
Chapter 1
Viscous Flow Due to Moving Continuous
Surfaces

Soon after the inception of boundary-layer concept, introduced by Prandtl [1], the
first formal attempt toward the understanding of boundary-layer character was made
by Blasius [2]. Blasius considered steady-state two-dimensional boundary-layer
flow past a semi-infinite flat plate at zero incidence (see Fig. 1.1). He assumed a
constant potential flow approaching the leading edge of the flat plate, with con-
tinued motion past the plate surface, and studied the flow within the so-formed
boundary-layer at the plate surface. The Blasius equation was further investigated
by Bairstow [3], Goldstein [4], Töpfer [5], Howarth [6], and Meksyn [7] under
different circumstances. Experimental investigations, in order to confirm the theory,
were conducted by Burgers [8], van der Hegge Zijnen [9], Hansen [10], and the
Nikuradse [11]. The novelty of the idea and the curiosity of the flow character
within the boundary-layer attracted several renowned scientists of the time who
greatly contributed to the topic and raised the topic to the heights where it is seen
today. A detailed account to this topic has been given in the glorious book by
Schlichting [12] where all the major contributions have possibly been cited. The
other important notable contributions to this topic are due to Goldstein [13],
Rosenhead [14], and Batchelor [15] where huge fundamental knowledge has been
gathered under one cover. The subject then went on developing day by day, but all
the research concerning the flat-plate boundary-layers was limited to the situation
when the fixed plate is attacked by a stream of potential flow, till 1961. In 1961,
Sakiadis [16] introduced the viscous flow, owing the boundary-layer character
caused due to the motion of a continuous solid surface within a quiescent fluid
otherwise at rest.

The correct reasons for ignoring this flow, for a long time, are unknown to the
author, but it seems that the pioneers of the boundary-layer theory had been more
inclined toward the applications of boundary-layer theory in aerodynamics for the
calculation of surface drag, in particular. In this perspective, the consideration of
Blasius’ like situation served as an appropriate theoretical model for the
two-dimensional flow on the straight wing of an air craft and having great resem-
blance with the situation established in the wind tunnel experiments. The extension
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of the Blasius’model to the three-dimensional case applies to the situations when the
potential flow attacks the swept-back wing, for example. With these sophisticated
initiations, the development in the boundary-layer theory provided a very sound base
to the modern aerodynamics. However, the theory of boundary-layers is not limited
to the aerodynamic phenomena only but applies, in general, to every physical flow
following the boundary-layer character. It is, sometimes, also misunderstood that the
boundary-layer exists in the external flows only. This is, however, not the case; the
boundary-layer is also formed in the internal flows such as in pipes and ducts, and
also in the free surface flows, such as in free jets.

1.1 Sakiadis Flow

Let us consider the schematic of the Blasius flow once again (Fig. 1.1). Notice that
the constant stream of potential flow attacks the leading edge and hence forms the
boundary-layer starting right from the leading edge and growing downstream. In
contrast, let us assume that the potential flow is absent and the plate moves with a
constant velocity U0 in the �ve x-direction as shown in Fig. 1.2.

In this case, as the plate continues to move, the fluid experiences disturbance
right from the leading edge and is continuously being disturbed at the intermediate
locations on the moving plate. The boundary-layer then develops in the direction of
increasing x as the plate penetrates in the fluid in −x-direction. In this case too, the
boundary-layer develops in the direction from the leading edge to the trailing edge,
as shown in Fig. 1.2, similar to the Blasius flow. Therefore, the flow situations
described in Figs. 1.1 and 1.2 can be regarded as equivalent where one can
easily be transformed to the other by the use of simple Galilean transformations. In
these two situations, the boundary-layer is actually formed due to the leading edge
of the plate. Now the question arises: How the “moving plate boundary-layers” are
different if the two flows, shown in Figs. 1.1 and 1.2, are the same? The answer is:
when the moving surface moves in the þ ve x-direction instead of –ve x-direction
having no edges. Then, the two flows are entirely different from each other, and it
becomes impossible to recover one from the other. Such a situation exists in diverse
practical applications; example can be given of polymer industry.

Fig. 1.1 Schematic of the
Blasius flow
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In the manufacturing of polymer sheets, the polymer melt issues continuously
from a slit and travels a wind-up roll as shown in Fig. 1.3. In such a course of
sliding past a wind-up roll, the sheet is, sometimes, also being stretched to attain the
desired thickness and is cooled simultaneously. In order to obtain the final product
of desired characteristic, the process of stretching and cooling requires to be con-
trolled, which in turn gives rise to a fluid mechanics problem. Notice that, as the
polymer sheet filament issues from the slit and travels downstream, the disturbance
starts penetrating in the ambient fluid right from the slit and continues to grow
subsequently downstream, hence forming the boundary-layer on the moving sur-
face. This situation is also referred to as the “moving plate” in a fluid, but is quite
different from the situation shown in Fig. 1.2 because of the absence of any leading
edge. In such a senior the boundary-layer starts developing from the slit and grows
in the direction of motion of the moving surface.

