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Abstract—One difficulty in developing numerical methods for

tsunami modeling is the fact that solutions contain time-varying

regions where much higher resolution is required than elsewhere in

the domain, particularly when tracking a tsunami propagating

across the ocean. The open source GeoClaw software deals with

this issue by using block-structured adaptive mesh refinement to

selectively refine around propagating waves. For problems where

only a target area of the total solution is of interest (e.g., one coastal

community), a method that allows identifying and refining the grid

only in regions that influence this target area would significantly

reduce the computational cost of finding a solution. In this work,

we show that solving the time-dependent adjoint equation and

using a suitable inner product with the forward solution allows

more precise refinement of the relevant waves. We present the

adjoint methodology first in one space dimension for illustration

and in a broad context since it could also be used in other adaptive

software, and potentially for other tsunami applications beyond

adaptive refinement. We then show how this adjoint method has

been integrated into the adaptive mesh refinement strategy of the

open source GeoClaw software and present tsunami modeling

results showing that the accuracy of the solution is maintained and

the computational time required is significantly reduced through

the integration of the adjoint method into adaptive mesh

refinement.

Key words: Adjoint problem, hyperbolic equations, adaptive

mesh refinement, Clawpack, GeoClaw, finite volume.

1. Introduction

Adjoint methods are often used in conjunction

with the numerical solution of differential equations

for a variety of purposes, such as computing sensi-

tivities of the solution to input data, solving inverse

problems, estimating errors in the solution, or guiding

the design of a computational grid to most efficiently

compute particular quantities of interest. We are

exploring the use of adjoint methods in tsunami

modeling by incorporating them into the open source

GeoClaw software that is widely used for tsunami

simulation, see e.g., Berger et al. (2011), GeoClaw

Development Team (2016) and LeVeque et al.

(2011). We mention several other potential applica-

tions below, but in this paper we focus primarily on

one particular use: guiding adaptive mesh refinement

(AMR) to efficiently capture the waves from a far-

field tsunami that will impact a particular ‘‘target

location’’, by which we mean a specific location

where we want to compare with available DART

buoy or tide gauge data, or a portion of the coastline

where we wish to compute inundation, for example.

GeoClaw simulations often use 6 or 7 nested

levels of refinement, starting with a resolution of 1 or

2 degrees of latitude/longitude over the entire com-

putational domain. This might be refined to 4-minute

or 1-minute resolution around the propagating waves,

and then refined to successively higher resolution

around the target region, where the finest grids may

be 1/3 arc-second for inundation studies. The target

location where the highest levels of refinement is

required can be specified directly by the user. In this

paper we are concerned with the question of how best

to refine the ocean to capture the portions of the

propagating tsunami that will eventually impact this

location, without over-refining waves that will not.

Refining the wave as it propagates across the

ocean can be automated in GeoClaw, by refining only

in regions where the surface elevation differs from

sea level above some specified tolerance. Every few

time steps recursive regridding is performed in which

all such points on a given grid are flagged for

refinement to the next level and the flagged points are

clustered into rectangular patches using the algorithm

of Berger and Rigoutsos (1991). Refinement ‘‘re-

gions’’ can also be specified, space-time subsets of
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the computational domain where refinement above a

certain level can be either required or forbidden. This

is used to allow the finest levels of refinement only

near the target location. These AMR regions can also

be used to induce the code to follow only the waves

of interest as the tsunami propagates across the ocean,

but to do so optimally often requires multiple

attempts and careful examination of how the solution

is behaving, generally using coarser grid runs for

guidance. This manual guiding of AMR may also fail

to capture some waves that are important. For

example, a portion of a tsunami wave may appear to

be heading away from the target location but might

later reflect off a distant shoreline or underwater

feature, or edge waves may be excited that propagate

back and forth along the continental shelf for hours

after the primary wave has passed.

This challenge in tsunami modeling was the

original motivation for our work on adjoint-based

refinement, which we are also incorporating into the

more general Clawpack software (Clawpack Devel-

opment Team 2015), which solves general hyperbolic

partial differential equations that arise in many wave

propagation problems. GeoClaw is based on the

AMRClaw branch of Clawpack, a more general code

that implements adaptive mesh refinement in both

two and three space dimensions. Other applications

where adjoint-based refinement could be very useful

include earthquake simulation, for example, where

the desire might be to efficiently refine only the

seismic waves that will reach a particular location.

For a time-dependent partial differential equations

such as the shallow water equations, we generally

wish to solve a ‘‘forward problem’’ in which initial

data is specified (e.g., sea floor displacement due to

an earthquake) at some initial time t0 and the problem

is solved forward in time to find the effect at the

target location at some later time tf . The adjoint

equation is a closely related partial differential

equation that must be solved backwards in time from

the final time tf to the initial time, as derived in

Sect. 3. The data for the adjoint equation (specified at

the final time) typically approximates a delta function

at the target location. This spreads out into waves as

the adjoint equation is solved backward in time, with

the same bathymetry-dependent wave speed
ffiffiffiffiffi

gh
p

as

in the linearized forward problem. The key idea is

that at any intermediate time t between t0 and tf , the

only regions in space where the forward solution

could possibly reach the target location at time tf are

regions where the adjoint solution is nonzero.

Moreover by computing a suitable inner product of

the forward and adjoint solutions at time t, it is pos-

sible to determine whether the forward solution wave

at a given spatial point will actually reach the target

location, or whether it can be safely ignored. This

information can then be used to decide whether or not

to refine this spatial location in the forward solution.

In Sect. 2, we briefly introduce the mathematical

concept of an adjoint equation. Then in Sect. 3, we

derive the adjoint equation for the linearized shallow

water equations in one space dimension and illustrate

the main idea used in adjoint-based refinement in this

simple context before extending to the two-dimen-

sional problem in Sect. 5. In Sect. 6 we illustrate the

use of this method and its efficiency on a tsunami

modeling problem using GeoClaw.

2. Adjoint Equation for a System of Equations

For readers not familiar with the concept of an

adjoint equation, it may be easiest to appreciate the

power and limitations of this approach by first con-

sidering the solution to an algebraic system of

equations, beginning with a linear system of the form

Ax ¼ b, where A is an invertible n � n matrix, b is a

given vector with n components, and the solution is

x ¼ A�1b. In practice such a system is best solved by

Gaussian elimination, requiring Oðn3Þ operations.

Suppose that we are not interested in the full solution

x but only in one component, say xk. In general, we

must still solve the full system to determine xk. But

now suppose we want to do this for many different

sets of data b, or that we wish to determine the sen-

sitivity of xk to changes in any component of b. In

these situations the adjoint equation can be very

useful since it requires solving only a single system

of equations rather than many systems.

