Topological Data Analysis of Critical Transitions
in Financial Networks

Marian Gidea

Abstract We develop a topology data analysis-based method to detect early signs
for critical transitions in financial data. From the time-series of multiple stock prices,
we build time-dependent correlation networks, which exhibit topological structures.
We compute the persistent homology associated to these structures in order to track
the changes in topology when approaching a critical transition. As a case study, we
investigate a portfolio of stocks during a period prior to the US financial crisis of
2007-2008, and show the presence of early signs of the critical transition.

Keywords Stock correlation network e Critical transition ¢ Topological data
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1 Introduction

A critical transition refers to an abrupt change in the behavior of a complex
system—arising due to small changes in the external conditions—which makes the
system switch from one steady state to some other steady state, after undergoing
a rapid transient process (e.g., ‘blue-sky catastrophe’ bifurcation). Examples of
critical transitions are ubiquitous, including market crashes, abrupt shifts in ocean
circulation and climate, regime changes in ecosystems, asthma attacks and epileptic
seizures, etc. A landmark paper on the theory of critical transitions and its
applications is [19].

A challenging problem of practical interest is to detect early signs of critical
transitions, that is, to identify significant changes in the structure of the time-series
data emitted by the system prior to a sharp transition. In this paper we propose
a new method to look for critical transitions, based on measuring changes in the
topological structure of the data. We consider systems that can be described as time-
varying weighted networks, and we track the changes in the topology of the network
as the system approaches a critical transition. We use tools from topological data
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analysis, more precisely persistent homology, to provide a precise characterization
of the topology of the network throughout its time-evolution. We observe, in
empirical data, that there are significant, measurable changes in the topology of
the network as the underlying system approaches a critical transition.

The pipeline of our approach is the following. The input of our procedure is
a time-evolving weighted network G(V,E), w, : E — [0,00), i.e., a graph of
nodes V and edges E, with each edge ¢ € E having assigned a weight w;(e)
which varies in time. At each instant of time ¢, using a threshold value of the
weight function as a parameter, we consider the threshold sub-network consisting
of those edges whose weights are below that threshold. We compute the homology
of the clique complex determined by that sub-network. As we vary the threshold
value, some of the homology generators persist for a large range of values while
others disappear quickly. The persistent generators provide information about the
significant, intrinsic patterns within the network, while the transient patterns may be
redeemed as less significant or random. This information can be encoded in terms
of a so-called persistent diagram, which provides a summary of the topological
information on the network. As the time evolves, the topology of the network
changes, and the corresponding persistent diagrams also change. There is a natural
metric (in fact, several) to measure distances between persistent diagrams. It is
important to note that persistent diagrams are robust, meaning that small changes in
the network yield persistent diagrams that are close to one another in terms of their
mutual distances. The output of our procedure consists of a sequence of distances
measured between the persistent diagram at time ¢ and the persistent diagram at
some initial time #,.

The salient features of our approach are the following:

(i) We process the input signal in its entirety, as we do not filter out noise from
signal,
(i) For weighted networks, we obtain a global description of all threshold sub-
networks, for all possible threshold values;
(iii) We describe in more detail the structures of our networks, unlike the statistical-
type methods (e.g., centrality measures);
(iv) We provide an efficient way to compare weighted networks through the
distances between the associated persistent diagrams,
(v) For time-dependent networks, we track the changes of the topology of the
networks via the distances between persistent diagrams.

We point out that the networks that we consider in this paper are very noisy.
Metaphorically speaking, what we are trying to do here is to quantify the ‘shape of
noise’.

We illustrate our procedure by investigating financial time series for the US
financial crisis of 2007-2008. The time-varying network that we consider is the
cross correlation network C = (c;;) of the stock returns for the companies in
the Dow Jones Industrial Index (DJIA); the nodes of the network represent the
stocks, and the weights of the edges are given by the distances d;; = /2(1 —¢;;).
Following the process described above, we compute the time series of the distances
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between the persistent diagrams at time ¢ and the reference persistent diagram at
initial time fy. The conclusion is that these time series display a significant change
prior to the critical transition (i.e., the peak of the crisis), which shows that the stock
correlation network undergoes significant changes in its topological structure.

