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Preface

The boundary-layer flow past bodies of finite lengths has a long history as old as the
concept of boundary-layer itself. Such kind of flows had completely been explored
till the completion of first fifty years of the boundary-layer theory. In contrast, the
boundary-layer flow due to moving continuous surfaces was first introduced in
1961, almost six decades later to the idea of boundary-layer. Besides the interesting
nature of this flow, it has so far not been explored in complete. Even the
two-dimensional self-similar case of this flow cannot be claimed to be fully
explored and understood, despite the presence of hundreds of published research
papers on this flow. The biggest misfortune with this flow is that it had never been
studied completely; rather, the developments on this flow had been contributed in
bits. The situation is far worse in the cases of axisymmetric and three-dimensional
flows of this class. Only the self-similar laminar flows of this type have so far been
investigated in literature, and no attention has been given to the non-similar and
turbulent flows at all.

A critical review of the published literature on this topic reveals the presence of
huge number of those published research papers which do involve incorrect and
misleading analyses. Unfortunately, after getting published, such researches
become an authentic reference regarding the further propagation and justification of
such misleading erroneous analyses. In this way, the research on this topic has, by a
lot, went rotten because of the publication of huge number of erroneous research
papers. Unfortunately, the published wrong results are immediately adopted by the
others instead of correcting them. In such a messy situation, it is really quite hard to
correct all such erroneous literature by making all the audience aware of such
mistakes.

A thorough review of the available literature on this topic concludes that the
majority of the errors have arose due to the incorrect self-similar formulation of the
governing systems; examples can be given of the problems concerning shrinking
surfaces or those involving local parameters in the governing equations. Therefore,
it seems that if the concept of self-similarity could be explained in detail and the
construction of self-similar variables of these flows could be made available, then
the errors are expected to be minimized to an appreciable extent. Such an
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elaboration can further be expected to be helpful to the researchers in the explo-
ration of further self-similar flows of this class.

After having a realization of the above facts, the author had continuously been
worried, since last few years, regarding the correction of aforementioned incorrect
analyses. Writing a correction or comment to every such paper was, however, quite
inconvenient in this regard. Finally, it was decided to identify the root causes of
such incorrect analyses and the way out toward their correction and to report this all
in the form of a book at once. In this regard, the incomplete understanding of the
self-similarity was identified to be the major root cause behind all such incorrect
analyses, at the most, as pointed out in the above paragraph. In view of these facts,
the primary objective of this book is threefold: first, to elaborate the general cri-
terion of self-similarity by reporting the general self-similarity criterion for the
planar and the axisymmetric cases; second, the presentation of correct shrinking
surface flow analysis which could negate most of the “mysterious” facts associated
with this flow; and third, to introduce the non-similar flows of this class in the said
two cases, namely the planar and the axisymmetric ones. In this regard, the
self-similarity criterion for this class of flows has completely been determined and
the associated self-similar governing systems have been developed. Correct
self-similar formulation of the shrinking sheet flow has been reported, and the
self-similar shrinking sheet flow has been discussed in detail. A comparison
between the current and the already existing formulations has been made in order to
clarify the situation. The non-similar flows of this class have been formulated in
general; some particularly chosen non-similar flows in the planar and axisymmetric
cases have also been discussed. The identification of temporal self-similarity and
the criterion of semi-similarity have been included. Finally, the turbulent flow due
to stretching surfaces has also been considered.

Fundamental knowledge of fluid mechanics and the boundary-layer theory is
essential for the understanding of the presented material. This book particularly
focuses the students and the initial researchers in this field. Therefore, the pre-
sentation of the material is quite straightforward with a bit detail and sufficient
explanation. However, the presented material is also expected to be of equal
importance for the specialized and established researchers in this field.

This book has mainly been distributed into four major parts. The first part
includes some fundamental essential knowledge and the explanation of the concept
of self-similarity. Part II contains the self-similar flows due to moving continuous
surfaces including the planar and axisymmetric flows. Spatial and temporal
non-similarity has been modeled in Part III, whereas the turbulent flows due to
moving continuous surfaces have been considered in Part IV.

First four chapters constitute the Part I of this book. Boundary-layer character
of the flows due to moving continuous surfaces has been explained in Chap. 1. The
governing boundary-layer equations and the momentum integral equations corre-
sponding to the planar and axisymmetric flows have been developed in Chap. 2.
The concept and restrictions of self-similarity have been explained in detail in
Chap. 3, whereas an introduction to the suitable solution techniques has been given
in Chap. 4. The criterion of self-similarity for the wall velocities has been
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determined in detail for both the planar and axisymmetric flows in Chap. 5. Flows
due to stretching and shrinking surfaces have been discussed in Chaps. 6 and 7,
respectively. The restriction on the wall suction/injection velocities and on the
variable thickness of the continuous surfaces, in view of self-similarity criterion
determined in Chap. 5, has also been determined in these chapters. Similarity
criterion of the unsteady flows due to moving continuous surfaces has been derived
in Chap. 8. The aforementioned Chaps. 5–8 have been included in Part II.
Non-similar flows due to moving continuous surfaces have been introduced in
Part III consisting of Chaps. 9–11. The planar and axisymmetric non-similar flows
have been considered in Chaps. 9 and 10, respectively, whereas the temporal
non-similarity has been considered in Chap. 11. The Part IV includes only one
chapter (Chap. 12) concerning the turbulent flow due to moving and stretching
continuous surfaces.

Islamabad, Pakistan Ahmer Mehmood
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Introduction

The history of fluid mechanics is as old as the history of human beings. Every
human in his life solves so many fluid mechanics problems whether consciously or
unconsciously. But the manner he solves his daily life problems, such as dissolving
sugar in the cup of tea by stirring a spoon in it or blowing the lump of hot food
before taking it to mouth, is exactly in accordance with the scientific laws of fluid
mechanics in convective phenomena. Similar examples can also be found in the
Stone Age era when man had been using long, slim, and even fin-stabilized arrows
for hunting the animals and birds. His understanding about the water flow from high
level to low, in the process of irrigation, is also an example of utilizing the potential
energy of water to make it to flow. Numerous similar examples can further be found
from the practices of present and the history of ancient man where the above
constitute only a few glimpses from it. Thus, the unconscious understanding of the
human about the fluid flow and heat and mass transfer phenomena continuously
turned into his conscious efforts toward the scientific exploration of the flow
phenomena because of his day by day increasing problems of fluid mechanics.

The first, on the record, scientific theory in fluid mechanics is due to the
Archimedes in which he presented his research as postulates of buoyancy. The
viscous resistance in fluids was scientifically interpreted by Sir Isaac Newton in
1687 when he stated his famous law of viscosity. The law of fluid motion was first
proposed by Daniel Bernoulli in 1730 and was further improved by Leonhard Euler
in 1755. It is important to note that although the Newton’s law of viscosity was
discovered in 1687 and the Bernoulli’s equation, after Euler’s modification, in
1755, but they intentionally ignored the fluid friction. The fluid friction was taken
into account by Navier and Stokes independently where they introduced the viscous
terms to the equation of motion in 1827 and 1845, respectively. Consequently, the
resulting equations were named as Navier–Stokes equations and are still recognized
by this name. These equations are equally applicable to gasses and liquids fol-
lowing the Newton’s law of viscosity. Later, the Osborn Reynolds distinguished the
viscous flows into two categories on the basis of velocity magnitude. However, he
also explored that this differentiation does not depend strictly upon the fluid
velocity only but obviously upon the viscosity of fluid and the pipe radius also.
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On the basis of this argument, he developed the famous Reynolds number which
has great practical importance in laminar and turbulent flows having velocities less
than the speed of sound.