More generally, suppose that we only care about

J ¼ /Tx ¼
Pn

i¼1 /ixi, where / is some specified

vector with n components. In particular if / is the

unit vector with /k ¼ 1 and /i ¼ 0 for i 6¼ k, then

/T x ¼ xk, the case considered in the previous
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paragraph. The adjoint approach works for more

general /, i.e., when we only care about some scalar

quantity of interest that can be defined as a linear

functional applied to x.

For the linear system Ax ¼ b, the adjoint equation

is the linear system AT x̂ ¼ /, where the vector / is

now used as the data on the right hand side and we

solve for x̂, the adjoint solution. The matrix AT is the

transpose (also called the adjoint) of the matrix A,

with elements ðATÞij ¼ Aji. This is also an n � n

invertible matrix so this problem has a unique solu-

tion x̂ ¼ A�T/. The matrix A�T is the inverse of the

transpose, which agrees with the transpose of the

inverse.

The adjoint solution can now be used to compute

J(b), the value of the functional /T x, where x solves

Ax ¼ b, by using elementary linear algebra:

JðbÞ ¼ /Tx ¼ /T A�1b ¼ ðA�T/ÞT
b ¼ x̂T b: ð1Þ

Note that once we have solved the adjoint equation

for x̂, we can compute J(b) for any data b without

solving additional linear systems. We need only

compute the inner product x̂T b ¼
Pn

i¼1 x̂ibi, which

requires only OðnÞ operations.
Moreover, we can also compute the sensitivity of

J(b) to a change in any component bi of the data.

Differentiating (1) with respect to bi shows that

oJðbÞ
obi

¼ x̂i; ð2Þ

in other words the components of the adjoint solution

are exactly the sensitivities of J to changes in the

corresponding component of b. We could have esti-

mated the sensitivity oJðbÞ=obi by varying bi slightly

and solving a perturbed linear system, but we would

have had to solve n such linear systems to estimate all

the sensitivities. The adjoint equation computes them

all simultaneously through the solution of a single

linear system.

In tsunami modeling we may wish to compute the

sensitivity of the tsunami observed at our target

location to changes in the data, e.g., to changes in the

seafloor deformation if we are using a gradient-based

optimization algorithm to solve an inverse problem to

match observations (see Blaise et al. 2013; Pires and

Miranda 2001 for applications to tsunami source

inversion). Or we may want to determine what

potential source regions around the Pacific Rim give

the largest tsunami response at a particular target

location (such as Pearl Harbor, as considered in a

study by Tang et al. 2006). Rather than solving many

forward problems, this can be determined with a

single adjoint solution.

One limitation of the adjoint approach is that

changing the target location is analogous to changing

the vector / defining the quantity of interest J(b) in

the linear system problem, and a new adjoint solution

must be computed for each location of interest.

Another limitation is that the adjoint approach is

most easily applied to a linear problem. If we replace

the linear system Ax ¼ b by a nonlinear system of

equations f ðxÞ ¼ b that defines x for data b, then we

can still use an adjoint approach to compute sensi-

tivities of JðbÞ ¼ /T x to changes in b, but we must

first linearize about a particular set of data �b with

solution �x and can only compute sensitivities due to

small changes in b around �b. The adjoint equation

then takes the form of a linear system where the

matrix A is replaced by the Jacobian matrix of the

function f evaluated at �x.

The GeoClaw software solves the nonlinear shallow

water equations, but in this paper we restrict our atten-

tion to the above-mentioned application of tracking

waves in the ocean that will reach the target location.

Since a tsunami in the ocean typically has an amplitude

that is very small compared to the ocean depth, these

equations essentially reduce to the linear shallow water

equations and the adjoint equation linearized about the

ocean at rest is sufficient for our needs. We will see in

Sect. 3 that these adjoint equations take a very similar

form to the linearized shallowwater equations, although

with slightly different boundary conditions. If we wan-

ted to compute sensitivities of the nonlinear onshore

inundation to changes in data, then we would have to

linearize about a particular forward solution. In Sect. 8,

we make some additional comments about extension to

nonlinear problems.

Adjoint equations have been used computation-

ally for many years in a variety of different fields,

with wide ranging applications. A few examples

include weather model tuning (Hall 1986), aerody-

namics design optimization (e.g., Giles and Pierce

2000; Jameson 1988; Kennedy and Martins 2013),

automobile aerodynamics (Othmer 2014), and

Adjoint Methods for Guiding Adaptive Mesh Refinement
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geodynamics (Bunge et al. 2003). They have been

used for seismic inversion (e.g., Akcelik et al. 2002;

Tromp et al. 2005) and tsunami inversion (Blaise

et al. 2013; Pires and Miranda 2001, 2003). The

adjoint method has also been used for error estima-

tion in the field of aerodynamics (Becker and

Rannacher 2001) and for general coupled time-de-

pendent systems (Asner et al. 2012). Various solution

methods have been combined with adjoint approa-

ches, including Monte Carlo (Buffoni and Cupini

2001), finite volume (Mishra et al. 2013), finite ele-

ment (Asner et al. 2012), and spectral-element

(Tromp et al. 2005) methods.

It is also possible to use adjoint equations to

compute sensitivities of J to changes in the input

data. This has led to the adjoint equations being uti-

lized for system control in a wide variety of

applications such as shallow-water wave control by

Sanders and Katopodes (2000) and optimal control of

free boundary problems by Marburger (2012). This is

also useful in solving inverse problems and potential

applications of this approach in tsunami modeling are

being studied separately.

The adjoint method has also been used to guide

adaptive mesh refinement, typically by estimating the

error in the calculation and using that to determine

how to adjust the grid. Leveraging the adjoint prob-

lem to achieve this goal is not a new concept, and has

been explored significantly for steady-state problems

where work has been done to guide AMR (e.g.,

Pierce and Giles 2000; Becker and Rannacher 2001;

Venditti and Darmofal 2000, 2002; Park 2004; Ven-

ditti and Darmofal 2003), and put error bounds on

solution accuracy (e.g., Giles and Suli 2002). In the

finite volume literature this approach is known as

output-based mesh adaptation, although perhaps a

clearer term would be adjoint-error based mesh

adaptation. Within the finite volume community

output-based mesh refinement has begun to be used

for unsteady problems. Specifically, temporal-only

adaptation and space-time adaptation in the context

of aerodynamics have been explored by Mani and

Mavriplis (2007) and Flynt and Mavriplis (2012),

respectively, and work with the compressible Navier–

Stokes equations has been done for both static

domains, by Luo and Fidkowski (2011), and

deforming domains, by Kast and Fidkowski (2013).