For the computation of persistent diagrams and their mutual distances we use the
R package TDA [10].

2 Background

We provide a brief, largely self-contained, review of the persistent homology
method, and describe how to use it to analyze the topology of weighted networks.
Some general references and applications include [1-3, 6, 8, 13, 14, 16].

2.1 Persistent Homology

Persistent homology is a computational method to extract topological features from
a given data set (e.g., a point-cloud data set or a weighted network) and rank them
according to some threshold parameter (e.g., the distance between data points or
the weight of the edges). Topological features that are only visible at low levels of
the parameter are ranked lower than topological features that are visible at both low
and high levels. For each value of the threshold parameter one builds a simplicial
complex (i.e., a space made from simple pieces—geometric simplices, which are
identified combinatorially along faces). In our case, the vertices correspond to the
data points and the simplices are determined by the proximity of data points. When
the threshold parameter is varied, the corresponding simplicial complexes form a
filtration (i.e., an ordering of the simplicial complexes that is compatible with the
ordering of the threshold values). Then one tracks the topological features (e.g.,
connected components, ‘holes’ of various dimensions) of the simplicial complexes
across the filtration, and record for each topological feature the value of the
parameter at which that feature appears for the first time (‘birth value’), and the
value of the parameter at which the feature disappears (‘death value’). We now give
technical details.

A simplicial complex K is a set of simplices {0} of various dimensions that
satisfies the following conditions: (1) any face of a simplex o € K is also in K, and
(2) the intersection of any two simplices 07,0, € K is either @ or a face of both o
and o0,.

Given a simplicial complex K, we denote by H;(K) the ith homology group
with coefficients in Z,. This is a free abelian group whose generators consists
of certain chains of i-dimensional simplices (i.e., cycles that are not boundaries).
Note that H;(K) = 0 for i > m + 1. The generators of the ith homology group
account for the ‘independent holes’ in K at dimension i. For example, the number
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of 0-dimensional generators equals that of connected components of K, the number
of 1-dimensional generators equals that of ‘tunnels’ (or ‘loops’), the number of 2-
dimensional generators equals that of ‘cavities’, etc. For a reference, see, e.g., [12].

A filtration of K is a mapping a € A — Z(a) := K, C K, from a (totally
ordered) set of parameter values A € R to a set of simplicial sub-complexes of
K, satisfying the filtration condition: a < ' = K, < K. For any filtration
of simplicial complexes a — K, the corresponding homology groups also form
a filtration a — H;(K,), thatis,a < d = H;(K,) C Hi{(Ky).

For a < d, the inclusion H;(K,) € H;(K,) induces a group homomorphism
W’ . H(K,) — Hi(Ky), in all i. Let H*Y = Im(h*“) be the image of 4 in
H;(K,). We say that a homology class y € H;(K}) is born at the parameter value
a=bify ¢ Hf’_‘”’ for any 6 > 0. If y is born at K, then we say that it dies
at the parameter value a = d, with b < d, if y coalesces with an older class in
H;(K,—) as we go from K,_, to K, for & > 0, that is, h**(y) ¢ H"~*“* for any
small ¢,6 > 0, but hf"d(y) € Hf’_‘g‘d for some small § > 0. If y is born at K; but
never dies then we say that it dies at infinity. Thus, we have a value b(y) = b and a
death value d(y) = d for each generator y that appears in the filtration of homology
groups. The persistence, or ‘life span’ of the class y is the difference between the
two values, pers(y) = d(y) — b(y).

