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Abstract Network science has made great progress in the study of binary
relationships between pairs of elements. Although it has been known for decades
that n-ary are ubiquitous in complex systems, progress in this area has been
much slower. A condensed account is given of the family of network structures
which includes graphs, networks, multilevel networks and multiplex networks
for binary relations, and hypergraphs, simplices complexes and hypernetworks
for n-ary relations. These structures are naturally integrated in a generalising
framework. This family of network structures supports a new theory of multilevel
systems where structures at one level become vertices at higher levels through part-
whole aggregation interleaved with taxonomic aggregation. Although the structures
presented are necessary to understand the dynamics of complex multilevel systems,
there are many open questions. These are presented for consideration by the network
community.
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1 Introduction

Network science has made great progress in the study of binary relationships
between pairs of elements. It is now becoming more widely accepted that there
is a need to embrace n-ary relations in network science [17]. This paper presents a
condensed account of a family of structures able to represent n-ary relations, and
the algebraic theory of multilevel systems they support. Although multidimensional
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network structures are necessary to understand the dynamics of complex multilevel
systems, there are many open questions. These are set out in the concluding section
for consideration by the network science community.

It will be assumed that the reader is familiar with graphs and networks. Multilayer
and multiplex networks provide a formalism for the analysis of networks defined by
many different relations [11]. A comprehensive account of multilayer and multiplex
networks is given by Boccaletti et al. in [10].

A weakness of conventional network theory is that the notation hv; v0i does not
discriminate between the defining relations. To do this an extra symbol is required.
For example, let V represents a set of people, R1 the relation ‘is line managed by’ and
R2 the relation ‘plays golf with’. Then v and v0 may satisfy both relations. Let the
notation hv; v0I R1i means v0 is the boss of v. This is different to hv; v0I R2i meaning
that v plays golf with v0. This notation has the desirable feature that it naturally
allows the definition of algebraic operations on the relations such as hv; v0I R1 ^ R2i
which combines the relations R1 and R2 to form composite relations such as .R1 ^
R2/ meaning ‘plays golf with the boss’.

2 Hypergraphs and the Galois Lattice

There are many of instances n-ary relations between more than two vertices. For
example, consider four people playing bridge. This is a 4-ary relation. n things are
related by an n-ary relation if it ceases to hold on removing any them. For example,
if one person leaves the bridge game, the game no longer continues normally. The
structures at the top of Fig. 1 generalise the structures at the bottom by allowing
relations between any number of vertices.

The French mathematician Claude Berge made an early attempt to generalise
relational structure to many vertices through his definition of hypergraphs developed
in the 1960s.
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Fig. 1 The natural family of network structures embraces n-ary relations
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Let X D fx1; x2; : : : ; xng be a finite set. A hypergraph on X is a family H D
.E1; E2; : : : ; Em/ of subsets of X such that

(1) Ei ¤ ; .i D 1; 2; : : : ; m/

(2)
Sm

iD1 D X.

The elements x1; x2; : : : ; xm are called vertices and the sets E1; E2; : : : ; Em are the
edges of the hypergraph [8, 9].
Let R be a relation between sets A and B. Let a R b mean that a is R-related to b
where a 2 A and b 2 B. Let R.a/ be the set of all b 2 B that are R-related to
a, R.a/ D fb j a R bg. Then HA.B; R/ D fR.a/ j for all a 2 Ag is a hypergraph.
Similarly, let R.b/ D fa j a R bg. Then HB.A; R/ D fR.b/ j for all b 2 Bg is a also
hypergraph.

Given the hypergraph HA.B; R/, let HA.B; R/ be all the sets in HA.B; R/ together
with all their intersections. Let HA.B; R/ be called a Galois hypergraph. Similarly,
let HB.A; R/ be all the sets in HB.A; R/ together with all their intersections. Then
HA.B; R/ and HB.A; R/ are dual Galois hypergraphs.

Proposition The sets in the dual Galois hypergraphs HA.B; R/ and HB.A; R/ are in
one-to-one correspondence. This is called the Galois connection between the dual
hypergraphs.

A proof of this proposition can be found in [18]. The intuition behind the proposition
is that there are paired maximal subsets called Galois pairs, A0 $ B0 where every
member of A0 � A is R-related to every member of B0 � B.

