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Abstract—To perform probabilistic tsunami hazard assessment

for subduction zone earthquakes, it is necessary to start with a

catalog of possible future events along with the annual probability

of occurrence, or a probability distribution of such events that can

be easily sampled. For near-field events, the distribution of slip on

the fault can have a significant effect on the resulting tsunami. We

present an approach to defining a probability distribution based on

subdividing the fault geometry into many subfaults and prescribing

a desired covariance matrix relating slip on one subfault to slip on

any other subfault. The eigenvalues and eigenvectors of this matrix

are then used to define a Karhunen-Loève expansion for random

slip patterns. This is similar to a spectral representation of random

slip based on Fourier series but conforms to a general fault

geometry. We show that only a few terms in this series are needed

to represent the features of the slip distribution that are most

important in tsunami generation, first with a simple one-dimen-

sional example where slip varies only in the down-dip direction and

then on a portion of the Cascadia Subduction Zone.

Key words: Probabilistic tsunami hazard assessment, seismic

sources, Karhunen-Loève expansion, subduction zone earthquakes.

1. Introduction

Computer simulation of tsunamis resulting from

subduction zone earthquakes can be performed using

a variety of available software packages, most of

which implement the two-dimensional shallow water

equations and require the vertical seafloor motion

resulting from the earthquake as the input to initiate

the waves. For recent past events, this can be

approximated based on source inversions; one

example is shown in Fig. 1. However, there are

several situations in which it is desirable to instead

generate hypothetical future earthquakes. In particu-

lar, recent work on probabilistic tsunami hazard

assessment (PTHA) has focused on producing maps

that indicate the annual probability of flooding

exceeding various depths and can provide much more

information than a single ‘‘worst considered case’’

inundation map (for example, Adams et al. 2015;

Geist and Parsons 2006; Geist et al. 2009; Goda et al.

2015; González et al. 2009; Jaimes et al. 2016;

Løvholt et al. 2012; Witter et al. 2013). This requires

running tsunami simulations for many potential

earthquakes and combining the results based on the

annual probability of each, or using a Monte Carlo

approach to sample a presumed probability density of

potential earthquakes. Generating a large number of

hypothetical events can also be useful for testing

inversion methods that incorporate tsunami data, such

as the current DART buoy network (e.g., Dettmer

et al. 2016), or that might give early tsunami warn-

ings for the nearshore (e.g., Melgar et al. 2016a).

Both probabilistic seismic hazard assessment (PSHA)

and PTHA are also fundamental tools in the devel-

opment of building codes that are critical in the

design of structures able to withstand seismic and

tsunami forces (e.g., Chock 2015).

The primary goal of this paper is to introduce a

general approach to generating hypothetical rupture

scenarios for possible future earthquakes, by pro-

ducing random slip patterns on a pre-specified fault

geometry. Similar techniques have been used in past

studies, particularly for the generation of seismic

waves in PSHA, which has a longer history than

PTHA. A variety of techniques have been proposed

for generating random seismic ruptures, see for

example studies by Anderson (2015), Dreger et al.

(2015), Frankel (1991), Graves and Pitarka (2010),

Goda et al. (2014), Guatteri et al. (2003), Lavallée
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et al. (2006), Mai and Beroza (2002). One approach

is to use a spectral representation of the slip pattern as

a Fourier series with random coefficients that decay

at a specified rate based on the desired smoothness

and correlation length of the slip patterns, e.g., as

estimated from past events in the work of Mai and

Beroza (2002). Different correlation lengths can be

specified in the strike and slip directions, if these

directions are used as the horizontal coordinates in

the Fourier representation and the fault is roughly

rectangular, as done for example by Mai and Beroza

(2002), Graves and Pitarka (2010).

Our approach is very similar on a rectangular fault

but generalizes easily to other fault geometries using

a Karhunen–Loève expansion. This work was moti-

vated in particular by the need to model events on the

curving Cascadia Subduction Zone (CSZ), which lies

offshore North America and runs nearly 1200 km

from Northern California up to British Columbia, see

Fig. 2.

The fault is subdivided into many rectangular

subfaults and a value of the slip si is assigned to the ith

subfault. If here are N subfaults, then this defines a

vector s 2 lRN . Initially we assume that the moment

magnitude Mw of the earthquake (which depends on the

total slip summed over all subfaults) has been pre-

scribed, and also that the desired mean slip l 2 lRN and

covariance matrix Ĉ 2 lRN�N are known. The mean

slip is a vector with components li ¼ E½si�, the

expected value of the slip on the ith subfault, and the

N � N covariance matrix Ĉ has components

Ĉij ¼ E½ðsi � liÞðsj � ljÞ�, which can also be expres-

sed as the outer product Ĉ ¼ E½ðs� lÞðs� lÞT �,
where T denotes transposing the vector.

The Karhunen–Loève (K-L) expansion (e.g.,

Ghanem and Spanos 1991; Huang et al. 2001; Kar-

hunen 1947; Loève 1977; Schwab and Todor 2006) is

a standard approach to representing a Gaussian ran-

dom field as a linear combination of eigenvectors of

the presumed covariance matrix Ĉ. If the matrix Ĉ

has eigenvalues kk (ordered with k0 [ k1 [ � � � [ 0)

and corresponding eigenvectors vk, then the K-L

expansion expresses the slip vector s as

s ¼ lþ
XN

k¼1

zk

ffiffiffiffiffi
kk

p
vk: ð1Þ

where the zk are independent normally distributed

random numbers zk �Nð0; 1Þ with mean 0 and

Figure 1
An example of slip distributed on a fault plane, from the USGS inversion of the 27 February 2010 event off Maule, Chile (USGS 2010). The

plot on the right shows the resulting sea floor deformation computed using the Okada solution to the elastic half-space problem, with the coast

line in green
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standard deviation 1. This is described in more detail

in Sect. 2 where we explain why this gives random

slip patterns with the desired mean and covariance.

This expansion makes it easy to generate an arbitrary

number of realizations using standard software to

generate Nð0; 1Þ random numbers.

Figure 2 shows an example of the first four

eigenmodes for the CSZ using this approach, where

the N components of each eigenvector are repre-

sented on the fault geometry using a color map in

which magenta is positive and green is negative. Note

that Mode 0 is roughly constant over the fault, so

adding a multiple of this mode modifies the total slip

and hence the magnitude Mw. On the other hand, the

other modes have both positive and negative regions

and so adding a multiple of any of these tends to

redistribute the slip (e.g., up-dip/down-dip with Mode

1 or between north and south with Mode 2). As with

Fourier series, higher order eigenmodes are more

oscillatory.

If the presumed correlation lengths are long and

the covariance is a sufficiently smooth function of the

distance between subfaults, then the eigenvalues kk

decay rapidly (there is little high-frequency content)

and so the K-L series can often be truncated to only a

few terms, greatly reducing the dimension of the

stochastic space that must be explored.

