
Chapter 5
The Criterion of Self-similarity for Wall
Velocities

The laminar boundary-layer flows can mainly be subdivided into two subclasses,
namely the self-similar flows and the non-similar flows, as mentioned previously.
Among these two classes, the self-similar flows had been more popular and studied
extensively in the previous decades. The reason behind their wider acceptance is
twofold: first, because of their governing boundary-layer equations, which are pdes
actually, but readily reduce to ordinary differential equations by means of the
similarity transformations, thus facilitating greatly toward their solution explo-
ration; second, such self-similar flows help greatly toward the understanding of flow
character within the boundary-layer. Because of these advantages, the self-similar
boundary-layer flows, especially two-dimensional, have extensively been studied
not only for the finite plate but also for the continuous sheet. The theory can almost
be considered as complete for the self-similar flows past finite surfaces, but is still
pending for the continuous surfaces. In this particular class of flows, the develop-
ment had neither been quick nor been complete; rather, it had been contributed in
bits. For example, Sakiadis [1] first introduced the self-similar solution for the
continuous flat surface moving with uniform velocity. Crane [2] introduced the
self-similar solution for variable wall velocity by restricting it to the linear form and
referred it as the linear wall stretching. Later, the nonlinear stretching wall velocity
was introduced by Banks [3] and Magyari and Keller [4] for the power-law and
exponential wall velocities, respectively. This development is strictly restricted to
the two-dimensional case; in view of these developments, the (two-dimensional)
self-similar flows due to power-law wall velocities can be regarded as explored
completely,1 but the flows due to exponential wall velocities still require further
exploration. The situation is far more adverse in the cases of three-dimensional and
axisymmetric flows.

The available literature on three-dimensional flows is mainly restricted to the
linear stretching velocities in two lateral directions. Some self-similar solutions

1Complete in a sense (see Sect. 3.1). This statement does not deny the existence of any other
self-similar solution.
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corresponding to the exponential bilateral wall velocities have also been reported
without covering the whole class. In this regard, three-dimensional self-similar flow
due to a stretching sheet was introduced by Wang [5] in which he considered linear
stretching in the two lateral directions. The axially symmetric case of self-similar
flow due to a stretching cylinder was also introduced by Wang [6] where he again
assumed the linear stretching velocity at the surface of the cylinder. Another type of
axis-symmetric flow, due to a stretching surface, is the case of stretching disk flow
which was introduced by Fang [7] by considering the linear radial stretching of the
flexible circular disk. In all the aforementioned cases of three-dimensional and
axisymmetric flows, the criterion of self-similarity has not been explored com-
pletely, thus requiring a thorough investigation regarding the identification of
self-similar wall velocities in these cases. After having done all this, one will be
more quite in claiming that the criterion of self-similarity in view of the stretching/
shrinking wall velocities has completely been determined for the continuous sur-
faces. This will in turn help to complete the theory of self-similar laminar boundary-
layers due to moving continuous surfaces.

In view of above-cited history regarding the, in bits, development of the
self-similar boundary-layer flows due to moving continuous surfaces, a student or a
new researcher in this area misleadingly perceives that the identification of such
particular wall velocities for which the similarity solution exists is just by luck or
due to the hit-and-trial method. This is the reason behind the fact that whenever a
new self-similar solution was introduced in this area, it was immediately adopted
by almost all the researchers involved with this topic. The same is the fact with
the “shrinking sheet flow” which has also been adopted by a huge number of
researchers despite the fact that the self-similar modeling introduced by Miklavcic
and Wang [8] is, somewhat, wrong. But even then, the involved authors are con-
tinuously following the incorrect formulation and are publishing wrong results on
this topic. A detail account on this issue is given in Chap. 7.

Therefore, keeping these facts in mind the systematic approach toward the
determination of self-similar criterion for any flow situation has been explained and
employed to the two-dimensional, three-dimensional, and axisymmetric flow situ-
ations in this chapter. The allowed wall velocities in the aforementioned cases for
which the self-similar solutions exist have been determined, and the corresponding
self-similar governing systems have also been derived.

5.1 Two-Dimensional Flow

Consider a flexible impermeable flat sheet emerging from a slit (situated at the point
0; 0ð Þ) in the positive x-direction with velocity uw xð Þ. The x-axis has been taken
aligned to the sheet, and the y-axis goes deep into the fluid vertically upward by
fixing the origin of the coordinate system at the orifice. The fluid is assumed to be
viscous and incompressible following the Newton’s law of viscosity. Outside the
boundary-layer, the fluid velocity is denoted by u1 and is assumed to be zero.
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Because of the absence of any potential flow and the utility of the boundary-layer
assumption, the pressure gradient within the boundary-layer, formed on the moving
continuous sheet, is zero. In this situation, the flow is steady and two-dimensional in
nature. A schematic of the flow is shown in Fig. 5.1.

Based on the flow assumptions, the appropriate velocity vector reads as:

V ¼ u x; yð Þ; v x; yð Þ; 0½ �: ð5:1Þ

Consequently, the governing boundary-layer system (2.10)–(2.12) reduces to

@u
@x

þ @v
@y

¼ 0; ð5:2Þ

u
@u
@x

þ v
@u
@y

¼ m
@2u
@y2

; ð5:3Þ

subject to the boundary conditions [due to Eq. (2.17)]

u ¼ uw xð Þ; v ¼ 0; at y ¼ 0
u ¼ 0; at y ¼ 1

�
: ð5:4Þ

Further simplification to the system (5.2)–(5.4) can be achieved by introducing
the stream function w x; yð Þ owing to the following relation with the velocity
components:

u ¼ @w
@y

; v ¼ � @w
@x

: ð5:5Þ

Due to Eq. (5.5), the equation of continuity (5.2) is satisfied identically and
Eqs. (5.3) and (5.4) take the form

Fig. 5.1 Schematic of the
two-dimensional flow and the
coordinate system
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@w
@y

@2w
@x@y

� @w
@x

@2w
@y2

¼ m
@3w
@y3

; ð5:6Þ

@w
@y ¼ uw xð Þ; @w@x ¼ 0; at y ¼ 0
@w
@y ¼ 0; at y ¼ 1

)
; ð5:7Þ

respectively. Equations (5.6) and (5.7) are the representative equations for the
considered two-dimensional flow with certain possible simplifications to be
determined.

These equations shall now be applied the procedure of group theoretical
approach in obtaining the similarity transformations, as explained in Sect. 3.3.
According to the general theory, we need to introduce the scaling of all the variable
quantities involved in the system (5.6)–(5.7). Therefore, we choose a scaling group
of the form:

�x ¼ ka1x; �y ¼ ka2y; �w ¼ ka3w; �uw ¼ ka4uw; ð5:8Þ

where k is the scaling parameter and ai i ¼ 1; . . .; 4ð Þ denote the scaling exponents.
Utilization of the group (5.8) transforms the system (5.6)–(5.7) in the form of new
variables as

ka1 þ 2a2�2a3 @
�w

@�y
@2�w
@�x@�y

� ka1 þ 2a2�2a3 @
�w

@�x
@2�w
@�y2

¼ m k3a2�a3 @
3�w
@�y3

; ð5:9Þ

ka2�a3 @�w
@�y ¼ k�a4�uw;

@�w
@�y ¼ 0; at �y ¼ 0

@�w
@�y ¼ 0; at �y ¼ 1

)
: ð5:10Þ

The restriction of invariance of the system (5.6)–(5.7) under the action of scaling
group (5.8) requires that all the constant coefficients in (5.9) must have the same
powers of k and the same applies to Eq. (5.10) also. This gives rise to a system of
algebraic equations in ai i ¼ 1; ::; 4ð Þ of the form

a1 þ 2a2 � 2a3 ¼ 3a2 � a3; a2 � a3 ¼ �a4: ð5:11Þ

Before we solve the system (5.11), it is important to decide, first, about the
variable to be eliminated among the original independent variables x and y. In this
case, the obvious choice is x. This gives rise the consideration of two cases
regarding the zero and nonzero character of a1, the scaling exponent of x:

