
Chapter 11
Time-Dependent Non-similarity

In the previous Part, it has already been seen that the concept of similarity is not
particular to the space variables only but is also equally applicable to the time
variable. Owing to the physical and mathematical meanings of similarity, the cri-
terion of self-similarity in time for stretching/shrinking surfaces has been derived in
Chap. 8. Interestingly, the spectrum of self-similar unsteady flows due to the
stretching or shrinking surfaces is very limited which in turn signifies the diversity
of the non-similar flows to the unsteady case. Even being a very restricted family,
the self-similar unsteady flows have widely been studied in the literature, whereas
the non-similar unsteady flows have not been investigated on such a large scale.
The reason behind this is again the nature of governing non-similar equations which
are in fact the partial differential equations as they usually are in the case of spatial
non-similarity. It is, however, a matter of fact that the temporal non-similarity does
not pose a severe challenge as does the spatial non-similarity. In most of the cases,
it is too light to be resolvable analytically, because of the homotopy analysis
method (HAM) or the other series methods, etc., with great accuracy. In numerical
computations, the straightforward finite difference schemes work well without
requiring the use of Newton’s method for the subsequent linearization of the
nonlinear difference equations as is utilized in the Keller-Box scheme. Gaussian
elimination procedure serves sufficiently for the solution of so-obtained simulta-
neous difference equations. Such analytic or numerical techniques shall be utilized
in the coming Sections by considering some particular types of the surface velocity.

11.1 Two-Dimensional Unsteady Non-similar Flows

The cases of two- and three-dimensional flows follow the same non-similar for-
mulation. Therefore, the preference shall be given the two-dimensional flows
because of their mathematical simplicity in comparison with the three-dimensional
flows. In the unsteady flows, caused due to uniform stretching/shrinking of the
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continuous surfaces, the strength of mathematical difficulty in the non-similar flows
depends mostly upon the nature of the wall velocity assumed. In Chap. 8, it was
determined that the temporal similarity is admitted only for the linear stretching or
shrinking of the sheet when the wall velocity is inversely proportional to t, i.e.,
uw ¼ ax

t or uw ¼ ax
1þ ct. All other forms of the wall velocity yield non-similar flows.

The other source of non-similarity in time is the auxiliary data, that is, the initial and
the boundary conditions. In Chap. 8, it was also realized that for a well-posed
problem, the initial condition (essentially) and at least one of the boundary con-
ditions must coalesce in order to establish the self-similarity. If the auxiliary data do
not allow any such coalescing, then the establishment of self-similarity is impos-
sible. Thus, if the wall velocity does not follow the above-mentioned forms or the
auxiliary data do not allow any coalescing of the initial and boundary condition(s),
the similarity solution will never be permissible. In all such situations, the temporal
non-similarity is deemed unavoidable.

Temporal non-similarity may occur in both the spatially self-similar and
non-similar flows. In this Chapter, we shall, however, restrict ourselves to the case
of spatially self-similar flows. In such flows, the original three variables ðx; y; tÞ
shall be reduced to two due to suitable mixing of the original variables. The
reduction of variables, in two-dimensional flow, from three ðx; y; tÞ to two may
occur in two ways: If the new variable is constructed due to x and t of the form x=t,
then the solutions are usually called pseudo-steady; and if the three variables
ðx; y; tÞ are reduced to two by any other way, then the solutions are called semi-
similar. In all those cases, where the spatial similarity is admissible, the similarity
variable g is already constructed due to y and x, thus allowing no combination of the
form x=t for the new variable. In such flows, the governing unsteady problem is
eventually transformed to a partial differential equation admitting self-similarity in x
and y but no similarity in time. Such a solution falls into the above-mentioned
category of semi-similar solutions. A simple example from this category is the
unsteady Crane’s flow where the flat sheet is started impulsively to be stretching
linearly in x-direction. In this case, the governing equations are given in Eqs. (2.10)
and (2.11) (with w ¼ 0) and the initial and boundary conditions are of the form

at t� 0 : u ¼ v ¼ 0; 8x; y
at t[ 0 :

u ¼ ax; v ¼ 0; at y ¼ 0
u ¼ 0; at y ¼ 1

� 9=
;: ð11:1aÞ

Sometimes they are also casted into the form

at t\0 : u ¼ v ¼ 0; 8 x; y

at t� 0 :
u ¼ ax; v ¼ 0; at y ¼ 0
u ¼ 0; at y ¼ 1

� 9=
; ð11:1bÞ

which in a limiting sense t ! 0 is equivalent to (11.1a), that is,
t ! 0þ ; u ! ax; t ! 0�; u ! 0. However, Eq. (11.1a) will be considered in the