In 1749, a French mathematician Jean le Rond D’Alembert, while working on
the flow drag on a solid surface, concluded that “it seems to me that the theory
(potential flow), developed in all possible rigor, gives, at least in several cases,
a strictly vanishing resistance, a singular paradox which I leave to future Geometers
(i.e., mathematicians—the two terms were used interchangeably at that time) to
elucidate.” On the other hand, the experimental results reflected significant viscous
drag for the flows in water and air at that time. Based on the failure of the theory
regarding the prediction of viscous drag, D’Alembert stated his results in the form
of a famous paradox in 1752 which stayed unresolved till the year 1904. The
D’Alembert’s paradox states that “for incompressible and inviscid potential flow—
the drag force is zero on a body moving with constant velocity relative to the fluid.”
At this stage, the reader is asked to realize that the D’ Alembert’s paradox stayed
unresolved even after the development of the Navier–Stokes equations which
completely incorporate the contribution of viscous forces to the momentum trans-
port equation. The misfortune with the D’Alembert and the other scientists of that
time was that they used to ignore the “little” air friction in the theoretical calcu-
lations causing them to reach the wrong conclusion of zero drag. On the other hand,
such “little” air friction was impossible to be ignored in the experiments where it
kept on resulting in significant viscous drag. This fact was actually realized by
Ludwigs Prandtl, in his series of experiments, that in such flows, with less friction,
the viscous effects are negligible in most of the flow domain but are in-ignorable in
a very thin region near the solid surface. This observation made him able to split the
entire flow domain into two major parts: a potential flow region where there is no
flow resistance at all and the near wall region where the effects of viscous resistance
are prominent. He called this thin region as the thin shear layer or the
boundary-layer. This thin, near wall, region was actually being ignored by the
previous scientists, thus preventing them to reach the correct results. The devel-
opment of a concrete theory for the accommodation of this fact was another difficult
step for which Prandtl himself introduced the order of magnitude analysis. He
calculated the magnitude of every term in the Navier–Stokes equations and iden-
tified the contributing/surviving and vanishing/ignorable terms. The process is
strictly based on his clear understanding of exact nature of the flow within the
boundary-layer. This theory revealed that most of the terms in viscous part
of the Navier–Stokes equation are ignorable, as did by the previous scientists, but
not the all. Thus, the identification of surviving and non-surviving terms does
mainly based on the order of magnitude analysis which is actually due to the
Ludwigs Prandtl.

Before Prandtl, there were two divergent branches of fluid dynamics, namely the
theoretical hydrodynamics and the hydraulics. In the era of D’Alembert, it was
misbelieved that the theoretical hydrodynamics does not apply to many practical
situations, such as air or water flows, where the viscous drag does play important
role in actual. On this basis, the engineers of that time started developing their own

xxiv Introduction



theory based largely on the experimental data in order to meet the rapidly increasing
technological demands and named their new theory as hydraulics. In the Prandtl’s
era, the theory of hydraulics was also so developed having nothing common with
the theoretical hydrodynamics. Prandtl therefore also has a credit of joining these
two important branches of fluid mechanics due to his famous theory of
boundary-layers. Due to this theory, it became possible to investigate, theoretically,
the viscous flow involving very small friction where the obtained results do match
sufficiently with the experiment. After the introduction of this theory, it was further
developed very rapidly, initially by the people at Göttingen and later on worldwide.
It then quickly became a solid foundation for the modern fluid dynamics which also
gave birth to the two new and important branches of fluid dynamics the aerody-
namics and the gas dynamics. Furthermore, the development in these modern areas
created a gap for another intelligent branch of fluid dynamics which is known as the
computational fluid dynamics. This all has happened in the last eleven decades
which has raised the man from the pedestrian stage to the hypersonic speeds, where
the Prandtl kept on standing behind all this development.

Immediate after the introduction of Prandtl’s theory of boundary-layers, there
were huge things to be done, several questions to be answered, many levels to be
attained, and hence a long way to go. The complete understanding of flow behavior
within the boundary-layer was the first task for which the simple flows were the
ultimate choice. The first test case, in this regard, was the two-dimensional
boundary-layer flow which was considered by Hartman Blasius under the super-
vision of Ludwigs Prandtl. Later on, the two-dimensional Blasius flow was
extended to the self-similar wedge flow by Falkner and Skan. Further extension to
the three-dimensional and axisymmetric flows was done by several other renowned
researchers of the time. Among these flows, the flat plate boundary-layers had been
given great attention by the subsequent researchers and almost all (eventually not
all) related flows have been studied in detail for this case. Most importantly, the
classification of similar and non-similar flows has been done, and interesting
non-similar flows have also been studied in detail by the pioneers of the time.
Example can be given of Howarth’s retarded flow where the calculation of sepa-
ration had been the major issue. Interestingly, all such flows, either self-similar or
non-similar, have only been studied in the cases where the external potential flow
was assumed to be essentially there whether the solid surface stays stationary or
continues to move. In all such investigations, the other way situation had com-
pletely been ignored where the solid surface moves in a static fluid. This flow was
first modeled by Sakiadis for the two-dimensional and axisymmetric cases and was
solved subsequently by Sakiadis himself in a series of two famous papers. In his
flow problem, Sakiadis assumed a continuous solid surface of infinite length
moving uniformly through a fluid at rest, just opposite to the Blasius flow in the
sense that in the Blasius flow the fluid moves and the plate stays at rest. In his
analysis, Sakiadis found that in comparison with the Blasius flow the viscous drag
is larger in this case and other physical parameters of boundary-layer flow such as
the momentum thickness and the displacement thickness did also differ from the
Blasius flow. Finally, he concluded that the boundary-layers due to the moving
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continuous surfaces are entirely different from those of Blasius-type flows and are
therefore required to be investigated independently because the Blasius solution
does not apply there. Similar to Blasius flow, self-similar solution also exists for the
Sakiadis flow. Sakiadis designated such flows as the viscous flows due to moving
continuous surfaces.

After Sakiadis, self-similar solution to this problem was further extended by
Crane and Banks to the cases when the wall velocity varies linearly or obeys the
power-law profile, respectively. Magyari and Keller extended the Sakiadis flow for
the case of exponential wall velocity. These flows are usually categorized as the
stretching sheet flows in literature. They contribute another interesting class of
viscous flows, commonly known as the shrinking sheet flows, when the stretching
wall velocity is reversed in direction by multiplying it by −1. The self-similar
solutions to the moving plate boundary-layer equations have almost been explored
completely for the two-dimensional case. However, very little is known about the
three-dimensional and axisymmetric cases, to the best of our knowledge.
Furthermore, non-similar flows due to moving continuous surfaces are also very
rare in the three cases such as the two-dimensional, three-dimensional, and
axisymmetric flows. Therefore, in comparison with the finite surfaces, the viscous
flows due to moving continuous surfaces have not been explored completely and
require proper consideration.

With the availability of this huge gap in literature, we take the privilege to fill it,
to some extent, by giving general criterion for the self-similarity and non-similarity
in view of the necessary conditions on the wall profiles in all the aforementioned
cases. In this book, we derive completely (in a sense, see Chaps. 3 and 5) the wall
velocity profiles for which the self-similar solutions are possible in two-
dimensional, three-dimensional, and axisymmetric cases. The related similarity
transformations and hence the transformed similarity boundary-layer equations
have also been derived in detail. It is concluded (with some exceptions, see
Chaps. 3 and 5) that all the wall velocities other than the derived ones, for the
similarity solution, make the flow non-similar. The non-similar flow equations have
in general been developed, and some selected non-similar flows have also been
discussed in this book. This all above is concerned with the laminar flows only.
Turbulent flow equations for three-dimensional and axisymmetric cases have also
been developed in integral form. Two-dimensional and axisymmetric turbulent
flows due to moving or linearly stretching continuous surfaces have been investi-
gated theoretically.

In addition to the stretching surface flows, the flows due to shrinking surfaces are
also very popular among the researchers in this field. However, this is very much
unfortunate that all the literature concerning the shrinking sheet flow is incorrect
because of the utilization of incorrect self-similar equations and the insufficient
analysis. This mistake has trapped a large number of researchers who have con-
tributed huge number of research papers to this topic within the last few years. The
mistake in the existing self-similar modeling of this flow has been addressed in
detail in Chap. 7 of this book. The wrong conclusions regarding the shrinking sheet
flow have been disproved by presenting the correct self-similar modeling and
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the correct analysis of shrinking sheet flow. The axially symmetric flow due to
shrinking cylinder and shrinking disk is also included in the same chapter.

