
Chapter 9
Two-Dimensional Non-similar Flows

In the foregoing chapters, we had strictly been limited to the self-similar flows due to
moving continuous surfaces of different geometries. Despite the devoted efforts
spent in the previous part, it is yet a matter of reality that the class of self-similar
solutions in all the considered cases is very restricted being strictly limited to the
power-law and the exponential wall velocities. In particular applications, the situ-
ations, in general, need not to follow the power-law or exponential wall velocities
only. In such circumstances, the wall velocity functions are free to adopt any dif-
ferentiable from other than the power-law and the exponential forms. Such classes of
velocity functions are really very large in comparison with the self-similar ones and
have a great potential to cover almost all the other possible wall velocities occurring
in technological applications. Corresponding to all other forms of the wall velocity
functions, the flow will essentially be non-similar in nature. In view of the available
literature on the boundary-layers due to moving continuous surfaces, no significant
efforts have so far been spent in this direction. In this regard, the current part of this
book is of great importance where we intend to introduce the non-similar flows due
to moving continuous surfaces. In Chaps. 9 and 10, the spatial non-similarity in the
planner two-dimensional and the axially symmetric cases has been considered,
respectively, whereas the temporal non-similarity is considered in Chap. 11.

9.1 Non-similar Governing Equations

The previously considered governing system (5.2)–(5.4) for the two-dimensional
self-similar flows is equally applicable to the case of non-similar flows considered
in this section. Different from the self-similar flows, the variable wall velocity uwðxÞ
neither does obey the power-law nor the exponential form in this case. Such a
violation of the self-similarity criterion is actually responsible for the non-similar
designation of the current viscous flows. With this breaking of the similarity
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criterion, the velocity function uwðxÞ is free to assume any other form falling out of
the scope of similarity wall velocities. Such other forms are finally charged by a
partial differential equation to be solved, instead of ordinary differential equation,
for the non-similar flows.

Till the third quarter of the last century, the non-similar flows had been thought
to be difficult to handle because of the limited availability of high-performance
computing machines. This restriction has now been elevated completely because of
the availability of cheap but high-performance computing machines as a conse-
quence of the advent of modern technology. On the other hand, the tremendous
developments in the CFD have now made the solution of non-similar equations
equally that easy as does the solution of odes.

The non-similar formulation of the governing system (5.2)–(5.4) comes directly
from the self-similar formulation with the consideration that @f

@x 6� 0, whereas in the

self-similar flows @f
@x � 0. In this way, the similarity transformations (6.5) do also

work in the non-similar case but with the modified form of the stream function w,
given by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uwðxÞmx

p
f x; gð Þ; ð9:1Þ

where only “+” sign has been considered in the transformation (6.5) which corre-
sponds to the stretching sheet flow only. The case of shrinking wall velocities
follows, however, in the similar way and has been discarded in this discussion.
Because of Eqs. (6.5) and (9.1), the governing system (5.2)–(5.4) transforms to
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@g ¼ 1; f ¼ 0; at g ¼ 0
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@g ¼ 0; at g ¼ 1

)
: ð9:3Þ

In this case, the coefficient of skin-friction comes out of the form
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: ð9:4Þ

It is worth noting here that the first two terms on the left-hand side of Eq. (9.2)

own the variable coefficients involving x
uw
duw
dx which is a function of x, in general.

However, situations do exist, for example: uwðxÞ ¼ axm, when the coefficient x
uw
duw
dx

becomes a pure constant. In such situations, the last two terms, involving differ-
entiation w.r.t. x on the left-hand side of Eq. (9.2), do not contribute any more.
Consequently, the pde turns to an ode, thus representing the self-similar situation.
Therefore, Eq. (9.2) can also be regarded as a generalization of the self-similar
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Eq. (6.4) for the stretching sheet case which certainly reduces to Eq. (6.4) when the
variable coefficients become constant. Particular to the case considered in this
section, the non-similarity comes due to the wall velocity only. Equation (9.2) can
further be recasted in a relatively simpler form, given by
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where the utilized change of variables reads as

dn ¼ q2muwðxÞdx; dg ¼ quwðxÞffiffiffiffiffi
2n

p dy; w x; yð Þ ¼
ffiffiffiffiffi
2n

p
f n; gð Þ: ð9:6Þ

The coefficient of skin-friction and the momentum and displacement thicknesses
in terms of the variables (9.6) take the form
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and
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respectively.

9.2 Accelerated/Decelerated Non-similar Flows

All differentiable forms of uwðxÞ, in addition to the power-law and exponential
ones, are admissible by the system (9.2)–(9.3). However, the power-law and
exponential wall velocities shall not be considered here because, with these forms
of the wall velocity, system (9.2)–(9.3) reduces to the self-similar form, as men-
tioned earlier. Even with the exclusion of self-similar wall velocities, the family of
non-similar wall velocities is still too large. It is therefore impossible to mention all
such forms here and hence to analyze all of them. However, as an example, the
Howarth’s [1] (like) wall velocity of the form
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uw xð Þ ¼ U0 � ax; ð9:10Þ

is considered where U0 denotes the constant wall velocity and a is a positive
constant. The “þ ” sign refers to the accelerated wall velocity, while the “�” sign
governs the retarded wall law.