164 11 Time-Dependent Non-similarity



coming analysis. In Eq. (11.1a), the wall velocity shows linear stretching of the
wall in x-direction for which the similarity variables are given due to (Chap. 6) by

g ¼
ffiffiffi
a
m

r
y;

u
ax

¼ f 0 gð Þ; ð11:2Þ

in the steady flow situation. These new variables completely eliminate the previous
variables from the governing equation, thus reducing it to the self-similar form. The
consideration of unsteadiness in this case makes the variable t to appear in the
equation of motion. Now, if the wall velocity does follow the form given in
Eq. (8.15), then the flow is self-similar while non-similar otherwise. The
non-similar or semi-similar formulation of the problem considered in this
Section requires a proper extension of the similarity transformations (11.2).
Initially, such problems had been investigated due to two different formulations
particular to the small time or large time situations. Finally, a unified transforma-
tion, valid for small time as well as large time, was introduced by Williams and
Rhyne [1]. A thorough discussion on this issue is given in the following paragraph.

The literature available on unsteady flow past the surfaces of finite length is very
much rich and authentic, because of the pioneering contributions of the legends of
the boundary-layer theory, in comparison with the literature on impulsively started
continuous surfaces. Since the history of unsteady flows, caused either due to
impulsively started continuous bodies or the bodies of finite length, goes back to the
classical Rayleigh’s problem, in the Rayleigh’s problem the flow is developed in a
stationary fluid due to the impulsive (uniform) motion of the bounding wall due to
which the vorticity transports from the moving wall to the ambient fluid with the
passage of time. After a while, when sufficient time has elapsed, the flow becomes
fully developed within a finite thin region near the wall beyond which the ambient
situation persists without any change. Such a situation is usually referred to as the
establishment of steady state. Because of the above illustration, the boundary-layer
seems to grow in time, which actually the case is, and is given by dR �

ffiffiffiffi
mt

p
, thus

providing a natural length scale to this flow. Such an availability of appropriate
length scale makes it possible to construct the new similarity variable gR ¼ y=

ffiffiffiffi
mt

p
in order to transform the governing partial differential equation of the Rayleigh’s
problem to an equivalent ordinary differential equation.

On the other hand, an exact similarity solution to the steady two-dimensional
case does also exist which is commonly known as the Blasius solution. How the
normal length scale dR (of Rayleigh’s problem) could be utilized in the Blasius flow
which is steady in nature. In this case, the boundary-layer thickness develops in
streamwise direction (by staying independent of time) due to the presence of
external potential flow. Therefore, the time t in the expression of Rayleigh’s
boundary thickness dR could be replaced by x=uref by interpreting it as the time
required by a fluid particle to reach a distance x. In this way, the length scale dR

modifies to dFS �
ffiffiffiffiffi
mx
uref

q
to be utilized in the construction of similarity variable

gFS ¼ y
ffiffiffiffiffiuref
mx

p
of this flow. In this case, uref denotes the external reference velocity
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of the Blasius or the Falkner–Skan type. The subscripts R and FS are particular to
the Rayleigh problem and the Falkner–Skan flow, respectively. Thus, in the case of
two-dimensional unsteady flow over a finite plate, the Rayleigh’s solution and the
Blasius or Falkner–Skan solution serve as the initial and final solutions,
respectively.