The K-L series approach could also be used to

generate random slip patterns for generating seismic

waves, e.g., for performing PSHA or testing seismic

inversion algorithms. In this case, high-frequency

components of the slip are very important and the

K-L expansion may not decay so quickly. However,

for tsunami modeling applications the slip pattern on

the fault is only used to generate the resulting seafloor

deformation. This is a smoothing operation that

suppresses high frequencies. In this paper, we also

explore this effect and show that truncating the

expansion to only a few terms may be sufficient for

many tsunami applications. Reducing the dimension

of the stochastic space is important for efficient

application of many sampling techniques that could

be used for PTHA analysis.

In this paper, we focus on explaining the key ideas

in the context of a one-dimensional fault model (with

variation in slip only in the down-dip direction) and a

two-dimensional example using the southern portion

of the CSZ. However, we do not claim to have used

the optimal parameters for modeling this particular

fault. We also do not fully explore PTHA applica-

tions here, and for illustration we use some quantities

of interest related to a tsunami that are easy to

compute from a given slip realization, rather than

performing a full tsunami simulation for each. This

Figure 2
Subdivision of the Cascadia Subduction Zone into 20 subfaults, following Pollitz et al. (2010). These are further divided into 865 subfaults to

compute the modes shown, which are the first four eigenvectors of the 865 � 865 covariance matrix as might be used in a Karhunen–Lòeve

expansion. Magenta and green are used to indicate positive and negative entries in the eigenmodes
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allows us to explore the statistics obtained from a

large number of realizations (20,000) to illustrate

some possible applications of this approach and

explore the effects of truncating the K-L series. Work

is underway to model the CSZ in a realistic manner

and to couple this approach with a full tsunami

model.

The K-L expansion as described above generates

a Gaussian random field, in which each subfault slip

si has a normal distribution with mean li and vari-

ance Ĉii and together they have a joint normal

distribution with mean l and covariance matrix Ĉ. A

potential problem with this representation is that

when the variance is large it is possible for the slip si

to be negative on some subfaults. Since we assume

the rake is constant (e.g., 90� for a subduction thrust

event), this would correspond to subfaults that are

slipping in the wrong direction. The same issue arises

with Fourier series representations and can be dealt

with by various means, for example, by simply set-

ting the slip to zero anyplace it is negative (and then

rescaling to maintain the desired magnitude). This

naturally changes the statistics of the resulting

distributions.

Another approach is to instead posit that the

random slip can be modeled by a joint lognormal

distribution, for which the probability of negative

values is zero. Random slip patterns with a joint

lognormal distribution can be generated using the

K-L expansion to first compute a Gaussian field and

then exponentiating each component of the resulting

vector to obtain the slip on each subfault. By

choosing the mean lg and covariance matrix Ĉg for

the Gaussian field properly, the resulting lognormal

will have the desired mean l and Ĉ for the slip. This

is discussed in Sect. 4 and used in the two-dimen-

sional example in Sect. 5.

2. Expressing Slip Using a Karhunen–Loève

Expansion

If the earthquake fault is subdivided into N small

rectangular subfaults, then a particular earthquake

realization can be described by specifying the slip on

each subfault, i.e., by a vector s 2 lRN where si is the

slip on the ith subfault. Note that we are assuming

that only the slip varies from one realization to

another; the geometry and rake (direction of slip on

each subfault) are fixed, and the slip is instantaneous

and not time dependent. These restrictions could be

relaxed at the expense of additional dimensions in our

space of realizations.

Initially, assume we wish to specify that the slip is

a Gaussian random field with desired mean slip l 2
lRN and covariance matrix Ĉ 2 lRN�N , which we

write as s�Nðl; ĈÞ. Then we compute the eigen-

values kk of Ĉ and corresponding normalized

eigenvectors vk so that the matrix of eigenvectors V

(with kth column vk) and the diagonal matrix of

eigenvalues K satisfy Ĉ ¼ VKVT . Note that the

covariance matrix is symmetric positive definite, so

the eigenvalues are always positive real numbers and

the eigenvectors can be chosen to be orthonormal,

V�1 ¼ VT .

Then the K-L expansion (1) can be written in

matrix-vector form as

s ¼ lþ VK1=2z; ð2Þ

where z 2 lRN is a vector of independent identically

distributed Nð0; 1Þ random numbers. Realizations

generated via the K-L expansion have the right

statistics since we can easily compute that E½s� ¼ l

(since E½z� ¼ 0) and

E½ðs� lÞðs� lÞT � ¼E½VK1=2zzTK1=2VT �
¼VK1=2E½zzT �K1=2VT

¼VKVT ¼ Ĉ ð3Þ

using the fact that V and K are fixed and E½zzT � ¼ I.

Note that the z could be chosen from a different

probability density with mean 0 and covariance

matrix I and achieve the same covariance matrix Ĉ

with the K-L expansion, although the s would not

have a joint normal distribution in this case.

3. One-Dimensional Case: Down-Dip Variation

We first illustrate this technique on a simplified

case, a rectangular fault plane that is essentially

infinitely long in the strike direction and with uniform

slip in that direction, similar to the test case used by

Løvholt et al. (2012). The slip will only vary in the

R. J. LeVeque et al. Pure Appl. Geophys.
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down-dip direction, reducing the problem to a single

space dimension. The fault width is 100 km, a typical

width for subduction zone faults, and is assumed to

dip at 13� from horizontal, with the upper edge at a

depth of 5 km below the sea floor.

For the tests we perform here, we will focus on

events of a single specified magnitude. The moment

magnitude Mw is a function of the total slip integrated

over the entire fault plane, and also depends on the

rigidity of the rock. For typical rigidity parameters,

an average of 10 m of slip distributed over a fault that

is 100 km wide and 1000 km long would result in a

magnitude Mw � 9:0 and so we fix the total slip to

have this average. If the fault were only half as long,

500 km, then this would be a Mw � 8:8 event and 20

m average slip would be required for a magnitude 9

event. With the exception of the potential energy, the

quantities of interest considered in this paper are all

linear in the total slip, however, it does not really

matter what value we choose.1

An important aspect of PTHA analysis is to

consider possible events of differing magnitudes as

well, and take into account their relative probabilities.

For smaller earthquakes, the Gutenberg–Richter

relation approximately describes their relative fre-

quency, but for large subduction zone events that may

have a recurrence time of hundreds of years, there is

generally no simple model for the variation of annual

probability with magnitude. There may be a contin-

uous distribution of magnitudes or there may be

certain ‘‘characteristic earthquakes’’ that happen

repeatedly after sufficient stress has built up. The lack

of detailed data for past events over a long time

period makes this difficult to assess.

