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Preface

This volume contains articles from the BrainLesion Workshop as well as the Brain
Tumor Segmentation (BRATS), the Ischemic Stroke Lesion Segmentation (ISLES),
and Mild Traumatic Brain Injury Outcome Prediction (mTOP) challenges, which were
held jointly at the Medical Image Computing for Computer-Assisted Intervention
(MICCAI) Conference on October 17, 2016, in Athens, Greece.

The presented works are aimed at computer scientific and clinical researchers
working on glioma, multiple sclerosis (MS), cerebral stroke and brain trauma injuries.
This compilation does not claim to provide a comprehensive understanding from all
points of view; however, the authors present their latest advances in segmentation,
disease prognosis, and other applications to the clinical context.

The volume is divided into four parts: The first part comprises the submissions to the
BrainLes Workshop, the second contains a selection of papers regarding methods
presented at the BRATS challenge, followed by a selection of papers on methods
presented at the ISLES challenge, and finally a selection of papers on methods pre-
sented at the mTOP challenge.

The aim of the first part is to provide an overview of new advances in medical image
analysis in all of the aforementioned brain pathologies. This section brings together
researchers from the medical image analysis domain, neurologists, and radiologists
working on at least one of these diseases. The aim is to consider neuroimaging
biomarkers used for one disease applied to the other diseases. This session did not have
a specific dataset to be used.

The second part focuses on the papers from the BRATS challenge. In order to gauge
the current state of the art in automated brain tumor segmentation and compare the
different methods, a large dataset of magnetic resonance (MR) images of brain tumors
was made available. The participants at the challenge compared the results obtained
with their methods against manual segmentations.

The third part contains descriptions of the algorithms participating in ISLES, which
aimed to provide a fair and direct comparison of methods for ischemic stroke lesion
segmentation from multispectral MR images. A public dataset of diverse ischemic
stroke cases and a suitable automatic evaluation procedure was made available for the
following two tasks: sub-acute ischemic stroke lesion segmentation and acute stroke
outcome/penumbra estimation.

The fourth part comprises approaches for semi-supervised outcome prediction after
mild traumatic brain injury, submitted to the mTOP challenge. These aim to use early,
multi-modal brain scans to classify subjects as healthy individuals or patients with
different outcomes (assessed via the Glasgow outcome scale). The provided dataset
included both structural and diffusional MR images.



We heartily hope that this volume will promote further exiting research on brain
lesions.

February 2017 Alessandro Crimi
Oskar Maier

Bjoern Menze
Mauricio Reyes
Stefan Winzeck
Heinz Handels
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Fully Automated Patch-Based
Image Restoration:

Application to Pathology Inpainting

Ferran Prados1,2(B), M. Jorge Cardoso1,4, Niamh Cawley2,
Baris Kanber1,2, Olga Ciccarelli2, Claudia A.M. Gandini Wheeler-Kingshott2,3,

and Sébastien Ourselin1,4

1 Translational Imaging Group, Centre for Medical Image Computing (CMIC),
University College London, London WC1E 6BT, UK

f.carrasco@ucl.ac.uk
2 NMR Research Unit, Queen Square MS Centre,

UCL Institute of Neurology, London WC1B 5EH, UK
3 Brain MRI 3T Centre, C. Mondino National Neurological Institute, Pavia, Italy

4 Dementia Research Centre, UCL Institute of Neurology, London WC1N 3BG, UK

Abstract. Pathology can have an important impact on MRI analysis.
Specifically, white matter hyper-intensities, tumours, infarcts, etc., can
influence the results of various image analysis techniques such as segmen-
tation and registration. Several algorithms have been proposed for image
inpainting and restoration, mainly in the context of Multiple Sclerosis
lesions. These techniques commonly rely on a set of manually segmented
pathological regions for inpainting. Rather than relying on prior segmen-
tations for image restoration, we present a combined segmentation and
inpainting algorithm for multimodal images. The proposed method is
based on an iterative collaboration between two patch-based techniques,
PatchMatch and Non-Local Means, where the former is used to estimate
the most probable location of the pathological outliers and the latter to
gradually fill the segmented areas with the most plausible multimodal
texture. We demonstrate that the proposed method is able to automat-
ically restore multimodal intensities in pathological regions within the
context of Multiple Sclerosis.

1 Introduction

Abnormal image appearance due to pathological processes impacts the efficacy of
image analysis. Several segmentation techniques have been developed recently for
the detection of pathological outliers such as Multiple Sclerosis (MS) lesions [1],
brain tumours [2], infarcts [3], etc. In all these scenarios, pathology significantly
impacts image analysis procedures such as segmentation or registration. For
example, from an image processing perspective, MS lesions influence tissue seg-
mentation procedures, resulting in the misclassification of gray matter and white
matter. The longitudinal differences in size and shape of pathology also hinders
the registration between time points.
c© Springer International Publishing AG 2016
A. Crimi et al. (Eds.): BrainLes 2016, LNCS 10154, pp. 3–15, 2016.
DOI: 10.1007/978-3-319-55524-9 1
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To reduce the impact of these anatomical abnormalities, inpainting algo-
rithms have been proposed, mainly in MS [4,5], to reduce the effect of lesions
over the subsequent processing steps. While most inpainting methods rely on
a single modality (commonly T1 images) [6–8] and fill the pathological region
according to some regional statistic or intensity distribution, recent approaches
have explored patch-based methodologies [9–12] for inpainting. This class of
patch-based methodologies preserves the structural characteristics of the cor-
rected image.

The original PatchMatch algorithm was designed to look for similarities
between two 2D images [13]. Three different applications of the PatchMatch
algorithm to MR images have been recently proposed. First, Shi et al. [14] used
it for the estimation of high-resolution cardiac MR images from single short-axis
cardiac MR image stacks. Secondly, Ta et al. [15,16] presented an optimised ver-
sion of the PatchMatch algorithm, named Optimized PatchMatch Label fusion
(OPAL), producing accurate and fast segmentation of the hippocampus. This
method extended the concept to 3D data which, when combined with a library
of associated segmented images, was able to speed up the process of multi-atlas
label fusion. Finally, Prados et al. [17] proposed a generalization of OPAL for
using with multimodal data and applied to MS lesion detection.

Traditionally, segmentation and inpainting techniques have been designed as
two independent steps. First, the pathological region of interest (ROI) is seg-
mented, and then this segmentation is used to inpaint the image without any
feedback loop. This lack of feedback between the inpainting and segmentation
processes is deleterious - we note that an imperfect segmentation results in poor
inpainting, but automatically segmenting a poorly inpainted image is easier,
from a model fit perspective, than segmenting the original pathological image.
Recently, Xu et al. [18] proposed an iterative approach for simultaneous PET
image denoising and segmentation, despite these two tasks are considered inde-
pedent. The interaction between the two techniques significantly improved the
performance and the results.

In this work, we propose to use the non-local means and PatchMatch algo-
rithms for a fully automated iterative multi-modal image inpainting. We apply
this algorithm within the context of MS lesion removal. The proposed algo-
rithm does not require any prior input information to generate a pathology-free
image and associated lesion localisation. More specifically, the method is based
on a collaborative algorithm between the multimodal version of PatchMatch [17]
for lesion segmentation and an improved version of a patch-based method [10]
for image inpainting. The main contribution of this work is the first prior-free,
regarding the target image, fully automated image restoration algorithm for
medical data.

2 Method

The proposed method iterates over two main steps: (1) estimates the pathological
ROI using PatchMatch, (2) restores the detected ROI with the most plausible
multi-contrast values using the non-local means inpainting algorithm.
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2.1 Optimized Multi-contrast PatchMatch

The original PatchMatch algorithm was designed to look for similarities between
two 2D patches within the same image [13]. Later, OPAL extended patch cor-
respondences between a target 3D image and reference library of different 3D
training templates [15,16]. Finally, OPAL had a 4D version to match patches
between multiple image modalities at the same time [17]. As in the reference [17],
the multi-modal extension of the similarity term in OPAL is the l2-norm over
the patches of the different modalities and the lesion probabilities are computed
using an adaptive threshold value. Here, the PatchMatch algorithm is used to
locate pathological regions through the use of a template library comprised of a
series of multimodal images with manually segmented MS lesions. By matching
patches between the target multimodal image and the multimodal images in the
template library, PatchMatch can provide a rough estimate of the location of
the lesions in the target image [17].

As the PatchMatch output is non-binary, we apply an adaptive threshold
value to binarise the probabilistic mask obtained by the PatchMatch algo-
rithm [17].

This section introduced an algorithm to localise pathological ROIs. These
ROIs can then be used as the target for inpainting, presented in the next section.

2.2 Non-local Inpainting Extension

Most current lesion inpainting algorithms require accurate segmentations for
ROI inpainting. Compared to other published methods, the non-local means
inpainting algorithm presented by Prados et al. [10], and extended in Prados
et al. [12], has the advantage of preserving the anatomical brain structures when
lesions are neighbouring cortical grey matter and cerebrospinal fluid, making
it robust to lesion over-segmentation. This method non-locally searches for the
patches that can best inpaint the pathological ROI, only according to their
intensity similarity. The robustness to over-segmentation makes this method
ideal to use in combination with the rough segmentations obtained in Sect. 2.1
for pathology inpainting.

In practice, the inpainting method works replacing the voxel intensity with
the intensity of the center voxel of the closest matching patch, and that a convo-
lution operation is performed afterwards. However, a few problems with [10] still
need to be addressed. Ventricular expansion can occur (see [10]) when limited
anatomical structure and patch support exist in the pathological ROI neighbour-
hood. Also, when lesions are bigger than the patch size, the use of a fixed patch
size introduces artefacts in the inpainting results.

To address these limitations, as in Prados et al. [12], we first propose to
dynamically change the patch size. More specifically, for a voxel r inside the
lesion L, the Euclidean distance E to the closest voxel b in the boundary B of
the pathological ROI is used to determine the patch size. Formally, the patch
size w at location r, denoted w(r), is defined as



6 F. Prados et al.

w(r) = arg max
∀b∈B

(2 × E(r, b) + 1) with E(r, b) = arg min
b∈B∧b∈X∧b�∈L

||r − b||2 (1)

where X is an inclusion region defined in Sect. 2.3.
Prados et al. [10] also proposes to solve the inpainting process layer by layer,

from the outside to the inside of the patch, resulting in potential inpainting
artefacts. To mitigate this problem, rather than using the full patch, we propose
to use only non-lesion voxels (i.e. voxels �∈ L) to estimate the patch similarity.
Note that we can guarantee that the patch similarity will always contain non-
lesion voxels to estimate patch similarity due to the dynamic patch size.

Lastly, to increase the robustness in the inpainting patch search, we have
also extended the non-local patch similarity to multimodal data as in Sect. 2.1,
allowing the algorithm to jointly fill multiple image modalities at the same time.
This improvement not only allows for better and more stable matches, but also
makes the inpainting process consistent between multiple image modalities.

2.3 Iterative Algorithm

The proposed algorithm starts with a first PatchMatch. Using the pathologi-
cal image, this step computes the probability for each voxel to be part of the
pathological ROI. Any voxel with probability above λ is included in the current
estimate of the pathological ROI. The current estimate of the pathological ROI
is used as input for the inpainting method. The inpainted image is then used as
the input for the PatchMatch pathology localisation algorithm. These two steps
will be repeated until no voxels above λ are found after PatchMatch or until no
changes are found between the pathological ROIs at two subsequent iterations.

Two minor improvements are also introduced at this stage: First, we con-
strain the inpainting method search through the use of a brain mask X . This
brain mask is estimated iteratively through the same process as the one used to
localise the pathological ROI. In order to do so, brain segmentations are added
to the template library containing the manual pathological ROIs. These brain
segmentations are propagated jointly with the pathological ROIs during the first
PatchMatch process. Here, the inclusion region X is defined as any voxel with
probability above 0.01 to be part of the brain region. As a second improvement,
the mask used for inpainting is morphologically dilated at every iteration to
avoid inpainting problems due to pathological ROI undersegmentation.

3 Validation

Parameter tuning: All our experiments used the following parameters: Patch-
Match was used with the parameters suggested by Ta et al. [15]; the patch size
was 5 × 5 × 5, the number of inner iterations 5, and, the number of threads and
the number of best-matches, both to 10 [15,17]; the inpainting technique used as
the minimum required percentage of the patch size α = 0.1, for the cross-shape
kernel K = 0.4 [10,12], the patch size w was adaptively set up as described
above, and the size of the search region Ω was calculated as W = 4 × w [10,12];



A Fully Automated Image Restoration Technique 7

finally, the threshold value for the inpainting ROI was empirically set to λ = 0.1
as a pilot experiment.

Dataset: Data comprised of 25 patients with secondary progressive Multiple
Sclerosis (SPMS) (mean age = 52 ± 9.75 years), with a median expanded disabil-
ity status scale (EDSS) of 6 (range of 4−6.5) and 12 healthy controls (mean age
= 46± 11.7 years). Participants underwent axial PD/T2 image (1× 1× 3 mm3),
and a sagittal 3D T1 (1 × 1 × 1 mm3), all on a 3 T scanner. One rater manually
outlined T2-hyperintense lesions in all SPMS participants on the PD/T2 images
using JIM v.6 (http://www.xinapse.com/).

Preprocessing: All the images were preprocessed through the following
pipeline: correction of inhomogeneities using a robust version of the N3 algo-
rithm [19], denoising using the non-local means filter [20], and linear registration
to the MNI template (1 × 1 × 1 mm3).

Template library: Two template libraries were built. The first library was
composed of 12 healthy individuals with no lesions and 25 patients with SPMS
with associated manual segmentations of the visible MS lesions. Each subject had
T1, PD and T2 images. The PD/T2 images and the associated segmentations
were linearly registered to the T1 images using a pseudo-T1 contrast generated
from the subtraction of the scanner-aligned PD and T2 images. In order to
increase the size of the library, all the scans were left-right flipped, resulting in
a template library with 74 datasets. For all of them, brain mask segmentations
were obtained using GIF [21]. These template library masks were then used
by the PatchMatch algorithm to define X described in Sect. 2.3. The second
library was composed of 12 healthy individuals with synthetic lesions with their
correspondent left-right flipped images, resulting in a template library with 24
datasets.

Generating synthetic lesions for validation: With the aim of comparing
the performance of the algorithm with previous semi-automated approaches we
generated synthetic MS lesions for the healthy control data. MS lesions were gen-
erated as follows: First, for each control subject, the white-matter (WM), grey-
matter (GM) and cerebrospinal fluid (CSF) brain tissues were extracted using
GIF [21]. Second, the T1 BrainWeb MS model (http://www.bic.mni.mcgill.ca/
brainweb/) was registered to each of the healthy controls using a sequence of
rigid, affine and then non-rigid registration steps. Using the same transformation,
the binarised “severe” BrainWeb lesion mask was resampled to the respective
healthy control data. The propagated lesion mask was intersected with the brain
mask to ensure that all lesions were within the brain boundary. Gaussian noise
was added to the lesion segmentation. This Gaussian noise corrupted image was
then multiplied by 0.5, 2.5 and 2.0 to obtain T1, T2 and PD intensity profiles
respectively. Finally, the T1, T2 and PD images of each subject were multiplied
by their respective Gaussian corrupted and intensity scaled lesion mask only for
voxels within the lesion region, thus resulting in MS lesion-like intensities for all
modalities.

http://www.xinapse.com/
http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/
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Methodological evaluation: The proposed fully automatic method, which
jointly estimates the location of the pathological regions and performs the
inpainting, was compared to the current state-of-the-art that consists in deli-
nate the lesions manually by an expert and fill them automatically using an
inpainting method [10]. With this comparison we would demonstrate that the
proposed fully automated method can perform as well as the current state-of-
the-art without the need for a manual lesion segmentation.

The healthy data with synthetic lesions was used for validation purposes.
The lesion mask used to generate the synthetic lesions was used as input for the
state-of-the-art [10] method used here for comparison. The original data without
synthetic lesions was used as the ground-truth for the inpainting process.

To evaluate the performance of each method, we used the same estimation
strategy as proposed in [7]. More specifically, the original healthy data and the
inpainted data using both the proposed and state-of-the-art methods were seg-
mented into WM/GM/CSF. The mean absolute volume error (MAE) was esti-
mated per tissue and for the brain parenchyma fraction (BPF), demonstrating
the bias and variance of the tissue volumes between the inpainted images and
the original healthy data and their impact in a whole-brain atrophy measure.
The MAE is defined as MAE = 100 × |VT − V0|/V0, where V0 is the tissue vol-
ume for the original healthy data without synthetic lesions and VT is the volume
obtained from segmenting the inpainted data using the GIF algorithm [21]. To
further assess the performance the dice score coefficient (DSC) between the mask
of the corrected area and the original mask, and the mean squared error (MSE),
between the inpainted and original intensities, was calculated to assess the error
in the restoration process.

Finally, in order to remove possible bias, a leave one out strategy was used for
the proposed method, i.e. when inpainting an image, this image and its left-right
flipped version were removed from the template library that we were using.

4 Results

Table 1 shows the results of comparing the state of the art methodology (man-
ual segmentation and inpaint) with our proposed fully automated method using
the template library composed of datasets with synthetic lesions. The proposed
method is able to find automatically the lesions and inpaint them in an accu-
rate way without affecting tissue volumes, particularly BPF measures are not
significantly different and have a high correlation using the proposed technique
(p < 0.05 and correlation 0.99). Despite the performance of the method, it is
affected by the gaussian noise of the synthetic lesions, which obscures similari-
ties between patches. This effect is avoided when the SPMS template library is
used with real data (see Figs. 1, 2, 3 and 4). Finally, Figs. 1, 2, 3 and 4 show the
automated image inpainting results on different image modalities over an SPMS
patient. After a set of iterations, the input images with MS lesions are success-
fully restored to resemble those of a healthy brain preserving the boundaries and
restoring the original intensities of the anatomical structures.
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Table 1. Evaluation results, with the mean (std) and paired t-test. First row, state-
of-the-art technique based on manually delineate the lesions and then inpaint them.
Second row, proposed fully automatic technique. Results obtained for the 12 controls
with synthetic lesions using a template library composed of subjects with synthetic
lesions applying a leave one out strategy.

DSC MSE ×10−5 MAE (GM) MAE (WM) MAE (CSF) MAE (BPF)

Man. seg.

+ inpaint

- 3.0 (2.0) 0.1% (0.04) 0.1% (0.07) 0.1% (0.07) 0.0% (0.03)

Prop. aut.

approach

0.91 (0.02) 3.7 (4.8)

p = 0.28

0.1% (0.08)

p = 0.36

0.1% (0.08)

p < 0.05

0.2% (0.12)

p < 0.05

0.1% (0.04)

p < 0.05

detniapnIlanigirO

Fig. 1. Automated image inpainting results on different modalities of an SPMS patient.
T1, T2 and PD images are shown on the first, second and third rows respectively,
fourth row shows manual lesion segmentation (left/red) and automatic lesion detection
(right/yellow). For more examples, see additional material. (Color figure online)

5 Discussion and Conclusion

In this paper, we have proposed a fully automated image inpainting method. We
demonstrated that the proposed method is able to jointly restore the multimodal
intensities in pathological regions in the context of Multiple Sclerosis.

The presented method does not require any prior information or manual
segmentation of pathological regions for the target input image. It exploits the
synergies between two patch-based methodologies to automatically inpaint the
pathological regions of an image. The PatchMatch algorithm provides an accu-
rate enough pathology localisation (see [17]), while the inpainting method, which
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is robust to lesion over-segmentation, inpaints the pathological ROI with the
most plausible intensity pattern, without using a class-specific intensity model.

In the proposed algorithm, the lesions which are not inpainted after the first
iteration are commonly detected in subsequent PatchMatch iterations. When
two or more lesions are close, the PatchMatch random search tends to detect
first the lesions most similar to the database library. Thus, this iterative update
and feedback loop improves the robustness of the inpainting process by providing
iteratively refined pathological regions. Moreover, in our 12 healthy individuals
no lesions have been detected in the first iteration.

While the performance of the proposed methodology will depend on the
size and quality of the template library, PatchMatch can find multiple matching
patches even in relatively small template libraries. A limitation of this work is the
need for similar acquisition parameters between the template library and target
data due to the use of the l2-norm in the patch matching process. Nonetheless,
histogram matching techniques can be used to ameliorate this problem when the
imaging data is significantly different. Future work will explore the application
of the proposed method to different pathologies, extension to multi-centre data
and model parameter and template library optimisation. Also, it could be used
for lesion detection using a technique based on subtraction and using as baseline
the inpainted image and as a follow-up the original image.
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Abstract. One of the main challenges facing members of the medical imaging
community is the lack of real clinical cases and ground truth datasets with which
to validate new registration, segmentation, and other image processing algo‐
rithms. In this work we present a collection of data from tumour patients acquired
at the Montreal Neurological Institute and Hospital that will be released as a
publicly available dataset to the image processing community. The database is
comprised of 9 patient data sets, in its initial release, that consist of a preoperative
and postoperative, gadolinium enhanced T1w MRI, pre- and post- resection
tracked intra-operative ultrasound slices and volumes, expert tumour segmenta‐
tions following the BRATS benchmark, and intra-operative ultrasound with/and
MRI registration validation target points. This database extends the already
widely used BITE database by improving the quality of registration validation
and the variety of data being made available. By including addition features such
as expert tumour segmentations, the database will appeal to a broader spectrum
of image processing researchers and be useful for validating a wider range of
techniques for image-guided neurosurgery.

Keywords: Database · Validation · Medical imaging · Intra-operative ultrasound

1 Introduction

Within the medical image processing community, one of the greatest challenges asso‐
ciated with the development of a new algorithm, be it for registration or segmentation,
lies in the ability to validate the new method on real clinical data to demonstrate its
superiority over existing methods and its applicability for clinical tasks. This challenge
is amplified by the fact that technical laboratories are rarely located within a clinical
environment making the access to appropriate validation data even more cumbersome.
In addition, it is often difficult to find clinical experts who have the time to provide
expertise in terms of creating a gold standard for validation purposes. A solution to some
of these challenges lies in the creation of publicly available data sets that can be used
by members of the medical image processing community for validation of new techni‐
ques that incorporate real clinical data. The data sets should be comprehensive in terms
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of modalities available, and offer data for validation of registration and segmentation.
Over the last several years, imaging data for 25 patients undergoing neurosurgery for
brain tumours has been collected at the Montreal Neurological Institute and Hospital.
In this abstract we present 9 of these 25 cases that will be included in a publicly available
database for use by the medical image processing community. Each patient underwent
neurosurgery for a brain tumour and each patient included contains a pre- and post-
operative T2 and T1 weighted, gadolinium enhanced MRIs, tracked intra-operative
ultrasound (iUS) volumes and 2D slices, expert tumour segmentations following the
BRATS [1] benchmark, and MRI-iUS registration validation target point sets. The work
is an extension to the original Brain Images of Tumours for Evaluation (BITE) [2] data‐
base that has seen extensive use in the medical image processing literature and aims to
improve on some of its critiques as described in other published work using the data for
evaluation.

2 Methods

The patient information is summarized in Table 1. All patients consented to participate
in the study and agreed to have their anonymized clinical data made publicly available.
The complete study included 10 males and 15 females of which 3 and 6, respectively,
are presented here. The mean age was 64. Both primary and metastatic brain tumours
were included in the imaging study. All tumours included in the study were supraten‐
torial and varied amongst brain lobes.

Table 1. Patient information

Patient Sex Age Tumour type Lobe
1 F 72 Metastases L–O/P
2 F 68 Glioblastoma L–T
3 M 53 Glioblastoma L–T/P
4 F 84 Glioma R–P
5 F 41 Meningioma L–F
6 M 63 Meningioma R–F
7 F 77 Meningioma R–F
8 F 62 Meningioma L–O/P
9 M 55 Glioma R–F

2.1 MR Images and Processing

Each patient in the series had a gadolinium enhanced 1.0 mm isotropic T1 weighted
MRI, obtained on a 1.5 T MRI scanner (Ingenia Phillips Medical Systems). All images
were processed in a custom image processing pipeline as follows [3]. First, the MRI is
denoised, after estimating the standard deviation of the MRI Rician noise [4]. Next,
intensity non-uniformity correction and normalization is done by estimating the non-
uniformity field [5], followed by histogram matching with a reference image to
normalize the intensities. The preoperative images were acquired on average 7 days
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prior to surgery. When available, T2w and FLAIR images were also included for the
patient dataset, however the acquisition of these modalities was dependent on surgical
need and not always included. Postoperative MR images were also T1w and were
acquired within 48 h after surgery, however, slice thickness varied depending on the
diagnostic request of the surgeon for the patient. All MR images were converted into
the MINC format used at the McConnell Brain Imaging Centre, Montreal Neurological
Institute and Hospital. All MINC tools can be found at packages.bic.mni.mcgill.ca and
are publicly available.

2.2 Tracked Intraoperative Ultrasound

In each of the cases included in the database, tracked intraoperative ultrasound was
acquired as part of a protocol for brain shift investigation [6]. Intraoperative ultrasound
was acquired using our custom built prototype neuronavigation system, IBIS [7]. The
workstation is equipped with an Intel Core i7-3820 @ 360 GHz x8 processor with 32 GB
RAM, a GeForce GTX 670 graphics card and Conexant cx23800 video capture card.
Tracking is performed using a Polaris N4 infrared optical system (Northern Digital,
Waterloo, Canada). The Polaris infrared camera uses stereo triangulation to locate the
passive reflective spheres on both the reference and pointing tools with an accuracy of
0.5 mm [8]. The ultrasound scanner, an HDI 5000 (ATL/Philips, Bothell, WA, USA)
equipped with a 2D P7-4 MHz phased array transducer, enables intraoperative imaging
during the surgical intervention. The ultrasound system transmits images using an S-
video cable to the workstation at 30 frames/second and the ultrasound transducer probe
is outfitted with a spatial tracking device with attached passive reflective spheres
(Fig. 1) (Traxtal Technologies Inc., Toronto, Canada) and are tracked in the surgical
environment.

Fig. 1. Ultrasound probe with fitted tracking device (left) and use intraoperatively during
neurosurgery (right).

For each case the surgeon acquired freehand ultrasound images in sweeps of 400 to
1000 2D images, moving the probe continuously in the plane of the craniotomy in a
continuous forward motion in order to minimize any errors due to calibration. The sets
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of iUS series included in this database involved ultrasound images acquired at two time
points during surgery: before and after resection. Pre-resection ultrasound images were
acquired on the intact dura of the patient and post-resection ultrasound was acquired
either in the resection cavity or on a dural graft attached to the patient after the resection
was completed. During post-resection acquisition the cavity was filled with saline solu‐
tion. For use in a volume-to-volume registration scheme the iUS series were recon‐
structed with a GPU implementation that looks for US pixels within a given search radius
and that are no farther than 1.0 mm away from the point of interest. Each US voxel is
weighted with a Gaussian function and normalized after all US pixels have been accu‐
mulated [9]. Both the original 2D series and the reconstructed volumes are available in
the database. The tracking information for the individual slices is self-contained within
the header of the ultrasound images which are also in the MINC format. An example of
the included 2D and 3D iUS data can be seen in Fig. 2.

Fig. 2. Left: Example of a 2D US slice (orange) overlaid on the corresponding MR slice (grey)
after registration. Right: 3D reconstructed volume of the iUS series. (Color figure online)

2.3 Tumour Segmentation

All tumour segmentations were performed by a senior neurosurgical resident (C. C.)
using ITK Snap and followed the BRATS benchmark [1] in hopes of keeping consistent
with a widely used system within the image processing community. For cases with
gliomas, the labels included: (i) T2 tumour hyperintensities (edema), (ii) enhancing
tumour core, and (iii) non-enhancing tumour core. For the other non-glioma tumour
cases, all of these structures that were visible were segmented. An example of a segmen‐
tation for a glioblastoma and a meningioma can be seen in Fig. 3. The average solid
tumour volume for the 9 cases was 28 cm3. The intra-rater variability for the segmen‐
tations was measured by comparing two segmentations of the same tumour done on
different days for both a glioblastoma and a meningioma. The intraclass correlations
(ICC) for the solid tumour volume was 0.91 and 0.96 respectively for the Glioblastoma
and meningioma cases, showing a consistent segmentation by the expert rater.
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Fig. 3. Examples of expert segmentations that will be provided in the database of a GBM (A)
and meningioma (B). In each segmentation, the same colour is used to differentiate between Edema
(red), Enhancing tumour core (blue), and non-enhancing tumour core (green). (Color figure
online)

2.4 Registration and Registration Validation

Since the intent of this database is to be useful to a broad image processing community
both linear and non-linear registration transforms for the preoperative MRI and iUS data
are included in the database.

Registration techniques to correct for brain shift have recently been developed, based
on gradient orientation alignment, in order to reduce the effect of the non-homogeneous
intensity response found in iUS images [9]. Once an iUS volume has been reconstructed
the two volumes are registered using an algorithm based on gradient orientation align‐
ment [9] which focuses on maximizing gradients with minimal uncertainty of the orien‐
tation estimates (i.e. locations with high gradient magnitude) within the set of images.
This can be described mathematically as:

T∗ = arg max
T

∑
x∈𝛺

cos(Δ𝜃)2 (1)

where T* is the transformation being determined, 𝛺 is the overlap domain and Δ𝜃
is the inner angle between the fixed image gradient, ∇If , and the transformed moving
image gradient JT

⋅ ∇Im:

Δ𝜃 =< (∇If , JT
⋅ ∇Im) (2)

The database includes the registration transforms obtained using this method.
Validation target sets for the MR-iUS registrations were obtained using the Valida‐

tion Grid tool [10]. The tool is based on manually registering two images through
manipulation of a series of target points that are placed as a regular shaped grid on both
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the target and fixed image. As the points are moved on the target image, the registration
transform is updated based on the displacement of corresponding (target and fixed) grid
points using a thin plate spline model. Due to the difficult nature of manually aligning
images of different modalities the size of the validation grid can be changed from a
coarse 2 × 2 × 2 grid to a finer 7 × 7 × 7 grid allowing the user to manually register the
images in a hierarchical fashion from the largest deformations to small and local ones.
Once complete, the set of points is exported and can be used as a large set to validate
different registration procedures. A visual representation of this procedure can be seen
in Fig. 4.

Fig. 4. Example of Validation Grid use for patient 9. A: 3D view of validation grid (yellow dots)
on top of MRI volume (grey) and iUS volume (orange). B/C: 2D slice of unregistered iUS-MRI
(B) and a target point (green) near a mis-registered sulcus being manipulated to facilitate
registration (C). (Color figure online)

3 Discussion and Conclusion

We’ve presented here the structure and initial work towards a comprehensive tumour
image database complete with multimodality imaging, intraoperative imaging, expert
segmentation labels, linear and non-linear registration transformations, and registration
validation target point sets with the goal of releasing 9 of the 25 patient sets publicly.
The large range of data will enable comparison of a multitude of image processing
techniques with a standard set of data for comparison with other techniques in the liter‐
ature based on real clinical data.

The work here demonstrates an expansion on a previously popular brain tumour
database [2] that has seen extensively used for validation in the literature. By adding a
more reliable validation metric and through the introduction of expert segmentations
following the BRATS benchmark it can be extended to both the registration and
segmentation image processing communities. With further development and completion
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of the database we hope to inspire multiple future studies that will eventually benefit
brain tumour patients through an easy and efficient resource to validate state-of-the-art
image processing technologies. This will translate into tools and techniques that allow
surgeons to better visualize tumours before, during, and after surgical interventions.
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Abstract. Recent advancements in neuroimaging have allowed the use
of network analysis to study the brain in a system-based approach. In
fact, several neurological disorders have been investigated from a network
perspective. These include Alzheimer’s disease, autism spectrum disor-
der, stroke, and traumatic brain injury. So far, few studies have been
conducted on glioma by using connectome techniques. A connectome-
based approach might be useful in quantifying the status of patients,
in supporting surgical procedures, and ultimately shedding light on the
underlying mechanisms and the recovery process.

In this manuscript, by using graph theoretical methods of segregation
and integration, topological structural connectivity is studied compar-
ing patients with low grade glioma to healthy control. These measures
suggest that it is possible to quantify the status of patients pre- and
post-surgical intervention to evaluate the condition.

1 Introduction

Glioma is the most common type of primary brain tumor which arises from
glial cells. It is considered responsible for approximately 13000 deaths in the
United States and more than 14000 in Europe each year [20]. It is considered
one of the most aggressive types of cancer especially in its advanced stage termed
glioblastoma multiforme (GBM). Tumor resection is the most effective therapy
though generally complemented by chemo and radio therapies [19]. Neverthe-
less, resection of brain tumors involving relevant cortical areas is still a challeng-
ing task, as preservation of neuronal functions after surgery remains the goal
[19]. Several studies have shown the potentiality of magnetic resonance imaging
(MRI) in glioma patients for identifying pre-operatively their relationship with
eloquent cortical areas, but individual significant variations in fiber structures
and functional MRI (fMRI) activations have been reported [6,15,19]. Diffusion-
tensor imaging (DTI) is used to track fibers combined with cortical stimulation
as intra-operative support to preserve cognitive and motor functions, though
this analysis might be subjective [1]. Moreover, analysis of functional activations
highlights only the activations related to the task, but not the interaction among
areas or the effect among the overall brain.

c© Springer International Publishing AG 2016
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A Connectome is the complete set of all neural connections of the human
brain which can be structural or functional [22]. The human connectome has
recently gained attention for its importance and possible implications for neu-
roscience as well as clinical neurology and psychology. It has already been
used for studying stroke, autism spectrum disorders (ASD), Alzheimer’s dis-
ease, schizophrenia, and other pathologies [9,24]. However, connectome analysis
has not been extensively used for glioma patients. As for stroke, it is expected
that specific cognitive and behavioral functions are not localized to anatomi-
cally restricted areas, but widespread across the neural networks of the injured
brain, and specific symptoms are not necessarily localized in specific brain regions
[11]. Hence, it can be hypothesized that connectomics can help to study corti-
cal reorganization, functional recovery after resection, and help planning surgi-
cal interventions. Briganti et al. studied the functional connectivity of glioma
affected patients by using a verb-generation task acquisition, and noticed that
the patients had a statistically significant reduced degree of functional connec-
tivity in the language related regions compared to healthy control [2]. Similarly,
in another study functional connectivity exhibited chaotic changes in glioma
patients compared to control correlating with language deficits [16]. It was also
noticed that patients with gliomas have altered functional connectivity of the
default mode network, and this was related to tumor grade, position and post-
surgical status [12].

In this manuscript, topological measures are used to quantify the level of
segregation and integration comparing low grade glioma patients and healthy
control.

2 Method

An individual network measure may characterize one or several aspects of global
and local brain connectivity. This study starts creating the tractography of
the brain from DTI for patients and control, generating the related structural
connectome, on which topological measures are computed to compare the two
groups: low grade glioma patients and healthy control subjects.

Tractographies for all subjects have been generated processing DTI data
with the Python library Dipy [7]. In particular, a deterministic algorithm called
Euler Delta Crossings [7] has been used stemming from 2,000,000 seed-points
and stopping when the fractional anisotropy (FA) was smaller than <0.1. Tracts
shorter than 30 mm or in which a sharp angle occurred have been discarded.
Linear registration has been applied between the automated anatomical labeling
(AAL) atlas [23] and the first volume of the DTI acquisition by using linear
registration with 12 degrees of freedom. Counting the fibers starting and ending
in all r = 90 regions of the AAL atlas, a structural connectivity matrix of r × r
elements is constructed for each subject. Connections with less than 4 fibers are
neglected, and the matrix is afterwards binarized.

Once the connectome is constructed, the glioma patients and control subjects
were characterized by the most common graph-topological measures. Topological
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measures are divided into measures of segregation and integration. Segregation
measures are representations of densely connected network communities, while
integration measures are related to network hubs that are rich in connections
between the communities [4]. Simulations on artificial networks demonstrated
that as the connectivity gradually changes from an ordered lattice to a pseudo-
random network, perturbational integration decreases, and perturbational segre-
gation increases [4]. However these decreases and increases are not easily quantifi-
able as different diseases might affect in different ways the brain or relevant nodes
of it [3]. For this study, we chose the two most common measures of segregation
(the Louvain modularity and clustering coefficient) and integration (characteristic
path length and global efficiency) [17] computed for the n nodes of each graph.

The modularity of a network is the degree to which the network may be
subdivided into non-overlapping groups. The Louvain algorithm is known for its
efficiency in producing partitioned communities, and it is applicable to weighted
and unweighted graphs. For weighted graphs, modularity is defined as

Q =
1

2m

∑

ij

[
Aij − kikj

2m

]
δ(ci, cj), (1)

where Aij is the weight between nodes i and j, ki and kj are the sum of weights
of the edges connecting the nodes i and j respectively, m is the sum of all edge
weights in the graph, ci and cj are the communities of the nodes, and δ is a
simple delta function. For unweighted graphs, as in our case, the edge weights
are just either 1 or 0. The algorithm starts with a true network and then performs
random double edge swaps introducing an aleatory effect in the computation.
Since modularity Q values might vary based on random differences in community
assignments from run to run, Q values were averaged over 100 iterations of the
algorithm. Clustering coefficient is the fraction of triangles around a node, and
it can be defined as

C =
1

(n − 1)(n − 2)

∑

i∈N

2t

ki(ki − 1)
, (2)

where ti and ki is respectively the number of triangles around a node i, and the
degree of the node i. It measures how much neighbors of a node are connected
to each other. In the results, the mean value across the nodes are reported.

The characteristic path length dij is the average shortest path length in the
network between each node i and j. The efficiency measure is given by the
average inverse shortest path length. It can be computed globally or limited
to the neighborhood of a node defining the local efficiency. Global efficiency is
defined as

E =
1
n

∑

i∈N

∑
j∈N,j �=i d

−1
ij

n − 1
. (3)

Given the measures as features for representing the two populations of glioma
patients and control, p-values were generated from a two-sample t-tests per-
formed on each metric with the goal to assess difference between the two groups.
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3 Data and Experimental Settings

The neuroimage data for the patients are from The Cancer Imaging Archive
(TCIA)1, which is a large and growing archive, comprising several hundreds vol-
umes in different modalities. However, diffusion tensor and fMRI data available
are very limited or acquired in different protocols. The brain volumes for the low
grade glioma patients were acquired with a 1.5 T GE Signa Excite. In particu-
lar, the 20 available DTI volumes were acquired with an isotropic voxel-size of
2.6 mm, TR = 17 s, TE = 84.6 ms, and using 26 gradient directions. The mean
age of the patients was 45.74 ± 13.35 years.

Being no control brain available in TCIA archive, those were matched with
the 20 control volumes available from the NKI-Rockland Sample2 randomly
selected. Those DTI volumes were acquired with a Siemens 1.5 T scanner and
isotropic voxel-size of 2 mm, TR = 10 s, TE = 91 ms, and using 35 gradient
directions. The age of the healthy control was 38 ± 19.15 years.

All data had the skull stripped and eddy current correction performed before
the tractography construction.

4 Results

The results of the network analysis for the two datasets and significance are
reported in Table 1 as mean and variance value for the two groups. The last
column reports the p-value of the discriminative test between the two groups.
An example of resulting connectome for the healthy control subjects is shown
in Fig. 1, while Figs. 2 and 3 depict axial slices for two cases subjects. In par-
ticular, those are T1 post gadolinium injection, FLAIR, tractography stopping
the tracts if the FA was smaller than 0.25, and structural connectome using the
tractography constructed stopping the tracts if the FA was smaller than 0.01.

Table 1. Topological network measures reported as mean and variance. The last col-
umn reports the p-value of the discriminative test between the two groups.

Features Low grade glioma patients Healthy controls p-value

Modularity 0.491 ± 0.021 0.438 ± 0.026 1.15 × 10−7

Clustering coefficient 0.605 ± 0.012 0.592 ± 0.017 0.0252

Char. path length 2.265 ± 0.058 2.139 ± 0.054 1.29 × 10−7

Global efficiency 0.512 ± 0.010 0.540 ± 0.010 1.13 × 10−8

1 http://cancerimagingarchive.net.
2 http://fcon 1000.projects.nitrc.org/indi/pro/nki.html.

http://cancerimagingarchive.net
http://www.fcon.com/_1000.projects.nitrc.org/indi/pro/nki.html
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Fig. 1. Axial (a) and sagittal (b) view of a healthy control connectome (no slice). The
size of the nodes represents the degree, while the number of tracts connecting the
nodes is represented by the stroke of the edges. The tractography for these structural
connections is constructed stopping the tracts if the FA was smaller than 0.01.

5 Discussions

The measures of segregation and integration used in this article have been
already investigated for other diseases. In a study about ASD, all measures
used in functional connectomes showed lower scores in ASD patients compared
to healthy control [18]. In a study related to schizophrenia [5], connectomes
of patients with psychotic episodes showed larger characteristic path length,
but smaller global efficiency and clustering coefficients compared to schizophre-
nia subject without psychotic episodes. Another topological comparison between
connectomes of schizophrenia patients and control subject showed smaller global
efficiency and other integration metrics in the patients [10]. Conversely, other
studies on schizophrenia showed elevated values of clustering coefficients and
small values of characteristic shortest path, suggesting overall more segregated
patterns in the network [13]. This lack of agreement can be related to different
pre-processing steps, neglected local anatomical differences, or on the selecting
criteria of the matching control group [13].

Our results for the case connectomes showed an increased modularity
and clustering coefficient, and an increased characteristic path length and
reduced related global efficiency compared to the control connectome scores.
The increased path length and reduced global efficiency can be hypothetically
explained as the destructive effect of low grade glioma being similar to the dis-
connecting impact of schizophrenia which share the same discrimination between
case and control.
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Fig. 2. Presurgical axial slices for one case subjects: (a) T1 post gadolinium injection,
(b) FLAIR, (c) tractography stopping the tracts if the FA was smaller than 0.25,
and (d) whole structural connectome using the tractography constructed stopping the
tracts if the FA was smaller than 0.01 (no slice).

No clear difference was noticeable by visual inspection of the connectome,
though an atlas with more detailed cortical subdivision might have allowed also
this visual difference [8]. However, if the stopping threshold of the FA was moved
from 0.01 to 0.25, the tracts crossing the tumor disappeared. This is a sign of
damage in the area. It can hypothesized that due to the low grade of the tumors
tracts are still presents and not completely damaged as with glioblastoma which
is a brain tumor of higher grade. The main limitation of the study is the limited
sample size and also the different type of acquisition for the case and control
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Fig. 3. Presurgical axial slices for one case subjects: (a) T1 post gadolinium injection,
(b) FLAIR, (c) tractography stopping the tracts if the FA was smaller than 0.25,
and (d) whole structural connectome using the tractography constructed stopping the
tracts if the FA was smaller than 0.01 (no slice)

dataset which might have influenced the detected differences. Therefore, further
studies with even more consistent datasets are required. Moreover, the measures
give an indicative score of the status of the network to potentially correlate
with health status, but they are not enough to help during surgical procedures,
since population statistics to identify relevant areas or connections has only a
relative meaning for pre-surgical planning [14]. However, the study of individual
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connectomes could be used jointly to existing procedure of cortical activation
and stimulation to support surgical decisions.

Despite the registration of the volumes to the atlas was considered prop-
erly carried out as noticed by visual inspection, concerns remain about possible
influence of the glioma in deforming the brain anatomy. In fact, it can be argued
that due to the presence of the tumor some tracts might be pushed ending
in a different location than expected by the atlas and therefore corrupting the
subsequent analysis. The issue has been argued in tract based spatial statistics
studies considering multiple sclerosis lesions, concluding that the misplacement
effect is negligible [21]. Conversely, it has been argued that for high grade glioma
located near the corticospinal tracts and eloquent areas, it is possible that such
an effect has an impact [2]. Being this study mostly focused on the overall topo-
logical measures and using only low grade gliomas patients, this issue could be
considered negligible, though an analysis with a model which take into account
potential displacement is planned as a future work.

6 Conclusions

Understanding the brain connectome and dynamic network changes that occur
due to tumor can give further information on the status of patients and eval-
uate rehabilitations. In fact, topological measures appear to differ in terms of
segregation and integration in glioma patients compared to healthy control.
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Abstract. Traumatic brain injury (TBI) can disrupt the white matter (WM)
integrity in the brain, leading to functional and cognitive disruptions that may
persist for years. There is considerable heterogeneity within the patient group,
which complicates group analyses. Here we present improvements to a tract
identification workflow, automated multi-atlas tract extraction (autoMATE),
evaluating the effects of improved registration. Use of study-specific template
improved group classification accuracy over the standard workflow. The addition
of a multi-modal registration that includes information from diffusion weighted
imaging (DWI), T1-weighted, and Fluid-Attenuated Inversion Recovery (FLAIR)
further improved classification accuracy. We also examined whether particular
tracts contribute more to group classification than others. Parts of the corpus
callosum contributed most, and there were unexpected asymmetries between
bilateral tracts.

1 Introduction

Traumatic brain injury (TBI) is the leading cause of death and disability in children and
adolescents. TBI can cause extensive white matter (WM) damage, which can still be
detectable years post-injury. Diffusion weighted imaging (DWI) is useful in studying
WM disruptions caused by brain injury, offering a non-invasive means to assess possible

© Springer International Publishing AG 2016
A. Crimi et al. (Eds.): BrainLes 2016, LNCS 10154, pp. 32–42, 2016.
DOI: 10.1007/978-3-319-55524-9_4



diffuse axonal injury (DAI). DAI is frequently associated with poor outcome, but can
only be definitively diagnosed post mortem [1]. The structural damage and considerable
heterogeneity within the TBI patient population can complicate brain imaging studies,
especially inter-subject registration. Here we evaluated improvements in a DWI analyt‐
ical workflow, automated multi-atlas tract extraction (autoMATE). We use study
specific templates, and register images using information from three modalities (DWI,
T1, and FLAIR) instead of one.

Fluid-Attenuated Inversion Recovery (FLAIR) is often collected in TBI research due
to its sensitivity to lesions. The long inversion time (T1) of FLAIR suppresses the signal
from CSF leading to improved differentiation of lesions relative to some T2-weighted
sequences [2]. DWI has been applied in TBI research fairly recently, offering better
anatomical resolution than conventional CT for detecting and localizing ischemia, DAI,
and other TBI-associated neuropathologies [3, 4]. T1-weighted imaging provides a high-
resolution anatomical scan that offers a standard target for registration. By combining
information from all three modalities, we hoped to leverage the benefits of each, resulting
in a more accurate registration.

AutoMATE has been used to analyze WM integrity following TBI, and performs
well even in injured tissue [5–8]. Here we sought to improve the workflow further. We
tested the initial workflow and compared it with an intermediate workflow with one
alteration, and the final process with two alterations on the same dataset of 31 moderate-
to-severe TBI (msTBI) patients and well-matched healthy controls.

2 Methods

2.1 Subjects and Image Acquisition

TBI participants were recruited from 4 Pediatric Intensive Care Units (PICUs) at Level 1
Trauma Centers in Los Angeles County. Healthy controls, matched for age, sex, and
educational level, were recruited from the community through flyers, magazines, and
school postings. Participants were studied in the post-acute phase (2–6 months post-
injury). We included 31 TBI participants (7 female, 14.3 average age) and 40 controls.
Inclusion criteria: non-penetrating moderate-severe TBI (intake or post-resuscitation
Glasgow Coma Scale (GCS) score between 3 and 12, or higher GCS with positive
imaging findings), 8–18 years old at injury, right handed, normal vision, English profi‐
ciency. Exclusion criteria: history of neurological illness or injury, motor deficits or metal
implant preventing safe MRI scanning, history of psychosis, ADHD, Tourette’s, learning
disability, mental retardation, or autism.

Participants were scanned with 3T MRI (Siemens Trio) with whole-brain anatomical
and 66-gradient diffusion imaging. Diffusion-weighted images (DWI) were acquired
with the following acquisition parameters: GRAPPA mode; acceleration factor PE = 2;
TR/TE = 9500/87 ms; FOV = 256 × 256 mm; isotropic voxel size = 2 mm. 72 images
were collected per subject: 8 b0 and 64 diffusion-weighted images (b = 1000 s/mm2).
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2.2 Tractography

AutoMATE (automated multi-atlas tract extraction) is described fully in prior papers [9–11],
and outlined in Fig. 1. Briefly, autoMATE labels tracts of interest from the whole brain
tractography based on template atlases. While many tract labeling tools use only a single
template, the strength of autoMATE is that it uses 5 templates, increasing the robustness and
generalizability of results. Raw DWI images were visually checked for artifacts, resulting
in 2 participants being excluded from all analyses due to extensive slice dropout (not
included in above participant count). DWI images were corrected for eddy-current induced
distortions using the FSL tool “eddy_correct” (http://fsl.fmrib.ox.ac.uk/fsl/). DWI scans
were skull-stripped using FSL tool “BET” (default parameters). Eddy correct deformations
were applied to the gradient vectors. Fractional anisotropy (FA) measures the degree to
which water is diffusing preferentially in one direction (along axons). MD (mean diffu‐
sivity) is a measure of the average diffusivity across all 3 primary eigenvectors. RD (radial
diffusivity) is the average of the eigenvalues corresponding to the 2 non-primary eigenvec‐
tors, and AD (axial diffusivity) is the eigenvalue corresponding to the primary eigenvector.
FA, MD, RD, and AD maps were computed using FSL tool “dtifit”. Whole-brain DWI
tractography was performed with Camino (http://cmic.cs.ucl.ac.uk/camino/). The maximum
fiber turning angle was set to 35°/voxel to limit biologically implausible results, and tracing
stopped when FA dropped below 0.2, a threshold that is somewhat standard in the field.

Registration based on 
b0, T1, and FLAIR

Fig. 1. Workflow of autoMATE.
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2.3 Fiber Clustering and Label Fusion

The standard autoMATE templates are 5 WM tract atlases constructed from healthy 20–30
year olds, as detailed previously [9–11]. These templates will be referred to as the standard
template. For this project, we also constructed 5 new WM atlases from 5 adolescents in the
study (2F/3 M, 14–18 years old, all healthy controls). These templates will be referred to as
the study specific template. The atlas used to identify tracts in the templates was based on
the “Eve” brain atlas [12], and includes 19 major WM tracts: the bilateral corticospinal
tract, bilateral cingulum, bilateral inferior fronto-occipital fasciculus, bilateral inferior longi‐
tudinal fasciculus, bilateral uncinate, bilateral parahippocampal cingulum, left arcuate fasci‐
culus (the right arcuate is too asymmetric for population studies to be practical [13]), and
corpus callosal tracts divided into 6 segments – frontal, precentral gyrus, postcentral gyrus,
parietal, temporal, and occipital. The Eve atlas was registered, linearly and then non-line‐
arly, to each subject’s FA map using ANTs (Advanced Normalization Tools [14]) and its
ROIs were correspondingly warped to extract 18 tracts of interest for each subject based on
a look-up table [12]. ROI registration was visually checked for all subjects, and all passed
quality control. While registration is difficult in injured brains, the registration tools in the
ANTs library have been shown to work well [15].

Basic registration: Each subject’s FA map was further registered non-linearly using ANTs
SyN to each of the 5 standard templates. Intermediate registration: Each subject’s FA map
was further registered non-linearly to each of the 5 study specific templates. Multi-modal
registration: Each subject’s averaged b0, FLAIR, and T1-weighted image (T1w) were regis‐
tered linearly then non-linearly to each of the 5 study specific template’s b0, FLAIR, and T1w
images respectively. Since each modality provides an improved resolution and is sensitive
to different aspects of brain structure, they are expected to contribute different information
during the registration process. First, each subject’s FLAIR and T1w images were linearly
registered to their averaged b0 image using the FSL tool “flirt” bringing all three modalities
to a common space. ANTs SyN was then used to perform a multi-channel registration
to simultaneously warp three images from each subject to the corresponding template
images. The T1w images were registered using a cross-correlation coefficient (CC) simi‐
larity metric and was also weighted the highest as it provided the best resolution, followed
by FLAIR images registered using mutual information (MI) and weighted 2nd highest, and
lastly the b0 images were registered using MI and weighted the least. The transformations
were then applied to each subject’s FA map, resulting in finely registered FA images to each
of the 5 study specific templates. This is shown in Fig. 2. All registrations were visually
inspected for quality, and all passed quality control. At this point there are 3 separate
processing streams. For each processing stream, the 18 tracts from each atlas were then
warped to the subject space based on the deformation field from the above-referenced regis‐
tration steps [16]. We refined fiber extractions of each tract based on the distance between
the warped corresponding tract of each atlas and the subject’s fiber candidates from ROI
extraction. Individual results from the 5 atlases were fused. We visually inspected the
resulting fiber bundles. For each of the 18 WM tracts, we selected one example subject to
display group analysis results (this step was consistent across processing streams). We
extracted FA, MD, RD, and AD along the tracts at this point, output as 8155 × 15 matrices,
with each point in the matrix corresponding to tract coordinates.
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Fig. 2. (a) Each subject’s b0, FLAIR, and T1-weighted image are first linearly then non-linearly
registered to its respective atlas image. (b) This step is repeated for each of the five atlases. (c)
The resulting transformations are then applied to each subject’s FA image, resulting in an FA
image finely registered to each of the five atlas FAs.

2.4 Support Vector Machine

Support vector machines (SVMs) [17] are one popular form of supervised learning
model that we used to classify our connectivity features, to differentiate connectivity
patterns in TBI and normal development. Clearly other machine learning models are
possible, but here we chose SVMs as their properties are well understood. SVMs classify
2-class data by training a model, or classification function, to find the optimal hyperplane
between the 2 classes in the data. Let xi ∈ ℝ

d represent the connectivity feature vectors,
where d is the dimension of the feature set of interest and Yi = ±1 be their label with
−1 and 1 representing TBI and control. Our target hyperplane is:

⟨w, x⟩ + b = 0,

where w ∈ ℝ
d should separate as many data points as possible. We find this hyperplane

by solving the L2-norm problem:

arg min
w,b,v

(1
2
⟨w, w⟩ + D

∑
i
v2

i

)
,

such that
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yi

(⟨w, xi⟩ + b
)
≥ 1 − vb vi ≥ 0

where vi are slack variables and D is a penalty parameter. In many instances, a hyperplane
cannot be found that completely separates the 2 classes of data, and slack variables are
added to create soft margins to separate most of the points.

Our classification design was to test the information provided by the point-wise WM
integrity estimates with repeated stratified 10-fold cross-validation [18]. We repeated
the cross-validation 10 times. Each repeat represents a different random grouping of
dataset for 10-fold cross-validation. For cross-validation (CV), our performance metrics
were balanced accuracy (average of sensitivity and specificity), accuracy (number of
correctly identified subjects divided by the total number of subjects), sensitivity (true
positives [TP] divided by total positives), specificity (true negatives [TN] divided by
total negatives), and F1 (2 * ((precision * sensitivity)/(precision + sensitivity)), where
precision is TP divided by total positive calls). We used the linear SVM implementation
in scikit-learn 0.16.1 (http://scikit-learn.org/) with the default parameters. The input for
the SVM was the point-wise estimates of FA, MD, RD, and AD across all tract indices,
input as 8155 × 15 matrices for each subject.

Table 1. Differences in proportional volume of subcortical structures between workflows. For
example, in the native space, the thalamus represented 0.479% of the brain volume, averaged
across subjects, whereas in the basic workflow, this value was 0.523%, giving a difference of
0.044% (or an increase of 9.2%).

Basic Intermediate Multi-modal
Thalamus 0.044% (9.2%) −0.026% (−5.0%) −0.048% (−10.6%)
Caudate 0.022% (9.0%) −0.014% (−5.4%) −0.016% (−6.9%)
Putamen 0.035% (9.3%) −0.022% (−5.3%) −0.035% (−10.0%)
GP 0.011% (10.1%) −0.008% (−6.7%) −0.006% (−6.0%)
Hippocampus 0.019% (8.1%) −0.014% (−5.4%) −0.028% (−12.6%)
Amygdala 0.008% (8.8%) −0.005% (−5.6%) −0.008% (−10.1%)
Accumbens 0.004% (10.2%) −0.002% (−5.5%) −0.003% (−9.2%)
Ventral DC 0.024% (9.2%) −0.016% (−5.6%) −0.016% (−6.8%)

3 Results

We calculated the average displacement across all subjects, across all 5 template atlases,
across the whole brain, for each of the 3 registrations tested. For the single channel
registration with the standard templates, the average displacement magnitude across all
subjects was 3.0%. For the single-channel registration with the study specific templates,
the average displacement magnitude across all subjects was 3.1%. For the multi-channel
registration with the study specific templates, the average displacement magnitude
across all subjects was 3.7%. As another check of registration, we extracted the volume
of 8 subcortical structures in native space and compared it to the volumes extracted after
each transformation. This was done across 9 healthy controls. The differences in
volumes, expressed as a percent of the total brain volume are shown in Table 1.
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3.1 Study Specific Template – Intermediate Registration

The creation of a study specific template was the first improvement to the workflow.
The standard autoMATE templates are taken from 20–30 year old healthy controls,
while the study specific templates include 5 14–18 year olds (2F/3 M, all healthy
controls). Use of a more age-appropriate template, taken from the sample, improved
nearly all measures of group discrimination across FA, MD, and RD. SVM based on
AD gave mixed results. The classification outputs can be seen in Table 2. T-tests of the
10 CV repeats showed these improvements were largely significant.

Table 2. Comparison of SVM outputs from the basic, intermediate, and multi-modal registration
protocols. Bolded entries are significantly improved over the previous step, italicized entries for
the multi-modal step are significantly improved over the initial step, as shown in t-tests of the 10
CV repeats.