By utilizing the above-named initial and final solutions, the unsteady flow past a
wedge has been formulated by several researchers. Because of the availability of
similarity variables, that is, gR ¼ y=

ffiffiffiffi
mt

p
and gFS ¼ y

ffiffiffiue
mx

p
, two separate formulations

have been developed referring to the small time and large time solutions. While
doing so, the time has been non-dimensionalized as s ¼ uref t

x . Because of the variables
gR and s, the resulting formulation agrees well with the Rayleigh’s solution for small
time but does not match the Falkner–Skan solution for large time. Similarly, the
formulation due to gFS and s fits very well to the Falkner–Skan solution for large s
but deviates from the Rayleigh’s solution for small s. The reason behind this fact is
that the so-obtained non-similar equations change their character as s increases
(starting) from 0 and crosses the value s ¼ 1. Consequently, the transformation
serving appropriate for small s diverges for large s and the vice versa. This fact was
first pointed out by Stewartson [2] in 1951. This issue was finally resolved by
Williams & Rhyne [1] by determining a unified formulation which reduces to gR and
s (formulation) for small s and gFS&s (formulation) for large s. In doing so, the
semi-infinite time domain of s has been collapsed to closed interval 0; 1½ � which in
fact facilitates in the numerical integration of the governing equations. The new time
variable constructed by Williams and Rhyne [1] is given by

n ¼ 1� e�
uref t
x ;

according to which, n ! 0 as uref t
x ! 0 and n ! 1 as uref t

x ! 1. Thus, the
steady-state Falkner–Skan solution appears at the end of the new time interval
ðn ¼ 1Þ, and the Rayleigh’s solution is recovered at the start of the time interval,
that is, at n ¼ 0. For detailed derivation of such a semi-similar (non-similar)
solution, the reader is referred to follow [1].

The transformation developed by Williams and Rhyne has frequently been used
in the study of unsteady laminar flows over continuous surfaces or surfaces of finite
length (see for instance [3–7] and the references there in). Thus, for the unsteady
Crane’s flow, the steady similarity transformations (11.2) extend to the semi-similar
form as

g ¼
ffiffiffiffiffi
a
mn

r
y; w ¼

ffiffiffiffiffiffiffi
amn

p
xf n; gð Þ; n ¼ 1� e�s; s ¼ at; ð11:3Þ

due to which the equation of continuity is satisfied identically and the momentum
equation takes the form
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n
@f
@g

� �2

�f
@2f
@g2

 !
¼ @3f

@g3
þ 1

2
1� nð Þg @

2f
@g2

� n 1� nð Þ @2f
@g@n

; ð11:4Þ

subject to the boundary conditions

f 0; nð Þ ¼ 0;
@f
@g

����
g¼0

¼ 1; and
@f
@g

����
g¼1

¼ 0: ð11:5Þ

Clearly, at n ¼ 0, Eq. (11.4) recovers the Rayleigh’s problem, and at n ¼ 1, it
reduces to the self-similar Crane’s equation. As evident from their name,
semi-similar, such flows do not depart far away from the self-similar solution. Only
in a small neighborhood of n ¼ 0, the solution undergoes temporal transition and
finally achieves the steady-state self-similar solution corresponding to the large
values of n. Because of this fact, the level of (mathematical) difficulty in these
“non-similar” problems is not that severe as it is in the case of spatially non-similar
problems. These problems can easily be solved by usual finite difference schemes.
Asymptotic analytic solutions are also possible due to the conventional asymptotic
expansion (in n) or due to the homotopy methods. The homotopy analysis method,
in particular, works very well with these problems without taking enough long time
or facing the issues of convergence. In contrast, the spatially non-similar equations
are quite hard to solve with such asymptotic series solution methods such as HAM
or HPM.

System (11.4) and (11.5) has been solved analytically due to HAM procedure,
and the results have been depicted in Figs. 11.1 and 11.2. The velocity profile can
be seen plotted against g at different values of the time variable n. For small values
of n, transition from the Raleigh’s solution to that of Crane’s can be seen quite
obvious upon increasing the values of n. For sufficiently large values of n, the flow
is shown fully developed in the steady state with no further dependence upon time.
The coefficient of wall skin-friction modifies in this case as

Re1=2x Cf ¼ n�1=2@
2f

@g2

����
g¼0

; ð11:6Þ

Fig. 11.1 Velocity profile
against η for different n

11.1 Two-Dimensional Unsteady Non-similar Flows 167



where Rex ¼ ax2=m is the local Reynolds number. The values of f 00 n; 0ð Þ have been
plotted in Fig. 11.2 where the wall velocity gradient can be seen increasing rapidly
in the transition time period and stabilizing, afterward, for large values of time.

