this work, we present an
approach for automated tumor segmentation using multimodal MR images. The
algorithm considers the variability arising from the intrinsic tumor heterogeneity
and segmentation error to derive the tumor boundary and produce an estimate of
segmentation error. Using the MICCAI 2015 dataset, a Dice coefficient of 0.74
was obtained for whole tumor, 0.55 for tumor core, and 0.54 for active tumor,
achieving above average performance in comparison to other approaches
evaluated on the BRATS benchmark.
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1 Introduction

Quantitative measurement and assessment of medical images can play an important
part in diagnosis of a disease, treatment planning, and clinical monitoring. As imaging
technology and standards have been rapidly changing and increasing in complexity
within the field of neuro-oncology, it has become extremely burdensome for clinicians
to manually review imaging studies. In addition to increased labor and expense, manual
measurements can have a high degree of measurement variability [1] due to the
inconsistency and diversity of MRI acquisition parameters (e.g. echo time, repetition
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time, etc.) and strategies (2D vs. 3D) along with hardware variations (e.g. field strength,
gradient performance, etc.) that change the appearance characteristics of the tumor [2].
The increased variability in measurement from multiple imaging sources, combined
with the need for faster interpretation, may potentially result in errors with treatment
decisions or conclusions about of potential therapeutic benefits.

Simplistic two-dimensional measurements used to characterize therapeutic changes
in the Response Assessment in Neuro Oncology (RANO) criteria [3] have been used
for several years. Despite the need for an automated characterization, an accurate
classification of brain tumors remains challenging for automated approaches as it has
also proven difficult for expert neuroradiologists as well [4].

In this paper, we hypothesize the inherent variability in tumor volume measure-
ments can be leveraged to provide a more accurate assessment of tumor burden and
produce an estimate of tumor segmentation variability. While multiple automated
segmentation techniques are being actively developed [3], a method that accounts for
the variability in tumor burden estimation has not been entirely investigated [5]. We
explored a different perspective towards the identification of tumor boundaries and
developed a knowledge-based approach that considers a series of brain tissue proba-
bility distribution maps as prior information to inform the location and boundaries of
brain tumors. This algorithm uses superpixel-based morphological features and the
prior statistical maps to generate a preliminary tumor region. The areas of highest
variation inside this preliminary region are iteratively measured to create a Tumor
Variability Map (TVM), which represents the image heterogeneity along the tumor
boundary (measure of uncertainty).

2 Methods

We developed a processing pipeline to automate the segmentation from the raw MRI
images to create tumor variability maps that indicate tumor extent. This pipeline is
illustrated on Fig. 1 and PseudoCode 1.

Fig. 1. Overall segmentation process from input multimodal MRI, feature extraction, prelim-
inary tumor ROI calculation by supervoxel classification, and a tumor histogram variability
analysis to generate segmentation error estimates for the overall tumor boundary and different
tumor components. The process is repeated for all time-points available for an input subject. The
output variability maps are a graphical representation that reflect the likely location of a
heterogeneous tumor boundary.
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The system is divided into a series of preprocessing strategies followed by the
proposed tumor segmentation algorithm. This approach finds an approximate tumor
ROI by using the knowledge-based approach proposed in this paper. Afterwards, the
intensity variation observed on the approximate tumor ROI is analyzed to find the
possible tumor boundaries for the TVM. This approach was evaluated using the 2015
Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) dataset [6].

2.1 Tumor Segmentation

As first step, the algorithm selects all MR modalities of interest including pre-contrast
T1-weighted images, post-contrast T1-weighted images (T1+C), T2-weighted images,
and T2-weighted fluid attenuated inversion recovery (FLAIR). Then, a series of pre-
processing steps are performed as preliminary step before running the proposed seg-
mentation approach, including intra-subject image registration [7], skull stripping [8],
intra-subject intensity normalization (z-scores), and image denoising (bias-field cor-
rection and soft Gaussian smoothing) [8]. Note that the data for the BRATS benchmark
has already been preprocessed.
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Afterwards, a series of tissue probability masks are generated to provide context/
knowledge about the approximate distribution of normal cerebral tissues including gray
matter, white matter and cerebrospinal fluid (CSF), using this information for tumor
identification [10]. The tissue distribution information models image intensities as a
mixture of k Gaussians, modelled by a mean (lk), standard deviation (rk) and a mixing
proportion. Following this, Bayes rule is employed to produce the posterior probability
of each tissue class. Using this model, the probability of observing an element with
intensity yi on the kth Gaussian is given by:

P yijk ¼ lk; rkð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2k

p exp � yi � lkð Þ2
2r2k

 !
ð1Þ

Finally, the probability of obtaining the pixel y on a Gaussian is maximized with
respect to l, r and c by the minimization of the cost function [10]:

e ¼ � logP yjl; r; cð Þ ¼ �
XI
i¼1

log
XK
k¼1

ckffiffiffiffiffiffiffiffiffiffi
2pr2k

p exp �ðyi � lkÞ2
2r2k

 ! !
ð2Þ

where K is the total number of Gaussian distributions (one for each tissue), and I is the
total number of image elements. The update of the mixture proportion (ck) is performed
by the expectation maximization (EM) algorithm and generates pixel-wise probability
maps for cerebral gray matter, white matter and cerebrospinal fluid. These maps (ob-
tained using SPM [9]) let us devise the likely tumor distribution so subsequent analysis
and statistics can be performed only on the image patches that are the most likely to
correspond to the tumor.