Single channel registration/Standard template
BAC Accuracy Sensitivity Specificity F1

FA 0.7995 0.8039 0.8640 0.7350 0.8222
MD 0.7621 0.7692 0.8525 0.6717 0.7992
RD 0.7823 0.7892 0.8670 0.6975 0.8143
AD 0.7475 0.7580 0.8525 0.6425 0.7920

Single channel registration/Study specific template
BAC Accuracy Sensitivity Specificity F1

FA 0.8012 0.8118 0.8850 0.7175 0.8414
MD 0.8004 0.8043 0.8350 0.7658 0.8228
RD 0.8042 0.8132 0.8775 0.7308 0.8405
AD 0.7325 0.7520 0.8775 0.5875 0.7978

Multi-modal registration/Study specific template
BAC Accuracy Sensitivity Specificity F1

FA 0.8038 0.8146 0.8900 0.7175 0.8437
MD 0.8104 0.8143 0.8450 0.7758 0.8328
RD 0.8029 0.8134 0.8875 0.7183 0.8432
AD 0.7379 0.7751 0.8850 0.5908 0.8031

3.2 Multi-modal Registration

The second improvement to the workflow involved the inclusion of multiple image
modalities for the template registration, as well as the same study specific templates used
in the intermediate registration. This step brought further improvement to the classifi‐
cation outputs for all measures. These results can be seen in Table 2. T-tests of the 10
CV repeats showed the improvements over single channel were only significant for one
measure (indicated in bold in the table), but over the original registration they were
highly significant (indicated in italics in the table).
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3.3 Most Robust Tracts

The analysis to this point was completed using all tract data, but we were interested to
see whether specific tracts aided in classification more than others. We ran a separate
classification examining each tract alone. For this, we ran SVM as above, but with data
from each tract separately input into the SVM. The balanced accuracy across all 19 tracts
is depicted in Fig. 3, averaged across the tract. We computed this on FA, MD, RD, and
AD, but we display results here only for RD. The CC frontal, CC postcentral, and right
inferior longitudinal fasciculus (ILF) had the highest BAC. There appeared to be an
asymmetry as well, with right hemisphere tracts having higher average BAC than left
hemisphere tracts (0.664 vs. 0.615).

Fig. 3. Balanced accuracy (BAC) across the 19 tracts computed from MD along tract. Colors
correspond to BAC, according to the legend.

4 Discussion

TBI can cause widespread damage to the brain, but the pattern of injury can differ based
on severity, location, type, and any number of unknown premorbid patient characteris‐
tics. This heterogeneity can complicate inter-subject registration, which is critical for
accurate and generalizable results. Here we aimed to improve this step, by including
templates generated from subjects in the study, and by using a multi-modal registration.

Using study-specific templates improved the classification accuracy from resulting
tract-wise WM integrity measures. This is an expected outcome, as templates matched for
age and scan protocol should be more similar to the patient images to be registered. The
images we selected for the multi-modal registration were chosen for their particular sensi‐
tivity to detecting pathology caused by brain injury. Conventional MRI (T1w) identifies
lesions more accurately than computed tomography (CT) does. DWI can indicate possible
DAI, ischemia, and demyelination post-injury. FLAIR, one of the sequences most
commonly used by neuroradiologists for clinical purposes, can detect contusions, edema, and

Multi-modal Registration Improves Group Discrimination 39



subarachnoid and intraventricular hemorrhage [19]. Other researchers have used multi-
modal approaches for segmentation and registration [20–22]. Creating study-specific
templates and choosing disease-specific sequences tailors this workflow to the study of TBI
and improves our ability to study its effects on the brain.

We also examined how tracts differed in their individual contributions to the clas‐
sification, finding considerable variation in classification accuracy across the tracts. The
tracts with the highest balanced accuracy were the CC frontal segment, CC postcentral
gyrus, and right ILF. The corpus callosum is one of the most well-documented areas of
disruption following a brain injury, so it is not surprising that callosal segments had high
BAC [23]. Of our 31 TBI patients, 3 had large space occupying lesions on the left
hemisphere 1 had a large lesion on the right hemisphere, 10 had small lesions on either
the right or left hemisphere, and the remainder had no visible lesions. These large left
hemisphere lesions likely increased the within-group variance, affecting the accuracy
classification based on information from left hemisphere tracts.

5 Conclusion

We present step-wise changes to the DWI processing workflow, including use of study-
specific templates and incorporating information from multiple modalities when regis‐
tering images. Each step improved on the previous method in our ability to accurately
classify subjects, ending with accuracy around 0.81 for FA, MD, and RD. Additionally,
we show that certain tracts aid more in this classification than others, with the CC frontal
segment, CC postcentral gyrus segment, and right ILF emerging as providing the most
discriminative information. This improved workflow will aid us in further multi-modal
investigations of recovery following pediatric TBI.
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Abstract. Glioblastomas are infiltrative and deeply invasive neoplasms
characterized by high vascular proliferation and diffuse margins. As a
consequence, this lesion presents a high degree of heterogeneity that
requires being studied through a multiparametric combination of sev-
eral imaging sequences. Nowadays few systems are available to perform
a relevant multiparametric analysis of this tumour. In this work, we
present the study of GBM by means of http://mtsimaging.com, an online
platform for the automatic reporting of multiparametric tissue signa-
tures. The platform implements two full automated GBM pipelines: (1)
the anatomical pipeline, which involves MRI preprocessing and tumour
segmentation; and (2) the hemodynamic MTS pipeline, which adds the
quantification of perfusion parameters and a nosologic segmentation map
of the vascular habitats of the GBM. A radiologic report summarizes the
findings of both analysis and provides volumetric and perfusion statistics
of each tissue and habitat of the tumour.

Keywords: Glioblastoma · Segmentation · Perfusion quantification ·
Vascular habitats · On-line service

1 Introduction

Cancer heterogeneity has become the focus of research interest in the past
few years, as it has been claimed to be the key to understand the response
of the tumour against treatment [1]. Specifically, heterogeneity is one of the
most important hallmarks that characterizes Glioblastoma (GBM) [2]. GBMs
are heterogeneous malignant masses, characterized by hypercellularity, pleomor-
phism, vascular proliferation and high necrosis mitotic activity, in which different
areas of malignancy grade can co-exist. Therefore, the analysis of such complex
behaviour requires the combined analysis of multiparametric sequences such as
anatomical and quantitative Magnetic Resonance Imaging (MRI) [3]. Due to the
c© Springer International Publishing AG 2016
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high vascular proliferation and angiogenic nature of the GBM, most of radiologi-
cal protocols have included Perfusion Weighted Imaging (PWI) [4,5] besides the
anatomical modalities. PWI parameters such as Cerebral Blood Volume (CBV),
Cerebral Blood Flow (CBF), volume transfer coefficient (Ktrans) and extravas-
cular extracellular space volume fraction (ve) have demonstrated their potential
to characterize the behaviour of these malignant masses.

In the last years, a great effort has been done in the academic context
to generate automatic segmentation systems for GBM based on anatomical
information [6]. However, to improve the characterization of the tumour it is
required studies combining anatomical and quantitative or functional MRI. To
contribute to this, we have recently developed a methodology for the anatomi-
cal and hemodynamic characterization of the GBM called Hemodynamic Tissue
Signature (HTS). Such technology is based on the patent ES-P201431289 [7]
for nosologic imaging generation, and aims to provide a method to describe the
heterogeneity of the GBM in terms of the anatomical properties and angiogenic
process located at each tissue.

To facilitate the clinical use of Multi-parametric Tissue Signatures (MTSs),
easy-to-use and practice-adjusted software is required. Currently there are large
enterprises offering basic image processing and biomarker quantification prod-
ucts together with their scanning technologies, and small-medium enterprises
focused on more sophisticated biomarker quantification services. However, to
date, there are very few available applications able to perform a complete analy-
sis of GBM employing both anatomical and quantitative imaging information of
the tumour.

In these sense, we present an on-line platform for the automatic reporting
of MTS called MTSimaging (http://mtsimaging.com). MTSimaging implements
two image analysis pipelines to study the GBM: the conventional anatomical
analysis, where MRI images are pre-processed and segmented to obtain a GBM
tissue segmentation; and the hemodynamic MTS pipeline, which extends the
anatomical pipeline by combining such information with perfusion quantification
to provide a new nosologic map where GBM tissues are grouped in different
vascular habitats with different angiogenic and hemodynamic behaviour.

2 GBM Analysis Pipelines

Figure 1 summarizes the two services that MTSimaging offers for GBM: the
anatomical pipeline and the hemodynamic MTS pipeline. The different modules
included in each service and the output generated by each one are detailed in
the following sections.

2.1 Anatomical Pipeline

The anatomical pipeline provides the conventional GBM analysis that
includes: the MRI pre-processing module and the GBM segmentation module.
This pipeline performs a morphological study of the tumour by identifying and

http://mtsimaging.com
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Fig. 1. Services included in http://mtsimaging.com

segmenting the different tissues of the GBM and generating a radiologic report
with a summary of the analysis and a volumetric study of each tissue.

The pre-processing module consist of the following steps: (1) Resampling
at 1× 1× 1 mm3, (2) Denoising, (3) Bias field correction, (4) Registration and
(5) Skull-stripping. Image resampling is performed at 1 mm3 through a cubic
b-spline interpolation method. Denoising is carried out using the adaptive Non
Local Means (NLM) filter [8] with a search window of 7 × 7 × 7 voxels and a
patch window of 3 × 3 × 3 voxels. Magnetic field inhomogeneities are removed
with the N4 software [9]. Affine registration is conducted with the Advanced
Normalization Tools (ANTS) software [10], taking the contrast enhancement T1-
weighted sequence as patient’s reference. Finally, brain extraction is performed
with an in-house pipeline based on a on-linear registration of the T1c sequence
to a template with a known intra-cranial mask.

MTSimaging GBM segmentation considers three tissues to be segmented:
Enhancing tumour, oedema and necrosis. Segmentation is performed through an
automated unsupervised segmentation system based on the methods proposed
in [11,12]. The system employs the Directional Class Adaptive Spatially Vary-
ing Finite Mixture Model (DCA-SVFMM) algorithm [13], which remains the
state of the art of classification algorithms from the unsupervised learning fam-
ily. Moreover, this algorithm is also enclosed in the family of structured learning
methods, as it introduces statistical dependencies between the random variables
of the model through a continuous Markov Random Field (MRF) in the form of
a prior distribution over the parameters of the model. The system builds over
this algorithm and follows a hierarchical strategy for the segmentation that iden-
tifies the pathological structures from most general to most specific. First the
whole lesion area is detected through a 2-class segmentation (hypo-intense and

http://mtsimaging.com
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hyper-intense areas) of the T2 and Flair sequences. The lesion region L is defined
as the largest connected component of the hyper-intense class. Next, the post-
contrast T1 image is also segmented into two classes and the L region is employed
to search for the enhancing tumour structure. Necrosis is detected through a com-
bination of morphological binary operations over the enhancing tumour structure
and through a segmentation of hypo-intense and hyper-intense structures within
L in the post-contrast T1 and T2 sequences respectively. Finally, the oedema
tissue is defined as the remaining region of L after the enhancing tumour and
necrosis delineations.

2.2 Hemodynamic MTS Pipeline

The hemodynamic MTS pipeline provides an advanced GBM analysis by com-
bining anatomical and functional MRI. Specifically, due to the high angiogenic
and vascular proliferative nature of the GBM, the hemodynamic MTS pipeline
employs PWI to enrich the study of the lesion. Currently, Dynamic Susceptibility
Contrast (DSC) perfusion is supported by MTSimaging. Automated quantifica-
tion of DSC parameters is conducted and employed to generate a nosologic map
of the GBM where tissues are divided in vascular habitats sharing a common
hemodynamic behaviour. A more complete automated radiological report is also
generated to inform about the findings of the process. Volumetry analysis and
quantitative perfusion statistics at each tissue and habitat are reported.

The hemodynamic MTS pipeline includes all the modules of the anatomi-
cal pipeline plus the modules referred to perfusion quantification and vascular
habitats segmentation. Several pre-processing modules are adapted to handle
the DSC sequence: a temporal denoising based on Principal Component Analy-
sis (PCA) is performed to remove the noise of the concentration curves, while
bias field correction is computed with a common bias intensity map for all the
sequence to not alter the morphology of the curves.

DSC quantification involves the computation of the hemodynamic parame-
ters obtained from the kinetic analysis of the concentration-time curves retrieved
from the first pass of a intravenously injected paramagnetic contrast agent [14].
MTSimaging implements the two main models usually employed to quantify
the hemodynamic parameters: the mono-compartmental model and the phar-
macokinetic (bi-compartmental) model [15]. Our system quantifies both the
mono-compartmental maps: Cerebral Blood Volume (CBV), Cerebral Blood
Flow (CBF) and Mean Transit Time (MTT); and the pharmacokinetic maps:
Ktrans, ve and Kep from DSC sequence following the recommendations proposed
in [16]. The Arterial Input Function (AIF) is also automatically computed by
selecting those curves with highest area under the curve, earliest Time To Peak
(TTP), highest peak height and quickly wash-out.

GBM tumour present a high degree of heterogeneity which is manifested
into different patterns of hemodynamic behaviour related to the neovascularity of
each area. The hemodynamic MTS pipeline intends to capture this heterogeneity
by searching for different vascular habitats inside the GBM that present common
hemodynamic properties.
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Four patterns of hemodynamic activity are considered by MTSimaging to
generate the vascular habitats segmentation. Such patterns are mainly focused to
describe the following regions inside the GBM: (1) the more angiogenic enhancing
tumour region, (2) the less angiogenic enhancing tumour region, (3) the tumour
infiltrated oedema area and (4) the vasogenic oedema.

The vascular habitats segmentation allows to visualize the vascular hetero-
geneity of the GBM and distinguish regions within a tissue with different imaging
properties that would otherwise be obscured. Hence, it could be considered as
an objective methodology to define ROIs within the GBM based on a multi-
parametric combination of morphological and functional imaging criteria. We
called this analysis Hemodynamic Tissue Signature. In addition to the segmen-
tation, a signature graph is generated in the form of a radar chart, where the
hemodynamic properties of each habitat are summarized and compared with
each other.

3 MTS On-Line Service

MTSimaging evaluation version is hosted at http://mtsimaging.com and is free
for non-commercial research purposes. MTSimaging is not available for clinical
purpose yet. A simple registration is required to start using the platform. The
registration requests a user name, a valid email and the user institution of origin.
The email is required to inform the user about the status of their jobs and to
provide the links to access to the results. For practical reasons, result files will
only be accessible in the system for a week from the end of the job. MTSimag-
ing currently supports NIfTI, compressed NIfTI and DICOM medical imaging
formats.

3.1 Platform Architecture

The on-line service architecture is divided in two blocks: the orchestrator and
the slaves. The orchestrator controls the user requests and manages the work
flows to assign the jobs to the slaves. The slaves group comprises a cluster of
7 Intel Xeon servers, each one with two physical processors and 12 threads per
processor, 64 GB of RAM and 1 TB of hard disk drive. In total, 168 threads and
up to 448 GB of RAM are available to supply the requirements of the service.

MTSimaging software implementation can be organized into 3 main levels:
the web service level, the orchestrator level and the algorithms and computa-
tional methods level. The web service layer and user GUI is implemented in
Wordpress, PHP and Java. The orchestrator layer, which is the responsible of
the data work flows, is implemented in MATLAB and python. Finally, the algo-
rithms for pre-processing, segmentation and image analysis are mainly developed
in C++ with ITK and Eigen libraries, and MATLAB scripting. Radiological
reports are written in LaTEX.

http://mtsimaging.com
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Fig. 2. MTS imaging landing webpage.

3.2 System Output and Results

Anatomical and hemodynamic MTS results can be accessed trough a link pro-
vided to the user via email. Such link points to a compressed file with the result-
ing images and masks. All images are returned in compressed NIfTI format.
Additionally, an independent link is also provided to download the radiological
report of the corresponding pipeline.

Anatomical pipeline. MTSimaging anatomical pipeline has been tested with 100
cases from the training set of BRATS 2015 dataset, and 20 cases from the BRATS
2013 test set. Consider that MTSimaging segmentation system employs an unsu-
pervised classification approach, thus no training set is employed. Hence, results
obtained with the BRATS 2015 training set are as fair as the results obtained
with the BRATS 2013 test set.

The median Dice segmentation results for the BRATS 2015 training set
were: 0.73 for the enhancing tumour + oedema + necrosis segmentation, 0.82
for the enhancing tumour + necrosis segmentation and 0.83 for the enhancing
tumour segmentation. The results obtained for the BRATS 2013 test set were:
0.76 for the enhancing tumour + oedema + necrosis segmentation, 0.85 for the
enhancing tumour + necrosis segmentation and 0.81 for the enhancing tumour
segmentation.

The anatomical pipeline output includes the pre-processed original images,
the brain extraction intra-cranial mask and the GBM tissue segmentation mask.
The anatomical report summarizes the information of the segmentation process
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and extends the study by including a volumetry analysis of the GBM tissues.
Volumetry results are provided in absolute units (mL of tissue) and in relative
percentage with respect to the complete intra-cranial cavity. The analysis takes
approximately 50 mins.

Hemodynamic MTS pipeline. The hemodynamic MTS pipeline includes all the
results of the anatomical pipeline and extends it with the quantified biomarker
maps, the vascular habitats segmentation and the HTS information. The pipeline
has been evaluated on a retrospective dataset comprising cases within 2012 to
2013 from Hospital La Fe from Spain. Cox proportional hazard modelling and
linear regressions were conducted to examine the relationship between the per-
fusion parameters located at each vascular habitat and the patient’s overall sur-
vival. Strong relationships were found with hazard ratios >> 1 and R2 between
0.45 and 0.75 with p-values < 0.05 corrected for multiple hypothesis testing with
False Discovery Rate at level < 0.05. In contrast, perfusion parameters located
at the conventional GBM tissue segmentation did not yield statistically signifi-
cant results for the study of patient’s overall survival. The pipeline outputs the
CBV, CBF, MTT, Ktrans, ve, Kep and K2 maps in addition to the pre-processed
original images, the brain extraction intra-cranial mask and the segmentation
masks. The analysis takes approximately 1 h.

The report is also upgraded including perfusion statistics at each tissue and
habitat of the GBM, and the HTS diagrams that quickly summarizes the vascular
properties of each habitat. An example of hemodynamic MTS report is shown
in Fig. 3.

Fig. 3. Example of several pages of the hemodynamic MTS report.
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4 Conclusions

The high complexity of the GBM requires the combined analysis of different
imaging techniques that allows the complete characterization of the lesion and
the improvement in the clinical decision making. To facilitate the use of multi-
parametric analyses into the clinical routine, it is important to develop easily
accessible and completely automated services that can generate clinical knowledge
integrable into the daily routine. In this work, we present the evaluation version of
a GBM analysis service called MTSimaging (http://mtsimaging.com), that imple-
ments an anatomical analysis and an advanced hemodynamic MTS analysis which
combines anatomical and perfusion biomarker information. The system generates
a radiologic report that summarizes the relevant findings detected in the analysis,
and returns the conventional segmentation of the GBM tissues, the vascular habi-
tats map and the pre-processed images without MR artefacts. Currently, we are
conducting a multi-center evaluation of the MTSimaging service to consolidate
the platform.
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de las tecnoloǵıas de firma tisular y modelos mutiescala para el soporte a la planifi-
cación de la radioterapia en el tratamiento del glioblastoma, funded by Instituto de
Investigación Sanitaria H. Universitario y Politécnico La Fe; by project CON2014002
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3. Fuster-Garcia, E., Garćıa-Gómez, J.M., De Angelis, E., Sraum, A., Molnar, A.,
Van Huffel, S., Stamatakos, G.: Use case II: imaging biomarkers and new trends
for integrated glioblastoma management. In: Mart́ı-Bonmat́ı, L., Alberich-Bayarri,
A. (eds.) Imaging Biomarkers, pp. 181–194. Springer, Heidelberg (2017)

http://mtsimaging.com


An Online Platform for the Automatic Reporting 51

4. Knopp, E.A., Cha, S., Johnson, G., Mazumdar, A., Golfinos, J.G., Zagzag, D.,
Miller, D.C., Kelly, P.J., Kricheff, I.I.: Glial neoplasms: dynamic contrast-enhanced
T2*-weighted MR imaging. Radiology 211(3), 791–798 (1999)

5. Shah, M.K., Shin, W., Parikh, V.S., Ragin, A., Mouannes, J., Bernstein, R.A.,
Walker, M.T., Bhatt, H., Carroll, T.J.: Quantitative cerebral MR perfusion imag-
ing: preliminary results in stroke. J. Magn. Reson. Imaging 32(4), 796–802 (2010)

6. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby,
J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L.: The multimodal
brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag-
ing 34(10), 1993–2024 (2015)
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Abstract. Template matching is a popular approach to computer-aided detec-
tion of brain lesions from magnetic resonance (MR) images. The outcomes are
often sufficient for localizing lesions and assisting clinicians in diagnosis.
However, processing large MR volumes with three-dimensional (3D) templates
is demanding in terms of computational resources, hence the importance of the
reduction of computational complexity of template matching, particularly in si-
tuations in which time is crucial (e.g. emergent stroke). In view of this, we make
use of 3D Gaussian templates with varying radii and propose a new method to
compute the normalized cross-correlation coefficient as a similarity metric
between the MR volume and the template to detect brain lesions. Contrary to the
conventional fast Fourier transform (FFT) based approach, whose runtime
grows as O N logNð Þ with the number of voxels, the proposed method computes
the cross-correlation in O Nð Þ. We show through our experiments that the pro-
posed method outperforms the FFT approach in terms of computational time,
and retains comparable accuracy.

1 Introduction

A brain lesion is typically a region with abnormal tissue due to brain infection, mal-
formation, injury, or disease. Lesions appear in various types of diseases including
brain abscesses, tumors, stroke, and multiple sclerosis (MS). Brain imaging plays a
pivotal role in early diagnosis and treatment of such diseases. The identification of the
exact location of a lesion helps to determine the lesion characteristics and clinical
implications, on the basis of which clinicians make diagnosis and plan treatment.
Magnetic resonance imaging (MRI) is widely regarded as one of the most Preferred
imaging modalities for visualizing brain lesions, because it is free of ionizing radiation
and yields high soft-tissue contrast. In conventional clinical diagnosis, two-dimensional
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(2D) slices from the MR volume are visually screened, which is a time-consuming task
and prone to inter-observer variations. A fully automatic lesion detection tool can make
the screening task considerably faster, easier, and potentially more accurate.

Researchers have shown interest in template matching for computer-aided detection
of abnormal regions from medical images. In template matching, the image is searched
and locally compared with a template image, until the locations in the image that best
match the template are found. This process can then be repeated for a set of templates
with various lesion sizes, eventually revealing the optimum location and size of the
lesion. This technique has been explored in detecting masses from mammogram images
[1, 2]. Nodules [3, 4] and metastatic lesions [5] in the lungs have also been detected by
template matching algorithms from computed tomography images. In other work, an
anatomical template was used to develop an ‘adaptive, template moderated, spatially
varying statistical classification’ framework for segmentation of MS lesions and brain
tumors [6]. The normalized cross-correlation coefficient (NCCC), which can be com-
puted in the frequency domain, is a suitable choice for the similarity measure between
three-dimensional (3D) templates and the MR volumes [7]. The cross-correlation
coefficient has also been employed as a similarity metric in contrast-enhanced MRI to
detect small metastatic lesions [8], where the tumor growth pattern was simulated by a
3D spherical-shell template. The different characteristics of lesions, e.g. shape, size, and
brightness, were explored to set up rule-based criteria, and a nodule enhancement
strategy was introduced to improve the overall performance of the proposed technique.
In a different study, NCCC was used to measure the similarity between a black-blood
MR pulse sequence and 3D spherical templates, and finally artificial neural network
driven pattern classifier was adapted to characterize the metastatic lesions and
non-tumor regions [9]. In another study, NCCC was adopted as a similarity measure
between MRI images and templates, where various steps such as noise reduction, brain
extraction and ROI selection, 3D template building, and matching with the tumor region
were followed for detection of brain tumors [10]. A challenging issue in existing tem-
plate matching techniques is the determination of the optimal template size, especially
since the runtime of the algorithm increases proportionally to the number of tried sizes.
Designing an efficient mathematical framework for faster computation of NCCC is
therefore a critical task in the field of computer-aided lesion detection.

In this work, we focus on reducing the time complexity of the computation of
NCCC with a 3D Gaussian template. Inspired by a fast method of computation of the
continuous wavelet transform [11], we consider the convolution with the 3D Gaussian
template as multiple convolutions with a box kernel per the principle of central limit
theorem, which takes linear time, O Nð Þ, with respect to the number of voxels (Sect. 2).
This is in contrast to the conventional fast Fourier transform (FFT) based method for
NCCC computation, with the computational complexity of O N logNð Þ. We show
through our experiments that the proposed method speeds up the computation of
NCCC noticeably, while practically keeping the same accuracy as the FFT-based
approach (Sect. 3).
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2 Proposed Methodology

Let f X
*
� �

be the D-dimensional input image, the lesions of which are to be detected. In

this work, the D-dimensional Gaussian is proposed as the template, which is approx-
imated, following the central limit theorem, by convolving a D-dimensional symmetric

and normalized box kernel, hD �ð Þ, with itself n� 1 times, denoted as hðnÞD �ð Þ (aka
B-splines). In our experiments, a small value of n ¼ 2 or n ¼ 3 turned out to be
sufficient. The sizes of the box kernel and the engulfing template are 2a and 2b in all

dimensions, respectively; i.e. hD X
*
� �

is 1= 2að ÞD if X
* 2 Xa, and 0 otherwise, where

Xl :¼ X
*j X1j j; . . .; XDj j � l
n o

. To ensure that the box kernel fits in the engulfing tem-

plate after the convolutions, we restrict its size as: 0\a� amax\b=n. The similarity
between the given image and the symmetric template with a varying a can be computed
from the following formula for the NCCC:
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where �f X
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and hðnÞD represent the mean of the image inside the template centered at X
*

,

and the mean of the template, respectively. Our goal is to maximize NCCC with respect

to both a and X
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, to accurately localize the lesions. Since by definitionR
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Thanks to the separability property of the template, i.e. hðnÞD X
*
� �

¼ QD
j¼1 h

ðnÞ
1 Xj
� �

, we

can first find the solution to this convolution for D ¼ 1 and then apply it sequentially
for each dimension. For D ¼ 1, we note that:

f � h nþ 1ð Þ
1 ¼ f � h nð Þ

1

� �
� h1: ð2Þ

We assume (and then verify) the following solution for the convolution:

f � h nð Þ
1

� �
Xð Þ ¼ 1
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cn;kFn X þ kað Þ; ð3Þ
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where Fn Xð Þ ¼ R X�1 Fn�1 X 0ð ÞdX 0, with F0 ¼ f . Let cn;k ¼ 0 for kj j[ n, and also c0;0 ¼
1 for the case with no convolution. Now we substitute Eq. (3) in Eq. (2):
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According to Eq. (3):
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This validates our assumption in Eq. (3) by induction, as it is true for the base case
n ¼ 0, and provided that it is true for n, it holds for nþ 1 with the following recursive
relationship for c, which is obtained by coefficient matching between Eqs. (4) and (5):

cnþ 1;k ¼ cn;k�1 � cn;kþ 1: ð6Þ

For example, c1; �1;0;1f g ¼ �1; 0; 1f g and c2; �2;...;2f g ¼ 1; 0;�2; 0; 1f g. Being clo-
sely related to Pascal’s triangle, Eq. (6) is solved as follows:

cn;k ¼ �1ð Þ nþ sð Þ n
s

� �
nþ k ¼ 2s

0 nþ k ¼ 2sþ 1
;

8<
: s 2 Z : ð7Þ

We now extend this to D dimensions and solve the first numerator term of Eq. (1):

Z
Xb

f X
* þX 0*

� �
h nð Þ
D X 0*
� �

dX 0*

¼ 1

2að ÞnD
Xn

k1;...;kD¼�n

YD
j¼1

cn;kj

 !
Fn;D X

* þ ak
*

� �
; ð8Þ

where Fn;j X
*
� �

:¼ R Xj

�1 Fn�1;j X1; . . .;X
0
j ; . . .;XD

� �
dX

0
j , with F0;j :¼ Fn;j�1 for j[ 1,

and F0;1 :¼ f . The remainder of the numerator of Eq. (1) can be computed similarly to
Eq. (8) (with n ¼ 1):
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�h nð Þ
D

Z
Xb

f X
* þX 0*

� �
dX 0*

¼ � 1

2bð ÞD
X1

k1;...;kD¼�1

YD
j¼1

c1;kj

 !
F1;D X

* þ bk
*

� �
: ð9Þ

Next, we rewrite the first factor of the denominator of Eq. (1) using the popular

expansion of the variance as
R
Xb

f ðX* þX 0* Þ � �f ðX*Þ
� �2

dX 0* ¼ 2bð ÞD f 2ðX*Þ � �f ðX*Þ2
� �

,

where both f 2 X
*
� �

and �f X
*
� �

are calculated similarly to Eq. (8) as follows:

�f X
*
� �

¼ 1

2bð ÞD
X1

k1;...;kD¼�1

YD
j¼1

c1;kj

 !
F1;D X

* þ bk
*

� �
;

f 2 X
*
� �

¼ 1

2bð ÞD
X1

k1;...;kD¼�1

YD
j¼1

c1;kj

 !
G1;D X

* þ bk
*

� �
;

ð10Þ

where Gn;j is defined similarly to Fn;j, except that G0;1 ¼ f 2. Lastly, we calculate the
second factor in the denominator of Eq. (1):

Z
Xb

h nð Þ
D ðX 0*

Þ � h nð Þ
D

� �2

dX 0*

¼ 2bð ÞD h nð Þ2
D � h nð Þ

D

2
� �

: ð11Þ

The Fourier transform of the box function is F hDf g ¼QD
j¼1 sinc axj

� �
, which

leads to the Fourier transform of the kernel F h nð Þ
D

n o
¼ F hDf gn¼QD

j¼1 sinc
n axj
� �

via the convolution theorem. The integral of the template is
R
Xb

h nð Þ
D X 0*� �

dX 0* ¼R
R

D h
nð Þ
D X 0*� �

dX 0*

¼ F h nð Þ
D

n o			
x
*¼0

¼ 1, from which the template mean is computed as

h nð Þ
D ¼ 1= 2bð ÞD. As for the mean of the square of the template, we use Parseval’s

theorem as follows:

Z
Xb

h nð Þ2
D X 0*
� �

dX 0*

¼
Z
R

D
h nð Þ2
D X 0*
� �

dX 0*

¼ 1

2pð ÞD
Z
R

D

F h nð Þ
D

n o2
x
*
� �

dx*

¼
YD
j¼1

1
2p

Z 1

�1
sinc2n axj

� �
dxj ¼ 1

2pa

Z 1

�1
sinc2nx dx

� �D

:

ð12Þ

We now define and compute [12]:

bn:¼
1
2p

Z 1

�1
sinc2nx dx ¼ n

Xn�1

i¼0

�1ð Þi n� ið Þ2n�1

i! 2n� ið Þ! : ð13Þ

Therefore, h nð Þ2
D ¼ bn

2ab

� �D
, and substituting in Eq. (11) leads to:
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Z
Xb

h nð Þ
D ðX 0*

Þ � h nð Þ
D

� �2

dX 0*

¼ bn
a

� �D

� 1

2bð ÞD : ð14Þ

Substituting all of the above in Eq. (1) and simplifying results in the following
formula for the proposed fast approach of computing NCCC:

NCCC X
*
� �

¼
2b
2að Þn

� �DPn

k
*¼�n

QD
j¼1 cn;kj

� �
Fn;D X

* þ ak
*

� �
�P1

k
*¼�1

QD
j¼1 c1;kj

� �
F1;D X

* þ bk
*

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð ÞDP1

k
*¼�1

QD
j¼1 c1;kj

� �
G1;D X

* þ bk
*

� �
� P1

k
*¼�1

QD
j¼1 c1;kj

� �
F1;D X

* þ bk
*

� �� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2bnb
a

� �D
�1

r ;

ð15Þ

where
Pn

k
*¼�n

�ð Þ is short for Pn
k1;...;kD¼�n �ð Þ. NCCC values range from −1 to 1.

Note that Fn;D; F1;D, and G1;D are independent of a and can be pre-computed, along
with the second term in the numerator and the first factor in the denominator of Eq. (15).
Furthermore, the second factor in the denominator is a scalar that is computed fast in
O 1ð Þ for each a. Thus, in the proposed approach to estimate NCCC with the Gaussian
template, the bulk of the computational cost is only due to the first term in the numerator
of Eq. (15), which can be computed in O Nð Þ for each a, with N the number of voxels in
the image. On the contrary, the computational complexity of FFT is O N logNð Þ [13],
making the overall computational cost of lesion detection noticeably higher for the
FFT-based algorithm (template has to be zero-padded to the size of the image) than the
proposed approach. This difference in computational cost is particularly amplified given
that the NCCC needs to be repeatedly computed for many values of a.

3 Experimental Results

We evaluated the proposed template matching approach by comparing its performance
with that of the conventional FFT-based approach. We used both artificial volumes,
and real brain T2-weighted Fluid Attenuation Inversion Recovery (FLAIR) MRI vol-
umes containing MS lesions. To avoid boundary artifacts, the images were zero-padded
with b elements on the positive side of each dimension. In each experiment, the NCCC
was computed for a ¼ 1; . . .; amax. Both algorithms were implemented in MATLAB.

3.1 Experiments on Synthetic Data

We first evaluated the performance of the proposed approach on synthetic data. Twenty
artificial volumes of the size 513 � 513 � 513 voxels were created, each of which
contained an enhancing sphere with random radius (from 8 to 21 pixels) and random
location in the volume. We used both our algorithm ðn ¼ 2; b ¼ 50; amax ¼ 24Þ and the
FFT-based approach (similar parameters, using the exact Gaussian kernel) to detect the
sphere from the volume. We computed the NCCC for 24 values for the radius and found
its maximum with respect to the location and the radius. Both methods accurately
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recovered the locations of all of the spheres i.e. the centers of the detected spheres are
identical to the original ones for all 20 volumes. Since the standard deviation of the
Gaussian is proportional, but not necessarily equal to the size of the sphere that it detects,
we conducted a regression analysis on the liner relationship between the original radius
and the detected radius. Their ratio was 1.61 ± 0.05 and 1.74 ± 0.06 for the proposed
and the FFT methods, respectively, both values significant (p = 9 � 10−18).

We performed a different experiment on volumes with varying dimensions to
compare the computational costs of the proposed and the FFT-based algorithms for
NCCC computation.1 We made 20 volumes with linearly increasing number of voxels,
from 106 (100 � 100 � 100) to 1.25 � 108 (500 � 500 � 500), with each volume
containing a bright sphere of radius 17 pixels at the center. For each volume, each
algorithm was run 10 times on a Xeon 5472 3.0 GHz processor ðn ¼ 2; b ¼ 50;
amax ¼ 24Þ. The mean and the standard deviation of the runtimes are shown in Fig. 1.
Our method (red curve) was 2.4 ± 0.4 times faster than the conventional FFT-based
method (blue curve), while using 38% ± 4% less resident memory. The irregularity in
the FFT runtime is partly because it is fastest when each dimension is a power of two
(e.g., the valley at 9.9 � 107).

3.2 Lesion Detection Experiments on Real MR Volumes

Next, we tested the two algorithms on a T2-FLAIR 1 mm3 isotropic-voxel human brain
MR volume that contained MS lesions. We used n = 2, b = 7, and amax ¼ 3 due to the
small size of the lesions (according to Sect. 3.1, a = 3 corresponds to a radius of 5). For
each voxel, we computed the maximum value of NCCC across all a. Then, to locate the
top 10 most probable lesion areas on this a-maximized volume, we found the voxel
with the maximum value, masked a sphere around it (with a radius twice the optimal a),
then repeated this process to find the next maxima. The true positive (red circle) and
false positive (blue circle) lesions from top 10 detected areas are shown in their
respective slices in Fig. 2 for the proposed (two top rows) and the FFT-based (two

Fig. 1. Runtime analysis of proposed (red) and FFT-based (blue) approaches. (Color figure
online)

1 We ran the experiments on a Linux computing cluster. Although we used MATLAB with the
singleCompThread option, it still multithreaded the codes on multiple cores. Therefore, here for each
experiment we report the total time spent by the cores (CPU time), as opposed to the real-world time
elapsed between the start and end times of the code (wall time).
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bottom rows) approaches. The green circles are the intersection of the slice with the
spheres that represent detected lesions centered in other slices. Essentially, these results
show the ability of proposed algorithm in efficient detection of non-rounded lesions,
which is utterly useful for the clinicians. Both methods equally identified six true
lesions and four false lesions. Among the true positives, five were commonly identified
by both algorithms. The results suggest that the accuracies of the two methods are
similar for brain lesion detection from MRI. In this experiment, we detected the lesions
from the entire brain; however, if desired, one can restrict the detection to the white
matter (or any other region of interest) using a mask.

Fig. 2. The top 10 (from left to right) detected lesions by the proposed method (top two rows)
and the FFT-based approach (bottom two rows) are each represented in their corresponding slices
by a red (true positive) or a blue (false positive) circle. Green circles are intersections with other
detected spheres in nearby slices. (Color figure online)
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4 Conclusions

In this work, we have presented a fast NCCC-based template-matching framework,
with an approximated multi-dimensional Gaussian kernel. The proposed algorithm
significantly reduces the computational complexity of automatic detection of brain
lesions compared to the FFT-based approach, virtually without compromising the
accuracy. As part of the future work, we will extend the proposed framework to use
more flexible templates, especially those suitable for the detection of ring enhancing
lesions containing non-enhancing region in the center from MRI with contrast agents.
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Abstract. Tracking the progression of brain tumors is a challenging
task, due to the slow growth rate and the combination of different tumor
components, such as cysts, enhancing patterns, edema and necrosis. In
this paper, we propose a Deep Neural Network based architecture that
does automatic segmentation of brain tumor, and focuses on improving
accuracy at the edges of these different classes. We show that enhancing
the loss function to give more weight to the edge pixels significantly
improves the neural network’s accuracy at classifying the boundaries. In
the BRATS 2016 challenge, our submission placed third on the task of
predicting progression for the complete tumor region.

Keywords: Deep neural networks · Segmentation · Loss functions ·
Glioblastoma

1 Introduction

Accurate quantification of gross tumor volumes of brain tumor is an important
factor in the assessment of therapy response in patients — it is also important
to quantify the volume of the different tumor components, e.g., cysts, enhancing
patterns, edema and necrotic regions. In particular, identifying the edges of
these tumor components and observing their evolution over time is critical to
an accurate assessment of disease progression. Multi-modal MRI is often used
to detect, monitor and quantify this progression [1].

Most automatic segmentation models use traditional machine learning
approaches — features are manually defined and fed to a classifier, and the
algorithms focus on learning the best weights for the classifier. Over the past
couple of years, deep learning models have enabled automatic learning of fea-
tures in addition to the weights used for classification. Several methods using
deep neural networks (DNNs) for brain tumor segmentation have already been
proposed [2–6]. Our work builds upon the work by Pereira et al. [4] which uses a
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DNN that comprises a combination of convolutional and fully connected layers,
where the convolutional layers have small 3 × 3 kernels and max-pooling layers.

In addition to standard accuracy measures such as dice scores that determine
classification accuracy across the entire segment, we focus our efforts to improve
performance at the boundaries between segments. To this end, we propose a
pixel-wise weighted cross-entropy loss function, where pixels that are at the
boundary of different classes are given more weight and hence the DNN learns
to classify them better. We find that incorporating such a weighted function
improves the performance of the DNN by 1.4–4.5% measured as an average of
out-of-sample dice scores for each of the three regions of interest. It also lowers
the standard deviation of the out-of-sample dice scores by 4–18% for each of the
three regions. Further, visual inspections of the DNN’s predictions also show that
our approach leads to much better classification of the tumor at the boundaries
between different regions.

2 Dataset

The training dataset of BRATS 2015 [1] comprises brain MRIs for 274 patients
— each MRI scan has four modalities: T1, T1c, T2, and FLAIR. All images are
of dimension 240 × 240 × 155 voxels. All images are already aligned with the
T1c modality and are skull stripped. Ground truth is provided for each voxel in
terms of one of 5 labels: non-tumor, necrosis, edema, non-enhancing tumor and
enhancing tumor. Three tumor regions of interest are defined in this problem:

– Complete tumor region that includes all tumor voxels.
– Core tumor region that includes all tumor voxels except edema.
– Enhancing tumor region that consists of only the enhancing tumor voxels.

We measure accuracy using the Dice score, which measures the overlap between
the ground truth and predictions over each region of interest, and is formally
defined as:

Dice Score =
|P1 ∩ T1|

1
2 (|P1| + |T1|)

,

where P1 and T1 denote the predicted and ground-truth positives, respectively.
We compute three dice scores, one for each tumor region: complete, core, and
enhancing.

3 DNN Architecture for MRI Segmentation

DNN Architecture. For our submission to the challenge, we used the same DNN
proposed by Pereira et al. [4], whose network architecture is illustrated in Fig. 2.
This DNN takes a 2-dimensional patch-based approach. That is, each patient’s
MRI is converted to 155 axial slices, and within each slice, every pixel’s class is
predicted by taking as input a 33 × 33 patch around the pixel, and combining
this across all four modalities. Thus, the input to the DNN has dimensionality
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(a) T1 Modality (b) T1c Modality

(c) T2 Modality (d) FLAIR Modality

(e) Ground truth

Fig. 1. (a–d) Different modalities of a sample MRI (axial slice) and (e) ground-truth:
the tumor region is most clearly identified on the T1c modality. The label-color map-
ping for the ground-truth is: necrosis (blue), edema (green), non-enhancing tumor (red),
enhancing tumor (pink). (Color figure online)

4× 33× 33, and the output is the class of the pixel: non-tumor, necrosis, edema,
non-enhancing or enhancing tumor. The network uses 8 layers, and has about
28 million parameters.

We also considered two other DNN architectures (U-net [7] and Tri-planar
version of the above DNN). However, as we discuss in Sect. 5, the above described
DNN (Fig. 2) dominated both these architectures, and so we focused our study
on it.

Pixel-Wise Weighted Loss Function. In order to improve accuracy of prediction
around the edges, we modify the cross-entropy loss function to weigh pixels based
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Fig. 2. Network architecture

on their proximity to pixels of other classes. For a mini-batch of M patches, our
proposed training loss function is:

Loss = −
M∑

i=1

wi log pi, (1)

where pi is the predicted probability for the correct label of patch i and the
weight for each patch wi is given by:

wi =
N + # patch-i pixels with label different from center pixel

N + # patch-i pixels with label same as center pixel
(2)

If we set the weight wi = 1 for all patches, then (1) reduces to the regular
cross-entropy loss function. Intuitively, identifying the label of the center pixel
of a patch correctly would be easier if its neighboring pixels are also of the same
label. This implies that the outer edge pixels of regions of a particular label would
be more difficult to segment than pixels that lie in the interior of such regions.
The weights wi measure this difficulty by computing a ratio of the number of
pixels in the patch with labels different from the center pixel to the number of
pixels in the patch with the same label as the center pixel. The weights wi weight
the “more difficult” patches that have more pixels in the patch that are different
from the center pixel, higher than patches that are “easier.” The constant N
is a “smoothing” hyper-parameter that is added to ensure the weights remain
bounded in a reasonable range so that the DNN learns consistently from all
patches, and is only slightly leaned toward the difficult patches.

We also add L1- and L2-regularization to the loss function to prevent over-
fitting.

Pre-processing. We perform very limited pre-processing. In particular, we per-
form N4 bias correction on the T1 and T1c modalities. We transform each
input channel on a per image basis by first thresholding intensities lower than
1-percentile and greater than 99-percentile and then normalizing all values to
have zero mean and unit standard deviation.
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Training and Testing. We train the network using a combination of High-Grade
Glioblastoma (HGG) and Low-Grade Glioblastoma (LGG) images. We train
using 243 MRIs, and reserve the remaining 27 MRIs for out-of-sample testing
(approximately 90/10 split). We maintain the same training and testing datasets
throughout the experiments.

Our dataset is highly skewed: with most voxels healthy (approximately
92.4%), and only few with tumors. In particular, we had approximately 0.4%
necrosis, 5.1% edema, 0.7% non-enhancing tumor and 1.3% enhancing tumor on
average. When dealing with such skewed data, a common practice is to perform
two-stage training [2]. In this, the first-stage is an equiprobable stage in which
the patches are sampled from the training dataset in a manner so that each
label (non-tumor, necrosis, edema, enhancing tumor and non-enhancing tumor)
is equally-likely to be chosen. The second-stage is a fine-tuning stage, in which
the patches are sampled according to the actual distribution with which they
occur in the dataset, but the training is used to train only the fully-connected
layers of the DNN. That is, the higher convolutional layers are fixed, or frozen,
during the fine-tuning stage. Intuitively, the convolutional layers build a latent
representation of the patch, and the fully-connected layers use this latent rep-
resentation to classify the patch. The equiprobable training phase exposes the
convolutional layers to patches of all labels to help build better latent represen-
tations, and the fine-tuning phase then helps in refining the classification ability
of the fully connected layers.

We train the equiprobable phase for 500 epochs, and the fine-tuning phase
for 250 epochs. The overall training takes about 9 h, and segmenting an MRI
image takes about 6 min. For our submission to the BRATS 2016 challenge, we
used an ensemble of three such trained nets.

When comparing the baseline DNN (with regular cross-entropy loss func-
tion) with the (pixel-wise) weighted DNN, we use all the same hyper-parameters
except N . We also used data-augmentation by flipping the input patches both
horizontally and vertically.

Post-processing. As in [4], we remove small regions of voxels with predicted
tumor (of any label) below a cumulative voxel size of certain threshold. We
found that a threshold of 3,000 voxels worked best.

4 Results

Table 1 compares the dice scores for the three regions as described in Sect. 2
for the test data for the proposed DNN trained with (pixel-wise) weighted loss
function (N = 10, 000) and the baseline DNN, in which the usual cross-entropy
loss function is used. We observe that when using the DNN trained with the
weighted loss function, the average dice score improves for all three regions:
complete, core and enhancing (tumor). The improvement is the highest for the
core region. Further, the standard deviation of the dice scores across all images is
lower when using the weighted loss function. For the complete and core regions,
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Table 1. Test-set dice scores reported as mean (standard deviation). DNN with
weighted loss function (N = 10, 000) has a higher mean dice score, and lower stan-
dard deviation compared with the non-weighted baseline DNN.

DNN Complete Core Enhancing

Baseline 0.85 (0.11) 0.72 (0.22) 0.70 (0.26)

Weighted 0.87 (0.09) 0.75 (0.19) 0.71 (0.25)

the performance improvement was statistically significant with p = .038 and p =
.030, respectively; for the enhancing region, we obtained p = .080, which suggests
that with a larger test set, the performance improvement could potentially be
statistically established.

Table 2 displays the same results separated by the glioblastoma grade (HGG
and LGG). We observe that using the weighted loss function leads to consistent
improvement in the dice score in all cases. The improvement is in fact higher
for the LGG images. We also notice that the dice scores are quite low for both
methods for the enhanced tumor in LGG images (some LGG images have no
enhanced tumor, which leads to a low dice score for the prediction).

Table 2. Dice scores for test images separated by tumor grade (HGG and LGG).

DNN Complete Core Enhancing

HGG

Baseline 0.86 0.73 0.78

Weighted 0.87 0.76 0.79

LGG

Baseline 0.83 0.65 0.36

Weighted 0.86 0.68 0.37

Fig. 3. Groundtruth, prediction without weights and with weights (N = 10, 000). The
images depict 5 classes; the label-color mapping is: necrosis (blue), edema (green),
non-enhancing tumor (red), enhancing tumor (pink). (Color figure online)
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Figure 3 displays the ground truth, predictions of the baseline and weighted
models for the image slice of Fig. 1. Looking at the predictions of the baseline
model, we see that there are a large number of misclassifications at the edges of
the various regions. The pixel-wise weighted loss function is quite successful at
correctly classifying the edge pixels. We do see some misclassifications between
the blue (necrosis) and pink (enhancing tumor) regions, which may explain the
fact that for the enhancing region, the dice score is only marginally better for
the weighted model.

We also compare the specificity and sensitivity of both methods. Tables 3 and
4 displays these results across all images, and separated by grade. We observe
that the specificity is marginally higher for the DNN with pixel-wise weighted
loss function with the most significant improvement for LGG complete tumor
region. For sensitivity, the results are mixed. Across all images, the sensitivity is
slightly higher for the DNN with pixel-wise weighted loss function for core and
enhancing regions, but slightly lower for complete tumor. When segregating the

Table 3. Specificity scores for test images separated by tumor grade (HGG and LGG).

DNN Complete Core Enhancing

All

Baseline 0.987 (0.010) 0.997 (0.002) 0.997 (0.002)

Weighted 0.992 (0.006) 0.997 (0.003) 0.997 (0.002)

HGG

Baseline 0.988 0.997 0.997

Weighted 0.991 0.997 0.997

LGG

Baseline 0.984 0.996 0.999

Weighted 0.993 0.996 0.999

Table 4. Sensitivity scores for test images separated by tumor grade (HGG and LGG).

DNN Complete Core Enhancing

All

Baseline 0.86 (0.13) 0.70 (0.24) 0.78 (0.23)

Weighted 0.84 (0.13) 0.71 (0.22) 0.80 (0.21)

HGG

Baseline 0.75 0.71 0.80

Weighted 0.83 0.73 0.82

LGG

Baseline 0.89 0.71 0.73

Weighted 0.84 0.66 0.69
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images by glioblastoma grade, we see that DNN with pixel-wise weighted loss
function performs better for all regions for HGG images, but worse for all regions
for LGG images. These results suggest that there may be benefits to training
separate networks for HGG and LGG images.

5 Discussion

Selecting N. For our results in the previous section, we used N = 10, 000, which
is approximately ten times the number of pixels per patch. With this choice
of N , the weights per pixel range from 0.9 to 1.1. It is interesting that such a
small change in weights leads to the improved performance in the DNN. We tried
various other values for the hyper-parameter N (as reported in Table 5). We also
tried N = 100, however this performed quite poorly. The table also provides, as
a reference, the baseline case which can be considered as setting N = ∞.

Table 5. Dice scores for different values of hyper-parameter N .

N Complete Core Enhancing

1,000 0.85 (0.13) 0.75 (0.19) 0.72 (0.25)

10,000 0.87 (0.09) 0.75 (0.19) 0.71 (0.25)

20,000 0.86 (0.10) 0.75 (0.18) 0.71 (0.25)

100,000 0.85 (0.11) 0.73 (0.19) 0.70 (0.25)

Baseline 0.85 (0.11) 0.72 (0.22) 0.70 (0.26)

Value of Two-Stage Training. As mentioned earlier, we perform training of the
DNN in two stages. To understand the value of the fine-tuning phase, we com-
puted the dice scores for the DNN (weighted) after only completing the equiprob-
able training phase. In this case, we obtained dice scores of: 0.77 (complete), 0.65
(core) and 0.60 (enhanced). Comparing this with the dice scores in Table 1, we
see that there is significant benefit to the fine-tuning phase of training: about
10% for complete region, 15% for core region, and 20% for the enhanced region.

Comparison with Other Architectures. Before embarking on our study we com-
pared three different DNN architectures (with the regular cross-entropy loss
function), to pick the best candidate for studying the effect of introducing the
pixel-wise weighted loss function. In particular, we considered a tri-planar ver-
sion of the DNN displayed in Fig. 2, in which for each patch, the sagittal and
coronal slices containing the center pixel of interest were also used as input (so
the input was 12 channels instead of 4); such an architecture has been referred to
as 2.5D [8,9]. We also considered the popular U-net architecture [7]. For this we
did not obtain good results for direct segmentation, but instead we trained three
different networks, one for each region of interest, in a one-versus-rest fashion.
Table 6 displays the results. Our baseline DNN clearly dominates the tri-planar
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Table 6. Comparison of different unweighted architectures.

DNN Complete Core Enhancing

Baseline 0.85 (0.11) 0.72 (0.22) 0.71 (0.26)

U-net 0.87 (0.08) 0.63 (0.19) 0.60 (0.28)

Tri-planar 0.77 (0.22) 0.65 (0.27) 0.60 (0.29)

architecture. Turning to the U-net, it performs slightly better than our baseline
architecture for the complete tumor region, but performed worse for the core and
enhancing regions. Thus, put together with the fact that the U-net was trained
in a one-versus-rest fashion for each region, we chose to proceed our study with
the baseline architecture. The lower performance of the U-net was surprising,
and would make for an interesting future study.

6 Conclusions

In this paper, we propose a pixel-wise weighted loss function that focuses on
improving classification accuracy at edges of regions of different labels. This
loss function is a modification of the traditional cross-entropy loss function that
gives more weight to pixels that are surrounded by a large number of pixels of
different labels. Our out-of-sample results show that a small such modification
(with weights ranging from 0.9–1.1) improves the performance of the DNN by
1.5–4.5% on average. In the BRATS 2016 challenge, our submission placed third
on the task of predicting progression for the complete tumor region.
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Abstract. Deep learning techniques have been widely adopted for learn-
ing task-adaptive features in image segmentation applications, such as
brain tumor segmentation. However, most of existing brain tumor seg-
mentation methods based on deep learning are not able to ensure appear-
ance and spatial consistency of segmentation results. In this study we
propose a novel brain tumor segmentation method by integrating a
Fully Convolutional Neural Network (FCNN) and Conditional Random
Fields (CRF), rather than adopting CRF as a post-processing step of
the FCNN. We trained our network in three stages based on image
patches and slices respectively. We evaluated our method on BRATS
2013 dataset, obtaining the second position on its Challenge dataset and
first position on its Leaderboard dataset. Compared with other top rank-
ing methods, our method could achieve competitive performance with
only three imaging modalities (Flair, T1c, T2), rather than four (Flair,
T1, T1c, T2), which could reduce the cost of data acquisition and stor-
age. Besides, our method could segment brain images slice-by-slice, much
faster than the methods patch-by-patch. We also took part in BRATS
2016 and got satisfactory results. As the testing cases in BRATS 2016
are more challenging, we added a manual intervention post-processing
system during our participation.
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1 Introduction

Accurate automatic or semi-automatic brain tumor segmentation is very helpful
in clinical, however, it remains a challenging task up to now [1]. Gliomas are the
most frequency primary brain tumors in adults [2]. Therefore, the majority of
brain tumor segmentation methods focus on gliomas. So do we in this paper.
Accurate segmentation of gliomas is very difficult for the following reasons: (1)
in MR images, gliomas may have the same appearance with gliosis, stroke and
so on [3]; (2) gliomas have a variety of shape, appearance, and size, and may
appear in any position in the brain; (3) gliomas invade the surrounding tissue
rather than displacing it, causing fuzzy boundaries [3]; (4) there exists intensity
inhomogeneity in MR images.

The existing brain tumor segmentation methods can be roughly divided into
two groups: generative models and discriminative models. Generative models
usually acquire prior information through probabilistic atlas image registration
[4,5]. However, the image registration is unreliable when the brain is deformed
due to large tumors. Discriminative models typically segment brain tumors by
classifying voxels based on image features [6,7]. Their segmentation performance
is hinged on the image features and classification models. Since deep learning
techniques are capable of learning high level and task-adaptive features from
training data, they have been adopted in brain tumor segmentation studies [8–
14]. However, most of the existing brain tumor segmentation methods based on
deep learning do not yield segmentation results with appearance and spatial con-
sistency [15]. To overcome such a limitation, we propose a novel deep network by
integrating a fully convolutional neural network (FCNN) and a CRF to segment
brain tumors. Our model is trained in three steps and is able to segment brain
images slice-by-slice, which is much faster than the segmentation method patch-
by-patch [14]. Moreover, our method requires only three MR imaging modalities
(Flair, T1c, T2), rather than four modalities (Flair, T1, T1c, T2) [1,6–14], which
could help reduce the cost of data acquisition and storage.

2 The Proposed Method

The proposed brain tumor segmentation method consists of three main steps:
pre-processing, segmentation using the proposed deep network model, and post-
processing. In the following, we will introduce each step in detail respectively.

2.1 Pre-processing

As magnetic resonance imaging devices are not perfect and each imaging object is
specific, the intensity ranges and bias fields of different MR images are different.
Therefore, the absolute intensity values in different MR images or even in the
same MR image do not have fixed tissue meanings. It is necessary to pre-process
MR images in an appropriate way.
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In this paper, we firstly use N4ITK [16] to correct the bias field of each MR
image. Then, we normalize the intensity by subtracting the gray-value of the
highest frequency and dividing the revised deviation. We denote the revised
deviation by σ̃ and the MR image ready to be normalized by V , which is
composed by a set of voxels {v1, v2, v3, . . . , vN}. The intensity value of each
voxel vk is denoted as Ik. Then, the revised deviation σ̃ can be calculated by

σ̃ =
√∑N

k=1(Ik − Î)2/N , where Î denotes the gray-value of the highest fre-
quency. Besides, in order to process the MR images as common images, we also
change their intensity range to 0–255 linearly.

We take T2 for an example to show the effect of our normalization method.
Figure 1 shows 30 T2 MR images’ intensity histograms before and after normal-
ization. The 30 T2 MR images come from BRATS 2013 training dataset. It can
be seen from Fig. 1 that our normalization method can try to make different
MR images have similar intensity distributions, while guarantee their histogram
shapes unchanged. In most cases, the gray value of the highest frequency is close
to the intensity of white matter. Therefore, transforming the gray value of the
highest frequency to the same level is equivalent to transforming the intensity of
white matter to the same level. Then, after normalizing the revised deviation,
the similar intensities in different MR images can roughly have the similar tissue
meaning.