The ith persistent diagram of the filtration .% is defined as a multiset P; in R,
fori =0, ...,m, obtained as follows:

» For each class y; we assign a point z; = (b;, d;) € R? together with a multiplicity
wi(b;, d;); where b; is the parameter value when y; is born, and d; is the parameter
value when y; dies. The multiplicity u;(b;, d;) of the point z; = (b;, d;) equals the
number of classes y; that are born at b; and die at d;. This multiplicity is finite
since the simplicial complex is finite.

+ In addition, P; contains all points in the positive diagonal of R?. These points
represent all trivial homology generators that are born and die at every level.
Each point on the diagonal has infinite multiplicity.

e The axes of the persistent diagram are birth values on the horizontal axis and
death values on the vertical axis.

An illustration of persistent diagrams for a simple example of point-cloud data
set and a filtration of simplicial complexes is shown in Fig. 1.

The space of persistent diagrams can be endowed with a metric space structure.
A standard metric that can be used is the degree p Wasserstein distance (earth mover

1/p

distance), with p > 0. This is defined by D, (P}, P}) =inf | > " [lg— (@[ | .
¢ qEPi1

where the summation is over all bijections ¢ : P} — P%. When p = oo the

Wasserstein distance D, is known as the bottleneck distance. Since the diagonal
set is by default part of all persistent diagrams, the pairing of points between P} and
Pl.2 via ¢ can include pairings between off-diagonal points and diagonal points.
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Fig. 1 A point-cloud data set representing a ‘noisy’ circle, together with a filtration of simplicial
complexes, corresponding to some threshold parameter values §; < 8, < 83 < 84. The O-
dimensional and the 1-dimensional persistence diagrams are shown at the botfom of the figure.
At §; there are eight connected components and no 1-dimensional hole. At §, the eight connected
components coalesce into a single one, indicated by the point (1, 2) in the O-dimensional diagram,
which has multiplicity 7; also, a 1-dimensional hole is born. There is no topological change at
3. At 84 the 1-dimensional hole gets filled in and dies, indicated by the the point (2, 4) in the 1-
dimensional diagram; the single connected component continues living for ever, and is represented
by filled diamond

We note that different value of the degree p yield different types of measurements
of the distances between persistent diagrams. Using p = oo, the corresponding
distance Dy, only measures the distance between the most significant features
(farthest from the diagonal) in the diagrams, matched via some appropriate ¢. Using
p = 1 large, the corresponding distance D, puts more weight on the significant
features (farther from the diagonal) than on the least significant ones (closer to the
diagonal). Using p > 0 small has just the opposite effect on the measurement.

One of the remarkable properties of persistent diagrams is their robustness,
meaning that small changes in the initial data produce persistent diagrams that are
close to one another relative to Wasserstein metric. The essence of the stability
results is that the persistent diagrams depend Lipschitz-continuously on data. For
details see [5, 7, 9].
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2.2 Persistent Homology of Weighted Networks

A weighted network is a pair consisting of a graph G = G(V,E) and a weight
function associated to its edges w : E — [0, +00); let Opax= max(w). In the sequel
we will only consider graphs that are simple and undirected. In examples, the weight
function is chosen so that nodes with similar characteristics are linked together.

One standard recipe to investigate the topology of weighted graphs is via
thresholding, that is, by considering only those edges whose weights are below (or
above) some suitable threshold, and study the features of the resulting graph. Of
course, the choice of the threshold value makes a difference in the topology of the
resulting graph. Using persistent homology, we can extract the topological features
for each threshold graph, and represent all these features, ranked according to their
‘life span’, in a persistent diagram. We now give technical details.

For each 6 € [0, 6,,.«], we consider the sub-level sets of the weight function, that
is, we restrict to subgraphs G(6) which keep all edges of weights w below or equal
to the threshold 6. The graphs obtained by restricting to successive thresholds have
the filtration property, i.e., 8 < 8’ = G(6) < G(0’). In a similar way, we can
consider super-level sets, by restricting to subgraphs G(6) which keeps all edges of
weights w above or equal to the threshold 6. Super-level sets can be thought of as
sub-level sets of the weight function w' = O — w.