After this step is completed, using the information provided by the tissue distri-
bution probability maps as well as imaging features from each MR volume an initial
tumor ROI is obtained. This process involves the partition of the images into super-
pixels by using the SLIC algorithm [11], a popular method that implements an adap-
tation of the k-means clustering approach that provides and efficient and fast
segmentation of an input image while combining color and spatial proximity to gen-
erate the superpixels. By default, in a simple implementation of the SLIC algorithm,
only one parameter has to be set (the number of superpixels to be extracted) before
being able to use it. In this work, we modified the approach to automatically select the
number of clusters based on the histogram distribution of the input imaging volume
(3D), setting an initial histogram partition parameter k at 10, roughly based on the type
of normal and tumor tissues present on the input images [12].

Afterwards, the preliminary tumor ROI is obtained by selecting the superpixels that
represent the regions with the lowest probability of being normal brain tissue according
to the information provided by the described distribution probability maps for normal
cerebral tissues (including gray matter, white matter and cerebrospinal fluid) [13]. This
process is iterated under different orientations (axial, coronal, sagittal) to increase the
accuracy of the initial ROI, hypothesizing that different tumor shapes may be easier for
the algorithm to identify if visualized under different perspectives (e.g., a u-shaped
tumor might be visualized as two different small structures on the axial view but as a
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continuous and more defined mass on the coronal view, as shown in Fig. 2). Finally,
the preliminary tumor ROI is then obtained by taking the union of all regions generated
across different perspectives, resulting in a single volumetric ROI.

2.2 Multimodal Tumor Boundary Selection

The next step involves identifying a set of tumor boundaries for the total tumor mass as
well as for the tumor sub-regions (i.e., edema, necrosis, enhancing and non-enhancing
tumor) using the preliminary tumor ROI defined in the previous step. This approach
intends to represent the tumor heterogeneous boundary by doing multiple measure-
ments and then combine them into a TVM to quantify uncertainty associated with
segmentation boundaries.

The specific tumor boundaries are obtained as follow: A single definition for T2
abnormality was used to define a “T2 abnormal ROI” using the preliminary ROIs found
on the FLAIR and T2 contrast images. Regions of edema are extracted by ranking the
intensity rate of change on the preliminary tumor ROI histogram, defining as bound-
aries the locations where the highest total variation across the histogram corresponding
to the tumor region are found. The tumor variability map is produced by aggregating
the different binary ROIs obtained at each of these identified values on the tumor
histogram.

The same process is followed to locate the enhancing and necrotic regions but using
the post-contrast T1 sequence or a subtraction map (defined as T1+c - T1 volumes) [13].
Similarly, the TVM for these regions is then obtained by aggregating these different
approximations of the tumor boundary (Fig. 3). A binary representation of the tumor
mask is obtained by using the following approach on the TVM:

Fig. 2. To have multiple estimates of the tumor boundaries, multiple rotations are found along
the tumor major axes so at the end of this process these measurements can be aggregated into the
measurement variability map. In this work, the segmentation occurs on the three main tumor axes
and ten random rotations on each axis.
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I ¼ Pi;j � n
2)Ii;j ¼ 1

Pi;j\ n
2)Ii;j ¼ 0

�
ð3Þ

where I is the output binary image, Pi,j is the intensity at pixel location i,j of the TVM
P and n is the number of discrete probability levels defined in the variability map. The
output is a set of masks that represent the tumor extent and the different sub-regions
with the possibility to calculate variability metrics (e.g., agreement ratio, standard
deviation, statistical change measurement, and others).

3 Results

This proposed approach was tested on all 220 cases in the BRATS 2015 dataset and
evaluated on three components: whole tumor, tumor core (enhancing and necrotic
components) and active tumor (enhancing component). The Dice coefficient for total
tumor mass of 0.74 (median: 0.77, 1st quartile: 0.66, 3rd quartile: 0.84), 0.54 for the
tumor core (median: 0.57, 1st quartile: 0.37, 3rd quartile: 0.75) and 0.54 for the active
tumor (median: 0.60, 1st quartile: 0.29, 3rd quartile: 0.76). Figure 3 shows the Dice
coefficient as well as the Hausdorff distance metric for this dataset.