Case I a1 6¼ 0ð Þ
In this case, the division by a1 to the system (5.11) is possible and results in the
system
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1þ 2
a2
a1

� 2
a3
a1

¼ 3
a2
a1

� a3
a1

;
a2
a1

� a3
a1

¼ � a4
a1

;

admitting the non-trivial solution of the form

a3
a1

¼ 1� a2
a1

;
a4
a1

¼ 1� 2
a2
a1

:

The ratio a2
a1
has appeared as the free variable and will be treated as an arbitrary

constant in the subsequent process. Based on this solution, the new variables are
constructed as follows (see Eq. 3.14):

g ¼ y
xa2=a1

; f gð Þ ¼ w x; yð Þ
xa3=a1

; a � const: ¼ uw xð Þ
xa4=a1

: ð5:12Þ

Let us say

1� 2
a2
a1

¼ m an arbitrary constantð Þ; ð5:13Þ

due to which Eq. (5.12) takes the form

g ¼ x
m�1
2 y; w ¼ x

mþ 1
2 f gð Þ; uw ¼ axm; ð5:14Þ

where η and f gð Þ are the new independent and dependent variables, respectively,
and a is a pure constant having suitable dimensions. These variables shall be called
the similarity variables if they successfully transform the system (5.6)–(5.7) of
partial differential equations to an equivalent system of ordinary differential equa-
tions. The utilization of Eq. (5.14) in the system (5.6)–(5.7) immediately gives the
self-similar system of the form

mf 02 � mþ 1
2

� �
ff 00 ¼ mf 000; ð5:15Þ

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ 1; f 0 1ð Þ ¼ 0; ð5:16Þ

where the previous variables have successfully been removed. Therefore, the
variables η and f gð Þ (given in Eq. 5.14) can safely be regarded as the similarity
variables. Notice that in Eq. (5.14), the wall velocity follows the form uw ¼ axm

which is of the power-law type. Thus, the case a1 6¼ 0 results in the power-law wall
velocity criterion of the moving continuous surface for which the resulting system
(5.15)–(5.16) is self-similar. Notice that Eq. (5.15) is exactly the same as it is for
the Falkner–Skan [9] flow. This can also be written as
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2m
mþ 1

f 02 � ff 00 ¼ mf 000; ð5:17Þ

if the variable η is scaled by a factor of
ffiffiffiffiffiffiffiffi
mþ 1
2

q
:

Case II a1 ¼ 0ð Þ
In this case, the system (5.11) reduces to the form

2a2 � 2a3 ¼ 3a2 � a3; a2 � a3 ¼ �a4;

which admits a non-trivial solution, given by

a3 ¼ �a2; a4 ¼ �2a2:
Here a2 serves as the free variable, whereas a3 and a4 are determined using a2.

Let us put �2a2 ¼ m, where m is an arbitrary constant and is local to this case, due
to which the above solution is modified as

a2 ¼ �m
2
; a3 ¼ m

2
; a4 ¼ m: ð5:18Þ

For the case a1 ¼ 0, the similarity variables are constructed as (see Eq. 3.15):

g ¼ y
ea2x

; f gð Þ ¼ w x; yð Þ
ea3x

; a � const: ¼ uw xð Þ
ea4x

: ð5:19Þ

Substituting the values of ai i ¼ 2; 3; 4ð Þ from Eq. (5.18) into Eq. (5.19), one gets
the new variables of the form

g ¼ ye
m
2x; w ¼ e

m
2xf gð Þ; uw ¼ aemx; ð5:20Þ

which transform the system (5.6)–(5.7) to the form

m f 02 � 1
2
ff 00

� �
¼ mf 000; ð5:21Þ

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ 1; f 0 1ð Þ ¼ 0: ð5:22Þ

Evidently, Eqs. (5.21) and (5.22) are independent of the previous (original)
variables. Therefore, the transformations (5.20) can be regarded as similarity
transformations and the system (5.21)–(5.22) as the self-similar one. In this case,
the wall velocity came out of the exponential form, i.e., uw ¼ aemx, where m is an
arbitrary constant exponent. Thus, the case a1 ¼ 0 leads to another type of simi-
larity solutions for this problem caused by the exponentially varying motion of the
continuous surface.

In the available literature, only the case for m ¼ 1 has been discussed in the case
of exponentially stretching or shrinking wall velocities. The consideration of other
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values of m finally completes this class of self-similar flows. This, ignorance of the
other values of m, was actually the “incompletion” which we have pointed out in
the start of this chapter regarding the two-dimensional flows due to moving con-
tinuous surfaces. However, it is again emphasized that, besides the use of the word
“complete,” we do not claim the nonexistence of any other self-similar solution to
this case. The meanings of this completion over here are in the sense that we have
explored the self-similar solutions completely, corresponding to the chosen group
of scalings.

At the end of this section, it is quite important to summarize that the imple-
mentation of group theoretical procedure resulted in two self-similar forms of the
two-dimensional boundary-layer equations with the restriction that the wall velocity
uw xð Þ must either follow the power-law form ðuw ¼ axmÞ or the exponential form
ðuw ¼ aemxÞ. That is, if the wall velocity is taken either of the forms the flow will be
self-similar; otherwise, it will be non-similar. Such a restriction on the form of
variable wall velocity is actually regarded as the criterion of self-similarity to this
case.

5.2 Three-Dimensional Flow

In the continuation of above, two-dimensional case, it is again assumed that the
fluid of our interest is viscous and incompressible following the Newton’s law of
viscosity. A semi-infinite body of fluid is assumed to be occupying the upper half
space and bounded by an infinite flexible sheet situated at y ¼ 0. The flow is
assumed to be caused by the variable motion of the sheet surface in two lateral
directions. The flow geometry and the chosen system of coordinates are shown in
Fig. 5.2.

This type of flow was first considered by Wang [5] in 1984 where he assumed
uniform stretching velocities in the two lateral directions and obtained a self-similar
solution. Unsteady case of this flow due to an impulsively started stretching sheet
was considered by Takhar et al. [10]. Another three-dimensional flow due to a

Fig. 5.2 Three-dimensional
flow schematic and the
associated system of
coordinates
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stretching sheet was also considered by Wang [11] where he considered unidi-
rectional stretching of the sheet in a rotating fluid. Recently, Liu et al. [12] assumed
the exponential stretching wall velocities in the two lateral directions and obtained a
self-similar solution to this case. This had been very much unfortunate that the
three-dimensional flow due to nonlinear (power-law) wall velocities and the other
powers (other than 1) of the exponential wall velocities have not been given any
attention, so far. It is therefore important to consider a flow in which the lateral wall
velocities have been assumed to be the general functions of x and z coordinates,
that is uw x; zð Þ and ww x; zð Þ. The group theoretical procedure will be employed to
determine the similarity criterion for the wall velocities by determining the explicit
forms of the functions uw x; zð Þ and ww x; zð Þ.

Based on the above assumptions, the flow is essentially three-dimensional owing
to the boundary-layer character. Therefore, the velocity vector for such a steady
three-dimensional flow reads as

V ¼ u x; y; zð Þ; v x; y; zð Þ;w x; y; zð Þ½ �: ð5:23Þ

Compatible to this velocity vector, the governing system comprises of Eqs. (2.10)–
(2.12) and the appropriate boundary conditions are described as

u ¼ uw x; zð Þ; v ¼ 0;w ¼ ww x; zð Þ; at y ¼ 0
u ¼ 0; w ¼ 0; at y ¼ 1

�
: ð5:24Þ

Similar to the previous section, the continuity equation can be made satisfied
identically by introducing the two stream functions w x; y; zð Þ and / x; y; zð Þ which
have the following relations with velocity components:

u ¼ @w
@y

; w ¼ @/
@y

; v ¼ � @w
@x

þ @/
@z

� �
: ð5:25Þ

The above stream functions were first introduced by Moore [13] and were
further refined by Geis [14] for the rectangular Cartesian coordinates. Due to (5.25),
the equation of continuity (2.10) satisfies identically by reducing the number of
unknowns from three to two. Consequently, Eqs. (2.11), (2.12), and (5.24) readily
transform to the new form

