Chapter 3
The Concept of Self-similarity

One of the important classes of boundary-layer flows comprises the self-similar
flows. The concept of self-similarity is equally important in mathematical as well as
physical point of views. Normally, the boundary-layer flow problems are modeled
in the form of partial differential equations (pdes) involving two or more inde-
pendent variables in addition to the involved physical parameters or constants. If,
under certain conditions, it becomes possible to reduce the number of independent
variables, in a particular problem, to one by combining all the independent variables
suitably, then the problem under consideration is called self-similar or auto-model.
Consequently, the governing partial differential equations are transformed to ordi-
nary differential equations (odes) which are completely in the form of new variables
and free from the previous variables. A useful example could be the steady,
two-dimensional flow past a static wedge governed by the system (1.1) which are
pdes in two independent variables. In this flow, the boundary-layer is formed at the
wedge surface due to the presence of external potential flow, having velocity 1 (x).
The self-similar solutions for this flow exist if the external potential velocity is of
the form, but not limited to, u,,(x) = ax™ where a is a constant having suitable
dimensions and m is a pure number. Consequently, the system (1.1) completely
transforms to an ordinary differential equation (Eq. 1.8) and becomes free from
previous variables.

Dimensional analysis, based upon the Buckingham Pi-theorem,' is one of the
fundamental approaches for reducing the number of independent variables, while
dealing with the partial differential equations, by combining them suitably to
construct the new variables. The criterion of Buckingham Pi-theorem guides in this
regard completely and not only tells, exactly, what number of independent variables
can be reduced but also guides toward the construction of new variables. Following

"Buckingham Pi-theorem is of fundamental importance in dimensional analysis. The interested
readers is recommended to consult the Ref. [1].
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its criterion, the dimensional analysis determines suitable new fundamental
dimensions which come out to represent the problem in the form of new variables.
This actually is done by the suitable scaling of the involved physical quantities.

The existence of self-similarity in a particular flow problem is usually a con-
sequence of the non-existence of a characteristic length along one or more space
directions. Such a problem, therefore, have a capacity of absorbing more than one
variables into a single one, thus forming the new self-similar (independent) vari-
able. The construction of new variables is, sometimes, also guided/restricted by the
involved boundary and initial conditions. However, there is a systematic approach
of constructing the new self-similar variables which will be discussed in detail in
Sect. 3.3 and will be utilized in Chap. 5. Another important aspect of similarity
solutions is that they usually exhibit asymptotic behavior; the same is true with the
boundary-layer flows as the velocity within the boundary-layer also exhibits the
asymptotic character. This actually is the reason that the family of self-similar
solutions to the boundary-layer equations constitutes a big class of important flows
in the fluid dynamics.

3.1 In View of Group Theoretic Approach

The application of dimensional analysis does always not result in the reduction of
independent variables even if the reduction is possible. Sometimes, it happens that
the dimensional analysis fails in finding those new fundamental dimensions which
could be used to describe the original problem in self-similar variables.
Consequently, the stuck guy is forced to think about any other strategy (method).
The way out to this situation comes directly from the notion/concept of invariance
of pdes under the scaling of variables in the frame work of Group Theoretic
approach. A partial differential equation can actually be transformed to an ordinary
differential equation, completely, due to the use of some suitable transformations
only if the original pde is invariant under the Lie group of scaling transformations
[1]. A detailed account to this topic can be found in [1], and the interested reader is
referred to follow the Chap. 1 of [1].

Hence, the determination of new variables in the framework of dimensional
analysis is actually attributed to the invariance property of the original equation(s)
under the scaling group of involved variables, whereas the dimensional analysis
actually does not implement the criterion of invariance, in complete, to the given
pde under the utilized group of scaling transformations and thus stays unable to
capture the self-similarity in many cases. There are examples, as we already
mentioned above, where the dimensional analysis does not find any new funda-
mental dimensions due to which the original problem cannot be transformed to the
self-similar form, but the Group Theoretic approach via one- or multi-parameter
group of scaling transformations successfully determines the self-similar variables
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in the same problem.” Therefore, the Group Theoretic approach can be regarded as
the most generalized one, which successfully determines the criterion of
self-similarity for a particularly chosen problem. However, the determination of
self-similarity criterion via a one-parameter Lie group of scaling transformations
does not deny the existence of any other self-similar solution(s) because the
determined self-similar solutions represent all those concerning to the particularly
utilized group of scaling transformations. Besides the Group Theoretic procedure,
there are several other, ad hoc, approaches which can be utilized to determine the
self-similarity in a particular problem. However, the underlying property, working
behind all such approaches, is the requirement of invariance of the original pde.
Worth mentioning other techniques are the determination of self-similarity through
separation of variables and through the conservation laws, etc.