3. One-Dimensional Shallow Water Equations

In one space dimension the shallow water equa-

tions take the form

ht þ ðhuÞx ¼ 0 ð3aÞ

ðhuÞt þ ðhu2 þ 1

2
gh2Þx ¼ �ghBx: ð3bÞ

Here, u(x, t) is the depth-averaged velocity, B(x) is

the bottom surface elevation relative to mean sea

level, g is the gravitational constant, and h(x, t) is the

fluid depth. We will use gðx; tÞ to denote the water

surface elevation,

gðx; tÞ ¼ hðx; tÞ þ BðxÞ:

The shallow water equations are a special case of a

hyperbolic system of equations,

qtðx; tÞ þ f ðqÞx ¼ wðq; xÞ ð4Þ

in one dimension and

qtðx; y; tÞ þ f ðqÞx þ gðqÞy ¼ wðq; x; yÞ ð5Þ

in two dimensions, where q is a vector of unknowns,

f(q) and g(q) are the vectors of corresponding fluxes,

and w is a vector of source terms. These appear in the

study of numerous physical phenomena where wave

motion is important, and hence methods for numeri-

cally calculating solutions to these systems of partial

differential equations have broad applications over

multiple disciplines.

As mentioned above, when tracking a tsunami in

the ocean the nonlinear shallow water equations

essentially reduce to the linear shallow water equa-

tions. To linearize the shallow water equations about

the ocean at rest, we begin by letting l ¼ hu repre-

sent the momentum and noting that the momentum

equation from (3) can be rewritten as

lt þ ðhu2Þx þ ghðh þ BÞx ¼ 0:

Linearizing this equation as well as the continuity

equation about a flat surface �g and zero velocity

�u ¼ 0, with �hðxÞ ¼ �g� BðxÞ gives

~gt þ ~lx ¼ 0 ð6aÞ

~lt þ g�hðxÞ~gx ¼ 0 ð6bÞ
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for the perturbation ð~g; ~lÞ about ð�g; 0Þ. Dropping

tildes and setting

AðxÞ ¼
01

g�hðxÞ0

" #

; qðx; tÞ ¼
g

l

" #

; ð7Þ

gives us the system

qtðx; tÞ þ AðxÞqxðx; tÞ ¼ 0: ð8Þ

We now derive the adjoint equation for a linear

hyperbolic system of partial differential equations of

the form (8) posed on an interval a� x� b and over a

time interval t0 � t� tf , subject to some known initial

conditions, qðx; t0Þ, and some boundary conditions at

x ¼ a and x ¼ b. In the linearized shallow water case

A(x) and q(x, t) are given by (7), although the analysis

shown below applies more generally to any time-de-

pendent hyperbolic system of equations. In Sect. 2 we

considered the case where we care about J ¼ /T x

where x was the solution to an algebraic system of

equations, now supposewe are interested in calculating

the value of a functional

J ¼
Z b

a

uTðxÞqðx; tf Þdx ð9Þ

for some givenuðxÞ. For example, ifuðxÞ ¼ dðx � x0Þ
then J ¼ qðx0; tf Þ is the solution value at the point x ¼
x0 at the final time tf . This is the situationwe consider in

this paper, with the delta function smeared out around

the region of interest for the computational approach.

If q̂ðx; tÞ is any other appropriately sized vector of

functions then multiplying this by (8) and integrating

in both space and time yields

Z b

a

Z tf

t0

q̂Tðx; tÞ qtðx; tÞ þ AðxÞqxðx; tÞð Þdx dt ¼ 0

ð10Þ

for any time t0\tf . Then integrating by parts in space

and then in time yields the equation

Z b

a

q̂T q dx
�

�

tf

t0
þ
Z tf

t0

q̂T Aq dt
�

�

b

a

�
Z tf

t0

Z b

a

qT q̂t þ AT q̂
� �

x

� �

dx dt ¼ 0:

ð11Þ

By defining the adjoint equation,

q̂tðx; tÞ þ ðATðxÞq̂ðx; tÞÞx ¼ 0; ð12Þ

setting q̂ðx; tf Þ ¼ uðxÞ, and selecting the appropriate

boundary conditions for q̂ðx; tÞ such that the integral

in time vanishes (which varies based on the specific

system being considered), we can eliminate all terms

from (11) except the first term, to obtain
Z b

a

q̂Tðx; tf Þqðx; tf Þdx ¼
Z b

a

q̂Tðx; t0Þqðx; t0Þdx:

ð13Þ

Therefore, the integral of the inner product between q̂

and q at the final time is equal to the integral at the

initial time t0:

J ¼
Z b

a

q̂Tðx; t0Þqðx; t0Þdx: ð14Þ

Note that we can replace t0 in (10) with any t so long

as t0 � t� tf , which would yield (14) with t0 replaced

by t. From this we observe that the locations where

the magnitude of the inner product q̂ðx; tÞT
qðx; tÞ is

large, for any t with t0 � t � tf , are the areas that will

have a significant effect on the inner product J. These

are the candidate areas for refinement at time t. To

make use of this, we must first solve the adjoint

Eq. (12) for q̂ðx; tÞ. Note, however, that this requires
using ‘‘initial’’ data q̂ðx; tf Þ, so the adjoint problem

must be solved backward in time. In Sect. 4 we will

discuss in more detail the manner in which this is

done.

First, we present a one-dimensional example that

illustrates how the waves from the forward and

adjoint equations propagate and can be combined to

identify the waves that will reach a point of interest.

Viewing this first in one dimension has the advantage

that we can easily view the full time-history of waves

in the forward and adjoint equations together in sin-

gle plots in the x-t plane. The figures presented in this

section were computed using Clawpack on a very fine

grid to generate illustrations, but the particular

numerical method is immaterial here. We are not

testing the adjoint approach to AMR since we do not

perform any adaptive refinement in this case. In

Sect. 5 below we will present numerical results using

GeoClaw with adaptive refinement and further dis-

cuss the numerical methods used there.

As an example we use the one-dimensional lin-

earized shallow water equations and its adjoint on the

domain 0� x� 400 km. We choose simplified

Adjoint Methods for Guiding Adaptive Mesh Refinement
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topography that is piecewise constant, with depth

4000 m for 50� x� 400 and shallower depth 200 m

for 0� x� 50. The step discontinuity from deep

ocean to ‘‘continental shelf’’ is chosen so that waves

remain localized and the plots are easy to interpret.

For the same reason, we use reflecting boundary

conditions at each boundary rather than a more

realistic shore:

uð0; tÞ ¼ 0; uð400; tÞ ¼ 0 t� t0:

As initial data for q(x, t) we introduce a hump of

stationary water with a height of 0.4 m centered 125

km offshore. Figure 1 shows the resulting waves

interacting with the boundaries and the discontinuity

in bathymetry, at the location indicated by the dashed

line. As time progresses the hump splits into equal

right-going and left-going waves heading out towards

the ocean and towards the continental shelf, respec-

tively. When the left-going wave encounters the

continental shelf it splits into a reflected and a

transmitted wave. When any waves, e.g., either the

original right-going wave or the newly transmitted

wave, encounter the wall on either side of the domain

the waves are reflected back in the other direction.

