
Chapter 12
Turbulent Flow Due to Moving
Continuous Surfaces

The turbulent flow due to moving continuous surfaces is another aspect of the
viscous boundary-layers in addition to the laminar flows presented in the previous
two parts. The literature on turbulent boundary-layer flows due to the moving
(translating) or stretching surfaces is, literally, very few and is strictly limited to the
uniformly moving plate and the slim continuous cylinder cases only. These flows
were also considered by Sakiadis in his pioneering papers [1, 2] on this topic. In
comparison with the laminar flows of this class, the turbulent flows are almost
completely unknown to the best of our knowledge. After the historic initiative of
Sakiadis, the idea had not been progressed, so far, by the subsequent investigators
in the case of turbulent flows. Ultimately, this created a huge gap between the
laminar and the turbulent flows of this class. The present chapter focuses particu-
larly on the turbulent flow due to the translating or stretching continuous surfaces.
Sakiadis [1, 2] considered the turbulent flow due to a uniformly moving flat plate
and a long slim continuous cylinder of constant cross section. In Sect. 12.1, the
Sakiadis’ turbulent flow in the said two cases is being presented while the Crane’s
turbulent flow, namely due to the stretching sheet and the stretching cylinder, has
been considered in Sect. 12.2. Approximate analytic solution in all the four cases
has been obtained due to the integral method approach.

12.1 Turbulent Sakiadis Flow

12.1.1 Two-Dimensional Case

The two-dimensional laminar boundary-layer flow of an incompressible viscous
fluid is governed by Eqs. (2.10)–(2.11) (with w � 0) where the right-hand side
involves the derivative of the laminar shear stress only. In the turbulent
two-dimensional flows too, the governing system [Eqs. (2.10)–(2.11)] stays the
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same but with a modified right-hand side. The shear stress, of turbulent flow, does
not follow the simple Newton’s law of viscosity (only) but involves an additional
contribution due to the turbulent eddies. The description of such turbulent eddies is
not any straightforward and requires their appropriate modeling. Therefore, dif-
ferent describing models for the turbulent Reynolds stresses have been developed,
in this regard. The selection of appropriate turbulent model depends strongly upon
the nature of flow, under investigation. Based upon empirical data, the turbulent
shear stresses have been modeled in terms of physical boundary-layer parameters
and such empirical models have their general acceptability having the capacity of
producing sufficiently accurate results. Nevertheless, the numerical or theoretical
solution of a turbulent flow always requires a comparison with the experiment in
order to state a concrete conclusion about the studied particular flow. Unfortunately,
the Sakiadis’ turbulent flow has never been studied experimentally to the best of our
knowledge. Because of this hindrance, it has always been impossible to compare
the theoretical results with any experimental data.

The current theoretical analysis compromises of an approximate integral method
solution for various power-law velocity profiles. More clear and authentic picture of
these flows will stay pending until the availability of experimental data for these
flows.

Approximate solution
The momentum integral equation for a two-dimensional Sakiadis flow is given

in Eq. (2.26). For laminar flows, the wall shear stress ðsx;0Þ simply follows the
Newton’s law of viscosity, whereas, for turbulent flows, it requires appropriate
modeling. Based on the Blasius law of friction, the famous so-called wall law of the
pipe flow is equally valid for the two-dimensional case also and is given by

sx;0 ¼ qV2
a ;Va ¼ 0:150u7=8w

m
d

� �1=8
; ð12:1Þ

where Va denotes the friction velocity. The momentum and displacement thick-
nesses in this case are defined as

h ¼ Zd

0

u
uw

� �2

dy; ð12:2Þ

and

d� ¼ Zd

0

u
uw

dy; ð12:3Þ

respectively. The momentum integral Eq. (2.26) can also be rewritten in terms of
momentum thickness as
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d
dx

u2wh
� � ¼ sx;0

q
: ð12:4Þ

Sakiadis utilized the famous power-law velocity profile of the form

u
uw

¼ 1� y
d

� �1
n
; ð12:5Þ

in his integral method and chose to use the value n ¼ 7. The substitution of
Eq. (12.5) in momentum integral Eq. (12.4), for n ¼ 7, results in a first-order
ordinary differential equation in dðxÞ, of the form