For each threshold graph G(8) we construct the Rips complex (clique complex)
K = X(G(0)). This is defined as the simplicial complex with all complete
subgraphs (cliques) of G(0) as its faces. That is, the 0-skeleton of K consists of
just the vertices of G(#), the 1-skeleton of all vertices and edges—which is the
graph G(0) itself—the 2-skeleton of all vertices, edges, and filled triangles, etc.
High dimensional cliques correspond to highly interconnected clusters of nodes
with similar characteristics (as encoded by the weight function). The filtration of
the threshold subgraphs yields a corresponding filtration of the Rips complexes
0 — Ky := X(G(0)); thus, § < 0/ — Ky < Ky . As it was noted before,
the homology groups associated to this filtration satisfy themselves the filtration
property, i.e., 0 < 6/ =— H;(Ky) C H;(Ky’). From this point on, we can compute
the persistent homology and the persistent diagrams associated to this filtration, in
the manner described in Sect. 2.1.

In Sect.3 we will only compute persistent diagrams of dimension 0 and 1, so
we explain in detail the significance of these diagrams in terms of the threshold
networks.

A point (6,,6;) in a O-dimensional persistent diagram has the following
meaning:

e At the threshold value 6), a connected component is born, where each pair of
nodes in the component is connected via a path of edges of weights 6 < 0,;

e At the threshold value 6; two or more connected components coalesce into a
single one, via the addition of one or several edges of weight § = 6, to the
threshold network.
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A point (6,,6;) in a 1-dimensional persistent diagram has the following
meaning:

e At the threshold value 6, a loop of 4 or more nodes is born, whose nodes are
connected in circular order by edges of weights 8 < 6,; note that a loop of 3
nodes yields a complete sub-graph in the Rips complex (i.e., a filled triangle),
which carries no 1-dimensional homology;

e At the threshold value & = 6, one or more loops get covered by filled
triangles, due to adding one or more edges of weight & = 6, thus making the
corresponding 1-dimensional homology generators vanish.

We note that applications of persistent homology to networks also appear, e.g.,
in [4, 11].

3 Detection of Critical Transitions from Correlation
Networks

3.1 Correlation Networks as Weighted Networks

The network that we analyze here is derived from the DJIA stocks listed as of
February 19, 2008. We utilize the time series of the daily returns based on the
adjusted closing prices S;(¢), i.e., x;(t) = S'(""SA—Q)_SI(I) where At = 1 day, and the
indices i correspond to the individual stocks. We restrict to the data from January
2004 to September 2008 (when Lehman Brothers filed for bankruptcy).

Now we define the weighted network G(V, E) that we analyze. The vertices V of
the network correspond to the individual DJIA stocks. Each pair of distinct vertices
i,j € Vis connected by an edge e, and each edge is assigned a weight w(e, t) at time
t defined as follows:

» Compute the Pearson correlation coefficient ¢;;(¢) between the nodes i and j at

2= (D) =5 (5(0) =)

N i@ =52 N oy () =5
where Xx;, x; denote the averages of x;(z), x;(¢) respectively, over the time interval
[r—"T.1;

» Compute the distance between the nodes i and j, d;j(r) = /2(1 — c;;(t))—the
fact that the metric axioms are satisfied follows easily from the properties of
correlation;

* Assign the weight w(e, t) = d;;(¢) to the edge e between i and j.

time ¢, over a time horizon T, by ¢;;(f) =
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For the computation of the correlation via the Pearson estimator, there is
empirical evidence against using longer time horizons when non-stationary behavior
is present. Therefore, in our computation we use a rather short time horizon of
T = 15; we also use the arithmetic return rather than the standard log return. For an
argument in support of these choices see [15].