Unlike Fig. 1.2, the continued issuance of polymer filament from the slit pro-
vides the reason for the boundary-layer to develop downstream in the direction of
motion of the moving sheet or the thread. Based on the similar reasoning, Sakiadis
[16] introduced the boundary-layer flow due to a moving surface and essentially
associated the word “continuous” as the prefix to the word “surface” just to clear the
absence of any leading edge. With these assumptions, his equations of motion for
two-dimensional flow due to a moving continuous surface are exactly the same as
those of Blasius, i.e.,
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where the involved quantities bear their usual meanings. Like Blasius, Sakiadis was
also lucky enough to get the self-similar solution for this flow. Fortunately, the
self-similar formulation of Blasius is also applicable to this case and Eqs. (1.1a,
1.1b) readily transform to the Blasius equation in dimensionless form, given by

Fig. 1.2 Reverse of Blasius
flow situation shown
schematically
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p wðx; yÞ are the Blasius’ similarity variables.

However, the boundary conditions are entirely different in this case and read as

at g ¼ 0; f ¼ 0; f
0 ¼ 1

at g ¼ 1; f
0 ¼ 0

�
; ð1:3Þ

which makes the Sakiadis flow sufficiently different from the Blasius flow admit-
ting the boundary conditions of the form

f ¼ 0; f
0 ¼ 0; at g ¼ 0

f
0 ¼ 1; at g ¼ 1

�
: ð1:4Þ

Sakiadis [17, 18] showed that the moving (continuous) surface boundary-layers
contribute a new class of boundary-layers where the results of finite (semi-infinite)
plate boundary-layer flow do not apply anyway. After his name, the boundary-layer
flow due to a moving continuous surface with a uniform speed is referred to as the
Sakiadis flow. In the rest of the text, we shall not always write the word “contin-
uous” but occasionally, and the flow due to a moving continuous surface will then
be written as moving surface/plate boundary-layer flow.

1.2 Stretching Sheet Flow

Sakiadis considered constant wall velocity uw ¼ U0 in [17] and [18] while dis-
cussing the two-dimensional and axially symmetric cases, respectively. However,
the moving plate boundary-layers are not limited to the constant wall velocity only;

Fig. 1.3 Schematic of
moving continuous sheet

6 1 Viscous Flow Due to Moving Continuous Surfaces



rather, one may also take the variable wall velocity, such as uw ¼ uw xð Þ. The
variable wall velocity of the solid surface is then interpreted as the stretching/
shrinking wall velocity, depending upon the sign of uwðxÞ.

1.2.1 Crane’s Flow

This has already been mentioned, in the preface, that despite the novelty and
interesting features of the Sakiadis flow, it stayed deprived almost for a decade and
was not attracted by the renowned scientists of the time till 1970. Lawrence J. Crane
[19] was the first who extended the Sakiadis flow of constant wall velocity to
variable wall velocity by taking uw ¼ uwðxÞ ¼ ax, where a denotes the constant
stretching rate having the dimension of T�1. Crane utilized the same equation as by
Sakiadis, namely Blasius’ Eqs. (1.1a, 1.1b), and introduced the similarity variables
of the form

g ¼
ffiffiffi
a
m

r
y; u ¼ axf 0ðgÞ; v ¼ � ffiffiffiffiffi

am
p

f ðgÞ: ð1:5Þ

Consequently, his equation of motion in dimensionless form came out of the
form

f
000 þ ff

00 � f
02 ¼ 0; ð1:6Þ

subject to the boundary conditions (1.3). Equation (1.6) is totally different from
Eq. (1.2), but is exactly the same as that of Falkner and Skan [20] for m ¼ 1. Again
the difference between the Crane’s and Falkner–Skan flow is the boundary con-
ditions (1.3) and (1.4). It is important to start noting the similarity between the
Falkner–Skan and the moving sheet flow; the Sakiadis flow is governed by the
Blasius’ equation which is actually the Falkner–Skan equation (for m ¼ 0), and the
Crane’s flow is also governed by the Falkner–Skan’ equation (for m ¼ 1). So far,
the difference between the two flows, due to moving continuous surface and on the
finite surface, is only due to the boundary conditions. Crane reported a closed form
solution to his problem and calculated the heat transfer coefficient analytically.