1
36

dd
dx

¼ 0:0225Re�1=4
d ; ð12:6Þ

where Red ¼ uwd
m is the Reynolds number based on the boundary-layer thickness

dðxÞ. The integration of Eq. (12.6) yields

d
x
¼ 1:01002Re�1=5

x : ð12:7Þ

The availability of dðxÞ helps in furnishing the other quantities of interest such as
the momentum and displacement thicknesses and the coefficient of wall
skin-friction which are calculated as

h
x
¼ 0:028056Re�1=5

x ; ð12:8Þ

d�

x
¼ 0:126225Re�1=5

x ; ð12:9Þ

and

Cf ¼ 0:044890Re�1=5
x ; ð12:10Þ

respectively.
It is a generally observed fact that the velocity profile in the turbulent

boundary-layer becomes fuller upon increasing the flow Reynolds number. In the
same manner, the power-law velocity profile given in Eq. (12.5) becomes fuller
upon increasing the power-law index n, such as n ¼ 8; 9 or 10. In view of the
available experiences with the power-law velocity profile, it has now generally been
admitted that the 1/7th power-law profile approximates well for the turbulent
Reynolds numbers immediately next to the transition region and gives poor
approximation for moderate and higher values of the turbulent Reynolds number.
The 1/8th or 1/9th power-law profiles fit quite well to the experimental data for
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moderate Reynolds numbers, that is, of the order of 107 or 108 and the 1/10th
power-law profile for the turbulent Reynolds numbers of the order of 109 and 1010

as is also observed in the case of rotating disk flow. In what follows, the Sakiadis’
integral solution seems to be limited to small turbulent Reynolds numbers and
requires to be improved for moderate and higher turbulent Reynolds numbers. In
this regard, the values 8, 9, and 10 of the power-law index “n” have also been
considered and the results for physical quantities of interest have been furnished in
the following.

To include the results for other values of n (i.e., n = 8, 9 & 10), the general 1/nth
power-law profile, given in Eq. (12.5), is utilized. In doing so, Eq. (12.6) modifies as

dd
dx

¼ 0:0225C�1
1=n Re

�1=4
d ; ð12:11Þ

which integrates to give

d
x
¼ 0:05745C�4=5

1=n Re�1=5
x ; ð12:12Þ

where C1=n ¼ 1� 2AþB;A ¼ n
nþ 1 ;B ¼ n

nþ 2 : Consequently, Eqs. (12.8)–(12.10)
do also modify and, respectively, read as

h
x
¼ 0:05745ðC�1

1=nRexÞ�
1
5; ð12:13Þ

d�

x
¼ 0:05745

ð1� AÞ
C1=n

ðC�1
1=nRexÞ�

1
5; ð12:14Þ

Cf ¼ 0:09192ðC�1
1=nRexÞ�

1
5; ð12:15Þ

The Sakiadis’ solution for 1/7th profile is also contained in the results given in
Eqs. (12.12)–(12.15) and can readily be recovered by substituting n ¼ 7 (see
Table 12.1). The above results for 1/nth power-law profile are summarized in
Table 12.1 and have also been compared to the case of surface of finite length. The
boundary-layer thickness for continuous surface is quite larger than that of surface
of finite length. Because of this fact, the coefficient of skin-friction is smaller for
continuous surface in comparison with the finite surface. The momentum thick-
nesses in the two cases are, however, comparable, but the displacement thicknesses
of the two cases differ by large from each other.

The velocity curves for n ¼ 7; 8; 9& 10 are plotted in Fig. 12.1 showing that the
velocity becomes fuller upon increasing the power-law index n. The
boundary-layer, momentum and displacement thicknesses, and the coefficient of
skin-friction are plotted in Figs. 12.2, 12.3, 12.4, and 12.5 against the longitudinal
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Table 12.1 Comparison between the continuous and the finite surface cases

1/n d
x Re

1=5
x

h
x Re

1=5
x

d�
x Re1=5x Cf Re1=5x

Continuous surface 1/7 1.01002 0.0280562 0.1262253 0.0448900

1/8 1.20742 0.0268317 0.134158 0.0429307

1/9 1.41769 0.0257761 0.141769 0.0412418

1/10 1.64031 0.0248531 0.149119 0.0397650

Finite surface 1/7 0.3700 0.0360 0.0460 0.0576

1/8 0.3983 0.0354 0.0442 0.0566

1/9 0.4260 0.0350 0.0430 0.0557

1/10 0.4526 0.0343 0.0411 0.0549

Fig. 12.1 Power-law
velocity profile

Fig. 12.2 Variation of
boundary-layer thickness in x

Fig. 12.3 Momentum
thickness plotted against x
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variable x. The three thicknesses, namely the boundary-layer, the momentum, and
the displacement ones grow almost linearly as one progresses in the downstream
direction.