The range of values of d;; is [0,2]. Note that d(i,j) = O if the nodes i
and j are perfectly correlated, and d(i,j) = 2 if the nodes are perfectly anti-
correlated. Edges between correlated nodes have smaller weights, and edges
between uncorrelated/anti-correlated nodes have bigger weights. Since correlation
between stocks is of interest, we focus on edges with low values of d.

In the sequel, we will consider both sub-levels sets and super-level sets of the
weight function.

Each sub-level set of the weight function w, at a threshold level 6 < [0,2],
yields a subgraph G(8) containing only those edges for which 0 < d;; < 6, that
is, GO) = {e =e(i,j)|1 — %92 < ¢ij < 1.} When 6 is small, G(8) contains only
edges between highly-correlated nodes. As 6 is increased up to the critical value
V2 = 1.414214 edges between low-correlated nodes are progressively added to the
network. As 6 is increased further, edges between anti-correlated nodes appear in
the network.

Each super-level set of the weight function w = d can be conceived as a sub-
level sets for the dual weight function w = 2 — d. The sub-level set G(6) for this
weight-function contains only those edges for which d;; > 2 — 60, hence G, () =
fe=eli,j)| =1 < ¢y <1-— %(2 — #)%.} When 6 is small, G,/(#) contains
only edges between anti-correlated nodes. When 6 crosses the critical value 2 —
V2 = 0.5857864, edges between low-correlated nodes are progressively added
to the network. As 6 is increased further towards the highest possible value of 2,
highly-correlated nodes are added to the network.

Sub-level sets and super-level sets produce very different type of networks, and
they furnish complementary information. We will discuss this in Sect. 3.2.

3.2 Persistent Diagrams of Correlation Networks

In this section we use persistent homology to quantify the changes in the topology
of the correlation networks when approaching a critical transition. For illustrative
purposes, we show some correlation networks in Fig.2; the top three networks
represent instants of time far from the beginning of the 2007-2008 financial crisis,
while the bottom three diagrams represent instants of time preceding the crisis.

We compute persistent homology in dimensions 0 and 1 for the correlation
network from Sect. 3.1. We do not consider higher-dimensional persistent homology
because the network is very small, so the presence higher-dimensional cliques is
likely accidental.
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Fig. 3 Persistent diagrams (sub-level sets)

First, we consider threshold networks given by the sublevel sets of the weight
function w = d. Several persistent diagrams are shown in Fig. 3. The top three
diagrams correspond to instants of time far from the beginning of the 2007-2008
financial crisis, while the bottom three diagrams correspond to instants of time
preceding the crisis.

The 0-dimensional persistent homology provides information on how the net-
work connectivity changes as the value of € in increased from O to 2. Each black
dot on the persistent diagram corresponds to one (or several) connected component
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of the graph. The horizontal coordinate of each dot is 0, since all components are
born at threshold value & = 0. The vertical coordinate of a dot gives the threshold
value 6 at which a connected component dies, by joining together with another
connected component. The dot with highest vertical coordinate (other than 2) gives
the threshold value 6 for which the graph becomes fully connected. A dot at 2 (the
maximum value) indicates that once the graph is fully connected, it remains fully
connected (hence the component never dies) as 6 is further increased. Dots with
lower vertical coordinates indicate threshold values for which smaller connected
components consisting of highly correlated nodes die, i.e., coalesce together into
larger components. Dots with higher vertical coordinates correspond to death of
connected components due to the appearance of edges between uncorrelated or anti-
correlated nodes. We recall that the critical value of 6 that marks the passage from
correlation to anti-correlation is 1.41. Inspecting the diagrams in Fig.3 we see a
concentration of dots with higher vertical coordinates in the first period, and a a
concentration of dots with lower vertical coordinates in the second period. There is
less correlation in the network in the first period than in the second period.