Proposition There is an order relation on the set of Galois pairs with an associated
Galois Lattice

Let A0 $ B0 and A00 $ B00 be Galois pairs. Then A0 � A00 if and only if B0 � B00.
Let . be defined as A0 $ B0 . A00 $ B00 if A0 � A00. Then . is an order relation
with an associated lattice structure. This is called the Galois Lattice for the relation
R between A and B. More details of the Galois connection and Galois Lattice can be
found in [13, 14, 16, 18].

3 Simplicial Complexes and Q-Analysis

Hypergraphs have the great advantage that they are simple set-theoretic structures
and this makes it easy to prove the existence of the Galois connection and Galois
Lattice. However set theory is too weak for most applications because the elements
are not ordered. For example, fR, E, P, A, I, Rg D fR, A, P, I, E, Rg so the words ‘repair’
and ‘rapier’ cannot be discriminated by the sets of their letters—the order of the
letters is also required.

At the same time that Berge was developing his theory of hypergraphs, the
British mathematician Ron Atkin was developing his theory of Q-analysis based
on simplicial complexes and algebraic topology [1–6].
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Fig. 2 Simplices can represent relations between two or more things. (a) Line 1-dimensional.
(b) Triangle 2-dimensional. (c) Tetrahedron 3-dimensional. (d) 5-hedron 4-dimensional
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Fig. 3 q-connected polyhedra. (a) � and � 0 are 1-near. (b) �1 and �4 are 1-connected

Let V be a set of elements called vertices. An abstract p-dimensional simplex
hx0; x1; : : : ; xpi is an ordered set of p C 1 vertices. A simplex hx0

0; x0
1; : : : ; x0

qi
is a q-dimensional face of the simplex hx0; x1; : : : ; xpi iff fx0

0; x0
1; : : : ; x0

qg �
fx0; x1; : : : ; xpg. A set of simplices is called a simplicial family. A set of simplices
with all its faces is called a simplicial complex.

In algebraic topology it is common to use the symbol � to represent simplices,
and this convention will be used here. Simplices have a geometric realisation as
p-dimensional polyhedra, as shown in Fig. 2.

Two simplices are q-near if they share a q-dimensional face. Two simplices are
q-connected if there is a chain of pairwise q-near simplices between them. The
tetrahedra � and � 0 are 1-near in Fig. 3a because they share a 1-dimensional face.
In Fig. 3b �1 and �4 are 1-connected, since �1 is 1-near �2, �2 is 1-near �3, and �3 is
1-near �4.

A Q-analysis determines classes of q-connected components, sets of simplices
that are all q-connected. An early application of Q-analysis studied land uses in
Colchester [6].

4 Backcloth, Traffic and Multidimensional Percolation

The vertices and edges of networks often have numbers associated with them. For
example in a social network the vertices may be associated with the amount of
money a person has and the edges may be associated with how much money passes
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between pairs of people. In electrical networks the vertices have voltage associated
with them and the edges have current. Although the network’s voltages and currents
may change, the network itself does not. Similarly in a road network the daily traffic
flows may vary but usually the network infrastructure does not. The same holds for
simplicial complexes when there are patterns of numbers across the vertices and the
simplices. The numbers may change when the underlying simplicial complex does
not.

Atkin suggested that the relatively unchanging network or simplicial complex
structure be called a backcloth and that the numbers be called the traffic of activity
on the backcloth. As an example, the airline network acts as a backcloth to the traffic
of airline passengers. The term backcloth comes from the scenery painted on large
canvas sheets used in theatres as a static backdrop behind the actors.

Atkin first used simplicial complexes to characterise a wide variety of phenomena
in physics by his Cocycle Law that the space-time backcloth supporting many
physical phenomena has no holes. His conceptual leap “from cohomology in physics
to q-connectivity in social science” was published in 1972 [1, 12].

Networks are excellent for representing and calculating the dynamics of flows,
including electricity, fluids, vehicles and sentiments. Simplicial complexes are
multidimensional networks and they too can carry equally diverse traffic flows.
Generally the q-connectivity of the underlying backcloth constraints the dynamics
of the flows. This has been called q-transmission and has been described as a
multidimensional analogue to percolation in networks [15, 16].