The same problem was first considered by Wang et al. [8] for the impulsively
started stretching sheet. They utilized the usual similarity transformations intro-
duced by Crane for the steady case (Eq. 11.2) and obtained an asymptotic solution
for small and large time and a numerical solution as a whole. Their, so-reduced,
semi-similar equation appeared in the form

@2f
@g@n

þ @f
@g

� �2

�f
@2f
@g2

¼ @3f
@g3

; ð11:7Þ

which differs mainly, from Eq. (11.4), in the important Rayleigh’s term (second
term on the right-hand side). The first term on the left-hand side of Eq. (11.7) seems
to stay dominant for small time values, but the contribution of the remaining two
terms on the left-hand side, representing the convective acceleration, has also not
been restricted to the large time values as has been done in Eq. (11.4). The basic
reason behind this fact is the utilization of the transformation group gFS&s as we
explained previously. On the other hand, Pop and Na [9] also considered the same
problem by utilizing the other similarity group, namely the gR&s. Consequently,
they obtained an equation of form (11.4) with a bit different coefficient given by

4at �f
@2f
@g2

þ @f
@g

� �2
 !

¼ @3f
@g3

þ 2g
@2f
@g2

� 4t
@2f
@g@t

: ð11:8Þ

Clearly, for small values of time ðt ! 0Þ, Eq. (11.8) recovers the Rayleigh’s
solution, but for large values of time, the last two terms on the right-hand side of
Eq. (11.8) do not seem to vanish out in order to recover the Crane’s solution. Thus,
in order to find a solution which is uniformly valid for all time, the Williams &
Rhyne’s transformations (11.3) are observed to be the perfect choice.

Fig. 11.2 Velocity gradient
function at η = 0 plotted
against n
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11.1.1 Oscillatory Stretching of the Sheet

Continuing with the semi-similar solutions, there are several other forms of the wall
velocities for which the resulting equations are semi-similar. A general criterion in
this regard is the admissibility of spatial self-similarity by the problem. This can
only be ensured when the spatial dependence of the wall velocity follows either the
power-law or exponential form as derived in Chap. 5. The problem considered in
the above discussion, namely the unsteady Crane’s flow, follows the power-law
wall velocity with an impulsive start. Another generalization of the Crane’s flow is
to take the oscillatory stretching rate of the uniform stretching velocity in the form

uw x; tð Þ ¼ a cosxtð Þx:

Such a wall velocity was considered by Wang [10] for which he utilized the
similarity transformation of form (11.2) and introduced the dimensionless time of the
form s ¼ x t. In this case too, he obtained the transformed equation of form (11.7)
given by

St
@2f
@g@s

þ @f
@g

� �2

�f
@2f
@g2

¼ @3f
@g3

; ð11:9Þ

with a perturbation parameter St representing the frequency of oscillations. The
parameter St is defined as the ratio of oscillations’ frequency to the amplitude of
oscillations which is commonly referred as the Strouhal number, that is, St ¼ x=a.
Large values of St correspond to high-frequency oscillations with very small
amplitude. Owing to the physical justification of this behavior, Wang obtained
perturbation solution for large values of St. However, a quite exact analytic or
numerical solution of Eq. (11.9) which is uniformly valid for small and large values
of the Strouhal number is possible to obtain with the aid of commonly used HAM
or finite difference schemes. Abbas et al. [11] considered sinusoidal oscillations in
the stretching rate of a linearly stretching flat sheet immersed in a non-Newtonian
viscoelastic fluid1 under the influence of uniform magnetic field. They utilized the
same transformations as did the Wang [10], that is, Eq. (11.2) by appending s ¼ x t
to it and obtained the semi-similar system of the form