The consequence of the growing boundary-layer thickness is the decrease in the
wall skin-friction coefficient at downstream locations. Furthermore, the momentum
thickness decreases and the displacement thickness increases upon increasing the
values of n.

12.1.2 The Cylinder Case

The turbulent flow due to a moving continuous cylinder was also investigated by
Sakiadis [2] himself with the aid of integral method. He utilized the same 1/7th
power-law profile of the continuous flat plate in this case too. Unfortunately,
Sakiadis failed in obtaining physically reliable results in this case. However, the
method developed by him involves great mathematical beauty and allows a direct
comparison with the results of corresponding flat surface case. The momentum
integral equation applicable to this case is given in Eq. (2.29) (for a permeable
surface), and in the case of impermeable surface, the normal wall velocity must be
taken equal to zero, that is, vw ¼ 0. Following the previous case, Eq. (2.29) (with
vw ¼ 0Þ can also be rewritten as

Fig. 12.5 Coefficient of local
skin-friction plotted against x

Fig. 12.4 Dependence of
displacement thickness upon x
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d
dz

u2w Rh
� � ¼ R

sz;0
q

; ð12:16Þ

where R denotes the radius of the infinite cylinder and h denotes the momentum
thickness given by

h ¼ Zd

R

u
uw

� �2

rdr;

which for the cylinder of constant radius R ¼ R0 reads as

h ¼ Zd

R0

u
uw

� �2

rdr:

The momentum area, in this case, is obtained due to the momentum thickness as

H ¼ p R0 þ hð Þ2�R2
0

h i
:

The famous wall law of the pipe flow, given in Eq. (12.1), is assumed to be
applicable in this case too for the approximation of wall shear stress. The utilization
of the 1/7th power-law profile of the form given in Eq. (12.5) transforms
Eq. (12.16) to the form

d
dz

d
1
36

þ 1
120

d
R0

� �� 	
¼ 0:0225

d
z

� ��1=4

Re�1=4
z : ð12:17Þ

Integration of above equation results in a nice mathematics which allows a direct
comprises between the present case and the case of the corresponding flat contin-
uous surface. Equation (12.17) integrates to give

d
z

1þ 0:167
d
R0

� �� 	
¼ 1:01002

d
z

� ��1=4

Re�1=4
z ;

or

d
R0

¼ k/4=5; ð12:18Þ

where / ¼ z
R0

� �5=4
Re�1=4

z and k comes out to be the ratio of cylinder’s

boundary-layer thickness to that of the flat-plate case, that is, k ¼ d=dp. The cal-
culated values of /, due to Eq. (12.18), give the ratio of the boundary-layer
thickness of the present case to the flat-plate case. For particularly chosen values of
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/, the corresponding values of k are listed in Table 12.2. Contrary to the laminar
case, the calculated boundary-layer thickness in the cylinder case comes out to be
less thick than that of the flat-plate case (see Table 12.2), which is of course
incorrect. In actual, the boundary-layer thickness in the cylinder case is larger than
the corresponding flat-plate case because of the presence of surface curvature. This
fact has also been observed in the self-similar and non-similar flows on a contin-
uous cylinder in the previous two parts. Such a flaw in the present results forbade
one from the further analysis.

The ratio of the surface drag of the two cases, namely the cylinder and the flat
plate, is given by

D
Dp

¼ 1þ 0:152
d
R0

� �
/; ð12:19Þ

which is also underpredicted by the present method (see Table 12.3). Sakiadis held
responsible, however, partly, to the utilized 1/7th power-law profile for such
incorrect results.

The generalization of the Sakiadis’ results for the 1/nth power-law profile is also
obtained by utilizing the general power-law profile given in Eq. (12.5). The
momentum integral Eq. (12.16), after the utilization of Eq. (12.5), results in the
following form

d
dz

d K1 þ 1
2
K2

d
R0

� �� 	
¼ 0:0225

d
z

� ��1=4

Re�1=4
z ; ð12:20Þ

where K1 ¼ �2 A� B� Cð Þ;K2 ¼ AD�1 � 4D;C ¼ B
n ;D ¼ n

2nþ 1 :

Integration of Eq. (12.20) again results in the form of ratio of two
boundary-layer thicknesses, as before, that is,