Physically, the wall velocity (9.10) is a linear combination of the translating
velocity and the linear stretching or shrinking velocity corresponding to the “þ ” or
“�” sign, respectively. Thus, the shrinking sheet flow, being retarded in nature, is
vulnerable to the separation phenomena, whereas the stretching sheet flow would
involve no separation at all because of accelerated nature of it. With the selection of
“−” sign in Eq. (9.10), it has been calculated that the coefficient of skin-friction
decreases continuously till x�sep: ¼ 0:42, where it becomes zero and changes its sign
further onward to x�sep:. This fact has been depicted in Fig. 9.1 where the velocity
graph tends to attain S-shape with increasing values of x� till x�sep: ¼ 0:42; where the
velocity graph achieves the S-shape and the velocity curve shows the presence of
point of inflection in it. The coefficient of wall skin-friction is shown plotted against
x� in Fig. 9.2 where the function f 00ðx�Þ can be seen hitting zero at x�sep: ¼ 0:42. Due
to Eqs. (9.6) and (9.10), the variables x� and n are related as

n ¼ q2m 1� ax�ð Þx�; ð9:11Þ

where x� ¼ x=L with L denoting suitable characteristic length in the x-direction.
The numerical values of skin-friction coefficient listed in Table 9.1 correspond

to different values of x�. In comparison with the Howarth’s retarded flow [1], the
separation has been delayed by 250% in the present case. The reason behind this is
the increased wall skin-friction in the moving continuous sheet flows as compared
to the sheets of fixed length. Therefore, the increased wall friction thus assists the
boundary-layer flow to survive a quite longer in the infinite continuous wall cases
in comparison with the finite wall cases.

The stretching sheet case of the current non-similar flow involves no such
trouble because of its accelerating nature. Upon advancing along the moving sheet
in increasing x*-direction, the flow establishes more and more by confining itself to
a narrower region near the moving continuous wall. The velocity graphs of this case

Fig. 9.1 Velocity graphs at
different x* locations

138 9 Two-Dimensional Non-similar Flows



are shown plotted in Fig. 9.3 where the velocity graphs can be seen decreasing
upon increasing the values of x�. Consequently, the coefficient of skin-friction
increases as shown in Fig. 9.4 with x�, thus avoiding the occurrence of flow sep-
aration. The numerical values of the coefficient of skin-friction have also been listed
in Table 9.1 at different x*-stations. The above-reported results have been obtained
due to Eq. (9.5) subject to the boundary conditions (9.3).

For the two-dimensional and axially symmetric non-similar boundary-layer
equations, the famous Keller-Box Method is the appropriate numerical tool which

Fig. 9.2 Variation of
coefficient of skin-friction
while x* approaches the
separation point

Table 9.1 Dimensionless
wall shear values � sw

qU2
0
Re1=2L

x� Shrinking case Stretching case

0.01 4.3134 4.5644

0.05 1.7091 2.2704

0.1 1.0206 1.8139

0.15 0.6859 1.6566

0.2 0.4717 1.5912

0.25 0.3174 1.5670

0.3 0.1992 1.5653

0.35 0.1052 1.5771

0.38 0.0575 1.5886

0.40 0.0288 1.5977

0.42 0.0022 1.6078

Fig. 9.3 Velocity profile for
the accelerated case
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converges unconditionally. An introduction to this method has already been given in
Sect. 4.2.2. The current solution has also been obtained because of this method. The
accuracy of the utilized numerical procedure was first ensured by solving the famous
Howarth’s retarded flow. A comparison of the results obtained due to the current
procedure with those of Howarth’s [1] has been given in Table 9.2. Clearly, the
current solution is in appreciable agreement with the Howarth’s solution [1]. This
authenticates our numerical procedure and allows for the integration of Eq. (9.5)
with the aid of it. The grid independence check has also been applied to the current
numerical procedure, and the results have been shown in Tables 9.3 and 9.4.

Fig. 9.4 Coefficient of
skin-friction plotted against
x* (accelerated case)

Table 9.2 Accuracy of the
method for Howarth’s flow:
dimensionless wall shear
values

sw
qU2

0
Re1=2L

x� Present method Howarth’s [1]

0.0125 2.742 2.739

0.0250 1.773 1.772

0.0375 1.310 1.309

0.0500 1.011 1.011

0.0625 0.790 0.790

0.0750 0.612 0.613

0.0875 0.458 0.459

0.1000 0.314 0.315

0.1125 0.163 0.163

0.1200 0.002 0.000

Table 9.3 Grid
independence in n by fixing
Δη = 0.1 and numerical
infinity equal to 8.0

No. of points x�sep: � sw
qU2

0
Re1=2L

15 0.42 0.0029

22 0.42 0.0026

43 0.42 0.0022

61 0.42 0.0022

85 0.42 0.0023

141 0.42 0.0023

422 0.421 0.0010
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The data presented in these tables show that the current solution is independent of the
grid for appropriate selection of the step sizes in n- and η-directions.

Normally, owing to the boundary-layer behavior, relatively big step sizes in n do
produce the correct results, but regarding the capturing of separation point, the
current analysis reveals that the dense grid provides the much better approximation
in comparison with the coarse one. After several runs, the results reported in
Table 9.1 were calculated by choosing Dn ¼ 0:01 and Dg ¼ 0:1 and taking (the
numerical infinity) g1 ¼ 8:0.
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Table 9.4 Grid
independence in η by taking
numerical infinity equal to 8.0

Dn ¼ 0:01 Dn ¼ 0:001

No. of
points

x�sep: � sw
qU2

0
Re1=2L

x�sep: � sw
qU2

0
Re1=2L

17 0.42 0.0016 0.421 0.0003

81 0.42 0.0022 0.421 0.0010

161 0.42 0.0024 0.421 0.0011

801 0.42 0.0024 0.421 0.0011
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