(a) (b)

Fig. 1. Comparison of 30 T2 intensity histograms before and after intensity normal-
ization. (a). Before normalization (after N4ITK); (b). After normalization

2.2 Brain Tumor Segmentation Model

Our brain tumor segmentation model consists of two parts, a Fully Convolutional
Neural Network (FCNN) and Conditional Random Field (CRF), as shown in
Fig. 2. The proposed model was trained by three steps, using image patches and
slices respectively. In the testing phase, it can segment brain images slice by
slice. Next, we will introduce each part of the proposed segmentation model in
detail.

FCNN. FCNN contains the majority of parameters in our whole segmentation
model. It was trained based on image patches, which were extracted from slices
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Fig. 2. The structure of our brain tumor segmentation model

of the axial view. Training FCNN by patches can avoid the problem of lacking
training samples, as thousands of patches can be extracted from one image.
It can also help to avoid the training sample imbalance problem, because the
number and position of training samples for each class can be easily controlled by
using different patch sampling schemes. In our experiment, we sampled training
patches randomly from each training subject and kept the number of training
samples for each class equal (5 classes in total, including normal tissue, necrosis,
edema, non-enhancing core, and enhancing core). As we didn’t reject patches
sampled in the same place, there existed duplicated training samples. Figure 3
shows the structure of the proposed FCNN. Similar to the cascaded architecture
proposed in [12], the inputs of our FCNN network also have two different sizes.
Passing through a series of convolutional and pooling layers, the large inputs turn
into feature maps with the same size of small inputs. These feature maps and
small inputs are sent into the following network together. In this way, when we
predict the center pixel’s label, the local information and the context information
in larger scale can be taken into consideration at the same time. Compared
with the cascaded architecture proposed in [12], the two branches in our FCNN
was trained simultaneously, while the two branches in the cascaded architecture
in [12] was trained in different steps. Besides, our FCNN network has more
convolutional layers.

FCNN is a fully convolutional neural network and the stride of each layer is
set to 1. Therefore, even though it was trained by patches, it can segment brain
images slice by slice.

CRF. Let’s briefly review conditional random field first. Consider an image I
composed by a set of pixels {I1, I2, . . . , IM}, where M denotes the number of
pixels in this image. Each pixel Ii has a label xi, xi ∈ L = {l1, l2, . . . , lk}. L is a
set of labels, showing the range of value for xi. The energy function of CRF is
written as:

E(x) =
∑

i

Φ(xi) +
∑

i,j∈Ni

Ψ(xi, xj), i ∈ {1, 2, 3, . . . ,M}, j ∈ Ni (1)
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Fig. 3. The structure of our FCNN network

Φ(xi) is the unary term, representing the cost of assigning label xi to the pixel
Ii. Ψ(xi, xj) is the pairwise term, representing the cost of assigning label xi and
xj to Ii and Ij respectively. Ni represents the neighborhood of pixel Ii. Using
CRF to segment an image is to find a set of xi to make the energy function have
minimum value. In order to improve segmentation accuracy and get a global
optimized result, fully connected CRF can be used, which is computing pairwise
potentials on all pairs of pixels in the image [17]. The energy function of fully
connected CRF is as follows:

E(x) =
∑

i

Φ(xi) +
∑
i<j

Ψ(xi, xj), i, j ∈ {1, 2, 3, . . . ,M} (2)

Mean field approximation can be used to solve the optimize problem of mini-
mizing the energy function (2) [17]. Shuai Zheng et al. [15] proposed a neural
network formulated fully connected CRF, called CRF-RNN. CRF-RNN per-
forms a mean field iteration by a stack of CNN layers, then the whole iteration
steps in the mean field approximation can be formulated as Recurrent Neural
Network, making it possible to integrate a CNN and CRF network as one deep
network and train it with the usual back-propagation algorithm. CRF-RNN can
be implemented on a GPU and has very high computational efficiency. Our CRF
model refers to CRF-RNN [15], where the negative of the unary term −Φ(xi) is
directly provided by the previous segmentation network and the pairwise term
Ψ(xi, xj) is calculated by the following function:

Ψ(xi, xj) = μ(xi, xj)[ω(1)exp(−|pi − pj |2
2θ2α

− |ci − cj |2
2θ2β

) + ω(2)exp(−|pi − pj |2
2θ2γ

)]

(3)
In (3), μ is a label compatibility function, representing the penalty for different
pixels that are assigned different labels; ci and cj denote the color vectors of
pixels Ii and Ij ; pi and pj denote the positions of pixels Ii and Ij ; ω(k), k = 1, 2
is the weight of each Gaussian kernel; θα, θβ , and θγ are parameters that control
the effect of different features (position and color). For further details about
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CRF-RNN and fully connected CRF, please refer to Shuai Zheng et al. [15] and
Philipp Krähenbühl et al. [17]. From (3) we can see that, when two adjacent
pixels have similar color, the penalty of assigning different labels to them is
large. Therefore after CRF, pixels having similar colors and positions are very
likely to be assigned same label, ensuring the appearance and spatial consistency
of segmentation results.

The Combination of FCNN and CRF-RNN. The proposed brain tumor
segmentation network consists of FCNN and CRF-RNN. FCNN provides the
preliminary probability of assigning each label to each voxel. These preliminary
prediction results are considered as the negative of the unary term of CRF-
RNN. CRF-RNN can globally optimize the segmentation results according to
each voxel’s intensity and position information shown in the pre-processed MR
images. Then, the segmentation results’ appearance and spatial consistency can
be ensured.

In the training phase, we trained the proposed integrated network of FCNN
and CRF-RNN in three steps. Firstly we used image patches to train FCNN.
Then, we used image slices of the axial view to train the following CRF-RNN
with parameters of the FCNN fixed. Finally, we used the image slices to fine-tune
the whole network. In the testing phase, we segment brain images slice by slice.
All the slices are extracted from the axial view.

2.3 Post-processing

We post-process the segmentation results by removing small 3D-connected
regions and correcting some pixels’ labels by a simple thresholding method. We
validated the values of these thresholds by a small subset of training dataset.

3 Experiment

BRATS is a brain tumor image segmentation challenge. It is organized in con-
junction with the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI). Most of the start of art brain tumor
segmentation methods have been evaluated on this benchmark. Since BRATS
2014 dataset is not available and the ranking results of BRATS 2015 testing
dataset are not shown on BRATS website, we mainly evaluated our segmenta-
tion method on BRATS 2013 dataset. Also, we took part in BRATS 2016 and got
satisfactory results. In BRATS 2013, the training dataset contains 20 HGG and
10 LGG. The testing dataset contains two parts. One is Challenge, containing 10
HGG. The other one is Leaderboard, containing 21 HGG and 4 LGG. In BRATS
2016, the training dataset contains 220 HGG and 54 LGG. The testing dataset
contains 191 cases, including both grades. Our experiments were performed on
our laboratory’s server. The GPU of the server is Tesla K80, and the CPU is
Intel E5-2620. As the server is public for everyone in our laboratory, we shared
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one GPU with other colleagues most time. We used Caffe [18] to implement our
neural network.

BRATS provides four MR imaging modalities for each subject, including
Flair, T1, T1c, and T2. However, we just used three of them (Flair, T1c, T2),
and still achieved competitive performance. We also trained a segmentation
model using all the four modalities and tested its segmentation performance.
However, there is no obvious performance difference between the segmentation
model trained by four modalities (Flair, T1, T1c, T2) and the segmentation
model trained by three modalities (Flair, T1c, T2). We speculate that most of
effective information shown in T1 is contained in T1c.

3.1 Evaluation on BRATS 2013 Dataset

On BRATS 2013 evaluation website, three metrics of Dice, Positive Predictive
Value (PPV), and Sensitivity are used to evaluate a method. Each of the metrics
is calculated on three kinds of tumor regions. They are complete, core, and
enhancing. The complete tumor region includes necrosis, edema, non-enhancing
core, and enhancing core. The core region includes necrosis, non-enhancing core,
and enhancing core. The enhancing region only includes the enhancing core.
Equations for calculating the three metrics are as follows:

Dice(P∗, T∗) =
|P∗ ∩ T∗|

(|P∗| + |T∗|)/2
(4)

PPV (P∗, T∗) =
|P∗ ∩ T∗|

|P∗| (5)

Sensitivity(P∗, T∗) =
|P∗ ∩ T∗|

|T∗| (6)

where ∗ indicates complete, core, or enhancing region. T∗ denotes the true region
of ∗. P∗ denotes the segmented ∗ region. |P∗ ∩ T∗| denotes the overlap area
between P∗ and T∗. |P∗| and |T∗| denote the areas of P∗ and T∗ respectively.
BRATS doesn’t provide the ground truth for testing subjects. Therefore, all the
metrics of testing dataset can only be calculated by BRATS evaluation website1.

Table 1 shows the Dice scores of FCNN, FCNN+CRF and FCNN+CRF+
post-processing on BRATS 2013 Challenge dataset and Leaderboard dataset.
It can be seen from Table 1 that CRF can obviously improve the segmentation
accuracy, and post-processing can improve the segmentation accuracy further.
FCNN+CRF+post-processing performs best on all three regions of both dataset.

Figure 4 shows some segmentation results on BRATS 2013 Challenge dataset.
Figures in each row, from top to bottom, represent: Flair, T1c, T2, segmentation
results of FCNN, segmentation results of FCNN+CRF, and segmentation results
of FCNN+CRF+post-processing. Compared with segmentation results in Row
4 (FCNN), segmentation results in Row 5 (FCNN+CRF) are smoother and have

1 https://www.virtualskeleton.ch/BRATS/Start2013.

https://www.virtualskeleton.ch/BRATS/Start2013
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Table 1. The Dice scores of FCNN, FCNN+CRF, and FCNN+CRF+post-processing
on BRATS 2013 Challenge and Leaderboard dataset

Methods Dice

Challenge Leaderboard

Comp. Core Enh. Comp. Core Enh.

FCNN 0.74 0.72 0.67 0.70 0.61 0.54

FCNN+CRF 0.85 0.80 0.70 0.83 0.66 0.57

FCNN+CRF+post-processing 0.87 0.83 0.76 0.86 0.73 0.62

more accurate boundaries, representing the effectiveness of CRF. Compared the
segmentation results in Row 5 (FCNN+CRF) and Row 6 (FCNN+CRF+post-
processing), we can see that, after post-processing, the number of false positives
reduces further.

Comparison results with other methods are summarized in Tables 2 and 3.
Nick Tustison, Raphael Meier, Syed Reza, and Liang Zhao methods’ evalua-
tion results are acquired from BRATS 2013 website2. Nick Tustison, Raphael
Meier, Syed Reza methods obtained the top 3 positions respectively on Challenge
dataset in 2013. Nick Tustison, Liang Zhao, Raphael Meier methods obtained
the top 3 positions respectively on Leaderboard dataset in 2013. Sérgio Pereira
method [14] ranks first on Challenge dataset and second on Leaderboard dataset
right now, while our method ranks second on Challenge dataset and first on
Leaderboard dataset right now. In general, the proposed method takes 2–4
min to segment one subject’s imaging data, much faster than Sérgio Pereira
method (average running time of 8 min). From Tables 2 and 3, we can see that
our segmentation method is still competitive with Sérgio Pereira method and
much better than the other methods shown in these two tables.

Table 2. Comparison with other methods on BRATS 2013 Challenge dataset

Methods Dice PPV Sensitivity

Comp. Core Enh. Comp. Core Enh. Comp. Core Enh.

Nick Tustison et al. 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83

Raphael Meier et al. 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73

Syed Reza et al. 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76

Mohammad Havaei et al. [12] 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80

Sérgio Pereira et al. [14] 0.88 0.83 0.77 0.88 0.87 0.74 0.89 0.83 0.81

Our method 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77

2 http://martinos.org/qtim/miccai2013/results.html.

http://martinos.org/qtim/miccai2013/results.html
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Table 3. Comparison with other methods on BRATS 2013 Leaderboard dataset

Methods Dice PPV Sensitivity

Comp. Core Enh. Comp. Core Enh. Comp. Core Enh.

Nick Tustison et al. 0.79 0.65 0.53 0.83 0.70 0.51 0.81 0.73 0.66

Liang Zhao et al. 0.79 0.59 0.47 0.77 0.55 0.50 0.85 0.77 0.53

Raphael Meier et al. 0.72 0.60 0.53 0.65 0.62 0.48 0.88 0.69 0.64

Mohammad Havaei et al. [12] 0.84 0.71 0.57 0.88 0.79 0.54 0.84 0.72 0.68

Sérgio Pereira et al. [14] 0.84 0.72 0.62 0.85 0.82 0.60 0.86 0.76 0.68

Our method 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68

3.2 Participation on BRATS 2016 Challenge

The testing cases in BRATS 2016 are much more challenging. Therefore, we
added a manual intervention post-processing system during our participation in
BRATS 2016. The manual intervention post-processing system is designed to
remove some segmented tumor regions which are obvious false positives. There
are two kinds of regions to remove:

1© Manually determined rectangular regions.
2© Regions which intensities in Flair, T1c, T2 are below three specific thresh-

olds respectively at the same time. The threshold of Flair equals to 0.8×the mean
intensity of the segmented tumor region in Flair. The threshold of T1c is a con-
stant. The threshold of T2 equals to 0.9×the mean intensity of the segmented
tumor region in T2.

In the manual intervention post-processing system, users just need to decide
whether to remove those regions described in 1© 2© and determine the rectangu-
lar regions’ sizes and locations described in 1©. The manual intervention post-
processing system only takes a few minutes on each subject. The regions to
remove are 3D. We show an example in Fig. 5 in 2D.

There are 191 cases in BRATS 2016 testing dataset with unknown grades.
During our participation on BRATS 2016, we firstly segmented the 191 cases by
our proposed integrated network of FCNN and CRF-RNN on our laboratory’s
sever. We just used one Tesla K80 GPU and one E5-2620 CPU on the sever. It
took 2–4 min to segment one case. All 191 cases were segmented in about 11.5 h.
We then used the manual intervention post-processing system to post-process
segmentation results with one personal computer, in which there is one Q9550
CPU and no GPU. Not every case needed to be manually post-processed. On
average, the manual intervention post-processing system only took a few minutes
on each case. We successfully segmented the 191 cases in BRATS 2016 testing
dataset in 48 h.

There are 19 groups that took part in BRATS 2016. Our method ranked first
on the multi-temporal evaluation and ranked in the top 5 on most of items in
tumor segmentation. The ranking details of our method are shown in Table 4.
The formulation used to calculate Dice is (3), as shown in Sect. 3.1. And the
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Fig. 4. Some segmentation results on BRATS 2013 Challenge dataset. The first and
second columns show the segmentation results of the 50th and 80th slice of the axial
view of Subject 0301. The third and fourth columns show the segmentation results of
the 40th and 70th slice of the axial view of Subject 0308. Figures in each row, from
top to bottom, represent: Flair, T1c, T2, segmentation results of FCNN, segmentation
results of FCNN+CRF, and segmentation results of FCNN+CRF+post-processing.
Each gray level in segmentation results represents a tumor class, from low to high:
necrosis, edema, non-enhancing core, and enhancing core.
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Fig. 5. A manual intervention post-processing example

Table 4. The ranking details of our method on different items on BRATS 2016 (includ-
ing tie)

Items Tumor segmentation Multi-temporal evaluation

Dice Hausdorff

Comp. Core Enh. Comp. Core Enh.

Ranking 4 3 1 7 6 2 1

formulation used to calculate Hausdorff distance is as follow:

Haus(P∗, T∗) = max{ sup
p∈∂P∗

inf
t∈∂T∗

d(p, t), sup
t∈∂T∗

inf
p∈∂P∗

d(t, p)} (7)

The meanings of P∗ and T∗ have been shown in Sect. 3.1. ∂P∗ denotes the sur-
face of P∗, and ∂T∗ denotes the surface of T∗. p and t denote points on ∂P∗ and
∂T∗ respectively. d(p, t) calculates the least-square distance between points p
and t. inf denotes the operation of returning the minimum value. sup and max
denote the operation of returning the maximum value. Multi-temporal evalu-
ation is designed to evaluate whether the volumetric segmentations provided
by the participants are accurate enough to detect the changes indicated by the
neuroradiologists3.

4 Conclusion

Accurate automatic or semi-automatic brain tumor segmentation methods have
broad application prospect. In this paper, we propose a novel brain tumor seg-
mentation method by using an integrated model of Fully Convolutional Neural
Network (FCNN) and Conditional Random Fields (CRF). This integrated model

3 http://braintumorsegmentation.org/.

http://braintumorsegmentation.org/
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is designed to solve the problem in most existing deep learning brain tumor seg-
mentation methods, by which the appearance and spatial consistency are hard
to be ensured. In the CRF part, we use CRF-RNN, which formulates CRF as
Recurrent Neural Network, making it possible to integrate FCNN and CRF as
one deep network, rather than using CRF as a post-processing step of FCNN.
Our integrated network was trained in three steps, using image patches and
slices respectively. In the first step, image patches were used to train FCNN.
These patches were randomly sampled from training dataset, but we controlled
the number of patches for each class equal, in order to avoid the data imbalance
problem. Patch-based training strategy could also avoid the problem of lacking
training samples, because thousands of patches could be extracted from one sub-
ject’s MR images. In the second step, slices from the axial view were used to
train the following CRF-RNN, with parameters of the FCNN fixed. In the third
step, slices from the axial view were used to fine-tune the whole network.

We applied a simple pre-processing strategy and a simple post-processing
strategy. We pre-processed each MR image by N4ITK and intensity normaliza-
tion, which normalized each MR image’s intensity mainly by subtracting the
gray-value of the highest frequency and dividing the revised deviation. We post-
processed the segmentation results by removing small 3D-connected regions and
correcting some pixels’ labels by a simple thresholding method. The experimen-
tal results show that these strategies are effective.

We evaluated our method on BRATS 2013 dataset, obtaining the second posi-
tion on its Challenge dataset and the first position on its Leaderboard dataset.
Compared with other top ranking methods, our method could achieve competi-
tive performance with only 3 imaging modalities (Flair, T1c, T2), rather than 4
(Flair, T1, T1c, T2). We also took part in BRATS 2016 and our method ranked
first on the multi-temporal evaluation and ranked in the top 5 on most of items
in tumor segmentation.
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Abstract. In this paper we propose and tune a discriminative model
based on Random Forest (RF) to accomplish brain tumor segmentation
in multimodal MR images. The objective of tuning is meant to establish
the optimal parameter values and the most significant constraints of
the discriminative model. During the building of the RF classifier, the
algorithm evaluates the importance of variables, the proximities between
data instances and the generalized error. These three properties of RF
are employed to optimize the segmentation framework. At the beginning
the RF is tuned for variable importance evaluation, and after that it is
used to optimize the segmentation framework. The framework was tested
on unseen test images from BRATS. The results obtained are similar to
the best ones presented in previous BRATS Challenges.

Keywords: Random forest · Feature selection · Variable importance ·
Statistical pattern recognition · MRI segmentation

1 Introduction

MR imaging and diagnosis is increasingly used from day to day with the world-
wide spread of MR equipment. In many cases, with the help of a correct diag-
nosis, complicated surgery could be avoided or medical staff could be better
prepared for the intervention. One part of these techniques is built around auto-
matic image segmentation. In order to facilitate a faster diagnosis, a robust
and reliable automatic segmentation system is needed. In this paper we propose
a discriminative model for brain tumor segmentation in multimodal MRI. The
main goal of the model is the evaluation and selection of low-level image features
and the optimization of the Random Forest (RF) classifier for the segmentation
task. This is achieved in two phases: first, we start with the optimization of RF
considering variable importance evaluation. The second phase is the optimiza-
tion of the RF structure in order to improve segmentation performance. Many
discriminative segmentation models were proposed and tested in the previous
c© Springer International Publishing AG 2016
A. Crimi et al. (Eds.): BrainLes 2016, LNCS 10154, pp. 88–99, 2016.
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four BRATS Challenges (2012–2015) [4]. The selection of the employed features
was based on the intuition and experience of the authors. The exact definition
and usage of the applied features in their segmentation systems remains a secret.
Usually, the systems work with large sets of features having hardly any theoret-
ical or practical analysis behind their usefulness.

In the following we will present the best-performing systems based on a
discriminative model used in multimodal MR tumor segmentation.

Zikic [16] et al. and their research team from Microsoft created a discrimi-
native model that extracts the attributes from the image intensities as well as
from a generative model. In their approach, 2000 context-aware attributes are
defined. As a classification ensemble, they use 40 decision trees, each having a
depth of 20. Geremia et al. [7] built a discriminative model that associates a
vector of 412 features to each point. The classification algorithm is an ensem-
ble of decision trees trained on a set of images containing 20 High Grade (HG)
and 10 Low Grade (LG) images. Goetz et al. [8] that uses 208 attributes; 52
attributes for each of the 4 image types. The classifier is made up of an ensemble
of Extra-Randomized Trees (ERT). Reza and Iftekharuddin [14] created a dis-
criminative model which only processes planar images that are axial sections of
3D MRI. This model uses no apriori information about the anatomical structure
of the brain. The system works only with the intensity information of the pixels
in multimodal images, extracting special attributes based on texton, textures
and fractal dimension. The classification algorithm is again the RF. The final
decision is made by weighted voting. Remarkable performance is obtained due
to texture information.

A more reliable model can be built selecting the variable importance from the
point of view of classification. An adequate feature set comes with the following
advantages:

– increases the predictive accuracy of the classifier;
– reduces the cost of data collection;
– enhances learning efficiency;
– reduces the computational complexity of the resulting model.

The rest of this paper is structured as follows: in Sect. 2 we describe the compo-
nents of our model (Sect. 2.1 Database, Sect. 2.2 Preprocessing, Sect. 2.3 Feature
Extraction, Sect. 2.4 Random Forest, Sect. 2.5 Feature Selection, Sect. 2.6 Post-
processing). After the model presentation follows the fine-tuning and optimiza-
tion of Random Forest parameters used in segmentation purposes, in Sect. 3.
Finally, our experimental results are described and compared to other systems
from the BRATS Challenge.

2 The Proposed Discriminative Model

The discriminative model proposed is similar to previously used models, but in
this article we emphasize some aspects which make an important contribution
to the performances reached. The performances of a segmentation model built
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on a discriminative function are mainly determined by three important issues:
the quality of the annotated image-database, the classification algorithm applied
and the feature set used.

Our model differs from the standard discriminative model by the feature
selection step. In this step, the feature selection algorithm consists of the vari-
able importance evaluation for the defined segmentation task. At the same time
it allows to test new low-level features that should improve the segmentation
performances or be more important than the existing features.

This paper is organized as follows: after a short introduction of the simi-
lar systems in the literature Sect. 2 describes the components of the proposed
discriminative model used for brain tumor segmentation. After the model pre-
sentation follows the fine-tuning and optimization of Random Forest parameters
used for segmentation purposes, presented in Sect. 3. Finally, our experimental
results are described and compared to other systems from the BRATS Challenge.

2.1 Database

The most important image database for brain tumor segmentation was created
during the BRATS Challenges (2012–2015), thanks to Menze and Jakab [13].
This database is expanded year after year with every challenge and has become a
standard in the field. The BRATS 2015 dataset contains 220 HG and 54 LG brain
images with gliomas and ensures sufficient diversity, which is a requirement for
a well-performing database. All cases were acquired with similar protocols and
contain four types of images: T1, T1c (with the contrast material Gadolinium),
T2 and FLAIR. All images were skull stripped, resampled to 1 mm resolution in
each direction and registered to the corresponding T1c image. The annotations
were made by experts using an accurate protocol [10]. The annotations contain
four different classes: edema, enhanced tumor, non-enhanced tumor and necrotic
core.

The four classes defined by expert annotation are very hard to achieve by
automatic segmentation. More realistic evaluation of segmentation results can
be made by considering only three classes. It is considered that they are more
representative in clinical practice. These classes are: Whole Tumor - WT (includ-
ing all four tumor structures), Tumor Core - TC (including all tumor structures
except for edema) and Active Tumor - AT (only the enhancing core). Of course,
there are some differences between the annotations made by the same/different
experts. These variations are specified in [13] and can be considered as the upper
limit of the performance reachable. In this work we made the optimization con-
sidering only two classes: WT and TC (TC includes AT ).

The principle of statistical pattern recognition is the assignment of some
features to a well-delimited region or to every voxel. In this way the database
used for statistical processing contains a large amount of instances and increases
in size with each newly added feature. The database increases drastically with
the increase in the number of cases. The training database, containing 274 cases,
reaches a storage size of 21 GB in uncompressed format. The resulting database
increases linearly with each feature added; thus, if one decides to use a set of
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about 1000 features, a total of 30 TB of information has to be processed. The
more data can be processed and included in the training phase, the better the
performance of the classifier obtained. In our work we tried to solve the issue of
this huge, unmanageable dataset in two ways: (1) by reducing the irrelevant and
redundant features; (2) by eliminating similar cases.

2.2 Preprocessing

In this work we have dealt with three important artifacts: inhomogeneity cor-
rection, noise filtering, and intensity standardization.

The correction of MRI inhomogeneity can be done by using the intensity
information and some apriori knowledge of the anatomical tissue-structure only.
In our previous work [11] we evaluated three inhomogeneity reduction methods.
The best-performing and most accepted algorithm is N4 filtering [15]. For inho-
mogeneity reduction in MR images, we have applied the N4 filter implemented
in the ITK package [2].

The most difficult task is to evaluate noise types and their levels in real
images and to find the most suitable denoising method. Since we could not
find a generally available method required by discriminative segmentation, we
decided to use anisotropic diffusion filtering proposed in [6]. Its implementation
can be found in the ITK [2] software package.

It is desirable to have the same intensity value for a given tissue in distinct
images, regardless of the acquisition equipment and moment. The solution to
this problem is to transform the histogram in order to match it to a predeter-
mined shape. We extracted the quartiles points on the histogram obtained and
performed linear transformations in such way that the first and third quartiles
have predefined values.

In preprocessing, we filtered these three artifacts in the following order: bias
field correction (ITK - N4 filtering), then noise filtering (ITK - anisotropic dif-
fusion filtering), and finally, the proposed intensity standardization.

2.3 Feature Extraction

Image processing offers many procedures for the extraction of characteristics
from images. In the field of tumor segmentation there are many studies that
try to find certain characteristics with a high correlation to the brain tumor
appearance in MR images. Despite these research efforts, no proper feature sets
have been found yet. That is the reason for using a large feature set, with the
features having little correlation to the goal of classification. In our approach we
started with defining a large feature set, this is later reduced in order to elimi-
nate the irrelevant or noisy features. For each feature, we defined many low-level
characteristics that describe the intensities in the neighborhood (surrounding
volume having a radius of 2–9 pixels) of the studied voxels. We have used the
following features: first order operators (mean, standard deviation, max, min,
median, gradient); higher order operators (Laplacian, difference of Gaussian,
entropy, curvatures, kurtosis, skewness); texture features (Gabor filter); spatial
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context features (symmetry, projections, neighborhoods). By extracting all of
these features for every voxel in all modalities, we transform the image segmen-
tation task into a statistical pattern recognition problem. In order to deal with
big amount of features it is necessary to reduce the number of used attributes.
The appropriate selection of the attributes has to be done according to the goal
of classification. First, we extracted 240 image features of each modality and we
obtained a feature vector with 960 elements. All these features are defined in
Weka Segmentation plugin form Fiji package [1].

2.4 Random Forest

RF is a powerful algorithm for segmentation purposes [5]. The RF has five impor-
tant characteristics that make it applicable for segmentation tasks: manages large
databases easily; handles thousands of variables; estimates the variable impor-
tance used in classification; is able to balance the error in unbalanced datasets;
produces an internal unbiased estimator of generalized error.

The RF classifier is an ensemble of binary trees built on two random
processes: the randomly built bootstrap set and the random feature selection
in each node [5]. The creation of trees from the RF is based on two sets: the
bootstrap set, containing the instances for building a tree and the OOB (out-
of-bag) set, containing test instances not included in the bootstrap set. The
bootstrap set is made up of the training instances by randomly sampling the
training set with replacement. Each tree is trained on its own bootstrap set and
evaluated on its OOB set. The maximization of the information gain is the split-
ting criterion applied in every node. In order to evaluate the information gain,
the RF uses only a small number of variables (mtries) out of all existing variables
(M). These mtries variables are chosen randomly and the splitting criterion is
maximized only with these variables.

While the classifier is being built, the RF algorithm evaluates the so called
OOB error. This error is the mean value of the classification error of each tree
on its own OOB sets. The OOB error is an unbiased estimator of generalized
error (GE) of the classification obtained. The relation of GE was proved by
Breiman [5]:

GE = ρ

(
1
s2

− 1
)

(1)

where ρ is the mean value of correlation and s stands for the strength of the
ensemble. The minimum of GE can be reached by decreasing the correlation
between trees and by increasing the classification strength of ensemble. These
two conflicting trends determine the goal of the RF parameter optimization.
Determining the appropriate values of these parameters could be the objective
of an experimental optimization, described in Sect. 2.6.

2.5 Feature Selection

The main part of the model is the evaluation and selection of low-level image fea-
tures for the segmentation task. In the field of image segmentation, discriminative
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classifiers are based on several local image features. A more reliable model can be
built by using a framework that selects the variable importance from the point of
view of classification. In the field of statistical pattern recognition, the selection
of such features is a challenging task. In order to create a well-working discrimina-
tive model, we have to select the relevant features for our application and eliminate
the irrelevant ones. For this purpose we used the variable importance evaluation
provided by RF. In the construction of RF classifiers there are two possibilities
to evaluate variable importance: Gini importance and permuted importance [5].
In our algorithm we used only the permuted variable importance, or mean in
accuracy.

Because the variable importance values depend on the forest structure, the val-
ues obtained are equivocal. The importance values obtained differ in each round;
the order of importance differs only slightly. In order to increase the relevance of
permuted importance; we have to evaluate it for each variable several times to
determine an average importance value. The ranking of average values is relevant.

One main objective of variable selection is to find a small number of variables
appropriate for a good prediction. For this task we distinguish following steps:

1. Tune RF for variable importance evaluation
2. Evaluate variable importance order
3. Eliminate the least important variables
4. Tune RF for classification
5. Evaluate classification performances
6. Accept or reject the variable reduction.

In step 3 we have to deal with many instances, each consisting of a large num-
ber of features. For this purpose we created our feature selection algorithm,
presented in detail in [12]. The main idea of the algorithm is to evaluate the
variable importance several times on a randomly chosen part of the training set.
It eliminates the least important 20%–50% of variables in each run, ensuring
that the average OOB error does not exceed the desired limit. In our experi-
ment, after each reduction step, the RF classifiers were trained and evaluated in
order to determine the segmentation performances. Further, the elimination of
variables depends on the decrease of the segmentation performances. The pro-
portion of reduction is empirical; it depends on the number of attributes used
and the performances obtained. In the first step we are able to exclude a large
number of attributes and in the last steps only few. It must be in correlation
with the reachable performances.

We applied the proposed feature selection algorithm in order to select an
important feature set for our brain tumor segmentation task. The feature vectors
of a single 3D brain image require 10 GB of memory. In order to provide a
good enough training set, we had to use the information from at least 50 brain
volumes. Thus, the whole training database (TDB = I × F ) is about 500 GB in
size, which is practically unmanageable. There are two ways to reduce this size:
reducing the number of instances (I) and reducing the number of features (F ).
The number of instances can be reduced by random subsampling the database.
In each image belonging to one brain there are about 1.5 million voxels from
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which less than 10% are tumor voxels. Thus, in the first step, we drastically
reduced the number of instances belonging to the brain-class in order to balance
the dataset. A random subsampling reduced the number of healthy voxels in
10 : 1 ratio in the training set. The TDB size is reduced to 100 GB. The STDB
(sampled training database) size becomes 5 GB by randomly subsampling the
TDB 20:1. This size is still too large to be managed by our system (Intel(R)
Core(TM) i7-2600kCPU@3.40 GHz, 16 GB RAM). The training time of the RF
algorithm for a dataset of about 200 MB is 30 min, and it increases exponentially
with the increase of the training database. We used the RF implementation from
R package provided by CRAN [3]. In order to manage such a large amount of
memory, we had to reduce the number of features also. Our algorithm was created
to manage this big database and to select a set of adequate features for the given
segmentation task. We applied our algorithm several times by evaluating the
overall OOB error (Table 1). In order to determine the optimal set of attributes
(M – number of all attributes) used, we tested the performances of the classifier
obtained on UTI (unseen test images of 20 brain image sets). In our experiments
we analyzed in significative parameter intervals the behaviour of OOB error and
the Dice index.

Table 1. The effect of parameter M on the classification performance

M - attributes 960 480 240 120 80 60 45 30 20

OOB error 0.0501 0.0508 0.051 0.0522 0.0532 0.0551 0.058 0.0635 0.0725

M - attributes 240 120 80 60 45 30

DICE-WT 0.868 0.866 0.848 0.843 0.838 0.828

DICE-TC 0.865 0.865 0.868 0.860 0.849 0.806

The Dice coefficients obtained in segmentation are presented in Table 1. We
started the evaluation of Dice coefficient at only M = 240, because the training
and testing of more than 240 attributes were time consuming. Also we observed
that OOB error does not change significantly for M ∈ [240, 960]. Because there is
a relation between OOB error and Dice coefficient, we consider that the Dice coef-
ficient, similarly, does not change in the given interval. The significant decrease
of the Dice coefficient is at M ∈ [80, 120] attributes and differ for the analyzed
classes: M = 120 for WT and M = 80 for TC (Fig. 1). We obtained the same
interval for both TDB and UTI sets. According to the results obtained, we have
chosen M = 120 attributes for the final classifier.

2.6 Post-processing

In post-processing we took into consideration that the tumor is one single con-
nected volume and the spatial relation between the different tumor classes is
AT ⊂ TC ⊂ WT . In this way, we were able to eliminate many small volumes
that had been interpreted as false detections.
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(a) OOB error (b) Dice index

Fig. 1. OOB error and Dice coefficient against the parameter M

3 RF Optimization

The main task is to find some correlation between the OOB error and the Dice
coefficient of segmentation. To achieve this task we had to optimize the RF para-
meters in order to obtain an efficient classifier for the segmentation task. There
are three parameters that have to be tuned in RF optimization: the number of
trees Ktrees, the number of features mtries and the number of nodes Tnodes. The
minimum of generalized error (1) can be reached by decreasing the correlation
between trees and by increasing the strength of the ensemble.

A binary decision tree is one of the strongest classifiers described in the
literature. The overfit provided by the trees can be decreased by increasing the
number of trees Ktrees used in the forest. The rise in the number of Ktrees

will cause the GE to decrease and overfitting can be avoided. The GE has a
minimum limit. Thus, further increasing the Ktrees value, after the stabilization
limit, GE remains unchanged; it is only the processing time that becomes longer
without any gain in error. We analyzed the OOB error and Dice index versus the
variation of Ktrees. The OOB value decreases with the increase of Ktrees and
reaches its minimum limit at 300 trees for M = 80 and 400 trees for M = 120
(Table 2 and Fig. 2).

Table 2. The effect of number of trees Ktrees on the classification performance

Ktrees 20 30 40 50 100 200 300 400 500

OOB error M = 120 0.0651 0.0605 0.0581 0.0568 0.0544 0.0534 0.0533 0.0527 0.0528

OOB error M = 80 0.0655 0.0607 0.0586 0.0575 0.0549 0.0537 0.0531 0.0531 0.0531

Ktrees 50 100 200 300

DICE-WT 0.864 0.866 0.867 0.867

DICE-TC 0.894 0.898 0.898 0.899

The Dice coefficient reaches the maximum ealier at 200 for WT and 100 for
TC, thus a total of 100 trees are adequate to be used in the ensemble. Thus, our
final classifier is built with a total of 100 trees.
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(a) OOB error (b) Dice index

Fig. 2. OOB error and Dice coefficient against the parameter Ktrees

The second analyzed parameter mtries (the number of randomly chosen vari-
ables) used for splitting in nodes determines the uncorrelation between trees.
Increasing the number mtries the trees are more and more correlated, and
the opposite is also true: by decreasing mtries, the correlation between trees
decreases. When mtries = M (M – the total number of variables), the RF classi-
fier turns into bagging. When mtries = 1, the trees are highly uncorrelated, but at
the same time, they lose their strength of classification. It is recommended [9] to
perform a coarse evaluation in the interval

(√
M/2, 2

√
M

)
, in order to choose

the adequate value for mtries. In Table 3 we can observe that the OOB error
reaches its minimum at about 2

√
M , and further increasing its value is useless

(mtries = 25 for M = 120, mtries = 15 for M = 80). More interesting results can
be obtained by analyzing the Dice coefficient versus mtries. The Dice coefficient
reaches the maximum at mtries = 15 for WT and mtries = 11 for TC in the
analyzed domain (Table 3 and Fig. 3).

Table 3. The effect of mtries on the classification performance

mtries 5 7 9 11 15 19 25 31 43 59

OOB error M = 120 5.67 5.54 5.44 5.39 5.34 5.27 5.25 5.22 5.22 5.22

OOB error M = 80 5.65 5.54 5.49 5.44 5.33 5.33 5.33 5.33 5.33 5.33

mtries 9 11 15 19 25

DICE-WT 0.850 0.850 0.852 0.849 0.846

DICE-TC 0.869 0.872 0.864 0.871 0.867

The third parameter is the number of maximal nodes of each tree Tnodes.
Theoretically, there is no condition of limitation of the tree size (Tnodes), there
is no generally accepted pruning condition.

In these circumstances each tree grows until every terminal node becomes a
pure leaf, where no more splits are possible. This case can produce very large
trees which occupy unnecessary memory space and lengthen processing time.
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(a) OOB error (b) Dice index

Fig. 3. OOB error and Dice coefficient against the parameter mtries

Reducing the size of a tree Tnodes induces new diversity in the ensemble, decreases
the correlation between trees and produces a smaller and more efficient classifier.
The OOB error versus the Tnodes is given in Table 4 and Fig. 4.

We can see that the OOB error constantly decreases with the tree size and
reaches its minimum for the unpruned trees. Important from the point of view
of segmentation is the evolution of the Dice coefficient, it does not increase
significantly for the last values. The optimal value can be determined at 2048
nodes, which is approximately 1/4 of the size of an unpruned tree.

Table 4. The effect of tree-size Tnodes on the classification performance

Tnodes 64 128 256 512 1024 2048 4096 MAX

OOBerr. M = 120 0.1246 0.1104 0.0976 0.0871 0.0768 0.0686 0.06 0.0522

OOBerr. M = 120 0.1253 0.1124 0.0986 0.0875 0.0773 0.0695 0.0612 0.0532

Tnodes 512 1024 2048 4096 MAX

DICE-WT 0.817 0.841 0.864 0.866 0.867

DICE-TC 0.798 0.823 0.874 0.877 0.879

(a) OOB error (b) Dice index

Fig. 4. OOB error and Dice coefficient against the parameter Tnodes
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4 Results

The final classifier was trained on STDB which consists of 500000 (< 5%) ran-
domly sampled instances from a total of 10 million instances of the TDB, being 50
sets of HG brain images (chosen from BRATS 2015 training set). Our optimized
classifier is composed of Ktrees = 100 trees, each having a size of Tnodes = 2048
nodes. The splitting criterion is evaluated with mtries = 9 randomly chosen fea-
tures from the whole M = 120 feature set. The classification result obtained
on BRATS 2015 test set are given in Table 5 and some segmentation examples
in Fig. 5. The results obtained are comparable with previously reported results
described in [13].

Table 5. Compared Dice indexes

Classes Our classifier BRATS 2012 [13] BRATS 2013 [13]

WT 75–91 [%] 63–78 [%] 71–87 [%]

TC 71–82 [%] 24–37 [%] 66–78 [%]

Fig. 5. Segmentation results (contour line expert annotation, gray levels segmented
tumor tissues)

5 Conclusion

We are working on further optimization in order to improve segmentation per-
formances. Analyzing the results obtained on unseen test images we can notice
highly accurate. In order to increase the classification performances we have to
build an optimized training set containing all appearances of tumor forms (272
images) from BRATS 2015.

This can be done by adding new instances to the training set and also mea-
suring their proximity to the existing set. Furthermore, the segmentation frame-
work obtained will be enlarged by new low-level features. The importance of new
features could be evaluated and compared to the current set of features.

In this manner, we are able to create a better feature set for tumor segmen-
tation. Besides, additional post-processing may lead to further improvement in
segmentation performances.
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Abstract. This paper extends a previously published brain tumor seg-
mentation method with a dense Conditional Random Field (CRF). Dense
CRFs can overcome the shrinking bias inherent to many grid-structured
CRFs. We focus on illustrating the impact of alleviating the shrinking
bias on the performance of CRF-based brain tumor segmentation. The
proposed segmentation method is evaluated using data from the MICCAI
BRATS 2013 & 2015 data sets (up to 110 patient cases for testing) and
compared to a baseline method using a grid-structured CRF. Improved
segmentation performance for the complete and enhancing tumor was
observed with respect to grid-structured CRFs.

1 Introduction

Markov or Conditional Random Fields (CRFs) have a long history in image
understanding [21] and are used for a diverse range of tasks such as image seg-
mentation or registration. In this work, we focus on image segmentation, which
plays a crucial role in the analysis of medical images. Image segmentation can be
used in any phase of a clinical process - from diagnosis to treatment planning to
patient monitoring. The segmentation of pathological images can provide data
on the spatial location and configuration as well as volumetric parameters of a
disease. Graphical models such as CRFs offer a sound probabilistic framework
to model spatial data contained in medical images. In the most popular type
of CRF, voxels of the image correspond to nodes in a graph. Furthermore, the
nodes are arranged in a grid with edges connecting the nodes, and thus estab-
lishing the neighborhood type (e.g. Moore neighborhood). Smoothness of the
final segmentation is established via pairwise potentials defined for neighboring
nodes. The use of a Potts prior in grid-structured pairwise CRFs is known to
result in excessive smoothing of the segmentation boundary (also referred to
as shrinking bias, illustrated in Fig. 1). Dense CRFs define pairwise potentials
among all nodes in the graph modeling long-range dependencies between voxels.
As a consequence, the inherent shrinking bias of grid-structured pairwise CRFs
is alleviated allowing for a more detailed image segmentation. The application
c© Springer International Publishing AG 2016
A. Crimi et al. (Eds.): BrainLes 2016, LNCS 10154, pp. 100–107, 2016.
DOI: 10.1007/978-3-319-55524-9 10
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of dense CRFs in medical image volumes has been prohibitive for a long time
due to their huge complexity. This situation changed when Krähenbühl et al.
introduced an efficient inference [8] and learning algorithm [7] for dense CRFs.
In this paper, we extend our previously published methodology [10] with a dense
CRF and investigate its impact on the segmentation of tumor subcompartments.

Fig. 1. Illustration of the shrinking bias. Grid-structured CRFs can incorporate the
prior belief that segmentation boundaries are smooth via a Potts-prior used for the
pairwise potentials. The limited neighborhood type in combination with such a smooth-
ness prior encourages the generation of short object boundaries (left image). If we are
given an image I, the corresponding object segmentation X2 (right image) will be
penalized making it less favorable (probable) compared to a more compact alternative
segmentation X1. This corresponds to a lower energy E for X1 than for X2.

2 Methodology

2.1 Brain Tumor Segmentation

We focus on the segmentation of glioblastoma, which are the most common
primary malignant brain tumors [3]. A glioblastoma can be segmented into four
different compartments: necrosis, edema, contrast-enhancing and non-enhancing
tumor [15]. We regard segmentation as a classification problem and rely on four
different MRI sequences as input data, which are T1-, T1 post-contrast- (T1c),
T2- and FLAIR-weighted images. These sequences are part of recently proposed
clinical consensus recommendations [4]. The sequences are rigidly co-registered,
skull-stripped [1], bias-field corrected [20] and their intensities are normalized
via histogram matching to a template image [12]. The four intensity values are
stacked in a vector fi ∈ R

4, which in turn is part of a vector image I. The set
of voxels in I is denoted by V and the total number of voxels by N . A labeling
of I is referred to by X = {xi}i∈V with xi being a scalar value that indicates
the tissue compartment, i.e. xi ∈ {1, . . . , m}. Seven classes (m = 7) including
three normal (csf, gray matter, white matter) and the previously mentioned four
tumor tissues are defined and contained in a set L.
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2.2 Dense CRF

We model the image I as an undirected graph G = (V,E), where V denotes
the set of nodes and E the set of edges. Every node in G is associated with a
random variable xi. The pair (I,X) is a CRF, if for any given I the distribution
P (X|I) factorizes according to G. The conditional distribution corresponds to
a Gibbs distribution P (X|I) = 1

Z(I) exp (−E(X|I)), where Z(I) is the partition
function. For a given image I the most probable (MAP) labeling X� can then
be estimated via energy minimization, i.e.

X� = arg min
X

E(X|I). (1)

The energy is a sum of potentials ψc(xc) defined for each clique c in G. Pairwise
CRFs contain unary potentials ψu (i.e. data-likelihood) and pairwise potentials
ψp (i.e. prior). In contrast to grid-structured CRFs, in dense CRFs pairwise
potentials are defined between all pairs of voxels, i.e. G is a complete graph. The
energy is given by

E(X|I) =
∑

i

ψu(xi) +
∑

i∼j

ψp(xi, xj). (2)

The driving force of the shrinking bias in CRFs are the pairwise potentials
ψp(xi, xj) (cf. [19]). Dense CRFs model long-range interactions between voxels
and thus make more consistent image labelings according to global image content
more favorable during MAP-inference in Eq. (1). We define the unary potentials
to take the form

ψu(xi) = − log(pD(xi|hi)), (3)

where h corresponds to the feature vector proposed by Meier et al. [10] and the
posterior probability pD is estimated by a decision forest [2]. The feature vector
is composed of a combination of appearance- and context-sensitive features. In
the approach proposed by Krähenbühl and Koltun [8] the pairwise potentials
ψp are restricted to correspond to a weighted mixture of Gaussian kernels. We
use a combination of an appearance (using image intensities fi) and smoothness
kernel (using voxel coordinates pi):

ψp(xi, xj) = μ(xi, xj)
{
exp(− 1

2 (fi − fj)T Λf (fi − fj)) + exp(− 1
2 (pi − pj)T Λp(pi − pj))

}
. (4)

The label compatibility function μ(xi, xj) is defined to be a symmetric function
that takes into account interactions between all possible combinations of label
pairings. The precision matrices of the two kernels are Λf and Λp.

3 Experiments and Results

In order to assess the segmentation performance of the proposed dense CRF
model, we employed publicly-available data of the MICCAI BRATS 2013 & 2015
Challenges [11]. First, a comparison of the dense CRF to a grid-structured CRF
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was performed, for which we used 20 high-grade cases of the original BRATS
2013 data set for training (18 for training, two for validation purposes). We
assessed segmentation performance of both models on the BRATS 2013 chal-
lenge set (10 patient cases), the BRATS 2013 leaderboard set (21 cases, exclud-
ing low-grade glioma), and a clinical data set of a local university hospital (25
cases). In contrast to the BRATS data sets, the clinical data set was acquired
with a standardized MR acquisition protocol (all sequences except FLAIR were
acquired with isotropic 1 mm resolution). A more detailed description of the clin-
ical data set can be found in the study of Porz et al. [16]. Second, in order to
facilitate future comparisons with other segmentation techniques, we evaluated
the proposed approach on the BRATS 2015 data set (247 cases for training and
110 for testing). We report performance measures as tuples (median, interquar-
tile range) for the complete tumor (all tumor labels combined), the tumor core
(tumor labels except edema) and the enhancing tumor. Statistically significant
differences were assessed using a paired Wilcoxon signed rank test (cf. Table 1).
Statistical analysis was performed using the R software package [17].

The baseline model (G-CRF) relied on a grid-structured pairwise CRF with
a Potts prior as used in [10]. Inference was performed using Fast-PD [6]. The
dense CRF (D-CRF) was implemented as described in Sect. 2. To make a fair

Table 1. Evaluation results. Performance measures are given as (median, interquar-
tile range). Left tuple: Results for BRATS 2013 Challenge set. Middle tuple: Results
for Leaderboard data. Right tuple: Results for clinical data. Statistically significant
differences are indicated with �/�� for α = 0.05/0.01.

Region Dice coefficient PPV Sensitivity

Complete tumor
(G-CRF)

(0.825, 0.042)/
(0.771, 0.148)/
(0.839, 0.146)

(0.759, 0.108)/
(0.751, 0.266)/
(0.766,0.238)

(0.943, 0.040)/
(0.969, 0.133)/
(0.922, 0.065)

Complete tumor
(D-CRF)

(0.825, 0.049)/
(0.790, 0.168)/
(0.856��, 0.148)

(0.775, 0.108)/
(0.758�, 0.254)/
(0.772��, 0.229)

(0.953, 0.040)/
(0.979, 0.134)/
(0.938��, 0.067)

Tumor core (G-CRF) (0.748, 0.075)/
(0.745, 0.200)/
(0.693, 0.287)

(0.802, 0.192)/
(0.746, 0.151)/
(0.741��, 0.195)

(0.715, 0.234)/
(0.888��, 0.372)/
(0.713��, 0.268)

Tumor core (D-CRF) (0.756, 0.086)/
(0.746�, 0.214)/
(0.643, 0.231)

(0.819, 0.216)/
(0.720, 0.205)/
(0.719, 0.214)

(0.698, 0.256)/
(0.855, 0.420)/
(0.659, 0.370)

Enhancing tumor
(G-CRF)

(0.706�, 0.074)a/
(0.677, 0.218)/
(0.579, 0.140)

(0.669, 0.171)/
(0.644, 0.197)/
(0.508, 0.149)

(0.823, 0.205)/
(0.923, 0.403)/
(0.816,0.224)

Enhancing tumor
(D-CRF)

(0.705, 0.073)a/
(0.660, 0.266)/
(0.631��, 0.161)

(0.673, 0.149)/
(0.626, 0.279)/
(0.542��, 0.192)

(0.873�, 0.257)/
(0.944��, 0.302)/
(0.866��, 0.163)

aThe mean for D-CRF was 0.694 and 0.681 for G-CRF.
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comparison to G-CRF, we set μ(xi, xj) = 1 {xi �= xj} (Potts prior) and set
Λf = λfI4 and Λp = λpI3 with I(·) being the identity matrix and λf , λp ∈ R.
Note that both models employed the same unary classifier (features and decision
forest as proposed in [10]). We used 100 trees, maximum depth of 18 and the
number of candidate features per node was

√
n with n = 237 features. Moreover,

we did not perform a parameter learning but hand-tuned the parameter values
for both CRF models using the data of the validation set. This way, we aimed
at minimizing differences in segmentation performance attributed to a specific
parameter learning method rather than the different degree of connectivity of
each model.

The results of the comparison between G-CRF and D-CRF are shown in
Table 1. In Fig. 2, an exemplary segmentation result is shown. In addition, Fig. 3

Fig. 2. Exemplary patient case (edema = green, necrosis = red, enhancing tumor
= yellow, non-enhancing tumor = blue). From left to right: Contrast-enhanced T1-
weighted Magnetic Resonance sequence. Segmentation result for G-CRF. Segmentation
result for D-CRF. Manual ground truth data. (Color figure online)

Fig. 3. Absolute volume error. The mean error in mm3 for G-CRF (green) and D-CRF
(blue) is shown for the three different tumor regions on data of 25 patients of a local
university hospital. (Color figure online)
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presents the volumetric error for the three tumor regions on the data of the local
university hospital. The median and interquartile range of the Dice-coefficients
estimated for D-CRF for the BRATS 2015 testing set are (0.847, 0.131), (0.647,
0.258) and (0.7, 0.349) for complete tumor, tumor core and enhancing tumor,
respectively.

4 Discussion and Future Work

In this work, we studied the impact of the shrinking bias on brain tumor seg-
mentation. The shrinking bias is caused by a combination of a limited neighbor-
hood system and the usage of a Potts prior. The Potts prior encourages smooth
boundaries which in grid-structured CRFs results in an oversmoothing of the
object boundary. It is important to mention that different approaches have been
proposed to alleviate the shrinking bias of pairwise CRFs [5,9,14,19]. They all
share the goal of overcoming the limitation of grid-structured pairwise CRFs to
express high-level dependencies among pixels/voxels. The proposed dense CRF
model showed an improved overall performance for the complete tumor and
enhancing tumor segmentation compared to a grid-structured pairwise CRF.
This improvement can be attributed to the alleviation of the shrinking bias
inherent to pairwise CRFs [8]. A precise delineation of tumor regions is of great
importance for the emerging field of radiomics [18,22] in order to ensure the
quality of extracted imaging biomarkers. The dense CRF is capable of recover-
ing fine details (cf. Fig. 2 D-CRF, e.g. rim-enhancing tumor) as well as concave
object boundaries (e.g. finger-like edematous regions) that otherwise would be
smoothed out by a grid-structured pairwise CRF. The local clinical data set was
acquired with a higher resolution than the BRATS data, which led to a more
detailed imaging of the tumor and thus to a more significant improvement in per-
formance for D-CRF. However, for segmenting the rather convex-shaped tumor
core, oversmoothing of a grid-structured CRF can lead to better results. In case
of the leaderboard data set D-CRF attained a less consistent improvement for
the enhancing tumor. This can be at least partially attributed to an increased
number of small false positives distant to the tumor (e.g. vessels), which in case
of G-CRF were smoothed. In the future, we plan on further improving our app-
roach by employing a richer prior combined with a parameter learning method
[7,13].
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Abstract. In this paper, a fully convolutional residual neural network
(FCR-NN) based on linear identity mappings is implemented for med-
ical image segmentation, employed here in the setting of brain tumors.
Inspired by deep residual networks which won the ImageNet ILSVRC
2015 classification challenge, the FCR-NN combines optimization gains
from residual identity mappings with a fully convolutional architecture
for image segmentation that efficiently accounts for both low- and high-
level image features. After training two separate networks, one for the
task of whole tumor segmentation and a second for tissue sub-region seg-
mentation, the serial FCR-NN architecture exceeds state-of-the art with
complete tumor, core tumor and enhancing tumor validation Dice scores
of 0.87, 0.81 and 0.72 respectively. Despite each FCR-NN comprising a
complex 22 layer architecture, the fully convolutional design allows for
complete segmentation of a tumor volume within 2 s.

1 Introduction

In recent years, convolutional neural networks (CNN) have become the tech-
nique of choice for state-of-the-art implementations in various image classifica-
tion tasks [1–5]. In this study a novel fully convolutional residual neural network
(FCR-NN) architecture is proposed for medical image segmentation synthesizing
several recently described techniques including: (1) deep residual learning; (2)
multi-resolution recursive topology; and (3) fully convolutional neural network
architecture.

1.1 Deep Residual Learning

Deep residual learning [4] posits that any traditional neural network layer may be
reformulated as a residual function by means of a linear transformation identity
mapping with respect to the layer input:

xL = Wxl + f(xl) (1)

Here the output layer, xL, is the sum of xl, the input layer, and f(xl), a residual
change from the original input represented by an arbitrary sequence of non-linear
c© Springer International Publishing AG 2016
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functions. The projection matrix, W , is an optional term to match input and
output layer dimensions. By preserving a linear relationship between the input
and output layers, residual neural networks are able to stabilize gradients dur-
ing backpropagation, leading to improved optimization and facilitating greater
network depth. Networks based on this residual architecture have achieved top
results in the ImageNet ILSVRC 2015 international challenge.

Image Segmentation Adaptation. In this study we hypothesize that the image
segmentation problem can be similarly reformulated as a residual function, such
that the final classification labels can be derived from a simple linear combination
between the original input image, xl, and some arbitrary residual, f(xl). In
addition to the advantages for optimization and network depth described above,
this architecture benefits from using the original input image directly in the final
classification task. This latter proposition may be counterintuitive at first; in fact
a widely help assumption is that the raw image inputs contain too much inherent
noise and variation to be useful directly for classification. However unique to
medical image segmentation is that after accounting for high-level contextual
anatomic cues, final segmentation is heavily influenced by low-level features of
the original image, namely the signal intensity of any given voxel. For this reason
we hypothesize that a deep residual architecture may be optimally suited for the
medical image segmentation task.

1.2 Residual Functions for Multi-resolution Features

It is well-established that for the task of object localization a synthesis of con-
textual cues at multiple spatial resolutions is required for optimal performance
[3,6,7]. For neural networks this has been implemented by combining feature
maps from various layers, with the convolutional transpose operation used to
upsample high-order deep layer activations to match those of more superficial
layers [8]. Ronneberger et al. [9] further elaborated on this technique by propos-
ing a symmetric contracting and expanding topology that efficiently combines
low- and high-level features.

This study reformulates the latter strategy in the form of residual functions.
Specifically, from Eq. (1) above, an explicit definition is made such that the resid-
ual function, fl, represents some arbitrary nonlinear transformation performed
on the original image, xl, that captures its higher-level features and which is
subsequently combined with its original lower-level properties. A more precise
formulation of the higher-level feature map, xl+1, is given by:

xl+1 = σl(xl) (2)

Here σl(xl) represents a sequence of convolutions and nonlinear activation func-
tions which act to transform the original image, xl, to its higher-level feature
map, xl+1. As a result, the original function fl in Eq. (1) which was defined in
the previous paragraph as the residua arising from the influence of higher-level
features can be written as:
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fl(xl) = xl+1 + fl+1(xl+1) = σl(xl) + fl+1(σl(xl)) (3)

Here fl+1 is a new residual function which like its predecessor represents an
incremental change arising from the influence of even higher-level features from
the first feature map xl+1. Expanding Eq. (1) recursively allows us to formu-
late the neural network for image segmentation as a simple series of residual
functions, each term of which represents the additional incremental change of
gradually higher-level spatial features:

xL = Wxl + fl(xl) = Wxl + σl(xl) + σl+1(σl(xl)) + ... (4)

The formulations as described by Eqs. (3) and (4) are visually demonstrated
in Fig. 1.