For the purposes of this paper, we assume that an

earthquake of a particular magnitude occurs and we

wish to model the range of possible tsunamis that can

arise from such an event. We thus discuss the relative

probability of different slip patterns and tsunamis

given that an event of this magnitude occurs, and so

the probability density should integrate to 1. This

could then be used as one component in a full PTHA

analysis by weighting these results by the probability

that an event of this magnitude occurs and combining

with similar results for other magnitudes. Alterna-

tively, one could introduce the magnitude as an

additional stochastic dimension and assume some

probability density function for this.

We use x to denote the distance down-dip and

split the fault into N segments of equal width Dx,

where NDx is the total width of the fault in the dip

direction. We then specify N slips si for

i ¼ 1; 2; . . .;N. In our one-dimensional experiments,

we take N ¼ 200. This is finer than one would use in

two dimensions and much finer than is needed to

represent slip at an adequate level for either seismic

or tsunami modeling. (For example, note from Fig. 1

that the seismic inversion for this event represents the

slip as piecewise constant on a 18 � 10 grid with only

10 segments in the down-dip direction.) One could

certainly reduce the dimension of the stochastic space

below N ¼ 200 using fewer subfaults. However, we

will show that the dimension can be drastically

reduced by instead using the K-L expansion reduced

to only a few terms (e.g., 3, for this one-dimensional

model the parameter choices below). By starting with

a fine discretization of the fault, the eigenmodes used

are smooth and perhaps better represent actual slip

patterns than piecewise constant functions over large

subfaults.

We assume that the N slips are to be chosen

randomly from a joint normal distribution with mean

l ¼ ½l1; l2; . . .; lN �T . The mean is chosen to be the

desired taper, scaled to have the desired total slip. As

an illustration of taper, we use the function

sðdÞ ¼ 1 � expð�20 jd � dmaxj=dmaxÞ ð4Þ

where d is the depth of a subfault and

dmax ¼ 22; 500 m is the maximum depth of the fault.

This function is close to 1 over most of the fault but

tapers toward the down-dip edge. This taper, after

scaling to give the mean slip, is shown as the dashed

line in Fig. 3b. Other tapers can be used instead, e.g.,

the taper proposed by Wang and He (2008).

We set the desired covariance matrix to be Ĉij ¼
rirjCij where ri ¼ ali for some scalar a 2 lR and C is

the desired correlation matrix. Since a scales the

standard deviation relative to the mean, the larger this

is the more likely the slip is to be negative in some

1 We follow http://earthquake.usgs.gov/aboutus/docs/020204

mag_policy.php and use Mw ¼ 2
3
ðlog10ðMoÞ � 9:05Þ where the

seismic moment Mo ¼length � width� (average slip)� (rigidity)

and set the rigidity to 3:55 � 1010 N-m for this calculation.
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regions. We take a ¼ 0:75, which tends to keep the slip

positive everywhere, as desired, while still giving

reasonable variation in slip patterns. This is similar to

the value 0.85 used by Graves and Pitarka (2010) with

the Fourier approach. The correlation matrix is given

by Cij ¼ corrðjxi � xjjÞ in terms of some autocorre-

lation function (ACF) corrðrÞ, and we choose

corrðrÞ ¼ expð�r=r0Þ; ð5Þ

where the correlation length is set to r0 ¼ 0:4W ¼ 40

km, i.e., 40 % of the fault width as suggested by the

work of Mai and Beroza (2002). Figure 3a shows the

first 20 eigenvalues on a logarithmic scale, showing

that they decay like kk � 1=k2. This is the same

spectral decay rate as would be observed from taking

the Fourier transform of the exponential ACF in a

Fourier series-based approach. If the discretization is

refined (i.e., the number of subfaults N grows), the

spectral properties of the correlation matrix Cij con-

verge to those of the continuous ACF (5). For the

untapered case on an finite interval, the analytic

expressions for the eigenvalues of the ACF are

known in terms of transcendental equations (Van

Trees et al. 2013) and the decay can be shown to

asymptotically approach 1=k2. More generally a dif-

ferent autocorrelation function could be chosen with

a minor change to the code; for example, a von

Karman ACF as considered in Mai and Beroza

(2002), Graves and Pitarka (2010).

For our choice of ACF, Fig. 3b shows the taper

along with the first several eigenvectors of the

covariance matrix C, ordered based on the magnitude

of the eigenvalues. For comparison purposes, they are

scaled to have maximum amplitude 1 and to be

positive at the up-dip edge. Note that the lowest mode

0 looks very similar to the taper. Adding in a multiple

of this mode will modify the total slip and hence the

magnitude, so we drop this mode from the sum. The

higher modes are orthogonal to mode 0 and hence do

not tend to change the total slip. They look like

Fourier modes that have been damped near the down-

dip boundary by the taper.

To create a random realization, we choose a

vector z of N i.i.d. Gaussian Nð0; 1Þ values zk for

k ¼ 0; 1; . . .;N � 1. If we neglect the 0-mode and

truncate the expansion after m terms, then this

amounts to setting z0 ¼ 0 and zk ¼ 0 for k [m. We

will denote such a z vector by z½m�. The slip pattern

can then be written as

s ¼ lþ VK1=2z½m�: ð6Þ

The left column of Fig. 4 shows the mean slip in the

top plot, followed by several random realizations

generated by the K-L expansion using 20 terms, with

the z½20� coefficients chosen as i.i.d. Nð0; 1Þ values.

These are the blue curves in each plot. In each case,

the slip is also shown when only 3 terms in the series

are used (i.e., z½3� is computed by leaving z1; z2; z3

unchanged from z½20� but with the higher terms

dropped, equivalent to truncating the expansion at an

earlier point). These slip patterns, shown in red, are

smoothed versions of the 20-term slip patterns since

Figure 3
Eigenvalues decay like 1=k2 when the exponential autocorrelation function is used. The corresponding eigenvectors are similar to Fourier

modes, shaped by the taper. The taper is shown as a dashed line and the eigenmodes are normalized to have max-norm equal to 1
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the higher wave number components have been

suppressed. In many cases there appears to be quite a

large difference between the 3-term and 20-term

slips. This is a reflection of the fact that the eigen-

values do not decay all that quickly in this case.

There would be faster decay if a longer correlation

length were chosen, and much more rapidly if the

Gaussian autocorrelation function were chosen

instead of the exponential.

In spite of the differences in the slip patterns, for

tsunami modeling the 3-term series may still be

adequate. The right column of Fig. 4 shows the sea

floor deformations DB that result from the slips

shown on the left. These are computed using the

Okada solution (Okada 1985) to the homogeneous

elastic half plane problem consisting of uniform

dislocation on a rectangular subfault. Okada’s result

is the surface deformation, which can be evaluated on

a fine grid at the surface. Applying this to each sub-

fault, weighting by the corresponding slip, and

summing the results produces (by linearity) the

resulting sea floor deformation DB in Fig. 4. The blue

curves show the deformation due to the 20-term sum

while the red curves show the deformation resulting

from the truncated 3-term sum. Note that high

wavenumber oscillations in the slip pattern are highly

damped in the resulting seafloor deformations. (The

degree of damping increases with depth of the fault

below the surface.) If the DB are sufficiently similar

between the 3-term and the full K-L expansion, then

there is no reason to use more terms. In this case, we

have reduced the stochastic space that needs to be

explored down to 3 dimensions. There is much

greater similarity for some realizations than for oth-

ers, and so below we examine the statistical

properties of this approximation using a sample of

20,000 realizations.