Scaling group of symmetries has been utilized in the derivation of similarity
transformations and for the identification of similarity criterion in all the
above-mentioned cases. With the particularly chosen group of scalings, it can be
claimed that we have derived all the self-similar solutions, but this does not deny
the existence of any other similarity solution (see Chaps. 3 and 5). Most of the
newly modeled three-dimensional and axisymmetric flows have been left unin-
vestigated, for the subsequent researchers to explore, because the author finds it
inconvenient for him to explore all of them in full detail. Particular cases from each
class have, however, been investigated with sufficient detail.

In summary, the major purpose of this book is to present the criterion for
self-similarity and non-similarity for the considered class of flows; the correction of
incorrect shrinking sheet flows, the introduction of non-similar flows, the concept of
self-similarity and non-similarity in the non-steady flows, and finally the consid-
eration of turbulent flows due to moving continuous surfaces.
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Part I
Essential Fundamental Material



Chapter 1
Viscous Flow Due to Moving Continuous
Surfaces

Soon after the inception of boundary-layer concept, introduced by Prandtl [1], the
first formal attempt toward the understanding of boundary-layer character was made
by Blasius [2]. Blasius considered steady-state two-dimensional boundary-layer
flow past a semi-infinite flat plate at zero incidence (see Fig. 1.1). He assumed a
constant potential flow approaching the leading edge of the flat plate, with con-
tinued motion past the plate surface, and studied the flow within the so-formed
boundary-layer at the plate surface. The Blasius equation was further investigated
by Bairstow [3], Goldstein [4], Töpfer [5], Howarth [6], and Meksyn [7] under
different circumstances. Experimental investigations, in order to confirm the theory,
were conducted by Burgers [8], van der Hegge Zijnen [9], Hansen [10], and the
Nikuradse [11]. The novelty of the idea and the curiosity of the flow character
within the boundary-layer attracted several renowned scientists of the time who
greatly contributed to the topic and raised the topic to the heights where it is seen
today. A detailed account to this topic has been given in the glorious book by
Schlichting [12] where all the major contributions have possibly been cited. The
other important notable contributions to this topic are due to Goldstein [13],
Rosenhead [14], and Batchelor [15] where huge fundamental knowledge has been
gathered under one cover. The subject then went on developing day by day, but all
the research concerning the flat-plate boundary-layers was limited to the situation
when the fixed plate is attacked by a stream of potential flow, till 1961. In 1961,
Sakiadis [16] introduced the viscous flow, owing the boundary-layer character
caused due to the motion of a continuous solid surface within a quiescent fluid
otherwise at rest.

The correct reasons for ignoring this flow, for a long time, are unknown to the
author, but it seems that the pioneers of the boundary-layer theory had been more
inclined toward the applications of boundary-layer theory in aerodynamics for the
calculation of surface drag, in particular. In this perspective, the consideration of
Blasius’ like situation served as an appropriate theoretical model for the
two-dimensional flow on the straight wing of an air craft and having great resem-
blance with the situation established in the wind tunnel experiments. The extension
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of the Blasius’model to the three-dimensional case applies to the situations when the
potential flow attacks the swept-back wing, for example. With these sophisticated
initiations, the development in the boundary-layer theory provided a very sound base
to the modern aerodynamics. However, the theory of boundary-layers is not limited
to the aerodynamic phenomena only but applies, in general, to every physical flow
following the boundary-layer character. It is, sometimes, also misunderstood that the
boundary-layer exists in the external flows only. This is, however, not the case; the
boundary-layer is also formed in the internal flows such as in pipes and ducts, and
also in the free surface flows, such as in free jets.

1.1 Sakiadis Flow

Let us consider the schematic of the Blasius flow once again (Fig. 1.1). Notice that
the constant stream of potential flow attacks the leading edge and hence forms the
boundary-layer starting right from the leading edge and growing downstream. In
contrast, let us assume that the potential flow is absent and the plate moves with a
constant velocity U0 in the �ve x-direction as shown in Fig. 1.2.

In this case, as the plate continues to move, the fluid experiences disturbance
right from the leading edge and is continuously being disturbed at the intermediate
locations on the moving plate. The boundary-layer then develops in the direction of
increasing x as the plate penetrates in the fluid in −x-direction. In this case too, the
boundary-layer develops in the direction from the leading edge to the trailing edge,
as shown in Fig. 1.2, similar to the Blasius flow. Therefore, the flow situations
described in Figs. 1.1 and 1.2 can be regarded as equivalent where one can
easily be transformed to the other by the use of simple Galilean transformations. In
these two situations, the boundary-layer is actually formed due to the leading edge
of the plate. Now the question arises: How the “moving plate boundary-layers” are
different if the two flows, shown in Figs. 1.1 and 1.2, are the same? The answer is:
when the moving surface moves in the þ ve x-direction instead of –ve x-direction
having no edges. Then, the two flows are entirely different from each other, and it
becomes impossible to recover one from the other. Such a situation exists in diverse
practical applications; example can be given of polymer industry.

Fig. 1.1 Schematic of the
Blasius flow
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In the manufacturing of polymer sheets, the polymer melt issues continuously
from a slit and travels a wind-up roll as shown in Fig. 1.3. In such a course of
sliding past a wind-up roll, the sheet is, sometimes, also being stretched to attain the
desired thickness and is cooled simultaneously. In order to obtain the final product
of desired characteristic, the process of stretching and cooling requires to be con-
trolled, which in turn gives rise to a fluid mechanics problem. Notice that, as the
polymer sheet filament issues from the slit and travels downstream, the disturbance
starts penetrating in the ambient fluid right from the slit and continues to grow
subsequently downstream, hence forming the boundary-layer on the moving sur-
face. This situation is also referred to as the “moving plate” in a fluid, but is quite
different from the situation shown in Fig. 1.2 because of the absence of any leading
edge. In such a senior the boundary-layer starts developing from the slit and grows
in the direction of motion of the moving surface.

Unlike Fig. 1.2, the continued issuance of polymer filament from the slit pro-
vides the reason for the boundary-layer to develop downstream in the direction of
motion of the moving sheet or the thread. Based on the similar reasoning, Sakiadis
[16] introduced the boundary-layer flow due to a moving surface and essentially
associated the word “continuous” as the prefix to the word “surface” just to clear the
absence of any leading edge. With these assumptions, his equations of motion for
two-dimensional flow due to a moving continuous surface are exactly the same as
those of Blasius, i.e.,

@u
@x

þ @v
@y

¼ 0; ð1:1aÞ

u
@u
@x

þ v
@u
@y

¼ m
@2u
@y2

; ð1:1bÞ

where the involved quantities bear their usual meanings. Like Blasius, Sakiadis was
also lucky enough to get the self-similar solution for this flow. Fortunately, the
self-similar formulation of Blasius is also applicable to this case and Eqs. (1.1a,
1.1b) readily transform to the Blasius equation in dimensionless form, given by

Fig. 1.2 Reverse of Blasius
flow situation shown
schematically
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where g ¼
ffiffiffiffi
U0
mx

q
y and f ðgÞ ¼ 1ffiffiffiffiffiffiffi

mxU0
p wðx; yÞ are the Blasius’ similarity variables.

However, the boundary conditions are entirely different in this case and read as

at g ¼ 0; f ¼ 0; f
0 ¼ 1

at g ¼ 1; f
0 ¼ 0

�
; ð1:3Þ

which makes the Sakiadis flow sufficiently different from the Blasius flow admit-
ting the boundary conditions of the form

f ¼ 0; f
0 ¼ 0; at g ¼ 0

f
0 ¼ 1; at g ¼ 1

�
: ð1:4Þ

Sakiadis [17, 18] showed that the moving (continuous) surface boundary-layers
contribute a new class of boundary-layers where the results of finite (semi-infinite)
plate boundary-layer flow do not apply anyway. After his name, the boundary-layer
flow due to a moving continuous surface with a uniform speed is referred to as the
Sakiadis flow. In the rest of the text, we shall not always write the word “contin-
uous” but occasionally, and the flow due to a moving continuous surface will then
be written as moving surface/plate boundary-layer flow.