Fig. 1. Recursive series of residual functions for image segmentation.

1.3 Fully Convolutional Neural Networks

Originally introduced by Long et al. [8] fully convolutional neural networks are
implemented by a series of upsampling convolutional transpose operators per-
formed on the deepest network layers, resulting in a final dense classification
matrix equal in dimension to the original image size for each forward pass. In
contradistinction to the typical sliding window CNN approach for image seg-
mentation [10–12], a fully convolutional architecture is highly efficient. In the
proposed FCR-NN where an entire axial MR slice is used as the input image,
the number of required forward passes for classification of each patient is equal
only to the number of slices in the MR volume, a task that can be achieved in
less than a few seconds on a GPU optimized workstation.

Several additional less apparent benefits from fully convolutional neural
networks include: (1) increased inherent regularization; and (2) influence of
per voxel classification from a larger field-of-view. The first effect relating to
increased regularization arises from observation that the loss function for each
forward/backward pass is derived from contributions at each voxel within the
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input image. In this specific example with an input image size of 240× 240 vox-
els, the loss function is thus driven by 2402 derivatives per slice. Furthermore
the ratio of different tissue classes is reflected accurately by the conglomerate of
axial slices in each mini-batch, and thus there is no requirement for multiphase
training to account for class imbalances as is typically the case for non-fully
convolutional designs [10].

Secondly, compared to a sliding scale CNN design whereby classification is
limited to a small input patch, a fully convolutional network allows voxel-wise
prediction to be influenced by a larger field-of-view proportional to the network
depth. This effect is further complemented by the fact that residual networks
allow for relatively deep architectures. In the proposed FCR-NN, convolution of
the deepest 15× 15 feature map with a series of three 3× 3 kernels results in an
effective receptive field that covers nearly one quarter (7× 7) of the feature map.

2 Related Work

Despite significant research over the past several decades, brain tumor segmen-
tation remains a challenging task. Common strategies cited in the literature
include: edge-based methods including active contours [13]; region-based meth-
ods [14]; classification or clustering methods with constraints based on atlases
[15,16], deformable models [17] or neighborhood regularization [18]; or hybrid
generative-discriminative frameworks [19–24]. However these traditional meth-
ods are limited to a priori assumptions about a set of rules or features that best
model the segmentation mask.

Convolutional neural networks are an emerging technique in computer vision
increasingly recognized as the state-of-the-art approach for various image recog-
nition tasks [25]. The power of neural networks arises from its unique capacity
for unsupervised feature extraction, independently learning a high-order repre-
sentation of the data that best approximates any given problem. In recent years,
CNN-based algorithms have been adopted for various medical image segmenta-
tion tasks [1–5,9]. In the BRaTS 2015 challenge, the 2nd [26] and 4th [10] ranked
submissions were based on CNN architectures.

3 Network Architecture

A fully convolutional residual neural network (FCR-NN) is proposed for medical
image segmentation. The network is composed by a series of recursive residual
identity mapping blocks, the prototype of which is shown in Fig. 1.

The network comprises a total of 22 layers (18 regular convolutional kernels
and 4 upsampling convolutional transpose kernels) and 661,700 parameters. The
entire network architecture for a given single FCR-NN is diagrammed in Fig. 2.
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Fig. 2. Residual identity mapping blocks for image segmentation.

Fig. 3. Fully convolutional residual neural network (FCR-NN) architecture for image
segmentation. Abbreviations: Conv = 3× 3 convolution; Conv(s2) = 3× 3 convolution
with stride 2 (downsample); Deconv = 2× 2 deconvolution (upsample); BN = batch
normalization; ReLU = rectified linear unit

3.1 Fully Convolutional Residual Neural Networks

Convolutional Neural Networks. CNNs are an adaptation of the traditional arti-
ficial neural network architecture whereby stacks of 4D convolutional kernels and
nonlinear activation functions act to transform a multidimensional input image
into progressively higher-order feature representations [27]. The proposed CNN
is implemented completely by 3× 3 convolutional kernels to prevent overfitting
as described by [2]. No pooling layers are used; instead downsampling is imple-
mented simply by means of a 3× 3 convolutional kernel with stride length of 2
to decrease the feature maps by 75% in size. All nonlinear functions are modeled
by the rectified linear unit (ReLU) [28]. Batch normalization is used between the
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convolutional and ReLU layers to limit drift of layer activations during train-
ing [29]. In successively deeper layers the number of feature channels gradually
increases from 16, 32, 64, 128 and 256, reflecting increasing representational
complexity.

Deconvolutions. To upsample each high-level feature map, a deconvolutional
or convolutional transpose operator is implemented by means of a 2× 2 kernel
with a stride length of 2, resulting in an increase in feature map by 75%. At
the same time, the number of feature channels is reduced by 50% to match the
corresponding activation layer in the mirror image pathway (Figs. 2 and 3).

Residual Connections. As shown in Fig. 2 residual identity mappings are imple-
mented by means of a channel-wise addition operation between an input and its
corresponding deconvoluted feature map with the same activation layer size. The
addition operation is performed after batch normalization of the deconvoluted
output but before the nonlinear ReLU activation as suggested by [4].

3.2 Serial Architecture

The task of brain tumor segmentation as defined in the BRATS challenge can be
divided into two corresponding goals. The first task is in differentiating between
normal and abnormal brain tissue (whole tumor segmentation). Subsequently,
using this result as an input, the second task is differentiate between various
brain tumor tissue types. This process is diagrammed in Fig. 4.

Fig. 4. Implementation of serial fully convolutional residual neural networks (FCR-NN)
for the two-part segmentation task.

As shown in the figure, these tasks are learned independently by two separate
FCR-NNs. During test time, the segmentation mask generated from the first
FCR-NN is dilated by 10 voxels; all voxels outside of this mask are set to 0
and the resulting masked image is used as an input for the second FCR-NN. By
separating out these tasks explicitly, the two separate neural networks can be
independently optimized for the highest performance for each respective goal.

3.3 Training Details

Image Preprocessing. Each MR volume was normalized simply to a mean signal
intensity of 0.5 and standard deviation of 1/6 such that the range [0, 1] con-
tains three standard deviations in each direction from the mean. No other image
preprocessing was necessary.
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Data Augmentation. Given the relatively limited training dataset available for
the BRATS 2016 challenge, and more generally in the realm of medical imag-
ing where annotated datasets are rare, judicious use of data augmentation is
critical for successful CNN implementation. In this study two primary forms
of data augmentation are employed. First, a separate cohort of IRB-approved
patients at our institution with annotations by a board-certified radiologist were
included to increase the breadth of data available for training. Importantly, these
included a large number of patients with suboptimal brain extraction and/or
significant imaging artifact. In addition, this institutional dataset was predomi-
nantly acquired at 3-Tesla MR imaging which, although yields higher sensitivity
to pathology, also results in increased image noise and decreased contrast resolu-
tion particularly on T2-FLAIR sequences. It is important to point out that upon
visual inspection, the test set for the 2016 BRaTS challenge compromised of a
disproportionate of 3-Tesla MR imaging relative to the training data available
online.

The second type of data augmentation employed by this study involves a
number of real-time modifications to the source images at the time of training.
Specifically, 50% of all images in a mini-batch were modified randomly by means
of: (1) addition across all voxels of a scalar between [−0.1, 0.1]; (2) rotation of
the image at an angle between 45◦ to 45◦; (3) addition of a bias field gradient
of strength between [0, 0.4] at a random angle between 0◦ and 360◦.

Training Parameters. Training is implemented using standard stochastic gradi-
ent descent technique with Nesterov momentum [30]. Parameters are initialized
using the heuristic described by He et al. [31]. L2 regularization is implemented
to prevent over-fitting of data by limiting the squared magnitude of the kernel
weights. To account for training dynamics, the learning rate is annealed and
the mini-batch size is increased whenever training loss plateaus. Furthermore a
normalized gradient algorithm is employed to allow for locally adaptive learning
rates that adjust according to changes in the input signal [32].

Implementation. Software code for this study was written in Matlab (R2016a),
and benefited greatly from the MatConvNet toolbox [33]. Experiments were
performed on a GPU-optimized workstation with a single NVIDIA GeForce GTX
Titan X (12 GB). The combined software and hardware configurations allowed
for test time (forward pass only) classification of approximately 155.1 images
per second. An entire brain volume with 151 axial slices could be classified in
approximately 1.94 s (two cumulative forward passes for serial FCR-NNs).

4 Experiments and Results

All 274 cases of gliomas (220 high-grade gliomas; 54 low-grade gliomas) in the
BRaTS 2016 training set were included in this study. An additional 150 insti-
tutional cases with high-grade gliomas were included to augment the available
training data, all acquired on 3T MR scanners. A total of 186 cases in the
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BRaTS 2016 database (132/220 high-grade gliomas; 54/54 low-grade gliomas)
and 84 institutional cases represented treatment naive (preoperative) tumors.
The remaining cases were obtained at various postoperative time points.

Eighty percent of the cases (n = 339) were randomly assigned to the training
data set, with the remaining 20% of the cases (n = 85) used as an independent
validation set. All four channels (FLAIR, T1-precontrast, T1-postcontrast, T2)
across an entire axial cross-sectional image slice (240× 240× 4 voxels) were used
as inputs into the FCR-NN.

Dice scores and Hausdorff distances (mean and range) for the validation set
data are reported in Table 1. The results are competitive with historic trends,
and finished overall tied for the top two in the BRaTS 2016 challenge.

Table 1. Validation set dice score and Hausdorff distances.

Complete tumor Core tumor Enhancing tumor

Dice 0.89(0.76–0.95) 0.83(0.68–0.91) 0.78(0.41–0.89)

Hausdorff(mm) 8.0(3.0–27) 10.0(4.2–27) 5.9(3.3–21)

Acknowledging limitations in direct comparison with the top four perform-
ing algorithms in the BRaTS 2015 challenge due to differences in validation
data cited in published results (2013 BRaTS training set in [10,34]; partial 2015
BRaTS training set in [23]; full 2015 BRaTS training set in [26] which is identical
to the 2016 BRaTS training set used in this study), several general patterns can
nonetheless be seen. With regards to complete tumor segmentation, the FCR-
NN Dice of 0.89 is only marginally better than the previous top four algorithms
(0.86–0.88). However given that expert human rater agreement for complete
tumor segmentation is reported to be between 0.85–0.91 [35] this metric is likely
approaching a plateau for theoretical upper limits of accuracy. By contrast, the
much more visually challenging task of separating tumor subcomponents remains
to be fully solved. In this case the FCR-NN approach yields a more significant
improvement both in Dice score for core tumor (0.83 vs. 0.73–0.79 for previous
top performing algorithms) and enhancing tumor (0.78 vs. 0.59–0.73). This is
likely in part secondary to a serial architecture which dedicates an entire sep-
arate CNN to identification of tumor subcomponents (thus isolating the task
from a second CNN that is responsible just for identifying tumor margins).

5 Conclusion

The proposed serial FCR-NN architecture implemented here in the setting of
brain tumors is a robust method for medical image segmentation incorporating
contextual cues from multiple spatial resolutions. The residual linear transforma-
tion identity mappings facilitate optimization and allow for direct contributions
from the original input images for final classification. The fully convolutional
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architecture results in an efficient classifier which can segment an entire tumor
volume in less than 3 s with state-of-the-art accuracy.

Acknowledgments. The author of this paper gratefully acknowledges the support of
NVIDIA Corporation with the donation of GeForce GTX Titan X (12 GB) GPU used
for this research.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks (2012)

2. Simonyan, K., Vedaldi, A., Zisserman, A.: Networks, deep inside convolutional:
visualising image classification models and saliency maps. In: ICLR, p. 1 (2014)

3. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
07–12 June, 1–9 Sep 2015 (2015)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
7(3), 171–180 (2015). Arxiv.Org

5. Ciresan, D., Giusti, A.: Deep neural networks segment neuronal membranes in elec-
tron microscopy images. In: Advances in Neural Information Processing Systems,
pp. 1–9 (2012)

6. Yang, S., Ramanan, D.: Multi-scale recognition with DAG-CNNs (2015)
7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-

rate object detection and semantic segmentation (2014)
8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic

segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3431–3440 (2014)

9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.
1007/978-3-319-24574-4 28

10. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal,
C., Jodoin, P.-M., Larochelle, H.: Brain tumor segmentation with deep neural
networks. In: Proceedings of MICCAI-BRATS (Multimodal Brain Tumor Segmen-
tation Challenge), pp. 29–33 (2015)

11. Kleesiek, J., Urban, G., Hubert, A., Schwarz, D., Maier-hein, K., Bendszus, M.,
Biller, A.: NeuroImage deep MRI brain extraction: a 3D convolutional neural net-
work for skull stripping. NeuroImage 129, 460–469 (2016)

12. Chen, H., Dou, Q., Yu, L., Heng, P.-A.: VoxResNet: deep voxelwise residual net-
works for volumetric brain segmentation, pp. 1–9 (2016). arXiv:1608.05895v1

13. Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: A novel content-
based active contour model for brain tumor segmentation. Magn. Reson. Imaging
30(5), 694–715 (2012)

14. Harati, V., Khayati, R., Farzan, A.: Fully automated tumor segmentation based
on improved fuzzy connectedness algorithm in brain MR images. Comput. Biol.
Med. 41(7), 483–492 (2011)

15. Prastawa, M., Bullitt, E., Gerig, G.: Simulation of brain tumors in MR images for
evaluation of segmentation efficacy. Med. Image Anal. 13(2), 297–311 (2009)

http://arxiv.org/abs/Org
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1608.05895v1


Fully Convolutional Deep Residual Neural Networks 117

16. Menze, B.H., Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A
generative model for brain tumor segmentation in multi-modal images. In: Jiang,
T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol.
6362, pp. 151–159. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15745-5 19

17. Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor - cut: segmen-
tation of brain tumors on contrast enhanced MR images for radiosurgery applica-
tions. IEEE Trans. Med. Imaging 31(3), 790–804 (2012)

18. Zhu, Y., Young, G.S., Xue, Z., Huang, R.Y., You, H., Setayesh, K., Hatabu, H.,
Cao, F., Wong, S.T.: Semi-automatic segmentation software for quantitative clin-
ical brain glioblastoma evaluation. Acad. Radiol. 19(8), 977–85 (2012)

19. Menze, B.H., Geremia, E., Ayache, N., Szekely, G.: Segmenting glioma in multi-
modal images using a generative-discriminative model for brain lesion segmenta-
tion. In: Proceedings of MICCAI-BRATS (Multimodal Brain Tumor Segmentation
Challenge), p. 7 (2012)

20. Meier, R., Reyes, M., Bauer, S., Slotboom, J., Wiest, R.: A hybrid model for
multimodal brain tumor segmentation. In: Proceedings of NCI-MICCAI BRATS
(Multimodal Brain Tumor Segmentation Challenge), pp. 31–37 (2013)

21. Bakas, S., Zeng, K., Sotiras, A., Rathore, S., Akbari, H., Gaonkar, B., Rozycki,
M., Pati, S., Davatzikos, C.: Segmentation of gliomas in multimodal magnetic res-
onance imaging volumes based on a hybrid generative - discriminative framework.
In: Proceedings of MICCAI-BRATS (Multimodal Brain Tumor Segmentation Chal-
lenge), pp. 5–12 (2015)

22. Menze, B.H., Van Leemput, K., Lashkari, D., Riklin-Raviv, T., Geremia, E.,
Alberts, E., Gruber, P., Wegener, S., Weber, M.-A., Szekely, G., Ayache, N., Gol-
land, P.: A generative probabilistic model and discriminative extensions for brain
lesion segmentation with application to tumor and stroke. IEEE Trans. Med. Imag-
ing 35(4), 933–946 (2016)

23. Bakas, S., et al.: GLISTRboost: combining multimodal MRI segmentation, regis-
tration, and biophysical tumor growth modeling with gradient boosting machines
for glioma segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels,
H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 144–155. Springer, Cham (2016).
doi:10.1007/978-3-319-30858-6 13

24. Zeng, J., See, A.P., Phallen, J., Jackson, C.M., Belcaid, Z., Ruzevick, J., Durham,
N., Meyer, C., Harris, T.J., Albesiano, E., Pradilla, G., Ford, E., Wong, J., Ham-
mers, H.-J., Mathios, D., Tyler, B., Brem, H., Tran, P.T., Pardoll, D., Drake, C.G.,
Lim, M.: Anti-PD-1 blockade and stereotactic radiation produce long-term survival
in mice with intracranial gliomas. Int. J. Rad. Oncol. Biol. Phys. 86(2), 343–349
(2013)

25. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

26. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Deep convolutional neural networks
for the segmentation of gliomas in multi-sequence MRI. In: Crimi, A., Menze, B.,
Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp.
131–143. Springer, Cham (2016). doi:10.1007/978-3-319-30858-6 12

27. Lecun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series
(1995)

28. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines (2010)

29. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift, pp. 1–11 (2015). arXiv:1502.03167

http://dx.doi.org/10.1007/978-3-642-15745-5_19
http://dx.doi.org/10.1007/978-3-319-30858-6_13
http://dx.doi.org/10.1007/978-3-319-30858-6_12
http://arxiv.org/abs/1502.03167


118 P.D. Chang

30. Bengio, Y., Boulanger-Lewandowski, N., Pascanu, R.: Advances in optimizing
recurrent networks. In: ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, pp. 8624–8628 (2013)

31. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification (2015)

32. Mandic, D.P.: A generalized normalized gradient descent algorithm. IEEE Signal
Process. Lett. 11(2), 115–118 (2004)

33. Vedaldi, A., Lenc, K.: MatConvNet. In: Proceedings of the 23rd ACM International
Conference on Multimedia - MM 2015, pp. 689–692 (2015)
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Abstract. Biomedical image segmentation requires both voxel-level
information and global context. We report on a deep convolutional archi-
tecture which combines a fully-convolutional network for local features
and an encoder-decoder network in which convolutional layers and max-
pooling compute high-level features, which are then upsampled to the
resolution of the initial image using further convolutional layers and tied
unpooling. We apply the method to segmenting multiple sclerosis lesions
and gliomas.

1 Introduction

Medical image segmentation is a fundamental problem in biomedical image com-
puting. Manual segmentation of medical images is both time-consuming and
prone to substantial inter-rater error: automated techniques offer the potential
for robust, repeatable and fast image segmentation.

In the past few years, neural networks have returned to the fore as the most
promising technique for supervised machine learning (LeCun et al. 2015). In par-
ticular, convolutional neural networks have dominated the field of image recog-
nition. More recently, techniques for image recognition have been reworked to
object location and segmentation. One recurring theme is that segmentation
requires a combination of low-level and high-level features, with several tech-
niques and architectures having been suggested for upscaling and incorporating
high-level with low-level features (Hariharan et al. 2015; Long et al. 2015; Ron-
neberger et al. 2015; Brosch et al. 2016).

In this paper, we introduce an architecture, called nabla net, for image
segmentation, with application in the medical image segmentation domain.
Nabla net is a dag-like deep neural network architecture, combining a fully-
convolutional pathway learning low-level features and an encoder-decoder net-
work learning high-level features. We describe the general features of nabla-net,
its application to the segmentation of multiple sclerosis lesions, and its applica-
tion to segmenting low- and high-grade gliomas.
c© Springer International Publishing AG 2016
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2 Method

2.1 Summary

The fundamental basis of nabla net is a deep encoder/decoder network, as
described by Badrinarayanan et al. (2015). Such a network comprises a series of
encoder layers, each of which reduces feature maps with higher spatial dimensions
to feature maps with lower spatial dimension, followed by a series of decoder layers,
which expand features with low spatial dimensions to features with high spatial
dimensions. The goal of such an encoder-decoder pathway is to learn long-scale,
global features of an image, and then reconstruct those features at the same res-
olution as the orinial image, to allow segmentation.

Concretely, the encoder-decoder pathway of the nabla net applied to a 256 *
256 image would compute in the first encoder layer a block of 256 * 256 feature
maps, which are then reduced to 128 * 128 feature maps by maxpooling. This
is repeated in encoder layer two, yielding 64 * 64 feature maps, and then one
further time, yielding 32 * 32 feature maps.

These feature maps are then upscaled by decoder layers, yielding subse-
quently 64 * 64 feature maps, 64 128 * 128 feature maps, and finally 256 *
256 feature maps. The upscaling is performed by using “tied unpooling”, as
described below.

Such an encoder-decoder network can be trained to reconstruct the input
image: in this case, the network would be called a “convolutional autoencoder”.
Autoencoders have been popular in the past as a method of unsupervised pre-
training for image classification, but have largely fallen out of favour, as better
methods of assigning network weights have emerged. In this case, we instead
train the network to reproduce the MS lesion or Glioma segmentation.

The results of training a pure encoder-decoder network, as proposed by Badri-
narayanan et al., on MS lesion data is shown in Fig. 1. The output provides a
good localisation of the lesions, but is unable to provide crisp boundaries.

Fig. 1. Example raw output of the pure encoder-decoder network (Segnet), showing
good localisation of the lesions but poor delineation. Left, posterior of the classifier,
centre, manual delineation, right, FLAIR
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Fig. 2. Example raw output of Nabla net trained on axial FLAIR slices, showing
improved lesion outline detection Left, posterior of the classifier, centre, manual delin-
eation, right, FLAIR

Our hypothesis is that information regarding the boundaries of the lesions
can be found in the initial block of 256 * 256 features, and for that reason,
the final prediction of a nabla net is produced by combining the 256 * 256
layer arising from the first layer encoder layer with the 256 * 256 output of
the final decoder layer. These feature maps are then processed by a final fully
convolutional layer, before the final prediction of the lesion map is made. This
ensures that a combination of low-level and high-level features are available for
the prediction.

2.2 Techniques Used

To downscale feature maps, we make use of maxpooling (Jarrett et al. 2009),
with non-overlapping pool size 2, in which the feature map is scaled by a factor of
two in both dimensions, by replacing 2 by 2 patches with the maximum intensity
in that patch. To scale up the feature maps, we use “tied unpooling” (Zeiler
et al. 2011; Badrinarayanan et al. 2015). In tied unpooling an upscaling layer
is linked with a maxpooling layer: for each feature to be upscaled, we associate
a feature which was downscaled in the maxpooling layer, and the feature map
is upscaled by filling only the positions of the maximums of the corresponding
maxpooling layer. We use make use of batch normalization (Ioffe and Szegedy
2015) to accelerate the learning process. The architecture of the nabla net is
fully convolutional, making no use of fully-connected layers, and as such it can
be applied to any image with dimensions divisible by eight, this being enforced
by the number of maxpooling steps.
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2.3 The Nabla Net Architecture for MS Lesion Segmentation

As stated above, the nabla net is built from encode and decode layers. Each
encode layer has the following structure:

Layer Name Dimension of output

1 Input (p, q, r)

2 Zero padding (64, q + 2, r + 2)

3 3 by 3 convolutional (64, q, r)

4 Batch normalization (64, q, r)

5 ReLu (64, q, r)

6 Zero padding (64, q + 2, r + 2)

7 3 by 3 convolutional (64, q, r)

8 Batch normalization (64, q, r)

9 ReLu (64, q, r)

Each decode layer has the following structure

Layer Name Dimension of output

1 Input (p, q, r)

2 Zero padding (64, q + 2, r + 2)

3 3 by 3 convolutional (64, q, r)

4 Batch normalization (64, q, r)

5 Zero padding (64, q + 2, r + 2)

6 3 by 3 convolutional (64, q, r)

7 Batch normalization (64, q, r)

The whole networks differed for the different application domains (MS and
brain tumor) and will be described in the subsequent sections. In all cases, the
networks were built using the Keras framework (https://github.com/fchollet/
keras), and trained using Theano (http://deeplearning.net/software/theano) as
a backend, using an Adadelta optimizer.

3 Multiple Sclerosis Lesion Segmentation
(MSSEG Challenge)

MSSEG (https://portal.fli-iam.irisa.fr/msseg-challenge/overview) was a grand
challenge at MICCAI 2016, the goal of which was to segment white-matter
brain lesions in patients with multiple sclerosis. Fifteen training cases were made

https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://deeplearning.net/software/theano
https://portal.fli-iam.irisa.fr/msseg-challenge/overview
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available, from three different scanner models. We developed a pipeline based on
nabla net for addressing this problem.

The pipeline developed segments white-matter brain lesions from a skull-
stripped 1 mm isovoxel FLAIR volume. The pipeline integrates three nabla net
models: one segmenting lesions from axial slices, one segmenting from coronal
slices, and one from saggital slices. This ensures that the segmentation given
makes sense in three dimensions, without sacrificing the efficiency of 2d vs 3d
convolutions. The “beliefs” (output of the logistic function in the final layer) of
the three networks are averaged, and a final lesion mask extracted by a random
walk segmentation starting from seeds with high belief (>0.5)

3.1 Architecture

Each network used on the MS dataset had the following architecture:

Layer Name Dimension of output Comments

1 Input (5, n * 8, m * 8) Five slices, dimensions (n * 8, m * 8)

2 Encode 1 (64, n * 8, m * 8)

3 Maxpool 1 (64, n * 4, m * 4)

4 Encode 2 (64, n * 4, m * 4)

5 Maxpool 2 (64, n * 2, m * 2)

6 Encode 3 (64, n * 2, m * 2)

7 Maxpool 3 (64, n, m)

8 Encode 4 (64, n, m)

9 Decode 4 (64, n, m)

10 Unpool 3 (64, n * 2, m * 2) Tied to maxpool 3

11 Decode 3 (64, n * 2, m * 2)

12 Unpool 2 (64, n * 4, m * 4) Tied to maxpool 2

13 Decode 2 (64, n * 4, m * 4)

14 Unpool 1 (64, n * 8, m * 8) Tied to maxpool 1

15 Merge (128, n * 8, m * 8) Concatenate the outputs of layers 2 and 14

16 Encode final (64, n * 8, m * 8)

17 1 * 1 convolutional (1, n * 8, m * 8)

18 Sigmoid (1, n * 8, m * 8) Loss = binary crossentropy

3.2 Experiments

Nabla Net Trained on Locally Sourced Data. As a first experiment to
test generalisability of the method, a version of Nabla net was trained on skull-
stripped 45 FLAIR images from the Inselspital. Segmentations of these cases
were prepared by a medical student under supervision and revision of a neuro-
radiologist with more than 15 years of experience in multiple sclerosis imaging
(R.W.). Lesions were identified if appearing hyper-intense compared to the sur-
rounding normal-appearing white matter on T2w and FLAIR. was applied to the
MSSEG training cases, and achieved a mean Dice score of 0.67, and a standard
deviation of 0.11.



124 R. McKinley et al.

Nabla Nets for the MSSEG Challenge. For the purposes of the MSSEG
challenge, a new classifier was trained, only on the training data from that chal-
lenge. This was a substantially smaller training set (15 patients) and more het-
erogeneous than the Insel dataset (data from 3 scanner types, a mix of 1.5 and
3T and two different vendors, varying voxel sizes). To account for differences in
scanner and sequence, we opted to train models not on raw data but on a set
of pre-processed data provided by the competition organisers which had been
skull-stripped and smoothed. To account for differences in voxel dimensions, all
training examples were resampled to have 1 mm isovoxels using bicubic spline
interpolation.

We trained three copies of nabla net, one for each of the three directions
{axial, saggital, coronal}. The networks were trained on the unprocessed FLAIR
data, resampled to isotropic 1 mm voxel spacing. Each training case comprised
the data from five consecutive {axial, saggital, coronal} slices, with such a set of
slices being included as training data if the middle slice contained voxels within
the brain mask. Ground truth for such a set of slices was given by the lesion
mask of the central slice: thus, the lesion mask of a slice was predicted from
the slice itself and the four slices surrounding it. For each of the three models
trained, one example from each scanner type was randomly selected, and the
data from those cases used as validation data, to monitor for overfitting.

There was a substantial data imbalance between lesion and non-lesion pix-
els in the training data, owing not only to the size of the lesions, but also to
the presence of pixels outside of the brain mask in the image. Since sampling
the training data was not an option (as nabla net operates on whole slices),
instead the individual voxels were weighted according to their importance to the
model. Rather than simply weighting all lesion voxels (which typically has the
effect of moving the optimal decision boundary, but not improving the classifier)
we instead calculated, for each case, the 25th percentile of the scaled intensity
within the lesion mask, and weighted the loss function from voxels above that
intensity ten times more than other voxels. The models were trained with the
Adadelta method. Models were trained until no improvement in loss was seen
in the validation set over five epochs (early stopping) and the model with best
performance (binary crossentropy) on the validation set was selected for the final
model.

Applying to New MSSEG Cases. Given a new case, the lesion mask was
predicted, using only the processed FLAIR maps, as follows.

Given a case from the MSSEG training data, the pipeline for lesion segmen-
tation was as follows: resample the processed FLAIR volume to 1 mm isovoxels.
Apply the saggital, coronal and axial models to the resampled volume (padding
the image to ensure that the slice dimensions are divisible by eight). The final
lesion heatmap is given by averaging the heatmaps arising from the three models.
This heatmap is then resampled to the native voxel spacing of the original vol-
ume. An initial segmentation is made by setting all voxels with posterior >0.5 as
lesion voxels, and all voxels with posterior <0.1 as non lesion: the final segmenta-
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tion is derived by using a random walk segmentation (beta = 10) as implemented
in the python scikit-image package (http://scikit-image.org/).

Processing a single case, on a laptop with an 8 Gb NVIDIA GTX980M GPU,
took an average of 210 s.

Validation on Local Data. We validated the models trained on the MSSEG
data on 129 cases from the Inselspital, segmented by a masters student as for
our initial experiments. An indication of the volumetric performance can be
seen in Fig. 4. An example case is shown in Fig. 3, where it can be seen that the
automated procedure can in some cases provide a more accurate segmentation
than the human rater (in particular in the posterior, where the manual rater’s
delineation does not follow the contours of the lesion as visible in the sagittal
FLAIR). This can be explained by observing that all cases in our dataset were
segmented in the axial direction (the rater may of course refer to the sagittal and
coronal view, but in practice this is too time consuming to be done thoroughly).
Lesions with small axial cross-section were likely to be missed by the human
rater, but detected by the automated system, since it segments also in the sagittal
and coronal planes.

Fig. 3. Right: Sagittal slice of a Flair acquisition. Centre: Manual segmentation. Left:
segmentation by Nabla net.

4 Brain Tumor

We subsequently adapted the nabla net architecture to segment low- and high-
grade gliomas.

The initial portion of the network consists of four small encode layers (with
32, rather than 64 feature maps), each working on a separate modality from
{T1, T1c, T2, FLAIR}. The output of these four encode layers is then fed into
the encoder-decoder network:

http://scikit-image.org/


126 R. McKinley et al.

Layer Name Dimension of output Comments

1 Input (4 * 32, n * 8, m * 8) Five slices, dimensions (n * 8, m * 8)

2 Encode 1 (64, n * 8, m * 8)

3 Maxpool 1 (64, n * 4, m * 4)

4 Encode 2 (64, n * 4, m * 4)

5 Maxpool 2 (64, n * 2, m * 2)

6 Encode 3 (64, n * 2, m * 2)

7 Maxpool 3 (64, n, m)

8 Encode 4 (64, n, m)

9 Decode 4 (64, n, m)

10 Unpool 3 (64, n * 2, m * 2) Tied to maxpool 3

11 Decode 3 (64, n * 2, m * 2)

12 Unpool 2 (64, n * 4, m * 4) Tied to maxpool 2

13 Decode 2 (64, n * 4, m * 4)

14 Unpool 1 (64, n * 8, m * 8) Tied to maxpool 1

15 Merge (128, n * 8, m * 8) Concatenate the outputs of layers 2 and 14

16 Encode final (64, n * 8, m * 8)

17 1 * 1 convolutional (4, n * 8, m * 8)

18 Sigmoid (4, n * 8, m * 8) Loss = binary crossentropy

4.1 Data Used

The training data in the BRATS challenges can be divided into two groups,
based on how they are labelled. An initial thirty cases were labelled by multiple
expert raters, and the resulting label masks fused. A further 240 cases, taken
from the NIH TCIA database, were segmented using a fusion of top-performing
methods from the 2012 and 2013 BRATS challenges.

While the automatically labelled TCIA cases have been manually inspected,
there remain numerous false identifications. For this reason, we considered that
they were not suitable for validating our algorithm. However, restricting training
to the thirty well-labelled cases led to overfitting. For this reason, we trained on
the automatically-labelled TCIA data, and validated on the purely manually-
labelled data.

4.2 Label Sets

The label set for the BRATS challenge has four labels: edema, non-enhancing
tumor, enhancing tumor, and necrosis. However, the manual segmentation pro-
ceeds as follows: identify whole tumor (on FLAIR/T2 imaging), then within that
identify the gross tumor. Finally, identify the contrast-enhancing and necrotic
parts of the whole tumor. In this work, we attempt to reproduce the segmen-
tation steps produced by a radiologist, in particular to improve performance on
the gross tumour segmentation.

The output of the model has four channels, each corresponding to one of
the four classes {Whole Tumour, Gross Tumour, Contrast enhancing, Necro-
sis}. Since these label sets overlap (i.e., Gross Tumor is contained within whole
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Fig. 4. Volumetric comparison of manual (masters student) and automated (nabla net)
segmentation on 129 cases from the Inselspital, Bern, Switzerland. Log scale on both
axes.

tumor), we again use Binary Crossentropy applied to each of the output channels
separately as a loss function. As for MS lesion segmentation, the we trained three
models to segment in the saggital, coronal and axial directions, and ensembled
them for the final challenge segmentation.

The pipeline for lesion segmentation was as follows: apply the network to
obtain heatmaps for the whole tumour, gross tumour, contrast-enhancing tumour
and necrosis. The final lesion maps are extracted from the heatmaps using a
random walk segmentation, as implemented in the python scikit-image package,
for each of the four classes. All voxels outside the whole tumour are labelled as
non-tumour: voxels inside the gross tumour but not inside the contrast-enhancing
or necrosis are labelled as noncontrast-enhancing, and voxels outside the gross
tumour but in the whole tumour are labelled as edema.

When applied to the 30 BRATS 2012 training cases (which were not used for
training), the method achieved a mean Dice score of 0.87 for the whole tumour,
0.69 for the tumour core, and 0.56 for contrast-enhancing tumour.

5 Conclusions

The current paper reports on a method, applied in two recent biomedical vol-
ume segmentation challenges. The method performed well in both challenges,
in particular performing best in terms of DICE coefficient in the MSSEG chal-
lenge. It would of course, be beneficial to benchmark the method against other
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architectures, such as U-net: the final results of the BRATS challenge could be
seen as providing such a benchmark, although since participants were allowed
to use training data not publicly available, this comparison is not entirely fair.

Further extensions of the method could include, for example, replacing the
random walk segmentation (which was added close to the end of the challenge,
since it empirically improved Dice coefficient scores) with a more usual condi-
tional random field regularisation.
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Abstract. This paper extends a previously published brain tumor seg-
mentation methods based on Random Decision Forest (RDF). An itera-
tive approach is used in training the RDF in each iteration some patients
are added to the training data using some heuristics approach instead
of randomly selected training dataset. Feature extraction and selection
were applied to select the most discriminative features for training our
Random Decision forest on. The post-processing phase has a morpho-
logical filter to deal with misclassification errors. Our method is capable
of detecting the tumor and segmenting the different tumorous tissues of
the glioma achieving competitive results.

Keywords: Brain tumor segmentation · Random forests

1 Introduction

Gliomas are the most frequent primary brain tumors in adults. They are orig-
inated from glial cells and infiltrate the surrounding tissues. Gliomas can be
divided into Low Grade Gliomas (LGG) and High Grade Gliomas (HGG).
Although the former are less aggressive, the later can be very deadly [8,9].
Despite considerable advances in glioma research, patient diagnosis remains
poor. Segmentation of brain tumors from MR images is important in cancer
treatment planning as well as for cancer research. In current clinical practice,
the analysis of brain tumor images is mostly done manually. Apart from being
time-consuming, this has the additional drawback of significant intra- and inter-
rater variability. Accurate brain tumour segmentation is difficult, because in MR
images, brain tumors may have the same appearance with gliosis and stroke, have
a variety of shapes, appearances and sizes, and may appear in any position in
the brain, invade the surrounding tissue rather than displacing it, causing fuzzy
boundaries and also there exists intensity inhomogeneity in MR images. The
main goal of brain tumor segmentation is to identify areas of the brain whose
configuration deviates from normal tissues. Segmentation methods typically look
for active tumorous tissues, necrotic tissues, and edema by exploiting several
Magnetic resonance imaging (MRI) modalities, such as T1, T2, T1-Contrasted
(T1C) and Flair.
c© Springer International Publishing AG 2016
A. Crimi et al. (Eds.): BrainLes 2016, LNCS 10154, pp. 129–137, 2016.
DOI: 10.1007/978-3-319-55524-9 13
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In this paper, we introduce a random forest approach which chooses the
patients to be used in training according to a cost function instead of randomly
selecting them from our dataset (BRATS 2016 dataset), training is iterative at
each iteration some patients are added to the training set to be used in the next
iteration, this approach tries to prevent over fitted random forest by choosing
patients that get the worst results, patients with brain tumors having various
shapes, appearances, and sizes, and may appear in any position in the brain,
in the previous iteration. Through the paper, we will illustrate in details the
approach and the parameters of the approach.

In the past years there are many approaches that used the random forest in
brain tumor segmentation those approaches varies in the features selected and
the training approach: five class random forest classifier [4] or cascaded random
forest that classifies each voxel on two stages the first is two class classifier
tumorous or not and the second classifies tumorous voxels to four tumor classes,
so this approach tries to balance the training data in each classifier [5].

The paper is organized in the following way, Sect. 2 contains a description of
the training pipeline of the random forest. Section 3 refers to different models
used in experiments and the obtained results. Finally, Sect. 4 presents the main
conclusions.

2 Training Pipeline

The training pipeline consists of four main steps: pre-processing, feature extrac-
tion and selection, training random forest, and post-processing step. In the fol-
lowing, we will introduce each step in details respectively. Figure 1 shows the
training pipeline of the random forest.

2.1 Preprocessing

– Bias field signal is a low-frequency and very smooth signal that corrupts MRI
images, especially those produced by old MRI machines. Image processing
algorithms such as segmentation, texture analysis or classification that use
the gray level values of image pixels will not produce satisfactory results. A
pre-processing step is needed to correct for the bias field signal. Bias field
correction on the MR images is applied using open source code N4ITK [1].

– The second step in pre-processing is histogram matching [2,3] which is pro-
posed to correct the variations in scanners sensitivity. This is because quanti-
tative comparisons of abnormalities in MRI scans between patients or within
patients serially are affected by variations in MR scanners performance.

2.2 Feature Extraction and Selection

In this phase, we extracted 328 features from the MR images after being pre-
processed. Mainly, three categories of features were extracted: gradient features,
appearance features, and context aware features. Most of them were from other
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Fig. 1. Random forest training pipeline

published papers from BRATS challenge [4–6]. The first type of features is gra-
dient features which include gradient filter at different Sigma values of 0.5, 1,
2, 3 in each of the three directions x, y, and z and their resultant, difference
gradient features, Laplace features, and Recursive Gaussian features. The sec-
ond type of features is Appearance features which include the voxels intensities,
its logarithmic and exponential transformations. The last type of features is the
context aware features, which is intensity based, it includes features extracted
from the neighbouring voxels, the surrounding cube of the voxel, as most simi-
lar, most different, Minimum, Maximum, Range, Kurtosis, Skewness, Standard
deviation, and Entropy for all modalities, as well as the local histogram of the
cube surrounding the voxel and partitioned into eleven bins, all the previous
features were extracted for all modalities Flair, T1, T1c, and T2.

Random forest was used in feature selection using mean decrease impurity,
as when training a tree, it can be computed how much each feature decreases
the weighted impurity in a tree. For a forest, the impurity decrease from each
feature can be averaged and the features are ranked according to this measure.

After feature extraction and selection, each patient will consist of a set of
tuples, where each tuple consists of some features which correspond to a voxel in
the four modalities of the brain. On average each patient has 1,500,000 tuples.
Random sampling is used without replacement, since the health voxels are domi-
nating, to balance healthy and unhealthy tuples. 60,000 health voxels and 15,000
from each other tumor label are randomly sampled from each patient. Each
patient finally will contain 100,000 voxels.
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2.3 Training Random Decision Forest

Before training the random forest there are some parameters of the random
forest that should be determined to be used in training, as the number of trees
and number of attributes to split on at each node. So we trained a model by the
validation dataset and determined the best values for those parameters based
on the k-fold cross validation error, which turns out to be using a random forest
with number of trees equals to 45 and number of attributes to split on equals
to the square root of the number of features, as we found that the gain in the
accuracy is negligible compared to the huge computation it takes when increasing
the Random forest parameters values.

Random forest implementation on H2O [7] was used as it is fast, distributed,
using the full processing power of the machine, and work on different platforms
like python and R.

2.4 Post Processing

The post-processing step is applying binary morphology filter to the output
image of the classifier, three binary morphology filters were applied to reduce
misclassification errors by connecting large tumorous regions and removing small
isolated regions.

The radii used in binary morphology were validated using the validation
dataset and they were found to be 8, 8, 0 for complete, core, and enhanced
tumors respectively for high-grade gliomas and 1, 8, 2 for complete, core, and
enhanced tumors respectively for low-grade gliomas.

3 Experiment and Results

3.1 Experiment

This section explains the models used in classification. BRATS 2016 dataset was
used and partitioned into training (70%), testing (20%), and validation (10%)
datasets.

Iterative Model. The iterative model mainly addresses the problem of choos-
ing a subset of training patients to train the random forest, so the model is
trained through number of iterations, in each iteration the number of patients
increases according to a cost function so that the worst N patients are added,
there is also a maximum number of patients that is selected according to the
hardware resources available. The flowchart in Fig. 2 explains how the iterative
model works.

There are many parameters that must be specified first as the number of
patients added in each iteration that is set to 5 patients per iteration, initial set
of patients that are 30 patients (BRATS 2013 dataset 20 HGG and 10 LGG),
maximum number of LGG patients to prevent overfitting LGG patients which
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Fig. 2. Flowchart of selecting patients for training the iterative model

is set to 18 patients, the maximum number of patients which is limited to 50
patients, and the cost function which is equal to

costFunction = 2 ∗ coreDice + completeDice

Cascaded Model. This model consists of two random forests, the first random
forest classifies only health voxels (label 0) and non-health voxels (all non-health
labels are merged into one representative label for non-health labels), then the
second random forest takes the output results from the first random forest and
tries to classify the non-health voxels. This approach mainly tries to enhance non-
health voxels classification. Firstly, by making a dedicated classifier for health
versus non-health voxels which will have many advantages as by merging all
non-health labels into one label, this will increase the balancing of the dataset
input to the random forest to train on, which is supposed to decrease the number
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Fig. 3. Flowchart of testing patients on the cascaded model

of non-health voxels classified as health voxels. Secondly, by making a dedicated
classifier for non-health labels.

This model was trained on 50 randomly chosen patients from the training
data set, the random forest consists of 100 trees each of depth 45. The flowchart
in Fig. 3 explains the testing of patients on the cascaded model.

One-Phase Model. This model was trained on 50 randomly chosen patients
from the training data set, the random forest consists of 100 trees each of
depth 45.

3.2 Results

Those models are tested on 20 (15 HGG and 5 LGG) randomly unseen patients,
the results are shown in Table 1 by the dice, specificity and sensitivity scores.
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Table 1. The table contains the dice, specificity and sensitivity scores of testing 20
(15 HGG and 5 LGG) randomly unseen patients on our different models.

Model Complete Core Enhancing

Dice Sens Spec Dice Sens Spec Dice Sens Spec

One-phase
HGG

0.81±
0.09

0.84±
0.10

0.98±
0.01

0.62±
0.23

0.83±
0.16

0.98±
0.01

0.75±
0.15

0.81±
0.12

1.00±
0.00

One-phase
LGG

0.80±
0.06

0.76±
0.14

0.99±
0.01

0.53±
0.17

0.74±
0.20

0.99±
0.01

0.36±
0.32

0.62±
0.43

1.00±
0.00

Cascaded
HGG

0.78±
0.10

0.89±
0.08

0.97±
0.02

0.63±
0.23

0.88±
0.11

0.98±
0.02

0.71±
0.18

0.83±
0.10

1.00±
0.00

Cascaded
LGG

0.76±
0.11

0.91±
0.06

0.98±
0.01

0.55±
0.20

0.79±
0.22

0.99±
0.01

0.24±
0.31

0.57±
0.48

1.00±
0.00

Iterative
HGG

0.80±
0.10

0.84±
0.11

0.98±
0.01

0.72±
0.19

0.79±
0.18

0.99±
0.01

0.73±
0.15

0.75±
0.12

1.00±
0.00

Iterative
LGG

0.84±
0.02

0.83±
0.09

0.99±
0.01

0.72±
0.12

0.82±
0.14

0.99±
0.01

0.39±
0.33

0.51±
0.42

1.00±
0.00

From our results, We found that our one phase model which was trained on
50 random patients including patients with high-grade gliomas and low-grade
gliomas, with depth 45 performs well in case of Complete tumor and enhanced

Table 2. The table contains the random forest parameters and training datasets
descriptions of our different models used in experiments

Model id Maximum

depth

Mtries Ntrees Dataset description

Model 1 45 13 100 50 patients are HGG (20 from 2013 BraTS dataset

(subset of 2016 BraTS data set) and 30 randomly sampled

from the rest of HGG)

Model 2 45 13 100 50 patient from both HGG and LGG (20 HGG, and 10

LGG from 2013 BraTS dataset (subset of 2016 BraTS

data set), and 20 random sampled patients from the rest

of patients)

Model 3 30 13 100 50 patient from both HGG and LGG (20 HGG, and 10

LGG from 2013 BraTS dataset (subset of 2016 BraTS

data set), and 20 random sampled patients from the rest

of patients)

Cascade 45 13 100 50 patient from both HGG and LGG (20 HGG, and 10

LGG from 2013 BraTS dataset (subset of 2016 BraTS

data set), and 20 random sampled patients from the rest

of patients)

Iterative 1 45 13 100 The initial dataset is 2013 BraTS data set (subset of 2016

BraTS data set), maximum number of patients is limited

to 50 patient

Iterative 2 45 13 100 The initial dataset is subset of 2013 BraTS data set (15

HGG and 5 LGG) to give the model more flexibility to

select more patients, maximum number of patients is

limited to 50 patient
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Fig. 4. The figure shows the dice scores of our different models described in Table 2

tumour hitting 81% and 74% respectively for high graded glioma, while our
iterative model performs well in case of core tumor by passing 70% which was
because the dataset of that model was mainly selected to include patients having
different cases for core tumors. Also, we found that training a random forest at
depth 30 on the same data on a depth of 45 performed very bad for core and
enhanced tumors. Actually, we tried many other approaches like using all our
data set as patients with high-grade gliomas and using cascaded approach by
classifying first health and non-health voxels, then applying binary morphology
and finally classifying the non-health voxels but it turns out that all the previous
approaches don’t out perform the iterative model.

The Graph in Fig. 4 shows the dice scores of our different models described
in Table 2.

4 Conclusion

In this paper, we proposed an approach based on Random Forest that differs from
past years’ submissions as we mainly tried to extract as much information as we
can from our large dataset (BRATS 2016 dataset). We achieved this by applying
our iterative selection method to choose the best patients to train our Random
Forest with them and then by extracting as much information as we can then
applying feature selection, and our proposed method improves the performance
over the cascaded method and over training the RF using randomly selected
patients.
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Abstract. Accurate automatic algorithms for the segmentation of brain
tumours have the potential of improving disease diagnosis, treatment
planning, as well as enabling large-scale studies of the pathology. In this
work we employ DeepMedic [1], a 3D CNN architecture previously pre-
sented for lesion segmentation, which we further improve by adding resid-
ual connections. We also present a series of experiments on the BRATS
2015 training database for evaluating the robustness of the network when
less training data are available or less filters are used, aiming to shed some
light on requirements for employing such a system. Our method was fur-
ther benchmarked on the BRATS 2016 Challenge, where it achieved very
good performance despite the simplicity of the pipeline.

1 Introduction

Accurate estimation of the relative volume of the subcomponents of a brain
tumour is critical for monitoring progression, radiotherapy planning, outcome
assessment and follow-up studies. For this, accurate delineation of the tumour is
required. Manual segmentation poses significant challenges for human experts,
both because of the variability of tumour appearance but also because of the
need to consult multiple images from different MRI sequences in order to classify
tissue type correctly. This laborious effort is not only time consuming but prone
to human error and results in significant intra- and inter-rater variability [2].

Automatic segmentation systems aim to provide a cheap and scalable solu-
tion. Over the years, automatic methods for brain tumour segmentation have
attracted significant attention. Representative early work is the atlas-based out-
lier detection method [3]. Segmentation was later solved jointly with the regis-
tration of a healthy atlas to a pathological brain [4], making use of a tumour
growth model and the Expectation Maximization algorithm. In [5] the problem
was tackled as the joint optimization of two Markov Random Fields (MRFs).
The state of the art was raised further by supervised learning methods, initially
represented mainly by Random Forests, coupled with models such as Gaussian
Mixtures for the extraction of tissue type priors [6], MRFs for spatial regulari-
sation and a variety of engineered features [7].

K. Kamnitsas—Part of this work was carried on when KK was an intern at Microsoft.
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Recent years saw the success of deep learning, with the methods in [8,9]
being the top performing automatic approaches in BRATS 2014 and 2015 [10],
using 3D and 2D Convolutional Neural Networks (CNNs) respectively. The latter
approached the accuracy of the winning semi-automatic method [11]. The fact
that the employed models are rather simple in design reveals the high potential of
CNNs. The method presented in [12] also exhibited good performance, based on
a 3-layers deep 2D network that separately processes each axial slice. The authors
empirically showed that the class bias introduced to a network when training
with patches extracted equiprobably from the task’s classes can be partially
alleviated with a second training stage using patches uniformly extracted from
the image. In [13] an ensemble of 2D networks is used to process three orthogonal
slices of a brain MR image. Finally, in [1] we showed that multi-scale 3D CNNs
of larger size can accomplish high performance while remaining computationally
efficient. In that work we also analysed how the size of the input segments relates
to the captured class distribution by the training samples. It was shown that this
meta-parameter can be exploited for capturing a partially adaptive distribution
of training samples that in practice leads to good performance in a variety of
segmentation tasks. Our segmentation system exhibited excellent performance
on stroke lesion segmentation, winning the first position in the SISS-ISLES 2015
challenge [14,15], brain tumours and traumatic brain injuries [1]. It’s generic
architecture and processing of 3D content also allow its use on diverse problems,
such as the segmentation of the placenta from motion corrupted MR images [16],
where it achieved very promising results.

In this work we further extend our network, the DeepMedic [1], with residual
connections [20] and evaluate their effect. We then investigate the behaviour of
our system when trained with less data or when its capacity is reduced to explore
requirements for employing such a segmentation method. Finally, we discuss its
performance on the BRATS 2016 challenge where it was further benchmarked.

2 Method

DeepMedic is the 11-layers deep, multi-scale 3D CNN we presented in [1] for
brain lesion segmentation. The architecture consists of two parallel convolutional
pathways that process the input at different scales to achieve a large receptive
field for the final classification while keeping the computational cost low. Inspired
by VGG [19], the use of small convolutional kernels is adopted. This design choice
was shown [19] to be effective in building deeper CNNs without increasing the
number of trainable parameters, and we showed it allows building high perform-
ing yet efficient 3D CNNs thanks to the much less computation required for
convolutions with small 33 kernels [1]. The CNN is employed in a fully convolu-
tional fashion on image segments in both training and testing stage1.

We extend the DeepMedic with residual connections in order to examine
their effect on segmentation. Residual connections were recently shown to facil-
itate preservation of the flowing signal and as such have enabled training of
1 Code publicly available at: https://github.com/Kamnitsask/deepmedic.

https://github.com/Kamnitsask/deepmedic
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Fig. 1. The DeepMedic [1] extended with residual connections. The operations within
each layer block are applied in the order: Batch-Normalization [17], non-linearity and
convolution. [18] empirically showed this format leads to better performance. Up and
C represent an upsampling and classification layer respectively. Number of filters and
their size depicted as (Number × Size). Other hyper-parameters as in [1].

very deep neural networks [18,20]. In [20] the authors did not observe a perfor-
mance improvement when a 18-layers deep network was employed, but only in
experiments with architectures deeper than 34-layers. The networks employed
on biomedical applications tend to consist of less layers than modern architec-
tures in computer vision. However, the problem of preserving the forward and
backwards propagated signal as well as the difficulty of optimization can be sub-
stantial in 3D CNNs due to the large number of trainable parameters in 3D
kernels, as previously discussed in [1]. For this reason we set off to investigate
such an architecture.

We extended the network by adding residual connections between the outputs
of every two layers, except for the first two of each pathway to enforce abstracting
away from raw intensity values. The architecture is depicted in Fig. 1. In our
work, a residual connection after layer l performs the element-wise addition ⊕
between corresponding channels of the output outl of layer l and the input inl−1

to the previous layer. This choice follows the investigation in [18] that found
identity mappings on the residual path to perform best. More formally:

inm
l+1 =

{
outml ⊕ în

m

l−1, if m ≤ M l−1

outml , otherwise
(1)

where l denotes any layer after which a residual connection is added, the super-
script m is the m-th channel and M l is the number of feature maps in the
l-th layer. înl is the input of the previous layer after padding in the (x, y, z)
dimensions with reflection in order to match the dimensions of outl.

3 Evaluation

3.1 Data

The training database of BRATS 2015 (common with BRATS 2016) includes
220 multi-modal scans of patients with high (HGG) and 54 with low grade
glioma (LGG). Scans include pre- and post-operative scans. T1-weighted, con-
trast enhanced T1c, T2-weighted and FLAIR sequences are available. The images
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were registered to a common space, resampled to isotropic 1 mm × 1 mm × 1 mm
resolution with image dimensions 240×240×155 and were skull stripped by the
organisers. Annotations are provided that include four labels: (1) Necrosis (NC),
(2) oedema (OE), (3) non-enhancing (NE) and (4) enhancing tumor (ET). The
annotations for the training database were obtained semi-automatically, fusing
the predictions of multiple automatic algorithms, followed by expert review. The
official evaluation is performed by merging the predicted labels into three sets:
whole tumor (all 4 labels), core (1, 3, 4) and enhancing tumor (4).

The testing database of BRATS 2016 consists of 191 datasets. They are scans
of 94 subjects, with 1–3 time points, including both pre- and post-operative
scans. The scans were acquired in multiple clinical centers, some of which are
distinct from those centers that provided the data for the training database.
MRI modalities are the same as the training database. Ground truth annota-
tions have been made manually by experts but were kept private for the eval-
uation. The MRI images have been preprocessed similarly to the training data
and then provided to the participating teams. Interesting to note is that skull
stripping had significant flaws in many cases, leaving behind portions of skull
and extra-cerebral tissue at a significantly greater extent that what is observed
in the training database. Such heterogeneity between testing and training data
poses a significant challenge for automated machine learning methods that try to
model the distribution of the training data. Yet they reflect a realistic scenario
and an interesting benchmark for fully automated systems, which ideally should
perform adequately even after inaccuracies introduced by individual blocks in
the processing pipeline.

3.2 Evaluation on the BRATS 2015 Training Database

Preprocessing and Augmentation: Each scan was further individually nor-
malized by subtracting the mean and dividing by the standard deviation of the
intensities within the brain. Training data were augmented via reflection with
respect to the mid-sagittal plane.

Effect of Residual Connections: To evaluate the effect of the residual connec-
tions we performed 5-fold cross validation on the mixed HGG and LGG data,
while ensuring that all pre- and post-operative scans of a subject are within
the same fold. First we reproduced results similar to what was reported in [1]
for the original version of DeepMedic. The extension with residual connections
gave a modest but consistent improvement over all classes of the task, as shown
in Table 1. Important is that performance increases even on small challenging
substructures like the necrosis and non-enhancing tumor, which may not be
individually evaluated for the challenge but is interesting from an optimization
perspective. The improvement seems mainly due to an increase in sensitivity,
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Table 1. Performance of the original DeepMedic and its extension with residual connec-
tions DMRes, evaluated with a 5-fold validation over the whole BRATS 2015 training
database. For consistency with the online evaluation platform, cases that do not present
enhancing tumor in the provided annotations are still considered for the calculation of
the average, as zeros, thus lowering the upper bound of accuracy for the class. Bold
numbers indicate significant difference, according to a two-sided, paired t-test on the
DSC metric (p < 5 · 10−2).

DSC Precision Sensitivity DSC

Whole Core Enh. Whole Core Enh. Whole Core Enh. NC OE NE ET

DeepMedic 89.6 75.4 71.8 89.7 84.5 74.3 90.3 73.0 73.0 38.7 78.0 36.7 71.8

DMRes 89.6 76.3 72.4 87.6 82.4 72.5 92.2 75.4 76.3 39.6 78.1 38.1 72.4

however at the cost of a lower precision. This is a positive side-effect as in prac-
tice it can prove easier to clear false positives in a post-processing step, for
instance with a Conditional Random Field as performed in [1,14], rather than
capturing areas previously missed by the CNN.

Behaviour of the Network with Less Training Data and Filters: CNNs
have shown promising accuracy when trained either on the extensive database
of BRATS 2015 or on the rather limited of BRATS 2013. However, qualita-
tive differences of the two databases do not allow estimating the influence of the
database’s size. Additionally, although various architectures were previously sug-
gested, no work has investigated the required capacity of a network for the task.
This factor is significant in practice, as it defines the computational resources
and inference time required.