Note that using only 3 modes may be too few for

this particular set of fault parameters—the compar-

isons shown in Fig. 4 would look more similar if a

few more terms were retained—but we will see that

good statistical properties are obtained even with this

severe truncation. How many terms are required

depends on various factors: not only the correlation

structure of the slip as discussed above, but also the

depth of the fault plane. The deeper it is, the more

damping takes place when the elastic wave model is

used to obtain the Okada solution for seafloor

deformation. Here, we placed the top of the fault

plane at 5 km depth.

To examine statistical properties of the 20-term

sum and the 3-term approximation, we generate

20,000 samples of each and compare some quantities

that are cheap to compute but that are important

indicators of the severity of the resulting tsunami.

Running a full tsunami model based on the shallow

water equations is not feasible for this large number

of realizations, but the quantities we consider will

stand in as proxies for the quantities one might

actually want to compute, such as the maximum

depth of flooding at particular points onshore.

Moreover, the distribution of these proxy values can

be used in a later stage to help choose particular

earthquake realizations for which the full tsunami

model will be run. It is desirable to run the model

with judiciously chosen realizations for which the

proxy values are well distributed over the range of

possible values. The computed densities of the proxy

values can also be used to weight the results from the

full model runs to accurately reflect the probabilities

of such events. This will be explored in detail in a

future paper.

Computations for a large number of realizations

can be sped up substantially by realizing that the

Okada solution is linear in slip, i.e., if the slip vector

is given by s then the resulting sea floor deformation

can be written as DB ¼ Hs for a matrix H 2 lRNB�N ,

where NB is the number of grid points at which the

deformation DB is evaluated (in our experiments we

use NB ¼ 1001 over an interval that extends 100 km

on either side of the fault region). The Okada solution

implemented in the GeoClaw dtopotools Python

module is used, which directly computes DB from s

and so we do not actually compute the matrix H, but

bFigure 4

The left column shows slip on the fault plane of width W ¼ 100

km. The right column shows the resulting seafloor deformation if

the up-dip edge of the fault plane is 5 km below the surface and it

dips at 13�. The top row shows the mean slip and resulting

deformation. The remaining rows show random realizations using

20 terms of a K-L expansion (blue) and the same sum truncated to 3

terms (red)

R. J. LeVeque et al. Pure Appl. Geophys.

16Reprinted from the journal



it is useful conceptually. In particular, if the K-L

expansion (6) is to be used to compute s then we find

that

DB ¼ HlþHVK1=2z½m�: ð7Þ

The vector Hl is obtained by applying Okada to the

mean slip vector. The matrix HV can be computed by

applying Okada to each column of V to compute the

columns of the product matrix. Since the sum only

involves m nonzero terms, we need to only apply

Okada to columns 1 through m of V (i.e., the first m

K-L modes v1; v2; . . .; vm used to express s). Hence, if

we plan to use at most 20 modes of the K-L expan-

sion then we need only apply the Okada solution to

21 slip vectors and we can then take linear combi-

nations of the resulting sea floor deformations, rather

than applying Okada to 20,000 slip realizations

separately.

In practice, this can be simplified further.

Applying Okada to a mode vk actually requires

applying Okada to each of the N subfaults, weighting

by the corresponding element of vk, and summing

over all the subfaults. So applying Okada to m modes

in this way actually requires applying Okada mN

times. Instead, we can first apply Okada to N unit

source scenarios in which the slip is set to 1 on the jth

subfault and to 0 on all other subfaults. Call this slip

vector s½j�. Applying Okada to this gives a resulting

DB½j� ¼ Hs½j�. Now for any slip vector s we can

compute Hs as

Hs ¼
XN

j¼1

sjDB
½j�: ð8Þ

In particular, taking s ¼ vk would give Hvk, but (8)

can be used directly to compute the seafloor defor-

mation DB ¼ Hs for any slip realization. This

approach can also be used in the lognormal case

described in Sect. 4 and employed in Sect. 5.

Subsidence or uplift One quantity that has a signifi-

cant impact on the severity of tsunami flooding is the

vertical displacement of the seafloor at the coast. If

this displacement is negative and the land subsides at

the shore, then flooding may be much worse than if

uplift occurs. The behavior seen for a particular event

depends on how far offshore the subduction zone is,

which is generally directly related to the width of the

continental shelf offshore from the community of

interest (since the top edge of the fault is usually

located near the trench at the edge of the shelf, which

is part of the continental plate beneath which the

oceanic plate is subducting). This distance can vary

from only a few km (e.g., along the Mexico coast) to

200 km (e.g., along the coast of Japan where the

Tohoku event occurred). In our model, the top of the

plate is at x ¼ 0 and we choose the coast line location

to be at x ¼ 75 km, which gives a wide range of

subsidence and uplift values, as can be observed for

the realizations shown in Fig. 4.

The displacement at one particular point is easy to

determine from each realization, it is just one entry in

the vector of sea floor deformation obtained from the

Okada solution, say DBj ¼ eT
j DB for some j, where ej

is the unit vector with a 1 in position j. (We have

evaluated DB on a fine grid so we assume we do not

need to interpolate). As such, this particular quantity

is in fact easy to compute directly from z for any

given realization, as

DBshore ¼ DBshoreðlÞ þ bTz; ð9Þ

where DBshoreðlÞ ¼ eT
j Hl is the shoreline displace-

ment resulting from the mean slip and the row vector

bT is

bT ¼ eT
j HVK1=2; ð10Þ

i.e., the vector consisting of the jth component of the

sea floor displacement resulting from applying Okada

to each K-L mode, scaled by the square root of the

corresponding eigenvalue. From (9) it follows

immediately that DBshore is normally distributed with

mean DBshoreðlÞ and variance r2 ¼
Pm

k¼1 b2
k (in the

Gaussian case considered here, not in the lognormal

case considered below). Hence, for this particular

quantity of interest in the Gaussian case, we do not

need to estimate the statistics based on a large num-

ber of samples. We can immediately plot the

Gaussian density function for the ‘‘full’’ expansion

with 20 terms and compare it to the density for the

truncated series with only 3 terms. These are seen to

lie nearly on top of one another in Fig. 5. This plot

also shows the density that would be obtained with

only 1 or 2 terms in the K-L expansion, which are

substantially different. This confirms that, in terms of

Generating Random Earthquake Events

17 Reprinted from the journal



this particular quantity of interest, it is sufficient to

use a 3-term K-L expansion (but not fewer terms).