@w
@y

@2w
@x@y

� @w
@x

@2w
@y2

� @/
@z

@2w
@y2

þ @/
@y

@2w
@y@z

¼ m
@3w
@y3

; ð5:26Þ

@w
@y

@2/
@x@y

� @w
@x

@2/
@y2

� @/
@z

@2/
@y2

þ @/
@y

@2/
@y@z

¼ m
@3/
@y3

; ð5:27Þ

and
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@w
@y ¼ uw x; zð Þ; @/

@y ¼ ww x; zð Þ; @w
@x þ @/

@z ¼ 0; at y ¼ 0
@w
@y ¼ 0; @/

@y ¼ 0; at y ¼ 1

)
: ð5:28Þ

Let us consider a one-parameter group of scalings, of all the involved inde-
pendent and dependent variables, of the form

�x ¼ ka1x; �y ¼ ka2y; �z ¼ ka3z; �w ¼ ka4w; �/ ¼ ka5/; �uw ¼ ka6uw; �ww ¼ ka7ww;

ð5:29Þ

where k is the scaling parameter and ai i ¼ 1; . . .; 7ð Þ are the scaling exponents. In
this case too, the procedure is exactly the same as was implemented in the previous
section. The details of the procedure can, therefore, be skipped by retaining the
major steps. However, the author feels it necessary and useful, especially for the
students, to proceed with a bit more detail in order to facilitate the reader.
Moreover, this chapter in general and this section in particular include the crux of
this book; therefore, a bit more detail seems not that costly. The extra burden of this
chapter will be compensated in the forthcoming chapters. The substitution of (5.29)
into the system (5.26)–(5.28) results in the following system in bared notation:

ka1 þ 2a2�2a4 @�w
@�y

@2�w
@�x@�y

� @�w
@�x

@2�w
@�y2

� �
� k2a2 þ a3�a4�a5 @�/

@�z
@2�w
@�y2

� @�/
@�y

@2�w
@�y@�z

� �

¼ mk3a2�a4 @
3�w
@�y3

;

ð5:30Þ

ka1 þ 2a2�a4�a5 @�w
@�y

@2�/
@�x@�y

� @�w
@�x

@2�/
@�y2

� �
� k2a2 þ a3�2a5 @�/

@�z
@2�/
@�y2

� @�/
@�y

@2�/
@�y@�z

� �

¼ mk3a2�a5 @
3�/
@�y3

;

ð5:31Þ

and

ka2�a4 @�w
@�y ¼ k�a6�uw; ka2�a5 @�/

@�y ¼ k�a7 �ww; ka1�a4 @�w
@�x þ ka3�a5 @�/

@�z ¼ 0; at �y ¼ 0
@�w
@�y ¼ 0; @�/

@�y ¼ 0; at �y ¼ 1

)
:

ð5:32Þ

The requirement of invariance of the system (5.26)–(5.28), under the group of
scalings (5.29), requires that the system (5.30)–(5.32) must be free from the con-
stant coefficients appearing in the powers of k. This is certainly possible if the
following linear system of equations holds:
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a1 þ 2a2 � 2a4 ¼ 2a2 þ a3 � a4 � a5 ¼ 3a2 � a4; ð5:33Þ

a1 þ 2a2 � a4 � a5 ¼ 2a2 þ a3 � 2a5 ¼ 3a2 � a5; ð5:34Þ

a2 � a4 ¼ �a6; a2 � a5 ¼ �a7; a1 � a4 ¼ a3 � a5: ð5:35Þ

Note that this case involves three independent variables; in order to transform the
system (5.26)–(5.28) to an equivalent system of ordinary differential equations, one
must eliminate two independent variables from the original three. Before solving
the system (5.33)–(5.35), it is, therefore, quite important to decide for the variable
to be eliminated first. Being slack within the boundary-layer, one among the x and
z can equally be chosen and this choice will not affect the final result. We prefer to
choose x to be eliminated first. In this way, two cases arise corresponding to the
zero and nonzero character of the scaling exponent a1.

Case I a1 6¼ 0ð Þ
Dividing the system (5.33)–(5.35) by a1ð6¼ 0Þ throughout and solving subse-
quently, one finds

a2
a1

¼ A;
a3
a1

¼ B;
a4
a1

¼ 1� A;
a5
a1

¼ B� A;
a6
a1

¼ 1� 2A;
a7
a1

¼ B� 2A;

ð5:36Þ

due to which the new variables are constructed as:

n ¼ z
xa3=a1

; g ¼ y
xa2=a1

; F n; gð Þ ¼ wðx; y; zÞ
xa4=a1

; G n; gð Þ ¼ /ðx; y; zÞ
xa5=a1

;

Fw ¼ uwðx; zÞ
xa6=a1

; Gw ¼ wwðx; zÞ
xa7=a1

:

ð5:37Þ

Assuming that 1� 2A ¼ m (an arbitrary constant), we finally get

n ¼ x�Bz; g ¼ x
m�1
2 y; w ¼ x

mþ 1
2 F n; gð Þ; / ¼ xB�

m�1
2 G n; gð Þ; ð5:38Þ

with

uw x; zð Þ ¼ xmFw nð Þ; wwðx; zÞ ¼ xB� m�1ð ÞGw nð Þ; ð5:39Þ

where B is also an arbitrary constant which can also be chosen equal to zero. For the
sake of generality, B will be treated as nonzero in the further proceedings.

At this stage, the variables x has been absorbed in the new independent variables
n and g which are now 2ð¼ 3� 1Þ in number. The above new variables (5.38) and
(5.39) transform the system (5.26)–(5.28) to the form
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m
@F
@g

� �2

�Bn
@F
@g

@2F
@n@g

� mþ 1
2

� �
F
@2F
@g2

þBn
@F
@n

@2F
@g2

� @G
@n

@2F
@g2

þ @G
@g

@2F
@n@g

¼ m
@3F
@g3

;

ð5:40Þ

Bþm� 1ð Þ @F
@g

@G
@g

� Bn
@F
@g

@2G
@n@g

� mþ 1
2

� �
F
@2G
@g2

þBn
@F
@n

@2G
@g2

� @G
@n

@2G
@g2

þ @G
@g

@2G
@n@g

¼ m
@3G
@g3

;

ð5:41Þ

and

@F
@g ¼ Fw nð Þ; @G

@g ¼ Gw nð Þ; mþ 1
2

� �
F � Bn @F

@n þ @G
@n ¼ 0; at g ¼ 0

@F
@g ¼ 0; @G

@g ¼ 0; at g ¼ 1

)
: ð5:42Þ

Evidently, the variable x has been eliminated successfully indicating that the
process can be continued further for the elimination of one more independent
variable. For doing so, we again assume a one-parameter group of scalings of the
variables involved in the system (5.40)–(5.42):

�n ¼ kb1n; �g ¼ kb2g; �F ¼ kb3F; �G ¼ kb4G; �Fw ¼ kb5Fw; �Gw ¼ kb6Gw;

ð5:43Þ

where biði ¼ 1; . . .; 6Þ are the scaling exponents to be determined. The group (5.43)
transforms the system (5.40)–(5.42) to the form

k2b2�2b3 m
@�F
@�g

� �2

�B�n
@�F
@�g

@2�F

@�n@�g
� mþ 1

2

� �
�F
@2�F
@�g2

þB�n
@�F

@�n

@2�F
@�g2

" #

� kb1 þ 2b2�b3�b4
@ �G

@�n

@2�F
@�g2

� @ �G
@�g

@2�F

@�n@�g

� 	
¼ mk3b2�b3

@3�F
@�g3

;

ð5:44Þ

k2b2�b3�b4 ðBþm� 1Þ @
�F

@�g
@ �G
@�g

� B�n
@�F
@�g

@2 �G

@�n@�g
� mþ 1

2

� �
�F
@2 �G
@�g2

þB�n
@�F

@�n

@2 �G
@�g2

� 	

� kb1 þ 2b2�2b4
@ �G

@�n

@2 �G
@�g2

� @ �G
@�g

@2 �G

@�n@�g

� 	
¼ mk3b2�b4

@3 �G
@�g3

;