These observations can be quantified by computing the time-series representing
the distances between the diagram at time ¢ and some reference persistent diagram
at the initial time 7). We sample this time series at Az = 10. We show this in Fig. 4.
We use the Wasserstein distance of degree p = 2. We notice that the oscillations
in the second half of the time series are almost double in size when compared with
those in the first half. This shows a change in the topology of the network, in terms
of its connectivity, when approaching the critical transition.

Now we interpret the 1-dimensional persistent homology, illustrated in Fig. 3 by
red marks. The horizontal coordinate of a mark gives the birth value of a loop in
the network, and the vertical coordinate gives the death value of that loop. The
death of a loop occurs when edges between the nodes of the loop appear and

Distances between persistent diagrams Distances between persistent diagrams

1.5 20 25

distance
distance
0.00 0.01 0.02 0.03 0.04 0.05 0.06
1

1.0

0.5

0.0

T
0 20 40 60 80 100 120
time time

Fig. 4 Left: distances between 0-dimensional persistent diagrams (sub-level sets). Right: distances
between 1-dimensional persistent diagrams (sub-level sets)
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form complete 2-simplices (filled triangles) that fill up the loop. Dots with low
coordinates indicate the presence of cliques that are highly correlated. Marks with
higher vertical coordinates indicate the death of loops due to edges between low-
correlated or anti-correlated nodes. The top three diagrams in Fig. 3 seem to indicate
a concentration of dots at a higher range of values when compared with the bottom
three diagrams.

We also compute the time-series (sampled at Ar = 10) of the Wasserstein
distances of degree p = 2, between the diagram at time ¢ and the reference diagram
at fo. We show this in Fig. 4. The oscillations in the second part of the time series
are smaller than the ones in the first part. Again, there is a change in the topology
of the network, in terms of its cliques, when approaching the critical transition: the
number of loops of correlated nodes appears to stabilize itself.

We now compute the super-levels sets of w, which are sub-level set of w'. The
resulting persistent diagrams have a different interpretation. The critical value of
the threshold 6 for the switch from anti-correlation to correlations is 0.5857864.
Points in the persistent diagram with low vertical coordinates correspond to anti-
correlation/non-correlation, and points with higher value of the vertical coordinate
(other than 2) indicates the appearance of edges between correlated nodes. A point
on the persistent diagram with higher vertical coordinate represents the death of
a connected component (or a loop), possibly formed by anti-correlated or low
correlated nodes, when an edge between correlated nodes is added to the networks.
Thus, the homology generators identified by the persistent diagrams represent
cliques of stocks associated to ‘normal’ market conditions (which are associated
to lack of correlation). The death of these generators is caused by the addition
to correlated edges to the threshold network (in dimension 0, by joining together
different connected components, and in dimension 1 by closing the loops). That
is, the persistence diagrams capture the loss of normal market conditions. We
show some persistent diagrams in Fig. 5, the time series of distances between O-
dimensional persistent diagrams, and between 1-dimensional persistent diagrams,
in Fig. 6.

4 Conclusions

The analysis of the persistent diagrams and of the distances between persistent
diagrams show significant changes in the topology of the correlation network in
the period prior to the onset of the 2007-2008 financial crisis; early signs become
apparent starting February 2007 (note that the U.S. stock market peaked in October
2007). These topological changes can be characterized by an increase in the cross
correlations between various stocks, as well as by the emergence of sub-networks
of cross correlated stocks.

These results are in agreement with other research asserting that crises are
typically associated with rapid changes in the correlation structure and in the
network topology (see, e.g., [15, 17, 18, 20]).
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Fig. 6 Left: distances between 0-dimensional persistent diagrams (super-level sets). Right: dis-
tances between 1-dimensional persistent diagrams (super-level sets)

In addition to the experiments presented here, we have used persistent homology
to analyze the time-series of some market indices (e.g., the VIX index) for the same
period, using point-cloud data sets obtained via delay-coordinate reconstruction
method. These tests also show early signs of critical transition; those results will
be presented elsewhere.
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