1.2 Stretching Sheet Flow

Sakiadis considered constant wall velocity uw ¼ U0 in [17] and [18] while dis-
cussing the two-dimensional and axially symmetric cases, respectively. However,
the moving plate boundary-layers are not limited to the constant wall velocity only;

Fig. 1.3 Schematic of
moving continuous sheet
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rather, one may also take the variable wall velocity, such as uw ¼ uw xð Þ. The
variable wall velocity of the solid surface is then interpreted as the stretching/
shrinking wall velocity, depending upon the sign of uwðxÞ.

1.2.1 Crane’s Flow

This has already been mentioned, in the preface, that despite the novelty and
interesting features of the Sakiadis flow, it stayed deprived almost for a decade and
was not attracted by the renowned scientists of the time till 1970. Lawrence J. Crane
[19] was the first who extended the Sakiadis flow of constant wall velocity to
variable wall velocity by taking uw ¼ uwðxÞ ¼ ax, where a denotes the constant
stretching rate having the dimension of T�1. Crane utilized the same equation as by
Sakiadis, namely Blasius’ Eqs. (1.1a, 1.1b), and introduced the similarity variables
of the form

g ¼
ffiffiffi
a
m

r
y; u ¼ axf 0ðgÞ; v ¼ � ffiffiffiffiffi

am
p

f ðgÞ: ð1:5Þ

Consequently, his equation of motion in dimensionless form came out of the
form

f
000 þ ff

00 � f
02 ¼ 0; ð1:6Þ

subject to the boundary conditions (1.3). Equation (1.6) is totally different from
Eq. (1.2), but is exactly the same as that of Falkner and Skan [20] for m ¼ 1. Again
the difference between the Crane’s and Falkner–Skan flow is the boundary con-
ditions (1.3) and (1.4). It is important to start noting the similarity between the
Falkner–Skan and the moving sheet flow; the Sakiadis flow is governed by the
Blasius’ equation which is actually the Falkner–Skan equation (for m ¼ 0), and the
Crane’s flow is also governed by the Falkner–Skan’ equation (for m ¼ 1). So far,
the difference between the two flows, due to moving continuous surface and on the
finite surface, is only due to the boundary conditions. Crane reported a closed form
solution to his problem and calculated the heat transfer coefficient analytically.

1.2.2 Power-Law and Exponential Stretching Velocities

After Crane [19], thirteen more years of ignorance passed and the moving plate
boundary-layers enjoyed no significant advancement. In 1983, Banks [21] intro-
duced the power-law stretching velocity of the Falkner–Skan form uw ¼ axm and
reported similarity solution to this case. Banks utilized the similarity transforma-
tions of the form
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g ¼
ffiffiffi
a
m

r
x
m�1
2 y; u ¼ axmf

0 ðgÞ; v ¼ � ffiffiffiffiffi
am

p
x
m�1
2

mþ 1
2

f þ m� 1
2

gf 0
� �

; ð1:7Þ

and transformed Eqs. (1.1a, 1.1b) to the form

f
000 þ mþ 1

2
ff

00 � mf
02 ¼ 0; ð1:8Þ

subject to the boundary conditions (1.3). Again, in this case too, self-similar
Eq. (1.8) is the same as that of Falkner–Skan [20] for the potential flow
u1ðxÞ ¼ axm, but the only difference is of the boundary conditions. At this stage, it
has now become clear that the two flows are governed by the same self-similar
equation but own different boundary conditions. The similarity transformations
applicable to the cases of finite surfaces are equally applicable to the corresponding
cases of continuous surface flows. Later in 1999, Magyari and Keller [22] intro-
duced the self-similar flow due to an exponentially stretching continuous surface.
They assumed the wall velocity of the form uw ¼ U0e

x
L and utilized the following

similarity transformations

g ¼ ReL
2

� �1=2y
L
ex=2L; u ¼ U0ex=Lf 0 gð Þ; v ¼ � m

L
ReL
2

� �1=2

ex=2L f þ gf 0ð Þ;

ð1:9Þ

to reduce Eqs. (1.1a, 1.1b) to the self-similar form

f
000 þ ff

00 � 2f
02 ¼ 0: ð1:10Þ

In addition to the two-dimensional case, the axially symmetric and the
three-dimensional cases regarding the boundary-layer flow on continuous surfaces
have also been reported in the literature. The axially symmetric case includes the
flow due to a uniformly moving/stretching cylinder [18, 23] and uniformly
stretching circular flat disk [24]. The credit of stretching disk case also goes,
indirectly, to Crane who extended the idea of stretching surface flow to the
axisymmetric case in 1975. The three-dimensional flow due to a stretching sheet
has been investigated by stretching the sheet uniformly [25] or exponentially [26] in
the two lateral directions. The case of three-dimensional flow due to linear bilateral
stretching of the sheet was considered by Wang [25] in 1984, whereas the expo-
nential form of stretching wall velocity, in three-dimensional flow, was considered
by Liu et al. [26] in 2013.1

1However, the author is not sure if the three-dimensional flow due to exponentially stretching sheet
was actually first introduced by [26].
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In second part of this book, it will be shown that the two-dimensional case of
stretching sheet flow has almost been explored completely,2 in the existing litera-
ture, with some deficiency in the exponential stretching case. However, a very little
has been done for the axially symmetric and three-dimensional cases and a big
class of self-similar solutions associated with these cases is yet unexplored. The
complete3 self-similar criterion for the three cases, namely the two-dimensional,
three-dimensional and axially symmetric flows, has been derived in detail in
Chap. 5.

1.3 Shrinking Sheet Flow

In addition to the stretching sheet flows, there is another important, perhaps,
interesting class of self-similar flows which is commonly referred to as the
shrinking sheet flows. These flows correspond to the situations when the stretching
wall velocity (discussed in the previous section) is given the ‘–ve’ sign. Such a
shrinking sheet flow was first introduced by Miklavcic and Wang [27] in 2006
where they assumed the wall velocities of the form

u ¼ �ax; v ¼ �a M � 1ð Þy; ð1:11Þ

with a[ 0 for a steady three-dimensional flow due to bilateral motion (shrinking)
of the flexible sheet and M being 0 or 1. For this flow, they developed the
self-similar momentum equation of the form

f
000 þMff

00 � f
02 ¼ 0; ð1:12Þ

which is the same as for the corresponding stretching sheet flow, but the only
difference arose in the boundary conditions: For this case, they obtained f

0 ð0Þ ¼ �1
instead of f

0 ð0Þ ¼ 1 and the ambient condition stayed the same as it does in the
stretching sheet flow. With this modeling, they reached a conclusion that the
solution to this problem does not exist in the absence of sufficient wall suction.