St
@2f
@g@s

þ @f
@g

� �2

�f
@2f
@g2

þM2 @f
@g

¼ @3f
@g3

þK s
@4f

@g3@s
þ 2

@f
@g

@3f
@g3

� @2f
@g2

� �2

�f
@4f
@g4

 !
;

ð11:10Þ

1The non-Newtonian fluids are not a topic of concern here. This problem has been chosen to report
just because of the flow assumptions and solution procedure regardless of the nature of fluid.
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subject to the boundary conditions

@f
@g

����
g¼0

¼ sins; f 0; sð Þ ¼ 0;
@f
@g

����
g¼1

¼ 0;
@2f
@g2

����
g¼1

¼ 0: ð11:11Þ

Ignoring the physical nature of the parameters M;K and s, they have simply
been considered as pure constants. The authors of [11] obtained a purely analytic
solution to the system (11.10)–(11.11), with the aid of HAM, which is uniformly
valid for small and large values of St. They also obtained an efficient numerical
solution to the same system based on the finite difference scheme and reported a
comparison of the two solutions. It is demonstrated (in [11]) that the analytic HAM
solution produces sufficiently accurate approximation in order to meet the numer-
ical one. A listing of numerical values of the skin-friction coefficient is given in
Table 11.1 for various values of the involved physical parameters.

The problems presented under this head are though semi-similar but differ by a
little in the level of difficulty from those considered in this Section prior to this
head, corresponding to the impulsively started sheet. In such problems, the
boundary conditions stay fixed and the time variable needs to be manipulated only
in the governing equations, whereas, in the problems corresponding to the oscil-
latory rate of stretching, the boundary conditions also modify at every next time
step. However, the solution procedure in both the aforementioned cases stays less
hectic than those involving the spatial non-similarity, dealt in the previous two
Chapters.

Table 11.1 Values of the
coefficient of skin-friction due
to [11]

K s M s ¼ 1:5 p s ¼ 5:5 p s ¼ 9:5p

0.0 1.0 12.0 11.678656 11.678707 11.678656

0.2 5.523296 5.523371 5.523257

0.5 −3.899067 −3.899268 −3.899162

0.8 −11.674383 −11.676506 −11.676116

1.0 −15.617454 −15.624607 −15.624963

0.2 0.5 5.322161 5.322193 5.322173

1.0 5.523296 5.523371 5.523257

2.0 6.087060 6.087031 6.087156

3.0 6.769261 6.768992 6.769294

4.0 7.497932 7.406924 7.496870

5.0 8.232954 8.229085 8.228996

1.0 5.0 2.323502 2.323551 2.323548

7.0 3.278018 3.278005 3.278123

9.0 4.197624 4.197771 4.197733

12.0 5.423296 5.523371 5.523257

15.0 6.791323 6.791301 6.791278
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11.2 Axially Symmetric Unsteady Non-similar Flows

The unsteady non-similar flow due to a stretching disk follows similarly to the
two-dimensional case because of the previously determined similarity between the
disk flow and the two-dimensional flow. The case of a stretching cylinder follows
also in a, somehow, similar manner but with a little difference in the governing
equations because of the presence of transverse curvature parameter. Different from
the planner case, the axisymmetric unsteady flow has not been studied any fre-
quently. In this case too, the analogy of semi-similarity persists in the cases when
the spatial dependence of the wall velocity follows the similarity criterion of the
corresponding self-similar flow. As a consequence of it, the resulting equations also
come out of the similar form as did in the previous planner cases. For an unsteady
Crane’s flow due to an impulsively started stretching cylinder, the governing
equations are those given in Eqs. (2.13) and (2.14) subject to the initial and
boundary conditions

at t� 0 : u ¼ v ¼ 0; 8 z; r

at t[ 0 :
u ¼ az; v ¼ 0; at r ¼ R

u ¼ 0; at r ¼ 1
� 9=

;: ð11:12Þ

The so-called semi-similarity transformations of this problem come directly in a
combination of the similarity transformations of the corresponding self-similar
steady flow and those of the famous Rayleigh’s problem following the Williams
and Rhyne’s [1] formulation. The similarity transformations for the steady case are
given in Chap. 6 in dimensionless form. In view of these transformations, the
similarity variables for the present unsteady problem are constructed (due to [1]) as

g ¼ r2 � R2

2R

ffiffiffiffiffi
a
mn

r
; w ¼

ffiffiffiffiffiffiffi
amn

p
Rz f n; gð Þ; n ¼ 1� e�s; s ¼ at: ð11:13Þ

The stream function w ðr; z; tÞ is related to the velocity components u and v as
ru ¼ @w