This interplay between reflection and transmission of

the waves at the bathymetry discontinuity and the

reflection of waves at the two boundaries leads to a

complex wave pattern.

For the adjoint solution, suppose that we are

interested in the accurate estimation of the surface

elevation in the interval between 10 and 25 km off-

shore, perhaps because that is the location of gauges

with which we wish to compare our results.

3.1. Single Point in Time

Initially suppose we are only interested in one

particular time, say tf ¼ 4200 s. Setting

J ¼
R 25

10
gðx; tf Þ dx, the problem then requires that

uðxÞ ¼
IðxÞ
0

� �

; ð15Þ

where

IðxÞ ¼
1 if10\x\25

0 otherwise:

�

ð16Þ

Define

q̂ðx; tf Þ ¼
ĝðx; tf Þ
ûðx; tf Þ

� �

¼ uðxÞ;

and note that (10) holds for this problem. If we define

the adjoint problem by

q̂t þ ATðxÞq̂
� �

x
¼ 0 x 2 ½0; 400�; t0 � t� tf

ûð0; tÞ ¼ 0; ûð400; tÞ ¼ 0 t0 � t� tf ;

then (13) holds, which is the expression that allows us

to use the inner product of the adjoint and forward

problems at each time step to determine what regions

will influence the point of interest at the final time.

As the ‘‘initial’’ data for q̂ðx; tf Þ ¼ uðxÞ we have a
square pulse in water height, which was described

above in Eqs. (15) and (16) at the final time. As time

progresses backwards, the pulse splits into equal left-

going and right-going waves which interact with the

walls and the bathymetry discontinuity giving both

reflected and transmitted waves. Figure 1 also shows

the results of solving this adjoint problem.

To better visualize how the waves are moving

through the domain, it is helpful to look at the data in

the x-t plane as shown in Fig. 2. For Fig. 2, the

horizontal axis is the position, x, and the vertical axis

is time. The left plot shows in red the locations where

the magnitude of height of the tsunami in the forward

problem is greater than or equal to 0.1 meters above

mean sea level. On the right side of Fig. 2 we show

the adjoint solution that is computed starting with the

square wave data at the final time tf , indicating in

blue the regions where the magnitude of the first

component ĝ is greater than or equal to 0.1.

On the left side of Fig. 3 we have overlayed the

magnitudes of the water heights for the forward and

adjoint solutions, and viewing the data in the x-

t plane makes it fairly clear which parts of the wave

from the forward solution actually affect our region

of interest at the final time.

Figure 3 also shows, in green on the right, the

locations where the magnitude of the inner product

between the forward and adjoint solution is greater

than or equal to 0.1 as time progresses. At each time

step this is clearly identifying the regions in the

computational domain that will affect our region of

interest at the final time. If we were using adaptive
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mesh refinement, these areas, identified by where the

magnitude of q̂Tðx; tÞqðx; tÞ exceeds some tolerance,

are the areas we should consider for adaptive

refinement. Note that a mesh refinement strategy

based only on the areas where the magnitude of

gðx; tÞ is large would result in refinement of many

areas in the computational domain that will have no

effect on our area of interest at the final time (all the

red regions in the left plot of Fig. 3).

It is important to note that in the left side of Fig. 3

there are places where red and blue waves overlap

that do not show up in the plot on the right side.

These are areas where a wave moving in one

direction in the forward solution crosses a wave

Figure 1
An idealized tsunami interacting with a step discontinuity in bathymetry, for both the forward and the adjoint problems. The dashed line

indicates the location of the discontinuity, 50 km offshore

Adjoint Methods for Guiding Adaptive Mesh Refinement
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moving in the other direction in the adjoint solution.

Even though both q(x, t) and q̂ðx; tÞ are nonzero

vectors in these regions, the inner product of the two

is equal to zero. This is easily verified by computing

the eigenvectors of the coefficient matrices A and AT

defining the hyperbolic problems for q and q̂ (see, for

example LeVeque 2002). The eigenvectors of A are

½1;�c�T , where c ¼
ffiffiffiffiffi

g�h
p

is the wave speed. Hence

the solution q in a purely left-going wave is

proportional to the vector ½1;�c�T , while in a purely

right-going wave is proportional to ½1;þc�T . The

eigenvectors of AT , on the other hand, are ½�c; 1�T
and each of these is orthogonal to one of the

eigenvectors of A (and hence the inner product is

zero for crossing waves). It is only when the waves

are aligned on the left side of Fig. 3 that the inner

product is seen to be nonzero on the right side of the

figure. This further illustrates the power of the adjoint

approach to identify only the waves that will reach

the target location.

3.2. Time Range

In practice we are rarely interested in the tsunami

amplitude at some location at only a single time, we

are more likely to be interested in the solution over

some time range, often over the entire simulation

time. But note that once we have computed the

adjoint solution going backward from time tf , we

immediately know the adjoint solution starting at

some earlier time �t\tf : it is simply the same solution

translated earlier in time by tf � �t, since the linearized

adjoint equation is autonomous in time. The formulas

will be made more precise in the next section, but in

terms of Fig. 3 we can think of moving the data for

the adjoint to an earlier time as simply translating the

Figure 2
On the left, the locations where the magnitude of the surface elevation g in the forward problem is greater than or equal to 0.1 m above mean

sea level are shown in red. On the right, the locations where the magnitude of ĝ in the adjoint solution is greater than or equal to 0.1 are shown
in blue. The time axis is the same for both plots
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blue solution in the left figure downward by this time

increment. Figure 4 illustrates the result if we

consider setting �t to all possible values between ts ¼
3800 s and tf ¼ 4200 s. The small blue rectangle in

the top corner of this plot shows the region in space-

time that we are now concentrating on as our target

space-time region, and the green portions in the

figure on the right of Fig. 4 show where the inner

product of the forward solution and any of these

translated adjoint solutions is above the threshold of

0.1. We clearly see that, relative to Fig. 3, there is an

additional wave that must be tracked since it arrives

at the target spatial region during the target time

period.

If we were interested in any wave that can arrive

in the target region over the full simulation time

0� t � tf , then we would extend this by looking at all

possible downward translates of the adjoint solution.

In this particular example, this would not identify any

additional waves beyond those already found, since

the other waves would not arrive at the target location

until times beyond tf .

