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Abstract. In this paper, a fully convolutional residual neural network
(FCR-NN) based on linear identity mappings is implemented for med-
ical image segmentation, employed here in the setting of brain tumors.
Inspired by deep residual networks which won the ImageNet ILSVRC
2015 classification challenge, the FCR-NN combines optimization gains
from residual identity mappings with a fully convolutional architecture
for image segmentation that efficiently accounts for both low- and high-
level image features. After training two separate networks, one for the
task of whole tumor segmentation and a second for tissue sub-region seg-
mentation, the serial FCR-NN architecture exceeds state-of-the art with
complete tumor, core tumor and enhancing tumor validation Dice scores
of 0.87, 0.81 and 0.72 respectively. Despite each FCR-NN comprising a
complex 22 layer architecture, the fully convolutional design allows for
complete segmentation of a tumor volume within 2 s.

1 Introduction

In recent years, convolutional neural networks (CNN) have become the tech-
nique of choice for state-of-the-art implementations in various image classifica-
tion tasks [1–5]. In this study a novel fully convolutional residual neural network
(FCR-NN) architecture is proposed for medical image segmentation synthesizing
several recently described techniques including: (1) deep residual learning; (2)
multi-resolution recursive topology; and (3) fully convolutional neural network
architecture.

1.1 Deep Residual Learning

Deep residual learning [4] posits that any traditional neural network layer may be
reformulated as a residual function by means of a linear transformation identity
mapping with respect to the layer input:

xL = Wxl + f(xl) (1)

Here the output layer, xL, is the sum of xl, the input layer, and f(xl), a residual
change from the original input represented by an arbitrary sequence of non-linear
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functions. The projection matrix, W , is an optional term to match input and
output layer dimensions. By preserving a linear relationship between the input
and output layers, residual neural networks are able to stabilize gradients dur-
ing backpropagation, leading to improved optimization and facilitating greater
network depth. Networks based on this residual architecture have achieved top
results in the ImageNet ILSVRC 2015 international challenge.

Image Segmentation Adaptation. In this study we hypothesize that the image
segmentation problem can be similarly reformulated as a residual function, such
that the final classification labels can be derived from a simple linear combination
between the original input image, xl, and some arbitrary residual, f(xl). In
addition to the advantages for optimization and network depth described above,
this architecture benefits from using the original input image directly in the final
classification task. This latter proposition may be counterintuitive at first; in fact
a widely help assumption is that the raw image inputs contain too much inherent
noise and variation to be useful directly for classification. However unique to
medical image segmentation is that after accounting for high-level contextual
anatomic cues, final segmentation is heavily influenced by low-level features of
the original image, namely the signal intensity of any given voxel. For this reason
we hypothesize that a deep residual architecture may be optimally suited for the
medical image segmentation task.

1.2 Residual Functions for Multi-resolution Features

It is well-established that for the task of object localization a synthesis of con-
textual cues at multiple spatial resolutions is required for optimal performance
[3,6,7]. For neural networks this has been implemented by combining feature
maps from various layers, with the convolutional transpose operation used to
upsample high-order deep layer activations to match those of more superficial
layers [8]. Ronneberger et al. [9] further elaborated on this technique by propos-
ing a symmetric contracting and expanding topology that efficiently combines
low- and high-level features.

This study reformulates the latter strategy in the form of residual functions.
Specifically, from Eq. (1) above, an explicit definition is made such that the resid-
ual function, fl, represents some arbitrary nonlinear transformation performed
on the original image, xl, that captures its higher-level features and which is
subsequently combined with its original lower-level properties. A more precise
formulation of the higher-level feature map, xl+1, is given by:

xl+1 = σl(xl) (2)

Here σl(xl) represents a sequence of convolutions and nonlinear activation func-
tions which act to transform the original image, xl, to its higher-level feature
map, xl+1. As a result, the original function fl in Eq. (1) which was defined in
the previous paragraph as the residua arising from the influence of higher-level
features can be written as:
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fl(xl) = xl+1 + fl+1(xl+1) = σl(xl) + fl+1(σl(xl)) (3)

Here fl+1 is a new residual function which like its predecessor represents an
incremental change arising from the influence of even higher-level features from
the first feature map xl+1. Expanding Eq. (1) recursively allows us to formu-
late the neural network for image segmentation as a simple series of residual
functions, each term of which represents the additional incremental change of
gradually higher-level spatial features:

xL = Wxl + fl(xl) = Wxl + σl(xl) + σl+1(σl(xl)) + ... (4)

The formulations as described by Eqs. (3) and (4) are visually demonstrated
in Fig. 1.