Following Miklavcic and Wang [27], number of researchers got impressed by
this flow and went involved in studying this flow for various flow situations.
Consequently, they contributed a great number of research papers in the last decade
on this flow. But there happened a very big misfortune with this case that the
pioneer authors [27] committed a little mistake in the dimensionless self-similar

2Although the developed procedures of finding the self-similar solutions, either systematic or ad
hoc, are actually based on the group theoretical approach explained in Chap 3, it is, however,
mentioned there that finding some similarity solutions does not mean that one has explored all the
similarity solutions and the existence of any other self-similar solution can never be denied.
3Complete in a sense, and this completeness does not deny the existence of any other self-similar
solution.
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formation of this flow and also a little bit mishandling, which was further followed
by the other researchers in toto. Consequently, they obtained wrong results and tried
to justify them with the help of non-physical reasoning. This mistake committed by
the authors of [27] and the subsequent authors4 is explained in detail in Chap. 7
where the correct self-similar formulation to this case with appropriate interpreta-
tion of the wall velocities is also presented.
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Chapter 2
Governing Equations

In the present and the subsequent chapters, we shall, either directly or indirectly, be
concerned with the boundary-layer flow of an incompressible viscous fluid without
any involvement of heat and mass transfer. Therefore, our governing laws will be
the conservation of mass and momentum only which are commonly known as the
equations of continuity and the Navier–Stokes equations, respectively. In usual
notation, they are written as (in Cartesian coordinates):

@u
@x

þ @v
@y

þ @w
@z

¼ 0; ð2:1Þ

q
@u
@t

þ u
@u
@x

þ v
@u
@y

þw
@u
@z

� �
¼ � @p

@x
þ l

@2u
@x2

þ @2u
@y2

þ @2u
@z2

� �
þFx; ð2:2Þ

q
@v
@t

þ u
@v
@x

þ v
@v
@y

þw
@v
@z

� �
¼ � @p

@y
þ l

@2v
@x2

þ @2v
@y2

þ @2v
@z2

� �
þFy; ð2:3Þ

q
@w
@t

þ u
@w
@x

þ v
@w
@y

þw
@w
@z

� �
¼ � @p

@z
þ l

@2w
@x2

þ @2w
@y2

þ @2w
@z2

� �
þFz; ð2:4Þ

and in cylindrical coordinates:

@vr
@r

þ vr
r
þ 1

r
@vh
@h

þ @vz
@z

¼ 0; ð2:5Þ

q
@vr
@t

þ vr
@vr
@r

þ vh
r
@vr
@h

� v2h
r
þ vz

@vr
@z

� �

¼ � @p
@r

þ l
@2vr
@r2

þ 1
r
@vr
@r

� vr
r2

þ 1
r2
@2vr
@h2

� 2
r2
@vh
@h

þ @2vr
@z2

� �
þFr;

ð2:6Þ
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q
@vh
@t

þ vr
@vh
@r

þ vh
r
@vh
@h

þ vrvh
r

þ vz
@vh
@z

� �

¼ � 1
r
@p
@h

þ l
@2vh
@r2

þ 1
r
@vh
@r

� vh
r2

þ 1
r2
@2vh
@h2

þ 2
r2
@vr
@h

þ @2vh
@z2

� �
þFh; ð2:7Þ

q
@vz
@t

þ vr
@vz
@r

þ vh
r
@vz
@h

þ vz
@vz
@z

� �
¼ � @p

@z
þ l

@2vz
@r2

þ 1
r
@vz
@r

þ 1
r2
@2vz
@h2

þ @2vz
@z2

� �
þFz;

ð2:8Þ

where F ¼ Fx;Fy;Fz
� �

or ¼ Fr;Fh;Fzð Þ denotes the body force. However, the
flows considered in the subsequent chapters do not involve any body force because
of which F will be taken identically equal to zero in all those chapters.

2.1 Boundary-Layer Equations

2.1.1 The Boundary-Layer Assumption

In the study of viscous flow due to the motion of a continuous surface, a natural
question arises “whether the boundary-layer assumptions considered by Prandtl are
applicable to this case where the flow is established by the motion of the solid
surface in the absence of any potential flow?” The same question arose in the mind
of Sakiadis [1] in 1960 and he first confirmed the boundary-layer character of the
viscous flow established by the motion of a continuous surface. This question,
however, finds some crude justification from Sect. 1.1 of Chap. 1, where the
Sakiadis flow has been explained, but a theoretical proof or experimental evidence
is still required. In this connection, Sakiadis [1] performed an experiment and
confirmed the formation of boundary-layer near the surface of the moving con-
tinuous surface in accordance with the explanation given in Sect. 2.1. He consid-
ered the rectangular Lucite acrylic resin tank and filled it with a water-based
solution of milling yellow. He passed two parallel threads issuing from the little
holes in the blocks immersed completely in the tank as shown in Fig. 2.1.

For the sake of comparison, he moved the left-hand thread from top to bottom
and kept the right one fixed within the tank. After a while, when the steady state
reached, the photograph (see Fig. 2.2) shows the formation of the boundary-layer
near the moving thread, starting right from the hole and thus developing in the
direction of motion of the thread.

This experiment confirms that the viscous flow established by the motion of a
continuous surface does exhibit the boundary-layer character. Therefore, the
Prandtl’s boundary-layer assumptions are equally valid in this case and the order of
magnitude analysis also works in the same manner as in the case of finite surfaces.
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Fig. 2.1 Schematic of
experimental setup of
Sakiadis [1]

Fig. 2.2 Photograph of the
Sakiadis’ experiment [1]
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2.1.2 The Pressure Gradient Term

According to the Prandtl’s boundary-layer theory, the pressure within the boundary-
layer does not become very much different from the pressure in the inviscid
potential flow. That is, there are no significant changes in pressure across the
boundary-layer because of which the term @p=@y is simply ignored in the
two-dimensional case; however, the changes in pressure along the lateral directions
can be of any significance. Therefore, the pressure variation along the lateral
directions within the boundary-layer is assumed to be the same as they are in the
inviscid potential flow outside the boundary-layer and are determined with the use
of Bernoulli’s equation, for example, in the two-dimensional steady-state case, as

dp
dx

¼ u1
du1
dx

Thus, the constancy or absence of the external potential flow makes the pressure
gradient term equal to zero in the boundary-layer equations governing the flow due
to a moving continuous solid surface. The external pressure in the subsequently
studied flows will be considered absent, thus making the pressure gradient term
equal to zero, i.e.,

@p
@sl

¼ 0; ð2:9Þ

where sl denotes any lateral coordinate.

2.1.3 Boundary-Layer Equations in Cartesian Coordinates

However, it has now been established that the boundary-layer equations, present
already in the literature, for the two-dimensional and three-dimensional flows are
equally applicable to the flows due to moving continuous surfaces too. Therefore,
the derivation of these equations here again does not make any sense. We, therefore,
prefer to follow Schlichting [2] and write the boundary-layer equations directly here

@u
@x

þ @v
@y

þ @w
@z

¼ 0; ð2:10Þ

@u
@t

þ u
@u
@x

þ v
@u
@y

þw
@u
@z

¼ m
@2u
@y2

; ð2:11Þ
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@w
@t

þ u
@w
@x

þ v
@w
@y

þw
@w
@z

¼ m
@2w
@y2

; ð2:12Þ

where the system of coordinates is shown in Fig. 2.3. The velocity components
u; v andw have been taken along the x-, y-, and z-axes, respectively.

2.1.4 Boundary-Layer Equations in Cylindrical Coordinates

The geometrical objects, of our interest, owing to the axial symmetry are the
continuous circular cylinder and the circular disk of infinite radius. The schematic
of the flow due to a continuous circular cylinder and the associated system of
coordinates is shown in Fig. 2.4.

Since there is no circular rotation in the flow therefore, the boundary-layer
equations in this case look like

@

@z
ruð Þþ @

@r
rvð Þ ¼ 0; ð2:13Þ

@u
@t

þ u
@u
@z

þ v
@u
@r

¼ m
1
r
@

@r
r
@u
@r

� �
; ð2:14Þ

whereas in the case of circular disk, the governing system takes the form

@

@r
ruð Þþ @

@z
rwð Þ ¼ 0; ð2:15Þ

@u
@t

þ u
@u
@r

þw
@u
@z

¼ m
@2u
@z2

: ð2:16Þ

The chosen system of coordinates, corresponding to the disk geometry, is shown
in Fig. 2.5.

Fig. 2.3 Cartesian
coordinate system
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2.2 Momentum Integral Equations

The integral form of the momentum boundary-layer equations, either in Cartesian
coordinates or in cylindrical coordinates, comes directly from their respective dif-
ferential forms, such as Eqs. (2.10)–(2.12), (2.13)–(2.14), (2.15)–(2.16) corre-
sponding to the planner two- or three-dimensional flow, axially symmetric flow
near a cylinder and disk, respectively.