Figure 5 also shows the density as estimated using

20,000 samples, using a kernel density estimate

computed using the Python function gaus-

sian_kde from the package scipy.stats,

version 0.16.1. With either 3 terms or 20 terms, the

estimated density lies nearly on top of the true den-

sity, giving confidence that the sampling has been

programmed properly and that 20,000 samples are

sufficient since the true density is known in this case.

Potential energy From the samples, it is possible

to also estimate the densities for other quantities of

interest for which it is not possible to compute the

true density. We consider two additional quantities

that have relevance to the magnitude of the tsunami

generated. One is the potential energy of the initial

perturbation of the ocean surface, which is one

measure of its potential for destruction. For example,

a recent study of 44 ocean-bottom earthquakes by

Nosov et al. (2014) showed that tsunami intensity is

highly correlated with potential energy. The potential

energy is given by

E ¼ 1

2

Z Z
qgg2ðx; yÞ dx dy ð11Þ

where q ¼ 1000 kg/m3 is the density of water, g ¼
9:81 m/s2, and gðx; yÞ is the initial perturbation of the

surface. With our assumption that the sea surface

moves instantaneously with sea floor deformation

generated from the slip, g is equal to the sea floor

displacement in the ocean, while onshore we set g ¼

0 since displacement at these points does not con-

tribute to the potential energy of the tsunami. For the

one-dimensional problem considered here, we sum

the square of the displacement over x\75 km and

scale by qgLDx to define E, taking L ¼ 100 km.

Finally, we multiply by 10�15 so that the results are

order 1, with units of PetaJoules. We plot the density

(again estimated using gaussian_kde) obtained

with 20,000 samples, using 20 terms, or truncating

further to 1, 2, or 3 terms. The results in Fig. 6 again

show that 3 terms are sufficient to obtain very similar

results to 20 terms.

Maximum wave height The maximum positive

seafloor displacement gives the maximum amplitude

of the tsunami at the initial time. We expect this to be

positively correlated with the amplitude of the wave

that approaches shore (although the wave propagation

can be complicated by multiple peaks, the location of

the gmax relative to the shore, or various other factors

that can only be studied with a full tsunami model).

The right plot of Fig. 6 shows the kernel density

estimates of this quantity gmax.

Joint probability densities It is also interesting to

plot the joint probability density of pairs of quantities

to better explore the ability of 3 terms to capture the

variation. This is illustrated in Fig. 7, where the top

row shows kernel density estimates for E vs. gmax and

the bottom rows shows DBshore vs. gmax. In each case,

the left figure shows the density computed from

20,000 realizations of the 20-term K-L expansion

while the right figure shows the density estimated

Figure 5
The figure on the left shows the true Gaussian density for the shoreline displacement for K-L expansions with 1, 2, 3, or 20 terms. The

figure on the right shows the kernel density estimate from 20,000 samples using 3 terms or 20 terms, together with the true density for 20

terms
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from an equal number of 3-term expansions. In each

case, it appears that the 3-term expansion captures the

bulk of the variation.

The joint distribution of gmax and DBshore is of

particular interest since the most dangerous events

might be those for which gmax is large while DBshore is

most negative (greatest subsidence of the coast). The

fact that the joint distributions look quite similar

gives hope that the 3-term model will adequately

capture this possibility.

Depth proxy hazard curves The goal of a full-

scale PTHA exercise is often to generate hazard

curves at many points onshore or in a harbor. A

hazard curve shows the probability that the maximum

flow depth (or some other quantity of interest) will

exceed some value as a function of that ‘‘exceedance

value’’. Construction of these curves is discussed, for

example, in the appendices of the study by González

et al. (2014). The curves may vary greatly with spa-

tial location due to the elevation of the point relative

to sea level, and also due to the manner in which a

tsunami interacts with nearby topography. Hazard

curves must thus be computed using fine-grid simu-

lations of the tsunami dynamics and cannot be

computed directly from the sea floor deformation

alone.

The general idea is to choose a quantity of inter-

est, such as the maximum depth D observed over all

time at some particular spatial point, and then for a

set of exceedance values De, we need to calculate

P½D[De� ¼
Z

qðzÞIðz;DeÞ dz ð12Þ

where the integral is over the m-dimensional

stochastic space of coefficients z of the K-L sum

(assuming m terms are used) and Iðz;DeÞ is an indi-

cator function that is 1 at points z 2 lRm where the

corresponding realization gives a tsunami that

exceeds De and 0 elsewhere (or it could take values

between 0 and 1 to incorporate other uncertainties,

e.g., if the approach of Adams et al. (2015) is used to

incorporate tidal uncertainty). The function qðzÞ in

(12) is the probability density for z. In the K-L

approach, z is a vector of i.i.d. normally distributed

values so qðzÞ is known; for the m-term expansion it

takes the form

qðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞm

p exp � 1

2

Xm

i¼1

z2
i

 !
: ð13Þ

A brute force approach to estimate this is to use a

simple Monte Carlo method in which the integral in

(12) is replaced by

P½D[De� �
1

ns

Xns

j¼1

Ieðz½j�Þ; ð14Þ

with a large number of samples ns, where z½j� now

represents the jth sample, drawn from the joint nor-

mal distribution with density qðzÞ. More sophisticated

techniques would be needed in general to reduce the

number of samples required, since running the full

Figure 6
Kernel density estimates based on 20,000 samples, using 1, 2, 3, or 20 terms in the K-L expansion. The left figure shows the potential energy

(11) and the right figure shows the maximum amplitude of deformation (sea surface elevation)
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tsunami model may take hours of computing time for

each sample. This is discussed briefly in Sect. 6.

For the purposes of exploring the effects of

truncating the K-L expansion, here we use a simple

proxy for maximum flooding depth that is cheap to

compute for each realization: D ¼ gmax � DBshore, the

maximum offshore sea surface elevation augmented

by any subsidence that occurs at the shore. We do not

claim that this is a good estimate of the actual max-

imum water depth that will be observed at the shore,

but computing hazard curves for this quantity pro-

vides another test of how well the 3-term K-L

expansion captures the full probability distribution

described by the 20-term expansion. This curve is

Figure 7
Joint and marginal probability densities for different quantities, comparing the densities estimated using the 20-term expansion (left column)

and the 3-term expansion (right column). The top row shows the joint density of gmax with potential energy E of the tsunami generated. The

bottom row shows the joint density of gmax with DBshore, the vertical displacement at the shore
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obtained by computing D for each sample and

determining the fraction of samples for which this is

above fi, for each exceedance level fi on a fine grid

covering the range of D observed. Figure 8 shows the

resulting hazard curve obtained with the 20-term

expansion using nx ¼ 20; 000 samples. The curve

obtained with the 3-term expansion and an indepen-

dent set of nx ¼ 20; 000 samples is also shown, and

lies nearly on top of it.