Table 12.2 Values of k
obtained due to 1/7th
power-law profile

/
1
5 k

0 1.000

0.5 0.987

1.0 0.891

1.5 0.682

2.0 0.500

2.5 0.371

3.0 0.281

3.5 0.220

4.0 0.177

5.0 0.122

6.0 0.088

7.0 0.068
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K1
d
z

1þ 5
9
K2

K1

d
R0

� �
¼ 0:028125

d
z

� ��1=4

Re�1=4
z ;

or

d
R0

¼ k1=n/
4=5; ð12:21Þ

where k1=7 � k. The values of the ratio k1=n are listed in Table 12.4 for different
values of / corresponding to various values of the power-law index n. Evidently,
the 1/8th,…,1/10th profiles also fail to predict the correct results as the ratio ðk1=nÞ
quickly becomes less than 1. However, the ratio is observed to stay greater than 1 a
little bit longer for greater values of n in comparison with the smaller values of n.

Table 12.3 Ratio of the
surface drag predicted by
1/7th power-law profile

/
1
5 D=Dp

0 1.00

0.5 1.00

1.0 1.01

1.5 1.05

2.0 1.11

2.5 1.18

3.0 1.25

3.5 1.33

4.0 1.40

5.0 1.54

6.0 1.65

7.0 1.75

Table 12.4 Summarized
results for various values of
n in the axisymmetric case

/1=5 k1=n
n ¼ 7 n ¼ 8 n ¼ 9 n ¼ 10

0.0 1.009988 1.207380 1.417506 1.640247

0.5 1.001619 1.195741 1.401729 1.619465

1.0 0.902676 1.062546 1.227275 1.397360

1.5 0.697155 0.803691 0.909795 1.017103

2.0 0.508408 0.578480 0.647087 0.715591

2.5 0.375222 0.423967 0.471305 0.518745

3.0 0.285203 0.320999 0.355611 0.390268

3.5 0.223301 0.250739 0.277202 0.303691

4.0 0.179422 0.201166 0.222104 0.243059

5.0 0.123252 0.137952 0.152080 0.166218

6.0 0.090121 0.100778 0.111012 0.121252

7.0 0.068961 0.077076 0.084876 0.092655
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This indicates the requirement of some major modification in the integral method
for the turbulent flow on a continuous cylinder.

12.2 Turbulent Crane’s Flow

The turbulent (Crane’s) flow due to a stretching continuous surface either in the
two-dimensional planer case or axially symmetric case is the subject of this Section.
After the Sakiadis’ pioneering work, the turbulent flow due to moving continuous
surfaces has never been considered to the best of our knowledge. Besides the
fundamental nature of these flows, they still require proper attention by the theorists
and the experimentalists for their complete understanding and further exploration.

At this point, the author takes the privilege to express that the modern devel-
opments in CFD and the commercialization of research have forced the new
entering scientists and the engineers to get involved in the commercially sponsored
research. Consequently, the topics of fundamental research kept on being ignored
with the passage of time and now they have totally become “outdated.” Following
the engineers, the theorists and more particularly the Mathematicians and the
Physicists have also been involved in such a CFD-based research by ignoring the
mathematical/theoretical development of the field. With the continued practice of
this trend, a time may come when the new generation will totally be unaware of the
fundamental topics and tools of research in fluid dynamics. In what follows, the big
lose will definitely be borne by the Mathematics. Therefore, this is a time when the
competent researchers in the field of fluid dynamics must also spend their efforts on
the theoretical research especially on mathematical methods in order to make the
new generations well aware of the advanced research bearing a strong connection
with its essential fundamental basis. Because of these reasons, the famous Sakiadis
and Crane’s flows must be given proper attention by the experimentalists as well as
theorists in order to develop appropriate theoretical procedures regarding their
investigation. The axially symmetric flow of a moving or stretching cylinder, as
considered in the previous and the current sections, respectively, reveals the scarce
of the availability of the authentic data and thus the handicapping of the theoretical
procedures.

In the following, the turbulent viscous flow due to a stretching sheet and a
stretching cylinder is considered. The previously utilized integral method has again
been employed here by using general power-law velocity profile. The presented
results are, however, not any authentic rather misleading in the cylinder case, but
nevertheless have been reported for the purpose of motivation.
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12.2.1 Stretching Sheet

The turbulent flow due to a stretching sheet is also governed by the same equation
[Eq. (2.26)] as utilized in the previous section. The pipe law of friction velocity
[Eq. (12.1)] is also assumed applicable here. In view of these assumptions, the
momentum integral equation [Eq. (2.26)] after the substitution of self-similar 1/nth
power-law profile takes the form