@r ; rv ¼ � @w
@z due to which the equation of continuity (Eq. 2.13) is satisfied

identically and Eq. (2.14) transforms as

n
@f
@g

� �2

�f
@2f
@g2

 !
¼ @

@g
1þ 2j

ffiffiffi
n

p
g

� � @2f
@g2

	 


þ 1� nð Þ 1
2
g
@2f
@g2

� n
@2f
@g@n

� � ð11:14Þ

Similar to Eq. (11.4), the above equation also recovers the Rayleigh’s flow at
n ¼ 0 and the steady (Crane’s) flow due to a uniformly stretching cylinder at n ¼ 1.
Based upon this reasoning, the solution of Eq. (11.14) is equally applicable to the
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small time as well as to the large time scenarios. The boundary conditions in terms
of transformed variables are given by

f 0; nð Þ ¼ 0;
@f
@g

����
g¼0

¼ 1;
@f
@g

����
g¼1

¼ 0: ð11:15Þ

This problem has already been studied in detail by Munawar et al. [12] including
the heat transfer phenomena for the cases of prescribed surface temperature
(PST) and prescribed heat flux (PHF). Analytic and numerical solutions were
obtained due to the HAM and the finite difference numerical scheme, respectively.
The HAM solution for the dimensionless stream function is obtained in the form of
the series [12]

f n; gð Þ ¼
X1
k¼0

X1
m¼0

X1
l¼0

akm;ln
kgle�mg;

where the akm;l are the constant coefficient of the series and m; l; k are the involved
indices. The initial solution and the linear operator were chosen of the form

f0 n; gð Þ ¼ 1� e�g and L ¼ @

@g3
� @

@g
;

respectively.
In the numerical solution, the authors of [12] utilized the finite difference scheme

by approximating the partial derivatives by the finite differences of the form

@f
@�g

¼ fjþ 1 � fj�1

2D�g
;
@2f
@�g2

¼ fjþ 1 � 2fj þ fj�1

D�gð Þ2 ;

@3f
@�g3

¼ fjþ 2 � 3fjþ 1 þ 3fj � fj�1

D�gð Þ3 ;
@f
@n

¼ fjþ 1 � fj
Dn

where �g ¼ 1
1þ g which transforms the semi-infinite spatial domain 0;1½ Þ to a

bounded interval ½0; 1� in order to facilitate the numerical computations. The
accuracy of the two solutions is shown in Table 11.2 where the analytic and
numerical results reported by [12] have been compared. An excellent agreement can
be seen in the two solutions. The velocity graphs for different values of the time
variable s are shown in Fig. 11.3. Analogous to Fig. 11.1, with the passage of time
the flow develops within the boundary-layer and attains the steady state for suffi-
ciently large values of s. The coefficient of skin-friction in this case is given by

1
2
RexCf ¼ 1

n
@2f
@g2

����
g¼0

: ð11:16Þ
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The variation of 1
2RexCf against n for different values of the curvature parameter

j is shown in Fig. 11.4. Obviously, the skin-friction varies quite rapidly for small
values of time s and stabilizes for sufficiently large values of time. The transition
time is that which is taken by the impulsively started fluid in establishing the fully
developed flow within the boundary-layer. The results of heat transfer phenomena
have intentionally been disregarded, and the interested reader is referred to follow
Ref. [12] in this regard.