4. Combining Mesh Refinement and the Adjoint

Problem

We now discuss in more detail how the adjoint

solution might be used in guiding adaptive mesh

refinement, still focusing on the one-dimensional case

presented above.

Before solving the forward problem, we would

first solve the adjoint Eq. (12) backward in time.

Since GeoClaw and other numerical software is

designed to solve equations forward in time, we

consider the function

Figure 3
The plots of the magnitudes of g and ĝ from Fig. 2 are overlayed on the left figure. The region where the inner product of the two vectors

q(x, t) and q̂ðx; tÞ is above a threshold is shown on the right, picking out only the wave that reaches the target location 10� x� 25 at the final

time. The time axis is the same for both plots
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~qðx; tÞ ¼ q̂ðx; tf � tÞ:

This gives us the new problem

~qt � ATðxÞ~q
� �

x
¼ 0 x 2 ½a; b�; t[ 0

~qða; tÞ ¼ q̂ða; tf � tÞ 0� t � tf � t0

~qðb; tÞ ¼ q̂ðb; tf � tÞ 0� t � tf � t0

with initial condition ~qðx; 0Þ ¼ uðxÞ. This problem is

then solved forward in time. Snapshots of this solu-

tion are saved at regular time intervals, t0; t1; . . .; tN ,

from which snapshots of the adjoint solution are

retrieved by simply setting

q̂ðx; t � tnÞ ¼ ~qðx; tnÞ

for n ¼ 0; 1; . . .;N.

With the adjoint solution in hand, we now turn to

the forward problem. In our approach to GeoClaw,

described more fully in the two-dimensional case in

Sect. 5, we solve the adjoint equation on a fixed

spatial resolution and output at discrete times. To flag

cells for refinement as we now solve the forward

problem, we will generally need to estimate the

adjoint solution on finer grids in both space and time.

To address this issue, the solution for the adjoint

problem at the necessary spatial locations is approx-

imated using linear (or bilinear in 2D) interpolation

from the data present on the coarser grid defined by

the snapshots.

4.1. Single Point in Time

If we are interested in the solution of the forward

problem at our target area only at the final time, then

when solving the forward problem we take the inner

product between the current time step in the forward

problem and the time step in the adjoint problem in

Figure 4
Computed results for one-dimensional shallow water equations in the case when the solution q(x, t) is desired at the target location 10� x� 25

km over a time interval from 3800 to 4200 s, as indicated by the blue box in each x–t plot. Left plot showing gðx; tÞ and the adjoint solutions

ĝðx; sÞ for shifted values of s as described in the text. Right regions where the maximum inner product over the given time range exceeds the

threshold, showing the additional wave that reaches the target region relative to the case shown in Fig. 3. The time axis is the same for both

plots
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order to determine which areas in the forward wave

are going to impact the region of interest. When

considering the forward problem at time t that lies

between two snapshot times of the adjoint, say

tn � t � tnþ1;

both q̂ðx; tnÞ and q̂ðx; tnþ1Þ are taken into account.

Rather than interpolating in time, since we wish to

refine any parts of the domain that will have a sig-

nificant impact on the final solution, we take a more

conservative approach and refine wherever the mag-

nitude of the inner product

max
s¼tn;tnþ1

q̂Tðx; sÞqðx; tÞ
�

�

�

� ð17Þ

is above some tolerance. Note that we must save

snapshots of the adjoint at sufficiently dense output

times for this to be sufficient. These areas are then

flagged for refinement, and the next time step is taken.

4.2. Time Range

Suppose that we are instead interested in the

accurate estimation of the forward problem in same

location for some time range ts � t� tf , where

t0 � ts � tf . Define q̂ðx; t; tÞ as the adjoint based on

data q̂ðx; tÞ ¼ uðxÞ. Then for each t̂ in the interval

½ts; tf �, we need to consider the inner product of q(x, t)

with q̂ðx; t; t̂Þ. Note that since the adjoint is

autonomous in time, q̂ðx; t; t̂Þ ¼ q̂ðx; tf � t̂ þ t; tf Þ.
Therefore, we must consider the inner product

q̂Tðx; tf � t̂ þ t; tf Þqðx; tÞ

for t̂ 2 ½ts; tf �. Since we are in fact only concerned

when the magnitude of this inner product is greater

than some tolerance, we can simply consider

max
ts � t̂ � tf

q̂Tðx; tf � t̂ þ t; tf Þqðx; tÞ
�

�

�

�

and refine when this maximum is above the given

tolerance. Define s ¼ tf � t̂ þ t. Then this maximum

can be rewritten as

max
T � s� t

q̂Tðx; s; tf Þqðx; tÞ
�

�

�

� ð18Þ

where T ¼ minðt þ tf � ts; tf Þ.

We now drop the cumbersome notation

q̂ðx; t; tf Þ in favor of the simpler q̂ðx; tÞ with the

understanding that the adjoint is based on the data

q̂ðx; tf Þ ¼ uðxÞ. Note that we still only need to solve

one adjoint problem in this case, we simply use it

over a larger time range in evaluating (18) than in

(17).

5. Two-Dimensional Shallow Water Equations

In two space dimension the shallow water equa-

tions take the form

ht þ ðhuÞx þ ðhvÞy ¼ 0 ð19aÞ

ðhuÞt þ ðhu2 þ 1

2
gh2Þx þ ðhuvÞy ¼ �ghBx ð19bÞ

ðhvÞt þ ðhuvÞx þ ðhv2 þ 1

2
gh2Þy ¼ �ghBy: ð19cÞ

Here, u(x, y, t) and v(x, y, t) are the depth-averaged

velocities in the two horizontal directions and

B(x, y) is the bottom surface elevation relative to

mean sea level. Now the water surface elevation is

given by

gðx; y; tÞ ¼ hðx; y; tÞ þ Bðx; yÞ:

Linearizing these equations about an ocean at rest,

similar to what was done in Sect. 3 for the one-di-

mensional case, gives

~gt þ ~lx þ ~cy ¼ 0

~lt þ g�hðx; yÞ~gx ¼ 0

~ct þ g�hðx; yÞ~gy ¼ 0

for the perturbation ð~g; ~l; ~cÞ about ð�g; 0; 0Þ. Dropping
tildes and setting

A1ðx; yÞ ¼
0 1 0

g�hðx; yÞ 0 0

0 0 0

2

6

4

3

7

5

; A2ðx; yÞ ¼
0 0 1

0 0 0

g�hðx; yÞ 0 0

2

6

4

3

7

5

;

qðx; y; tÞ ¼

g

l

c

2

6

6

4

3

7

7

5

;

gives us the system

Adjoint Methods for Guiding Adaptive Mesh Refinement

403 Reprinted from the journal



qtðx; y; tÞ þ A1ðx; yÞqxðx; y; tÞ þ A2ðx; yÞqyðx; y; tÞ ¼ 0:

ð20Þ

For a general system of the form (20) we now derive

the adjoint equation posed on an interval a� x� b,

a� y� b and over a time interval t0 � t � tf , subject

to some known initial conditions qðx; y; t0Þ and some

boundary conditions at x ¼ a, x ¼ b, y ¼ a and

y ¼ b. If q̂ðx; y; tÞ is an appropriately sized vector of

functions then note that

Z tf

t0

Z b

a

Z b

a
q̂T qt þ A1ðx; yÞqx þ A2ðx; yÞqy

� �

dy dx dt ¼ 0:

Following the same basic steps we used in one

dimension to go from (10) and (11), integrating by

parts yields the equation

Z b

a

Z b

a
q̂T qdydx

�

�

tf

t0
þ
Z tf

t0

Z b

a
q̂TA1ðx;yÞqdydt

�

�

b

a

þ
Z tf

t0

Z b

a

q̂T A2ðx;yÞqdxdt
�

�

b

a

�
Z tf

t0

Z b

a

Z b

a
qT q̂t þ AT

1 ðx;yÞq̂
� �

x
þ AT

2 ðx;yÞq̂
� �

y

	 


dydxdt ¼ 0; ð21Þ

and if we can define an adjoint problem such that all

but the first term in this equation vanishes then we are

left with

Z b

a

Z b

a
q̂Tðx; y; tf Þqðx; y; tf Þdy dx

¼
Z b

a

Z b

a
q̂Tðx; y; t0Þqðx; y; t0Þdy dx;

ð22Þ

which is the expression that allows us to use the inner

product of the adjoint and forward problems at each

time step to determine what regions will influence the

point of interest at the final time.

This requires that the adjoint equation have the

form

q̂t þ AT
1 ðx; yÞq̂

� �

x
þ AT

2 ðx; yÞq̂
� �

y
¼ 0 ð23Þ

over the same domain as the forward problem. The

correct boundary conditions to use are zero normal

velocity at all interfaces between any wet cell and dry

cell so that the boundary terms also drop out of

expression (21) to obtain (22).

6. GeoClaw Tsunami Modeling Example

Finally, we present a tsunami propagation exam-

ple utilizing the adjoint method to guide adaptive

mesh refinement, as implemented in the GeoClaw

software package. In principle the adjoint-flagging

methodology could be used in conjunction with other

tsunami models, although we know of no other open

source software that provides similar adaptive mesh

refinement capabilities. Verification of the results is

performed by comparing the results from the adjoint

method approach to the default approach already

present in the GeoClaw software. The algorithms

used in GeoClaw for tsunami modeling are described

in detail in LeVeque et al. (2011), and only a brief

introduction will be given here. In general, GeoClaw

solves the two-dimensional nonlinear shallow water

equations in the form of a nonlinear system of

hyperbolic conservation laws for depth and momen-

tum. The numerical methods used are high-resolution

Godunov-type finite volume methods, in which the

discrete solution is given by cell averages of depth

and momentum over the grid cells and the solution

is updated in each time step based on fluxes com-

puted at the cell edges. In Godunov-type methods,

these fluxes are determined by solving a ‘‘Riemann

problem’’ at each cell edge, which consists of the

hyperbolic problem with piecewise constant initial

data given by the adjacent cell averages. The gen-

eral theory of these methods is presented in

LeVeque (2002), for example, and details of the

Riemann solver in GeoClaw can be found in

George (2008). Away from coastlines, this solver

reduces to a Roe solver for the shallow water

equations plus bathymetry, which means that the

eigenstructure of a locally linearized Riemann

problem is solved at each cell interface, making it

no more expensive in the deep ocean than simply

solving the linearized equations, but also capable of

robustly handling nonlinearity near shore and

inundation.

As an example, we consider a tsunami generated

by a hypothetical earthquake on the Alaska-Aleutian

subduction zone, the event denoted AASZe04 in the

probabilistic hazard study of Crescent City, CA,

performed by González et al. (2014). The major
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waves impinging on Crescent City from this hypo-

thetical tsunami all occurred within 11 h after the

earthquake, so simulations will be run to this time. To

simulate the effects of this tsunami on Crescent City,

a coarse grid is used over the entire Pacific (1 degree

resolution) where the ocean is at rest. In addition to

AMR being used to track propagating waves on finer

grids, higher levels of refinement are allowed or

enforced around Crescent City when the tsunami

arrives. A total of four levels of refinement are used,

starting with 1-degree resolution on the coarsest

level, and with refinement ratios of 5, 6, and 6 from

one level to the next. Only three levels were allowed

over most of the Pacific, and the remaining level was

used over the region around Crescent City. Level 4,

with 20 arc-second resolution, is still too coarse to

provide any real detail on the effect of the tsunami on

the harbor. It does, however, allow for a comparison

of flagging cells for refinement using the adjoint

method and using the default method implemented in

Geoclaw. In this simulation we used 1 arc-minute

bathymetry from the ETOPO1 Global Relief Model

of Amante and Eakins (2009) for the entire simula-

tion area, as well as 1 and 1/3 arc-second bathymetry

over the region about Crescent City from Grothe

et al. (2011). Internally, GeoClaw constructs a

piecewise-bilinear function from the union of any

provided topography files. This function is then

integrated over computational grid cells to obtain a

single cell-averaged topography value in each grid

cell in a manner that is consistent between refinement

levels.

The default Geoclaw refinement technique flags

cells for refinement when the elevation of the sea

surface relative to sea level is above some set toler-

ance, as described in LeVeque et al. (2011), where

the adaptive refinement and time stepping algorithms

are described in more detail. We will refer to this

flagging method as surface-flagging. The value

selected for this tolerance has a significant impact in

the results calculated by the simulation, since a

smaller tolerance will result in more cells being

flagged for refinement. Consequently, a smaller tol-

erance both increases the simulation time required

and theoretically increases the accuracy of the results.

Two GeoClaw simulations were performed using

surface-flagging, one with a tolerance of 0.14 and

another with a tolerance of 0.09. Figure 5 shows the

results of these two simulations, along with the grids

at different levels of refinement used, for the sake of

comparison. Note that each grid outlined in the fig-

ure, colored based on its level of refinement, is a

collection of cells at a particular refinement. The

grids and solution along the left of the figure corre-

spond to the simulation with a tolerance of 0.14, and

the grids and solution along the right of the fig-

ure correspond to the simulation with a tolerance of

0.09. Note that the simulation with a surface-flagging

tolerance of 0.14 continues to refine the first wave

until it arrives at Crescent City about 5 h after the

earthquake, but after about 6 h stops refining the main

secondary wave which reflects off the Northwestern

Hawaiian (Leeward) Island chain before heading

towards Crescent City. The second simulation, with a

surface-flagging tolerance of 0.09 continues to refine

this secondary wave until it arrives at Crescent City.