2.2.1 In Cartesian Coordinates

Consider a steady three-dimensional flow caused due to the bilateral motion of a
flexible continuous flat sheet. The appropriate boundary conditions for this flow
read as:

u ¼ uw x; zð Þ;w ¼ ww x; zð Þ; v ¼ vw x; zð Þ; at y ¼ 0
u ¼ 0;w ¼ 0; at y ¼ 1

�
; ð2:17Þ

where uw x; zð Þ and ww x; zð Þ denote the stretching/shrinking wall velocities in x- and
z-directions, respectively. In the case of porous flexible sheet, suction/injection may
also be allowed through the sheet surface which is denoted by vw x; zð Þ. Outside the
boundary-layer, the fluid is supposed to be at rest in the absence of any potential

Fig. 2.5 Coordinate system
for the axially symmetric disk
geometry

Fig. 2.4 Schematic of the
continuous cylinder and the
associated coordinate system
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flow. The momentum integral equations in this case are derived by the integration
of Eqs. (2.10)–(2.12) w.r.t. y between the limits 0 and d x; zð Þ; where d x; zð Þ denotes
the boundary-layer thickness. Integration of Eq. (2.10) w.r.t. y yields

v ¼ vw �
Zy

0

@u
@x

þ @w
@z

� �
dy: ð2:18Þ

Integration of Eqs. (2.11) and (2.12) with respect to y between the limits
0� y� d results in the following integral equations:

Zd

0

u
@u
@x

þ v
@u
@y

þw
@u
@z

� �
dy ¼ 1

q
sx;0; ð2:19Þ

Zd

0

u
@w
@x

þ v
@w
@y

þw
@w
@z

� �
dy ¼ 1

q
sz;0; ð2:20Þ

where

sx;0 ¼ �l
@u
@y

����
y¼0

and sz;0 ¼ �l
@w
@y

����
y¼0

: ð2:21Þ

Substituting Eq. (2.18) in Eqs. (2.19) and (2.20) by noting that

u
Zy

0

@u
@x

þ @w
@z

� �
dy

2
4

3
5
d

0

¼ 0; ð2:22Þ

and

w
Zy

0

@u
@x

þ @w
@z

� �
dy

2
4

3
5
d

0

¼ 0; ð2:23Þ

we finally arrive at

@

@x

Zd

0

u2dyþ @

@z

Zd

0

uwdy ¼ vwuw þ 1
q
sx;0; ð2:24Þ
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@

@x

Zd

0

uwdyþ @

@z

Zd

0

w2dy ¼ vwww þ 1
q
sz;0: ð2:25Þ

The system (2.24)–(2.25) represents the momentum integral equations for the
steady three-dimensional viscous flow due to a moving continuous porous sheet.
For the two-dimensional case, Eq. (2.25) just vanishes out and Eq. (2.24) in the
absence of wall suction/injection simplifies to

d
dx

Zd

0

u2dy ¼ 1
q
sx;0; ð2:26Þ

which is the same as derived by Sakiadis [1].

2.2.2 In Cylindrical Coordinates

In Sect. 2.1.4, the axial flow due to a moving continuous surface has been repre-
sented in cylindrical coordinates by splitting it into two particular flow geometries,
namely the circular cylinder and the circular flat disk. The integral formulation for
the said two cases follows immediately by the integration of Eqs. (2.13), (2.14),
(2.15), and (2.16), respectively. Following the same procedure (of Sect. 2.1.4), we
derive integral momentum equations for these two cases separately. The appropriate
boundary conditions for a uniformly stretching/shrinking long continuous cylinder,
as shown in Fig. 2.4, with porous surface read as

u ¼ uw zð Þ; v ¼ vw zð Þ; at r ¼ R
u ¼ 0; at r ¼ 1

�
; ð2:27Þ

where R denotes the radius of cylinder. Integrating Eq. (2.13) w.r.t. r, we readily
get

v ¼ R
r
vw � 1

r

Zr

0

@u
@z

rdr: ð2:28Þ

Substituting Eq. (2.28) in Eq. (2.14) and integrating between the limits
R� r� dðzÞ, we have
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d
dz

Zd

0

u2rdr ¼ R uwvw þ sz;0
q

� �
; ð2:29Þ

which is the momentum integral equation for the uniformly stretching/shrinking
cylinder. This equation immediately reduces to that, first, derived by Sakiadis [1]
for a continuous cylinder of impermeable solid wall by substituting vw ¼ 0. Here,
sz;0 ¼ �l @u

@r

��
r¼R is the tangential shear stress at the cylindrical surface. The similar

procedure applies to the continuous circular disk of infinite radius. In this case, the
describing conditions at the disk surface should be of the form

u ¼ uw rð Þ; w ¼ ww rð Þ; at z ¼ 0
u ¼ 0; at z ¼ 1

�
; ð2:30Þ

for a permeable stretching/shrinking disk. Notice that, Eq. (2.16) in steady-state
form can be rewritten, with the utilization of Eq. (2.15), as:

@

@r
ru2
� �þ @

@z
ruwð Þ ¼ mr

@2u
@z2

; ð2:31Þ

which upon integration between the limits 0� z� dðrÞ, in view of Eq. (2.30),
simplifies to

1
r
d
dr

r
Zd

0

u2dz

2
4

3
5 ¼ uwvw þ sr;0

q
; ð2:32Þ

where sr;0 ¼ �l @u
@z

��
z¼0

is the radial component of wall tangential shear stress.
Equation (2.32) constitutes the momentum integral equation for a radially stretching/
shrinking disk.
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Chapter 3
The Concept of Self-similarity

One of the important classes of boundary-layer flows comprises the self-similar
flows. The concept of self-similarity is equally important in mathematical as well as
physical point of views. Normally, the boundary-layer flow problems are modeled
in the form of partial differential equations ( pdes) involving two or more inde-
pendent variables in addition to the involved physical parameters or constants. If,
under certain conditions, it becomes possible to reduce the number of independent
variables, in a particular problem, to one by combining all the independent variables
suitably, then the problem under consideration is called self-similar or auto-model.
Consequently, the governing partial differential equations are transformed to ordi-
nary differential equations (odes) which are completely in the form of new variables
and free from the previous variables. A useful example could be the steady,
two-dimensional flow past a static wedge governed by the system (1.1) which are
pdes in two independent variables. In this flow, the boundary-layer is formed at the
wedge surface due to the presence of external potential flow, having velocity u1ðxÞ.
The self-similar solutions for this flow exist if the external potential velocity is of
the form, but not limited to, u1ðxÞ ¼ axm where a is a constant having suitable
dimensions and m is a pure number. Consequently, the system (1.1) completely
transforms to an ordinary differential equation (Eq. 1.8) and becomes free from
previous variables.

Dimensional analysis, based upon the Buckingham Pi-theorem,1 is one of the
fundamental approaches for reducing the number of independent variables, while
dealing with the partial differential equations, by combining them suitably to
construct the new variables. The criterion of Buckingham Pi-theorem guides in this
regard completely and not only tells, exactly, what number of independent variables
can be reduced but also guides toward the construction of new variables. Following

1Buckingham Pi-theorem is of fundamental importance in dimensional analysis. The interested
readers is recommended to consult the Ref. [1].
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its criterion, the dimensional analysis determines suitable new fundamental
dimensions which come out to represent the problem in the form of new variables.
This actually is done by the suitable scaling of the involved physical quantities.

The existence of self-similarity in a particular flow problem is usually a con-
sequence of the non-existence of a characteristic length along one or more space
directions. Such a problem, therefore, have a capacity of absorbing more than one
variables into a single one, thus forming the new self-similar (independent) vari-
able. The construction of new variables is, sometimes, also guided/restricted by the
involved boundary and initial conditions. However, there is a systematic approach
of constructing the new self-similar variables which will be discussed in detail in
Sect. 3.3 and will be utilized in Chap. 5. Another important aspect of similarity
solutions is that they usually exhibit asymptotic behavior; the same is true with the
boundary-layer flows as the velocity within the boundary-layer also exhibits the
asymptotic character. This actually is the reason that the family of self-similar
solutions to the boundary-layer equations constitutes a big class of important flows
in the fluid dynamics.