C1=n
1
x2

d
dx

x2d
� � ¼ 0:0225Re�1=4

d : ð12:22Þ

Equation (12.22) admits a solution of the power-law form given by

d
x
¼ Kd

1=n x
ae�3

5 Re�1=5
x ; ð12:23Þ

where Kd
1=n and ae are pure dimensionless constants and are given by

Kd
1=n ¼ 0:022375C�4=5

1=n ; and ae ¼ 3
5
: ð12:24Þ

Corresponding to various values of n, the values of Kd
1=n are shown in

Table 12.5.
Because of these values given in Eq. (12.24), Eq. (12.23) finally furnishes as

d
x
¼ 0:022375ðC4

1=n RexÞ�
1
5: ð12:25Þ

With the aid of Eq. (12.25), the expressions of the momentum and displacement
thicknesses and of the wall skin-friction coefficient are furnished as

h
x
¼ 0:022375ðC�1

1=n RexÞ�
1
5; ð12:26Þ

d�

x
¼ 0:022375ð1� AÞðC4

1=n RexÞ�
1
5; ð12:27Þ

Table 12.5 Values of the
constant coefficient [defined
in Eq. (12.24)] for various
n in the Crane’s flow

1/n Kd
1=n

Two-dimensional Axisymmetric

1/7 0.393461 0.320875

1/8 0.47036 0.381278

1/9 0.552268 0.444873

1/10 0.638992 0.511402
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Cf ¼ 0:116345ðC�1
1=n RexÞ�

1
5; ð12:28Þ

respectively. The above results are summarized in the form of a Table for various
values of n in Table 12.6.

12.2.2 Stretching Cylinder

The case of uniformly stretching cylinder follows similarly as does the case of
uniformly translating cylinder considered in the previous Section. After the sub-
stitution of 1/nth power-law velocity profile given in Eq. (12.5), the governing
momentum integral equation [Eq. (12.16)], in view of Eq. (12.1), takes the form

2K1 1þ 1
2
z
d
dd
dz

þ 1
2
z
R
dR
dz

� �
þK2

d
R

1þ z
d
dd
dz

� �
¼ 0:0225

d
z

� ��5=4

Re�1=4
z :

ð12:29Þ

The above equation follows a solution of the form

d
R0

¼ Kd
1=n

z
R0

� �m1

Re�1=5
R0

; ð12:30Þ

under the restriction that the radius R of the cylinder must also follow the same form
as does the boundary-layer thickness, that is,

R
R0

¼ z
R0

� �m2

Re�1=5
R0

: ð12:31Þ

The constant Kd
1=n and the exponents m1 and m2, appearing in Eqs. (12.30)–

(12.31), are pure dimensionless constants. In this case, it is found that
m1 ¼ m2 ¼ 3=5, and Kd

1=nsatisfies the following equation:

K1 þ 1
2
K2 K

d
1=n ¼ 0:007031 Kd

1=n

� ��5=4
: ð12:32Þ

Table 12.6 Summarized
results for turbulent stretching
sheet flow

1/n d
x Re

1=5
x

h
x Re

1=5
x

d�
x Re1=5x Cf Re1=5x

1/7 0.393461 0.0109295 0.0491827 0.0568182

1/8 0.470360 0.0104524 0.0522622 0.0543382

1/9 0.552268 0.0100412 0.0552268 0.0522006

1/10 0.638992 0.0096817 0.0580902 0.0503314
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The values of Kd
1=n corresponding to different values of n are listed in Table 12.5.

Important quantities of physical interest such as the boundary-layer thickness,
momentum and displacement areas, and the coefficient of wall skin-friction are
given by

d
z
¼ Kd

1=n Re
�1

5
z ;

H
pz2

¼ 2 K1 þ 1
2
K2 K

d
1=n

� �
Kd
1=n Re

�2
5

z ;

�d�

pz2
¼ 2� 2Að Þþ 1� 2Dð ÞKd

1=n

� �
Kd
1=n Re

�2
5

z ;

Cf ¼ 0:045 Kd
1=n

� ��1
4
Re

�1
5

z :

Corresponding to the various values of the power-law index n, the results are
summarized in Table 12.7.
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Table 12.7 Summarized
results for the turbulent
stretching cylinder flow

1/n d
z Re

1=5
z

H
pz2 Re

2=5
z

�d�
pz2 Re

2=5
z Cf Re1=5z

1/7 0.320875 0.018684 0.087083 0.059790

1/8 0.381278 0.017896 0.093280 0.057267

1/9 0.444873 0.017219 0.099391 0.055100

1/10 0.511402 0.016630 0.1050436 0.053214
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