Fig. 1. Recursive series of residual functions for image segmentation.

1.3 Fully Convolutional Neural Networks

Originally introduced by Long et al. [8] fully convolutional neural networks are
implemented by a series of upsampling convolutional transpose operators per-
formed on the deepest network layers, resulting in a final dense classification
matrix equal in dimension to the original image size for each forward pass. In
contradistinction to the typical sliding window CNN approach for image seg-
mentation [10–12], a fully convolutional architecture is highly efficient. In the
proposed FCR-NN where an entire axial MR slice is used as the input image,
the number of required forward passes for classification of each patient is equal
only to the number of slices in the MR volume, a task that can be achieved in
less than a few seconds on a GPU optimized workstation.

Several additional less apparent benefits from fully convolutional neural
networks include: (1) increased inherent regularization; and (2) influence of
per voxel classification from a larger field-of-view. The first effect relating to
increased regularization arises from observation that the loss function for each
forward/backward pass is derived from contributions at each voxel within the
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input image. In this specific example with an input image size of 240× 240 vox-
els, the loss function is thus driven by 2402 derivatives per slice. Furthermore
the ratio of different tissue classes is reflected accurately by the conglomerate of
axial slices in each mini-batch, and thus there is no requirement for multiphase
training to account for class imbalances as is typically the case for non-fully
convolutional designs [10].

Secondly, compared to a sliding scale CNN design whereby classification is
limited to a small input patch, a fully convolutional network allows voxel-wise
prediction to be influenced by a larger field-of-view proportional to the network
depth. This effect is further complemented by the fact that residual networks
allow for relatively deep architectures. In the proposed FCR-NN, convolution of
the deepest 15× 15 feature map with a series of three 3× 3 kernels results in an
effective receptive field that covers nearly one quarter (7× 7) of the feature map.

2 Related Work

Despite significant research over the past several decades, brain tumor segmen-
tation remains a challenging task. Common strategies cited in the literature
include: edge-based methods including active contours [13]; region-based meth-
ods [14]; classification or clustering methods with constraints based on atlases
[15,16], deformable models [17] or neighborhood regularization [18]; or hybrid
generative-discriminative frameworks [19–24]. However these traditional meth-
ods are limited to a priori assumptions about a set of rules or features that best
model the segmentation mask.

Convolutional neural networks are an emerging technique in computer vision
increasingly recognized as the state-of-the-art approach for various image recog-
nition tasks [25]. The power of neural networks arises from its unique capacity
for unsupervised feature extraction, independently learning a high-order repre-
sentation of the data that best approximates any given problem. In recent years,
CNN-based algorithms have been adopted for various medical image segmenta-
tion tasks [1–5,9]. In the BRaTS 2015 challenge, the 2nd [26] and 4th [10] ranked
submissions were based on CNN architectures.

3 Network Architecture

A fully convolutional residual neural network (FCR-NN) is proposed for medical
image segmentation. The network is composed by a series of recursive residual
identity mapping blocks, the prototype of which is shown in Fig. 1.

The network comprises a total of 22 layers (18 regular convolutional kernels
and 4 upsampling convolutional transpose kernels) and 661,700 parameters. The
entire network architecture for a given single FCR-NN is diagrammed in Fig. 2.
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Fig. 2. Residual identity mapping blocks for image segmentation.