ð5:45Þ

and
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kb2�b3 @�F
@�g ¼ k�b5 �Fw; kb2�b4 @ �G

@�g ¼ k�b6 �Gw;

k�b3 mþ 1
2

� �
�F � B�n @�F

@�n

h i
þ kb1�b4 @ �G

@�n
¼ 0;

9=
; at �g ¼ 0

@�F
@�g ¼ 0; @ �G

@�g ¼ 0; at �g ¼ 1

9>>=
>>;: ð5:46Þ

The requirement of invariance of the system (5.40)–(5.42) under the group
(5.43) leads to the system of linear algebraic equations in biði ¼ 1; . . .; 6Þ given as

2b2 � 2b3 ¼ b1 þ 2b2 � b3 � b4 ¼ 3b2 � b3; ð5:47Þ

2b2 � b3 � b4 ¼ b1 þ 2b2 � 2b4 ¼ 3b2 � b4; ð5:48Þ

b2 � b3 ¼ �b5; b2 � b4 ¼ �b6; b1 � b4 ¼ �b3: ð5:49Þ

Again, before solving the system (5.47)–(5.49) the selection of the leaving
variable is mandatory. In view of the expressions of n and η given in Eq. (5.38), the
natural choice is n. In the group of scalings (5.43), b1 is the scaling exponent of the
variable n. The zero and nonzero character of b1 is again of particular importance in
the construction of new variables. Before we continue with the solution of the
system (5.47)–(5.49), it is worth remembering that we are already proceeding the
Case I a1 6¼ 0ð Þ and the ongoing process is actually a part of Case I. Therefore, the
cases b1 6¼ 0 and b1 ¼ 0 need to be designated as the subcases of Case I. Thus,
from now onward the cases b1 6¼ 0 and b1 ¼ 0 shall, respectively, be designated as

Case I; Subcase I a1 6¼ 0; b1 6¼ 0ð Þ,
Case I; Subcase II a1 6¼ 0; b1 ¼ 0ð Þ.

Case I; Subcase I a1 6¼ 0; b1 6¼ 0ð Þ
The nonzero character of b1 allows the division of the system (5.47)–(5.49) by b1
everywhere. This results in the following system of algebraic equations

2
b2
b1

� 2
b3
b1

¼ 1þ 2
b2
b1

� b3
b1

� b4
b1

¼ 3
b2
b1

� b3
b1

; ð5:50Þ

2
b2
b1

� b3
b1

� b4
b1

¼ 1þ 2
b2
b1

� 2
b4
b1

¼ 3
b2
b1

� b4
b1

; ð5:51Þ

b2
b1

� b3
b1

¼ � b5
b1

;
b2
b1

� b4
b1

¼ � b6
b1

; 1� b4
b1

¼ � b3
b1

; ð5:52Þ

which ultimately solves as

b3
b1

¼ � b2
b1

;
b4
b1

¼ 1� b2
b1

;
b5
b1

¼ �2
b2
b1

;
b6
b1

¼ 1� 2
b2
b1

: ð5:53Þ
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Having this solution in hand, the new variables are thus constructed as

f ¼ n
n�1
2 g; F n; gð Þ ¼ n

n�1
2 f fð Þ; G n; gð Þ ¼ n

nþ 1
2 g fð Þ; ð5:54Þ

where the wall profiles read as

Fw nð Þ ¼ ann�1; Gw nð Þ ¼ bnn: ð5:55Þ

where n denotes an arbitrary (dimensionless) constant constructed as

1� 2
b2
b1

¼ n: ð5:56Þ

Furthermore, the constants a and b are also arbitrary, having suitable dimensions
which are usually referred to as the stretching or shrinking rates. Consequently, the
system (5.40)–(5.42) transforms as:

m� B n� 1ð Þð Þf 02 � mþ 1
2

� B
n� 1
2

� �� �
ff 00 � nþ 1

2

� �
gf 00 þ n� 1ð Þf 0g0

¼ mf 000;

ð5:57Þ

m� 1� B n� 1ð Þð Þf 0g0 � mþ 1
2

� B
n� 1
2

� �� �
fg00 � nþ 1

2

� �
gg00 þ ng02 ¼ mg000;

ð5:58Þ

and

f 0 ¼ a; g0 ¼ b; mþ 1
2 � B n�1

2

� �� �
f þ nþ 1

2

� �
g ¼ 0; at f ¼ 0

f 0 ¼ 0; g0 ¼ 0; at f ¼ 1
�
; ð5:59Þ

where the ′ denotes differentiation with respect to f. Clearly, the system (5.57)–
(5.59) is a system of ordinary differential equations from where the, absorbed
(previous), independent variables have completely been eliminated.

Since the scaling groups of one-parameter transformations have been utilized,
therefore, the reduction in the number of independent variables at each step is also
one. This is the reason for the elimination of x and z in two steps. However, it is also
possible to eliminate more than one variable at once; for doing so, one must utilize
the multi-parameter group of scalings. The details of such a procedure can be found
in Refs. [15, 16]. After having determined the suitable similarity transformations
due to one-parameter group of scalings, it then stays not necessary to transform the
original system (5.26)–(5.28) to the self-similar form (5.57)–(5.59) in two steps,
essentially. An integrated set of similarity transformations is possible to obtain by
combining Eqs. (5.38) and (5.54) as
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f ¼ z
n�1
2 x

m�1
2 �B n�1

2ð Þy; w ¼ z
n�1
2 x

mþ 1
2 �B n�1

2ð Þf fð Þ; / ¼ z
nþ 1
2 x

m�1
2 �B n�1

2ð Þg fð Þ; ð5:60Þ

which can directly transform the system (5.26)–(5.28) to the self-similar form
(5.57)–(5.59) in a single step. Similarly, the obtained wall velocities after com-
bining Eqs. (5.39) and (5.55) in their final form read as

uw ¼ axm�B n�1ð Þzn�1

ww ¼ bxm�1�B n�1ð Þzn

�
: ð5:61Þ

Case I; Subcase II ða1 6¼ 0; b1 ¼ 0Þ
Substitution of b1 ¼ 0 does not affect the system (5.47)–(5.49) by any large. The
resulting system does admit a non-trivial solution of the form

b3 ¼ �b2; b4 ¼ �b2; b5 ¼ �2b2; b6 ¼ �2b2: ð5:62Þ
This solution can also be recovered by multiplying Eq. (5.53) by b1 and sub-

stituting b1 ¼ 0 subsequently. In this case, the new variables are constructed as

f ¼ g
eb2n

; f fð Þ ¼ F n; gð Þ
eb3n

; g fð Þ ¼ G n; gð Þ
eb4n

; ð5:63Þ

and the wall velocities come out of the form

a � const: ¼ Fw nð Þ
eb5n

; b � const: ¼ GwðnÞ
eb6n

; ð5:64Þ

where a and b are constants having suitable dimensions. With the aid of Eq. (5.62),
one explicitly finds from Eqs. (5.63) and (5.64) that

f ¼ e
n
2ng; F n; gð Þ ¼ e

n
2nf fð Þ; G n; gð Þ ¼ e

n
2ng fð Þ; ð5:65Þ

and

Fw nð Þ ¼ aenn; Gw nð Þ ¼ benn; ð5:66Þ

where n is an arbitrary (dimensionless) constant defined by

�2b2 ¼ n: ð5:67Þ

The use of similarity variables (5.65) transforms the system of partial differential
Eqs. (5.40) and (5.41) to the system of ordinary differential equations, given by

mf 02 � mþ 1
2

� �
ff 00 � n

2
gf 00 þ nf 0g0 � Bnn f 02 � 1

2
ff 00

� �
¼ mf 000; ð5:68Þ
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Bþm� 1ð Þf 0g0 � mþ 1
2

� �
fg00 � n

2
gg00 þ ng02 � Bnn f 0g0 � 1

2
fg00

� �
¼ mg000;

ð5:69Þ

from which the previous variable n has not been eliminated completely. However,
the elimination of n can be ensured by choosing the arbitrary constant