In the above discussion, we have repeatedly been using the word “problem” by
which we mean the given partial differential equation(s) and the associated initial
and boundary conditions which subsequently will be called as auxiliary data. The
author’s experience with the ‘similarity’ reveals that the existence of self-similarity
is strongly dependent upon the nature of auxiliary data. For example, if a certain
pde admits a similarity solution under the constraints of one auxiliary data, it may
not be admitting the self-similarity for the other auxiliary data. The existence of
dual (or more) similarity variables for certain problems and the fundamental reason
behind the non-uniqueness of the similarity variables is basically the nature of
auxiliary data.’ Particular to the boundary-layer flows past flat surfaces, self-similar
solutions are possible in those cases where the reference velocities follow the
power-law or exponential form as did in the Falkner—Skan flow.* The dependence
of the self-similarity on the auxiliary data can further be explained due to the
following example. Let us consider the Stokes first problem described by the
system of equations

% = vgiyz, (3.1)
u(0,y) =0, y=0 (3.2a)
u(t,0)=Uy, t>0 (3.2b)

u(t,00) = 0. (3.2¢)

2For further detail on this account the reader is referred to follow [1].

3As in the Falkner—Skan flow, the similarity variables take different forms for different values of m,
though the nature of the flow is the same, that is the potential flow past a wedge.

“This fact can be confirmed in Chap. 5 which, however, does not deny the possibility of any other
form.
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The system (3.1)—(3.2a) admits a similarity solution of the form

y w2
u = Uqf (n), =T A (3:3)
which transforms Eq. (3.1) to an ordinary differential equation of the form
I+ =0, (3.4)
subject to the transformed boundary conditions
f(0) =1, f(o0) =0. (3:5)

Notice that the original three constraints (the auxiliary conditions) have now
been reduced to two in number. Both of these are the boundary conditions, and the
initial condition has completely been vanished. To understand this fact the defini-

. 2 L
tion of n = ‘;—\ﬁ is important and the fact that the initial and boundary data are

described at t =0, y = 0 and y = oo only. In view of the definition of # and the
critical values of y and r where the boundary and initial data have been described,
we note that # = 0 at y = 0 only but = oo either at y = oo or at t = 0, simul-
taneously. This means that in the transformed system the condition f(co) = 0 at
n = oo must, simultaneously, represent the initial and boundary conditions defined
at t = 0 and y = oo, respectively. This can only be achieved if the said initial and
boundary conditions do coalesce, that is

u(0,y) = u(t,0). (3.6)

This means that if such a coalition of the initial and the boundary conditions is
not possible, then the similarity variable #, defined above, can never be utilized in
order to get the transformed ode (Eq. 3.4). Fortunately, the condition (3.6) is met by
the auxiliary data (3.2a) due to which the similarity solution exists for this problem.
Otherwise, it was impossible to achieve any way. In this perspective, regarding the
existence of similarity solutions, few of the auxiliary conditions, defined at different
points in the domain of interest, must coalesce to one. Such a situation is only
possible if the new variables are constructed from the original variables by raising
them to suitable powers. Such a power-law product of the original variables, in the
construction of similarity variables, can never be achieved without having the
reference velocity of the similar form. This is one of the important reasons behind
the fact that the self-similar solutions follow the power-law form of the reference
velocities. However, such a coalition is always not necessary, especially in those
cases where the auxiliary conditions are already very few.

Based upon the number of auxiliary data, interesting conclusions regarding the
number of similarity variables are drawn here:
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e If the problem is well-posed’, then a unique similarity variable will exist pro-
vided the problem admits a self-similar solution. For an ill-posed® problem, the
uniqueness of the similarity variable is not guaranteed; the problem may admit
one or more similarity variables if the self-similar solution is possible.

e If the given problem, whether well-posed or ill-posed, does not admit a
self-similar solution then the solution will be called non-similar.

3.2 Physical Meanings

The concept of self-similarity is a little bit hard to explain in words, on one hand or
seems to be explainable in a single sentence, on the other hand. In view of physical
meanings of self-similarity the author is more inclined to the latter opinion because,
in words, to-the-point explanation of self-similarity is hard to extend beyond few
lines and one ultimately requires the assistance of mathematical language. Based
upon the second opinion, we shall start trying to understand the physics of
self-similarity from the mathematical view point and will try to become more and
more less mathematical, gradually.