On Fig. 4 some examples of input images and the output tumor variability maps for
edema, enhancing and necrotic regions of the tumor as well as the representation of these
tumor compartments overlaid on the image as binary masks. This binary representation
of the TVMs (as previously described) is done with the purpose of similarity

Fig. 3. Box-plots showing the proposed method’s performance for the BRATS 2015 dataset. It
plots the Dice similarity coefficient on the left (higher is better) and Hausdorff distance on the
right (lower is better) when comparing a binarized tumor mask generated by the proposed
approach and a segmentation gold standard. Label “Total” refers to all tumor components
(edema, enhancing, necrosis and non-enhancing tumor), “Core” refers to the tumor core
(excluding regions of vasogenic edema), and ‘Enhancing’ refers to active tumor cells with
microvascular proliferations.
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Fig. 4. Tumor segmentation results for three different subjects. First and second rows represent
the input post-contrast T1-weighted and FLAIR scans respectively for each subject (column),
rows three to five show the result of the variability analysis to find different boundary estimations
on each tumor (edema, enhancing and necrosis respectively) (non-enhancing tumor is not shown
in this example). The color bar represents the pixel-wise probability for each tumor tissue.
Finally, the bottom row displays a color coded binary mask that represents the total abnormality
(all components) and subclasses (enhancing shown in red, vasogenic edema in blue and necrosis
in green). (Color figure online)
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computations against binary gold standards as well as an easy integration with other
processing pipelines (e.g. evaluation of clinical variables, genetic algorithms, etc.) or
statistical approaches that require a binary input (Fig. 5).

Fig. 5. Examples of brain tumor segmentation results for total tumor mass on three different
cases. The first row shows one of the four imaging sequences that are used to perform the tumor
segmentation (FLAIR is used on this example for the examples on the left and right and T1+c is
used for the example on the center). The tumor variability map is displayed for total tumor on the
second row, highlighting on red the regions where the algorithm is most certain that there is an
abnormality in that pixel region and showing other color intensities for decreased belief in tumor
abnormality according to the color bar located on the right. Finally, the third row shows the
binarization of the variability map, according to a majority agreement of the different estimates
(that is using a threshold of 0.5), this enables comparison with binary gold standards to evaluate
accuracy and also allows for other more standard metrics and use the results in other processing
pipelines. (Color figure online)
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4 Discussion

We proposed a multimodal framework for automated, probabilistic brain tumor seg-
mentation by using variability in estimates of the tumor boundary. By exploiting tumor
heterogeneity from different imaging sources, this algorithm is able to automatically
generate tumor probability maps or alternatively add a measurement of uncertainty to
binary tumor segmentations. As the proposed approach iteratively measures the tumor

Fig. 6. Examples where our approach did not segment the tumor appropriately. The first column
shows an example where the tumor is under segmented, we believe this is because a
miscalculation on the prior information that is obtained as a preprocessing step and only the
hyper intense edema was selected as part of the tumor, leaving the darker parts unselected. The
second column shows a resection cavity on which the full area of enhancement is not captured
and the third column shows how image artifacts can also cause problems while trying to segment
the tumor.
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boundaries, it is able to better detect and capture the heterogeneity found on brain
tumors (e.g., being able to capture the shape of tumors with eccentric outlines). By
explicitly quantifying the error associated with any given segmentation, we believe that
this added information is critical to understand and judge the actual tumor extent by a
radiologist or neuro-oncologist when interpreting the follow-up imaging data in the
clinical setting.

When evaluating the results with other approaches proposed in previous years, our
results are comparable to or surpass the mean performance of other algorithms [6]
(Reza, Meier, Cordier, Bauer, Festa, Geremia, Buendia, Taylor, Shin). As a method to
improve our results, we are also developing a classifier based on Convolutional Neural
Networks (CNN) [14] to help in the definition of the preliminary tumor ROI and also to
help reduce the number of false positives during the tumor boundary selection.
Combining the result of our knowledge-based approach and the result of the CNN
(trained to classify whether an individual voxel is part of a brain tumors using an
independent dataset) might contribute towards better results on the different tumor
contours (some examples where the proposed approach did not segment the tumor
accurately are shown in Fig. 6).

The inclusion of variability calculations into segmentation methodologies can lead
to better results and ultimately provide more meaningful data to clinicians as the
knowledge of a measurement variation is fundamental to make more objective deci-
sions. Future work includes the evaluation of variability on tumor biomarkers (such as

Fig. 7. Example of tumor progression over time. Showing volume measurement for each
time-point with its respective error estimate. As time passes it becomes critical to evaluate if the
action taken at a given point in time (e.g., chemotherapy, radiotherapy) had a significant effect on
the tumor characteristics observed on the following MRI scans. The proposed segmentation
method with analysis of tumor boundary variability enables clinicians to have different estimates
of tumor characteristics (e.g., tumor volume, grow rate) and statistically define if there has been
significant change over time or not (e.g., analysis of variance), essential for subsequent treatment
planning.
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tumor volume, thickness of enhancing margin, necrosis proportion, etc.) and impact on
medical decision making to provide automated evaluations of tumor progression over
time (as shown in Fig. 7) to be able to better evaluate treatment effectiveness and
increase the radiologist’s efficiency at evaluating imaging studies.
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