Exploring parameter space One advantage of

describing the probability space of possible events in

terms of a small number of stochastic parameters is

that it may be possible to identify structure in this

stochastic space, which can be important in devel-

oping a cheap surrogate model to use in estimating

probabilities and computing hazard curves for prac-

tical quantities of interest. For example, we can ask

what parts of parameter space lead to the worst

events. The left figure in Fig. 9 shows the events

(projected to the z1–z2 plane) from the above tests

with the 3-term K-L expansion for which the proxy

depth is greater than 8 m. The contours of the

bivariate normal distribution are also plotted. A

scatter plot of all 20,000 events would cluster in the

middle, but we observe that the events giving this

extreme depth tend to have z1 [ 1. From Fig. 3, we

see that positive z1 redistributes slip from the down-

dip to the up-dip portion of the fault. This agrees with

common wisdom from past events that concentration

near the up-dip edge gives particularly severe tsuna-

mis (as in the case of the 2011 Tohoku event). The

right figure in Fig. 9 shows a similar scatter plot of

z1–z2 values for which the potential energy was above

9.5 PetaJoules. In this case, most of the extreme

events have z1 either very positive or very negative.

In the latter case, slip is concentrated toward the

down-dip portion of the fault, which leads to a

smaller maximum surface displacement but the dis-

placement spreads out further spatially for a deep

rupture, which can lead to large potential energy

since this is integrated over space.

4. Lognormally Distributed Slip

If we wish to instead generate slip realizations that

have a joint lognormal distribution with a desired

mean and covariance matrix, we can first generate

realizations of a joint Gaussian random field and then

exponentiate each component. This approach will be

used in the two-dimensional example below in Sect. 5.

In this case, we first choose the desired mean l

and covariance matrix Ĉ for the slip, and then com-

pute the necessary mean lg and covariance matrix Ĉg

for the Gaussian to be generated by the K-L expan-

sion, using the fact that if g is a random variable from

Nðlg; ĈgÞ, then expðgÞ is lognormal with mean and

covariance matrix given by:

li ¼ expðlg
i þ Ĉ

g
ii=2Þ; Ĉij ¼ liljðexpðĈg

ijÞ � 1Þ:
ð15Þ

Hence, we can solve for

Ĉ
g
ij ¼ logðĈij=lilj þ 1Þ;

lg
i ¼ logðliÞ �

1

2
Ĉ

g
ii:

ð16Þ

We now find the eigenvalues kk and eigenvectors vk

of Ĉg. To generate a realization we choose N values

zk �Nð0; 1Þ and then form the K-L sum

sg ¼ lg þ
XN

k¼0

zk

ffiffiffiffiffi
kk

p
vk: ð17Þ

We then exponentiate each component of sg to obtain

the slip values, which then have the desired joint

lognormal distribution (see e.g., Ghanem 1999).

Figure 8
Hazard curves based on the proxy for flooding depth given by

gmax � DBshore based on 20,000 samples using the full 20-term K-L

expansion, compared with the hazard curves obtained using only 1,

2, or 3 terms in the expansion. Note that 3 terms are sufficient to

obtain the hazard curve to high precision
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As described, this will generate realizations with

total slip (and hence magnitude Mw) that vary around

the mean. As in the Gaussian case, we can drop the

nearly constant v0 term from the sum to reduce this

variation. We can also generally truncate the series to a

much smaller number of terms and still capture most of

the variation if the eigenvalues are rapidly decaying.

Now consider the special case where we make the

same assumptions as in Sect. 2 that Ĉij ¼ rirjCij

where C is the desired correlation matrix and

ri ¼ ali, while the mean li was given by some taper

si scaled by a scalar value �l. Then computing lg and

Ĉg according to (16), we find that:

Ĉ
g
ij ¼ logða2Cij þ 1Þ;

lg
i ¼ logð�lsiÞ �

1

2
logða2 þ 1Þ

ð18Þ

We see that the covariance matrix in this case

depends only on the correlation matrix and the scalar

a, not on the mean slip itself (and in particular is

independent of the taper). We also find that

expðlg
i Þ ¼ �lsi=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
is simply a scalar multiple of

the taper.

Using these assumptions and the fact that

exp lg þ
XN

k¼1

zk

ffiffiffiffiffi
kk

p
vk

 !
¼ expðlgÞ exp

XN

k¼1

zk

ffiffiffiffiffi
kk

p
vk

 !
;

it is easy to generate realizations that have exactly the

desired magnitude: simply compute

exp
XN

k¼1

zk

ffiffiffiffiffi
kk

p
vk

 !
; ð19Þ

multiply the result by the desired taper, and then

rescale by a multiplicative factor so that the area-

weighted sum of the slips gives the total slip required

for the desired seismic moment.

5. Two-Dimensional Case

We now present an example in which the slip is

allowed to vary in both directions along a fault

surface. For illustration, we use a subset of the

Cascadia Subduction Zone from Fig. 2, taking

only the southern-most 8 fault segments, as illus-

trated in Fig. 10. These are subdivided into 540

smaller fault planes for the purposes of defining

the slip.

To define the 540 � 540 correlation matrix, we

need to compute the pairwise ‘‘distance’’ between

subfault i and subfault j. We can compute the

Euclidean distance dij, but for a long fault geometry it

may be desirable to specify a longer correlation

length in the strike direction than down-dip, so we

use a more general definition

Cij ¼ expð�ðdstrikeði; jÞ=rstrikeÞ � ðddipði; jÞ=rdipÞÞ
ð20Þ

Figure 9
Scatter plots in the z1-z2 plane of the subset of 3-term events for which the proxy depth is greater than 8 m (left) or for which the potential

energy is greater than 9.5 PetaJoules (right)
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where dstrikeði; jÞ and ddipði; jÞ are estimates of the

distance between subfaults i and j in the strike and

dip direction, respectively, and rstrike; rdip are the

correlation lengths in each direction. We define

ddipði; jÞ using the difference in depth between the

two subfaults and the dip angle d as

ddipði; jÞ ¼ ddepth= sinðdÞ, setting dstrikeði; jÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

ij � ddipði; jÞ2
q

. We take the correlation lengths to

be 40 % of the fault length and width, respectively,

rstrike ¼ 130 km and rdip ¼ 40 km. We again use an

exponential autocorrelation function as defined in

(20), but this could easily be replaced by a different

ACF. We use the lognormal approach described in

Sect. 4, with parameter a ¼ 0:5. Figure 10 shows

the first 8 eigenmodes of Ĉg. Again we drop Mode 0

from the sum, since this mode is roughly constant

over the fault.