Fig. 3. Fully convolutional residual neural network (FCR-NN) architecture for image
segmentation. Abbreviations: Conv = 3× 3 convolution; Conv(s2) = 3× 3 convolution
with stride 2 (downsample); Deconv = 2× 2 deconvolution (upsample); BN = batch
normalization; ReLU = rectified linear unit

3.1 Fully Convolutional Residual Neural Networks

Convolutional Neural Networks. CNNs are an adaptation of the traditional arti-
ficial neural network architecture whereby stacks of 4D convolutional kernels and
nonlinear activation functions act to transform a multidimensional input image
into progressively higher-order feature representations [27]. The proposed CNN
is implemented completely by 3× 3 convolutional kernels to prevent overfitting
as described by [2]. No pooling layers are used; instead downsampling is imple-
mented simply by means of a 3× 3 convolutional kernel with stride length of 2
to decrease the feature maps by 75% in size. All nonlinear functions are modeled
by the rectified linear unit (ReLU) [28]. Batch normalization is used between the
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convolutional and ReLU layers to limit drift of layer activations during train-
ing [29]. In successively deeper layers the number of feature channels gradually
increases from 16, 32, 64, 128 and 256, reflecting increasing representational
complexity.

Deconvolutions. To upsample each high-level feature map, a deconvolutional
or convolutional transpose operator is implemented by means of a 2× 2 kernel
with a stride length of 2, resulting in an increase in feature map by 75%. At
the same time, the number of feature channels is reduced by 50% to match the
corresponding activation layer in the mirror image pathway (Figs. 2 and 3).

Residual Connections. As shown in Fig. 2 residual identity mappings are imple-
mented by means of a channel-wise addition operation between an input and its
corresponding deconvoluted feature map with the same activation layer size. The
addition operation is performed after batch normalization of the deconvoluted
output but before the nonlinear ReLU activation as suggested by [4].

3.2 Serial Architecture

The task of brain tumor segmentation as defined in the BRATS challenge can be
divided into two corresponding goals. The first task is in differentiating between
normal and abnormal brain tissue (whole tumor segmentation). Subsequently,
using this result as an input, the second task is differentiate between various
brain tumor tissue types. This process is diagrammed in Fig. 4.

Fig. 4. Implementation of serial fully convolutional residual neural networks (FCR-NN)
for the two-part segmentation task.

As shown in the figure, these tasks are learned independently by two separate
FCR-NNs. During test time, the segmentation mask generated from the first
FCR-NN is dilated by 10 voxels; all voxels outside of this mask are set to 0
and the resulting masked image is used as an input for the second FCR-NN. By
separating out these tasks explicitly, the two separate neural networks can be
independently optimized for the highest performance for each respective goal.

3.3 Training Details

Image Preprocessing. Each MR volume was normalized simply to a mean signal
intensity of 0.5 and standard deviation of 1/6 such that the range [0, 1] con-
tains three standard deviations in each direction from the mean. No other image
preprocessing was necessary.
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Data Augmentation. Given the relatively limited training dataset available for
the BRATS 2016 challenge, and more generally in the realm of medical imag-
ing where annotated datasets are rare, judicious use of data augmentation is
critical for successful CNN implementation. In this study two primary forms
of data augmentation are employed. First, a separate cohort of IRB-approved
patients at our institution with annotations by a board-certified radiologist were
included to increase the breadth of data available for training. Importantly, these
included a large number of patients with suboptimal brain extraction and/or
significant imaging artifact. In addition, this institutional dataset was predomi-
nantly acquired at 3-Tesla MR imaging which, although yields higher sensitivity
to pathology, also results in increased image noise and decreased contrast resolu-
tion particularly on T2-FLAIR sequences. It is important to point out that upon
visual inspection, the test set for the 2016 BRaTS challenge compromised of a
disproportionate of 3-Tesla MR imaging relative to the training data available
online.

The second type of data augmentation employed by this study involves a
number of real-time modifications to the source images at the time of training.
Specifically, 50% of all images in a mini-batch were modified randomly by means
of: (1) addition across all voxels of a scalar between [−0.1, 0.1]; (2) rotation of
the image at an angle between 45◦ to 45◦; (3) addition of a bias field gradient
of strength between [0, 0.4] at a random angle between 0◦ and 360◦.