We evaluate the behaviour of our network on the tumour segmentation task
with respect to the two above factors. To avoid bias towards subjects scanned at
more than one time-point, only the earliest dataset was used from each subject.
Out of the 198 remaining datasets, we randomly chose 40 (29 HGG, 11 LGG)
as a validation fold. The same validation fold was used in all experiments of this
section. We then trained the original version of DeepMedic on the remaining
158 datasets, as well as on a reduced number of training data. Finally, versions
of the network where all layers had their filters reduced to 50% and 33% were
trained on the whole training fold of 158 datasets.

It can be observed on Table 2 that although accuracy is negatively affected,
the network still retains most of its performance for the three merged classes of
the challenge even when trained with little data or its capacity is significantly
reduced. A more thorough look in the accuracy achieved for the 4 non-merged
classes of the task shows that the greatest decline is observed for the challenging
necrotic (NC) and non-enhancing (NE) classes, which however does not influence
the segmentation of the overall core as severely. Even though the exact quan-
titative results can be affected by randomness in training, the observed trends
suggest that both a large training database and large number of network filters
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Table 2. Behaviour of DeepMedic with reduced training data or number of filters at
each layer. Note that the difference of the top row in comparison to the entry DeepMedic
in Table 1 is due to the use of a subset of data here (see text). Bold numbers indicate
significant difference in comparison to the top row, according to a two-sided, paired
t-test on the DSC metric (p < 5 · 10−2).

DSC Precision Sensitivity DSC

Whole Core Enh. Whole Core Enh. Whole Core Enh. NC OE NE ET

DM, all data 91.4 83.1 79.4 89.2 87.7 82.8 94.1 80.8 79.5 50.0 79.6 35.1 79.4

75% data 91.2 82.5 79.6 89.0 84.4 82.4 93.9 80.4 79.7 45.9 79.0 35.1 79.6

50% data 91.4 82.6 78.8 91.0 85.3 81.7 92.3 82.3 78.5 44.7 79.2 36.8 78.8

33% data 90.5 79.7 77.7 90.6 86.5 82.8 91.0 77.1 77.1 45.8 77.9 31.8 77.7

20% data 89.8 80.5 77.6 91.1 83.9 81.8 89.7 80.5 76.5 41.3 76.9 34.1 77.6

50% filters 91.4 80.8 79.8 92.2 89.0 82.5 91.3 76.3 80.2 49.0 79.2 29.4 79.8

33% filters 90.8 81.7 79.4 90.0 91.9 78.2 92.1 76.6 83.0 44.4 79.3 27.9 79.4

to learn fine and detailed patterns are important for the segmentation of small
and challenging structures2.

3.3 Evaluation on the BRATS 2016 Testing Database

Our team participated in the BRATS 2016 Challenge in order to further bench-
mark our system. In the testing stage of the challenge, each team is given 48 h
after they are provided the data, to apply their systems and submit predicted
segmentations.

Preprocessing: Similarly to the preprocessing of the training data, we nor-
malized each image individually by subtracting the mean and dividing by the
standard deviation of the intensities of the brain. Additionally, for the subjects
that had multiple scans acquired at different time-points, since the brains have
been co-registered, we tried to mitigate the problem of the failed brain extrac-
tion by fusing with majority voting the brain masks from different time-points,
hoping that the errors are not consistent at all time-points. Unfortunately this
step did not resolve the issue. We decided not to apply ourselves an additional
brain extraction step, since this is not guaranteed to work on the already (well
or partially) stripped data and would require case-by-case visual inspection and
intervention, which is against our interest in a fully automatic pipeline.

Network Configuration and Training: Prior to the testing stage of the
challenge we had trained three models with identical architecture as shown in
Fig. 1. They were trained on the whole BRATS 2015 Training database, without
distinction of HGG from LGG cases, or pre- from post-operative scans. Training
2 Although these experiments were performed with the original version of the network,

we expect the trends to continue after the extension with residual connections.
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of a single model required approximately a day when using an NVIDIA GTX
Titan X GPU. Our network can then segment a multi-modal dataset in less than
35 s when using CuDNN v5.0. The probability maps of the three models were
then fused by averaging before the post-processing.

Post-processing with a 3D Fully Connected CRF: In previous work [1,14]
we had implemented and evaluated a 3D fully connected Conditional Random
Field (CRF) [21] for the segmentation of multi-sequence volumetric scans. Our
evaluation had shown that the model consistently offers beneficial regularisation
in a variety of lesion segmentation tasks. The CRF was found to be particularly
beneficial in cases where the main segmenter underperforms. We employ the
CRF in the same fashion. We provide as the CRF’s unary term the whole-
tumor probability map, constructed by merging the multi-class predictions of
the CNN. This way the CRF regularizes the overall size of the tumor and clears
small spurious false positives. The whole-tumor segmentation mask produced
by the CRF is used to mask the segmentation produced by the CNNs, leaving
the internal structure of the tumor mostly intact3. The CRF’s parameters were
configured via random search on subset of the training database. Finally, any
left out connected-components smaller than 1000 voxels were removed.

Results: In the testing stage of the challenge 19 teams participated. To evalu-
ate the quality of their segmentations, the teams were ranked according to the
statistically significant differences in the achieved DSC scores and Haussdorf dis-
tances with respect to each other. Additionally, they were assessed and ranked
for their capability in following shrinkage or growth of the tumor between dif-
ferent time-points. The exact quantitative results on the testing database have
not been made public by the organizers yet.

Our system achieved a place among the top ranking methods, performing well
on the DSC metric. The high performing methods were rather close in terms of
the DSC metric for the segmentation of the Whole Tumor. Greater were the
differences for the Tumor Core and Enhancing Tumor. Our system achieved the
top rank for the segmentation of the tumor core. The position was shared with
another CNN-based approach [22], the overall most accurate model in the chal-
lenge. Note that in order to generalize, this model was trained on external data
from a private brain tumor database with manual annotations, in addition to
the BRATS 2015 data, and thus direct comparison may not be completely fair.
Notice that out of the three main tumor classes, the core was found to be the one
most influenced by the amount of training data in our experiments (Table 2),
which explains the high DSC for this class achieved by the competing method.
Moreover, since the testing data appear to have a significantly different distrib-
ution from the training data, the influence of additional external data should be
significantly stronger than what was found in our experiments, where we only
explored the effect of the amount of data when training and testing distribu-
tions are the same. Our system also achieved the top rank for the segmentation
3 Code of the 3D CRF available at: https://github.com/Kamnitsask/dense3dCrf/.

https://github.com/Kamnitsask/dense3dCrf/
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Fig. 2. Cases with the highest (two top rows) and lowest (third and forth rows) DICE
for the whole tumor segmentation from the 5-fold validation on the training database.
Note that the semi-automatically generated training labels also contain mistakes. (Two
bottom rows) Two examples of the most common type of failed segmentation observed
in the predictions on the testing data. Subset of the data provided in the testing stage
of the challenge show significantly more remnants of skull and extra-cerebral tissue left
behind from the brain extraction than what observed in the training database. The
network fails to handle tissues that it has rarely seen during training. Colors repre-
sent: cyan: necrotic core, green: oedema, orange: non enhancing core, red: enhancing
core. Cases from top to bottom row: tcia 242 01, tcia 479 01, tcia 164 01, tcia 222 304,
cbica ABH 341, cbica AAM 285 (Color figure online)
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of enhancing tumor in terms of the DSC measure. This position was shared with
the systems presented in [23,24]. The former employed a well engineered cas-
cade of Random Forests tailored for segmentation of brain tumors, trained on
a selected high quality subset of the training data to avoid learning from errors
within the semi-automatically generated annotations (Fig. 2). The latter applied
a CNN and a CRF similar to ours, but with the two jointly trained. Interest-
ingly, we achieved higher performance in terms of DSC for the core and enhancing
tumor and comparable accuracy for the whole tumor in comparison to [25], who
employed an extended version of GLISTRboost [11], the semi-automatic method
that won the first place in the BRATS 2015 challenge.

Less satisfying was the Haussdorf distance achieved by our method, with
respect to which it achieved average ranking. We speculate a reason for this
is false segmentation of skull and extra-cerebral tissue, portions of which were
observed in many of the testing cases where the provided brain extraction was
inaccurate (Fig. 2). Such tissues were not present in the training database to this
extent, so our system never learnt to classify them. The resulting false positives
decrease the DSC metric, but influence even more the Haussdorf distance since
they lie well outside the brain. With further careful brain extraction we could
alleviate the problem but this would require case-by-case inspection as it is prone
to fail on the already (successfully or not) stripped testing cases, thus render the
pipeline not fully automatic. At the time of writing it has not been reported yet
how other teams dealt with this issue. Finally, semi-automatic systems that rely
on manual initialization, such as the competing method in [25], should be less
prone to this issue.

Finally, our system performed very well in predicting the temporal change
of the volumes of whole and enhancing tumor, with its average performance for
these classes achieving the third position. Interestingly, the two overall winners
of this category [24,26] employed a CRF similar to ours, which indicates the
effectiveness of this model for this task.

4 Conclusion

This paper has investigated the effect of residual connections on a recently pre-
sented 3D CNN model on the task of brain tumour segmentation, where their
incorporation led to a small but consistent improvement. Our work reveals that
an 11-layers 3D CNN gains from such an extension, mostly thanks to increased
sensitivity, unlike the observation in [20] where benefits were found only for
significantly deeper 2D networks.

In an attempt to explore the generalization and efficiency of CNNs for a
task such as brain tumor segmentation, we also investigated the behaviour of
DeepMedic when trained with smaller number of data or when less filters are
used. Our experiments show that segmentation accuracy for the whole, core
and enhancing tumour, even though affected, it is not severely hindered by the
two factors to an extent that would render the system impractical. However,
they are very important for segmenting challenging, fine substructures such as
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necrosis and non-enhancing tumour. On the other hand, in applications where
segmentation of such substructures is not required, small networks can be a
suitable option, thanks to lower computational requirements and shorter infer-
ence times (35 s versus 8 s per multi-modal scan for the original and smallest
model in Table 2 respectively). Note that in our experiments we only explored
the effect of the amount of data when training and testing distributions are
the same. Networks, similarly to most machine learning algorithms, face gen-
eralization problems when the two differ significantly, such as in cases shown
in Fig. 2. In this case, additional training data from new distributions should
amplify generalization to an heterogeneous testing database more effectively.
This is supported by the high performance of the rather small model of [22],
overall winner of BRATS 2016 challenge, which was trained on an external pri-
vate database along with the BRATS 2015 training set, as well as reports by
the respective team that their incorporation amplified performance. It would be
interesting to explore how much data is needed from a new source in order for a
network to also generalize satisfyingly to the new distribution. Additionally, it
would be worth investigating a relation between ideal network capacity versus
the amount of available training data, as well as explore these factors on other
segmentation tasks.

Finally, the version of DeepMedic with residual connections was further
benchmarked on the BRATS 2016 challenge among 19 teams. It exhibited very
good performance, achieving top ranking for the Core and Enhancing tumour
classes in terms of DICE. Our system also performed very well in assessing the
longitudinal change of the whole and enhancing tumor volume, ranking third
for its average performance on these classes. Less satisfying was the achieved
Haussdorf distance, which we mostly attribute to false segmentation of parts
of the skull and extra-cerebral tissue that were left behind from incomplete
skull stripping of the testing data. This performance is particularly satisfying
considering the minimal preprocessing and the generic architecture of our sys-
tem. Its performance is likely to benefit from a more extensive pre-processing
pipeline, such as from careful skull stripping, bias field correction, as well as
from careful selection of high quality training data. Finally, an interesting trend
is that histogram matching to a common template has been a part of top per-
forming pipelines in BRATS 2015 and 2016 challenges [9,11,22], even though
the technique is often criticized as not well suited for the problem of tumour
segmentation.
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Abstract. This paper analyzes the use of 3D Convolutional Neural Net-
works for brain tumor segmentation in MR images. We address the prob-
lem using three different architectures that combine fine and coarse fea-
tures to obtain the final segmentation. We compare three different net-
works that use multi-resolution features in terms of both design and
performance and we show that they improve their single-resolution
counterparts.

1 Introduction

Gliomas are the most common type of brain tumors, and their segmentation
and assessment provide relevant information for further evaluation, treatment
planning and follow up. Patients’ life expectancy greatly vary depending on the
tumor grade, ranging from 15 months to 10 years in median, requiring immediate
treatment in its more aggressive stages.

The main goal of brain tumor segmentation is to detect and localize tumor
regions by identifying abnormal areas when compared to normal tissue. This dis-
tinction is rather challenging as borders are often fuzzy, and also because tumors
vary across patients in size, location and extent. Several imaging modalities can
be used to solve this task, individually or combined, including T1, T1-contrasted,
T2 and FLAIR, each one providing different biological information.

Automatic brain tumor segmentation methods are usually categorized in
two broad groups: generative models, which rely on prior knowledge about the
appearance and distribution of different tissue types and discriminative models,
which directly learn the relationship between image features and segmentation
labels. Within the second group, the early approaches used hand-crafted features
in a machine-learning pipeline (e.g. random forest [5,12]). However, in the last
two years there has been an increasing use of deep learning methods (and specif-
ically convolutional neural networks CNN) to tackle the problem, motivated
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by the state of the art performance of deep learning models in several computer
vision tasks. As opposed to classical discriminative models based on feature engi-
neering, deep learning models learn a hierarchy of increasingly complex features
directly from data, by applying several layers of trainable filters and optional
pooling operations. Most of these methods do not completely exploit the avail-
able volumetric information but use two-dimensional CNN, processing 2D slices
independently or using three orthogonal 2D patches to incorporate contextual
information [1,3,4]. A fully 3D approach is proposed in [2], consisting of a 3D
CNN that produces soft segmentation maps, followed by a fully connected 3D
CRF that imposes generalization constraints and obtains the final labels.

In this paper we explore the use of 3D CNN for automatic brain segmentation
using the BRATS dataset [1]. We train different CNN architectures that gather
both local and contextual information comparing their design, quantitative and
qualitative performance. The paper is organized as follows: in Sect. 2, we describe
the 3D CNN framework as well the training scheme employed. Section 3 intro-
duces three different architectures that combine multi-scale features. In Sect. 4
we perform several experiments to assess the performance of the three archi-
tectures and we compare them to their single-resolution counterparts. Finally,
Sect. 5 draws some conclusions.

2 3D CNN Framework

We employ a fully convolutional [8] 3D approach. The extension of 2D-CNN
to 3D introduces significant challenges: an increased number of parameters and
important memory and computational requirements. In this section we discuss
these and other critical design issues like the depth of the network, the sam-
pling strategy used for training and the fully convolutional approach adopted to
achieve dense inference.

2.1 Deep 3D CNN

Network depth is a crucial parameter of the system, yielding greater discrim-
inative power for deeper networks. Although deep networks may be harder to
train than shallow ones, the use of more layers boosts the performance as shown
empirically in [10]. However, the use of pooling layers in deeper networks pro-
vide coarse, contextual features and, for segmentation tasks, it limits the scale
of detail in the upsampled outputs. To address this problem, finer resolution
features should as well be included in the final segmentation. For brain tumor
segmentation task, we aim at combining coarse features that are useful for detec-
tion and localization with fine-grained information that is required to capture
local intensity changes of the tumor tissue relative to the non-tumor tissue. In
Sects. 3 and 4 we present and compare three different models that combine low
detail and fine-grained features.
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One of the limitations of 3D architectures is the demanding memory require-
ments. The use of pooling layers to reduce intermediate layer sizes is common
to deal with memory constraints when using deep networks. Another key hyper-
parameter constrained by memory requirements is the number of filters per
layer, especially in the first layers where the features have higher dimensional-
ity. Finally, input and batch sizes need also to be designed to properly fit the
hardware memory. For training, we use image patches of size 643 and we build
batches of 10–20 images per batch, depending on the architecture, in a TITAN
X GPU. Another limitation of 3D networks is that 3D convolutions are compu-
tationally expensive and increase exponentially the number of parameters. Thus,
employing 3D kernels in a rather deep network makes the overall system prone
to over-fitting. This problem can be alleviated by using small filter sizes (k = 3)
in every convolutional layer and a sufficiently large training set.

For training, we use the scheme presented in [2], which is an hybrid between
the dense-training procedure presented in [8], where the whole image is input
and segmented in a single forward pass, and the classic approach of classifying
the central voxel of each input patch. Dense-training was considered but rapidly
discarded due to memory constraints. Similarly, the hybrid training strategy
exploits the dense inference technique on image patches of smaller size, relaxing
memory constraints. Hence, this efficient strategy reduces the computation time
compared with the classical approach. In addition, the fully convolutional nature
of the networks analysed allow employing dense-inference during test time.

2.2 Non-uniform Sampling

High class imbalance data, as seen in Fig. 1, may drive the networks to predict the
most common class in the training set and thus, the final segmentation will not be
able to detect any tumor tissue. A simple approach to tackle this problem consists
in weighting the loss function with higher weights for less common classes and
lower weights for more common classes. However, empirical results show a rather
large bias to detect healthy tissue, the most probable class. In this case, it seems
that the training distribution is too skewed and the problem cannot be solved
by simply weighting the loss function. Instead, a non-uniform sampling scheme
has to be applied to create training patches. One possible solution consists in
creating training patches with equiprobable classes. However, it failed to predict
the whole volume since the resulting training distribution strongly differs from
the true distribution and many false positives appeared in the final segmentation.

Instead, the approach proposed in [2] is used in this work: we construct train-
ing patches by sampling the central-voxel with the same probability of belonging
to background or foreground (gross-tumor). When employing this scheme, as
analysed in [2], the relative distribution between the foreground voxels is closely
preserved and the imbalance in comparison to healthy tissue is alleviated.

Patch size becomes an important hyperparameter and a trade-off between
different factors is considered. From above, patch size is limited by memory
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Fig. 1. Class distribution. The true dataset distribution (blue) and the training samples
distribution used in this paper (yellow). (Color figure online)

constraints and class imbalance: in the limit, when the patch size is equal to the
image size, it will recover the true distribution just as uniform sampling does.
On the other side, small patch sizes is limited by the contextual information of
each patch and tend to overrepresent rare classes in the final segmentation.

3 Architectures

We propose two fully convolutional 3D CNN architectures inspired in two well
known 2D models used for generic image segmentation. We also train a third
model which is a variant of the two-pathway DeepMedic network proposed in
[2]. Networks are build upon the following block:

– Conv + ReLU + BN : the main layer is built as the concatenation of a con-
volutional layer (Conv) with ReLU activation and batch normalization (BN).
Kernel size is 33.

– Convolutional block: it is built as a concatenation of several Conv +ReLU +
BN layers.

– Pooling layer: it uses max-pooling to downsample the feature maps. Pooling
sizes are always 23.

– Prediction block: it uses a convolutional layer with kernel size 13

– Upsampling layer: it concatenates a repetition layer with a Conv + ReLU +
BN layer with kernel size 33. Upsampling factor is always 23. To get higher
upsampling factors, a concatenation of upsampling layers is used.

3.1 3DNet 1

The first model, 3DNet 1, is a 3D fully convolutional network based on the VGG
architecture [9] with skip connections that combine coarse, high scale information
with fine, low scale information. The configuration of the network is inspired
by [8] and it is illustrated in Fig. 2. Given the characteristic large number of
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parameters of 3D networks, a reduction in the number and dimensions of the
filters with respect to its 2D analog was necessary in order to ensure that the
model could be trained with the available resources.

Skip connections are built by taking the output of a certain layer and adding
a 1× 1× 1 convolutional layer on top of it to produce additional class predictions.
3DNet 1 adds those multi-scale predictions up and upscales the final result to
the input size. The higher resolution predictions in the architecture provide the
local information that helps to define the contours while the lower ones help to
detect and localize the gross-tumor. The use of this architecture is motivated
by the finer segmentation output provided by the multi-scale network compared
with a network that uses only the low resolution information (see Sect. 4.2).
The receptive field of the network is 2123 voxels combined with predictions at
receptive fields of 403 and 923 voxels.

Fig. 2. Schematic representation of 3DNet 1. Upsamplingm represents m upsampling
layers concatenated.

3.2 3DNet 2

The second model, 3DNet 2, is the 3D version of U-net, the network proposed
in [6]. It is based on the architecture presented in [7], where on top of a VGG-
like net (contracting/analysis path) there is a multilayer deconvolution network
(expanding/synthesis path). The model is illustrated in Fig. 3. It is worth men-
tioning that a 3D U-net-type architecture appeared in the literature by the time
we were working on this model, [11], using a shallower network than us and,
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thus, a much smaller receptive field. In contrast, [11] employ twice more filters
for each convolutional layer. For comparison reasons, we kept the same number
of filters for layers of the same dimensionality in all architectures, even though
current hardware allows using more filter per layer.

The way 3DNet 2 combines multi-scale features is by concatenating all fea-
tures maps from corresponding resolutions in the contracting path to the expand-
ing path. Thus, the networks tries to synthesize information at each scale fusing
local and contextual information. The receptive field of the network is 1403 vox-
els and the concatenating paths are at receptive fields of 53, 143, 323 and 683

voxels.

Fig. 3. Schematic representation of 3DNet 2. The u|v operator stands for
concatenation.

3.3 3DNet 3

The third architecture, 3DNet 3, is a modification of DeepMedic network [2] and
it is illustrated in Fig. 4. The aim of using two paths is, again, gathering both low
and high resolution features from the input image. The network proposed in [2]
combines multi-scale information by using different input sizes for each path and
thus, relaxing memory requirements. In contrast, we employ the same input size
for both paths but different receptive fields to focus onto different information.
In our implementation, the shorter path has a receptive field of 173 voxels while
the longer one has a receptive field of 1363 voxels. Like the other architectures,
this scheme allows us to input the same image to both paths and fully segment
each subject in a single forward pass during test-time.
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Fig. 4. Schematic representation of 3DNet 3. The u|v operator stands for concatena-
tion. Upsamplingm represents m upsampling layers concatenated

4 Experiments

4.1 Data

For the experiments we use the Brain Tumor Segmentation Challenge (BRATS)
dataset [1]. The training set consists of 220 cases of high-grade glioma (HGG) and
54 cases of low-grade glioma (LGG), each one with its corresponding ground-
truth information about the location of the different tumor structures: back-
ground, necrotic core, edema, enhancing core, non-enhancing core. The test set
for the challenge comprises 191 cases, either LGG or HGG, with longitudinal
measurements among some subjects. For each subject, 4 different MRI modali-
ties are available: T1, T1-contrast, T2 and FLAIR. The dataset is preprocessed
and MR images are provided skull-stripped. For each subject, all modalities are
resampled to 1 mm3 resolution and registered to the T1 modality and normal-
ized to zero mean and unit variance. Normalization is performed independently
for each modality.

To evaluate the performance of the segmentation methods, the predicted
labels are grouped into three tumor regions that better represent the clinical
application tasks:

– The whole tumor region, which comprises all four tumor structures
– The core region, including all tumor regions except edema
– The enhancing core region.

For each tumor region, Dice similarity coefficient, Precision and Recall are
computed:

Dice(P, T ) =
P1 ∧ T1

(|P1| + |T1|)/2 (1)

Precision(P, T ) =
P1

(|P1| + |T1|) (2)

Recall(P, T ) =
P1 ∧ T1

|T1| (3)
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where P ∈ {0, 1} is the predicted segmentation and T ∈ {0, 1} is the ground
truth. Thus, P1 and T1 represent the set of voxels where P = 1, T = 1.

In all experiments, we split the BRATS15 dataset into training set (60%)
and validation set (40%), leaving some subjects to asses the segmentation per-
formance. Experiments were set to compare the single- and multi-resolution
schemes and to compare between the different multi-resolution architectures.

4.2 Single- vs. Multi-resolution Architectures

The first experiments that we carried out were focused on comparing the contri-
bution of multi-resolution features on the final tumor segmentation. We trained a
reduced, single-scale network equivalent for each architecture. For the 3DNet 1,
we delete the lower level predictions (i.e. skip connections) leaving only the core
network (upper path in Fig. 2). The resulting network has a huge receptive field
(2123 voxels). For the 3DNet 2, we cut the connections between contracting and
expanding paths in Fig. 3. The receptive field of this architecture is also high
(1403 voxels). Finally, for the 3DNet 3, we build another network by just using
the upper path in Fig. 4 that corresponds to the high-resolution features with
small receptive field (173 voxels).

In Fig. 5 we analyze the evolution of training and validation loss for all the
single- and multi-resolution architectures. The first thing that we observe is that
the training error plateaus in a slightly greater value in the simple networks
than in the multi-resolution ones, but without showing large difference in terms
of convergence rates. More interestingly, we find that the multi-scale networks
generalize much better to unseen data compared to single-scale networks.

In Table 1, we compare the different networks in terms of accuracy and Dice
scores. 3DNet 1 and 3DNet 2, in their single-resolution forms, fail in their overall
segmentations mainly due to using only coarse information. In contrast, 3DNet 3
single-resolution architecture uses a smaller receptive field that helps to out-
perform the others. Besides, we empirically show that multi-scale architectures
outperform their single-scale counterparts.

Table 1. Results for our validation set from BRATS2015 training set.

Single-res Accuracy Dice score Multi-res Accuracy Dice score

Whole Core Active Whole Core Active

3DNet 1 99.09 38.88 29.00 23.94 3DNet 1 99.69 89.64 76.87 63.12

3DNet 2 97.33 48.09 24.16 44.69 3DNet 2 99.71 91.59 69.90 73.89

3DNet 3 99.55 84.19 71.38 69.09 3DNet 3 99.71 91.74 83.61 76.82

Finally, a visual investigation of the final segmentation is shown in Fig. 6. We
observe that 3DNet 1 in its single-resolution form completely fails to predict the
tumor region, even for large structures, such as edema. On the contrary, 3DNet 3
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(a) 3DNet 1 training loss (b) 3DNet 2 training loss (c) 3DNet 3 training loss

(d) 3DNet 1 validation loss (e) 3DNet 2 validation loss (f) 3DNet 3 validation loss

Fig. 5. Train and validation loss curves comparing the convergence rate of multi-
resolution architectures (blue) and their corresponding single-resolution approaches
(red). (Color figure online)

in its single-path implementation shows overall good segmentation results. Even
though detecting false tumor substructures inside and outside the gross-tumor,
this model correctly predicts tumor boundaries and accounts for higher vari-
ability in intra-tumoral regions. Finally, 3DNet 2, is able to detect tumoral and
intra-tumoral substructures but with rather low resolution. More interestingly,
we observe many false-positives in the final segmentation, both in brain and non-
brain tissue. In this case, the network fails in identifying general brain features,
such as brain/non-brain tissue, grey matter or white matter tissue that is shown
to significantly improve the segmentation performance [12].

4.3 A Comparison of the Multi-resolution Architectures

The second set of experiments compares the three different multi-scale architec-
tures in terms of their design parameters. 3DNet 3 is by far the one with more
memory constraints due to its local path without pooling layers. It requires
employing small batch sizes (�10) and using few filters per layer and thus,
becoming the network with less number of parameters. At the same time, it is
the most costly in terms of computation, being slower to train but making almost
no difference in inference time. On the other hand, 3DNet 1 and 3DNet 2 have a
much larger number of parameters due to using more filters per layer, especially
the latter, that also concatenates several feature maps in the synthesis path. Its
decreasing computation time is due to a reduced number of convolutions. Each
architecture was trained using the same sampling scheme which provides 2.1M
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(a) 3DNet 1
Single-resolution

(b) 3DNet 2
Single-resolution

(c) 3DNet 3
Single-resolution

(d) Ground-truth

Fig. 6. Segmentation results of the three single-resolution networks. We distinguish
intra-tumoral regions by color-code: edema (green), necrotic core (light blue), enhanc-
ing core (yellow) and non-enhancing core (dark blue) (Color figure online)

voxels/epoch to classify, although not all input voxels are different. In training
samples, we have some redundancy, especially in tumor regions, were several
patches may partially overlap. However, the number of different voxels provided
at each epoch is still greater than the number of parameters, what makes the
overall system well-conditioned (Table 2).

Table 2. Network characteristics comparison.

Train time [s] Voxels/epocha Test time [s] N. parameters GPU
[MB/image]b

3DNet 1 5–7 k 2.1 M 6–7 994469 76

3DNet 2 6–8 k 2.1 M 7–8 1473655 167

3DNet 3 9–12 k 2.1 M 8–10 386429 256
a Patches are selected with overlap, so effective number of voxels is much lower.
b GPU memory is counted in a forward pass.

Comparing the performance of the three networks, we show relevant metrics
on our validation set in Table 3. We can see that even though 3DNet 3 per-
forms better according to many metrics (especially Dice coefficients), we can
not categorically state which network is significantly better. The slightly better
performance of 3DNet 3 compared with the others is neither gained in terms of
capacity nor in network depth, since 3DNet 1 and 3DNet 2 have deeper paths.
Instead, we think the local path with low receptive field and without using pool-
ing layers helps the final segmentation. Besides, the use of pooling layers is useful
to provide contextual information but it looses finer details. In addition, since it
uses less parameters, it might be easier to optimize. However, 3DNet 3 is the one
with highest computational cost, yielding larger training and inference times.



160 A. Casamitjana et al.

Table 3. Results for our validation set from BRATS2015 training set.

Accuracy Dice score Precision Recall

Whole Core Active Whole Core Active Whole Core Active

3DNet 1 99.69 89.64 76.87 63.12 93.92 85.71 74.03 86.19 73.53 66.94

3DNet 2 99.71 91.59 69.90 73.89 92.99 87.08 82.65 90.68 65.63 73.37

3DNet 3 99.71 91.74 83.61 76.82 94.60 85.47 74.06 89.43 83.08 87.29

Precision Recall

1-Nec 2-Edm 3-NEnh 4-Enh 0-Else 1-Nec 2-Edm 3-NEnh 4-Enh 0-Else

3DNet 1 65.33 81.49 28.40 66.94 99.95 44.71 74.09 28.40 66.94 99.95

3DNet 2 75.21 79.07 43.57 82.65 99.92 41.10 84.16 32.35 73.38 99.93

3DNet 3 67.45 85.06 49.44 74.06 99.90 51.29 77.50 37.61 87.29 99.95

In Fig. 7 we see that for rather big and smooth tumor subregions, our three
architectures perform well. On the other hand, they fail to capture high variabil-
ity in small tumor sub-regions, but still being able to segment the gross tumor
with good performance.

(a) 3DNet 1 (b) 3DNet 2 (c) 3DNet 3 (d) Ground truth

(e) 3DNet 1 (f) 3DNet 2 (g) 3DNet 3 (h) Ground truth

Fig. 7. Qualitative analysis in the axial plane. In the first row, we show examples
with large and smooth tumor regions, while in the bottom row we show an example
of high variability within intra-tumoral regions. We distinguish intra-tumoral regions
by color-code: edema (green), necrotic core (light blue), enhancing core (yellow) and
non-enhancing core (dark blue). (Color figure online)

5 Conclusions

In this paper we present several methods for the automatic brain segmenta-
tion task, using 3D convolutional neural networks. We compare and analyze
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three different multi-resolution architecture implementations that combine local
and global information in the final segmentation. This combination is shown to
be crucial to boost the performance of the system. We compared these three
multi-resolution architectures with its single-resolution counterparts, in terms of
performance and visual inspection. Furthermore we trained and assess the three
different architectures in order to participate in BRATS challenge 2016, reach-
ing competitive results, being the 3DNet 3 the better ranked among the three
presented methods.
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Abstract. In this paper, we consider the problem of fully automatic
brain tumor segmentation in multimodal magnetic resonance images. In
contrast to applying classification on entire volume data, which requires
heavy load of both computation and memory, we propose a two-stage
approach. We first normalize image intensity and segment the whole
tumor by utilizing the anatomy structure information. By dilating the
initial segmented tumor as the region of interest (ROI), we then employ
the random forest classifier on the voxels, which lie in the ROI, for
multi-class tumor segmentation. Followed by a novel pathology-guided
refinement, some mislabels of random forest can be corrected. We report
promising results obtained using BraTS 2015 training dataset.

1 Introduction

Segmentation of brain tumor from medical images is of high interest in surgical
planning, treatment monitoring and is gaining popularity with the advance of
image guided surgery. The goal of segmentation is to delineate different tumor
structures, such as active tumorous core, necrosis and edema. Typically, this
process requires several hours of a clinician’s time to manually contour the tumor
structures. As manual processing is so labor intensive, automated approaches
are being sought. Automatic brain tumor segmentation is challenging due to the
large variation in appearance and shape across patients.

Most state-of-the-art methods sample the entire MRI volume data to build
classifier for multi-class tumor segmentation, which involve high demand of com-
putation and memory. In this paper, we propose a two-stage automatic segmenta-
tion method. We first segment the whole tumor by utilizing anatomy structure
information for data intensity normalization and tumor separation from non-
tumor tissues. Using this initially segmented tumor as a ROI, we then employ a
random forest classifier followed by a novel pathology based refinement to dis-
tinguish between different tumor structures. As we only apply classification on
the voxels within a ROI, our algorithm is more efficient in terms of both time
and memory. The workflow of proposed method is shown in Fig. 1.

We provide an empirical evaluation of our method on publicly available
BraTS [11] 2015/2016 training set, and compare with the top performing algo-
rithms. The results demonstrate that the proposed method performs the best
c© Springer International Publishing AG 2016
A. Crimi et al. (Eds.): BrainLes 2016, LNCS 10154, pp. 162–170, 2016.
DOI: 10.1007/978-3-319-55524-9 16
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in segmentation of active tumor core, and comparably to the top performing
algorithms in the other tumor structures.

2 Method

In this section, we present the technical details of our proposed methods,
as shown in Fig. 1, including data normalization, initial segmentation, feature
extraction, voxel classification and refinement.

Fig. 1. The proposed two-stage brain tumor segmentation workflow.
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2.1 Data Normalization

Intensity inhomogeneities appearing in MRI produce spatial intensity variations
of the same tissue over the image domain. To correct the bias field, we applied
the N4ITK approach [12]. However, there are large intensity variations across
brain tumor MRI data sets and intensity ranges are not standardized; bias cor-
rection is not enough to ensure that the intensity of a tissue type across different
subjects or even different scans of same subject lie in a similar scale. In [9],
a cerebrospinal fuid (CSF) normalization technique is proposed to normalize
each individual modality with the mean value of the CSF. However, just utiliz-
ing CSF information is not enough, the intensities of other structures need to
be aligned as well. To normalize the intensity of imaging data, we propose an
anatomy-structure-based method based on the assumption that the same struc-
tures of same modality (T1, T1c, T2, Flair), such as white matter (WM), grey
matter (GM) or cerebrospinal fluid (CSF), should have similar intensity value
across different data sets. To be specific, we apply fuzzy C-means algorithm
(FCM) [2,5] to classify the input data into WM, GM and CSF. Then the nor-
malization is performed by aligning the median values of these WM, GM, and
CSF classes for each modality and do piecewise linear normalization in between.
Thus ensure these tissue types have similar intensity across the image datasets
of same modality. Figure 2 shows an example of intensity histograms before and
after data intensity normalization.

Fig. 2. An example of data normalization results. Note that contrary to just applying
histogram matching, the proposed data normalization scheme provides similar intensity
scale across subjects and meanwhile keeps the specific structure of each subject’s data.

2.2 Initial Segmentation

Among different modalities of MRI, Flair and T2 provide better boundary con-
trast of the whole tumor. In [13], symmetric template difference is used as a
feature in their supervised segmentation framework. In our method, we also
explore symmetric information. By assuming tumor rarely happens completely
symmetrically, symmetric differences of Flair and T2 are calculated for locating
the initial seeds of tumors. After thresholding and union of the symmetric dif-
ferences of Flair and T2, we remove the connected components whose size is too
small, to reduce the false positive introduced by noise. By selecting the center of
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the initial seeds as the target seeds and a bounding box as the background seeds,
the GrowCut algorithm [14] is employed on the linear combination of Flair and
T2, α · IFlair + (1− α) · IT2, for segmenting the whole tumor. An illustration of
initial segmentation is shown in Fig. 3.

Fig. 3. An illustration of initial tumor segmentation.

2.3 Feature Extraction

The initial segmentation results are dilated to provide a ROI for further
multi-class segmentation. The features are extracted from the ROI. Our fea-
tures include voxel-wise and context-wise features. The voxel-wise features are
composed of appearance features, texture features and location features. The
context-wise features [7] aim to capture the neighborhood information.

– Appearance: Voxel’s intensity value of smoothed T1, T1c, T2 and FLAIR.
Gaussian kernel is applied to suppress the data noise.

– Texture: Variance of T2 and Laplacian of Gaussian (LoG) on T2, which rep-
resent local inhomogeneity.

– Location: Initial segmentation results indicating the prior information about
the location of tumor.

– Context : Multiscale local mean intensity within a box of different size cen-
tered on each voxel to catch neighborhood information. Context features are
combined from T1c and T2.

An illustration of extracted features is shown in Fig. 4.

Fig. 4. An illustration of extracted features. The voxel-wise features are shown on the
left, and the context-wise features are shown on the right.
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2.4 Voxel Classification

A random forest classifier [3] is used for multi-class classification of pixels into
five classes: (i) label 1 for necrosis (ii) label 2 for edema (iii) label 3 for non-
enhancing tumor, (iv) label 4 for enhancing tumor and (v) label 0 for all other
tissues. As illustrated in Fig. 5, each tree outputs a probability of tumor class.
The final label of each voxel is decided based on the majority voting of the
probabilities.

Fig. 5. An illustration of voxel classification using random forest.

2.5 Refinement

Pixel misclassification error might occur in the random forest classification
results due to overlapping intensity ranges. For example, necrosis and non-
enhancing cores may be mislabeled as edema. We propose a pathology-guided
refinement scheme to correct the mislabels based on pathology rules, such as
edema is usually not inside the active cores, and non-enhancing cores often sur-
round active cores. Figure 6 shows example results before and after refinement.
In Fig. 6(a), the output of random forest classification is shown in the middle,
the necrosis inside the active cores is incorrectly labeled as edema. The results
after refinement are shown on the right, these errors are corrected based on
the pathology-guided rules. In Fig. 6(b), middle shows the output of random for-
est classification. The non-enhancing core is mislabeled as edema. By identifying
core/non-core seeds from the random forest results, these errors can be corrected
as shown on the right.

3 Experimental Results

To evaluate the performance of our method, we show results on the BraTS 2015
training data set (identical to BraTS 2016 training data set) [11], which contains
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(a)

(b)

Fig. 6. Example of results before and after refinement. (a) Left: Ground truth, Middle:
Random forest output, necrosis inside the active cores is wrongly labeled as edema.
Right: Results after refinement. (b) Left: Ground truth, Middle: Random forest output,
non-enhancing core is mislabeled as edema. Right: Results after refinement.

220 high-grade and 54 low-grade glioma cases. The dataset include MRI with
four different sequences: T1, T1 after gadolinium enhancement (i.e., T1c), T2
and FLAIR. The data volumes are already skull-stripped and registered intra-
patient. The volumes include four tumor labels: necrosis, edema, non-enhancing
core and tumor active core. The result of our classification framework is a label at
every voxel in the 3D MRI volumes. The accuracy measures employed are Dice’s
coefficient and Hausdorff distance. Similar to the Virtual Skeleton Database
(VSD) [1] online evaluation system for BraTS, the metrics are evaluated on
three structures: the “whole” tumor (i.e., all four tumor structures), the tumor
“core” (i.e., all tumor structures except “edema”) and the “active” tumor (i.e.,
only the tumor active core). We perform a leave-one-out cross validation. Note
that we do not take high-grade or low-grade as a prior knowledge during training
and testing.

3.1 Qualitative Results

Examples of our tumor classification results are shown in Fig. 7. The results are
shown on one high grade tumor case and one low grade tumor case alone with
the corresponding T1, T1c, T2 and FLAIR slices. In both cases, it can be seen
that visually our results are comparable to the ground truth labeling. The Dice
scores (%) for these two cases are: Case 1 (HGG) Necrosis 85.22, edema 91.45,
non-enhancing core 9.19 and tumor active core 94.79; Case 2 (LGG) Necrosis
80.17, edema 66.62, non-enhancing core 56.31 and tumor active core 65.90.



168 B. Song et al.

Fig. 7. Top row: high grade tumor case. Bottom row: low grade tumor case. (a) T1
slice, (b) T1c slice, (c) T2 slice, (d) FLAIR slice, (e)ground truth labeling and (f) labels
produced by our algorithm (Necrosis in green, edema in yellow, non-enhancing core in
red and tumor active core in cyan). (Color figure online)

3.2 Quantitative Results

Table 1 shows the average Dice and Hausdorff distance obtained using our
method on a total of 274 cases. The boxplots of Dice and Hausdorff distance
are shown in Fig. 8.

Table 1. Results obtained on BraTS 2015 Training dataset, reporting average Dice
coefficient and Hausdorff distance. Dice scores for active tumor are calculated for high-
grade cases only.

Whole Core Active

Dice (%) 87.0 72.2 75.4

Hausdorff distance (mm) 9.3 9.1 6.5

We compare our results on BraTS 2016 training data set with top performing
algorithms in testing phase of the BraTS 2016 Challenge in Table 2. The results
show that the proposed method performs the best in segmentation of active
tumor core, and comparably to the top performing algorithms in the other tumor
structures.

Run time. The run time of training using 254 cases on a computer with
2.67 G Hz GPU, 24 G memory is about 15 min and run time of testing one case
is about 1 min.
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Fig. 8. Boxplots of Dice and Hausdorff distance on 274 cases. The blue triangle shows
the mean and red line shows the median. (Color figure online)

Table 2. Comparison of the average dice scores of proposed method and top performing
algorithms in BraTS 2016 Challenge. Note that not all the top performing algorithms
report their results on all the 274 cases.

Whole Core Active Data

Chang [4] 87 81 72 29 HGG, No LGG

Kamnitsas [8] 89.6 76.3 72.4 All 220 HGG, 54 LGG

Zeng [15] 89 77 65 176 HGG, 54 LGG

Le Folgoc [6] 82 73 75 176 HGG, no LGG

Meier [10] 84.7 64.7 70 MEDIAN on the
BRATS-2015 TESTING
database

Our 87.0 72.2 75.4 Whole+Core 220 HGG, 54
LGG. “Active” on HGG

2016 Testing Phase. We apply our model trained with BraTS 2016 training
data set on the BraTS 2016 testing data set (291 cases). The results on testing
data set are not as good as the ones we get on the training data set. One possible
reason is that the cases of the training data set are all of 1.5 T while testing data
set contains many 3 T cases.

4 Conclusion

In this paper, we considered the problem of fully automatic multimodal brain
tumor segmentation. We proposed a two-stage approach for efficiency in terms
of both time and memory. We first utilized anatomy structure information to
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normalize data intensity and segment the whole tumor. Next, we employed the
random forest classifier on the voxels within the dilated initial segmentation
for multi-class tumor segmentation. A novel pathology-guided refinement was
applied to further improve accuracy. Promising results are shown on BraTS
2015 training dataset.
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Abstract. We revisit Auto-Context Forests for brain tumour segmenta-
tion in multi-channel magnetic resonance images, where semantic context
is progressively built and refined via successive layers of Decision Forests
(DFs). Specifically, we make the following contributions: (1) improved
generalization via an efficient node-splitting criterion based on hold-
out estimates, (2) increased compactness at a tree-level, thereby yielding
shallow discriminative ensembles trained orders of magnitude faster, and
(3) guided semantic bagging that exposes latent data-space semantics
captured by forest pathways. The proposed framework is practical: the
per-layer training is fast, modular and robust. It was a top performer in
the MICCAI 2016 BRATS (Brain Tumour Segmentation) challenge, and
this paper aims to discuss and provide details about the challenge entry.

1 Introduction

The past few years have witnessed a vast body of machine learning (ML)
techniques for the automatic segmentation of medical images. Decision forests
(DFs) [18,21], and more recently, deep neural networks [11] have yielded state-
of-the-art results at MICCAI BRATS (Brain Tumour Segmentation) challenges.

In this paper, we describe an approach that builds upon the framework of
DFs, departing from the usual hand-crafting of powerful features based on e.g.
texture, elastic registration, supervoxels [6,17] with a complementary scheme
that is entirely generic and free of additional computations. More specifically, we
introduce an efficient node-splitting criterion based on cross-validation estimates
that improves the feature selection during the training stage. Consequently,
learnt features are more discriminative and generalize better to unseen data:
we refer to this process as lifting (see Sect. 4). Furthermore, the proposed cost
function induces a natural stopping condition to grow or prune decision trees,
resulting in an Occam’s razor -like, principled trade-off between tree complexity
and training accuracy. We show that lifted DFs can outperform standard DFs
using compact, shallow tree architectures (several dozens or hundreds of nodes).

We exploit the resulting computational gains to revisit auto-context [13–
15] segmentation forests. In particular, we extend the approach with a meta-
architecture of cascaded DFs that naturally intertwine high-level semantic rea-
soning with intensity-based low-level reasoning (described in Sect. 5). The frame-
work aims to be practical: the per-layer training is simple, modular and robust.
c© Springer International Publishing AG 2016
A. Crimi et al. (Eds.): BrainLes 2016, LNCS 10154, pp. 171–183, 2016.
DOI: 10.1007/978-3-319-55524-9 17
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Furthermore, this sequential design enables the decomposition of complex seg-
mentation tasks into series of simpler subtasks that, for instance, exploit the hier-
archical structure between labels (e.g., whole tumour, tumour core, enhancing
tumour parts). Beyond auto-context, another contribution is a clustering mecha-
nism (see Sect. 5.2) that exposes the latent data-space semantics encoded within
DF pathways. The learnt semantics are exploited to automatically guide classi-
fication in subsequent layers. Finally, in Sect. 7, we discuss results and details of
our BRATS challenge entry.

2 Background: Random Forests for Image Segmentation

Let I = {Ij}j=1···J be the set of input channels in a multichannel image, x be a
voxel, and c∈C ={1 . . . K} be the class to predict for x. We define x = {x, I}∈X
as the feature vector of x. DF classifiers predict the probability p(c|x) that a
voxel x belongs to class c given its feature representation x. This is done by
aggregating predictions of an ensemble of T decision trees. Simple averaging is
typically used, so that:

p(c|x)=1/|T | ·
|T |∑

t=1

pt(c|x) ,

where pt(c|x) denotes the prediction by tree t ∈ T . The class with maximum
probability is then returned (maximum a posteriori probability) as the predic-
tion. Tree predictions are obtained as follows: a feature vector x is routed along
a path in the tree from the root node by evaluating it at every internal (split)
node n w.r.t. a routing function hn(x) � [f(x,θn)≤τn]∈{0, 1}, and taking the
left child nL if hn(x) = 1, and the right child nR otherwise, until a leaf node
n(x) is reached. Here f : X ×Θ �→ R is a weak learner parameterized by a node-
specific feature θn ∈Θ, and τn ∈R a node-specific threshold. Examples of weak
learners are given in Sect. 3. Each terminal (leaf ) node n ∈ L is paired with a
class predictor pn(c|x)�pn(c) such that 0≤pn(c)≤1,

∑K
c=1 pn(c)=1. The tree

then predicts class c with probability pn(x)(c).
Decision trees are trained in a supervised manner from training data D =

{xi, ci}N
i=1 with known class labels ci, greedily and recursively, starting from a

single root node. Training a node n entails finding the optimal feature θ∗
n and

threshold τ∗
n such that the node training data Dn ={xi, ci}i∈In

is split between
left and right children nL and nR in a way that maximizes class purity. Specif-
ically, ψ∗ = (θ∗

n, τ∗
n) and the resulting split Dn = DnL

(ψ)
∐

DnR
(ψ) maximizes

the Information Gain G(ψ;Dn), which is defined as follows:

G(ψ;Dn) �
∑

ε={L,R}

|Dnε
(ψ)|

|Dn|
∑

c∈C
pnε

(c;ψ) log pnε
(c;ψ) −

∑

c∈C
p∗

n(c) log p∗
n(c) ,

(1)

where pnε
(c;ψ) � |{i∈Inε

(ψ)|ci =c}| / |Dnε
(ψ)| is the empirical class dis-

tribution in the training data Dnε
for the child node nε. The optimum
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ψ∗ � arg maxψ G(ψ;Dn) is found by exhaustive search after proper quantiza-
tion of thresholds τn. Trees are grown up to a predefined maximum depth, or
until the number of training examples reaching a node is below a given threshold.

Last but not least, random forests introduce randomization in the training
of each tree via feature and data bagging. For the t-th tree and at node n ∈ Vt,
only a random subset Θ′

� Θ of candidate features is considered for training
[1,7]. Similarly, only a random subset D′

n � Dn of training examples sampled
with(out) replacement is used [3]. Data bagging is implemented both at an image
level (random image subsets) and at a voxel level (random voxel subsets).

It is important to note that we do not make use of class rebalancing schemes.
Training samples are often weighted according to the relative frequency of their
class. This strategy aims to correct classifier bias in favor of the more frequent
class, in cases where there is a large class imbalance. Of course, class rebalancing
induces the opposite bias against more prevalent classes, which cannot be avoided
in a multilabel classification setting. Section 5.2 discusses an alternative strategy
to naturally correct for distribution imbalance.

3 Fast Scale-Space Context-Sensitive Features

We revisit scale-space representations to craft fast, expressive, compactly para-
meterized features, as a simple alternative to the popular integral or Haar-like
features [19].

Background: integral features. Integral features are based on intensity aver-
ages within anisotropic cuboids offset from the point of interest [5]. Cuboid
averages are computed in constant time by probing the value of a precomputed
integral map at the cuboid vertices [19]. For instance, f(x,θ)�

∑
x′∈C2

Ij2(x
′) −∑

x′∈C1
Ij1(x

′) computes the difference of responses in cuboids C1 and C2 of size
s1=(sx

1 , s
y
1, s

z
1) and s2=(sx

2 , s
y
2, s

z
2), centered at offset locations x+o1 and x+o2,

in distinct channels Ij1 and Ij2 . Here θ=(j1, j2,o1,o2, s1, s2) is a 14-dimensional
feature.

Proposed scale-space representation. During node training, it is crucial for
sufficiently strong weak-learners to be computable within the budget allocated to
feature sampling and optimization. Therefore, reducing the feature parameteri-
zation while maintaining expressiveness is key. For integral features, the sophis-
tication of probing anisotropic cuboids with a continuous range of edge lengths
comes at a cost w.r.t. parametric complexity. We restrict ourselves to a small
finite range of isotropic averages. We augment the original set of c input channels
with their smoothed counterparts under separable Gaussian filtering at scales σ1,
σ2 etc. Given s scales, f(x,θ)�Ij2(x+o2)− Ij1(x+o1) computes the difference
of responses in different channels at different scales and offsets from the voxel of
interest (j ∈{1 . . . c×s} flatly indexes channels and scales). Here θ=(j1, j2,o1,o2)
is an 8-dimensional feature.

A single point is probed for every 8 cuboid vertices probed under integral fea-
tures, as well as circumventing many boundary checks. For all practical purposes
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(s = 2, 3), byte[] storage of scale-space maps limits the memory overhead rel-
ative to integral maps (short[] storage).

Fast rotation invariant features. We can go beyond directional context and
account for natural local invariances with fast, multiscale, approximately rota-
tion invariant feature. Let φ1 · · · φ12 stand for the coordinates of an axis-aligned,
centered icosahedron of radius r. Denoting by θ = (j1, j2, r) the 3-dimensional
feature, f(x,θ) � Median12

v=1|Ij2(x + φv)− Ij1(x)| gives a robust summary of
intensity variations around point x and probes 13 points only.

4 Lifting Decision Forests by Minimizing
Cross-Validation Error Estimates

4.1 A Cautionary Look at Information Gain Maximization

We follow the notation introduced in Sect. 2, but drop the node index n for con-
venience. Information gain maximization w.r.t. (feature, threshold) parameters
ψ = (θ, τ) can be shown to be equivalent to a joint maximum likelihood estima-
tion (MLE) of φ�(ψ, pL, pR), the node parameters and children’ class predictors.
We omit the details for the sake of brevity. Essentially, decision trees are usually
grown by greedily, recursively splitting leaf nodes by likelihood maximization:

φ∗ = arg max
φ

C(D;φ) � arg max
φ

p(D;φ)
p∗(D)

. (2)

In Eq. (2), the denominator is the data likelihood using the current leaf node
predictor, whereas the numerator is the data likelihood when splitting this node
with parameters φ into left and right children. The denominator is constant w.r.t.
φ, as optimization of the current node has precedence in the recursive schedule.

MLE runs the risk of overfitting. At a node-level, weak learners with poor
generalization may be selected. The deeper the trees, the more likely it is to
happen, since the training data is split between an exponentially increasing
number of nodes. At a tree-level, the lack of principled method for control-
ling model capacity negatively impacts generalization. Indeed, the information
gain is strictly positive (the likelihood ratio of Eq. (2) is > 1) as long as: (1)
training samples remain at the node of interest, and (2) the data distribution
is not pure. As a result, trees generally grow to the maximum allowed depth,
with little control over generalization. Medical image segmentation tasks often
require large trees of weak learners to be grown (tree depth 20–30, millions of
nodes). Due to computational constraints, few such trees can be grown (a few
dozens at most). For this reason, model averaging across randomized trees is
insufficient to balance tree overfitting. As an efficient alternative to MLE that
can be directly used to control tree growth and generalization, we propose to
maximize the predictive score as obtained from cross-validation estimates.
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4.2 Maximizing Cross Validation Estimates of Generalization

We derive Cross-Validation Estimates (CVE) of the predictive score as follows.
At any given node, the (potentially bagged) training data D = DV

∐
DT is

randomly divided into two disjoint subsets, a tuning subset DT and a validation
subset DV. The optimization problem is then defined as:

φ∗ = arg max
φ

p(DV;θ)
p∗(DV)

, s.t.

(
τθ, pε(·;θ)

)
= arg max

τ,pε

pε(DT
ε ;φ)

(3)

where p(DV;θ) � p(DV;θ, τθ, pε(·;θ)). The key change is that parameters are
now constrained to be tuned on DT, whereas the final feature score is computed
on DV. While a k-fold estimate could be used instead in Eq. (3), the hold-out
procedure has the benefit of efficiency and added randomness.

Key to the proposed approach is that the quantity in Eq. (3) takes values
≤ 1 whenever no candidate split yields superior generalization to the current
leaf node model. Based on this, we implement a greedy scheme to control the
tree complexity, where branches that do not increase the score are pruned in
a single bottom-up pass as post-processing, similarly to [12]. We further use a
simple heuristic to drastically reduce training time, growing trees in stages up to
any desired maximum depth, successively pruning score-decreasing branches and
regrowing remaining, non-pruned ones.

5 Auto-Context Forests for Brain Tumour Segmentation

We investigate cascaded DF architectures, made of layers of DFs partially or
fully connected via their output posterior maps. This architecture naturally
interleaves high-level semantic reasoning with intensity-based low-level reason-
ing. We demonstrate this via two ideas: (a) auto-context : allowing downstream
layers to reason about semantics captured in upstream layers, and (b) decision
pathway clustering : latent data-space semantics are revealed by clustering deci-
sion pathways and cluster-specific DFs are trained.

5.1 Building and Training Auto-Context Forests

The process of cascading DFs is illustrated in Fig. 1. Since DFs rely on generic
context-sensitive features that disregard the exact nature of input channels (cf.
Sect. 3), we simply proceed by augmenting the set of input channels for subse-
quent layers with output posterior maps from previous layers.

Layers are trained sequentially, one at a time in a greedy manner (follow-
ing Sects. 2 and 4.2). Specifically, for the BRATS challenge, class labels follow
a nested structure: the whole tumour (WT) consists of the edema (ED) and
tumour core (TC). The tumour core itself is subdivided into enhancing tumour
parts (ET), and other parts of the core that are only indirectly relevant to the
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Fig. 1. Auto-Context segmentation Forests. In this schematic example, layer 2 solves a
segmentation task distinct from that of layers 1, 3 but the interleaving allows to exploit
joint dependencies.

task: the necrotic core (NC) and non-enhancing remaining parts (NE). Usually,
these labels would be interpreted as mutually exclusive classes (ED, ET, NC, NE
and the background BG) so as to formulate the task as a multilabel classification
problem. Instead, our proposed framework directly uses these hierarchical rela-
tions. While many variants can reasonably be built, the final architecture that
we used for the BRATS challenge consists of layers of binary DFs, alternating
between predictions of WT, TC and ET (Sect. 6.2).

5.2 Exposing Latent Semantics in Decision Forests for Guided
Bagging

Given Auto-Context Forests, a natural idea is to progressively refine the region
of interest (ROI) after each layer, starting from an initial over-approximation of
the ROI (e.g., the full image). Downstream DFs are trained on more refined ROIs
that exclude irrelevant background clutter, thereby increasing accuracy. Such an
approach runs the risk of excluding false negatives, creating a trade-off between
coarser ROIs (high recall) and tighter ROIs (high precision). We investigate a
complementary strategy to circumvent this limitation. ROI refinement remains
as a computational convenience.

The proposed approach exposes and exploits the latent semantics already
captured within a given DF as follows. Each data point is identified with the
collection of tree paths that it traverses. A metric dDP is defined over such col-
lections of tree paths (decision pathways), assigning smaller distance between
points following similar paths across many trees, and data clusters are identified
by k-means w.r.t. dDP. Then, cluster-specific DFs are trained over the corre-
sponding training data. At test time, data points are assigned to the cluster
with closest centroid and the corresponding DF is used for prediction.
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Our key insight is that data points that are clustered together will share com-
mon underlying semantics, as they jointly satisfy many predicates (see Fig. 2).
A wide range of metrics can be designed and for the sake of simplicity, we define
(given a collection T of trees):

dT
DP(xi,xj) �

|T |∑

t=1

(
1
2

)depthT
t (xi,xj)

, (4)

where xi,xj are two points, and depthT
t (xi,xj) is the depth of the deepest

common node in both paths for the t-th tree (+∞ if the paths are identical).