5 Hypernetworks

Although simplicial complex are a step forward in representing n-ary relations they
too have their limitations, as illustrated in Fig. 4. Here the lines `1; : : : ; `16 are
arranged in a circle by the relation R1. The resulting structure h`1; : : : ; `16I R1i has
the emergent property that most people see a white disk at the centre of the lines,
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Fig. 4 The lines `1; : : : ; `16 organised by two different relations, R1 and R2. (a) The sun illusion
�1 D h`1; : : : ; `16I R1i. (b) The rectangle illusion �2 D h`1; : : : ; `16I R2i
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Fig. 5 Chemical isomers as relational simplices. (a) n-propyl alcohol. (b) Isopropyl alcohol. (c)
Methyl-ethyl-ether

the so-called sun illusion. Figure 4b shows the same set of lines assembled under
a different relation, R2. Now there is no disk but a rectangle shape emerges. This
example illustrates that the same ordered set of elements can be the subject of more
than one relation, and that the simplex notation h`1; : : : ; `16i cannot discriminate
these very different cases.

In order to do this another symbol is necessary to represent the relation. We write
R1 W h`1; : : : ; `16i ! h`1; : : : ; `16I R1i and R2 W h`1; : : : ; `16i ! h`1; : : : ; `16I R2i.
Let �1 represent the sun configuration and �2 represent the rectangle configuration.
Then �1 and �2 are examples of relational simplices, or hypersimplices. Now the
notation enables �1 to be discriminated from �2, since �1 ¤ �2.

As another example, propanol assembles three carbon atoms with eight hydrogen
atoms and one oxygen atom, written as C3H8O or C3H7OH. Figure 5 shows the
atoms of propanol arranged in a variety of ways. The first two show the isomers
n-propyl alcohol and isopropyl alcohol. The oxygen atom is attached to an end
carbon in the first isomer and to the centre carbon in the second, but the C-O-H
hydroxyl group substructure is common to both. The rightmost isomer of C3H8O,
methoxyethane, has the oxygen atom connected to two carbon atoms and there is
no C-O-H substructure. This makes it an ether, methyl-ethyl-ether, rather than an
alcohol. Thus the relational simplices of the isomers have the same vertices, but the
assembly relations are different. n-propyl alcohol and isopropyl alcohol share the
hydroxyl group substructure C-O-H and are similar, but methyl-ethyl-ether does not
and has different properties. Thus

h C, C, C, H, H, H, H, H, H, H, H, O ; R n�propylalcoholi ¤
h C, C, C, H, H, H, H, H, H, H, H, O ; R isopropylalcoholi ¤
h C, C, C, H, H, H, H, H, H, H, H, O ; R methyl � ethyl � etheri
In general a hypernetwork is defined to be any collection of hypersimplices. This

definition is deliberately undemanding, so that almost anything can be a hypersim-
plex, and any collection of hypersimplices can be a hypernetwork. Hypersimplices
can act as backcloth structure carrying a traffic of numbers on their vertices and on
their faces.
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Fig. 6 Remove a vertex and the simplex ceases to exist. (a) Remove a vertex and the cyclist
simplex ceases to exist. (b) Remove a vertex and the perfect gin and tonic ceases to exist

6 The Vertex Removal Test for n-ary Relations

The essential feature of a polyhedron is that it ceases to exist if any of the vertices
are removed. For example, consider a cyclist represented as the combination hrider,
bicycle; Rridingi. Remove either the man or the bicycle and what is left ceases to be a
cyclist. Remove any vertex from hgin, tonic, ice, lemon; Rmixedi and it ceases to
be the perfect gin and tonic (Fig. 6). Generalising edges to polyhedra allows a
distinction to be made between the parts of things represented by vertices, and
wholes represented by hypersimplices. Using this test it is easy to find many
examples of n-ary relations, e.g. a path with n edges in a network forms a
hypersimplex—remove an edge and the path ceases to exist; four bridge players
form a hypersimplex—remove one and the game collapses; and a car and its wheels
are 5-ary related—without any of them it won’t work.

7 Hypernetworks and Multilevel Structure

Hypersimplices enable the definition of multilevel part-whole structures, e.g.
the four blocks assembled by the 4-ary relation R to form an arch in Fig. 7. Here
the whole has the emergent property of a gap not possessed by any of its parts. If
the parts exist in the system at an arbitrary Level N then the whole exists at a higher
level, here shown as Level NC1. Thus assembly relations provide an immutable
upwards arrow for the definition of multilevel structure.

