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Abstract. In this paper, we consider the problem of fully automatic
brain tumor segmentation in multimodal magnetic resonance images. In
contrast to applying classification on entire volume data, which requires
heavy load of both computation and memory, we propose a two-stage
approach. We first normalize image intensity and segment the whole
tumor by utilizing the anatomy structure information. By dilating the
initial segmented tumor as the region of interest (ROI), we then employ
the random forest classifier on the voxels, which lie in the ROI, for
multi-class tumor segmentation. Followed by a novel pathology-guided
refinement, some mislabels of random forest can be corrected. We report
promising results obtained using BraT$S 2015 training dataset.

1 Introduction

Segmentation of brain tumor from medical images is of high interest in surgical
planning, treatment monitoring and is gaining popularity with the advance of
image guided surgery. The goal of segmentation is to delineate different tumor
structures, such as active tumorous core, necrosis and edema. Typically, this
process requires several hours of a clinician’s time to manually contour the tumor
structures. As manual processing is so labor intensive, automated approaches
are being sought. Automatic brain tumor segmentation is challenging due to the
large variation in appearance and shape across patients.

Most state-of-the-art methods sample the entire MRI volume data to build
classifier for multi-class tumor segmentation, which involve high demand of com-
putation and memory. In this paper, we propose a two-stage automatic segmenta-
tion method. We first segment the whole tumor by utilizing anatomy structure
information for data intensity normalization and tumor separation from non-
tumor tissues. Using this initially segmented tumor as a ROI, we then employ a
random forest classifier followed by a novel pathology based refinement to dis-
tinguish between different tumor structures. As we only apply classification on
the voxels within a ROI, our algorithm is more efficient in terms of both time
and memory. The workflow of proposed method is shown in Fig. 1.

We provide an empirical evaluation of our method on publicly available
BraT$S [11] 2015/2016 training set, and compare with the top performing algo-
rithms. The results demonstrate that the proposed method performs the best
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in segmentation of active tumor core, and comparably to the top performing
algorithms in the other tumor structures.

2 Method

In this section, we present the technical details of our proposed methods,
as shown in Fig. 1, including data normalization, initial segmentation, feature
extraction, voxel classification and refinement.
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Fig. 1. The proposed two-stage brain tumor segmentation workflow.
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2.1 Data Normalization

Intensity inhomogeneities appearing in MRI produce spatial intensity variations
of the same tissue over the image domain. To correct the bias field, we applied
the N4ITK approach [12]. However, there are large intensity variations across
brain tumor MRI data sets and intensity ranges are not standardized; bias cor-
rection is not enough to ensure that the intensity of a tissue type across different
subjects or even different scans of same subject lie in a similar scale. In [9],
a cerebrospinal fuid (CSF) normalization technique is proposed to normalize
each individual modality with the mean value of the CSF. However, just utiliz-
ing CSF information is not enough, the intensities of other structures need to
be aligned as well. To normalize the intensity of imaging data, we propose an
anatomy-structure-based method based on the assumption that the same struc-
tures of same modality (T1, Tlc, T2, Flair), such as white matter (WM), grey
matter (GM) or cerebrospinal fluid (CSF), should have similar intensity value
across different data sets. To be specific, we apply fuzzy C-means algorithm
(FCM) [2,5] to classify the input data into WM, GM and CSF. Then the nor-
malization is performed by aligning the median values of these WM, GM, and
CSF classes for each modality and do piecewise linear normalization in between.
Thus ensure these tissue types have similar intensity across the image datasets
of same modality. Figure 2 shows an example of intensity histograms before and
after data intensity normalization.
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Fig. 2. An example of data normalization results. Note that contrary to just applying
histogram matching, the proposed data normalization scheme provides similar intensity
scale across subjects and meanwhile keeps the specific structure of each subject’s data.