Fig. 2. Voxel cluster assignments for an example subject. Clusters for WT and TC
binary forests are learned independently. 4 clusters are used for each and assignments
are colour coded in gray levels. On this task clusters naturally appear to relate to
“boundary” regions of higher uncertainty and higher certainty regions (“inside” the
tumour or the BG).

6 BRATS Challenge: Framework Details

6.1 Training Dataset (BRATS 2015)

The BRATS 2015 dataset was available to participants of the challenge. It con-
tains 274 images together with their ground truth annotations. One of the inter-
esting aspects of the dataset is the nature of ground truth annotations: 30 images
(from the BRATS 2013 dataset) were manually annotated, and the remaining
were annotated using a consensus of segmentation algorithms [9]. While the
ground truth is often of good quality, we note with interest that the consensus
of algorithms generally fails at correctly labelling post-resection cavities as in
Fig. 3 (bottom row). This is likely due to the fact that there is only one such
training example in the original BRATS 2013 dataset (Fig. 3, top row).

We paid particular attention to such training examples. For these cases, we
favoured a qualitative, visual assessment of correctness over quantitative met-
rics (DICE overlap or Hausdorff distance) when tuning our pipeline. These cases
and similar observations motivate the two following choices: (1) An unsuper-
vised SMM/MRF (see below) is trained on the 30 manually annotated BRATS
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Fig. 3. Example images with resection cavities in the BRATS 2015 training set. The
first column displays the gadolinium enhanced images, while the second and third
respectively display the ground truth annotations and algorithm predictions. Top row:
manual annotation. Bottom row: consensus annotation.

2013 images, to initialize the segmentation pipeline. For the background class,
SMM weights are spatially varying, so that the model proves reasonably effec-
tive to disambiguate potential post-resection cavities from, say, ventricles, and
(2) 70 images from the BRATS 2015 dataset ground truth with high quality
annotations are chosen and used for training of the final model. While leading
to a slight decrease in quantitative performance of the algorithm, it also qualita-
tively somewhat improves segmentation results (Fig. 3, last column). The same
qualitative observations are made on the BRATS 2016 test set.

6.2 Pipeline, Model and Parameter Settings

Preprocessing. Image masks are defined from the FLAIR modality, masking
out 0-intensity voxels. The intensity range is standardized: the distribution of
voxel intensities within the mask is normalized to a common median and mean
absolute deviation by affine remapping. As a mostly implementation specific
step, we further window intensity values to make threshold quantization easier
when training DFs: intensities are thresholded and brought within a byte range.

Initialization: SMM/MRF. A Student Mixture Model (SMM) with Markov
Random Field (MRF) spatial prior is used to locate the region of interest (ROI)
for the whole tumor. The likelihood for each of the five mutually exclusive ground
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truth classes is modelled by an SMM with spatially varying (BG) or fixed (other
classes) proportions [2], as a suitably modified variant of [4]. An MRF prior
is assumed over BG, ED and TC. The model is similar in spirit to [10,20]. It
is unsupervised: the current implementation does not use white/grey matter
and cerebro-spinal fluid labels, but the resulting components for the background
SMM are highly correlated to those labels. Variational Bayesian inference is
used at training and test time. The MRF defines fully connected cliques over
the image, with Gaussian decay of pairwise potentials w.r.t. the distance of voxel
centers. For this choice of potentials, the dependencies induced by MRF priors in
variational updates can be efficiently computed via Gaussian filtering. Inference
over 3D volumes is fast at training (seconds or minutes) and test time (seconds).

Auto-context architecture. 9 layers of binary DFs are cascaded, cycling
between WT, TC and ET probabilities. All layers use the original, raw image
channels. The input of the first layers is augmented with probability maps from
the upstream SMM/MRF, the subsequent layers use probability maps output
by previous layers. For instance, the second TC layer uses the output of the
first TC, ET layers and of the second WT layer. In addition, the prior prob-
ability “atlas” maps returned by the spatially-varying background SMM/MRF
model are passed to the first three layers. Many variants of this architecture were
informally tested without a significant effect on accuracy.

ROI refinement. For computational convenience, subsequent layers are run on
ROIs rather than the full image. For instance, the second BG vs. WT binary
forest only tests points within the mask provided by the first BG vs. WT forest.
Similarly at training time, the second layer is trained on subsets of image voxels
within the respective image ROIs output by the first layer. Each layer uses masks
obtained as dilated versions of the segmentation masks output by the previous
layer (dilated resp. by 15 mm, 10 mm, 5 mm).

Parameter settings. DFs come with a number of parameters, many of which
do not seem to strongly affect the pipeline accuracy after informal experiments.
Five feature types are used: intensity in a given channel (respectively, at scale
s), difference of intensities between the voxel of interest (VOI) at scale s1 and an
offset voxel at scale s2>s1 in a given channel, median of the intensity difference
(respectively, absolute difference) between the VOI at scale s1 and the radius-r
icosahedron vertices (scale s2 > s1) in a given channel. Between 100 and 200
candidate features are sampled per node. We use 2 scales: 1 mm and 2 mm for
the first layers, 0.5 mm and 1 mm for the second and final layers. The offset along
each direction (or the icosahedron radius) is sampled uniformly between 0 mm
and 50 mm. The range of feature responses is quantized using 50 thresholds. The
maximum tree depth is set at 12, and is seldom reached. The number of decision
pathways clusters (Sect. 5.2) is set to 4. They are created using the first layer of
WT, TC, ET (separately for each classification task). 50 trees are trained per
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layer per cluster-specific DF1. The subsampling rate for data bagging is adjusted
based on the desired computation time. At each node, the training voxels from
25 random images serve as tuning set and similarly 30 (distinct) random images
are used for validation (the remaining images are not used to train the node).

6.3 Test Dataset (BRATS 2016)

The pipeline described above is fully automated. To our knowledge, the BRATS
2015 training dataset pre-processing includes rigid registration (as well as resam-
pling to a common image geometry), bias field correction and skull stripping [9].
The BRATS 2016 test dataset contains a number of unprocessed or partially
pre-processed images (cf. Fig. 4). To cope with that, the pipeline was modified
to include rigid registration and resampling, bias field correction [16] and skull
stripping as part of a semi-automatic pre-processing step.

Fig. 4. BRATS 2016 test data: example of variability not seen in the training set.
(Left) Bias field, (Middle) Partial skull stripping, (Right) Rigid misalignment, different
geometry.

7 Results

The proposed approach is implemented in a .NET based DF framework which
we call Bonsai. All experiments were performed on a 3.6 GHz Intel Xeon proces-
sor system with 16 GB RAM running Microsoft Windows 10. Training on the
BRATS 2015 dataset takes around 6 to 7 h (including “testing” on the whole
dataset). Testing takes about 20 s per image. The model is trained as described
previously on 70 images from the BRATS 2015 training set (about 1/4th).
Table 1 reports accuracy over the remaining of the BRATS 2015 dataset.
1 As an illustration on WT layers. The 4 (WT) clusters are obtained from (the single

DF of) the first WT layer. The second and third WT layers each consist of 4 distinct
(50-tree) DFs, each of which is trained on cluster-specific data. At test time, voxels
x pass through the first WT layer and are assigned a cluster kx ∈ {1 · · · 4}. Then
for the second and third layers, they are sent through the DF specific to the kx-th
cluster. The same process is followed for TC and ET layers.



Lifted Auto-Context Forests for BRATS 181

Table 1. Hold-out accuracy on the BRATS 2015 dataset for the model entered in the
challenge i.e., statistics over the remaining of the BRATS 2015 dataset after training
on 70 images.

Dice WT TC ET

Avg ± Std. 84% ± 15% 72% ± 26% 71% ± 29%

Median (IQR) 90% (13%) 82% (28%) 82% (30%)

These numbers are comparable to those reported in the recent state-of-the-art
e.g. [8]. It is informative to compare the predicted accuracy (on validation data)
against the performance on the BRATS 2016 test set. Rough estimates of the
median DICE scores are as follows (exact numbers are not available): about 80%
for WT, 60% for TC and over 70% for ET. Proper delineation of the tumour core
seems to remain the most challenging task, perhaps due to the high variability
of appearance across images and glioma types.

8 Conclusion

We described a principled method to train DFs using hold-out estimates of the
predictive error, lifting the accuracy and generalization of individual nodes and
of the DF altogether. We find that shallow lifted trees formed of a few dozens
or hundreds of nodes favorably compare to conventional deep trees formed of
millions of nodes. This is of practical interest: it makes training, tuning and
experimenting with randomized DFs much more straightforward. We exploit this
benefit to experiment within the framework of auto-context forests, on challeng-
ing multi-class and multi-organ medical image segmentation tasks. We report our
experience using this approach in the MICCAI 2016 BRATS challenge, where it
belongs to the top performers.

Acknowledgment. The authors would like to thank the Microsoft–Inria Joint Centre
for partially funding this work.

A BRATS 2015 Dataset: Training IDs

For completeness, the identifiers of images from the BRATS 2015 dataset that
were used for training (Sect. 6.1) are listed below.

2013 pat0001 1, 2013 pat0002 1, 2013 pat0003 1, 2013 pat0004 1, 2013 pat0005 1,
2013 pat0006 1, 2013 pat0007 1, 2013 pat0008 1, 2013 pat0009 1, 2013 pat0010 1,
2013 pat0011 1, 2013 pat0012 1, 2013 pat0013 1, 2013 pat0014 1, 2013 pat0015 1,
2013 pat0022 1, 2013 pat0024 1, 2013 pat0025 1, 2013 pat0026 1, 2013 pat0027 1,
tcia pat105 0001, tcia pat117 0001, tcia pat124 0003, tcia pat133 0001, tcia pat149 0001,
tcia pat153 0181, tcia pat165 0001, tcia pat170 0002, tcia pat260 0129, tcia pat260 0244,
tcia pat260 0317, tcia pat265 0001, tcia pat290 0580, tcia pat296 0001, tcia pat300 0001,
tcia pat314 0001, tcia pat319 0001, tcia pat370 0001, tcia pat372 0001, tcia pat375 0001,
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tcia pat377 0001, tcia pat396 0139, tcia pat396 0176, tcia pat401 0001, tcia pat430 0001,
tcia pat491 0001, 2013 pat0001 1, 2013 pat0004 1, 2013 pat0006 1, 2013 pat0008 1,
2013 pat0011 1, 2013 pat0012 1, 2013 pat0013 1, 2013 pat0014 1, 2013 pat0015 1,
tcia pat101 0001, tcia pat109 0001, tcia pat141 0001, tcia pat241 0001, tcia pat249 0001,
tcia pat298 0001, tcia pat307 0001, tcia pat325 0001, tcia pat346 0001, tcia pat354 0001,
tcia pat393 0001, tcia pat402 0001, tcia pat408 0001, tcia pat413 0001, tcia pat442 0001,

tcia pat449 0001,
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Abstract. We present an approach for segmenting both low- and high-
grade gliomas in multimodal magnetic resonance imaging volumes. The
proposed framework is an extension of our previous work [6,7], with an
additional component for segmenting post-operative scans. The proposed
approach is based on a hybrid generative-discriminative model. Firstly,
a generative model based on a joint segmentation-registration frame-
work is used to segment the brain scans into cancerous and healthy
tissues. Secondly, a gradient boosting classification scheme is used to
refine tumor segmentation based on information from multiple patients.
We evaluated our approach in 218 cases during the training phase of
the BRAin Tumor Segmentation (BRATS) 2016 challenge and report
promising results. During the testing phase, the proposed approach was
ranked among the top performing methods, after being additionally eval-
uated in 191 unseen cases.

Keywords: Segmentation · Brain tumor · Glioma · Multimodal MRI ·
Gradient boosting · Expectation maximization · Probabilistic model ·
BRATS challenge

1 Introduction

Glioma is a common type of brain tumors that originates in the glial cells that
surround and support neurons. Gliomas are divided into different types based
on the degree of their growth rate and histopathology. Commonly, they are
classified into low- and high-grade gliomas (LGGs and HGGs). LGGs are less
common than HGGs, constitute approximately 20% of central nervous system
glial tumors and almost all of them eventually progress to HGGs [28]. HGGs are
rapidly progressing malignancies, divided based on their histopathologic features
into anaplastic gliomas and glioblastomas (GBMs) [38].
c© Springer International Publishing AG 2016
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Gliomas are typically diagnosed by multimodal magnetic resonance imag-
ing (MRI), where two main pathological regions may be identified, the tumor
core and the peritumoral edematous area. The tumor core typically consists of
enhancing (note that LGGs do not always include this part), non-enhancing and
necrotic parts. Edema is the response to infiltrating tumor cells, as well as angio-
genic and vascular permeability factors released by the spatially adjacent tumor
cells [2].

Accurate segmentation of these pathological regions may significantly impact
treatment decisions, planning, as well as outcome monitoring. However, this is a
highly challenging task due to tumor regions being defined by intensity changes
relative to the surrounding healthy tissue, and such intensity information being
disseminated across various modalities for each region. Manually delineating
tumor boundaries is a highly laborious task that is prone to human error and
observer bias [8]. Computer-assisted segmentation, on the other hand, has the
potential to reduce expert burden and raters’ variability.

The literature on computer-assisted tumor segmentation is abundant. Most
methods can be categorized as being either generative or discriminative. Under a
generative setting, a probabilistic model is designed for generating the underly-
ing multimodal intensity images. The statistical model often incorporates prior
knowledge of appearance and of spatial distribution of healthy brain tissues.
Human knowledge for the abnormal tissues is usually encoded through tumor-
specific designs (see for example [16,30,32]). Others, however, (e.g. [13,35])
choose to segment tumors as outlier classes not well represented by models
for healthy tissues. In a discriminative scenario, a decision function is directly
learned from manually annotated training images to characterize the difference
between cancerous and normal tissues. A broad spectrum of algorithms have
been used for learning the decision function (see for example [1,3,18,27,34,39]).
In recent years, convolutional neural networks [1,18,20,21,34] have become an
extremely popular choice as the base learner, achieving high rankings in BRATS
competitions.

The method proposed in this paper is an extension of our previously pub-
lished method called GLISTRboost [6,7]. When designing GLISTRboost, we
restricted our attention to pre-operative baseline scans, whereas here we intro-
duce an approach for segmenting gliomas in post-operative scans as well. Seg-
menting residual and recurrent tumors is a task significantly different from
segmenting tumors on pre-operative baseline scans. This segmentation task is
extremely challenging due to the presence of surgically-imposed cavities and
non-neoplastic contrast enhancements on the cavity boundaries. These two tissue
classes are not modeled in GLISTRboost. Additionally, GLISTRboost requires
the manual initialization of at least one seed point where the tumor initially orig-
inated. However, such seed points cannot be identified in many post-operative
scans, unless there is an apparent recurrent tumor. Lastly, the mass effect in
many post-operative scans has been substantially relaxed due to the removal
of the tumor bulk. Therefore, the component of GLISTRboost that models the
mass effect is no longer required for segmenting post-operative scans. Due to
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these important differences, segmenting brain tumors in post-operative scans
cannot be tackled by GLISTRboost. To address these differences, we develop
here a framework that specifically targets the segmentation of gliomas in post-
operative scans. The design follows the generative-discriminative principle of
GLISTRboost.

The remainder of this paper is organized as follows: Sect. 2 details the pro-
vided data, while Sect. 3 presents the proposed segmentation strategy. The exper-
imental validation setting is described in Sect. 4 along with the obtained results.
Finally, Sect. 5 concludes the paper.

2 Materials

186 pre- and 88 post-operative multimodal MRI scans of patients with gliomas
(54 LGGs, 220 HGGs) were provided as training images for the BRATS 2016
challenge, from the Virtual Skeleton Database [22]. Specifically, the dataset is a
combination of the pre-operative baseline training set (10 LGGs and 20 HGGs)
evaluated in the BRATS 2013 challenge [29], 44 LGG and 112 HGG pre-operative
baseline scans provided from the National Institutes of Health (NIH) Cancer
Imaging Archive (TCIA) and evaluated in the BRATS 2015 challenge, as well as
88 HGG post-operative NIH-TCIA scans evaluated in BRATS 2016. The post-
operative scans describe longitudinal observations from 27 patients at multiple
time points. The inclusion of these longitudinal scans will allow for the charac-
terization of these tumors, based on expert neuroradiologists and the evaluation
of the volumetric segmentations, in ‘progressing,’ ‘stable disease,’ or ‘shrinking.’

In addition to the training set, 191 multimodal volumetric images were pro-
vided as the testing set for BRATS 2016 challenge, comprising 92 pre-operative
baseline and 99 post-operative scans. The partition of the testing set into pre-
and post-operative was done based on visual confirmation of a surgically imposed
cavity.

The data of each patient consists of native and contrast-enhanced (CE) T1-
weighted, as well as T2-weighted and T2 Fluid-attenuated inversion recovery
(FLAIR) MRI volumes. Finally, ground truth (GT) segmentations for the train-
ing set were also provided. Specifically, the data from BRATS 2013 were man-
ually annotated, whereas data from NIH-TCIA were automatically annotated
by fusing the approved by experts results of the segmentation algorithms that
ranked high in the BRATS 2012 and 2013 challenges [29]. The GT segmenta-
tions comprise the enhancing part of the tumor (ET), the tumor core (TC),
which is defined as the union of necrotic, non-enhancing and enhancing parts of
the tumor, and the whole tumor (WT), which is the union of the TC and the
peritumoral edematous region.

In this study, we only considered 32 out of the 88 provided post-operative
HGG cases in the experiments, as labeling errors were found in the automatically
generated GT for the other 56 samples. The most common mislabeling in those
cases is surgically imposed cavities being segmented as part of the tumor core.
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3 Methods

In this section, we describe the extended GLISTRboost segmentation framework
that addresses tumor segmentation in both pre-operative baseline and post-
operative multimodal volumes.

Firstly, all the provided MRI volumes are skull-stripped, co-registered and
filtered to reduce intensity noise in regions of uniform intensity profile [37]. The
intensity histograms of all modalities of all patients are then matched to the cor-
responding modality of a single reference patient [31]. Pre-operative baseline and
post-operative volumes are handled differently after the common pre-processing
pipeline.

A pre-operative baseline scan is segmented by applying GLISTRboost [6,7],
our previously published method that ranked 1st in the BRATS 2015 challenge.
GLISTRboost is a hybrid generative-discriminative segmentation framework, in
which a generative approach is used to compute probabilistic segmentations
of the brain scans into cancerous, as well as healthy tissue. This generative
approach is based on GLISTR [14–16,23,25], a joint segmentation-registration
scheme that incorporates a glioma growth model to deal with the tumor mass
effect [19]. A gradient boosting classification (discriminative) scheme is then
used to refine the probabilistic segmentations based on information learned from
multiple patients [10,11]. Lastly, a probabilistic Bayesian strategy, inspired by
[4,5], is employed to refine further and finalize the tumor segmentation based on
within-patient brain-specific intensity statistics. Interested readers are referred
to [7] for detailed information on GLISTRboost.

Although GLISTRboost performs well on segmenting pre-operative baseline
scans, it is not applicable to the task of segmenting post-operative volumes.
Specifically, GLISTR is not designed to handle the two extra tissue classes
present in post-operative scans, namely surgically-imposed cavities and non-
neoplastic contrast enhancement on cavity boundaries. Moreover, it requires
manual initialization of at least one seed point to approximate the center of
the tumor, and such points cannot be identified in many post-operative scans
unless there is an apparent recurrent tumor. Lastly, the mass effect, modeled by
a computationally demanding tumor growth model in GLISTR, is expected to
be substantially relaxed in most post-operative scans, where the tumor bulk is
resected.

The generative part of GLISTRboost is adjusted accordingly to address these
differences. Specifically, two additional classes, namely non-enhancing cavity and
enhancing cavity, are introduced to the Gaussian mixture model within the joint
segmentation-registration scheme to address the presence of surgically-imposed
cavities and non-neoplastic enhancement on their boundaries. We have also
removed the requirement for at least one manually placed tumor seed point and
introduced a new option for specifying approximately the center and radius of the
cavity. Lastly, the glioma growth model is taken out of the joint segmentation-
registration scheme due to the absence of severe mass effect. We note that
the time required for the joint segmentation-registration scheme to converge
is substantially reduced after removing the computationally intensive growth
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model [19]. These modifications were also previously considered as a subcom-
ponent of a registration framework that aligns pre-operative to post-recurrence
brain scans of glioma patients [24,26].

We continue using the gradient boosting machine to learn a classifier for
the discriminative step. The predictor variables proposed in GLISTRboost, aug-
mented with two additional features, are used to learn the classifier. The orig-
inal feature set considered in GLISTRboost comprises five components; image
intensity, image derivative, geodesic information [12], texture features, and the
GLISTR posterior probability maps. The intensity component includes the raw
intensity value of each voxel, as well as inter-modality differences. The image
derivative component consists of image gradient magnitude and the Lapla-
cian of Gaussian. The geodesic information at a given voxel vi was computed
as its geodesic distance to the tumor center vs manually seeded for running
GLISTR. Specifically, the geodesic distance between vi and vs was defined as
minγ

∫
P (γ(s))ds, where γ can be any path connecting vi to vs. We set the

weight P at each voxel to be proportional to its gradient magnitude, and the
optimization was solved using the fast marching method [9,36]. Furthermore, the
texture features describe the first and second order texture statistics computed
from a gray-level co-occurrence matrix [17]. Two additional features have been
included specifically for segmenting post-operative volumes, namely the geodesic
distance of every voxel to the center of the cavity and the posterior probability
of a voxel in the image being cavity (as computed by the generative step).

Finally, it should be noted that separate models have been trained for pre-
operative baseline and post-operative scans.

4 Experiments and Results

To assess the segmentation performance of our method on the provided training
data, we evaluated the overlap, both qualitatively and quantitively through the
Dice coefficient, between the tumor labels computed by the proposed method and
the GT in three regions, i.e., WT, TC, and ET, as suggested in [29]. Figure 1a
showcases examples of the provided multimodal pre-operative baseline scans,
along with their corresponding GT and their segmentation labels as computed
by our method, for four patients (two HGGs and two LGGs). We visually note
the highest overlap in the edematous region while observing some disagreement
in the enhancing and non-enhancing parts of the tumor between the suggested
segmentations and the GT. Figure 1b illustrates representative post-operative
examples of two patients with resection cavities and two with recurrent tumors.
We note in the resection cases that the cavity itself and its enhancing bound-
ary have almost identical intensity characteristics with the non-enhancing and
enhancing parts of the tumor, respectively. As a result, they were partially mis-
classified as cancerous regions they resemble by the proposed method.

To further evaluate the performance of the proposed method, we quanti-
tatively validated the per-voxel overlap between the GT and the proposed seg-
mentation using the Dice coefficient. Figure 2 summarizes the distributions of the
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a. Pre-operative baseline multimodal scans.

4

b. Post-operative multimodal scans.

Fig. 1. Representative example segmentation results for four pre-operative baseline and
four post-operative multimodal scans. Green, red and blue masks denote the edema,
the enhancing tumor and the union of the necrotic and non-enhancing parts of the
tumor, respectively. (Color figure online)
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Fig. 2. Distributions of the Dice coefficient across patients for each step of the pro-
posed method, each tissue label and different groupings of data. The different steps
are described by the boxes colored in green and yellow for the generative only step (G)
and the complete generative-discriminative method (GD), respectively. The dot and
the line inside each box denote the mean and median values, respectively. (Color figure
online)

cross-validated Dice coefficient scores for each region of interest (WT, TC, and
ET) and across patients of the training set while using only the generative step,
as well as the complete method. The results are presented for four different group-
ings of the data, comprising all pre-operative baseline scans, the pre-operative
baseline HGGs, the pre-operative baseline LGGs and the post-operative HGGs.
We note a definite improvement after application of the discriminative step in
both the mean and median Dice coefficient values for all tissue labels and data
groupings. Furthermore, it is observed that the segmentation results for the
ET label vary significantly between LGGs and HGGs, with the former show-
ing lower and less consistent results. We hypothesize that segmenting enhancing
tumor is more challenging in LGGs because they are characterized by a distinct
pathophysiological phenotype that often manifests as small ill-defined areas of
enhancement or absence of it altogether. Nevertheless, the segmentation of the
WT label in the LGGs is comparable to that of the HGGs.
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One may also notice that the segmentation quality for post-operative HGG
volumes is inferior to and less consistent than that for pre-operative baseline
HGG volumes. Such phenomenon is in line with the visual inspections in Fig. 1,
again highlighting the challenging nature of segmenting post-operative scans.
It is also worth noting that we have excluded 56 out of the 88 post-operative
scans for validation purposes due to labeling errors in their GT. Therefore, we
believe that the difference in the number of training scans available (32 vs.
132) also affects the segmentation accuracy, and we expect to obtain improved
performance by increasing the number of post-operative training samples.

A software implementation of the proposed method is available in
www.cbica.upenn.edu/sbia/software/glistrboost through the Imaging Process-
ing Portal (IPP) of Center for Biomedical Image Computing and Analytics
(ipp.cbica.upenn.edu). The Cancer and Phenomics Toolkit (CapTk) [33] (www.
cbica.upenn.edu/sbia/software/CAPTk) is used for the manual initialization of
the proposed method. It showcases some of the highlight applications from
CBICA along with advanced visualization and interactive capabilities to make
it a complete radiological tool. CapTk is available in www.nitrc.org/projects/
captk.

5 Conclusion

We presented a semi-automated approach based on a generative-discriminative
framework towards providing a reliable and highly accurate segmentation of
gliomas in both pre- and post-operative multimodal MRI volumes. The first
step in the proposed approach is to compute a probabilistic segmentation for
the given patient by a generative joint segmentation-registration scheme. This
probabilistic segmentation is subsequently refined by a discriminative approach,
taking into account population-wide tumor label appearance statistics that are
learned by employing the gradient boosting machine.

The proposed method was validated on the BRATS 2016 training dataset,
which is a mixture of pre-operative baseline HGG and LGG scans, as well as post-
operative HGG scans. For all scan types and all regions of interests (WT, TC,
and ET), the coupled generative-discriminative framework significantly improves
the segmentation generated by the generative approach alone, achieving higher
Dice coefficients with a clear margin in all cases.

The generative-discriminative method segmented whole tumor and tumor
core with consistently high accuracy for both pre-operative baseline HGGs and
LGGs. However, the difference between the performances on HGGs and LGGs is
more pronounced in the enhancing tumor region, with the segmentation accuracy
on LGGs being lower and less consistent. Such difference in performance sug-
gests that segmenting enhancing tumor is much more challenging in LGGs than
in HGGs, possibly because the former is characterized by a distinct pathophys-
iological phenotype that often manifests as small ill-defined areas of enhance-
ment or absence of enhancement altogether while the HGGs often feature clearly
defined enhancing regions. One may also note that the segmentation accuracy

www.cbica.upenn.edu/sbia/software/glistrboost
http://ipp.cbica.upenn.edu
www.cbica.upenn.edu/sbia/software/CAPTk
www.cbica.upenn.edu/sbia/software/CAPTk
www.nitrc.org/projects/captk
www.nitrc.org/projects/captk
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of the post-operative HGGs was inferior to that for the pre-operative baseline
HGGs in all three areas of interests, due to their more challenging nature and
fewer available training samples. Overall, the proposed method produced high-
quality segmentations for whole tumor, tumor core and enhancing tumor on the
full dataset.
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1. Agn, M., Puonti, O., Rosenschöld, P.M., Law, I., Leemput, K.: Brain tumor seg-
mentation using a generative model with an RBM prior on tumor shape. In: Crimi,
A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol.
9556, pp. 168–180. Springer, Cham (2016). doi:10.1007/978-3-319-30858-6 15

2. Akbari, H., Macyszyn, L., Da, X., Wolf, R.L., Bilello, M., Verma, R., O’Rourke,
D.M., Davatzikos, C.: Pattern analysis of dynamic susceptibility contrast-enhanced
MR imaging demonstrates peritumoral tissue heterogeneity. Radiology 273(2),
502–510 (2014)

3. Ayachi, R., Ben Amor, N.: Brain tumor segmentation using support vector
machines. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS (LNAI), vol.
5590, pp. 736–747. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02906-6 63

4. Bakas, S., Chatzimichail, K., Hunter, G., Labbe, B., Sidhu, P.S., Makris, D.: Fast
semi-automatic segmentation of focal liver lesions in contrast-enhanced ultrasound,
based on a probabilistic model. In: Computer Methods in Biomechanics and Bio-
medical Engineering: Imaging & Visualization, pp. 1–10 (2015)

5. Bakas, S., Labbe, B., Hunter, G.J.A., Sidhu, P., Chatzimichail, K., Makris, D.:
Fast segmentation of focal liver lesions in contrast-enhanced ultrasound data. In:
Proceedings of the 18th Annual Conference on Medical Image Understanding and
Analysis (MIUA), pp. 73–78 (2014)

6. Bakas, S., Zeng, K., Sotiras, A., Rathore, S., Akbari, H., Gaonkar, B.,Rozycki, M.,
Pati, S., Davazikos, C.: Segmentation of gliomas in multimodal magnetic resonance
imaging volumes based on a hybrid generative-discriminative framework. In: Pro-
ceedings of the Multimodal Brain Tumor Image Segmentation Challenge (BRATS)
2015, pp. 5–12 (2015)

7. Bakas, S., Zeng, K., Sotiras, A., Rathore, S., Akbari, H., Gaonkar, B., Rozycki,
M., Pati, S., Davatzikos, C.: GLISTRboost: combining multimodal MRI segmenta-
tion, registration, and biophysical tumor growth modeling with gradient boosting
machines for glioma segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M.,
Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 144–155. Springer, Cham
(2016). doi:10.1007/978-3-319-30858-6 13

8. Deeley, M.A., Chen, A., Datteri, R., Noble, J.H., Cmelak, A.J., Donnelly, E.F.,
Malcolm, A.W., Moretti, L., Jaboin, J., Niermann, K., Yang, E.S., Yu, D.S., Yei, F.,
Koyama, T., Ding, G.X., Dawant, B.M.: Comparison of manual and automatic seg-
mentation methods for brain structures in the presence of space-occupying lesions:
a multi-expert study. Phys. Med. Biol. 56(14), 4557–4577 (2011)

9. Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and
applications to virtual endoscopy. Med. Image Anal. 5(4), 281–299 (2001)

10. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001)

11. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4),
367–378 (2002)

http://dx.doi.org/10.1007/978-3-319-30858-6_15
http://dx.doi.org/10.1007/978-3-642-02906-6_63
http://dx.doi.org/10.1007/978-3-319-30858-6_13


Segmentation of Gliomas in Pre- and Post-operative Multimodal MRI 193

12. Gaonkar, B., Macyszyn, L., Bilello, M., Sadaghiani, M.S., Akbari, H., Attiah, M.A.,
Ali, Z.S., Da, X., Zhan, Y., O’Rourke, D., Grady, S.M., Davatzikos, C.: Automated
tumor volumetry using computer-aided image segmentation. Acad. Radiol. 22(5),
653–661 (2015)

13. Gering, D.T., Grimson, W.E.L., Kikinis, R.: Recognizing deviations from normalcy
for brain tumor segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS,
vol. 2488, pp. 388–395. Springer, Heidelberg (2002). doi:10.1007/3-540-45786-0 48

14. Gooya, A., Biros, G., Davatzikos, C.: Deformable registration of glioma images
using EM algorithm and diffusion reaction modeling. IEEE Trans. Med. Imaging
30(2), 375–390 (2011)

15. Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint segmentation
and deformable registration of brain scans guided by a tumor growth model. Med.
Image Comput. Comput.-Assist. Interventions 14(2), 532–540 (2011)

16. Gooya, A., Pohl, K.M., Bilello, M., Cirillo, L., Biros, G., Melhem, E.R., Davatzikos,
C.: GLISTR: glioma image segmentation and registration. IEEE Trans. Med. Imag-
ing 31(10), 1941–1954 (2012)

17. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image clas-
sification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

18. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Ben-
gio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmenta-
tion with deep neural networks. Med. Image Anal. 35, 18–31 (2017).
http://www.sciencedirect.com/science/article/pii/S1361841516300330

19. Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation prob-
lem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol.
56(6), 793–825 (2008)

20. Kamnitsas, K., Ferrante, E., Parisot, S., Ledig, C., Nori, A., Criminisi, A., Rueck-
ert, D., Glocker, B.: Deepmedic on brain tumor segmentation

21. Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon,
D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected
CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017).
http://www.sciencedirect.com/science/article/pii/S1361841516301839

22. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skele-
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Abstract. The 2016 BRATS includes imaging data on 191 patients
diagnosed with low and high grade gliomas. We present a novel method
for multimodal brain segmentation, which consists of (1) an automated,
accurate and robust method for image segmentation, combined with (2)
semi-automated and interactive multimodal labeling. The image segmen-
tation applies Non-negative Matrix Factorization (NMF), a decomposi-
tion technique that reduces the dimensionality of the image by extracting
its distinct regions. When combined with the level-set method (LSM),
NMF-LSM has proven to be an efficient method for image segmentation.
Segmentation of the BRATS images by NMF-LSM is computed by the
Cheaha supercomputer at the University of Alabama at Birmingham.
The segments of each image are ranked by maximal intensity. The inter-
active labeling software, which identifies the four targets of the challenge,
is semi-automated by cross-referencing the normal segments of the brain
across modalities.

1 Introduction

Image analysis and segmentation is challenging because of the unpredictable
appearance and shape of brain tumors from multi-modal imaging data. Among
different segmentation approaches in the literature, it is hard to compare exist-
ing methods because of the variability of the quality of the images, validation
datasets, the type of lesion, and the state of the disease (pre- or post-treatment).
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The Multimodel Brian Tumor Image Segmentation Benchmark (BRATS) chal-
lenge, [6], is organized to gauge the state-of-the-art in brain tumor segmentation
and compare between different methods.

Non-negative matrix factorization (NMF) has shown promise as a robust
clustering and data reduction technique in DNA microarrays clustering and clas-
sification [1] and learning facial features [5]. NMF is distinguished from the other
methods, such as principal components analysis and vector quantization, by its
use of non-negativity constraints. These constraints lead to a parts-based repre-
sentation because they allow only additive, not subtractive, combinations. The
first use of NMF for image segmentation was pioneered by our group in [3].

The level set method (LSM) is one of the most powerful and advanced meth-
ods to extract object boundaries in computer vision [2,7]. The basic idea of
LSM is to evolve a curve in the image domain around the object or the region of
interest until it locks onto the boundaries of the object. The level set approach
represents the contour as the zero level of a higher dimensional function, referred
to as the “level set function” (LSF). The segmentation is achieved by minimizing
a functional that tends to attract the contour towards the objects features. The
advantages of NMF-LSM is that it: (i) is robust to noise, initial condition, and
intensity inhomogeneity because it relies on the distribution of the pixels rather
than the intensity values and does not introduce spurious or nuisance model
parameters, which have to be simultaneously estimated with the level sets, (ii)
uses NMF to discover and identify the homogeneous image regions, (iii) intro-
duces a novel spatial functional term that describes the local distribution of the
regions within the image, and (iv) is scalable, i.e., able to detect a distinct region
as small as desired.

In this paper, we briefly explain NMF as a region discovery and clustering
used to detect the homogeneous regions in the image [4]. The framework for
segmenting the data of 191 patients (flair, t1, t1c, and t2 MRI images) in a
limited time frame is achieved in two steps. The first step is applying the NMF-
LSM segmentation method on each image using 264 processors at the UAB Super
Computer; all the images were segmented in less than 12 h. The second step is
the labeling, where the segments are labeled using a multimodal, user-friendly,
and interactive software as (1) for necrosis, (2) for edema, (3) for tumor core,
(4) for enhancing tumor, and (0) for everything else.

The paper is organized as follows: Sect. 2 describes briefly how the clustering
and region discovery performed using NMF. Section 3 demonstrates the vari-
ational level set model. Section 4 elucidates the high performance computing
(HPC) implementation. Section 5 describes the interactive semi-automated and
multimodal method for labeling the targets/regions of interest. We proceed to
the challenges in Sect. 6 and a summary of this paper is provided in Sect. 7.

2 NMF-based Clustering

The NMF-LSM method is fully automated, pixel-wise accurate, less sensitive
to the initial selection of the contour(s) or initial conditions compared to state-
of-the-art LSM approaches, robust to noise and model parameters, and able to
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detect as small distinct regions as desired (for a detailed description, please see
[4]). These advantages stem from the fact that NMF-LSM method relies on his-
togram information instead of intensity values and does not introduce nuisance
model parameters. We have applied the NMF-LSM method to analyze the MRIs
of two patients with grade 2 and 3 non-enhancing oligodendroglioma and com-
pared its measurements to the diagnoses rendered by board-certified neuroradi-
ologists; the results demonstrate that NMF-LSM can detect earlier progression
times and may be used to monitor and measure response to treatment [4].

The basic schemes of the NMF-based clustering are summarized in Fig. 1,
where the image is divided into equally sized blocks and the histogram of each
block is computed to build the data matrix V . Then, NMF generates matrices W
and H that include key information on the number and histograms of the regions
in the image and on their local distribution. These key information is used to
build an accurate and pixel-wise variational level set segmentation model.

3 Energy Minimization and Segmentation

Segmentation is achieved by minimizing the energy functional F in Eq. 1 with
respect ot the level set function (LSF) φ [4]. The minimization is achieved by
solving the gradient flow equation: ∂φ

∂t = −∂F
∂φ .

F(φ, b) = α
k∑

i=1

[∫

Ω

ei(x, b)Mi(φ)dx

]
+ α

k∑

i=1

m∑

j=1

(∫

Ω
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)2

+
β

2

∫
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2
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By calculus of variations, we compute the derivative ∂F
∂φ as follows:

∂φ
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= −α
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(2)

In the implementation, the membership function Mi(φ) is approximated by
Hε(x) = 0.5 sin(arctan(x

ε )) + 0.5, and its derivative, the dirac delta function,
is estimated by δε(x) = 0.5 cos(arctan(x

ε )) ε
ε2+x2 .

ISj
(x) is the indicator function of block Sj , and is defined as follows:

ISj
(x) =

{
1, ifx ∈ Sj

0, otherwise.
(3)

The entries of the H matrix are hij , and α, β, and γ, are weighting constants.
The function ei(x, b) is defined as follows:

ei(x, b) = log(
√

2πσi) +
(I(x) − μib(x))2

2σ2
i

, (4)
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Fig. 1. The basic schemes of the NMF-based clustering. The data matrix V is
built from the histograms of the blocks of the image. NMF of V generates W and H;
the former, including the histograms of the regions in the image, is applied to compute
the number of regions. H, which includes information on the local distribution of the
regions in each of the blocks, is used to modify the level set equation.
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where μi and σi are the mean and standard deviation of region i computed
from the matrix W in the NMF factorization. For more details about the model,
please refer to [4].

4 Super Computer Implementation

The dataset for each of 191 patients consists of four MRIs: FLAIR, T2, T1, and
T1c at each brain section for every patient. In order to reduce computational
times, the MRIs were pre-processed to select the images that include tumor,
necrosis or edema. We wrote a software that displays all four modalities for each
patient and allows the user to quickly identify the range of the 2D images to be
sent for segmentation. The UAB super computer (high performance computing
cluster) Cheaha has 3120 CPU cores that provide over 120 TFLOP/s of com-
bined computational performance, and 20 TB of memory. All 191 patients were
segmented by 265 processors in about 12 h. A single PC processed a single MRI
in about 3 h. Four PCs can also process a patient’s four MRIs in about 3 h.

5 Interactive, Multimodal, Semi-automated, Labelling
Software

We have devised an interactive and semiautomated software for labelling the
target regions; we were driven by the heterogeneity of the quality of the datasets
and by our desire to exclude brain abnormalities (like hemorrhage) that are
not related to the four target regions. For example, the poor quality of the
flair or t1 sequences of some of the subjects limited their usability; in these
cases, we relied on other modalities. Furthermore, some MRIs showed subdural
hematomas, which are unrelated to the tumor, producing high signal on t1 and
t1c images. Our objective is to sketch and illustrate the basic concepts of the
interactive labelling method. We do not plan on covering every single subject,
but rather the general tools that we have developed. The overall quantitative
analysis of this method is presented by the organizers of the challenge. We have
chosen the following examples to illustrate the methodology and to point out
inconsistencies in the tumor core.

5.1 Over-Segmentation, Ranking of Segments, and Combining
Segments

The datasets in the BRATS 2016 challenge are highly heterogenous in quality
and form, which made the segmentation task challenging. To ensure that the
tumor structures are detected and separated from the normal structures of brain
(gray and white matter), we over-segment by instructing the NMF-LSM method
to generate 8 segments for each image. The number of segments is a parameter
in the NMF-LSM software. The 8 segments are generated by one NMF-LSM
process. These segments are ranked based on their maximum intensity values.
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It is fairly easy to combine segments to obtain the specified regions/targets, i.e.
edema, enhancement, tumor core, and necrosis.

Figure 2(I) shows the flair image and its 8 segments ranked in order of their
maximal intensity values from (max = 26, rank = 1) to (max = 255, rank = 8).
By combining the segments in Figs. 2(I-i), (I-j), and (I-k), we obtain the edema
region shown in Fig. 2(I-b). Figure 2(I-c) shows the final result.

Figure 2(II) shows the t1c image and its 8 segments ranked based on their
maximal intensity values. By combining the segments whose ranks are 3 and 4
(Figs. 2(II-f) and (II-g), we obtain the necrosis region with the gray and white
matter as shown in Fig. 2(II-b). We will subtract the normal brain structures
in steps that follow. Combining the segments whose ranks are ≥ 5 gives us the
region of contrast enhancement shown in Fig. 2(II-c).

Figure 2(III-a) shows the t1 image with its 8 segments ranked based on their
maximum intensity values. By combining the segments whose ranks are 3 and 4,
we obtain the tumor core region and the gray matter as shown in Fig. 2(III-b).
We will subtract the gray matter in order to obtain the tumor core region as
shown in the final result in Fig. 2(I-c).

5.2 Identification and Using Brain Structures to Semi-automate
Labelling

We recognized from the case of Fig. 2 that we need to: (1) define the location of
the normal structure of the brain, i.e. gray and white matter, in the image, and
(2) the ranks of the segments that include the target regions. This goal will help
us subtract/remove the normal structures of the brain and isolate the target
regions.

Coordinates of White and Gray Matter. The segmentation of the t2
sequence yields the coordinates of the normal white and gray matter. By exam-
ining Fig. 2(IV), we notice that the normal white matter is identified by the
segment whose rank and maximal intensity are 2 and 70 respectively. Further-
more, the gray matter is delineated by the segment whose rank and maximal
intensity are 3 and 95, respectively. This is not surprising given the distribution
of the intensities of white and gray matter in t2 sequences. These normal gray
and white matter can be subtracted from the segments that include necrosis,
tumor core, and enhancing tumor.

Automating the Discovery of the Ranks of Interest. Recall that NMF-
LSM method processes each 2D slice separately to generate its segments, which
are ranked by their maximal intensities. Furthermore, the interactive software
processes each 2D slice separately. Having the coordinates of the normal white
matter and gray matter from the segmentation of t2, yields the ranks of the
segments of t1c, t1, and flair that correspond to these structures. For example,
we can identify the rank of the segment of the t1c image that corresponds to
white matter; this can be easily computed by finding the segment having the
largest intersection with the white matter. We denote the rank of this segment
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Fig. 2. Illustrative High Grade Case 1. The flair image (I-a) and its 8 segments ((I-
d) to (I-k)) obtained by NMF-LSM. The images are ranked by their maximal intensities
(shown). (I-b) shows the combination of segments (I-i) to (I-k), which gives us the region
including the edema, tumor, and a part of the necrosis. (I-c) shows the final segmenta-
tion result including the four regions, edema (yellow), tumor core (orange), enhancement
(red), and necrosis (blue). The t1c image (II-a) and its 8 segments ((II-d) - (II-k) are
obtained by NMF-LSM. The images are ranked by their maximal intensities (shown).
(III-b) displays the combination of the segments whose ranks are 3 and 4 (Figs. (II-f) and
(II-g)), which gives us the regions of necrosis combined with the gray and white matter,
which will be subtracted later. (II-c) shows the combination of the segments whose ranks
are 5–8 (Figs. (III-h) - (III-k)), which gives us the region of contrast enhancement. The t1
image (III-a) and its 8 segments ((III-c) - (III-j)) are obtained by NMF-LSM. The images
are ranked by their maximal intensities (shown). (II-b) shows the combination of seg-
ments whose ranks are 3 and 4 (Figs. (III-e) and (III-f)), giving us the region of the tumor
core. The t2 image (IV-a) and its 8 segments ((IV-b) - (IV-i)) obtained by NMF-LSM.
The images are ranked by their maximal intensities (shown). (IV-b) shows the segment
corresponding to the background, whose rank and maximal intensity are 1 and 32, respec-
tively. (IV-c) shows the segment whose rank and maximal intensity are 2 and 70, respec-
tively; this segment corresponds to the normal white matter. (IV-d) shows the segment
whose rank and maximal intensity are 3 and 95, respectively; this segment corresponds
to the normal gray matter. The gray (IV-d) and white (IV-c) matter from the t2 image
are applied to discover the ranks of the segments corresponding to the FLAIR signal and
enhancement, respectively. (Color figure online)
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by Rt1cwm. This is important because the lowest rank of the contrast enhance-
ment in the t1c image is equal to either Rt1cwm or Rt1cwm + 1, depending on
the quality of the image. For example, the lowest rank of the enhancement in
Fig. 2(II) is 5 = Rt1cwm + 1. Below, we give an example where the contrast
enhancement is detected at a rank = Rt1cwm.

Similarly, we can define the highest rank of the segment of the flair image that
has an intersection with normal gray matter; we denote this rank by Rflair. Typ-
ically, the elevated signal in the flair image, corresponding to the edema, starts
either in the segment whose rank = Rflairgm or = Rflairgm + 1, depending on
the quality of the image; in the example of Fig. 2(I) the high signal in the flair
image starts at the segment whose rank = Rflair + 1.

The tumor core is defined from the t1 image. It is included in the segments
whose ranks are below the segment of the t1 image that corresponds to the gray
matter; Fig. 2(III) illustrates how to obtain the tumor core.

Masking. The high signal isolated from the flair image of the case shown in
Figs. 2(I) can serve as a mask that filters the parts of the t1 and t1c that are
positioned outside its outer borders. This approach is not applicable if the quality
of the flair image is poor; in such a case, we computed the region of edema
from the segments of the t2 images whose ranks are high and we extracted the
cerebrospinal fluid (CSF).

Cystic Lesions in Low Grade Tumors. Because pathological necrosis has
profound clinical implications, we did not label cystic lesions in low grade tumors
as necrosis. We assumed that none of the images of the BRATS 2016 challenge
were obtained during treatment by bevacizumab; hence, we consider a tumor as
low grade if it lacks contrast enhancement.

6 Challenges

6.1 Tumor Core in High Grade Tumors

The ranks of the segments containing the high signal in the flair image of
Fig. 3(II) are from Rflair = 4 to 8. The contrast enhancement is detected
in the segments of the t1c image whose ranks are Rt1cwm = 4 to 8. For the
tumor core, applying the same rule as in case 1 above, yields the sum of the seg-
ments whose ranks are 3–5 (Figs. 3(IV-e)-(IV-g)), which essentially covers most
of the region of the edema. Hence, we select the segments whose ranks are 3
and 4 (Figs. 3(IV-e)-(IV-f)); the final result is shown in Fig. 3(I-b). Notice that
extracting the tumor core from the segments of the t2 image, whose ranks and
4 and 5 (Figs. 3(I-f)-(I-g)) would have given us a different result.

6.2 Tumor Core in Low Grade Tumors

The next case illustrates the challenge of computing the tumor core from low
grade gliomas. The coordinates of the normal white matter are computed from
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Fig. 3. High Grade Glioma Case 2. The t2 image (I-a) and its 8 segments ((I-c) -
(I-j)) are produced by NMF-LSM. The images are ranked by their maximal intensities
(shown). The coordinates of the normal white matter and gray matter are determined
by the segments whose ranks are 2 (I-d) and 3 (I-e), respectively. (I-b) shows the final
segmentation result including the four regions, edema (yellow), tumor core (orange),
enhancement (red), and necrosis (blue). The flair image (II) and its 8 segments are
ranked by their maximal intensities (shown). (II-b) shows the combination of the seg-
ments whose ranks are ≥ 4, (II-f) to (II-j), which gives us the region including the
edema. The t1c image is shown in (III); its 8 segments (are also ranked by their maxi-
mal intensities (shown); necrosis is includes in segments 2 and 3 while the enhancement
is included in the combination of the segments whose ranks are ≥ 4. The t1 image is
shown in (IV); its 8 segments are also ranked by their maximal intensities (shown).
(IV-b) shows the combination of segments whose ranks are 3 and 4, giving us the
region of the tumor core. The gray (I-d) and white (I-e) matter from the t2 image are
applied to discover the ranks of the segments corresponding to the FLAIR signal and
enhancement, respectively. (Color figure online)
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Fig. 4. Low Grade Glioma Case. The t2 image (I-a) and its 8 segments are ranked
by their maximal intensities (shown). The coordinates of the normal white matter are
determined by combining the segments whose ranks are 2 and 3, (I-d) and (I-e). The
segments whose ranks are 4 and 5 yield the coordinates of the normal gray matter, (I-f)
and (I-g). (I-b) shows the final segmentation result including the four regions, edema
(yellow), tumor core (orange), enhancement (red), and necrosis (blue). The flair image
is shown in (II); its 8 segments are ranked by their maximal intensities (shown). (II-b)
shows the combination of segments whose ranks are ≥ 7, (II-h) to (I-J), which gives us
the region including the edema. The t1 image is shown in (III); its 8 segments are ranked
by their maximal intensities (shown). (III-b) shows the combination of segments whose
ranks are 4 and 5 (III-f) and (III-g), giving us the region of the tumor core. (Color
figure online)

combining the segments of t2 whose ranks are 2 and 3; the gray matter is con-
figured from the segments of t2 images whose ranks = 4 and 5 (see Fig. 4(I)).
The region for edema is computed from the flair image as detailed above by
combining the segments whose ranks are 7 and 8. The region of the tumor core
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was extracted from the segments of t1 whose ranks are 4 and 5; the final result
is shown in (Fig. 4(I-b)). Notice that the tumor core, extracted from t1, corre-
sponds to region 8 of the t2 image, whose maximal intensity = 255 (Fig. 4(I-j)),
which is paradoxical because the segments that include high signal in the t2 of
the high grade glioma case shown in Fig. 3(I-h)-(I-j) do not correspond to the
tumor core.

7 Conclusion

We have applied our novel NMF-LSM segmentation approach to segment the
BRATS 2016 data sets [4]. We describe an interactive and semi-automated
scheme for extracting the four targets/regions from the multimodal segments.
The latter are ranked by their maximal intensities; the normal structures of the
brain (white and gray matter) are discovered and are applied to semi-automate
the identification of the segments that include the targets/regions of interest.
Here, we have used the approach of over-segmentation followed by combining
segments using the interactive software (see Figs. 2, 3 and 4). The interactive
method lends itself to the development of logical and medically relevant crite-
ria/standards for image analysis. Computations of the tumor core have generated
paradoxical results; we suggest either abandoning it or redefining its meaning.
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Abstract. Automated medical image analysis can play an important role in
diagnoses and treatment assessment, but integration and interpretation across
heterogeneous data sources remain significant challenges. In particular, auto-
mated estimation of tumor extent in glioblastoma patients has been challenging
given the diversity of tumor shapes and appearance characteristics due to dif-
ferences in magnetic resonance (MR) imaging acquisition parameters, scanner
variations and heterogeneity in tumor biology. With this work, we present an
approach for automated tumor segmentation using multimodal MR images. The
algorithm considers the variability arising from the intrinsic tumor heterogeneity
and segmentation error to derive the tumor boundary and produce an estimate of
segmentation error. Using the MICCAI 2015 dataset, a Dice coefficient of 0.74
was obtained for whole tumor, 0.55 for tumor core, and 0.54 for active tumor,
achieving above average performance in comparison to other approaches
evaluated on the BRATS benchmark.

Keywords: Glioblastoma � Brain tumor � Segmentation variability � Automatic
segmentation

1 Introduction

Quantitative measurement and assessment of medical images can play an important
part in diagnosis of a disease, treatment planning, and clinical monitoring. As imaging
technology and standards have been rapidly changing and increasing in complexity
within the field of neuro-oncology, it has become extremely burdensome for clinicians
to manually review imaging studies. In addition to increased labor and expense, manual
measurements can have a high degree of measurement variability [1] due to the
inconsistency and diversity of MRI acquisition parameters (e.g. echo time, repetition
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time, etc.) and strategies (2D vs. 3D) along with hardware variations (e.g. field strength,
gradient performance, etc.) that change the appearance characteristics of the tumor [2].
The increased variability in measurement from multiple imaging sources, combined
with the need for faster interpretation, may potentially result in errors with treatment
decisions or conclusions about of potential therapeutic benefits.

Simplistic two-dimensional measurements used to characterize therapeutic changes
in the Response Assessment in Neuro Oncology (RANO) criteria [3] have been used
for several years. Despite the need for an automated characterization, an accurate
classification of brain tumors remains challenging for automated approaches as it has
also proven difficult for expert neuroradiologists as well [4].

In this paper, we hypothesize the inherent variability in tumor volume measure-
ments can be leveraged to provide a more accurate assessment of tumor burden and
produce an estimate of tumor segmentation variability. While multiple automated
segmentation techniques are being actively developed [3], a method that accounts for
the variability in tumor burden estimation has not been entirely investigated [5]. We
explored a different perspective towards the identification of tumor boundaries and
developed a knowledge-based approach that considers a series of brain tissue proba-
bility distribution maps as prior information to inform the location and boundaries of
brain tumors. This algorithm uses superpixel-based morphological features and the
prior statistical maps to generate a preliminary tumor region. The areas of highest
variation inside this preliminary region are iteratively measured to create a Tumor
Variability Map (TVM), which represents the image heterogeneity along the tumor
boundary (measure of uncertainty).

2 Methods

We developed a processing pipeline to automate the segmentation from the raw MRI
images to create tumor variability maps that indicate tumor extent. This pipeline is
illustrated on Fig. 1 and PseudoCode 1.

Fig. 1. Overall segmentation process from input multimodal MRI, feature extraction, prelim-
inary tumor ROI calculation by supervoxel classification, and a tumor histogram variability
analysis to generate segmentation error estimates for the overall tumor boundary and different
tumor components. The process is repeated for all time-points available for an input subject. The
output variability maps are a graphical representation that reflect the likely location of a
heterogeneous tumor boundary.
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The system is divided into a series of preprocessing strategies followed by the
proposed tumor segmentation algorithm. This approach finds an approximate tumor
ROI by using the knowledge-based approach proposed in this paper. Afterwards, the
intensity variation observed on the approximate tumor ROI is analyzed to find the
possible tumor boundaries for the TVM. This approach was evaluated using the 2015
Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) dataset [6].

2.1 Tumor Segmentation

As first step, the algorithm selects all MR modalities of interest including pre-contrast
T1-weighted images, post-contrast T1-weighted images (T1+C), T2-weighted images,
and T2-weighted fluid attenuated inversion recovery (FLAIR). Then, a series of pre-
processing steps are performed as preliminary step before running the proposed seg-
mentation approach, including intra-subject image registration [7], skull stripping [8],
intra-subject intensity normalization (z-scores), and image denoising (bias-field cor-
rection and soft Gaussian smoothing) [8]. Note that the data for the BRATS benchmark
has already been preprocessed.
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Afterwards, a series of tissue probability masks are generated to provide context/
knowledge about the approximate distribution of normal cerebral tissues including gray
matter, white matter and cerebrospinal fluid (CSF), using this information for tumor
identification [10]. The tissue distribution information models image intensities as a
mixture of k Gaussians, modelled by a mean (lk), standard deviation (rk) and a mixing
proportion. Following this, Bayes rule is employed to produce the posterior probability
of each tissue class. Using this model, the probability of observing an element with
intensity yi on the kth Gaussian is given by:

P yijk ¼ lk; rkð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2k

p exp � yi � lkð Þ2
2r2k

 !
ð1Þ

Finally, the probability of obtaining the pixel y on a Gaussian is maximized with
respect to l, r and c by the minimization of the cost function [10]:

e ¼ � logP yjl; r; cð Þ ¼ �
XI
i¼1

log
XK
k¼1

ckffiffiffiffiffiffiffiffiffiffi
2pr2k

p exp �ðyi � lkÞ2
2r2k

 ! !
ð2Þ

where K is the total number of Gaussian distributions (one for each tissue), and I is the
total number of image elements. The update of the mixture proportion (ck) is performed
by the expectation maximization (EM) algorithm and generates pixel-wise probability
maps for cerebral gray matter, white matter and cerebrospinal fluid. These maps (ob-
tained using SPM [9]) let us devise the likely tumor distribution so subsequent analysis
and statistics can be performed only on the image patches that are the most likely to
correspond to the tumor.