Training Parameters. Training is implemented using standard stochastic gradi-
ent descent technique with Nesterov momentum [30]. Parameters are initialized
using the heuristic described by He et al. [31]. L2 regularization is implemented
to prevent over-fitting of data by limiting the squared magnitude of the kernel
weights. To account for training dynamics, the learning rate is annealed and
the mini-batch size is increased whenever training loss plateaus. Furthermore a
normalized gradient algorithm is employed to allow for locally adaptive learning
rates that adjust according to changes in the input signal [32].

Implementation. Software code for this study was written in Matlab (R2016a),
and benefited greatly from the MatConvNet toolbox [33]. Experiments were
performed on a GPU-optimized workstation with a single NVIDIA GeForce GTX
Titan X (12 GB). The combined software and hardware configurations allowed
for test time (forward pass only) classification of approximately 155.1 images
per second. An entire brain volume with 151 axial slices could be classified in
approximately 1.94 s (two cumulative forward passes for serial FCR-NNs).

4 Experiments and Results

All 274 cases of gliomas (220 high-grade gliomas; 54 low-grade gliomas) in the
BRaTS 2016 training set were included in this study. An additional 150 insti-
tutional cases with high-grade gliomas were included to augment the available
training data, all acquired on 3T MR scanners. A total of 186 cases in the
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BRaTS 2016 database (132/220 high-grade gliomas; 54/54 low-grade gliomas)
and 84 institutional cases represented treatment naive (preoperative) tumors.
The remaining cases were obtained at various postoperative time points.

Eighty percent of the cases (n = 339) were randomly assigned to the training
data set, with the remaining 20% of the cases (n = 85) used as an independent
validation set. All four channels (FLAIR, T1-precontrast, T1-postcontrast, T2)
across an entire axial cross-sectional image slice (240× 240× 4 voxels) were used
as inputs into the FCR-NN.

Dice scores and Hausdorff distances (mean and range) for the validation set
data are reported in Table 1. The results are competitive with historic trends,
and finished overall tied for the top two in the BRaTS 2016 challenge.

Table 1. Validation set dice score and Hausdorff distances.

Complete tumor Core tumor Enhancing tumor

Dice 0.89(0.76–0.95) 0.83(0.68–0.91) 0.78(0.41–0.89)

Hausdorff(mm) 8.0(3.0–27) 10.0(4.2–27) 5.9(3.3–21)

Acknowledging limitations in direct comparison with the top four perform-
ing algorithms in the BRaTS 2015 challenge due to differences in validation
data cited in published results (2013 BRaTS training set in [10,34]; partial 2015
BRaTS training set in [23]; full 2015 BRaTS training set in [26] which is identical
to the 2016 BRaTS training set used in this study), several general patterns can
nonetheless be seen. With regards to complete tumor segmentation, the FCR-
NN Dice of 0.89 is only marginally better than the previous top four algorithms
(0.86–0.88). However given that expert human rater agreement for complete
tumor segmentation is reported to be between 0.85–0.91 [35] this metric is likely
approaching a plateau for theoretical upper limits of accuracy. By contrast, the
much more visually challenging task of separating tumor subcomponents remains
to be fully solved. In this case the FCR-NN approach yields a more significant
improvement both in Dice score for core tumor (0.83 vs. 0.73–0.79 for previous
top performing algorithms) and enhancing tumor (0.78 vs. 0.59–0.73). This is
likely in part secondary to a serial architecture which dedicates an entire sep-
arate CNN to identification of tumor subcomponents (thus isolating the task
from a second CNN that is responsible just for identifying tumor margins).

5 Conclusion

The proposed serial FCR-NN architecture implemented here in the setting of
brain tumors is a robust method for medical image segmentation incorporating
contextual cues from multiple spatial resolutions. The residual linear transforma-
tion identity mappings facilitate optimization and allow for direct contributions
from the original input images for final classification. The fully convolutional
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architecture results in an efficient classifier which can segment an entire tumor
volume in less than 3 s with state-of-the-art accuracy.
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for this research.
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