Part-whole aggregations are interleaved with taxonomic aggregations, as shown
in Fig. 8. The aggregation between Level N and Level NC1 combines graphical parts
to form faces. The aggregation between Level NC1 and Level NC2 establishes
classes of faces in a taxonomy. Such aggregations depend on the purpose of the
taxonomy. For example, there is no class of ‘frowny’ faces because, for the purpose
here, it is not required. Note that part-whole aggregations require all the parts.
In contrast taxonomic aggregations require just one example to aggregate. For
example, the round smiley face is sufficient for there to be a smiley face, irrespective
of whether or not there is a square smiley face.
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Fig. 8 Part-whole and taxonomic aggregation

8 The Multilevel Fragment-Recombine Operator

When dealing with multilevel systems it would be useful to have a single symbol to
represent the very complicated multilevel cone structures illustrated in Fig. 9a. One
possibility is to enclose them by triangle. This representation allows a subsystem
to be represented by a triangle within a triangle as shown in Fig. 9b. Since the
intersection of two triangles is also a triangle, this representation is convenient to
denote the intersection of two multilevel systems, as shown in Fig. 9c.

This representation suggests an exciting new possibility for multilevel complex
systems. To be more concrete consider a narrative as a multilevel structure made
of words, phrases, paragraphs and complete stories. Narratives are very important
in policy and very important for the development of a theory of complex social
systems.

For example, Europe is grappling with many narratives associated with migrants,
and these narratives work at the level of the plight of individual people, through
to more aggregate structures such as people traffickers’ boats to more aggregate
structures such as countries and their policies. The narratives include political and
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Fig. 9 Multilevel operations on multilevel triangles. (a) A multilevel triangle. (b) Subsystem.
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Fig. 10 Multilevel fragment-recombine operators

economic aspects at many level of aggregation. Let this multilevel narrative be
called NMigration as shown top-left in Fig. 10. Let 4Mi be the state of the narrative
at time ti.

Alongside the strong migration narrative in the UK there are others, e.g. the
unemployment narrative, NUnemployment, shown bottom-left in Fig. 10.

Both these narratives evolve in time, with information and invention being added
or lost as the meanings of the narrative evolve. Figure 10 shows these narratives
evolving independently until they crash into each other at time t5. The combinatorial
dynamics of such a crash is not well understood, but it involves parts of the two
multilevel systems interacting and each of the multilevel narratives fragmenting
before they recombine to form new composite narratives, e.g. Nmigrantsaretakingourjobs.
Let the fragment-recombine operator of multilevel systems, ?, be defined as

? W . 1; 2/ ! 1 ? 2

where 1 and 2 are multilevel systems before they crash and 1 ? 2 is the
multilevel system after. There are many open questions associated with this.
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9 Open Questions in Multidimensional Network Science

Open Question 1 How are the dynamics of systems constrained by the q-
connectivity structure of the backcloth? What are the mechanisms for q-percolation?

This question concerns the dynamics of system traffic, i.e. the patterns of
numbers across the vertices and hypersimplices. The numbers on one hypersimplex
can directly influence the numbers on another through their shared face. For
example, consider two routes through a road traffic system. The routes can be
considered to be structured sets of road segments, Ri D hs0; s1; : : : ; snI Rroutei. The
more segments that two routes share, the more their traffic will interact, with the
vehicles slowing each down. Thus the more highly connected the routes, the greater
the impact they have on each other.

Open Question 2 What are the processes of hypersimplex formation and loss?
This question is a generalised version of the question as to how links form in

networks. One answer to this for networks is the Barabási’s preferential attachment
mechanism [7]. A necessary condition for a hypersimplex to form is that all its
vertices are present. For the vertices to become n-ary related may require a process
in time involving a sequence of other p-ary relations. For example, for n people
to form a well-functioning team involves a process in which they learn to work
together. In the case the process may change the vertices. For example, some
members of the team may be trained in order to acquire necessary skills.