B ¼ 0: ð5:70Þ

This is important to remember that this particular choice of B is particular to this
case only and does not apply to other cases in general. By doing so, the self-similar
system reads as:

mf 02 � mþ 1
2

� �
ff 00 � n

2
gf 00 þ nf 0g0 ¼ mf 000; ð5:71Þ

m� 1ð Þf 0g0 � mþ 1
2

� �
fg00 � n

2
gg00 þ ng02 ¼ mg000: ð5:72Þ

The use of the similarity variables (5.65) and the so determined wall velocity
laws (5.66) transform the boundary conditions (5.42) to the form

f 0 ¼ a; g0 ¼ b; mþ 1
2

� �
f þ n

2 g ¼ 0; at f ¼ 0
f 0 ¼ 0; g0 ¼ 0; at f ¼ 1

�
: ð5:73Þ

The unified transformations for this case are obtained by combining (5.38) and
(5.65) as

f ¼ x
m�1
2 e

n
2zx

�B
y; w ¼ x

mþ 1
2 e

n
2zx

�B
f fð Þ; / ¼ xBþ m�1

2 e
n
2zx

�B
g fð Þ;

which cannot serve as similarity transformation until B ¼ 0: Owing to Eq. (5.70),
the above transformation takes the form

f ¼ x
m�1
2 e

n
2zy; w ¼ x

mþ 1
2 e

n
2zf fð Þ; / ¼ x

m�1
2 e

n
2zg fð Þ; ð5:74Þ

which can directly transform original Eqs. (5.26)–(5.28) to the self-similar form
(5.71)–(5.73). Accordingly, the compact form of the wall velocity functions can
also be obtained by combining Eq. (5.66) with Eq. (5.39). Consequently, after
incorporating Eq. (5.70), one finally obtains

uw ¼ axmenz; ww ¼ bxm�1enz: ð5:75Þ

To this end, the Case I ða1 6¼ 0Þ and the two subcases of it corresponding to
b1 6¼ 0 and b1 ¼ 0 which were named as “Case I; Subcase I” and “Case I;
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Subcase II,” respectively, have been completed. Further proceeding of the proce-
dure requires the reconsideration of the system (5.33)–(5.35) for the case a1 ¼ 0. In
the series of “main cases,” this case is designated as “Case II ða2 ¼ 0Þ.”
Case II ða2 ¼ 0Þ
With the substitution a2 ¼ 0, the system (5.33)–(5.35) admits the (non-trivial)
solution of the form

a4 ¼ �a2; a5 ¼ a3 � a2; a6 ¼ �2a2; a7 ¼ �2a2 þ a3; ð5:76Þ

where a2 and a3 are the free variables, hence arbitrary. Substituting

�2a2 ¼ m and a3 ¼ B; ð5:77Þ

the new variables, constructed in the same way as did in the previous cases, come
out to be

n ¼ e�Bxz; g ¼ e
m
2xy; w ¼ e

m
2xF n; gð Þ; / ¼ e Bþ m

2ð ÞxG n; gð Þ: ð5:78Þ
The wall velocities also involve the exponential functions and come out of the

form

uw ¼ emxFw nð Þ; ww ¼ eðBþmÞxGw nð Þ: ð5:79Þ

With the aid of these new variables, the original system (5.26)–(5.28) transforms
to the following new system involving two independent variables:

m
@F
@g

� �2

�m
2
F
@2F
@g2

� @G
@n

@2F
@g2

þ @G
@g

@2F
@n@g

� Bn
@F
@g

@2F
@n@g

� @F
@n

@2F
@g2

� �
¼ m

@3F
@g3

;

ð5:80Þ

Bþmð Þ @F
@g

@G
@g

� m
2
F
@2G
@g2

� @G
@n

@2G
@g2

þ @G
@g

@2G
@n@g

� Bn
@F
@g

@2G
@n@g

� @F
@n

@2G
@g2

� �
¼ m

@3G
@g3

;

ð5:81Þ

@F
@g ¼ Fw nð Þ; @G

@g ¼ Gw nð Þ; m
2 F � Bn @F

@n þ @G
@n ¼ 0; at g ¼ 0

@F
@g ¼ 0; @G

@g ¼ 0; at g ¼ 1

)
: ð5:82Þ

In order to eliminate n from the system (5.80)–(5.82), one again requires to
follow the same procedure as was performed in Case I. It is worth noting that the
names of the variables in (5.80)–(5.82) are, however, exactly the same as they are in
(5.40)–(5.42), but are entirely different, in actual. Therefore, for the sake of doing
mathematics the similarity in their symbolic names can be utilized in order to avoid
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the replication of similar things. In this way, staying limited to their symbolic names,
we employ the group (5.43) to the above system (5.80)–(5.82). Transforming
Eqs. (5.80)–(5.82) to the form of new variables, defined in Eq. (5.43), and imposing
the restriction of invariance, one is finally left with the system of following linear
equations:

2b2 � 2b3 ¼ b1 þ 2b2 � b3 � b4 ¼ 3b2 � b3; ð5:83Þ

2b2 � b3 � b4 ¼ b1 þ 2b2 � 2b4 ¼ 3b2 � b4; ð5:84Þ

b2 � b3 ¼ �b5; b2 � b4 ¼ �b6; b1 � b4 ¼ �b3: ð5:85Þ

Following the previous practice, let us decide to eliminate the variable n for
which two cases arise regarding the zero and nonzero character of b1. The cases
b1 6¼ 0 and b1 ¼ 0 shall be referred to as the Subcase I and Subcase II, respectively.
In the perspective of Case II ða1 ¼ 0Þ, they shall finally be referred to as “Case II;
Subcase I” for a1 ¼ 0 & b1 6¼ 0 and “Case II; Subcase II” for a1 ¼ 0 & b1 ¼ 0.

Case II; Subcase I ða1 ¼ 0; b1 6¼ 0Þ
Interestingly, the system (5.83)–(5.85) is the same as (5.47)–(5.49). Utilization of the
assumption b1 6¼ 0 in the system (5.83)–(5.85) produces the same non-trivial
solution as given in Eq. (5.53) with b2

b1
as an arbitrary constant. Therefore, the con-

struction of new variables follows immediately from Eq. (5.54) and the expressions
of the wall velocities are also exactly the same as given in Eq. (5.55). Thus, the new
variables in this case read as

f ¼ n
n�1
2 g; F n; gð Þ ¼ n

n�1
2 f fð Þ; G n; gð Þ ¼ n

nþ 1
2 g fð Þ; ð5:86Þ

and the wall velocities come out to be

Fw nð Þ ¼ ann�1; Gw nð Þ ¼ bnn; ð5:87Þ

with a and b serving as (pure) constants having suitable dimensions. In terms of
new variables, Eqs. (5.80) and (5.81) take the form

ðm� B n� 1ð ÞÞf 02 � 1
2

m� B n� 1ð Þð Þff 00 � nþ 1
2

� �
gf 00 þ n� 1ð Þf 0g0 ¼ mf 000;

ð5:88Þ

ðm� B n� 1ð ÞÞf 0g0 � 1
2

m� B n� 1ð Þð Þfg00 � nþ 1
2

� �
gg00 þ ng02 ¼ mg000; ð5:89Þ

and the boundary conditions (5.82), with the aid of Eq. (5.87), transform as

5.2 Three-Dimensional Flow 61



f 0 ¼ a; g0 ¼ b; 1
2 m� B n� 1ð Þð Þf þ nþ 1

2

� �
g ¼ 0; at f ¼ 0

f 0 ¼ 0; g0 ¼ 0; at f ¼ 1
�
: ð5:90Þ

Combination of Eq. (5.86) with Eq. (5.78) and of Eq. (5.87) with Eq. (5.79)
gives, respectively, the unified form of the similarity variables and the associated
wall velocities, as

f ¼ z
n�1
2 e

1
2ðm�Bðn�1ÞÞxy; w ¼ z

n�1
2 e

1
2ðm�Bðn�1ÞÞxf fð Þ; / ¼ z

nþ 1
2 e

1
2ðm�Bðn�1ÞÞxg fð Þ;

ð5:91Þ

and

uw ¼ azn�1eðm�Bðn�1ÞÞx; ww ¼ bzneðm�Bðn�1ÞÞx: ð5:92Þ

It is evident that the system (5.88)–(5.90) is in the self-similar form and can also
be recovered by applying the transformation (5.91) directly to the system (5.26)–
(5.28).