To create slip realizations, we use (19) and then

apply a tapering only at the down-dip edge, given by

(4) with dmax ¼ 20;000 m (It would also be easy to

taper at the other edges of the fault, if desired). We

then scale the slip so that the resulting seismic

moment gives Mw ¼ 8:8. Figure 11 shows 5 typical

realizations, comparing the slip generated by a 60-

term K-L expansion with the slip generated when the

series is truncated after 7 terms. The resulting sea-

floor deformation in each case is also shown, along

with the potential energy and the subsidence/uplift

DBshore at one point on the coast, the location of

Crescent City, CA. Note that in each case, the 7-term

series gives a smoother version of the slip obtained

with 60 terms, and the seafloor deformations are more

similar than the slip patterns, as expected from the

one-dimensional analogous case shown in Fig. 4. The

potential energy and DBshore are also seen to be

Figure 10
Southern portion of the CSZ fault showing location of Crescent City, CA and the 8 subfaults that are further subdivided into 540 subfaults.

The first 7 eigenmodes of the resulting covariance matrix Ĉg are also shown
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similar when the truncated series is used to the values

obtained with the longer 60-term series.

We can explore the statistical properties by

repeating any of the experiments performed above in

the one-dimensional case. In the interest of space, we

only show one set of results, the same joint and

marginal densities examined in the one-dimensional

case in Fig. 7. The comparisons for the two-dimen-

sional fault are shown in Fig. 12. To generate each

column of figures we computed 20,000 slip realiza-

tions and the resulting seafloor deformations [via (8)].

The first column shows statistics when a 60-term KL-

expansions is used, producing realizations similar to

those shown in the top row of Fig. 11. The second

column of figures was produced using an independent

set of 7-term realizations (i.e., these were not

obtained by truncating the 60-term series from the

first set, but rather by generating 20,000 independent

samples). Even in this two-dimensional case, less

than 10 min of CPU time on a MacBook Pro laptop

was required to generate each set of 20,000 realiza-

tions, the resulting seafloor deformations, and the

kernel density plots.

Finally, as a more quantitative measure of the

difference between the density functions shown in

Fig. 12, we compute the total variation distance

between the probability density obtained with the

60-term series and the density obtained with the same

series truncated to N terms. This is computed by

evaluating the kernel density estimates of the joint

density of gmax and DBshore on a 200 � 200 grid of

points to obtain P60
ij and PN

ij and then computing

dðP60;PNÞ ¼
X200

i¼1

X200

j¼1

jP60
ij � PN

ij j: ð21Þ

Figure 13 shows a plot of how this distance decreases

as the number of terms N is increased. We see that it

drops rapidly up to N ¼ 7 and then continues to

decay exponentially (linearly on this semilog scale

plot) as the number of terms is increased.

Recall that we assumed correlation lengths of

roughly 40 % of the fault dimensions. It is interesting

to investigate how things change if we specify a

different correlation length in defining the target

covariance matrix. Figure 13 also shows the results

obtained from this same experiment, but when we

specify shorter correlation lengths of 20 % of the

fault dimensions. The eigenmodes shown in Fig. 10

change only slightly, but the decay rate of the

eigenvalues will be slower. As a result, more terms in

the series will be needed to capture the same degree

of agreement with the 60-term series. The plot shown

in Fig. 13 for the 20 % correlation lengths shows that

the total variation distance still decays exponentially,

and that for any given level of agreement (as mea-

sured by the total variation distance), at most 8

additional terms must be kept. We have computed

similar curves for the Kullback–Leibler divergence of

the difference in the densities (another common sta-

tistical measure) and see similar results.

6. Discussion

We have presented an approach to defining a

probability distribution for earthquake slip patterns

on a specified fault geometry that has been subdi-

vided into an arbitrary number of rectangular

subfaults, with a specified mean and covariance

matrix. Slip realizations can be generated that either

have a joint normal distribution or a joint lognormal

distribution. Once the parameters have been chosen

that define the distribution (this is the hard part, see

the discussion of epistemic uncertainty below), it is

very easy to generate an arbitrary number of sample

realizations from the distribution, simply by drawing

the coefficients zk of the K-L series from independent

normal distributions.

We have also illustrated that with a realistic

choice of correlation length, the K-L series can be

truncated to a relatively small number of terms. For

tsunami modeling applications, the Okada equations

are applied to each slip pattern to generate the sea-

floor deformation and it was shown that this is a

smoothing operation that can further reduce the

bFigure 11

The top row shows 5 sample realizations of slip on the southern

CSZ fault, as computed with a 60-term K-L expansion. The second

row shows the resulting seafloor deformation, with an indication of

the potential energy and the vertical displacement at Crescent City,

CA, which is indicated by the X in the figures. The third row shows

the same 5 realizations but with the K-L series truncated to 7 terms,

and the bottom row shows the resulting seafloor deformations
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number of terms needed, and hence the dimension of

the stochastic space that must be explored in doing

PTHA analysis.

We have studied the degree to which the series

can be successfully truncated by computing the sta-

tistical similarity of ensembles of realizations

generated using a series with a large number of terms

to ensembles generated from truncated series. To

compute statistics based on thousands of realizations,

we have restricted our attention to proxy quantities of

interest that are easy to compute from slip patterns

without running a full tsunami model. Other

approaches to comparing the realizations more

directly could also be considered. For seismic

Figure 12
Joint and marginal probability densities for different quantities, comparing the densities estimated using the 60-term expansion (left column)

and the 7-term expansion (right column) for the two-dimensional fault case. The top row shows the joint density of gmax with potential energy

E of the tsunami generated. The bottom row shows the joint density of gmax with DBshore, the vertical displacement at Crescent City, CA. In

each case, 20,000 realizations similar to those shown in Fig. 11 were used to create these kernel density estimates
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applications it might be valuable to compare indi-

vidual realizations of slip, using, for example, the

recent comparison techniques of Razafindrakoto

et al. (2015), Zhang et al. (2015), but for tsunami

applications we believe that comparison of sea floor

deformation and derived tsunami quantities is more

relevant.

To use the K-L expansion approach for practical

PTHA analysis, two major challenges must be

addressed. The first is to tackle the epistemic uncer-

tainty associated with the lack of knowledge about

possible future earthquakes. For the purpose of

explaining the general methodology in this paper, we

have chosen various parameters and the autocorrela-

tion function to give credible examples based on the

available literature, but without any claim that these

are correct for the Cascadia Subduction Zone or any

particular fault. To be optimally useful in practice, we

would need to choose the parameters defining the

probability distribution in a suitable way for real fault

geometries so that it accurately represents the space

of possible future earthquakes. Realistic specification

of these critical seismic parameters and quantification

of the associated uncertainties and geophysical con-

straints is a major challenge that Stein et al. (2012)

have reviewed and summarized; they characterize the

problem as a failure of earthquake hazard mapping, in

general, and make recommendations regarding

improvements. The problem is particularly severe in

the case of near-field PTHA studies, because tsunami

impact on a coastal community is highly sensitive to

details of the seismic deformation (e.g., Geist 2002).