Open Question 3 What is the nature of multilevel backcloth-traffic dynamics?
This question combines the first and second questions in the context of multi-

level interactions. Bottom-up the traffic or patterns of numbers aggregate over
the multilevel backcloth. In general more aggregate numbers get larger and more
predictable in time. Furthermore, aggregation bottom-up tends to convert lower level
structures into numbers. For example, company taxation results in a time series of
numbers at the national level, where the details of companies and their activities
are not explicit. Similarly there are issues of how numbers are distributed top-down
over multilevel systems. The challenge is to understand how bottom-up and top-
down dynamics interact across multilevel systems.

Another aspect of this question concerns the formation of multilevel structure,
and the processes by which top-down decisions enable or require the creation of
lower level structures. For example a company may decide to invest in a new factory.
This requires information traffic to flow across higher management level resulting
in top-down flows of resources to create the lower level structure. Generally the
rationale for this is that the new lower structure will create new resources that will
flow up the structure to enhance the company’s profits.

When modelling systems it is always the case that some things are included and
some are left out. This includes deciding that some level is the lowest necessary
to model a multilevel system. The dynamics of a multilevel system are said to
be information complete at Level N if modelling their behaviour requires no
information from Level N-k for k � 1. Thus Open Question 3 includes how to decide
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the level at which a system is information complete. For example, until recently,
economic systems were modelled at the meso level of the ‘representative agent’.
Today it is increasing realised that many social system are information-complete
only at the level of the individual person. For example, the behaviour of road traffic
system emerges from the decisions of individual driver agents and increasingly they
are modelled at this level by agent-based simulations using the disaggregate data of
synthetic micro populations.

Open Question 4 What new algebraic operations can be defined between hyper-
simplices?

The generality of this question is given by the expression

hx0; : : : ; xp1 I R1i ˘ hy0; : : : ; yp2 I R2i D hz0; : : : ; zp1;2 I R1
�? R2i

where fz0; : : : ; zp1;2g D fx0; : : : ; xp1g ? f y0; : : : ; yp2g. The challenge is to determine

the nature of the operators ? and �? .
This question has its origins in the simple question “what is the intersection of two
hypersimplices?” An obvious but unsatisfactory answer is given by

hx1; x2; : : : ; xnI R1i \ hy1; y2; : : : ; yp0 I R2i ‹D hz1; z2; : : : ; zqI R1 ^ R2i;

where fz1; z2; : : : ; zqg D fx1; x2; : : : ; xpg \ fy1; y2; : : : ; yp0g.
The problem here is that R1 is defined on all the vertices x1; x2; : : : ; xp and R2 is
defined on all the vertices y1; y2; : : : ; yp0 but, as written, their conjunction is defined
on fx1; x2; : : : ; xpg \ fy1; y2; : : : ; yp0g. Another possibility is to write

hx1; x2; : : : ; xnI R1i \ hy1; y2; : : : ; yp0 I R2i ‹D hz1; z2; : : : ; zqI R1 ^ R2i;

where fz1; z2; : : : ; zqg D fx1; x2; : : : ; xpg [ fy1; y2; : : : ; yp0g.
To investigate this question further consider two multiplex network edges, hx1; x2I Ri
and hy1; y2I R0i

hx1; x2I Ri \ hy1; y2I R0i defD ; for fx1; x2g \ fy1; y2g D ;
defD hx1; x2I R ^ R0i for fx1; x2g \ fy1; y2g D fx1; x2g
defD hx1; x2i ? hy1; y2iI R �? R0i otherwise

Of these, the first and second are not problematic, the former being an empty
intersection and the latter being the conjunction of the relations. But how should
the ? and �? operations be defined?

Suppose hx1; x2i ? hy1; y2i D hx1; x2i \ hy1; y2i D hx1i. This means that
R �? R0 is defined on a single vertex. It is perhaps more promising to suppose that
hx1; x2i ? hy1; y2i D hx1; x2i [ hy1; y2i?
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Open Question 5 What is the nature of the multilevel fragment-recombine operator
? W .41; 42; : : :/ ! 41 ? 42 ? : : : for multilevel systems.
It may be easiest to answer by thinking ahead to how the ? operation could be
implemented. In practice it is assumed that the multilevel systems are explicitly
represented in multilevel data structures based on the algebra sketched in this paper.
Then the question becomes how hypersimplices at compatible levels behave when
they crash into each other. Presumably there are various ? and �? operations
to deconstruct and recombine the hypersimplices. The nature of these is a major
challenge for multilevel multidimensional network science.
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