2.2 Initial Segmentation

Among different modalities of MRI, Flair and T2 provide better boundary con-
trast of the whole tumor. In [13], symmetric template difference is used as a
feature in their supervised segmentation framework. In our method, we also
explore symmetric information. By assuming tumor rarely happens completely
symmetrically, symmetric differences of Flair and T2 are calculated for locating
the initial seeds of tumors. After thresholding and union of the symmetric dif-
ferences of Flair and T2, we remove the connected components whose size is too
small, to reduce the false positive introduced by noise. By selecting the center of
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the initial seeds as the target seeds and a bounding box as the background seeds,
the GrowCut algorithm [14] is employed on the linear combination of Flair and
T2, a - Ipjgir + (1 — @) - Irg, for segmenting the whole tumor. An illustration of
initial segmentation is shown in Fig. 3.
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Fig. 3. An illustration of initial tumor segmentation.

2.3 Feature Extraction

The initial segmentation results are dilated to provide a ROI for further
multi-class segmentation. The features are extracted from the ROI. Our fea-
tures include voxel-wise and context-wise features. The voxel-wise features are
composed of appearance features, texture features and location features. The
context-wise features [7] aim to capture the neighborhood information.

— Appearance: Voxel’s intensity value of smoothed T1, Tlc, T2 and FLAIR.
Gaussian kernel is applied to suppress the data noise.

— Texture: Variance of T2 and Laplacian of Gaussian (LoG) on T2, which rep-
resent local inhomogeneity.

— Location: Initial segmentation results indicating the prior information about
the location of tumor.

— Context: Multiscale local mean intensity within a box of different size cen-
tered on each voxel to catch neighborhood information. Context features are
combined from T1lc and T2.

An illustration of extracted features is shown in Fig. 4.
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Fig. 4. An illustration of extracted features. The voxel-wise features are shown on the
left, and the context-wise features are shown on the right.



166 B. Song et al.

2.4 Voxel Classification

A random forest classifier [3] is used for multi-class classification of pixels into
five classes: (i) label 1 for necrosis (ii) label 2 for edema (iii) label 3 for non-
enhancing tumor, (iv) label 4 for enhancing tumor and (v) label 0 for all other
tissues. As illustrated in Fig. 5, each tree outputs a probability of tumor class.
The final label of each voxel is decided based on the majority voting of the
probabilities.
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Fig. 5. An illustration of voxel classification using random forest.

2.5 Refinement

Pixel misclassification error might occur in the random forest classification
results due to overlapping intensity ranges. For example, necrosis and non-
enhancing cores may be mislabeled as edema. We propose a pathology-guided
refinement scheme to correct the mislabels based on pathology rules, such as
edema is usually not inside the active cores, and non-enhancing cores often sur-
round active cores. Figure 6 shows example results before and after refinement.
In Fig.6(a), the output of random forest classification is shown in the middle,
the necrosis inside the active cores is incorrectly labeled as edema. The results
after refinement are shown on the right, these errors are corrected based on
the pathology-guided rules. In Fig. 6(b), middle shows the output of random for-
est classification. The non-enhancing core is mislabeled as edema. By identifying
core/non-core seeds from the random forest results, these errors can be corrected
as shown on the right.

3 Experimental Results

To evaluate the performance of our method, we show results on the BraTS 2015
training data set (identical to BraTS 2016 training data set) [11], which contains
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Fig. 6. Example of results before and after refinement. (a) Left: Ground truth, Middle:
Random forest output, necrosis inside the active cores is wrongly labeled as edema.
Right: Results after refinement. (b) Left: Ground truth, Middle: Random forest output,
non-enhancing core is mislabeled as edema. Right: Results after refinement.

220 high-grade and 54 low-grade glioma cases. The dataset include MRI with
four different sequences: T1, T1 after gadolinium enhancement (i.e., T1c), T2
and FLAIR. The data volumes are already skull-stripped and registered intra-
patient. The volumes include four tumor labels: necrosis, edema, non-enhancing
core and tumor active core. The result of our classification framework is a label at
every voxel in the 3D MRI volumes. The accuracy measures employed are Dice’s
coefficient and Hausdorff distance. Similar to the Virtual Skeleton Database
(VSD) [1] online evaluation system for BraTS, the metrics are evaluated on
three structures: the “whole” tumor (i.e., all four tumor structures), the tumor
“core” (i.e., all tumor structures except “edema”) and the “active” tumor (i.e.,
only the tumor active core). We perform a leave-one-out cross validation. Note
that we do not take high-grade or low-grade as a prior knowledge during training
and testing.