These two tolerances were selected because they

are illustrative of two constraints that typically drive

a GeoClaw simulation. The larger surface-flagging

tolerance of 0.14 was found to be approximately the

largest tolerance that will refine the initial wave

until it reaches Crescent City. Therefore, it essen-

tially corresponds to a lower limit on the time

required by the standard surface-flagging approach:

any Geoclaw simulation with a larger surface-flag-

ging tolerance would run more quickly but would

fail to give accurate results for even the first wave.

Note that for this particular example, even when the

simulation will only give accurate results for the first

wave to reach Crescent City, a large area of the

wave front that is not headed directly towards

Crescent City is being refined with the AMR. The

smaller surface-flagging tolerance, of 0.09, refines

all of the waves of interest that impinge on Crescent

City thereby giving more accurate results at the

expense of longer computational time, particularly

since it also refines waves that will never reach

Crescent City.

Now we consider the adjoint approach, which

will allow us to refine only those sections of the

wave that will affect our target region. For this

example, we are interested in the accurate calcula-

tion of the water surface height in the area about

Crescent City, California. To focus on this area, we
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define a circle of radius 1� centered about ðxc; ycÞ ¼
ð235:80917; 41:74111Þ where x and y are being

measured in degrees. Setting

J ¼
Z xmax

xmin

Z ymaxðxÞ

yminðxÞ
gðx; y; tf Þdy dx;

where the limits of integration define the appropriate

circle, the problem then requires that

uðx; yÞ ¼
Iðx; yÞ
0

0

2

6

4

3

7

5

; ð24Þ

where

Iðx; yÞ ¼ 1 if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x � xcð Þ2þ y � ycð Þ2
q

� 1;

0 otherwise:

(

ð25Þ

Figure 5
Computed results for the tsunami propagation problem on two different runs utilizing the surface-flagging technique. The x-axis and y-axis are

latitude and longitude, respectively. The grids and solution along the left correspond to the simulation with a tolerance of 0.14, and the grids

and solution along the right correspond to the simulation with a tolerance of 0.09. In the grid figures each color corresponds to a different level

of refinement: white for the coarsest level, blue for level two, and red for level three. The color scale for the solution figures goes from blue to

red, and ranges between �0:3 and 0.3 m (surface elevation relative to sea level). Times are in hours after the earthquake
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This function uðx; yÞ defines the ‘‘initial data’’

q̂ðx; y; tf Þ for the adjoint problem. Figure 6 shows the

results for the simulation of this adjoint problem. For

this simulation a grid with 15 arc-minute ¼ 0:25�

resolution was used over the entire Pacific and no

grid refinement was allowed. The simulation was run

out to 11 h.

The topography files used for the adjoint problem

are the same as those used for the forward problem.

However, given that the adjoint problem is being

solved on a coarser grid than the forward problem,

the coastline between the two simulations varies.

Since the coastline varies between the two simula-

tions, when computing the inner product it is possible

to find grid cells that are wet in the forward solution

and dry in the adjoint solution. In this case, the inner

product in those grid cells is set to zero.

The simulation of this tsunami using adjoint-flagging

for the AMRwas run using the same initial grid over the

Pacific, the same refinement ratios, and the same initial

water displacement as our previous surface-flagging

simulations. Theonly difference between this simulation

and the previous one is the flagging technique utilized.

The first waves arrive at Crescent City around 4 h after

the earthquake, so we set ts ¼ 3:5 h and tf ¼ 11 h.

Recall that the areas where themaximummagnitude of

the inner product over the appropriate time range,

max
T � s� t

q̂Tðx; y; sÞqðx; y; tÞ
�

�

�

�

with T ¼ minðt þ tf � ts; 0Þ, is large are the areas

where adaptive mesh refinement should take place.

Figure 7 shows the Geoclaw results for the surface

height at various different times, along with the grids

at different levels of refinement that were used and

the maximum inner product in the appropriate time

range. Compare this figure to Fig. 5, noting the extent

of the grids at each refinement level for each of the

three simulations.

6.1. Computational Performance

The above example was run on a quad-core

laptop, for both the surface-flagging and adjoint-

flagging methods, and the OpenMP option of GeoC-

law was enabled which allowed all four cores to be

utilized. The timing results for the tsunami simula-

tions are shown in Table 1. Recall that two

simulations were run using surface-flagging, one

with a tolerance of 0.14 (‘‘Large Tolerance’’ in the

table) and another with a tolerance of 0.09 (‘‘Small

Tolerance’’ in the table). Finally, a GeoClaw example

using adjoint-flagging was run with a tolerance of

0.004 (‘‘Forward’’ in the table), which of course

required a simulation of the adjoint problem, the

timing for which is also shown in the table.

As expected, between the two GeoClaw simula-

tions which utilized surface-flagging the one with the

larger tolerance took significantly less time. Note that

although solving the problem using adjoint-flagging

did require two different simulations, the adjoint

problem and the forward problem, the computational

time required is only slightly more than the timing

required for the large tolerance surface-flagging case.

Another consideration when comparing the

adjoint-flagging method with the surface-flagging

method already in place in GeoClaw is the accuracy

of the results. To test this, gauges were placed in the

Figure 6
Computed results for tsunami propagation adjoint problem. Times shown are the number of hours before the final time, since the ‘‘initial’’

conditions are given at the final time. The color scale goes from blue to red, and ranges between �0:05 and 0.05
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example and the output at the gauges compared

across the two different methods.

For the tsunami example two gauges are used:

gauge 1 is placed at ðx; yÞ ¼ ð235:536; 41:67Þ which
is on the continental shelf to the west of Crescent

City, and gauge 2 is placed at ðx; yÞ ¼
ð235:80917; 41:74111Þ which is in the harbor of

Crescent City. In Fig. 8 the gauge results from the

adjoint method are shown in blue, the results from the

surface-flagging technique with a tolerance of 0.14

are shown in red, and the results from the surface-

flagging technique with a tolerance of 0.09 are shown

in green. Note that the blue and green lines are in

fairly good agreement, indicating that the use of the

adjoint method achieved a comparable accuracy with

the smaller tolerance run using the surface-flagging

Figure 7
Computed results for tsunami propagation problem when adjoint-flagging is used. The x-axis and y-axis are latitude and longitude,

respectively. In the grid figures each color corresponds to a different level of refinement: white for the coarsest level, blue for level two, and

red for level three. The color scale for the surface height figures goes from blue to red, and ranges between �0:3 and 0.3. The color scale for

the inner product figures goes from white to red, and ranges between 0 and 0.04. Times are in hours since the earthquake
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method, although the time required was significantly

less. While the larger tolerance run using the surface-

flagging method had a similar time requirement to the

adjoint method simulation, it agrees fairly well only

for the first wave but then rapidly loses accuracy.