1.2.2 Power-Law and Exponential Stretching Velocities

After Crane [19], thirteen more years of ignorance passed and the moving plate
boundary-layers enjoyed no significant advancement. In 1983, Banks [21] intro-
duced the power-law stretching velocity of the Falkner–Skan form uw ¼ axm and
reported similarity solution to this case. Banks utilized the similarity transforma-
tions of the form
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and transformed Eqs. (1.1a, 1.1b) to the form

f
000 þ mþ 1

2
ff

00 � mf
02 ¼ 0; ð1:8Þ

subject to the boundary conditions (1.3). Again, in this case too, self-similar
Eq. (1.8) is the same as that of Falkner–Skan [20] for the potential flow
u1ðxÞ ¼ axm, but the only difference is of the boundary conditions. At this stage, it
has now become clear that the two flows are governed by the same self-similar
equation but own different boundary conditions. The similarity transformations
applicable to the cases of finite surfaces are equally applicable to the corresponding
cases of continuous surface flows. Later in 1999, Magyari and Keller [22] intro-
duced the self-similar flow due to an exponentially stretching continuous surface.
They assumed the wall velocity of the form uw ¼ U0e

x
L and utilized the following

similarity transformations
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2
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� �1=2

ex=2L f þ gf 0ð Þ;
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to reduce Eqs. (1.1a, 1.1b) to the self-similar form

f
000 þ ff

00 � 2f
02 ¼ 0: ð1:10Þ

In addition to the two-dimensional case, the axially symmetric and the
three-dimensional cases regarding the boundary-layer flow on continuous surfaces
have also been reported in the literature. The axially symmetric case includes the
flow due to a uniformly moving/stretching cylinder [18, 23] and uniformly
stretching circular flat disk [24]. The credit of stretching disk case also goes,
indirectly, to Crane who extended the idea of stretching surface flow to the
axisymmetric case in 1975. The three-dimensional flow due to a stretching sheet
has been investigated by stretching the sheet uniformly [25] or exponentially [26] in
the two lateral directions. The case of three-dimensional flow due to linear bilateral
stretching of the sheet was considered by Wang [25] in 1984, whereas the expo-
nential form of stretching wall velocity, in three-dimensional flow, was considered
by Liu et al. [26] in 2013.1

1However, the author is not sure if the three-dimensional flow due to exponentially stretching sheet
was actually first introduced by [26].
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In second part of this book, it will be shown that the two-dimensional case of
stretching sheet flow has almost been explored completely,2 in the existing litera-
ture, with some deficiency in the exponential stretching case. However, a very little
has been done for the axially symmetric and three-dimensional cases and a big
class of self-similar solutions associated with these cases is yet unexplored. The
complete3 self-similar criterion for the three cases, namely the two-dimensional,
three-dimensional and axially symmetric flows, has been derived in detail in
Chap. 5.

1.3 Shrinking Sheet Flow

In addition to the stretching sheet flows, there is another important, perhaps,
interesting class of self-similar flows which is commonly referred to as the
shrinking sheet flows. These flows correspond to the situations when the stretching
wall velocity (discussed in the previous section) is given the ‘–ve’ sign. Such a
shrinking sheet flow was first introduced by Miklavcic and Wang [27] in 2006
where they assumed the wall velocities of the form

u ¼ �ax; v ¼ �a M � 1ð Þy; ð1:11Þ

with a[ 0 for a steady three-dimensional flow due to bilateral motion (shrinking)
of the flexible sheet and M being 0 or 1. For this flow, they developed the
self-similar momentum equation of the form

f
000 þMff

00 � f
02 ¼ 0; ð1:12Þ

which is the same as for the corresponding stretching sheet flow, but the only
difference arose in the boundary conditions: For this case, they obtained f

0 ð0Þ ¼ �1
instead of f

0 ð0Þ ¼ 1 and the ambient condition stayed the same as it does in the
stretching sheet flow. With this modeling, they reached a conclusion that the
solution to this problem does not exist in the absence of sufficient wall suction.

Following Miklavcic and Wang [27], number of researchers got impressed by
this flow and went involved in studying this flow for various flow situations.
Consequently, they contributed a great number of research papers in the last decade
on this flow. But there happened a very big misfortune with this case that the
pioneer authors [27] committed a little mistake in the dimensionless self-similar

2Although the developed procedures of finding the self-similar solutions, either systematic or ad
hoc, are actually based on the group theoretical approach explained in Chap 3, it is, however,
mentioned there that finding some similarity solutions does not mean that one has explored all the
similarity solutions and the existence of any other self-similar solution can never be denied.
3Complete in a sense, and this completeness does not deny the existence of any other self-similar
solution.
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formation of this flow and also a little bit mishandling, which was further followed
by the other researchers in toto. Consequently, they obtained wrong results and tried
to justify them with the help of non-physical reasoning. This mistake committed by
the authors of [27] and the subsequent authors4 is explained in detail in Chap. 7
where the correct self-similar formulation to this case with appropriate interpreta-
tion of the wall velocities is also presented.
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