3.1 Qualitative Results

Examples of our tumor classification results are shown in Fig. 7. The results are
shown on one high grade tumor case and one low grade tumor case alone with
the corresponding T1, Tlc, T2 and FLAIR slices. In both cases, it can be seen
that visually our results are comparable to the ground truth labeling. The Dice
scores (%) for these two cases are: Case 1 (HGG) Necrosis 85.22, edema 91.45,
non-enhancing core 9.19 and tumor active core 94.79; Case 2 (LGG) Necrosis
80.17, edema 66.62, non-enhancing core 56.31 and tumor active core 65.90.
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Fig. 7. Top row: high grade tumor case. Bottom row: low grade tumor case. (a) T1
slice, (b) T1c slice, (c) T2 slice, (d) FLAIR slice, (e)ground truth labeling and (f) labels
produced by our algorithm (Necrosis in green, edema in yellow, non-enhancing core in
red and tumor active core in cyan). (Color figure online)

3.2 Quantitative Results

Table1 shows the average Dice and Hausdorff distance obtained using our
method on a total of 274 cases. The boxplots of Dice and Hausdorff distance
are shown in Fig. 8.

Table 1. Results obtained on BraT§S 2015 Training dataset, reporting average Dice
coefficient and Hausdorff distance. Dice scores for active tumor are calculated for high-
grade cases only.

Whole | Core | Active
Dice (%) 87.0 | 72.2 754
Hausdorff distance (mm) | 9.3 9.1 | 6.5

We compare our results on BraTS 2016 training data set with top performing
algorithms in testing phase of the BraT§S 2016 Challenge in Table 2. The results
show that the proposed method performs the best in segmentation of active
tumor core, and comparably to the top performing algorithms in the other tumor
structures.

Run time. The run time of training using 254 cases on a computer with
2.67G Hz GPU, 24 G memory is about 15min and run time of testing one case
is about 1 min.
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Fig. 8. Boxplots of Dice and Hausdorff distance on 274 cases. The blue triangle shows
the mean and red line shows the median. (Color figure online)

Table 2. Comparison of the average dice scores of proposed method and top performing
algorithms in BraTS 2016 Challenge. Note that not all the top performing algorithms
report their results on all the 274 cases.

Whole | Core | Active | Data

Chang [4] 87 81 |72 29 HGG, No LGG
Kamnitsas [8] | 89.6 76.3 | 72.4 | All 220 HGG, 54 LGG
Zeng [15] 89 |77 |65 176 HGG, 54 LGG

Le Folgoc [6] |82 73 |75 176 HGG, no LGG

Meier [10] 84.7 64.7 |70 MEDIAN on the
BRATS-2015 TESTING
database

Our 87.0 72.2 | 754 Whole+Core 220 HGG, 54
LGG. “Active” on HGG

2016 Testing Phase. We apply our model trained with BraTS 2016 training
data set on the BraTS 2016 testing data set (291 cases). The results on testing
data set are not as good as the ones we get on the training data set. One possible
reason is that the cases of the training data set are all of 1.5 T while testing data
set contains many 3T cases.

4 Conclusion

In this paper, we considered the problem of fully automatic multimodal brain
tumor segmentation. We proposed a two-stage approach for efficiency in terms
of both time and memory. We first utilized anatomy structure information to
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normalize data intensity and segment the whole tumor. Next, we employed the
random forest classifier on the voxels within the dilated initial segmentation
for multi-class tumor segmentation. A novel pathology-guided refinement was
applied to further improve accuracy. Promising results are shown on BraTS
2015 training dataset.
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