Table 11.2 Comparison between the analytic and numerical solutions for different values of the
curvature parameters j and n, at the 13th-order Padé approximation

f 00ð0; nÞ
j HAM results

n ¼ 0:2
Numerical results
n ¼ 0:2

HAM results
n ¼ 0:4

Numerical results
n ¼ 0:4

0.0 −0.65611 −0.65652 −0.74578 −0.74578

0.2 −0.69813 −0.69910 −0.80232 −0.80251

0.5 −0.75824 −0.75816 −0.88255 −0.88260

1.0 −0.85228 −0.85233 −1.00695 −1.00713

1.5 −0.94979 −0.94983 −1.12328 −1.12331

2.0 −1.02509 −1.02515 −1.42200 −1.42200

Fig. 11.3 Velocity profile at
different n values

Fig. 11.4 Coefficient of
skin-friction against n for
different j
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11.2.1 The Case of Oscillatory Stretching

The case of oscillatory stretching rate of the linear stretching velocity of the
cylinder’s surface, for which the steady flow admits a self-similar solution, follows
also in the same manner as does the corresponding planner case. In this case, the
rate of stretching is assumed to be a periodic function of sin or cos as considered in
the previous Section. Different from the previous case, the oscillatory rate of
stretching wall velocity may also be taken as

uw z; tð Þ ¼ a 1þ � cosxtð Þz: ð11:17Þ

This particular form of the wall velocity has also been investigated by Munawar
et al. [13]. In this case, the momentum Eq. (2.14) comes out of the form

@f
@g

� �2

�f
@2f
@g2

¼ j
@

@g
1þ gð Þ @

2f
@g2

� �
� St

@2f
@g@s

; ð11:18Þ

and the equation of continuity (2.13) satisfies identically. The so-called
semi-similarity transformations, as utilized by [13], read as

g ¼ r
R

� �2
�1; w ¼ azR2f g; sð Þ; s ¼ xt; ð11:19Þ

due to which the boundary conditions in terms of new variables are given by

@f
@g

����
g¼0

¼ 1þ �cos s; f 0; sð Þ ¼ 0;
@f
@g

����
g¼1

¼ 0; ð11:20Þ

where � denotes the amplitude of oscillations; for � ¼ 0 (no oscillations), the case of
steady flow is recovered. The coefficient of skin-friction in view of Eq. (11.19)
takes the form

1
2
RexCf ¼ @2f

@g2

����
g¼0

: ð11:21Þ

The variation of velocity and the skin-friction coefficient due to the varying
values of the Strouhal number and the parameter � have been depicted in Figs. 11.5,
11.6, 11.7, 11.8, and 11.9. Clearly, upon increasing the values of amplitude
parameter, the velocity increases and the amplitude of oscillations in the
skin-friction graphs increases. Similar trend persists for the increasing values of the
Strouhal number also. Development of the flow, for initial values of time, can
obviously be seen in Figs. 11.8 and 11.9 where the coefficient of skin-friction
undergoes rapid variations for small time values and established afterward.
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Fig. 11.5 Velocity graph
against η for different �

Fig. 11.6 Effect of Strouhal
number St on velocity profile

Fig. 11.7 Velocity graph at
different time values

Fig. 11.8 Variation of
skin-friction against s
corresponding to various
values of St

11.2 Axially Symmetric Unsteady Non-similar Flows 175



To all the problems, considered in this Chapter, the name “non-similar” flows
has repeatedly been referred, whereas the literature recognizes them as the
semi-similar flows. The reason behind their designation as semi-similar is that they
do not depart far away from the similarity solution and finally attain the steady-state
self-similar solution, particularly in the impulsively started cases. However, besides
such a physical nobility, their governing equations never ever allow the reduction of
three independent variables to one (the self-similar solution). Because of such a
non-reducible nature of their associated manifold, they fail to fulfill the criterion of
self-similarity, in general. This is the fundamental reason due to which they have
been referred as the time-dependent non-similar flows. However, it has also been
stated several times, in this Chapter, that these time-dependent non-similar flows are
not that severe and challenging as do the spatially non-similar flows. Therefore,
besides calling them the semi-similar flows, it must not be confused that they are
not non-similar. Actually, they are non-similar, but the passive nature of temporal
non-similarity does not take them far away from the spatially self-similar solution
due to which they are commonly known as the semi-similar solutions.
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