Existing expertise and geophysical constraints should

at least be incorporated in the choice of these

parameters. The ability to generate many realizations

and examine statistics of quantities such as those used

in this paper may help in this. As one example, the

parameters chosen in this paper for the CSZ example

tend to give uplift rather than subsidence at Crescent

City (as can be seen in the marginal distribution of

subsidence/uplift in Fig. 12). If this is viewed as

inconsistent with the geological evidence from past

events, this could be adjusted, for example by

tapering the slip more on the down-dip side. Moving

more of the slip up-dip will cause more subsidence at

the shore. It would also be possible to explore ways in

which the epistemic uncertainty associated with the

lack of knowledge about the true probability distri-

bution affects the resulting hazard maps generated by

a PTHA analysis, for example by doing the analysis

with different parameter choices, and hence different

probability distributions, to see how robust the PTHA

analysis is to changes in assumptions.

The second major challenge is to deal with the

aleatoric uncertainty that is still present even if the

parameters defining the probability distribution were

known to be correct. We are still faced with a high-

dimensional space to sample to perform PTHA

analysis. For example, if we wish to compute a

hazard curve similar to Fig. 8 for the probability that

the maximum depth D at some particular point will

exceed various depths, then in practice we wish to

perform full tsunami simulations that can take hours

to run for a single realization. The brute force

approach used in the approximation (14) with ns ¼
20,000 samples was feasible with the depth proxy

used to produce Fig. 8, but would not be possible if a

full tsunami model is used to compute D. The number

of simulations required can be reduced by source-

filtering techniques that identify a ‘‘most-important’’

subset of realizations that contribute most to the

tsunami impact on a particular site, e.g., Lorito et al.

(2015). An alternative would be to compute the

integral with a quadrature algorithm based on sam-

pling on a grid in z-space, but this is infeasible for

high-dimensional m. For example, if m ¼ 10 then a

Figure 13
Total variation distance between the joint probability of gmax and

DBshore from Fig. 12 computed using 60 terms with that of the

truncated series using N terms, as N varies
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tensor-product grid with only 4 points in each

direction has 410 � 106 points.

Many other techniques have been developed in

recent years to estimate such integrals in high-di-

mensional spaces, including for example Latin

hypercube sampling (e.g., Olsson and Sandberg

2002), sparse grids (e.g., Nobile et al. 2008), and

quasi-random grids (e.g., Dick et al. 2013) that have

fewer points than uniform tensor-product grids.

There are also several Monte Carlo sampling

methods that can obtain accurate results with fewer

samples than the naive sum of (14), including multi-

level or multi-fidelity methods (e.g., Cliffe et al.

2011; Giles 2008; Peherstorfer et al. 2016) that

combine results from many simulations that are

cheap to compute with a relatively few simulations

with the full model on a fine grid. Cheaper

approximations might be obtained using some of the

proxy quantities from this paper, by computing with

a full tsunami model but on coarse grids, or by

developing surrogate models or statistical emulators

based on relatively few samples (e.g., Bastos and

O’Hagan 2009; Benner et al. 2015; Li et al. 2011;

Sarri et al. 2012). We are currently exploring sev-

eral of these approaches for PTHA and will report

on them in future publications.

The computer code used to generate all of the

figures in this paper can be found in the repository

https://github.com/rjleveque/KLslip-paper and is

archived permanently on Zenodo (LeVeque et al.

2016). This code repository also includes Jupyter

notebooks that present additional documentation of

the code and illustration of results. The interested

reader can also experiment with changing the

parameters to see how this affects the results, and is

welcome to build on this code for other projects.

Some of this code has already been adapted to the

generation of seismic waveforms in the FakeQuakes

module of MudPy (Melgar 2016). A paper describing

this work and its application to the generation of

synthetic Cascadia events is under review (Melgar

et al. 2016b). This work includes several extensions

of the approach presented here, including the use of a

triangulation of the Slab 1.0 fault geometry as the

fault geometry (using the K-L expansion to define

slip patterns that are piecewise constant on triangles),

the generation of events of smaller magnitude over

subsections of the fault, and the incorporation of

randomly varying epicenters with time-dependent

rupture.
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tion of random fields by generalized fast multipole methods.

Journal of Computational Physics, 217, 100–122.

Stein, S., Geller, R. J., & Liu, M. (2012). Why earthquake hazard

maps often fail and what to do about it. Tectonophysics,

562–563, 1–25. doi:10.1016/j.tecto.2012.06.047.

USGS. (2010). USGS earthquake archive. http://earthquake.usgs.

gov/earthquakes/eqinthenews/2010/us2010tfan/finite_fault.php

Van Trees, H. L., Bell, K. L., & Tian, Z. (2013). Detection esti-

mation and modulation theory, part I, detection, estimation, and

filtering theory (2nd ed.). New Jersey: Wiley.

Wang, K., & He, J. (2008). Effects of frictional behavior and

geometry of subduction fault on coseismic seafloor deformation.

Bulletin of the Seismological Society of America, 98, 571–579.

doi:10.1785/0120070097.

Witter, R. C., Zhang, Y. J., Wang, K., Priest, G. R., Goldfinger, C.,

Stimely, L., et al. (2013). Simulated tsunami inundation for a range

of Cascadia megathrust earthquake scenarios at Bandon, Oregon,

USA. Geosphere, 9(6), 1783–1803. doi:10.1130/GES00899.1.

Zhang, L., Mai, P. M., Thingbaijam, K. K., Razafindrakoto, H. N.,

& Genton, M. G. (2015). Analysing earthquake slip models with

the spatial prediction comparison test. Geophysical Journal

International, 200(1), 185–198. doi:10.1093/gji/ggu383.

(Received April 27, 2016, revised July 9, 2016, accepted July 14, 2016, Published online August 16, 2016)

R. J. LeVeque et al. Pure Appl. Geophys.

30Reprinted from the journal

http://dx.doi.org/10.1093/gji/ggv088
http://dx.doi.org/10.1093/gji/ggv088
http://dx.doi.org/10.5194/nhess-12-2003-2012
http://dx.doi.org/10.1016/j.tecto.2012.06.047
http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/finite%5ffault.php
http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/finite%5ffault.php
http://dx.doi.org/10.1785/0120070097
http://dx.doi.org/10.1130/GES00899.1
http://dx.doi.org/10.1093/gji/ggu383

	Generating Random Earthquake Events for Probabilistic Tsunami Hazard Assessment
	Abstract
	Introduction
	Expressing Slip Using a Karhunen--Loève Expansion
	One-Dimensional Case: Down-Dip Variation
	Lognormally Distributed Slip
	Two-Dimensional Case
	Discussion
	Acknowledgments
	References