After this step is completed, using the information provided by the tissue distri-
bution probability maps as well as imaging features from each MR volume an initial
tumor ROI is obtained. This process involves the partition of the images into super-
pixels by using the SLIC algorithm [11], a popular method that implements an adap-
tation of the k-means clustering approach that provides and efficient and fast
segmentation of an input image while combining color and spatial proximity to gen-
erate the superpixels. By default, in a simple implementation of the SLIC algorithm,
only one parameter has to be set (the number of superpixels to be extracted) before
being able to use it. In this work, we modified the approach to automatically select the
number of clusters based on the histogram distribution of the input imaging volume
(3D), setting an initial histogram partition parameter k at 10, roughly based on the type
of normal and tumor tissues present on the input images [12].

Afterwards, the preliminary tumor ROI is obtained by selecting the superpixels that
represent the regions with the lowest probability of being normal brain tissue according
to the information provided by the described distribution probability maps for normal
cerebral tissues (including gray matter, white matter and cerebrospinal fluid) [13]. This
process is iterated under different orientations (axial, coronal, sagittal) to increase the
accuracy of the initial ROI, hypothesizing that different tumor shapes may be easier for
the algorithm to identify if visualized under different perspectives (e.g., a u-shaped
tumor might be visualized as two different small structures on the axial view but as a

Brain Tumor Segmentation 209



continuous and more defined mass on the coronal view, as shown in Fig. 2). Finally,
the preliminary tumor ROI is then obtained by taking the union of all regions generated
across different perspectives, resulting in a single volumetric ROI.

2.2 Multimodal Tumor Boundary Selection

The next step involves identifying a set of tumor boundaries for the total tumor mass as
well as for the tumor sub-regions (i.e., edema, necrosis, enhancing and non-enhancing
tumor) using the preliminary tumor ROI defined in the previous step. This approach
intends to represent the tumor heterogeneous boundary by doing multiple measure-
ments and then combine them into a TVM to quantify uncertainty associated with
segmentation boundaries.

The specific tumor boundaries are obtained as follow: A single definition for T2
abnormality was used to define a “T2 abnormal ROI” using the preliminary ROIs found
on the FLAIR and T2 contrast images. Regions of edema are extracted by ranking the
intensity rate of change on the preliminary tumor ROI histogram, defining as bound-
aries the locations where the highest total variation across the histogram corresponding
to the tumor region are found. The tumor variability map is produced by aggregating
the different binary ROIs obtained at each of these identified values on the tumor
histogram.

The same process is followed to locate the enhancing and necrotic regions but using
the post-contrast T1 sequence or a subtraction map (defined as T1+c - T1 volumes) [13].
Similarly, the TVM for these regions is then obtained by aggregating these different
approximations of the tumor boundary (Fig. 3). A binary representation of the tumor
mask is obtained by using the following approach on the TVM:

Fig. 2. To have multiple estimates of the tumor boundaries, multiple rotations are found along
the tumor major axes so at the end of this process these measurements can be aggregated into the
measurement variability map. In this work, the segmentation occurs on the three main tumor axes
and ten random rotations on each axis.
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I ¼ Pi;j � n
2)Ii;j ¼ 1

Pi;j\ n
2)Ii;j ¼ 0

�
ð3Þ

where I is the output binary image, Pi,j is the intensity at pixel location i,j of the TVM
P and n is the number of discrete probability levels defined in the variability map. The
output is a set of masks that represent the tumor extent and the different sub-regions
with the possibility to calculate variability metrics (e.g., agreement ratio, standard
deviation, statistical change measurement, and others).

3 Results

This proposed approach was tested on all 220 cases in the BRATS 2015 dataset and
evaluated on three components: whole tumor, tumor core (enhancing and necrotic
components) and active tumor (enhancing component). The Dice coefficient for total
tumor mass of 0.74 (median: 0.77, 1st quartile: 0.66, 3rd quartile: 0.84), 0.54 for the
tumor core (median: 0.57, 1st quartile: 0.37, 3rd quartile: 0.75) and 0.54 for the active
tumor (median: 0.60, 1st quartile: 0.29, 3rd quartile: 0.76). Figure 3 shows the Dice
coefficient as well as the Hausdorff distance metric for this dataset.

On Fig. 4 some examples of input images and the output tumor variability maps for
edema, enhancing and necrotic regions of the tumor as well as the representation of these
tumor compartments overlaid on the image as binary masks. This binary representation
of the TVMs (as previously described) is done with the purpose of similarity

Fig. 3. Box-plots showing the proposed method’s performance for the BRATS 2015 dataset. It
plots the Dice similarity coefficient on the left (higher is better) and Hausdorff distance on the
right (lower is better) when comparing a binarized tumor mask generated by the proposed
approach and a segmentation gold standard. Label “Total” refers to all tumor components
(edema, enhancing, necrosis and non-enhancing tumor), “Core” refers to the tumor core
(excluding regions of vasogenic edema), and ‘Enhancing’ refers to active tumor cells with
microvascular proliferations.
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Fig. 4. Tumor segmentation results for three different subjects. First and second rows represent
the input post-contrast T1-weighted and FLAIR scans respectively for each subject (column),
rows three to five show the result of the variability analysis to find different boundary estimations
on each tumor (edema, enhancing and necrosis respectively) (non-enhancing tumor is not shown
in this example). The color bar represents the pixel-wise probability for each tumor tissue.
Finally, the bottom row displays a color coded binary mask that represents the total abnormality
(all components) and subclasses (enhancing shown in red, vasogenic edema in blue and necrosis
in green). (Color figure online)
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computations against binary gold standards as well as an easy integration with other
processing pipelines (e.g. evaluation of clinical variables, genetic algorithms, etc.) or
statistical approaches that require a binary input (Fig. 5).

Fig. 5. Examples of brain tumor segmentation results for total tumor mass on three different
cases. The first row shows one of the four imaging sequences that are used to perform the tumor
segmentation (FLAIR is used on this example for the examples on the left and right and T1+c is
used for the example on the center). The tumor variability map is displayed for total tumor on the
second row, highlighting on red the regions where the algorithm is most certain that there is an
abnormality in that pixel region and showing other color intensities for decreased belief in tumor
abnormality according to the color bar located on the right. Finally, the third row shows the
binarization of the variability map, according to a majority agreement of the different estimates
(that is using a threshold of 0.5), this enables comparison with binary gold standards to evaluate
accuracy and also allows for other more standard metrics and use the results in other processing
pipelines. (Color figure online)
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4 Discussion

We proposed a multimodal framework for automated, probabilistic brain tumor seg-
mentation by using variability in estimates of the tumor boundary. By exploiting tumor
heterogeneity from different imaging sources, this algorithm is able to automatically
generate tumor probability maps or alternatively add a measurement of uncertainty to
binary tumor segmentations. As the proposed approach iteratively measures the tumor

Fig. 6. Examples where our approach did not segment the tumor appropriately. The first column
shows an example where the tumor is under segmented, we believe this is because a
miscalculation on the prior information that is obtained as a preprocessing step and only the
hyper intense edema was selected as part of the tumor, leaving the darker parts unselected. The
second column shows a resection cavity on which the full area of enhancement is not captured
and the third column shows how image artifacts can also cause problems while trying to segment
the tumor.
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boundaries, it is able to better detect and capture the heterogeneity found on brain
tumors (e.g., being able to capture the shape of tumors with eccentric outlines). By
explicitly quantifying the error associated with any given segmentation, we believe that
this added information is critical to understand and judge the actual tumor extent by a
radiologist or neuro-oncologist when interpreting the follow-up imaging data in the
clinical setting.

When evaluating the results with other approaches proposed in previous years, our
results are comparable to or surpass the mean performance of other algorithms [6]
(Reza, Meier, Cordier, Bauer, Festa, Geremia, Buendia, Taylor, Shin). As a method to
improve our results, we are also developing a classifier based on Convolutional Neural
Networks (CNN) [14] to help in the definition of the preliminary tumor ROI and also to
help reduce the number of false positives during the tumor boundary selection.
Combining the result of our knowledge-based approach and the result of the CNN
(trained to classify whether an individual voxel is part of a brain tumors using an
independent dataset) might contribute towards better results on the different tumor
contours (some examples where the proposed approach did not segment the tumor
accurately are shown in Fig. 6).

The inclusion of variability calculations into segmentation methodologies can lead
to better results and ultimately provide more meaningful data to clinicians as the
knowledge of a measurement variation is fundamental to make more objective deci-
sions. Future work includes the evaluation of variability on tumor biomarkers (such as

Fig. 7. Example of tumor progression over time. Showing volume measurement for each
time-point with its respective error estimate. As time passes it becomes critical to evaluate if the
action taken at a given point in time (e.g., chemotherapy, radiotherapy) had a significant effect on
the tumor characteristics observed on the following MRI scans. The proposed segmentation
method with analysis of tumor boundary variability enables clinicians to have different estimates
of tumor characteristics (e.g., tumor volume, grow rate) and statistically define if there has been
significant change over time or not (e.g., analysis of variance), essential for subsequent treatment
planning.
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tumor volume, thickness of enhancing margin, necrosis proportion, etc.) and impact on
medical decision making to provide automated evaluations of tumor progression over
time (as shown in Fig. 7) to be able to better evaluate treatment effectiveness and
increase the radiologist’s efficiency at evaluating imaging studies.
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maier@imi.uni-luebeck.de

2 Graduate School for Computing in Medicine and Life Sciences,

Universität zu Lübeck, Lübeck, Germany

Abstract. The treatment of ischemic stroke requires fast decisions for
which the potentially fatal risks of an intervention have to be weighted
against the presumed benefits. Ideally, the treating physician could pre-
dict the outcome under different circumstances beforehand and thus
make an informed treatment decision. To this end, this article presents
two new methods: one for lesion outcome and one for clinical out-
come prediction from multispectral magnetic resonance sequences. After
extracting tailored image features, a random forest classifier respectively
regressor is trained. Both approaches were submitted to the Ischemic
Stroke Lesion Segmentation (ISLES) 2017 challenge and obtained a first
and third place. The outcome underlines the robustness of our designed
features and stresses the approach’s resilience against overfitting when
faced with small training datasets.

Keywords: Ischemic stroke · Lesion segmentation · Lesion outcome ·
Clinical outcome · mRS · Magnetic resonance imaging · Brain MR ·
Random forest · RDF · ISLES 2016

1 Introduction

Stroke is the second most frequent cause of death worldwide and one of the
major contributors to disability in the elderly. An ischemic stroke is caused by
an obstruction in the cerebral blood supply and the subsequent underperfusion
of the affected brain tissue, which ultimately results in infarction. The available
treatment options are thrombolysis, the breakdown of blood clots by pharmaco-
logical means, and thrombectomy, their surgical removal by means of a catheter.
Unfortunately, both are only affective if applied in a relatively small time win-
dow of a few hours after stroke onset and are moreover associated with a number
of potentially fatal complications, such as rupture of the vessel wall.

Desirable would be a mechanism, with which the treating physician could
estimate the intervention’s success beforehand, and thus weight the potential
gain against the involved risks for an informed treatment decision. To this end,
a method is sough that allows to compare the outcome under treatment against
c© Springer International Publishing AG 2016
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the untreated outcome. Since the involved processes are highly complex and
poorly understood, no manual solution is feasible. This raises the question of
whether a computer assisted algorithm can reliably predict the outcome under
varying conditions.

The Ischemic Stroke Lesion Segmentation (ISLES) 2016 challenge, held in
conjunction with the Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI) 2016 in Athens, aims to answer this question.
Researchers are called upon to submit their solutions, which are applied to a
representative, freely available dataset and subsequently compared in a fair and
direct manner. All participants are supplied with acute magnetic resonance (MR)
imaging data, including diffusion and perfusion scans, and a number of associ-
ated clinical parameters, namely the time-since-stroke (TSS), time-to-treatment
(TTT) and standardized Thrombolysis in Cerebral Infarction (TICI) scale, which
rates the reperfusion success. The challenge is divided into two tasks, which both
employ the same input data (see Fig. 1 for a graphical representation)1.

Fig. 1. Schema of the ISLES 2016 tasks.

Task I is the prediction of the lesion outcome. For the gold standard, three
month follow-up MR scans, which denote the final lesion outcome, were acquired,
segmented by two clinical experts, and co-registered to the acute images. These
final lesion outcome binary masks constitute the endpoints of the first task. Any
algorithm successfully solving this task, e.g., by reaching inter-rater accuracy,
could be used to assess an intervention’s gain in brain tissue based solely on the
acute MR images acquired at the time of patient admission.

While the quantity of salvaged brain tissue is a favorable measure on which
to base a treatment decision, the real benefit for the patient’s life quality is
denoted by the qualitative clinical outcome, two factors which do not necessarily
correlate. Hence, for Task II, the participants are called upon to predict the
clinical outcome as measured by the widely used 90 days Modified Rankin Scale
(mRS) disability assessment.

Most existing approaches from the clinical domain which are concerned with
tissue fate after stroke are based on simple thresholding and are thus unable
1 For more details on the ISLES 2016 challenge, see http://www.isles-challenge.org.
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to model the effects of an intervention [5]. An exception is the work of Kemm-
ling et al. (2015) [7], where the authors approach lesion outcome prediction
based on CT perfusion data using a general linear model (GLM). While report-
ing respectable results, their proposal is missing a suitable quantitative evalu-
ation and the authors fail to make their data publicly available. Furthermore,
a GLM might be too simple a model for the problem’s complexity. To our best
knowledge, the second task of estimating the mRS scores directly from the acute
data has never been attempted. An approach to derive the mRS score from the
follow-up lesion masks by considering overlap with predefined brain regions is
reported in Forkert et al. (2015) [4].

This article describes our participation in the ISLES 2016 challenge. By treat-
ing the lesion outcome prediction as a segmentation task, we approach Task
I with our previously published brain lesion segmentation framework [12,13],
which is based on a random forest (RF) classifier. The method already partic-
ipated successfully [14] in the previous year’s edition of the challenge [11]. For
Task II, we extend our application by appending a random regression forest
(RRF), which makes use of the lesion outcome mask computed for Task I to
extract a number of tailored regression features to ultimately predict the mRS
score for each testing case.

2 Method

In this section, we describe the data and introduce our methods developed for
the two ISLES 2016 tasks.

2.1 Data

The data consists of 30 training and 19 testing cases from two medical centers.
Each case represents an acute stroke case before treatment and consists of a
set of MR sequences acquired during the stroke lesion’s acute phase as well as
a number of additional clinical parameters (see Fig. 1). Diffusion properties are
represented by the apparent diffusion coefficient (ADC) map, which is assumed
to reveal approximately the area of already infarcted brain tissue. To assess the
perfusion properties, the raw 4D perfusion weighted imaging (PWI) data, as
acquired through dynamic contrast-enhanced perfusion imaging, as well as the
derived perfusion maps mean transit time (MTT), time-to-peak (TTP), time-to-
maximum (Tmax), relative blood volume (rBV), and relative blood flow (rBF),
are provided. These are assumed to enable the assessment of the underperfused
brain region. All images are provided co-registered and skull-stripped. The clini-
cal parameters denote the time already passed at the point of image acquisition,
the time that will still pass till the treatment is performed, and the success of
the treatment in terms of reperfusion.

The gold standard is only released for the training data, while the evaluation
for testing dataset was performed by the challenge organizers. As gold standard
for Task I, two sets of expert segmentation delineated in the three month follow-
up scans are provided. For Task II, the 90 day mRS scores serve as endpoints.
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2.2 Random Forest Framework

Any prediction task makes the silent assumption that all information required
to anticipate the lesion’s further evolution is already available from the present
acute data situation. Under this premise, the lesion outcome prediction task can
be treated as a segmentation problem. We therefore adapt our existing brain
lesion segmentation framework, which already proved its competitive perfor-
mance in MS [10], glioma [14], and acute as well as sub-acute stroke [13] seg-
mentation, to the new problem.

Lesion Outcome Prediction Through Classification. The segmentation
framework’s basic steps are depicted in Fig. 2 and follow the classical machine
learning schema of separate training and application phases. The RF method
[1,2], as implemented in the sklearn Python package [15], is employed for voxel-
wise classification of the multispectral image data. Since the images are already
skull-stripped and co-registered, the image features can be extracted directly
without any need for further preprocessing. Bias-field correction or intensity
range standardization are not required for ADC and perfusion maps (see [14]).

Fig. 2. Framework for lesion outcome prediction.

Image features. Brain lesions differ strongly in shape, location, homogeneity,
and intensities. Even for a single pathology, the lesion appearance can vary
greatly [11]. We employ in this work a set of features chosen to model a human
observers discriminative criteria and specifically developed for the purpose of
brain lesion segmentation.

First feature is the voxel’s unprocessed intensity value. Next, the Gaussian
weighted local average in an area of 3, 5 and 7 mm around each voxel is extracted
to obtain regional information. Then, the medial longitudinal fissure is roughly
estimated and the intensity difference between corresponding voxels of the two
brain hemispheres obtained. To assess the voxels’ rough location in the brain’s
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anatomy, the 2D centerdistance is computed once for each of the three dimen-
sions. Finally, the local histogram feature provides information about the local
intensity distribution in a small area around each voxel. All of these features
are described in detail in Maier et al. (2015) [13] and a free implementation is
available as part of the MedPy library [9].

All features are extracted voxel-wise from the ADC as well as the five per-
fusion maps. The 4D raw PWI data is not used in this work, neither are the
clinical parameters. The implications of this choice and the circumstances that
led to this decision are discussed in Sect. 4.

Classifier training. We employ the previously introduced stratified random sam-
pling scheme to reduce the amount of training samples without reducing the
represented variance [13]. The resulting 2.5 million samples are passed to the
classifier for training. A total of 200 trees is trained to avoid overfitting due to
the small number of training cases. No growth restriction is imposed. Node splits
are performed with

√
F of the F available features and the Gini criterion is used

for node split optimization.

Classifier application & postprocessing. At application time, the same feature
extraction steps are performed, just as depicted in Fig. 2. The trained classifier
then produces a posteriori class probability map. This is thresholded at a value of
0.3 to counter an observed undersegmentation tendency. The only postprocess-
ing step applied is the closing of structural 3D holes in the resulting binary
segmentation mask, as stroke lesions are known to be solid objects.

Clinical Outcome Prediction Through Regression. To predict the clinical
outcome of an ischemic stroke case, we employ RRFs, which are thoroughly
described in Criminisi and Shotton (2013) [2] and implemented in the sklearn
Python package [15]. As input, these regressors take a number of hand-crafted
features representing the processed case, and return a real number as output
that can be interpreted as the sought mRS score. The framework’s schema is
depicted in Fig. 3.

Regression features. Just as RFs, the RRFs require a number of features which
constitute the information they have available to base their regression process
on. These feature must be chosen to be representative and allow the prediction
of the clinical outcome.

For achieve an accurate mRS prediction, we decided to extract information
about 1. the state of the lesion itself, 2. the state of a band around the lesion
whose fate is unclear and 3. the state of the remainder of the brain. These three
regions of interest (ROI) are not defined, but we have access to the lesion out-
come mask returned by the lesion outcome prediction method, from which we
can estimate the desired regions. To this end, the probability map resulting from
the first task is thresholded at a value of 0.1. Secondly, this inner region mask
is extended with a binary dilation of size 5 mm, resulting in a banded region
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Fig. 3. Framework for clinical outcome prediction.

denoting roughly the desired band around the lesion. Finally, the remaining
brain forms the third region. Figure 4 denotes this process. By comparing image
attributes between these three regions and by considering their shape character-
istics, we aim to predict the clinical outcome.

From the ADC image, we extract the same features as previously for the
lesion outcome task. These are voxel-wise image features and cannot be employed
directly. Instead, we consider statistics of these features’ values in the three
regions, namely 10 percentile values, the standard deviation, the variance and a
histogram of 10 bins. These image based features amount to a total of 1650.

Furthermore, we extract shape characteristics from the three regions, as the
lesion outcome is considered to have an influence on the clinical outcome. These

Fig. 4. The three ROIs at the example of training case 06: Left original ADC image,
middle the probability map of the lesion outcome task, and right the three derived
regions.
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are region area, perimeter, roundness, and equivdiameter, which amount to a
total of 12 additional features.

Regressor training. First, the lesion outcome prediction method is applied to
each of the training cases to obtain the lesion probability maps. Based on
these, the three ROIs are computed and the above described regression fea-
tures extracted. Then, the RRF is trained on all training cases with the mRS
score as training endpoint.

Since the amount of training data is very limited with only 30 cases, a large
number of 200 trees is trained to avoid overfitting. No growth-restriction is
imposed. The mean squared error is employed as node optimization term.

Regressor application. The application of the regressor to a formerly unseen
training case follows the same steps as the training (see Fig. 3). The output of
the forest is the final estimated mRS score.

3 Evaluation and Results

3.1 Evaluation Metrics

For Task I, the employed evaluation metrics are the Dice’s coefficient (DC), which
denotes the volume overlap, the average symmetric surface distance (ASSD),
denoting the volume surface distance, and the Hausdorff distance (HD), revealing
outliers. For a detailed definition of these metrics, please refer to the challenge’s
web page. It contains furthermore a description of the employed rankings scheme,
which combines these three measure into a relative rank used for the leaderboard.
For Task II, the average absolute error compared to the known mRS score is
computed. The reported rank is the average rank over all cases.

3.2 Results Task I

After submitting the predicted lesion outcome as binary masks, the evaluation
was performed by the challenge organizers against the hidden gold standard
segmentations to allow for a fair and direct comparison of the participating
methods. The final results as published at the day of the challenge’s workshop
are shown in Table 1 and Fig. 5 shows an exemplary visual result. Our method
obtained the third place according to the leaderboard.

3.3 Results Task II

After submitting the predicted mRS scores, the evaluation was performed by
the challenge organizers against the hidden gold standard to allow for a fair and
direct comparison of the participating method. The final results as published at
the day of the challenge’s workshop are shown in Table 2. Our method obtained
the first place according to the leaderboard.
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Table 1. ISLES Task I testing dataset average results with standard deviation. Our
method is highlighted. 1: the rank was computed as described in [11], taking all three
evaluation metrics into account. 2: the average ASSD and HD values were computed
only for the cases for which the segmentation results had an at least partial overlap
with the gold standard segmentation. 3: these three submission are variants of the same
method and were considered as one in the leaderboard.

Rank1 Team cases2 ASSD (mm) DC [0,1] HD (mm)

3.34 KR-SUL3 18/19 6.38± 4.18 0.31± 0.24 34.09± 21.08

3.42 KR-SUK3 18/19 6.23± 3.55 0.31± 0.24 32.84± 15.68

3.68 KR-SUC3 18/19 6.46± 4.38 0.30± 0.25 37.70± 21.61

4.38 CH-UBE 19/19 7.10± 4.19 0.26± 0.19 44.30± 24.64

4.60 DE-UZL 18/19 7.57± 4.17 0.30±0.23 36.88± 16.84

4.98 UK-CVI 18/19 7.56± 4.34 0.29± 0.23 35.91± 17.04

6.03 HK-CUH 19/19 10.56± 5.92 0.27± 0.22 59.44± 38.27

6.22 PK-PNS 19/19 9.12± 5.46 0.26± 0.22 78.04± 18.11

7.97 US-SFT 18/19 13.96± 6.14 0.19± 0.20 76.28± 22.61

inter-rater 19/19 3.00± 2.48 0.58± 0.20 24.87± 15.48

Fig. 5. Example result on training case 12: On the left are shown the MR sequences
Tmax, rBF, ADC, and MTT, from top-left clockwise; in the middle the segmentation
result overlaid on the ADC map; and on the right the gold standard segmentation
overlaid on the ADC map.

4 Discussion and Conclusion

We presented a method based on RFs for lesion as well as clinical outcome
prediction for acute ischemic stroke. The placement obtained in both tasks shows
the developed algorithm to rank among the best existing solutions with a first
and third place.
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Table 2. ISLES Task II testing dataset average results with standard deviation. Our
method is highlighted. 1: the rank was computed as an average rank over the ranks
obtained for each testing case.

Rank1 Team cases2 average absolute error

1.5 DE-UZL 19/19 1.05±0.62

1.6 KR-SUL 19/19 1.10± 0.70

1.8 KR-SUK 19/19 1.26± 0.81

2.3 KR-SUC 19/19 1.37± 1.00

2.5 PK-PNS 19/19 1.26± 0.87

Lesion outcome prediction through classification. The proposed method, which
was previously employed in various brain lesion segmentation tasks, proved to be
equally suited for brain lesion outcome prediction. Compared to the other par-
ticipating approaches, only a convolutional neural network (CNN) and a second
RF solution reached higher scores. The statistical evaluation presented at the
day of the challenge’s workshop revealed no significant difference between our
and the second placed method. Despite the small training set, all participating
methods used algorithms from machine learning. The stroke evolution process
might be simply to complex to be modeled explicitly.

Two observations stand out. First, the results from the ISLES 2015 chal-
lenge [11] showed that the worst outcome can be predicted with high accuracy
from acute data. Other studies reported similar results for the best possible out-
come as estimated by the already infarcted ADC lesion [16]. Hence, the task
should be feasible. This view is challenged by the low evaluation scores obtained
by all teams, which are far from the inter-observer performance. Second, in
Sect. 2.2, we stated that the task is making the silent assumption that all infor-
mation required for the prediction is provided by the acute data. After the eval-
uation, this can neither be confirmed nor rejected. Owing to the high complexity
of stroke lesion evolution, which depends on many interdependent factors often
yet poorly understood, it is unknown what exactly would be required to make a
reliable prediction. Both of these failures to draw a speaking conclusion from the
obtained results can be attributed to the small training set size. The prediction
task encompasses small and large strokes, interventions with different levels of
success, interventions at different timepoint of the stroke evolution, and a range
of patients with varying constitutions. To suitably represent the variance of the
problem, a few hundred sample cases would likely be required.

Perfusion maps are essentially representations of the parameters of a curve,
which represents the pass of a contrast agent bolus through a tissue voxel. To
this end, various parametric models have been proposed, all of which make at
least some simplifications. Hence, it could be assumed that the raw 4D PWI data
contains more information than the derived perfusion maps. During a number
of preliminary experiments, we did not found the 4D PWI to improve the pre-
diction results. In fact, its addition decreased the accuracy slightly. This result
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is consistent with the observation reported by Forkert et al. (2014) [3]. Thus,
either the forest is unable to model the time curve of a passing bolus implicitly
or the approximations made during the computation of the perfusion maps are
successfully revealing the real underlying model.

All three of the supplied clinical parameters are considered major contribu-
tors to the final stroke lesion outcome. Surprisingly, the addition of TSS, TTT
and TICI did not have any effect on the prediction accuracy and were subse-
quently left out. We can only assume that the small training set size impeded
the efficient use of the clinical parameters. Unfortunately, this does leaver with
which the physicians were assumed to vary the lesion outcome for the purpose of
comparing successful against failed interventions at different moments in stroke
evolution.

Clinical outcome prediction through regression. The obtained first place could be
considered to prove the suitability of our approach for predicting the clinical out-
come in ischemic stroke. However, the results of this task should be interpreted
with care. Clinical outcome prediction is a very complex task, where the final
results are the sum of many interdependent factors. First, there are the patients
general state of health, gender, age, and predisposition to ischemic attacks among
others. Then there are the lesion and brain characteristics, such as lesion age,
location, size, shape, supporting perfusion through peripheral arteries [8], and
the yet poorly understood molecular processes involved in ischemic cell death [6].
Final, there is the intervention itself, how it is conducted, its success and tim-
ing. As already observed for Task I, with only 30 training and 19 testing cases,
the challenge’s dataset is too small to draw a general conclusion. All participat-
ing methods are based on machine learning algorithm, which require sufficient
training data.

During our experiments, we found that adding the clinical parameters to
the regression training set did not change the results in any significant way.
Considering the temporal development of stroke lesions, the TSS, TTT and TICI
parameters were expected to have a major influence on the clinical outcome. That
this assumption could not be confirmed is likely to be an effect of the problem’s
underrepresentation through the small dataset, rather than a new observation
challenging the benefit of established stroke treatments.

Our method is based on the definition of three ROIs, which are rather arbi-
trarily chosen and do neither reflect any anatomical, nor any lesion properties.
That we still obtained the first place is another confirmation of the rather ill
posed problem. Still, we consider our approach a promising base from which
to derive a good clinical outcome prediction algorithm when more training and
testing data becomes available.

Conclusion. We presented a lesion outcome prediction and a clinical outcome
prediction solution. Despite the difficulty of the task and the small training
dataset, high ranks were obtained. This shows our method to be competitive
and to successfully avoid overfitting. The second characteristic proved especially
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important for the second task of mRS score estimation with only 30 training
cases and was awarded with a first place.

For the future, we plan to obtain a larger dataset for both tasks that suf-
ficiently covers the problem’s complexity. For the regression task, we aim to
study the molecular processed involved in stroke evolution and derive some tai-
lored image features. Finally, we would like to take the in the first task predicted
lesion’s exact location into account when predicting the mRS, which was shown
to have a beneficial effect on the accuracy [4].
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Abstract. We propose an ensemble of deep neural networks for the
two tasks of automated prognosis of post-treatment ischemic stroke, as
imposed by the ISLES 2016 Challenge. For lesion outcome prediction,
we employ an ensemble of three-dimensional multiscale residual U-Net
and a fully convolutional network, trained using image patches. In order
to handle class imbalance, we devise a multi-step training strategy. For
clinical outcome prediction, we combine a convolutional neural network
(CNN) and a logistic regression model. To overcome the small sample
size and the need for whole brain image, we use the CNN trained using
patches as a feature extractor and trained a shallow network based on the
extracted features. Our ensemble approach demonstrated an appealing
performance on both problems, and is ranked among the top entries in
the Challenge.

Keywords: Fully convolutional networks · U-Net · 3D convolutional
kernels · Patchwise learning · Multi-phase training · Class imbalance ·
Ensemble

1 Introduction

The success of an ischemic stroke treatment is highly dependent on the time delay
between its onset and the recanalization of occluded cerebral arteries. Timely
and precise decision-making, which should be made on the scene within a several
minutes, is therefore of paramount importance for patients’ outcomes [19]. In this
regard, an automated method that reliably and precisely delineates the extent of
ischemic lesions would be an invaluable resource for the successful treatment. Our
study thus focuses on automatic prognosis of ischemic stroke after treatment. As
a participant of the ISLES 2016 Challenge [1], we devoted our efforts to build a
reliable machine learning model that serves for this purpose.

The Challenge was two-fold: (1) predicting the lesion outcome, as measured
by regions in the magnetic resonance imaging (MRI) scan, (2) predicting the
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clinical outcome, as measured by the modified Rankin Scale (mRS), both mea-
sured in more than 90 days after treatment. Clinical informations such as Time-
Since-Stroke (TSS), Time-To-Treatment (TTT), and thrombolysis in cerebral
infarction (TICI) were available as predictors, together with preprocessed MRI
images in 7 types: Apparent Diffusion Coefficient (ADC), Perfusion Weighted
Image (PWI), relative cerebral Blood Flow (rBF), relative cerebral Blood Vol-
ume (rBV), Mean Transit Time (MTT), Time To Peak (TTP), and Time To
Maximum (Tmax). There were thirty (30) training cases given, for which the
ground truth for the lesions and the mRS for clinical outcome were available.
The task is to predict these outcomes for 19 test cases. The evaluation measures
for lesion prediction were Dice’s coefficient (DC), the average symmetric sur-
face distance (ASSD) and the Hausdorff distance (HD). On the other hand, the
evaluation measure for clinical outcome prediction was the average of absolute
errors between the true and predicted mRSes.

Recently, Convolutional Neural Networks (CNN) have achieved great success
in medical image analysis [17]. These approaches do not depend on hand-crafted
features, and make it possible to extract features from raw images automatically.
Especially, the Fully Convolutional Network (FCN) [16] and the U-net [3,18] are
mainly used in image segmentation problems. The FCN extends the CNN model
that operates on images with a fixed size, to handle those of arbitrary sizes. The
U-Net has an unique U-shaped topology consisting of a contracting path that
can capture the context, and an expanding path that can localize interesting
features.

Our tasks were challenging in the sense that the sample size is very small
compared to common CNN applications, and that there is a large variation in
lesion sizes and clinical score among cases. To alleviate these difficulties, we
adopted an ensemble method, which helps reducing prediction variance.

2 The Lesion Outcome Prediction

We considered an ensemble of two different CNN models and applied a patchwise
approach in order to increase the effective sample size. Two models, one based
on the three-dimensional (3D) multiscale residual U-net and the other the FCN,
are different in the interpretation of the problem. For the residual U-net, we
interpreted the lesion outcome prediction as a voxel-wise segmentation problem.
Negative DC was used as the loss function for segmentation. For the FCN, we
regarded the problem as a patch-wise classification problem and used the cross
entropy as the loss function. This difference causes distinct drawbacks of two
models. For instance, the prediction from the FCN could be noisy, while the
U-net might cause artifacts. We expected these drawbacks to be improved by
the ensemble of models.

A significant amount of heterogeneity was observed in the dimension of the
images because they were collected from disparate machines and institutions. We
used 6 out of 7 available types of images; namely ADC, rBF, rBV, MTT, TTP,
and Tmax, which are all three-dimensional. We ignored the four dimensional
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PWI, because it is hard to handle the time axis. We resized all images to the
same dimension: (width × height × depth) = (256 × 256 × 32).

Usually the stroke lesion is small compared to the whole brain. This causes
a severe imbalance in the training dataset. With uniformly sampled patches,
prediction will tend to be overwhelmed by healthy parts at initial time. To
resolve this problem, we considered multi-phase learning [7], a novel technique
dividing training procedure into several steps. In each training phase, the network
architecture remained the same but was trained with the different input data.
In one of the phases, we used patches oversampled near the lesions.

2.1 3D Multiscale Residual U-Net

Preprocessing. To segment 3D images, both two-dimensional (2D) or 3D
patches can be used [7,8,13,15]. We trained our model with both kinds of patches
and found a better performance with 3D patches. This is interesting because
there is a deficiency in the depth resolution. We sampled patches in two dif-
ferent scales in order to capture both short- and long-range spatial correlation.
For a given center voxel, a “local” patch was extracted from its 32 × 32 × 8
neighborhood; a “global” patch was obtained from the 64 × 64 × 16 neighbor-
hood, and then 8-to-1 downsampled to maintain the same number of inputs. We
call this technique multiscale input following [13]. This multiscale approach was
partially motivated practically by the lack of GPU memory. For our purpose
it showed better performance than increasing the patch size. This multiscale
approach instead of increasing the patch size improved the performance much
better and was practically more feasible. The maximum size of patches was
restricted because of the lack of GPU memory. For data augmentation, we only
used sagittal axis reflection; other methods such as translation and rotation did
not improve performance much.

Main Architecture. The U-net has shown an impressive performance in many
biomedical image segmentation applications [3,18]. Our proposed architecture
was to supplement U-net by residual shortcut paths making deeper networks
[9,11]. Thus the proposed model incorporates two different blocks: the convo-
lutional block and the residual block. A convolutional block consisted of a 3D
convolutional layer followed by an exponential linear unit activation [4] and a
batch normalization layer [12]. A residual block consisted of two paths, one for
an identity operator and the other for a residual operator [20]. The output of
the residual block is computed as the sum of the values in the two paths. The
proposed method processes 3D multiscale input images through two pathways.
The proposed network used 42 layers with approximately 100,000 parameters.
The network architecture and main blocks are shown in Fig. 1.

Sample Imbalance. We implemented multi-phase learning with two phases
to address the imbalance in the training dataset. In the first step, we trained
the model by using patches oversampled near the lesions. In the second stage,
we tuned the trained network by using patches sampled uniformly from the
training set.
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Fig. 1. (Left) Illustration of the main architecture, 3D multiscale residual U-net (Right)
Two main blocks, a convolutional block and a residual block.

Prediction. Prediction for the test cases was conducted by a sliding window
method. We preprocessed input images into patches, and computed aggregated
scores ranging between 0 and 1 by feeding them to the trained network. A voxel
was classified as 1 (part of a lesion) if the score was greater than 0.5, 0 otherwise.

Implementation Details. All the weights in the network were initialized by
drawing from the zero-mean normal distribution with variance inversely propor-
tional to number of input neurons [10]. The Adam optimizer [14] was used with
learning rate of 0.0001. For regularization, dropout, batch normalization, and
early stopping rule with 5-epoch patience were applied. We anticipated L1 and
L2 regularizations on the layers to improve prediction accuracy, but it turned
out not effective. We used negative DC as the target function; the cross entropy,
a more common choice in binary segmentation problem, often resulted failures
in training. Nonetheless, computing the Dice score for each patch tended to pro-
duce extreme scores when the lesion inside the patch was small. To resolve this,
we constructed a single 3D patch by concatenating all the inputs in the batch
and computed DC for it. This stabilized the training procedure, mitigating the
extremities. It required 5 h to fully train the network, while it took and only 10 s
per case to predict on a workstation equipped with thirty two Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40 GHz processors and four NVIDIA GeForce GTX TITAN
X GPUs which have 3072 CUDA cores, 1 GHz and 12 GB memory. All the imple-
mentations were based on python and Keras [2].

2.2 Fully Convolutional Networks

In the proposed FCN model, the goal was to predict whether the patch con-
tained a lesion, rather than voxel-wise segmentation. We set a binary label for
each patch and used the binary cross entropy as the loss function. This con-
verted the segmentation problem to a binary classification problem, thus we
could reduce the number of parameters. Furthermore, clinical variables could be
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easily incorporated into the problem. We utilized the FCN architecture in [16]
that uses shift-and-stitch rather than a decoding arm: at the training time, our
network is a regular CNN; after the training, we transformed the fully connected
layers into convolutional layers of size (1×1×1). The FCN model had two local
pathways, pretrained with two kinds of datasets for which a patch is labeled
differently. To obtain a voxel-wise prediction, we interlaced predicted volumes
from shifted inputs [16].

Preprocessing. Before extracting patches from the data, we scaled the image
to make intensity levels to lie between 0 and 1. Extremely high levels were
substituted by 1. Due to the difference in the interpretation of the problem, the
optimal patch sizes were smaller than the residual U-net model; see Sect. 2.3 for
details. The prediction from the models with small-size patches tend to be noisy,
while those from using large-size patches tend to lose accuracy.

Main Architecture. The FCN model had two pathways, and each pathway was
obtained from a single CNN pretrained with different dataset. We first labeled
a patch as 1 if there was a lesion within the patch. We trained a single CNN
to construct a local pathway using the dataset labeled in this way. We call this
labeling strategy as full view method. For the other local pathway, we labeled a
patch as 1 if there was a lesion at the center voxel, and trained the other single
network. We call this labeling strategy as small view method. Both networks
consisted of 3D convolutional, 3D max-pooling, and fully connected layers. Clin-
ical information was fed into the penultimate layer. To construct the full model,
we removed the last fully connected layers from both pathways and added three
fully connected layers to the last convolutional layers in order to combine the
features from the local pathways. The maxout regularization [6] were applied
to the fully connected layers. The maxout pool sizes were 2. To train the full
model, we freezed the weights of convolutional layers from single model, and only
trained the fully connected layers. After training the full model, we converted
all the fully connected layers of the model to the 3D convolutional layers with
kernels of size (1 × 1 × 1) to handle images of arbitrary sizes. The architectures
of the local pathways and the full FCN model are illustrated in Fig. 2.

Sample Imbalance. We implemented the multi-phase learning [7] with three
phases to address the sample imbalance. In the first phase, we constructed a
training set with an even class distribution. In this step, the goal was to place
the initial weight for the next phase near the optimum. In the second phase, we
collected the false positive samples from the model trained in the first phase,
augmented them by sagittal axis reflection [13]. Then we constructed a training
set by resampling the positive (1), negative (0), and the false positive samples
(0) equally likely. In the last phase, a fine-tuning was conducted using patches
uniformly sampled from the original training set.
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Fig. 2. (Left) Single model. The clinical information applied before the last layer.
(Right) Multiview model. The full view regarding a patch as 1 if there was a lesion,
and the small view regarding a patch as 1 if there was a lesion in central voxel. After
training, the fully connected layers of full models were converted to (1× 1× 1) size 3D
convolutional kernels.

Prediction. The resulting network consisted only of convolutional and pooling
layers, and a voxel-wise prediction was possible for an image of an arbitrary
size. In order to achieve a voxel-wise segmentation at the original resolution, we
used the shift-and-stitch method [16], which stitches outputs from many shifted
versions of the input. That is, if the output was downsampled by a factor of f ,
we shifted the input by x voxels to the right, y voxels down and z voxels to the
back, for every (x, y, z) such that 0 ≤ x, y, z < f . By processing each of these
f3 inputs and interlacing the outputs, we could produce a volume of prediction.
Each value on the volume represented the voxel-wise probability of the input
volume to be a lesion. While this prediction required f3 forward passes, because
we used the maximum patch size of (9×9×3), prediction took only a few seconds
for each MRI image.

Implementation Details. The rectified linear unit (ReLU) was employed for
the activation function in the convolutional layers and fully-connected layers. In
the last fully-connected layer, the softmax function was used to yield prediction.
Dropout layers and early stopping rules with 5-epoch patience were applied for
regularization. The Adadelta optimizer [21] were used for each training phase.
We trained one model with one Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80 GHz
processor and one NVIDIA GeForce 980 GPU which has 2048 CUDA cores,
1 GHz and 4 GB memory. It required an hour for the whole training, and few sec-
onds for testing. All the implementations were based on python and Lasagne [5].

2.3 Ensemble

To obtain a better predictive performance, we used an ensemble method with
multiple algorithms derived from the two models described in Sects. 2.1 and 2.2.

There were a total of 12 models in the ensemble. For the FCN, we used a total
of eight models, which used one of the four patch sizes of (3× 3× 3), (5× 5× 3),
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(7 × 7 × 3), and (9 × 9 × 3), and produced one of the two predictions using the
shift-and-stitch method or the FCN’s low resolution output. The details of the
single CNN models for the local pathway were summarized in Table 1, and the
hyperparameters of fully connected layers in the full models were summarized in
Table 2. For the U-net, we considered four variants of the main architecture in
Sect. 2.1, with different widths of the patches, number of patches per case, and
number of filters in the first convolutional layer. For details, see Table 3.

A majority vote is common for ensemble, but we performed a slightly modi-
fied voting scheme by taking a weighted average of the models. The formula was
as follows:

mean =
0.8 · ∑2

i=1 FCNi +
∑8

i=3 FCNi + weight · ∑4
j=1 Unetj

1.6 + 6 + weight · 4

{
segment 1 if mean > threshold
segment 0 if mean ≤ threshold

}

where FCNi and Unetj were the variables with a value of 0 or 1, and mean had
a value between 0 and 1. In particular, for the two FCN models using patches
of size (3 × 3 × 3), the prediction outputs were too noisy, so we started with a
weight of 0.8.

Table 1. Hyperparameters for the CNN models of the local pathway.

Patch size 3× 3× 3 5× 5× 3 7× 7× 3 9× 9× 3

Filter Features Filter Features Filter Features Filter Features

Conv 1 3× 3× 3 64 3× 3× 3 64 3× 3× 3 64 3× 3× 3 64

Max-pool 1 2× 2× 2 64 2× 2× 2 64 2× 2× 1 64 2× 2× 1 64

Conv 2 1× 1× 1 64 1× 1× 1 64 1× 1× 1 64 1× 1× 3 64

Max-pool 2 - - 2× 1× 1 64 1× 1× 2 64 2× 2× 2 64

Conv 3 1× 1× 1 64 1× 1× 1 64 1× 1× 1 64 1× 1× 1 64

Max-pool 3 - - - - 2× 2× 1 64 2× 2× 1 64

Number of units Number of units Number of units Number of units

FC 1 80 100 100 80

FC-info 3 3 3 3

FC 2 2 2 2 2

We considered the weights of 2 for the U-net to effectively make the number
of U-nets equal to that of FCN models used, and 1.5 as the case of a compromise
between the arithmetic average and the “doubling”. The threshold for the final
prediction was chosen to minimize ASSD and HD and to maximize DC.

As a result, we obtained two ensemble models: one with (1.5, 0.67) for the
weight and the threshold, and the other with (2, 0.71).
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Table 2. Hyperparameters for the full models.

Number of units

Patch size 3 × 3 × 3 5 × 5 × 3 7 × 7 × 3 9 × 9 × 3

Dense 1 16 32 32 32

Dense 2 16 32 32 32

Dense 3 2 2 2 2

Table 3. The width of patches, the number of patches per case, and the number of
filters in the first convolutional layer used for the four instances of the main architecture
used in final submission model.

Width # of patches # of filters

Model 1 32 300 16

Model 2 32 300 12

Model 3 24 500 24

Model 4 24 300 24

2.4 Evaluation

The top panel of Fig. 3 shows that an artifact in a U-net output in one training
case (GT 10) was removed. The bottom panel indicates that the noisy output
from the FCN in another case (GT 16) was cleaned up after applying the ensem-
ble method. This indicates the effectiveness of the ensemble approach.

Fig. 3. (Left) A case that an artifact in a U-net output was removed. (Right) A case
that the noisy output from the FCN was cleaned up after ensemble. Ensemble 1 is the
model with coefficients (1.5, 0.67), and ensemble 2 with (2, 0.71).

The test outputs from both ensemble models and the U-net-alone model were
submitted to the challenge, and all of them were ranked among the top entries
(Table 4).

3 The Clinical Outcome Prediction

We interpreted the prediction of mRS as a multiclass classification problem,
and used two models utilizing the MRI images and the clinical predictors. To
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Table 4. Rank and evaluation results on the segmentation problem. The figures other
than the place were calculated by using the test set.

Rank score ASSD Dice HD place

U-net 3.42 6.23 0.31 32.84 1st

Ensemble 1 3.68 6.46 0.30 37.70 2nd

Ensemble 2 3.34 6.38 0.31 34.09 3rd

reflect the features from MRI images, we built a CNN model, which classifies the
patient’s mRS, by using the brain images and the clinical information such as
TSS, TTT, and TICI. We also employed a logistic regression model to emphasize
the effect of the clinical information. We obtained predicted mRSes from both the
CNN and logistic regression models, and chose randomly between the two scores.

3.1 Convolutional Neural Network Model

A full CNN model for mRS prediction required the whole brain as input. This
was intractable because of the lack of samples in the dataset. We thus used a
CNN as a feature extractor, and a shallow neural network to predict the class
based on the extracted features.

Main Architecture. The feature extraction part is a CNN with patch size
of (3 × 3 × 3) as illustrated in part A of Fig. 4. The CNN model consisted of
3D convolutional layers, 3D max pooling layers, and fully connected layers. The
clinical predictors were employed right before the fully connected layers. The
details of the CNN model are summarized in Table 5. The number of parame-
ters in this CNN model was kept small compared to the FCN models for the
lesion prediction, partly due to the size of the model for classification (Part B in
Fig. 4). After training the CNN model, we converted all fully-connected layers
in the model to convolutional layers with (1× 1× 1)-sized kernels. The resulting
dimension of the output of the CNN part was (128×128×15). The classification
part is a shallow fully-connected network with a single hidden layer, which oper-
ates on the (128 × 128 × 15) “feature volume.” Since the number of weights of
this part was much larger than the sample size, maxout regularization [6] with a
large pooling size (16) was essential. As there were only 5 classes in the training
dataset, the number of units in the last layer was set to 5.

Sample Imbalance. The convolutional layers in part A of Fig. 4 had a large
number of parameters, comparing to the 30 cases in the training set. Thus we
trained this part in a patch-wise fashion to overcome the lack of data. Because
the goal of part A is to learn a feature map for the following classification, we
trained the CNN to predict the lesion and transferred the learned feature to
predict the clinical outcome. Thus there is the same sample imbalance problem
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as in Sects. 2.1 and 2.2. We applied three-phase training. The training details
were the same as for the FCN model in the Sect. 2.2. For part B, because the
large number of parameters caused memory problems and overfitting, we froze
all the weights from the convolutional layers and trained part B only with the
batch size of 1.

Implementation Details. The implementation environment and details are
almost the same as Sect. 2.2. It required half an hour for the whole training and
a few seconds for testing.

Fig. 4. CNN architecture for the clinical outcome prediction.

Table 5. Hyperparameters for the CNN models in the part A of Fig. 4.

Filter Features

Conv 1 3 × 3 × 3 16

Max-pool 1 2 × 2 × 2 16

Conv 2 1 × 1 × 1 8

Number of units

FC 1 30

FC 2 2

3.2 Logistic Regression Model

We sought to improve the prediction by using ensembles of the CNN’s with a
simple classification model taking only clinical informations into account. We fit
logistic regression model with TICI, TSS, TTT, and the sum of TSS and TTT
as predictors to classify mRS. All of the explanatory variables were standard-
ized, except for TICI, which was a categorical variable. The model formula was
as follows:

logit(pi,class) = β0 + β1TSS + β2TTT + β3(TSS + TTT ) + β4I(TICI = 0)
+β5I(TICI = 1) + β6I(TICI = 2a) + β7I(TICI = 2b) + β8I(TICI = 3).

Multiclass classification algorithm was a one-vs-rest scheme. Thus we built in
total five models to predict mRS.
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3.3 Evaluation

The predicted results were evaluated by the average absolute errors between true
and predicted mRS. In Table 6, we present the evaluation results from CNN, logis-
tic regression and ensemble of both. The ensemble of two models showed a good
performance in the Challenge, holding the second place.

Table 6. Rank and evaluation results on the classification problem. The figures other
than the place were calculated by using the test set.

Rank Avg abs error Place

Ensemble 1.6 1.10 2nd

Logistic regression 1.8 1.26 3rd

FCN 2.3 1.37 4th

4 Conclusion

We proposed an ensemble of deep-learning-based models for automatic prognosis
of ischemic stroke after treatment. For the lesion outcome prediction, we applied
an ensemble of residual U-net and FCN model. The residual U-net produced suc-
cessful segmentation results based on the Dice coefficient, while it is subject to
segmentation artifacts. The FCN was capable of incorporating clinical informa-
tion as predictors, but the voxel-wise predictions tended to be noisy. Both mod-
els possessed complementary strengths and weaknesses. We demonstrated that
ensembling them can increase both prediction accuracy and robustness. For the
clinical outcome prediction, we combined the image-based features from a CNN
with a logistic regression model that explicitly conveys the effect of clinical pre-
dictors. In this way, we were able to predict mRS scores in spite of limited sample
size. Our ensemble approach showed an appealing performance on both problems,
which is confirmed by that all of our models ranked among the top entries in the
ISLES 2016 Challange. For a future direction, we may employ multiple GPUs to
allow larger models and overcome the memory limit. In this direction, extensive
data augmentation may turn out crucial for prediction accuracy.
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Abstract. Herein, we present an automated segmentation method for
ischemic stroke lesion segmentation in multi-modal MRI images. The
method is based on an ensemble learning technique called random for-
est (RF), which generates several classifiers and combines their results
in order to make decisions. In RF, we employ several meaningful fea-
tures such as intensities, entropy, gradient etc. to classify the voxels in
multi-modal MRI images. The segmentation method is validated on both
training and testing data, obtained from MICCAI ISLES-2016 challenge
dataset. The evaluation of the method is done by performing two tasks:
ischemic stroke lesion outcome prediction (Task I) and clinical outcome
prediction (Task II). For Task I, the performance of the method is eval-
uated relative to the manual segmentation, done by the clinical experts.
For Task II, the performance of the method is evaluated relative to the
90 days mRS score, provided as ground truths by ISLES-2016 challenge
organizers. The experimental results show the robustness of the segmen-
tation method, and that it achieves reasonable accuracy for the predic-
tion of both ischemic stroke lesion and clinical outcome in multi-modal
MRI images.

Keywords: Segmentation · Automatic · MRI · Ischemic stroke lesion ·
Random forests · ISLES-2016

1 Introduction

Every year, more than 10 million people worldwide have a stroke and a third of
these don’t survive [1]. Stroke is the second leading cause of death and disability
(for examples; paralysis, speech or vision loss) in industrial countries. It is a neuro-
logical disorder that is caused by either a clot blocking an artery or a burst blood
vessel causing bleeding inside the cranium [2]. The former stroke type is called
ischemic stroke and the later type is called hemorrhage stroke. Ischemic stroke is
the most common type of stroke, accounting for about 80% of all strokes [3].

Computerized tomography (CT) is presently the gold standard for stroke
diagnosis, with magnetic resonance imaging (MRI) often being used when CT
does not provide a definitive answer [4]. MRI has a major advantage over CT
c© Springer International Publishing AG 2016
A. Crimi et al. (Eds.): BrainLes 2016, LNCS 10154, pp. 244–255, 2016.
DOI: 10.1007/978-3-319-55524-9 23
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in that it does not employ ionizing radiation. It generates a 3D image of the
human head by exploiting the nuclear magnetic resonance properties of the water
contained in the tissues. Because of its high spatial resolution and good contrast
for soft tissues, MRI is perfectly suited for detecting the ischemic stroke lesion [5].
Due to this characteristic, it can be helpful for neurosurgeons and physicians in
diagnosing the stroke as well as in monitoring the efficacy of clinical treatments
for stroke.

Automated and accurate ischemic stroke segmentation in MRI images is a
challenging task because of stroke lesion location, shape, size and appearance
vary greatly across patients. As a result expert manual segmentation is still a
gold standard for quantitative analysis of lesion in stroke patients. However, it is
challenging, tedious, labor-intensive, time-consuming task as well as requires
expert supervision and impractical for large-scale group study. Moreover,
manual segmentation leads to 28% ± 12% intra-and 20% ± 15% inter-observer
variabilities [6].

Development of an accurate and fully automated technique for ischemic
stroke lesion segmentation is highly desirable because the lesion volume is an
essential end-point for medical trials. In past years, several automated segmen-
tation methods [7–11] have been proposed in literature for different type of stroke
lesion segmentation. A review on non-chronic ischemic stroke lesion segmentation
techniques has been presented in [8]. A method for chronic stroke lesions seg-
mentation has been proposed in [10], which is based on an outlier search method
and the fuzzy clustering. The method is employed on single modal (T1-weighted)
MRI datasets for segmenting the chronic lesions. A Bayesian multi-spectral hid-
den Markov model has been presented in [11] for chronic stroke lesions segmen-
tation. In [7], an extra tree forest has been proposed for chronic stroke lesions
segmentation.

However, the performance of above mentioned methods are difficult to
directly compare with each other. The reason is that these methods are eval-
uated on different MRI datasets with using different quantitative measures for
stroke detection by their respective authors [12].

In order to make a fair and direct comparison of automated methods for
acute ischemic stroke detection, Ischemic Stroke Lesion Segmentation (ISLES)
challenge was organized at Medical Image Computing and Computer Assisted
Intervention (MICCAI) conference 2016. The ISLES-2016 challenge consists of
following two tasks.
Task I: Lesion outcome prediction
Task II: Clinical outcome prediction

We participated in ISLES-2016 challenge and presented an automated
method for acute ischemic stroke lesion segmentation using multi-modal MRI
images. The method is based on a machine learning technique called random
forests (RF). The key contribution in the method is employing a set of mean-
ingful features for segmenting the stroke lesion and the choice of step for post-
processing of segmented lesion data.
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2 Method

Our segmentation method takes the multi-modal MRI brain images as input.
The schematic procedure of method is shown in Fig. 1. The following set of
meaningful features (n = 67) is extracted for each voxel in multi-modal MRI
images.

1. MRI scans intensities: These features comprise the intensity in the MRI scans
(ADC, Perfusion (4D scan), MTT, Tmax, rBF, rBV and TTP) provided by
the data sets. The total number of these features was 7.

2. MRI scans smooth intensities: A Gaussian filter with size 5 × 5 × 5 was
employed to each MRI scan in order to extract the smooth intensities. The
total number of these features was 7.

3. MRI scans median intensities: A median filter with size 5× 5× 5 was applied
to each MRI scan to obtain the median intensities. The total number of these
features was 7.

4. The gradient and magnitude of the gradient: A gradient in the x, y and z
direction and their magnitude was computed in order to get the information
about the lines and edges in each MRI scan. The total number of these features
was 28.

5. Hessian features: These features are extracted by computing the second order
derivatives of MRI scan intensity. These features describe information about
the local structure. The total number of these features was 4. For these fea-
tures, we chose only ADC MRI scan because it has good details about the
brain structures compared to other MRI scans.

6. Local standard deviation: The standard deviation for each voxel in the MRI
scans was computed using the neighborhoods size 5×5×5. The total number
of these features was 7.

7. Local entropy: The entropy for each voxel in the MRI scans was computed
using the neighborhoods size 9 × 9 × 9. The total number of these features
was 7.

These features are then applied to train the RF [13,14] classifier and classi-
fying the acute ischemic stroke lesion.

The labeled data sets, obtained from the ground truths, are used to train the
RF classifier. In RF, multiple decision trees are constructed. This construction
is based on a random choice of a subset of features. In each tree, every node is
a decision node that comprises a feature and its corresponding threshold except
the leaves. Every leaf node has a probabilistic class distribution (histogram of
class labels for the voxels that have reached that node).

In RF, the classification (testing) is performed by traversing voxels over the
trees, initiating from the root of each tree to a leaf node. The voxels are split at
a given node based on the learned feature and a threshold value at that node. In
the end, the mean probabilistic decision of the class distribution from all trees
yields the final probabilistic class distribution (voxel label in this scenario).
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“Number of trees” and “depth of each tree” are two critical parameters of
RF. In this work, we set “number of trees” = 90 and “depth of each tree” =
50. The Gini impurity was applied as a splitting criterion and

√
67 features were

used at each node for splitting.
For training, a total of 80,000 data samples (10,000 samples per training data)

were used to train the RF classifier. These samples were acquired randomly by
down sampling the majority class (non ischemic stroke) data in each training
data set in order to make their frequencies closer to the minority class (acute
ischemic stroke) data.

Lastly, the post-processing is done using the closing (dilation followed by an
erosion) operation by employing the 2D 5× 5× 5 square structuring elements in
order to remove the isolated outlier voxels that treated as stroke lesion.