Case II; Subcase II ða1 ¼ 0; b1 ¼ 0Þ
The choice b1 ¼ 0 is the same as that in the case “Case I; Subcase II.” Therefore,
the system of linear Eqs. (5.83)–(5.85), at b1 ¼ 0, recovers to the same results as
given in Eq. (5.62). Consequently, the new variables in the present case are exactly
the same as those constructed in Eq. (5.65), in symbolic sense. Just to avoid any
confusion, we prefer to write here the new variables of the present case given by

f ¼ e
n
2ng; F n; gð Þ ¼ e

n
2nf fð Þ; G n; gð Þ ¼ e

n
2ng fð Þ; ð5:93Þ

which are, of course, of the same form as given in Eq. (5.65), but are entirely
different (from 5.65) in physical sense because of the different definitions of n and g
in these two cases. Similarly, the wall velocity profiles of this case, given by

Fw nð Þ ¼ aenn; Gw nð Þ ¼ benn; ð5:94Þ

are also similar to those given in Eq. (5.66), in symbolic sense. According to the
variables defined in Eq. (5.93) and the wall velocities given in Eq. (5.94), the
system (5.80)–(5.82) readily transforms to the form

mf 02 � m
2
ff 00 � n

2
gf 00 þ nf 0g0 � Bnn f 02 � 1

2
ff 00

� �
¼ mf 000; ð5:95Þ

Bþmð Þf 0g0 � m
2
fg00 � n

2
gg00 þ ng02 � Bnn f 0g0 � 1

2
fg00

� �
¼ mg000; ð5:96Þ
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with

f 0 ¼ a; g0 ¼ b; 1
2 m� Bnnð Þf þ 1

2 ng ¼ 0; at f ¼ 0
f 0 ¼ 0; g0 ¼ 0; at f ¼ 1

�
: ð5:97Þ

Again, similar to the case “Case I; Subcase II” the system (5.95)–(5.97) is not
free from the previous variable n. Choosing B ¼ 0, the self-similar system for the
present case furnishes as

mf 02 � m
2
ff 00 � n

2
gf 00 þ nf 0g0 ¼ mf 000; ð5:98Þ

mf 0g0 � m
2
fg00 � n

2
gg00 þ ng02 ¼ mg000: ð5:99Þ

f 0 ¼ a; g0 ¼ b; mf þ ng ¼ 0; at f ¼ 0
f 0 ¼ 0; g0 ¼ 0 at f ¼ 1

�
: ð5:100Þ

Unification of Eqs. (5.93) and (5.78) gives the complete set of similarity vari-
ables (under the assumption B ¼ 0Þ

f ¼ e
1
2ðmxþ nzÞy; w ¼ e

1
2ðmxþ nzÞf fð Þ; / ¼ e

1
2ðmxþ nzÞg fð Þ; ð5:101Þ

due to which Eqs. (5.26)–(5.28) can directly be transformed to the system (5.98)–
(5.100) in a single step. Combination of Eqs. (5.94) and (5.79) gives the final form
of the velocity functions (after substituting B ¼ 0Þ

uw ¼ aemxþ nz; ww ¼ bemxþ nz: ð5:102Þ

In the above calculations, the self-similar equations of the generalized
three-dimensional flow, due to the bidirectional motion of the flexible continuous
sheet, have been furnished. The utilized group theoretical approach splits itself into
four separate cases and produces different self-similar systems for each case.
Normally, in a case, when there is only one variable to be eliminated, as in the
two-dimensional case, Sect. 5.1, two types of the wall velocity function are
obtained, namely the power-law (given in Eq. 5.14) and the exponential form
(given in Eq. 5.20). The nonzero case of the scaling exponent of the leaving
variable results in the power-law wall velocity, and the vanishing value of such
scaling exponent produces the exponential form of the wall velocity in order to end
up with a self-similar system. In other words, this can also be rephrased as that these
two cases corresponding to zero and nonzero character of the scaling variable
promise to end up with a self-similar system provided that the wall velocities must
follow either exponential form or the power-law form, respectively. From here, it
can easily be perceived that if the self-similar solution to the boundary-layer
equations exists, the wall velocities (or reference velocities) must follow either
power-law or exponential form, in general. The converse of this does, however, not
apply in general. This is because the self-similarity of the involved partial
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differential equations is strictly associated with the requirement of their reduction to
the ordinary differential equations, free from the previous variables completely.
From Eqs. (5.68)–(5.69) and Eqs. (5.95)–(5.96), it is obvious that the power-law
or exponential form of the wall velocities did not guarantee the self-similarity of
the whole system. Thus, in general, the requirement of the wall velocities to follow
the power-law or exponential forms is the first ingredient and the requirement of
reduction of the governing system of pdes to an equivalent system of odes by
eliminating the previous variables completely is the second ingredient. These two
fundamental ingredients of self-similarity are actually executed due to the similarity
transformations. Hence, the appropriate wall velocity functions (power-law or
exponential) and the suitable similarity transformations along with the condition of
thorough elimination of the previous variables from the transformed system in new
variables ensure the self-similarity of the boundary-layer equations. If any one of
these ingredients is not fully achieved, the self-similarity cannot be guaranteed.

Finally, regarding the forms of wall the velocity functions in the perspective of
self-similarity, it is concluded that wall velocities can never take any form other
than the power-law or exponential ones. Neither a linear combination of the two
families nor a linear combination of any two particular entities of the same family
can be taken, in general, in order to obtain the self-similar solution. For example,
the self-similar solution exists for the famous Falkner–Skan [9] equation if the
potential flow follows the power-law form, i.e., u1 xð Þ ¼ axm: The value m ¼ 0
recovers the Blasius [17] case u1 xð Þ ¼ U0 ¼ const:, while the value m ¼
1ðu1 xð Þ ¼ axÞ recovers the wedge flow. It is well known that the similarity
solution exists in these two cases. However, there is no self-similar solution for the
combination of these two, that is, when the potential velocity is a combination of
the two u1 xð Þ ¼ U0 � axð Þ. This type of potential flow is particular to the famous
Howarth’s [18] non-similar flow.

In the currently treated three-dimensional flow, there were two variables x & z to
be eliminated. In this case too, there were two choices for the wall velocities to
follow, namely the power-law and the exponential one. In this case, the product of
the two families has appeared as another possible form of the wall velocities as can
be seen in Eqs. (5.61), (5.75), (5.92), and (5.102). This is because of the fact that
the variables have been eliminated successively, and the exponential and the
power-law cases of the descendent variables are automatically combined with either
the exponential or the power-law cases of the preceding elimination. That is, the
power-law in x has been combined by the power-law in z (Eq. 5.61) and expo-
nential in z (Eq. 5.75); similarly, exponential wall velocity in x has been combined
with the power-law in z (Eq. 5.92) and exponential in z (Eq. 5.102). Thus, the wall
velocity functions defined in Eqs. (5.61), (5.75), (5.92), and (5.102) define the
criterion of self-similarity for the wall velocities in three-dimensional flow due to a
moving continuous flat surface. If the wall velocities deviate from the forms given
in these equations, the self-similarity is not guaranteed.
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5.3 Axially Symmetric Flow

In the previous two sections, the planner cases of two- and three-dimensional flows
near the flat surfaces have been considered. In the case of axially symmetric flows,
the solid surface of interest would be the solid body of revolution either flat or
non-flat. In the case of non-flat surfaces, the surface curvature imparts significant
effects on the flow characteristics within the boundary-layer. Consequently, the
surface curvature also plays an important role while determining the self-similar
wall velocities. A long, slim continuous cylinder is a trivial example of the body of
revolution involving surface curvature. On the other hand, the circular flat disk is
the example where the surface involves no curvature besides being an axially
symmetric body of revolution. Thus, the circular cylinder and the circular disk shall
be the objects of our interest in this section. Different from the previous two planner
cases, some important facts shall be revealed regarding the cylinder and the disk
geometries in view of the similarity criterion because of the axially symmetric
nature of these flows.