3.1 In View of Group Theoretic Approach

The application of dimensional analysis does always not result in the reduction of
independent variables even if the reduction is possible. Sometimes, it happens that
the dimensional analysis fails in finding those new fundamental dimensions which
could be used to describe the original problem in self-similar variables.
Consequently, the stuck guy is forced to think about any other strategy (method).
The way out to this situation comes directly from the notion/concept of invariance
of pdes under the scaling of variables in the frame work of Group Theoretic
approach. A partial differential equation can actually be transformed to an ordinary
differential equation, completely, due to the use of some suitable transformations
only if the original pde is invariant under the Lie group of scaling transformations
[1]. A detailed account to this topic can be found in [1], and the interested reader is
referred to follow the Chap. 1 of [1].

Hence, the determination of new variables in the framework of dimensional
analysis is actually attributed to the invariance property of the original equation(s)
under the scaling group of involved variables, whereas the dimensional analysis
actually does not implement the criterion of invariance, in complete, to the given
pde under the utilized group of scaling transformations and thus stays unable to
capture the self-similarity in many cases. There are examples, as we already
mentioned above, where the dimensional analysis does not find any new funda-
mental dimensions due to which the original problem cannot be transformed to the
self-similar form, but the Group Theoretic approach via one- or multi-parameter
group of scaling transformations successfully determines the self-similar variables
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in the same problem.2 Therefore, the Group Theoretic approach can be regarded as
the most generalized one, which successfully determines the criterion of
self-similarity for a particularly chosen problem. However, the determination of
self-similarity criterion via a one-parameter Lie group of scaling transformations
does not deny the existence of any other self-similar solution(s) because the
determined self-similar solutions represent all those concerning to the particularly
utilized group of scaling transformations. Besides the Group Theoretic procedure,
there are several other, ad hoc, approaches which can be utilized to determine the
self-similarity in a particular problem. However, the underlying property, working
behind all such approaches, is the requirement of invariance of the original pde.
Worth mentioning other techniques are the determination of self-similarity through
separation of variables and through the conservation laws, etc.

In the above discussion, we have repeatedly been using the word “problem” by
which we mean the given partial differential equation(s) and the associated initial
and boundary conditions which subsequently will be called as auxiliary data. The
author’s experience with the ‘similarity’ reveals that the existence of self-similarity
is strongly dependent upon the nature of auxiliary data. For example, if a certain
pde admits a similarity solution under the constraints of one auxiliary data, it may
not be admitting the self-similarity for the other auxiliary data. The existence of
dual (or more) similarity variables for certain problems and the fundamental reason
behind the non-uniqueness of the similarity variables is basically the nature of
auxiliary data.3 Particular to the boundary-layer flows past flat surfaces, self-similar
solutions are possible in those cases where the reference velocities follow the
power-law or exponential form as did in the Falkner–Skan flow.4 The dependence
of the self-similarity on the auxiliary data can further be explained due to the
following example. Let us consider the Stokes first problem described by the
system of equations

@u
@t

¼ m
@2u
@y2

; ð3:1Þ

u 0; yð Þ ¼ 0; y� 0 ð3:2aÞ

u t; 0ð Þ ¼ U0; t[ 0 ð3:2bÞ

u t;1ð Þ ¼ 0: ð3:2cÞ

2For further detail on this account the reader is referred to follow [1].
3As in the Falkner–Skan flow, the similarity variables take different forms for different values of m,
though the nature of the flow is the same, that is the potential flow past a wedge.
4This fact can be confirmed in Chap. 5 which, however, does not deny the possibility of any other
form.
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The system (3.1)–(3.2a) admits a similarity solution of the form

u ¼ U0f gð Þ; g ¼ y

2
ffiffiffiffi
mt

p ¼ yt�1=2

2
ffiffiffi
m

p ; ð3:3Þ

which transforms Eq. (3.1) to an ordinary differential equation of the form

f 00 þ 2gf 0 ¼ 0; ð3:4Þ

subject to the transformed boundary conditions

f 0ð Þ ¼ 1; f 1ð Þ ¼ 0: ð3:5Þ

Notice that the original three constraints (the auxiliary conditions) have now
been reduced to two in number. Both of these are the boundary conditions, and the
initial condition has completely been vanished. To understand this fact the defini-

tion of g ¼ yt�1=2

2
ffiffi
m

p is important and the fact that the initial and boundary data are

described at t ¼ 0; y ¼ 0 and y ¼ 1 only. In view of the definition of g and the
critical values of y and t where the boundary and initial data have been described,
we note that g ¼ 0 at y ¼ 0 only but g ¼ 1 either at y ¼ 1 or at t ¼ 0, simul-
taneously. This means that in the transformed system the condition f ð1Þ ¼ 0 at
g ¼ 1 must, simultaneously, represent the initial and boundary conditions defined
at t ¼ 0 and y ¼ 1, respectively. This can only be achieved if the said initial and
boundary conditions do coalesce, that is

u 0; yð Þ ¼ u t;1ð Þ: ð3:6Þ

This means that if such a coalition of the initial and the boundary conditions is
not possible, then the similarity variable g, defined above, can never be utilized in
order to get the transformed ode (Eq. 3.4). Fortunately, the condition (3.6) is met by
the auxiliary data (3.2a) due to which the similarity solution exists for this problem.
Otherwise, it was impossible to achieve any way. In this perspective, regarding the
existence of similarity solutions, few of the auxiliary conditions, defined at different
points in the domain of interest, must coalesce to one. Such a situation is only
possible if the new variables are constructed from the original variables by raising
them to suitable powers. Such a power-law product of the original variables, in the
construction of similarity variables, can never be achieved without having the
reference velocity of the similar form. This is one of the important reasons behind
the fact that the self-similar solutions follow the power-law form of the reference
velocities. However, such a coalition is always not necessary, especially in those
cases where the auxiliary conditions are already very few.

Based upon the number of auxiliary data, interesting conclusions regarding the
number of similarity variables are drawn here:
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• If the problem is well-posed5, then a unique similarity variable will exist pro-
vided the problem admits a self-similar solution. For an ill-posed6 problem, the
uniqueness of the similarity variable is not guaranteed; the problem may admit
one or more similarity variables if the self-similar solution is possible.

• If the given problem, whether well-posed or ill-posed, does not admit a
self-similar solution then the solution will be called non-similar.

3.2 Physical Meanings

The concept of self-similarity is a little bit hard to explain in words, on one hand or
seems to be explainable in a single sentence, on the other hand. In view of physical
meanings of self-similarity the author is more inclined to the latter opinion because,
in words, to-the-point explanation of self-similarity is hard to extend beyond few
lines and one ultimately requires the assistance of mathematical language. Based
upon the second opinion, we shall start trying to understand the physics of
self-similarity from the mathematical view point and will try to become more and
more less mathematical, gradually.

In the start of this chapter we explicitly stated that a problem is self-similar if the
total number of involved independent variables can be reduced to one. Obviously,
this can only be done by a suitable mixing of the original independent variables to
form a single new variable, as discussed in the previous section. Ultimately, the
resulting (new) single variable is called the similarity variable. Another important
ingredient of this discussion is the scaling of variables which is a common base
line among the dimensional analysis and the Group Theoretic method. Thus the
mathematical sense of developing the similarity variables is based upon the suitable
mixing of the original variables or more formally the suitable scaling of the original
variables. At this stage it seems very useful to pick a particular example so that the
concept of self-similarity can more conveniently be explained. For this purpose the
Falkner–Skan flow (1.7)–(1.8) would be the best choice.