3 Acute MRI Data

For evaluation of our method, 30 training and 19 testing MRI data are used,
provided from the ISLES-2016 challenge organizers. Both training and testing
MRI data comprises 7 acute MRI scans: ADC, MTT, perfusion raw 4D data,
rBF, rBV, Tmax and TTP.

ADC map is generated from the DWI images whereas rBF, rBV, Tmax and
TTP maps are computed from the perfusion data.

For training data, the ground truths (labeled data) are also provided from
the ISLES-2016 challenge organizers.

4 Evaluation Measures

The evaluation of the method is done using the online evaluation system, pro-
vided by the MICCAI ISLES-2016 challenge organizers. The evaluation is done
by performing two tasks: ischemic stroke lesion outcome prediction (Task I) and
clinical outcome prediction (Task II). For Task I, the evaluation is done in terms
of average symmetric surface distance (ASSD), Dice and the Hausdorff distance.
The ASSD denotes the average surface distance the ground truth and auto-
mated segmentation. Dice measures the degree of overlap between the ground
truth and automated segmentation. Hausdorff distance denotes the maximum
distance between the ground truth and automated segmentation surface points.

For Task II, the evaluation is performed in terms of (modified ranking scale)
mRS score. For prediction of mRS score, the regression forest is applied. The
regression forest is trained by employing the local image features and the stroke
lesion characteristics, obtained from the Task I. For regression forest training,
the mean squared error function was applied as splitting criterion.

5 Results and Discussion

The training data include 30 acute ischemic stroke lesion cases whilst the testing
data comprise 19 acute ischemic stroke lesion cases. The evaluation of the method
is first done on training data and then is performed on the testing data.
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Fig. 1. Schematic procedure of the segmentation method.
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Fig. 2. Quantitative results of our method for Task I for 24 training cases: (a) ASSD
(b) Dice and (c) Hausdorff distance.
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Fig. 3. Quantitative results of our method for Task I for ground truths GT1 from12
test cases: (a) ASSD (b) Dice and (c) Hausdorff distance.
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Fig. 4. Quantitative results of our method for Task I for ground truths GT2 from12
test cases: (a) ASSD (b) Dice and (c) Hausdorff distance.
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For training data, the evaluation is achieved using leave-one-out cross valida-
tion. The classifier, trained from the training data, is applied to the testing data
to segment the stroke lesion. The evaluation of our method for both training and
testing data is done using the online evaluation system provided by the MICCAI
ISLES-2016 challenge organizers.

The quantitative results of our method for Task I for the 24 training cases
(obtained from the online evaluation system in terms of ASSD, Dice, and Haus-
dorff distance) are presented in Fig. 2. They show that our method has poor
segmentation (lower Dice, higher ASSD and Hausdorff distance) for the training
case “28”.

The quantitative results of our method for Task I for the 12 test cases for
GT1 and GT2 (obtained from the online evaluation system in terms of ASSD,
Dice, and Hausdorff distance) are shown in Figs. 3 and 4 respectively.

Table 1 shows the average quantitative results of our segmentation method
over the 24 training cases, obtained from the online evaluation system for
Task I.

An example of the good qualitative result of our segmentation method for
axial slice “8” of the training case “11” is presented in Fig. 5.

An example of the poor qualitative result for axial slice “19” of the training
case “28” is shown in Fig. 6.

The average quantitative results of our segmentation method over the 12 test
cases using ground truths GT1 (obtained from the online evaluation system for
Task I) are presented in Table 2.

The average quantitative results of our segmentation method over the 12 test
cases using ground truths GT2 (obtained from the online evaluation system for
Task I) are shown in Table 3.

The average quantitative results of our segmentation method over the all test
cases (obtained from the ISLES-2016 organizers) are presented in Table 4.

Compared to the other competing methods in the ISLES-2016 challenge, we
have better segmentation for the training cases. However, for the test cases,
our method is comparable to other best competing methods in the ISLES-2016
challenge.

For Task II, a comparison between the true and predicted mRS scores for
training cases is presented in Table 5. Herein, it can be observed that for the
training cases “1”, “2”, “10”, “19”, “15” and “28”, our method has a false
prediction of mRS scores.

For the test cases, Task II is evaluated using the average absolute error
of mRS scores. In this study, our method achieved average absolute error
= 1.26 ± 0.87, which is comparable to other competing methods in the ISLES-
2016 challenge.

Table 1. Average quantitative results of our segmentation method over 24 training
cases in terms of ASSD, Dice, and Hausdorff distance.

ASSD (mm) Dice Hausdorff distance (mm)

1.88 ± 2.34 0.89 ± 0.26 80.16 ± 11.09
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Fig. 5. Qualitative result of our segmentation method for axial slice “8” of the training
case “11”: (a) ASD (b) ground truth (c) segmented stroke lesion.

Fig. 6. Qualitative result of our segmentation method for axial slice “19” of the training
case “28”: (a) ASD (b) ground truth (c) segmented stroke lesion.

Table 2. Average quantitative results of our segmentation method for GT1 over 12
test cases in terms of ASSD, Dice and Hausdorff distance.

ASSD (mm) Dice Hausdorff distance (mm)

7.41 ± 4.42 0.30 ± 0.21 74.90 ± 20.60

Table 3. Average quantitative results of our segmentation method for GT2 over 12
test cases in terms of ASSD, Dice and Hausdorff distance.

ASSD (mm) Dice Hausdorff distance (mm)

5.68 ± 3.49 0.36 ± 0.20 72.88 ± 21.17

Table 4. Average quantitative results of our segmentation method over all the test
cases in terms of ASSD, Dice and Hausdorff distance.

ASSD (mm) Dice Hausdorff distance (mm)

9.12 ± 5.46 0.26 ± 0.22 78.04 ± 18.11
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Table 5. Task II: Comparison between the true and predicted mRS scores for training
cases.

Case True mRS score Predicted mRS score

1 1 2

2 1 2

4 4 4

5 2 2

6 1 1

7 2 2

8 1 1

9 1 1

10 1 2

11 1 1

12 1 1

13 2 2

14 2 2

15 0 1

16 1 1

18 4 4

19 0 0

20 1 2

21 1 1

22 3 3

23 1 1

24 2 2

26 2 2

27 3 3

28 1 2

30 3 3

31 3 3

33 3 3

35 2 2

6 Conclusions

Herein, we present an automated method, based on the RF for performing two
tasks: ischemic stroke lesion outcome prediction (Task I) and clinical outcome
prediction (Task II). We employ a set of meaningful features to train the RF and
classify the ischemic stroke lesion. The experimental results show the efficacy of
the segmentation method and that it can achieve reasonable accuracy for both
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stroke lesion outcome prediction and clinical outcome prediction compared to
other competing methods in the ISLES-2016 challenge. In the future, we will
investigate a more robust set of features in order to improve the accuracy of our
segmentation method. The total execution time of our segmentation method is
approximately 15 min for segmenting the stroke lesion for each data set using
the MATLAB R2015b on a MacBook Pro with an Intel processor (i5, 2.5 GHz)
and 4 GB RAM.

References

1. The Atlas of Heart Disease and Stroke. http://www.who.int/cardiovascular
diseases/resources/atlas/en/

2. Fassbender, K., Balucani, C., Walter, S., Levine, S.R., Haass, A., Grotta, J.:
Streamlining of prehospital stroke management: the golden hour. Lancet Neurol.
12, 585–596 (2013)

3. Feigin, V.L., Lawes, C.M., Bennett, D.A., Barker-Collo, S.L., Parag, V.: Worldwide
Stroke incidence and early case fatality reported in 56 population-based studies: a
systematic review. Lancet Neurol. 8, 355–369 (2009)

4. Qaiser, M., Shaochuan, L., Andreas, F., Stefan, C., Artur, C., Andrew, M.,
Mikael, P.: A comparative study of automated segmentation methods for use in
a microwave tomography system for imaging intracerebral hemorrhage in stroke
patients. J. Electromagn. Anal. Appl. (JEMAA) 7, 152–167 (2015)

5. Ball, J.B., Pensak, M.L.: Fundamentals of magnetic resonance imaging. Am. J.
Otol. 8, 81–85 (1987)

6. Moumen, T., E., Hashim, M., M.: Tumor segmentation in brain MRI using a fuzzy
approach with class center priors. EURASIP J. Image Video Process., online (2014)

7. Oskar, M., Matthias, W., von der Janina, G., Ulrike, M.K., Thomas, F.M., Heinz,
H.: Extra Tree forests for sub-acute ischemic stroke lesion segmentation in MR
sequences. J. Neurosci. Methods 240, 89–100 (2014)

8. Rekik, I., Allassonniere, S., Carpenter, T.K., Wardlaw, J.M.: Medical image analy-
sis methods In MR/CT-imaged acute-subacute ischemic stroke lesion: segmenta-
tion, prediction and insights into dynamic evolution simulation models. Critical
Appraisal. NeuroImage Clinical 1, 164–178 (2012)

9. Mitra, J., Bourgeat, P., Fripp, J., Ghose, S., et al.: Lesion segmentation from
multimodal MRI using random forests following ischemic stroke. NeuroImage 98,
324–335 (2014)

10. Seghier, M.L., Ramlackhansingh, A., Crinion, J., Leff, A.P., Price, C.J.: Lesion
identification using unified segmentation-normalisation models and fuzzy cluster-
ing. NeuroImage 41, 1253–1266 (2008)

11. Forbes, F., Doyle, S., Garcia-Lorenzo, D., Barillot, C., Dojat, M.: Adaptive
weighted fusion of multiple MR sequences for brain lesion segmentation. In: IEEE
International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), pp.
69–72 (2010)

12. Oskar, M., Björn, M., Matthias, L., Stefan, W., et al.: ISLES 2015 - a public
evaluation benchmark for ischemic stroke lesion segmentation from multispectral
MRI. Med. Image Anal. 35, 250–269 (2017)

13. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
14. Criminisi, A., Shotton, J.: Decision forests for Computer Vision and Medical Image

Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London
(2013)

http://www.who.int/cardiovascular_diseases/resources/atlas/en/
http://www.who.int/cardiovascular_diseases/resources/atlas/en/


Mild Traumatic Brain Injury Outcome
Prediction



Combining Deep Learning Networks with Permutation
Tests to Predict Traumatic Brain Injury Outcome

Y. Cai1(✉) and S. Ji1,2

1 Department of Biomedical Engineering,
Worcester Polytechnic Institute, Worcester, MA 01605, USA

{ycai2,sji}@wpi.edu
2 Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA

Abstract. Reliable prediction of traumatic brain injury (TBI) outcome using
neuroimaging is clinically important, yet, computationally challenging. To tackle
this problem, we developed an injury prediction or classification pipeline based
on diffusion tensor imaging (DTI) by combining a novel deep learning approach
with statistical permutation tests. We first applied a multi-modal deep learning
network to individually train a classification model for each DTI measure. Indi‐
vidual results were then combined to allow iterative refinement of the classifica‐
tion via Tract-Based Spatial Statistics (TBSS) permutation tests, where voxel sum
of skeletonized significance values served as a classification performance feed‐
back. Our technique combined a high-performance machine learning algorithm
with a conventional statistical tool, which provided a flexible and intuitive
approach to predict TBI outcome.

Keywords: Brain image analysis · Brain injury · Deep learning · Permutation
test

1 Introduction

An accurate and robust diagnosis of traumatic brain injury (TBI), including mild TBI
(mTBI), is important to mitigate this prevailing neurological disease. Unfortunately,
objective assessment of the likelihood and severity of mTBI remains lacking, as they
are often undetectable using conventional anatomical images such as T1-weighted MRI.
Automatic prediction using state-of-the-art pattern recognition and machine learning
techniques is a popular research topic at present [1, 2]. However, relying solely on
existing machine learning methods appears insufficient to provide a direct assessment
of mTBI outcome, due to non-Gaussian spatial-intensity distribution and uncertain
cross-subject variation in neuroimages [3, 4]. The performance of the learning algo‐
rithms is also typically limited due to the often small training datasets available in mTBI
research. On the other hand, conventional statistical tools such as permutation test have
been shown to be capable of analyzing neuroimaging changes in cognitive studies, e.g.,
for identifying minor differences between two or among multiple data groups [5, 6]. The
permutation test can also be used to analyze an existing classification (control vs.
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patient), which is suitable for small datasets. However, the method does not directly
provide data classification, by itself.

In this study, we developed an iterative learning approach to predict mTBI outcome.
This approach treated mTBI prediction as classification of the neuroimaging data into
healthy or concussed groups, and for the latter, further into levels of injury severity.
Instead of training a classifier directly from data to label through a learning algorithm,
we first trained a sub-optimal classifier using a subset of labeled data. The classifier was
further adjusted via group-wise permutation statistics. The adjustment could be
performed either by tuning the classifier parameters or by feeding the sub-optimal clas‐
sifier with newly articulated labeled data. The latter strategy ensured the classification
to follow the statistics of the data distribution and also provided a prediction of unlabeled
data. The strengthened sub-optimal classifier then proceeded to another round of clas‐
sification to further generate labeled data for group-wise statistical evaluation. This iter‐
ative learning approach was capable of generating sufficient training samples from a
relatively small dataset to train the machine learning system. It also helped prediction
of weakly or incorrectly labeled data, which was possible in mTBI data collection.

In particular, we chose a multi-modal deep learning network as the basis for our
machine learning system and iteratively used results from Tract-Based Spatial Statistic
(TBSS) analysis as a refinement feedback to enhance network training. This combination
of deep learning training and TBSS-based feedback enabled an objective mTBI outcome
prediction using brain diffusion tensor image (DTI) data alone.

2 Related Previous Work

Developing a reliable mTBI imaging biomarker is desirable for predicting brain injury.
Diffusion Tensor Imaging (DTI) is a promising MR imaging modality that provides a
platform for image-based mTBI outcome prediction.

Image Modality for mTBI detection. Numerous DTI studies have shown significant
changes in FA and MD (fractional anisotropy and mean diffusivity, respectively) meas‐
ures for mTBI patients [7]. This suggests that FA and MD are effective DTI measures
for predicting mTBI outcomes. Further, studies have shown that mTBI patients often
present changes in FA in various locations in the white matter as well as discontinuity
in fibers, either in acute [8] or chronic [9] stages. For patients with moderate/severe TBI,
often decrease in FA and increase in AD and RD (axial diffusivity and radial diffusivity,
respectively) are found. Generally, it is believed that increased FA may represent axonal
swelling or cytotoxic edema, while decreased FA may indicate axonal degradation and
discontinuity [10]. Unfortunately, changes in FA/MD have often been identified on a
group-wise basis (e.g., control vs. patient), and contradicting findings regarding their
increase or decrease [11] precluded a consensus.

Analysis Methods. Often, a region-of-interest (ROI) or voxel-wise analysis is employed
to analyze DTI parameter changes in specific white matter structures [12]. In a ROI-
based approach, inter- or intra-class correlation [12] or ANOVA statistical analysis [9]
is performed to compare the characteristics across different ROIs and/or from different
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subject groups. The ROI-based method becomes a voxel-wise approach when DTI
volumes under scrutiny are properly registered. Using white matter skeleton [4] allevi‐
ates the requirement of accurate image registration, and is, therefore, effective for cross-
subject comparison. Regardless, both the ROI and voxel-wise approaches are for group-
wise comparisons but do not directly assess the likelihood of individual mTBI.

Fiber tractography that represents white matter fiber bundles and bundle densities
[13] is another potential metric for mTBI prediction. By connecting distant brain ROIs
with fiber tracts along diffusion directions, tractography can be used to quantify changes
in connectivity across regions in a given subject, or connectivity patterns across different
subjects. However, the accuracy of fiber tractography relies on the particular tracking
algorithm which depends on image quality such as resolution, noise, distortion and
partial volume effects [14]. This poses challenges in mTBI prediction.

Given the current state-of-the-art in DTI analysis, a conclusive mTBI prediction
technique remains lacking. In this study, we resort to a novel deep learning approach to
predict mTBI based on DTI.

3 Methodology

3.1 Overview

The MICCAI Challenge of Mild Traumatic Brain Injury Outcome Prediction (mTOP
Challenge, 2016) provided a DTI dataset from 27 subjects (9 subjects in each of the
three distinct categories: healthy, patient I, and patient II). Each DTI dataset was
composed of four DTI measures: FA, MD, MO, and AD. A subset of the ground-truth
subject labels (i.e., healthy, patient I or II) were leaked (5 per group leaked at three time
points, resulting in a total of 15 known subject categories). They were split into
“training” and “cross-validation” datasets to train and validate the classifier, as well as
to assess the prediction accuracy. The remaining 12 subjects (4 per group) were
“unknown”.

The mTBI outcome classification pipeline contained two components: classification
deep networks and modality-combined permutation tests (Fig. 1). The two components
interacted with each other during the training stage as further described below.

Training stage:

Training Stage    Testing Stage 

Fig. 1. Overview of the training (left) and cross-validation or testing (right) pipeline.
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1. Training of the multi-modal classification deep networks. For a set of given training
dataset, we first extracted the skeletonized representations of the four DTI measures
via FSL [15], and used them as the network input. Two multi-modal networks were
trained to differentiate the healthy vs. patient groups (i.e., H vs. P), and further
between the two patient groups (i.e., P I vs. P II), themselves. The classical layer-
wise training procedure in deep network [16] was used. Initial subject labels were
obtained upon training convergence.

2. Label update using modality-combined permutation tests. By feeding the trained
networks with data from all subjects, the subjects were classified into two groups (H
vs. P or P I vs. P II) in each binary classification. TBSS [4] was then conducted for
each individual DTI measure between the two groups. The TBSS results were
voxelized skeletons whose values represented t-statistic test, (1-p), denoting the
significance of the spatial differences between the two groups. The TBSS skeletons
obtained from the four DTI measures were then combined into one by voxel-wise
joint multiplication. Large significance values or group differences were expected if
the two subject groups were correctly classified. Conversely, low significance values
indicated an incorrect classification that required revision. The TBSS analysis
enabled an iterative, quantitative feedback of the deep network performance so that
to allow further refinement in classification.

Testing stage:

3. mTBI outcome prediction via cascade binary classifications. A two-step classifica‐
tion was conducted. The first, H vs. P classification, also served as a diagnostic
prediction in practice. For subjects labeled as P (i.e., patients), a second classifica‐
tion, P I vs. P II, was conducted to further differentiate injury severity.

We chose a two-step classification (i.e., separate binary classifications of H vs. P and
P I vs. P II) instead of treating it directly as a three-class (H, P I, P II) prediction problem.
This was because the invariance in FA/MD values in the H class [17] made it easier to
distinguish with respect to the other two groups that had variant FA/MD values. The
subsequent P I vs. P II classification could be improved by removing the interference
from data in the H class. In addition, binary classification labels (0-1) were easier to
switch in a feedback update than a three-class label (i.e., 0-1-2).

3.2 Multi-modal Deep Learning Network

The multi-modal deep learning network structures and associated parameters are shown
in Fig. 2. The network consisted of two components: a dimension reduction layer for
each DTI measure, and a fusion layer to combine results from all measures. The initial
network input was a vectorized and skeletonized image after cross-subject joint regis‐
tration.

Preprocessing. The preprocessing included cross-subject joint registration and skele‐
tonization of the input images. First, FA images from all subjects were aligned with the
FMRIB58_FA of the MNI152 template via affine and then nonlinear registrations
(FLIRT and FNIRT, respectively [18]). The registered FA images were jointly averaged
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to construct a spatial skeleton, where local maximum FA values on the surface perpen‐
dicular to the tract direction were retained [4]. The resulting skeleton then served as a
binary image mask applied to all jointly registered images regardless of the DTI measure.
For each image measure, projecting the voxel values onto the skeleton led to a skeleton‐
ized representation with much reduced data dimension for subsequent network training
and testing. No further registration was necessary as the same skeleton was shared across
all subjects and DTI measures.

Network Structure. For the dimension reduction layers, we constructed two fully
connected Restricted Boltzman Machine (RBM) layers with 129000 (i.e., the number
of skeleton voxels) and 1000 (chosen empirically) nodes, respectively. Combining
results from the four input DTI measures led to a vector of 4000 nodes. Four fully
connected RBM fusion layers were constructed with 5000, 2000, 1000, and 200 nodes,

Fig. 2. Overview of the multi-modal deep network structure. Each DTI measure was first
individually trained to reduce the dimension. Outcomes from all DTI measures were then linearly
stacked to provide input to the lower layers for further layer-wise processing. The final output was
a 200-node vector used for classification via SoftMax classifiers.
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respectively, with the number of nodes determined empirically. The final output of a
200-node vector was subsequently used for classification via a SoftMax classifier [19].

A RBM-based, fully connected network was used because different regions in the
neuroimages (i.e., corpus callosum) may contribute to different ranges of FA/MD varia‐
tion. In contrast, convolution networks such as CNN and CRBM-based networks were
insensitive to the region locations. The RBM structure allowed multi-modal data fusion
simply by stacking the data, while the fully connected network structure was also
compatible with the skeletonized data representation.

Implementation. The RBM layers were implemented using the Medal package (https://
github.com/dustinstansbury/medal). A Gaussian input layer was used for each DTI
measure, while all other layers were binary. A learning rate of 0.001 was used for all
layers. The mini-batch method [20] was also used to randomly divide the training set
into smaller batches for individual network training. The batch size was set to 6 for both
the H vs. P (3 H vs. 3 P) and P I vs. P II (3 P I vs. 3 P II) networks. Using the default
stochastic gradient descent method [21], most of the layers converged within two hours
on a Xeon E5-2630 v3 (8 cores, 16 GB memory) computer. The computation was
conducted in CPU instead of GPU because of the large memory consumption required.
The two cascade classification networks (H vs. P and P I vs. P II) shared the same
structure (Fig. 2). However, their network parameters were separately trained using
different data (H and P, P I and P II). The conventional SoftMax classifier [19] was used
in the classification layer, which was further tuned using an iterative label switch/update
mechanism described in the following section.

3.3 Modality-Combined Permutation Tests

TBSS analysis [4] was applied to enhance and fine-tune the binary classifications. First,
an initial group-wise significance map was generated using classified subjects based on
a subset of training dataset. Remaining subject labels in the training dataset were then
iteratively switched to retrain the deep learning network. Decrease or increase in the
voxel sum from the updated TBSS significance map would indicate the correctness in
subject classification.

TBSS Processing. The classified subjects were grouped accordingly (e.g., H vs. P) to
conduct TBSS analysis independently for each DTI measure. First, voxel-wise permu‐
tation tests were performed for each pair of skeletonized image groups. The result was
a skeletonized significance map whose voxel values were (1-p), where p was the signif‐
icance value from the permutation tests. The significance map represented the spatial
differences between the image group pair. Combining the significance maps from all of
the DTI measures (FA, MD, AD, MO) via voxel-wise multiplication led to a unified
map (Fig. 3), which was expected to be a stronger indicator for group-wise differences
than each individual map alone.

Classification Label Update. The voxel sum of the modality-combined significance
map was used as a feedback to fine-tune the deep network classifiers. First, using the
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given leaked subject labels as the training set, all subjects were classified (i.e., H or P)
upon the classification network convergence. The TBSS analysis for the classified H vs.
P group led to a modality-combined significance map, whose voxel sum indicated their
group-wise differences. Then, we individually switched the label of each testing subject
(i.e., not used for training) to extract the combined significance map via the TBSS anal‐
ysis. Each time a subject label was switched (i.e., from H to P and vice versa), the
resulting voxel sum of the combined significance map was revised accordingly. An
increased voxel sum indicated that the label switching enhanced the group-wise differ‐
ences. Therefore, the corresponding label-switched subject was added to the training set
to re-train the deep network. Otherwise, the label switching reduced the group-wise
differences if the voxel sum decreased. The corresponding subject was then switched
back. A feedback update was accomplished when all testing subjects were switched and
tested. To satisfy the constraints of the given numbers of subjects in each category, the
first n switched labels resulting in the largest increase in voxel sum were retained, where
n was determined to remain the given total numbers of the H/P groups. To mitigate over-
fitting concerns, at most 2 updates (n = 2) were empirically found to be sufficient for
the feedback update.

4 Performance Analysis

Training and Cross-Validation Datasets. Five sets of ground-truth labeled subjects
(total of 15 from the 3 groups) were provided to cross-validate the proposed technique.
A Monte-Carlo Cross-Validation with 20 repeated random samplings was performed
by setting the size of H vs. P training set to be either 3 (1 per mTBI category), 6 (2 per
category), or 9 (3 per category), respectively. Conversely, the P I vs. P II training set
had a size of 2, 4, or 6, respectively. The remaining subjects with known labels served
as cross-validation datasets.

Random Cross-Validation. During cross validation, we randomly selected training
samples from the leaked 15 labeled subjects, following the training-updating procedure
to construct the classifiers. The cross-validation errors for H vs. P and P I vs. P II
classifiers are shown in Figs. 4 and 5. The loss functions of the corresponding deep
networks are also shown to progressively minimize the classification errors during the
layer-wise deep learning process. The lowest cross-validation errors were obtained when

Fig. 3. Skeleton maps of the significance values of the four DTI modalities and their combined
map overlaid on the MNI152 standard atlas.
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using 9 subjects for training: 0.167 for the H vs. P and 0.222 for the P I vs. P II classi‐
fication. However, over-fitting also occurred, as the error in the latter increased to 0.416
after 200 layer-wise iterations (arrow in Fig. 5).

P I vs. P II classificationH vs. P classification

Fig. 4. Cross-validation errors of the deep networks for H vs. P (left) and P I vs. P II (right).

Fig. 5. Model losses (mis-classification error values) of the deep networks for the H vs. P (top)
and P I vs. P II (bottom) classification using the leaked 15 labeled subjects. Using 9 subjects for
training led to the lowest cross-validation error but with a higher risk of over-fitting (see arrow).

Over-Fitting Mitigation. When more than one third of the subjects (i.e., 9 of the 27 total)
were used for training, risk of over-fitting increased (arrow in Fig. 4). To minimize this
problem, we used the mini-batch method [20] to train the network. We randomly selected
smaller subsets from the pool of labeled subjects to train the networks while further limiting
the number of training iterations. For example, 6 samples (2 subjects per category; as
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determined to have the best robustness via cross-validation, see Sect. 3) were randomly
selected to train the networks. The number of deep learning training iterations were empir‐
ically limited to 50 for all layers. Subsequently, another batch of 6 random samples were
selected to re-train the networks. The process continued until the deep networks converged.
This scheme was applied to both the H vs. P and P I vs. P II binary classifiers. Conceptu‐
ally, the random selection was analogous to a classical cross-validation method for perform‐
ance analysis. Label updates via permutation tests were also applied to refine the classifica‐
tion (see Sect. 3.3). The final classification for all of the 27 subjects is reported in Table 1
(Appendix).

5 Discussions

DTI Measures vs. T1-weighted MRI. It is well-known that subtle changes in the brain as
a result of mTBI especially diffuse axonal injury cannot be detected using conventional
anatomical images alone such as T1-weighted MRI. Therefore, unlike other studies [22, 23],
we resorted to the four DTI measures exclusively without employing the T1-weighted MRI.
Nevertheless, the additional anatomical images may serve as an auxiliary for brain region
segmentation and image volume registration.

White Matter Skeleton vs. Whole Brain. Detecting axonal abnormalities using whole-
brain tractography to assess its connectivity was straightforward. However, fiber tracing
could be noisy and not reliable [4]. Therefore, here we focused on the white matter skeleton
for injury analysis. This was obtained from the mean FA map from the co-registered image
dataset [4]. The skeleton preserved the most common voxels in the image dataset where
major fiber tracts traversed. Unlike other studies that employed whole brain FA/MD and T1
image volumes [22, 23], the feature space in our study was significantly smaller and much
more concentrated. Nevertheless, we achieved similar classification performance. This was
not surprising given that most of the injury cases in the mTOP Challenge dataset provided
were diffuse axonal injuries, presumably only occurring in the white matter.

Further Mitigate Over-Fitting via Early Stopping. Over-fitting may be further mitigated
by monitoring the increase/decrease of the optimization loss function and labeling error rate
on the cross-validation dataset in order to identify the best training results. The validation
subset can be repeatedly re-subsampled from the training dataset. The final subject labeling
can then be obtained by averaging their separate classifications over the unknown testing
dataset. We arranged the 15 subjects with known leaked labels into groups of “6
training + 3 validation + 6 testing”, similarly to the previous mini-batch approach. The 3
validation samples were used to monitor the training of the 6 training samples, while the 6
testing cases were used to assess the classification accuracy. By repeating 9 training trials,
we achieved average error rates of 0.19 (H vs. P) and 0.222 (P I vs. P II). They were similar
to the previous direct training approach (i.e., “9 training + 0 validation + 6 testing”, with
mean error rates of 0.167 and 0.222, respectively), but with a reduced standard deviation
(0.131 vs. 0.182).
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Summary: To summarize, we developed an mTBI outcome prediction pipeline by
combining multi-modal deep learning networks with permutation tests serving as a classi‐
fication feedback. The deep learning networks provided an initial classification of the input
dataset, which was further strengthened and refined using a label update scheme via TBSS-
based permutation tests. A number of techniques were devised to address the challenges
resulting from the limited number of subjects but relatively diverse categories (three distinct
subject groups). The proposed technique may be used to provide an objective diagnosis of
mTBI, and further prognosis and evaluation of the severity of mTBI, based on DTI neuro‐
images alone.

Acknowledgement. Funding is provided by the NIH grants R01 NS092853 and R21 NS088781.

Appendix

Table 1. Summary of subject classifications along with the corresponding confidence (obtained
by the Softmax function of the classifier) levels. Shaded entries represent leaked labels.

Subject Final Label Confidence (H vs. P) Confidence (P I vs. P II)

1 P I 0.7862 0.7040 
2 H 0.6476 N/A
3 P I 0.6779 0.9670
4 P II 0.9163 0.6100
5 H 0.6787 N/A
6 P II 0.7862 0.9293
7 P II 0.7862 0.9741
8 P II 0.9364 0.9491
9 P I 0.9177 0.9483
10 P I 0.7159 0.9671
11 H 0.5387 N/A
12 P I 0.7862 0.9706
13 P II 0.9414 0.5528 
14 P II 0.8202 0.9338
15 P I 0.8480 0.9670
16 P I 0.7862 0.9779
17 H 0.5303 N/A
18 P II 0.7862 0.9284
19 P II 0.6973 0.9170
20 P I 0.9050 0.9484
21 H 0.6910 N/A
22 H 0.6076 N/A
23 H 0.6972 N/A
24 H 0.6721 N/A
25 P II 0.8924 0.9407
26 P I 0.5505 0.9682
27 H 0.6787 N/A
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Abstract. Cognitive impairment has mainly two, non mutually exclu-
sive, etiologies: structural or connectivity lesions. Analogously, we
present here a methodology aimed at investigating magnetic resonance
imaging (MRI) scans of subject after a traumatic brain injury (TBI) to
detect the presence of these heterogeneous lesions and access the infor-
mation content within. In particular, we use (i) complex network topo-
logical features to capture the effect of disease on connectivity and (ii)
morphological brain measurements to describe anomalous patterns from
a structural perspective. This integrated base of knowledge is then used
to emphasize differences arising within a cohort including normal controls
and patients labeled as category-I and category-II according to their out-
come after TBI. Results suggest that topological measurements provide
a suitable measurement to detect category-I subjects, while structural
features are effective to distinguish controls from category-II subjects.

Keywords: TBI · MRI · Complex networks · Graph theory · K-nn

1 Introduction

Machine learning algorithms and multivariate data analysis methods have been
widely utilized in recent years exploring several validation strategies and clas-
sifiers, several feature extraction and selection methods, applied especially to
structural MRI measurements [2,4,18]. Besides, the development of more and
more accurate algorithms for DWI analysis has encouraged the investigation of
connectivity - based studies, especially basing on the mathematical framework
of graph theory.

Graph theory can be a suitable tool to reveal the topological brain network
properties [5,33]. The investigation of which measurements and properties can
c© Springer International Publishing AG 2016
A. Crimi et al. (Eds.): BrainLes 2016, LNCS 10154, pp. 271–281, 2016.
DOI: 10.1007/978-3-319-55524-9 25
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better detect and model the alterations depends on the data used and the con-
nectivity definition adopted.

In our previous work, we investigated a complex network framework to
describe the topological brain organization and to distinguish Alzheimer’s disease
from control subjects [3,22]. Our findings suggested that topological measures
could accurately detect patterns of mild impairment, emphasizing differences
that structural measurements seem to less efficiently outline.

The purpose of this work is to predict outcomes for two categories of subjects
suffering from mild Traumatic Brain Injury (TBI) and a group of normal controls
(NC).

A traumatic brain injury occurs when an external force causes a focused and
sudden impact upon the head.

The effects following a brain trauma may be structural and morphological
damages whose locations depends on the impact and secondary events due to
changes in intracranial pressure and cerebrospinal fluid.

Unlike a neurodegenerative disease, it does not have any connection with
the genetic makeup of an individual. However, taking into account the different
structural implications, it is reasonable to assume that a traumatic injury can
affect the integrity of the brain connectivity and, therefore, that the identification
of TBI outcomes can be improved by investigating the network organization of
the brain.

So, even if in a different context, in this work some connectivity measure-
ments, such as strength or clustering coefficient, are evaluated to identify the
category-I patients and then, once this diagnostic class is excluded, category-II
patients are diagnosed with respect of normal controls using structural measure-
ments.

2 Materials

This work uses an magnetic resonance imaging (MRI) dataset of 27 subjects
including 15 labeled subjects divided into three classes (5 subjects per group).
For each subject, raw T1-weighted and DWI scans are available, besides pre-
processed data is also provided, it includes T1 scans rigidly normalized to the
MNI152 template, the gross segmentations of white matter, gray matter and
cerebrospinal fluid, the mean diffusivity (MD) map and the fractional anisotropy
(FA) map.

We focused our model on the analysis of T1 scans, MD and FA maps. In
fact, the rationale underlying this choice is that the information content pro-
vided from these three images is not redundant, since they are three different,
complementary descriptions of the brain morphology and its connectivity. T1
captures morphological changes, MD measurements are sensitive to the cerebral
spinal fluid (CSF), while the values of FA to white matter pathways [1].

3 Methods

The proposed approach consists of four main steps shown in Fig. 1:
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1. Each brain, for each considered imaging modality (T1, FA and MD), is
parceled in a collection of patches representing the nodes of a network; edges
of each network are the absolute pairwise Pearson’s correlation between the
supervoxels, thus resulting in an undirected weighted network;

2. from each network a number of statistical graph features are collected;
3. a k-nearest neighbors (k-nn) machine learning classification is used to differ-

entiate the category-I patients from remaining subjects;
4. structural feature extraction is performed with FreeSurfer on NC and

category-II patients;
5. k-nn machine learning classification is used for NC and category-II patients

discrimination.

Fig. 1. A schematic overview of the proposed framework is presented.

3.1 Complex Network Construction

Once MRI scans had been co-registered, they were segmented in rectangular
boxes, supervoxels. Firstly, brain hemispheres were separated, then each hemi-
sphere was covered with an equal number of supervoxels. Using the brain mask
of the template we discarded all supervoxels overlapping with the mask for less
than 10%. As scans had been spatially normalized it was reasonable to assume
that:

1. within each brain the corresponding supervoxels included roughly the same
regions;

2. gray level distributions of corresponding supervoxels should remain substan-
tially unchanged unless heavy morphological variations.
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Supervoxels were chosen to not represent pre-defined anatomical areas. In con-
trast to region of interest approaches, therefore, they do not rely on the seg-
mentation accuracy of the anatomical regions. Moreover, as they collect the
information related to thousands of voxels they are robust to typical artifacts of
voxel based morphometry approaches.

The supervoxel size D was chosen considering that supervoxels too small
could be considerably affected by registration noise; on the contrary, extremely
large supervoxels could conceal subtle differences making it harder to differ-
entiate the groups. To investigate how the size of the supervoxel affected the
accuracy of the analysis, D was varied from a minimum of 2000 to a maximum
of 4000 voxels.

The proposed framework naturally introduces a graph description. By defi-
nition, a graph G is a couple (N,E) where N is the set of nodes and E the set
of edges. Nodes are the fundamental constituents of a graph, they represent the
elements interacting within the system of interest. The existing interactions are
represented by the edges. In this way, no matter the complexity of the interac-
tions involved nor the nature of the constituents, a graph allows a compact but
formally rigorous description of a generic system; the presented case in shown
in Fig. 2.

Fig. 2. Complex networks construction.

The supervoxels were considered nodes of a network whose connections rep-
resented the grade of similarity between them. Pearson’s correlation r was the
chosen metric:

r =
D

∑D
j=1 xjyj − (

∑D
j=1 xj)(

∑D
j=1 yj)

√
[D

∑D
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∑D
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where the sums are extended to all D voxels within a supervoxel; xj and yj
are the intensity of the j-th voxel. This choice has the fundamental advantage
of combining not only the information deriving from the gray level distribution
similarity between two supervoxels, but also their spatial similarity.

For each modality (T1, FA, MD) we built a weighted undirected complex
network whose connections had been calculated through the absolute value of
the Pearson’s correlation coefficient between pairs of supervoxels.

3.2 Graph Features

For each node i of a network, the following local topological metrics were com-
puted:

– the sum of weights of links connected to the node i.e. its strength:

si =
∑

j

wij (2)

– the clustering coefficient which represents the fraction of closed triplets around
a node and it quantifies the tendency of a node to create clusters with its
neighbors [25]:

ci =
2ti

si(si − 1)
(3)

where ti is the number of triplets attached to the node.

Moreover, the characteristic path length was used to characterize the overall
efficiency of the network.

The Newman’s spectral community detection algorithm [24] was used to par-
tition each network into non-overlapping communities of nodes in order to reflect
their modular organization. Therefore some features based on the detected com-
munities were extracted to describe the role of each node in relation to each
community and to objectively outline the strength of the connections between
and within the modules. In particular we considered:

– the participation coefficient of each node [16]:

Pi = 1 −
NM∑

s=1

(
κis

ki

)2

(4)

where κis is the number of links from node i to nodes in module s, ki is the
degree of node i and NM is the number of communities. It is an index of the
degree of participation of a node to the network communities since its value
is close to 1 if the connections of the node are uniformly distributed among
all the modules or 0 if all the connections are confined within a module.
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– Defined the inter-community strength of a community l as the sum of the
weights of links connecting the community l with all the other communities:

SINTER,l =
NM∑

m=1
m �=l

Wlm (5)

we used its average value over all the communities to measure the inter-
community strength of the network.

– At the same manner, defined the intra-community strength of a community l
with Nl nodes as the sum of the weights of links within it:

SINTRA,l =
Nl∑

i=1

Nl∑

j=i+1

wij (6)

its average value is used to quantify the global intra-community strength.

For each subject and each modality, median, standard deviation, range and
interquartile range of the distributions of strength, clustering coefficient and
participation coefficient were calculated resulting in a 27 × 45 feature matrix
used for k-nn prediction.

3.3 K - Nearest Neighbors

The working principle of a k-nn algorithm is the following: it identifies an estab-
lished number (k) of closest training examples to a query point and assigns it
the label of the class that has the most instances in the set of nearest neighbors
of the point. The metric used to evaluate distances between points is cosine.

This technique offers some advantages over other unsupervised classification
methods:

– it is a non-parametric instance-based learning method: it does not build a
model so it might be more suitable in some particularly complex classification
problems;

– it also works even in the presence of a small number of training examples.
In this case, an unsupervised algorithm such as k-means or k-medoids, which
makes decisions mainly based on the distance of a query point from a centroid
or medoid of a class, could introduce a significant bias in the presence of
outliers.

In this work, a k-nn classifier was used with a one-class discrimination logic
in order to identify the category-I subjects against all the other subjects in a
semi-unsupervised manner. For this purpose, given the matrix of the graph-
based features, the k-nn algorithm performs an exhaustive search to calculate
the distance between the feature vectors of the subjects with unknown labels and
those relating to the subjects of the category-I. This search provides a ranking
of the subjects among which the closest ones are selected.
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3.4 Structural Feature Extraction

We performed our analysis using volumetric and cortical thickness features com-
puted with FreeSurfer [12]. FreeSurfer1 is an image analysis software commonly
adopted for the analysis and visualization of structural and functional neu-
roimaging data developed by the Laboratory for Computational Neuroimaging
at the Athinoula A. Martinos Center for Biomedical Imaging. In particular, we
have employed FreeSurfer tool v5.1 in the cortical reconstruction to estimate the
volumetric features in MRI. Specifically, we have extracted only 180 features pro-
vided by the recon-all freesurfer command. To name a few: Left-Latera-Ventricle,
Right-Latera-Ventricle, Left-Inf-Lat-Vent, Right-Inf-Lat-Vent, Left Hippocam-
pus, Right Hippocampus, and many more. We have run FreeSurfer tool on the
ReCaS infrastructure located at the Physics Department at University of Bari.
This infrastructure includes 1200 CPU cores, 4.5 TB of RAM, 4.5 PB of disk
space, and all computer node have a connection of 10 Gbit/s wire-speed. The
FreeSurfer image processing time is of 12 h for each MRI nevertheless the dis-
tributed method and the computational power of Data Center employed has
allowed us to obtain the output for all considered subjects in a time slightly
higher than that for a single subject. A specific software tool was performed to
automatically manage jobs in case of casual segmentation failure.

3.5 NC/Category-II Patients Discrimination

In the final step, the features extracted with FreeSurfer Tool were taken into
account to distinguish controls from category-II subjects. Among all the features,
those with high correlation values (r > 0.9) and those with low variance values
(less than 0.2) were not considered. Starting from the two known sets, the k-nn
algorithm builds two kd-trees to identify the subjects belonging from each group.

4 Discussion and Conclusions

In this paper, a framework to perform semi-unsupervised outcome prediction for
two categories of Mild TBI is presented. In particular, a two-steps classification
pipeline is adopted to emphasize the differences between the healthy control
group and the two patient groups.

In the first step, a complex network approach was applied to construct graphs
from available scans and to extract the topological features used to identify
category-I patients amongst all subjects. The mathematical model underlying
the graph theory was chosen because it provides a direct description of the
structural properties of a network. Furthermore, a multimodal analysis was car-
ried out to reflect the heterogeneity of injury patterns that can affect the patient
cohorts. More specifically, bearing in mind that an early detection of changes
in white matter tracts and in distribution of cerebrospinal fluid could improve

1 freesurfer.nmr.mgh.harvard.edu

http://freesurfer.nmr.mgh.harvard.edu
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significantly diagnoses and prognoses in case of diffuse axonal injury, contu-
sions, edema and hemorrhages [20], MD and FA maps were considered as well
as T1-weighted images. From each graph relating to each modality, topological
features able to capture different relational aspects of the network elements, were
computed. Besides the metrics commonly used to quantify the strength of the
topological connections and the total efficiency of the network (i.e., strength and
characteristic path length), a special focus was addressed to measures that reflect
the modular organization of the interacting elements. So other measures such as
the clustering coefficient, the participation coefficient, the intra-community and
inter-community strength, were introduced with the aim of assessing the degree
of weakening of the structural connections caused by injuries and the resulting
configuration changes. Finally, second-level statistical features were extracted
from the distributions of such metrics in order to provide a general description
of all the sample images. Indeed, in principle, traumatic injuries could affect sev-
eral brain regions causing extensive damage or they could be focal, compromising
a specific functional area.

In the second step, we performed the discrimination between controls and
category-II patients by means of a k-nn classifier. At this stage, FreeSurfer volu-
metric and cortical thickness features proved to be effective in detecting morpho-
logical differences between the two groups of subjects. However, given the small
number of examples for the two classes (five known labels for each group), dimen-
sionality reduction of the feature set was performed with minimum variance and
maximum correlation criteria. As a matter of fact, a binary k-nn classifier relies
on building two distance-trees, by calculating the distances between the training
examples of each of the two groups and the unlabeled instances and subsequent
by ranking these unknown instances. If the adopted distance metric is affected
by noise due to the presence of low-significance features, the computation of the
actual distance among the examples and the instances could be compromised,
causing worse performances [23]. In fact, a dimension of the feature space much
greater than the number of samples, would cause a problem of data sparsity,
making inconsistent the computation of the distance between couple of points
in the metric space.

In the context of the mTOP Challenge 2016, as winner, the performances of
the proposed method have proven to be higher than those of other approaches
based on Convolutional Network and Deep Learning. Our framework has good
generalization properties as is not constrained by the knowledge of the areas
involved in the traumatic injury. However, future developments may require a
greater number of training examples in order to validate the obtained results
and improve the classification accuracy.

Aknowledgement. Cortical reconstruction and volumetric segmentation were per-
formed with the FreeSurfer image analysis suite, which is documented and freely avail-
able for download online. The technical details of these procedures are described in
prior publications [6,7,9–15,17,19,30]. Briefly, this processing includes motion correc-
tion and averaging [26] of multiple volumetric T1 weighted images (when more than
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one is available), removal of non-brain tissue using a hybrid watershed/surface deforma-
tion procedure [30], automated Talairach transformation, segmentation of the subcorti-
cal white matter and deep gray matter volumetric structures (including hippocampus,
amygdala, caudate, putamen, ventricles) [12,13] intensity normalization [32], tessella-
tion of the gray matter white matter boundary, automated topology correction [11,31],
and surface deformation following intensity gradients to optimally place the gray/white
and gray/cerebrospinal fluid borders at the location where the greatest shift in intensity
defines the transition to the other tissue class [6,7,9]. Once the cortical models are com-
plete, a number of deformable procedures can be performed for in further data process-
ing and analysis including surface inflation [6], registration to a spherical atlas which uti-
lized individual cortical folding patterns to match cortical geometry across subjects [15],
parcellation of the cerebral cortex into units based on gyral and sulcal structure [8,10],
and creation of a variety of surface-based data including maps of curvature and sulcal
depth. This method uses both intensity and continuity information from the entire three-
dimensional MR volume in segmentation and deformation procedures to produce repre-
sentations of cortical thickness, calculated as the closest distance from the gray/white
boundary to the gray/CSF boundary at each vertex on the tessellated surface [9]. The
maps are created using spatial intensity gradients across tissue classes and are therefore
not simply reliant on absolute signal intensity. The maps produced are not restricted to
the voxel resolution of the original data thus are capable of detecting submillimeter dif-
ferences between groups. Procedures for the measurement of cortical thickness have been
validated against histological analysis [28] and manual measurements [21,29]. Freesurfer
morphometric procedures have been demonstrated to show good test-retest reliability
across scanner manufacturers and across field strengths [17,27].
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Abstract. We present an unsupervised three-dimensional feature clus-
tering algorithm to gather the mTOP2016 challenge data into 3 groups.
We use the brain MR-T1, diffusion tensor fractional anisotropy, and dif-
fusion tensor mean diffusivity images provided by the mTOP2016 com-
petition. A distance-based size constraint method for data clustering is
used. The proposed approach achieves 0.267 adjusted rand index and
0.3556 homogeneity score within the 15 labeled subjects, corresponding
to 10 correctly classified data items. Based on visual exploration of the
data, we believe that a localized analysis of the lesion regions, using the
computed tractography data, is a promising direction to pursue.

1 Introduction

This paper addresses the challenge of feature detection and classification of sub-
ject data based on brain imaging, as described in the mTOP challenge. The
imaging data include the MR-T1 and diffusion weighted images (DWI). While
there is extensive work on applying unsupervised learning to clustering 2-D image
features [1–3,6], the problems posed by the mTBI data set are particularly chal-
lenging since the features of interest are likely very localized. Furthermore, the
subject categorization is derived not necessarily from the image data but from
other observations, making this problem very distinct from the traditional works
in natural image processing.

We propose a fully unsupervised methodology to learn the 3-D features from
the data, a 3-D convolutional network to extract the feature representation for each
subject, and a distance-based size constraint methodology for data clustering.

2 Unsupervised 3-D Feature Learning

Our proposed workflow includes four stages. The first stage performs data prepa-
ration and pre-processing on mTOP 2016 data set. The second stage performs
learning 3-D features from brain MR-T1, diffusion tensor fractional anisotropy

c© Springer International Publishing AG 2016
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(DT-FA) and diffusion tensor mean diffusivity (DT-MD) images from 27 sub-
jects of mTOP2016 data set. The third stage performs feature representation for
each subject, and the last stage performs group clustering based on these feature
representations.

2.1 Data Preparation and Pre-processing

The mTOP data consists of MR-T1, DT-FA and DT-MD images, see Fig. 1.
This data set contains 27 subjects belonging to 3 different categories (healthy,
patient category 1 or patient category 2) each consisting of 9 subjects. mTBI
Patients are categorised into one of two groups based on their long term recovery
status following the injury. The imaging data includes for MR-T1 image at 182×
218× 182 voxels, with 1 mm × 1 mm × 1 mm voxel resolution, and the dimension
for DT-FA and DT-MD image is 91 × 109 × 91 with 2 mm × 2 mm × 2 mm voxel
resolution.

Fig. 1. Left: MR-T1 image, Middle: DT-FA image, Right: DT-MD image

Data preparation for MR-T1 images is shown in Fig. 2. For MR-T1 images,
we consider 8 × 8 × 8 voxel volume represented as a 512 dimensional vector of
voxel values, x̃

(i)
T1 ∈ R

512, where i indexes the 3-D patch. The overlap between the
volumes in a sliding window is 50%, and those volumes that have more than 75%
zero values are discarded. Thus, a large number of data vectors are generated
that are the organized as column vectors in a matrix.

Moreover, these vectors are normalized to zero mean and unit standard devi-
ation:

x(i) =
x̃(i) − mean(x̃(i))

std(x̃(i))

where x̃(i) is a unnormalized column vector and “mean” and “std” are the mean
and standard deviation of the element of x̃(i). Let XT1 represent this matrix
that includes data from all of the 27 subjects. Similarly, two other matrices XFA

and XMD are constructed. However, since the spatial resolution of the data for
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Fig. 2. Data preparation for MR-T1 images

these two cases are different from the MR-T1, we use a 4 × 4 × 4 voxel volume.
Therefore, the data vectors all represent a 512 mm3 spatial volume.

After normalization, we apply the standard Zero Component Analysis (ZCA)
whitening transform [5] on each of the datasets XT1,XFA, and XMD. This
helps minimize the correlation among the components of the column vectors.
For contrast-normalized data, we set the whitening parameter εzca to 0.01 for
8 × 8 × 8 voxel patches and 0.1 for 4 × 4 × 4 voxel patches.

2.2 Dictionary Learning via K-means Clustering

The next step is to learn a dictionary for each of the data matrices using the stan-
dard K-means clustering. A separate dictionary is learned for each of the three
matrices. Let the data matrix be X ∈ R

N×M and the corresponding dictionary
be D ∈ R

N×K . Then,

Loop until convergence:

c
(i)
j =

⎧
⎨

⎩

D(j)�x(i), if j = arg min
l

|D(l)�x(i)| ∀i, j.

0, otherwise.

D := XC� + D

D(j)/||D(j)||2 ∀j

where c
(i)
j is the code vector associated with the input x(i) (ith column of X),

and D(j) is the jth column of the dictionary D that is a 3-D feature we learned.
In the end, we will learn K 3-D features from a dataset (D ∈ R

N×K). Note that
C ∈ R

K×M . Let the three corresponding dictionaries be DT1,DFA, and DMD.

2.3 Feature Representation

Feature computation workflow schematic is shown in Fig. 3. Input data includes
the three types: brain MR-T1, DT-FA and DT-MD, for each of the subjects.
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Each of these datasets is first normalized by subtracting the mean voxel value
and dividing by the standard deviation within the brain region. The dictionary
code words learned from the K-means clustering above are used as the weights
for the first convolutional layer. The stride for MR-T1 is 2 voxels, and for DT-
FA and DT-MD is 1 voxel. This is followed by a 3-D max-pooling layer of size
3×3×3. The final merge layer concatenates the features from the three different
pooling layers, thus constructing a single feature vector for each of the subjects.
The dimensions of the resulting 3-D feature vector is 1536 × 25 × 32 × 23.

Fig. 3. 3-D Convolutional network for feature extraction

2.4 Group Clustering with Size Constraints

Ideally one would like to train the convolutional network to adjust the weights
for discriminating the three different classes. However, given the number of data
points, this is currently not feasible. We explored training an SVM with cross-
validation but the initial results were not promising. Instead, we now consider
this problem as one of unsupervised clustering in the feature space computed by
the above hand-tuned convolutional network.

For clustering, we use the standard K-means clustering with distance-based
size-constraint, building upon the method described in [8]. However, [8] does not
provide a unique solution as it only uses the cluster labels. Instead, we modify
the method to account for both labels and distances to the centroid as follows.

Given a dataset of N objects with P centroids (number of clusters), let Dist
be the N × P distance matrix,
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Dist =

⎡

⎢
⎢
⎢
⎣

d11 d12 . . . d1P
d21 d22 . . . d2P
...

...
. . .

...
dN1 xN2 . . . dNP

⎤

⎥
⎥
⎥
⎦

(1)

where dip is the distance between i object and p-th centroid. The objective is to
compute a constrained P × N binary label matrix L,

L =

⎡

⎢
⎢
⎢
⎣

l11 l12 . . . l1N
l21 l22 . . . l2N
...

...
. . .

...
lP1 lP2 . . . lPN

⎤

⎥
⎥
⎥
⎦

(2)

such that

P∑

i=1

lij = 1, j = 1, . . . , n, and
N∑

j=1

lij = Ni, i = 1, . . . , p (3)

where lij = 1 if the j-th object is assigned to cluster i, and cluster i is constrained
to have exactly Ni points. This results in the following problem statement:

minimize
n∑

k=1

Dist(k)L
(k) (4)

where Dist(k) is the kth row of Dist, and L(k) is the kth column of L. This
binary integer linear programming problem can be easily solved by any existing
solver. The mTOP2016 data set has 27 subjects which are belonged to three
different classes, and each class has nine subjects. Therefore, for this data set,
we set N = 27, P = 3, and Ni = 9 for each class.

3 Experiments and Discussions

Experiments are carried out with the following parameter settings: (i) whether
to use whitening (ii) the size of 3-D patches (iii) the size of 3-D max-pooling
kernel (iv) the number of 3-D features. We use adjusted rand index (ARI) [4] and
homogeneity score (HS) [7] to measure the performance. The adjusted rand index
measures the similarity of two assignments (clustered labels vs. ground truth
labels), which is invariant to permutations and normalised to chance. Similarity
score is between 1.0 and −1.0. Random labelings have a ARI close to 0.0, and
1.0 stands for perfect match. Homogeneity score measures the purity of ground
truth labels within cluster. HS is between 1.0 and 0.0. 1.0 stands for perfectly
homogeneous labeling.
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3.1 Effect of Whitening

In general, the whitening transformation helps improve the accuracy. Figure 4
shows some example dictionary elements learnt from K-means clustering and
contrasts that to the original data. We observe that the ZCA transformation
results in a sharper dictionary kernel. Figure 5 shows the clustering performance
with and without whitening. The x-axis here shows the size of the dictionary.
With the ZCA transform the results improve considerably as evidenced by the
corresponding ARI and HS scores. This experiment used a stride size of 4 voxel
and 8 × 8 × 8 patch size for MR-T1 images, a stride size of 2 voxel and 4 × 4 × 4
patch size for DT-FA and DT-MA image, and a 25 × 32 × 23 kernel in the
max-pooling layers.

Fig. 4. 3-D features learned by K-means algorithm from MR-T1 images. Each row
stands for a 3-D feature and different columns stand for different axial planes. Left:
Learned from whitened image patches. Right: Learned from un-whitened image patches

3.2 Effect of 3-D Patch Size

We also computed features at different 3-D patch (volume) size settings and the
results are plotted in Fig. 6. Similar to the previous figure, the x-axis shows the
size of the dictionary. The 3-D feature size in the inset corresponds to the MR-T1
images. This experiment used ZCA transformed (whitened) data and 3 × 3 × 3
kernels in max-pooling layers, 2 voxel stride size for MR-T1 image and 1 voxel
stride size for DT-FA and DT-MD images. Overall, the 8 × 8 × 8 features for
MR-T1 image and the 4 × 4 × 4 features for DT-FA and DT-MD image worked
best. Therefore, increasing the max-pooling kernel decreased the classification
accuracy.

3.3 Effect of the Size of 3-D Max-pooling Kernel

In Fig. 7, we compared the results between 3× 3× 3, and 25× 32× 23 maximum
pooling kernel size. The x-axis also shows the size of the dictionary. In our
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Fig. 5. The effect of whitening

Fig. 6. The effect of 3-D features size

experiments we observe that 3 × 3 × 3 maximum pooling kernels have the best
performance. This experiment used whitened data sets, 8×8×8 feature kernels,
and a stride size of 2 voxel for MR-T1 image, and 4 × 4 × 4 feature kernels and
1 voxel for DT-FA and DT-MD images.
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Fig. 7. The effect of max-pooling size

3.4 Effect of Dictionary Size

We considered feature representations with 64, 128, 256, and, 512 3-D dictionary
items. Figures 5, 6 and 7 clearly show that a dictionary size of 512 gives the best
results. Going beyond 512 did not result in much improvement.

4 Conclusion

We explored unsupervised classification of the mTBI challenge data set. Given
the small number of samples, it is not feasible to train a deep learning network for
feature extraction and classification. Instead we focused on computing volume
features and using it for classification. In the end, the best classification results
correctly classified 10 out of 15 samples for which the labels are known, and the
corresponding unsupervised clustering scores are ARI = 0.267 and HS = 0.3556.
We are currently working on extending this to use the tractography data com-
puted from the DWI. Here we notice that there are significant discontinuities in
the computed tracks at several potential lesion locations. Future work includes
developing automated methods to detect such discontinuities and score them.
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