In the start of this chapter we explicitly stated that a problem is self-similar if the
total number of involved independent variables can be reduced to one. Obviously,
this can only be done by a suitable mixing of the original independent variables to
form a single new variable, as discussed in the previous section. Ultimately, the
resulting (new) single variable is called the similarity variable. Another important
ingredient of this discussion is the scaling of variables which is a common base
line among the dimensional analysis and the Group Theoretic method. Thus the
mathematical sense of developing the similarity variables is based upon the suitable
mixing of the original variables or more formally the suitable scaling of the original
variables. At this stage it seems very useful to pick a particular example so that the
concept of self-similarity can more conveniently be explained. For this purpose the
Falkner—Skan flow (1.7)—(1.8) would be the best choice.

Let us concentrate on the definition of # and f'(n) in Eq. 1.7 by ignoring the
constant coefficient \/g, for instance. Such constant coefficients have actually
nothing to do with the self-similarity and are present just to non-dimensionalize the
system. Notice that the Falkner—Skan problem is defined for x > 0 and 0 <y < oo
with the boundary conditions

3If for a given differential equation, sufficient numbers of auxiliary conditions are known to make
the unique solution sure and the solution thus obtained depends continuously upon the given
auxiliary data.

SIf for a given differential equation, at least one or more auxiliary conditions are missing, the
problem is ill-posed.
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u(x,0) =0, v(x,0)=0, (3.7)
u(x,00) = Uso(x) = ax™, (3.8)

including no condition at any x-location. Since the independent variables are only
x and y, the construction of 7 by combining x and y does not require any boundary
conditions to coalesce. In this particular flow n = \/%x%y having the domain [0,
0) derived directly from the domain of y. Clearly, in the construction of 7, y has
simply been transformed to become # after a suitable scaling by an appropriate
scale factor, namely o(x) = x'2". Similarly, the construction of f'(y) is also a
consequence of suitable scaling of u by an appropriate scale factor which is

obviously the external potential velocity . (x). Hence, the function ¢(x) = x'2" is
the suitable scale factor in y and the reference velocity uy(x) = ax™ is the suitable
scale factor in u.

Let us assume that we have calculated the velocity f'(n) at # = 1 which is
f'(1) = 0.3298 for m = 0. Notice that, in Fig. 3.1a, the velocity f'(1) = 0.3298 is
the same at the locations x; and x,, but differs in scale factors ax? and axg in u and
by /xi and /x; in y at the two locations. Mathematically, this fact can be
expressed as

u(xl,%) u(xz,\;—%)
= . (3.9)
ax| axy

Similar situation can be seen in Fig. 3.1b for the case m = 1. If 1 is taken arbitrary
for some fixed x; and x,, then y must also be taken as arbitrary. Consequently,
Eq. (3.9) modifies as, for m =0

u(xl,\/ix—l) M(XZ,\/LE)

R (3.10)
and for m =1
uxy,y) _ u(xa,y) . (3.11)
axy axp
Now, for the arbitrary m, Egs. (3.9)—(3.11) unify as
uxi,y/o(xn)) _ulx,y/o(x)) (3.12)

oo (X1) Uno (X2)

Thus if the solution is self-similar, then the x-component of velocity differs only
by a scale factor in u and y, at any two different x-locations. In other words, the
nature of the velocity profile does not depend upon x at all. The reason behind this
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fact is the allowance, by the governing system, of the construction of # due to x and
y in which x and y are so suitably combined. Such an allowance by the governing
system is in fact recognized as the invariance of the system. The appropriate mixing
of x and y in the construction of 5 generates a family of curves in the xy-plane.
When a numerical code iterates to compute the solution at different n-nodes (say #;),
it actually computes the solution at y = #;4/x curves in the physical/actual domain
as shown in Fig. 3.2. This property, actually, lifts the requirement of computing the
solution at various x-nodes, meaning that the solution is “self-similar” at all x-
locations and only differs by a constant scale factor. Hence, if the solution is known
at any x-location, the solution at any other x-location can easily be determined from
the already known solution. The independence of the velocity from the variable
x guarantees the absence of any length scale in the x-direction. In contrast, the
Howarth’s retarded flow [2] does involve flow separation and thus involves a
definite length in x-direction, namely the distance of the point of separation from the
leading edge, hence reacting as non-similar in nature.

Here, x-component of velocity has particularly been mentioned and the y-
component of velocity has not been named at all. Actually, within the boundary-
layer, only the lateral component(s) of velocity constitutes the main flow and the
normal component of velocity is usually determined from the equation of continuity
in the form of lateral velocity component. Moreover, the variation in velocity
across the boundary-layer is more significant than that in the lateral direction. This
could also be said a reason for similarity in x because the role of x within the
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boundary-layer is somewhat like a slack variable; and the slack has to leave the
system, ultimately.