7. Conclusions

In this paper, we first presented the adjoint

methodology in some detail in hopes that it will also

be useful in other tsunami modeling software in the

future, and perhaps in other contexts for exploring

sensitivities.

Integrating the adjoint method approach to cell

flagging into the already existing AMR algorithm in

GeoClaw results in significant time savings for the

tsunami simulation shown in this work. For the tsu-

nami example we examined here, the surface-

flagging simulation with a tolerance of 0.14 has the

advantage of a low computational time but only

provides accurate results for the first wave to reach

Crescent City. The surface-flagging simulation with a

tolerance of 0.09 refines more waves and therefore

provides accurate results for a longer period of time.

However, it has the disadvantage of having a long

computational time requirement since it refines in

many regions where the waves are not important to

the modeling of Crescent City. The use of the adjoint

method allows us to retain accurate results while also

reducing the computational time required. Equally, or

perhaps even more importantly, the adjoint approach

gives more confidence that the appropriate waves

have been refined to capture the tsunami impact at the

target location than ad hoc attempts to guide the

refinement regions manually.

The code for all the examples presented in this

work is available online at Davis (2015), and includes

the code for solving the adjoint Riemann problems.

This code can be easily modified to solve other tsu-

nami modeling problems. This repository also

contains other examples illustrating how adjoint-

flagging can be used with AMRClaw, the more

general adaptive refinement code in Clawpack for

general hyperbolic systems. Another example of the

adjoint method being used in GeoClaw for tsunami

modeling can be found in Borrero et al. (2015).

8. Additional Comments and Future Work

The method described in this paper flags cells for

refinement wherever the magnitude of the relevant

inner product between the forward and adjoint solu-

tions is above some tolerance. Choosing a sufficiently

small tolerance will trigger refinement of all regions

where the forward solution might need to be refined,

Table 1

Timing comparison for the example in Sect. 6.1 given in seconds of CPU time on a quad-core laptop

Surface-flagging Adjoint-flagging

Small tolerance Large tolerance Forward Adjoint

8310 5724 5984 27

Figure 8
Computed results at gauges for tsunami propagation problem. The

results from the simulation using the adjoint method are shown in

blue, the results from the simulation using the surface-flagging

method with a tolerance of 0.14 are shown in red, and the results

from the simulation using the surface-flagging method with a

tolerance of 0.09 are shown in green. Along the x-axis, the time

since the occurrence of the earthquake is shown in hours
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and in our current approach these will be refined to

the finest level specified in the computation for

refinement in the ocean (finer levels may be imposed

near the target location). We believe this approach is

already a significant advance over the method cur-

rently used in GeoClaw for many trans-oceanic

modeling problems. Although a tolerance must be

chosen in order to define the cutoff for flagging cells

based on the inner product, this is similar to the

current need for setting a tolerance on the surface

elevation for flagging cells, and has the great

advantage that it identifies the waves that will reach

the target location rather than potentially refining

everywhere there are waves.

We will also continue to explore ways to better

optimize efficiency—it would be desirable to have

error bounds based on the adjoint solution that could

be used to refine the grid more selectively to achieve

some target error tolerance for the final quantity of

interest. For some problems we believe this can be

accomplished using the Richardson extrapolation

error estimator that is built into AMRClaw to esti-

mate the point-wise error in the forward solution and

then using the adjoint solution to estimate its effect

on the final quantity of interest. This is currently

under investigation and we hope to develop a robust

strategy that can be applied to a wide variety of

problems for general inclusion into Clawpack.

However, there are potential difficulties in deriving

more precise error estimation via the adjoint method

for use in GeoClaw. The functional J(q) that we have

defined, e.g., by integrating the solution against the

piecewise constant function over a one degree square

around Crescent City defined by (24), is not exactly

the quantity we are trying to compute in the end.

Rather we wish to compute the time history at one or

more particular gauge locations (as shown in Fig. 8)

or the detailed inundation in the community. The

functional J(q) is simply designed to radiate waves

from the Crescent City vicinity in order to determine

what waves in the forward problem are important to

track. The error in some true quantity of interest such

as the maximum flooding depth may vary from point

to point in the community. For this reason more

research is required to investigate the extent to which

error estimates on J(q) can be employed in practice.

Another potential difficulty is that the bathymetry

B(x, y) is not at all smooth at the grid resolution

typically needed to model trans-ocean wave propa-

gation. Because the wave length of tsunamis is so

long, good accuracy is often observed in spite of this

(as found in many validation studies of GeoClaw and

other tsunami software based on the shallow water

equations). However, this may limit the applicability

of Richardson extrapolation error estimation.

Using adaptive refinement in solving the adjoint

equation may also be desirable. In this paper the

adjoint solution was computed on a fixed grid.

Allowing AMR to take place when solving the

adjoint equation could increase the accuracy of the

results, since it would enable a more accurate (while

still efficient) evaluation of the inner product between

the forward and adjoint solutions. In an effort to

guide the AMR of the adjoint problem in a similar

manner to the method used for the forward problem,

the two problems would need to be solved somewhat

in conjunction and the inner product between the two

considered for both the flagging of the cells in the

adjoint problem as well as the flagging of cells in the

forward problem. One approach that is used to tackle

this issue is checkpointing, where the forward prob-

lem is solved and the solution at a small number of

time steps is stored for use when solving the adjoint

problem, as seen for example in Wang et al. (2009).

The automation of this process is another area of

future work, and involves developing an evaluation

technique for determining the number of checkpoints

to save or when to shift from refining the adjoint

solution to refining the forward solution and vice

versa.

For the tsunami example presented here we lin-

earized the shallow water equations about the ocean

at rest, and the adjoint equations then have essentially

the same form. This is sufficient for many important

applications, in particular for tsunami applications

where the goal is to track waves in the ocean where

the linearization is essentially independent of the

forward solution. If an adjoint method is desired in

the inundation zone, or for other nonlinear hyperbolic

equations, then the adjoint equation is derived by

linearizing about a particular forward solution. This

would again require the development of an automated

process to shift between solving the forward problem,

linearizing about that forward problem, and solving
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the corresponding adjoint problem. Finally, in this

work we assumed wall boundary conditions when a

wave interacted with the coastline in the adjoint

problem. This assumption, along with the use of the

linearized shallow water equations, becomes signifi-

cant when a wave approaches a shore line. Allowing

for more accurate interactions between waves and the

coastline in the solution of the adjoint problem is

another area for future work.
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