5.3.1 Moving Cylinder

Consider a long continuous solid cylinder, having symmetry about the z-axis,
immersed in a viscous and incompressible fluid and moving with velocity u ¼
uwðzÞ in the steady state. The circular cylinder might be of constant as well as of
variable cross section. Therefore, in general, the radius of the cylinder is taken as
RðzÞ, varying in z. The schematic of the flow and the chosen system of coordinates
is shown in Fig. 5.3. The governing equations in this case are the same as (2.13)
and (2.14) subject to the boundary condition

u ¼ uw zð Þ; v ¼ 0; at r ¼ R zð Þ
u ¼ 0; at r ¼ 1

�
: ð5:103Þ

Introducing the stream function of the form

u ¼ 1
r
@w
@r

; v ¼ � 1
r
@w
@z

; ð5:104Þ

due to which Eq. (2.13) satisfies identically and Eq. (2.14) transforms to

1
r
@w
@r

@2w
@r@z

þ 1
r2
@w
@r

@w
@z

� 1
r
@w
@z

@2w
@r2

¼ m
1
r2
@w
@r

� 1
r
@2w
@r2

þ @3w
@r3

� 	
: ð5:105Þ

The procedure of finding the self-similarity criterion in this case is the same as
implemented in the previous two sections. We, therefore, assume a one-parameter
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group of scaling transformations for the variables involved in Eqs. (5.105) and
(5.103), of the form

�z ¼ ka1z; �r ¼ ka2r; �w ¼ ka3w; �uw ¼ ka4uw; �R ¼ ka5R: ð5:106Þ

The restriction of invariance of the governing system under the group of scalings
will be imposed in order to get a system of linear equations in the scaling expo-
nents. The non-trivial solution of this system will lead toward the construction of
new variables. In view of the boundary-layer character, the leaving variable must be
z. Accordingly, the two cases arise regarding the zero and nonzero character of the
scaling exponent a1. The details of determining the new variables have been
omitted in order to avoid the repetition of previously exercised steps. Therefore, the
similarity variables for the case a1 6¼ 0 are given directly as

g ¼ rz
m�1
2 ; w ¼ zf gð Þ: ð5:107Þ

The wall velocity and the cylinder radius come out of the form

uw ¼ azm; R zð Þ ¼ R0z
1�m
2 ; ð5:108Þ

where R0 denotes the fixed reference radius of the cylinder corresponding to the
case m ¼ 1.

With the help of transformation (5.107), Eq. (5.105) transforms as

m
f 0

g

� �2

� f
g

f 00

g
� f 0

g2

� �
¼ m

1
g
d
dg

g
d
dg

f 0

g

� �� �
; ð5:109Þ

and boundary conditions (5.103), in view of Eqs. (5.107)–(5.108), take the form

f 0 ¼ aR0; f ¼ 0; at g ¼ R0

f
0 ¼ 0; at g ¼ 1

�
: ð5:110Þ

Fig. 5.3 Axisymmetric flow
and the associated system of
coordinate shown
schematically
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Equations (5.109) and (5.110) are completely free from the previous variables;
therefore, they can be regarded as self-similar. Consequently, Eq. (5.107) con-
tributes as the similarity transformations to this case.

Equation (5.108) contains interesting information regarding the similarity cri-
terion of this case. The power-law wall velocity has been obtained for the case
a1 6¼ 0 as it has also happened in the previous two sections. The different thing in
this case is the involvement of z in the expression of R for m 6¼ 1. For m ¼ 1, one is
left with the linear wall velocity case (see Eq. 5.108) for which the radius of
cylinder stays fixed. Corresponding to the other values of m, the particular con-
struction of η does not allow the radius of the cylinder to stay constant. This means
that the nonlinear stretching of the cylinder is possible only if the cylinder radius
does not stay constant but follows the power-law form (defined in Eq. 5.108),
analogous to the boundary-layer thickness. The boundary-layer thickness in the
nonlinear stretching flow varies as z

1�m
2 which actually guides the body contour of

the axially symmetric body of revolution to follow the same law, i.e., z
1�m
2 . This

simply reflects that the similarity solution is possible for the power-law velocities if
the cylindrical surface does also vary in the same manner as does the boundary-
layer thickness; otherwise, the solution must be non-similar. Another, worth noting,
difference between the planner and the axisymmetric flows is the case of constant
wall velocity. In the case of moving sheet, the self-similar Sakiadis flow is
recovered immediately, by taking m ¼ 0, without imposing any restriction on the
sheet’s thickness. On the other hand, the self-similar solution is, though recovered,
in the cylinder case for m ¼ 0 but with a compromise on the thickness of cylinder.
If one forces the cylinder’s radius to be constant (for m ¼ 0Þ, the self-similarity is
lost and the classical Sakiadis’ non-similar flow due to a moving continuous
cylinder is recovered. This was in fact the reason behind the utilization of
approximate integral method by Sakiadis to his (non-similar) flow. Very few
audiences are aware of the fact that Sakiadis started the cylinder case with the
non-similar flow. Hence, the radius of the cylinder can be made to stay constant
(only) if the cylinder is being stretched with linear velocity, in order to ensure the
existence of self-similar solution. In this way, the case of moving cylinder is much
more interesting in comparison with the two-dimensional case and needs to be
explored completely. So far, the available literature concerning the continuous
cylinder is strictly limited to the cases m ¼ 0 and m ¼ 1, only.

In the case a1 ¼ 0, the exponential forms of wall velocity and the cylinder radius
are obtained, which are given by

uw ¼ aemz; R zð Þ ¼ R0e�
m
2z: ð5:111Þ

The corresponding similarity variables are constructed as

g ¼ re
m
2z; w ¼ f gð Þ; ð5:112Þ
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which transform Eq. (5.105) to the form

m
f
0

g

� �2

¼ m
1
g
d
dg

g
d
dg

f
0

g

� �� �
: ð5:113Þ

The boundary conditions (5.103), in view of Eqs. (5.111)–(5.112), transform as

f 0 ¼ aR0 at g ¼ R0

f 0 ¼ 0; at g ¼ 1
�
: ð5:114Þ

Thus in the case of continuous cylinder too, the power-law and exponential
forms are the ultimate wall velocities in order for the existence of self-similar
solution. This fact will also be proved in Chap. 10 while modeling the non-similar
flows. Regarding the nonlinear stretching/shrinking of the cylinder, the curvilinear
system of coordinates as considered in Chap. 10 is recommended. The conventional
cylindrical system of coordinates, however, creates certain ambiguities in the
mathematical formulation.

5.3.2 Radial Motion of Flexible Disk

Consider a flexible flat circular disk of infinite radius immersed in an incom-
pressible viscous fluid. The disk geometry and the associated system of coordinates
are shown in Fig. 5.4. Following the notation convention practiced in the existing
literature, particular to the disk flow, r is taken as the radial coordinate and z is taken
as the axial coordinate where u and w denote the velocity components along these
axes, respectively. The disk is being stretched or shrunk in the radial direction with
a velocity uwðrÞ as shown in Fig. 5.4. Because of no involvement of any circular
motion, the angular component of velocity is zero. Therefore, the suitable velocity
vector for this flow in the steady-state form reads as

V ¼ u r; zð Þ; 0;wðr; zÞ½ �; ð5:115Þ

due to which the governing equations of this flow are the same as given in
Eqs. (2.15) and (2.16). The appropriate boundary conditions read as

u ¼ uw rð Þ; w ¼ 0; at z ¼ 0
u ¼ 0; at z ¼ 1

�
: ð5:116Þ

Introducing the stream function wðr; zÞ which is related to the velocity com-
ponents as
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u ¼ 1
r
@

@z
rwð Þ; w ¼ � 1

r
@

@r
rwð Þ: ð5:117Þ

Because of Eq. (5.117), the equation of continuity (2.15) is satisfied identically
and Eq. (2.16) takes the form