3.3 General Theory

The simplification of a given differential equation via some transformation of
involved variables based on the criterion of invariance is actually credited to
Sophous Lie [3, 4]. Lie introduced the procedure of finding the infinitesimal
transformations which leave the given differential equation invariant and result in
significant simplification of the original equation, either by reducing the order of the
original equation or by reducing the number of independent variables in it. The
process of finding the infinitesimal symmetries of a differential equation is quite
hectic but is highly algorithm and is easy to implement in a computer code.
However, regarding the determination of self-similar solutions one does not need to
follow the Lie’s algorithm of finding the point symmetries, because the number of
independent variables in a pde can be reduced through a group of scaling trans-
formations. It is therefore straightforward to utilize the scaling group of transfor-
mations directly for finding the similarity solution. Morgan [5] utilized the general
theory of invariance and developed a straightforward procedure for constructing the
similarity variables. The procedure developed by Morgan was further utilized in
fluid dynamics problems by [6-10].

Consider a system of n pdes, E; =0 in n unknowns u;, (j=1,2,...,n)
depending upon m number of independent variables x; (i = 1,2,...,m). A one-
parameter group G of scaling transformations is assumed for the involved variables,
of the form

)’ci:k“'xi,ﬁj:k7"fuj (l: 1727...,}1’!), (]: 1,2,...,7’1), (313)

where k # 0 is the continuous real parameter and the o; and y; are the real expo-
nents to be determined. The group (3.13) is applied to the given system of equations
where the condition of invariance of the transformed system results in a system of
simultaneous linear equations in the exponents «; and y;. The non-trivial solution of
this system is then utilized in the construction of (new) similarity variables which
actually are the invariants of the scaling group G. At a time, only one independent
variable can be reduced through one-parameter group. Let us assume that the linear
system in o; and y; admits a non-trivial solution and the variable x; is to be
eliminated; there arise two cases for the exponent o, namely for o; # 0 or a; = 0.

CaseI (o #0)
If o; # O the similarity (or new) variables (or invariants of G) are constructed as
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==, (Fr=2,...m), (3.14a)
xy!
and
f}(17277]37717m):W? (]:15257'1) (314b)
X1
Case II (o = 0)
If oy = 0, the similarity variables are constructed as
Xr
r]r:e“T’ (r:2,3,...,m), (3153)
and
ui(X1,%2, . . ., Xm) .
ﬁ(’h"'"”m):ey,—-m’ G=1,2,...,n). (3.15b)

In the following, this procedure has been employed to a simple problem in fluid
dynamics which will further help to understand the utility of the above procedure.

Example Consider the Stokes first problem which we already considered in
Sect. 3.1 (Eqgs. 3.1-3.2a) in some different context. Equation (3.1) admits a simi-
larity solution for which the corresponding similarity variables are defined in
Eq. (3.3). Let us derive Eq. (3.3) with the help of above described general theory of
constructing the similarity variables. Consider the scaling group G of the form (for
the variables involved in Egs. (3.1)-(3.2a)).

G:1=k"% y=k"y, u=k"u. (3.16)
Substitution of Eq. (3.16) in Eq. (3.1) and the requirement of invariance of the
original pde result in the following linear equation:

op — 7y =200 — ). (3.17a)

The initial condition (3.2a) and the boundary condition (3.2c) contribute nothing
to the system, whereas the boundary condition (3.2b) gives

7 =0. (3.17b)
The non-trivial solution of the simultaneous system (3.17a) reads as

0l 1
— == 0. 3.18
% 2’ o1 7é ( )
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Therefore, the similarity variables, according to Eq. (3.14a), are constructed as

y _ _
N=%=15=y vz (3.19a)
™
and
u u
f)=5=g=u (3.19b)
™

Thus, u = f(i) and = yr~'/? are the (new) similarity variables which trans-
form governing Eq. (3.1) to the self-similar form. The presence of the factors
Uy and \% in Eq. (3.3) with £(i) and yr~'/2, respectively, is just for the sake of

non-dimensionalization; also the presence of a factor % in the definition of # (in
Eq. 3.3) is simply to manipulate the constant coefficient in the transformed
Eq. (3.4). These are actually the niceties and have nothing to do with the process of
determining the similarity variables. For further examples and a bit more detail on
this topic, the interested reader is referred to follow a very nice book by Ames [11].
The method will be applied to the boundary-layer equations in Chap. 5 where a
detailed account on the construction of similarity variables is presented.
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