@w
@z

@2w
@r@z

� w
r
@2w
@z2

� @w
@r

@2w
@z2

¼ m
@3w
@z3

: ð5:118Þ

The group theoretical procedure will be employed to Eqs. (5.118) and (5.116) in
order to find the self-similarity criterion for this flow. The variables involved in this
system are r; z;w and uw for which the scaling group reads as

�r ¼ ka1r; �z ¼ ka2z; �w ¼ ka3w; �uw ¼ ka4uw: ð5:119Þ

The substitution of Eq. (5.119) into the system (5.118) and (5.116) subject to the
condition of invariance under (5.119) gives rise to a system of simultaneous
algebraic equations, similar to the previous problems. In this case, we decide
to eliminate r due to which two cases arise for the values of a1, namely
a1 6¼ 0 and a1 ¼ 0: In the case a1 6¼ 0; the similarity variables so constructed are
(by omitting the details of their derivation)

g ¼ r
m�1
2 z; w ¼ r

mþ 1
2 f gð Þ; ð5:120Þ

which successfully transform Eq. (5.118) to the self-similar form, given by

mf 02 � mþ 3
2

� �
ff 00 ¼ mf 000; ð5:121Þ

subject to the restriction that the wall velocity must follow the power-law form
defined by

uw ¼ arm: ð5:122Þ

Fig. 5.4 Disk geometry and
the chosen system of
coordinates
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Accordingly, the boundary conditions (5.116) transform as

f 0 ¼ a; f ¼ 0; at g ¼ 0
f
0 ¼ 0; at g ¼ 1

�
: ð5:123Þ

Thus, Eqs. (5.121) and (5.123) are in self-similar form based on the condition
that the wall velocity must follow the power-law form given in Eq. (5.122).

In the case a1 ¼ 0, the group theoretical procedure ends up with the transfor-
mations involving exponential form, such as

g ¼ e
m
2rz; w ¼ e

m
2rf gð Þ; ð5:124Þ

with the wall velocity following the exponential form, given by

uw ¼ aemr: ð5:125Þ

Utilization of the transformations (5.124) transforms Eq. (5.118) to the form

mf 02 � 1
r
ff 00 � m

2
ff 00 ¼ mf 000: ð5:126Þ

Obviously, the variable r has not been eliminated completely from the equation
after the utilization of Eq. (5.124). This simply reflects that the transformations
(5.126) cannot transform the Eq. (5.118) to the self-similar form and implies that the
self-similar solution is not possible in this case. Thus, in the case of circular disk,
the similarity solutions are limited to the power-law case only and the exponential
wall velocities fail to produce the self-similar solution. The mathematical reason
behind this fact is the appearance of r as a variable coefficient in the second term of
Eq. (5.126) which is impossible to eliminate.

5.4 Restriction on Wall Suction/Injection

This has already been explored in the previous sections that the self-similar solu-
tions are the limited solutions and are possible only if the wall velocities follow
certain particular forms. In the case of cylinder, the radius of the cylinder also
undergoes certain restrictions in addition to the wall velocities in order to ensure the
self-similarity. The similar situation persists for the cases when one also takes into
account the wall suction/injection in the boundary-layer. This section is devoted to
the determination of those particular wall suction/injection profiles which do not
break the self-similarity of the considered flow.

Corresponding to the two-dimensional and three-dimensional cases, the normal
wall velocity shall be denoted by vwðxÞ and vwðx; zÞ, respectively. Being a function
of x and ðx; zÞ, the wall velocities vwðxÞ and vwðx; zÞ serve as variable quantities in
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the governing system. Similar to the other variable quantities, either dependent or
independent, the considered groups of scalings shall be appended by another
scaling transformation of the variable vw. In doing so, the obtained system of linear
equations (due to the restriction of invariance) will also be increased by one more
equation resulting from the boundary condition v ¼ vw at y ¼ 0 in Sects. 5.1 and
5.2. Consequently, the non-trivial solution of the system of such algebraic equations
in scaling exponents will also include the solution for the scaling exponent of vw
which will subsequently be utilized in the construction of corresponding new
variables.

Particular to Sects. 5.1 and 5.2, the scaling group for vw could be taken of the
form

�vw ¼ kcvw; ð5:127Þ

where c denotes the scaling exponent. Combining Eq. (5.127) with the group (5.8)
and following the subsequent procedure executed in Sect. 5.1, the system (5.11) is
appended by an additional linear equation of the form

a1 � a3 ¼ �c; ð5:128Þ

which, for the case a1 6¼ 0, admits the solution

� c
a1

¼ a2
a1

: ð5:129Þ

In view of Eq. (5.14), the wall velocity vw xð Þ comes out of the form

vw xð Þ ¼ dx
m�1
2 ; ð5:130Þ

where d denotes a pure constant having suitable dimensions. The positive and
negative values of d characterize the injection and suction velocities, respectively,
while d ¼ 0 designates no suction or injection at the wall. It is important to note
that the power-law form of the wall velocity (given in Eq. 5.14) does also require
the normal wall velocity to follow the same (power-law) form in order to ensure the
self-similarity. The same is the case with exponential wall velocity (5.20) which
requires the suction/injection velocity also to follow the exponential form, given by

vw xð Þ ¼ de
m
2x: ð5:131Þ

The trend follows similarly in Sect. 5.2 where the suction/injection velocity not
only follows the power-law and exponential forms but also is a product of the two.
The details have, however, been omitted completely for the sake of brevity.
Corresponding to the every case of Sect. 5.2, the suction/injection velocity has been
obtained as follows:
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Case I; Subcase I

vw x; zð Þ ¼ dx
m�1
2 �B n�1

2ð Þzn�1
2 ; ð5:132Þ

Case I; Subcase II

vw ¼ dx
m�1
2 e

n
2z; ð5:133Þ

Case II; Subcase I

vw x; zð Þ ¼ de
1
2 m�Bðn�1Þð Þxz

n�1
2 ; ð5:134Þ

Case II; Subcase II

vw x; zð Þ ¼ de
1
2 mxþ nzð Þ: ð5:135Þ

Accordingly, the corresponding boundary conditions at the wall also modify as

1
2

mþ 1� B n� 1ð Þð Þf ð0Þþ nþ 1
2

gð0Þ ¼ �d; ð5:136aÞ

mþ 1
2

� �
f ð0Þþ n

2
gð0Þ ¼ �d; ð5:136bÞ

1
2

m� B n� 1ð Þð Þf ð0Þþ nþ 1
2

gð0Þ ¼ �d; ð5:136cÞ

1
2

mf ð0Þþ ngð0Þð Þ ¼ �d; ð5:136dÞ

which, respectively, refer to the cases “Case I; Subcase I,” “Case I; Subcase II,”
“Case II; Subcase I,” and “Case II; Subcase II.” The corresponding boundary
conditions of the two-dimensional case can also be recovered from Eq. (5.136a)–
(5.136d).

The cases of axially symmetric flow due to continuous cylinder or circular
flexible disk follow in the similar manner. In the case of continuous cylinder, when
the surface velocity obeys the power-law profile the second condition in Eq. (5.110)
at g ¼ R0 modifies as

f ¼ �dR0: ð5:137Þ
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In the case of circular flexible disk, the second condition in Eq. (5.124) at g ¼ 0
modifies as

mþ 3
2

f ð0Þ ¼ �d; ð5:138Þ

where the wall velocity obeys power-law profile.
By the end of this chapter, the criterion of self-similarity for the planner and the

axisymmetric cases has in general been derived. The wall velocities, other than the
derived ones, will make the flow non-similar. The power-law, exponential, and a
product of the two have been discovered for the three-dimensional flow, whereas
the exponential wall velocity has been extended for various powers of the already
known exponential wall law in the two-dimensional case. Regarding the axisym-
metric flow due to moving cylinder, the nonlinear and exponential stretching or
shrinking have been discovered. The case of linear stretching or shrinking has been
extended to the nonlinear one in the case of circular flexible disk. In what follows,
the determination of self-similarity criterion regarding the wall velocities in the
above-named flow situations has completely been discovered.
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