Let us concentrate on the definition of g and f 0ðgÞ in Eq. 1.7 by ignoring the
constant coefficient

ffiffi
a
m

p
, for instance. Such constant coefficients have actually

nothing to do with the self-similarity and are present just to non-dimensionalize the
system. Notice that the Falkner–Skan problem is defined for x[ 0 and 0� y\1
with the boundary conditions

5If for a given differential equation, sufficient numbers of auxiliary conditions are known to make
the unique solution sure and the solution thus obtained depends continuously upon the given
auxiliary data.
6If for a given differential equation, at least one or more auxiliary conditions are missing, the
problem is ill-posed.
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u x; 0ð Þ ¼ 0; v x; 0ð Þ ¼ 0; ð3:7Þ

u x;1ð Þ ¼ u1 xð Þ ¼ axm; ð3:8Þ

including no condition at any x-location. Since the independent variables are only
x and y, the construction of g by combining x and y does not require any boundary
conditions to coalesce. In this particular flow g ¼ ffiffi

a
m

p
x
1�m
2 y having the domain [0,

∞) derived directly from the domain of y. Clearly, in the construction of g, y has
simply been transformed to become g after a suitable scaling by an appropriate
scale factor, namely rðxÞ ¼ x

1�m
2 . Similarly, the construction of f 0ðgÞ is also a

consequence of suitable scaling of u by an appropriate scale factor which is
obviously the external potential velocity u1ðxÞ. Hence, the function rðxÞ ¼ x

1�m
2 is

the suitable scale factor in y and the reference velocity u1ðxÞ ¼ axm is the suitable
scale factor in u.

Let us assume that we have calculated the velocity f 0ðgÞ at g ¼ 1 which is
f 0ð1Þ ¼ 0:3298 for m ¼ 0. Notice that, in Fig. 3.1a, the velocity f 0ð1Þ ¼ 0:3298 is
the same at the locations x1 and x2, but differs in scale factors ax01 and ax02 in u and
by

ffiffiffiffiffi
x1

p
and

ffiffiffiffiffi
x2

p
in y at the two locations. Mathematically, this fact can be

expressed as

u x1;
y1ffiffiffi
x1

p
� �

ax01
¼

u x2;
y2ffiffiffi
x2

p
� �

ax02
: ð3:9Þ

Similar situation can be seen in Fig. 3.1b for the case m ¼ 1. If g is taken arbitrary
for some fixed x1 and x2, then y must also be taken as arbitrary. Consequently,
Eq. (3.9) modifies as, for m ¼ 0

u x1;
yffiffiffi
x1

p
� �

ax01
¼

u x2;
yffiffiffi
x2

p
� �

ax02
; ð3:10Þ

and for m ¼ 1

u x1; yð Þ
ax1

¼ u x2; yð Þ
ax2

: ð3:11Þ

Now, for the arbitrary m, Eqs. (3.9)–(3.11) unify as

u x1; y=r x1ð Þð Þ
u1ðx1Þ ¼ u x2; y=r x2ð Þð Þ

u1ðx2Þ : ð3:12Þ

Thus if the solution is self-similar, then the x-component of velocity differs only
by a scale factor in u and y, at any two different x-locations. In other words, the
nature of the velocity profile does not depend upon x at all. The reason behind this
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fact is the allowance, by the governing system, of the construction of g due to x and
y in which x and y are so suitably combined. Such an allowance by the governing
system is in fact recognized as the invariance of the system. The appropriate mixing
of x and y in the construction of g generates a family of curves in the xy-plane.
When a numerical code iterates to compute the solution at different g-nodes (say gi),
it actually computes the solution at y ¼ gi

ffiffiffi
x

p
curves in the physical/actual domain

as shown in Fig. 3.2. This property, actually, lifts the requirement of computing the
solution at various x-nodes, meaning that the solution is “self-similar” at all x-
locations and only differs by a constant scale factor. Hence, if the solution is known
at any x-location, the solution at any other x-location can easily be determined from
the already known solution. The independence of the velocity from the variable
x guarantees the absence of any length scale in the x-direction. In contrast, the
Howarth’s retarded flow [2] does involve flow separation and thus involves a
definite length in x-direction, namely the distance of the point of separation from the
leading edge, hence reacting as non-similar in nature.

Here, x-component of velocity has particularly been mentioned and the y-
component of velocity has not been named at all. Actually, within the boundary-
layer, only the lateral component(s) of velocity constitutes the main flow and the
normal component of velocity is usually determined from the equation of continuity
in the form of lateral velocity component. Moreover, the variation in velocity
across the boundary-layer is more significant than that in the lateral direction. This
could also be said a reason for similarity in x because the role of x within the

Fig. 3.1 a and b Graphical
description of self-similarity
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boundary-layer is somewhat like a slack variable; and the slack has to leave the
system, ultimately.

3.3 General Theory

The simplification of a given differential equation via some transformation of
involved variables based on the criterion of invariance is actually credited to
Sophous Lie [3, 4]. Lie introduced the procedure of finding the infinitesimal
transformations which leave the given differential equation invariant and result in
significant simplification of the original equation, either by reducing the order of the
original equation or by reducing the number of independent variables in it. The
process of finding the infinitesimal symmetries of a differential equation is quite
hectic but is highly algorithm and is easy to implement in a computer code.
However, regarding the determination of self-similar solutions one does not need to
follow the Lie’s algorithm of finding the point symmetries, because the number of
independent variables in a pde can be reduced through a group of scaling trans-
formations. It is therefore straightforward to utilize the scaling group of transfor-
mations directly for finding the similarity solution. Morgan [5] utilized the general
theory of invariance and developed a straightforward procedure for constructing the
similarity variables. The procedure developed by Morgan was further utilized in
fluid dynamics problems by [6–10].

Consider a system of n pdes, Ej ¼ 0 in n unknowns uj; ð j ¼ 1; 2; . . .; nÞ
depending upon m number of independent variables xi ði ¼ 1; 2; . . .;mÞ. A one-
parameter group G of scaling transformations is assumed for the involved variables,
of the form

�xi ¼ kai xi; �uj ¼ kcj uj i ¼ 1; 2; . . .;mð Þ; j ¼ 1; 2; . . .; nð Þ; ð3:13Þ

where k 6¼ 0 is the continuous real parameter and the ai and cj are the real expo-
nents to be determined. The group (3.13) is applied to the given system of equations
where the condition of invariance of the transformed system results in a system of
simultaneous linear equations in the exponents ai and cj. The non-trivial solution of
this system is then utilized in the construction of (new) similarity variables which
actually are the invariants of the scaling group G. At a time, only one independent
variable can be reduced through one-parameter group. Let us assume that the linear
system in ai and cj admits a non-trivial solution and the variable x1 is to be
eliminated; there arise two cases for the exponent a1, namely for a1 6¼ 0 or a1 ¼ 0.

Case I ða1 6¼ 0Þ
If a1 6¼ 0 the similarity (or new) variables (or invariants of G) are constructed as
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gr ¼
xr

x
ar
a1
1

; r ¼ 2; . . .;mð Þ; ð3:14aÞ

and

fj g2; g3; . . .; gmð Þ ¼ ujðx1; x2; . . .; xmÞ
x
cj=a1
1

; ðj ¼ 1; 2; . . .; nÞ: ð3:14bÞ

Case II ða1 ¼ 0Þ
If a1 ¼ 0, the similarity variables are constructed as

gr ¼
xr
earx1

; r ¼ 2; 3; . . .;mð Þ; ð3:15aÞ

and

fj g2; . . .; gmð Þ ¼ ujðx1; x2; . . .; xmÞ
ecjx1

; j ¼ 1; 2; . . .; nð Þ: ð3:15bÞ
In the following, this procedure has been employed to a simple problem in fluid

dynamics which will further help to understand the utility of the above procedure.

Example Consider the Stokes first problem which we already considered in
Sect. 3.1 (Eqs. 3.1–3.2a) in some different context. Equation (3.1) admits a simi-
larity solution for which the corresponding similarity variables are defined in
Eq. (3.3). Let us derive Eq. (3.3) with the help of above described general theory of
constructing the similarity variables. Consider the scaling group G of the form (for
the variables involved in Eqs. (3.1)–(3.2a)).

G : �t ¼ ka1 t; �y ¼ ka2y; �u ¼ kc1u: ð3:16Þ
Substitution of Eq. (3.16) in Eq. (3.1) and the requirement of invariance of the

original pde result in the following linear equation:

a1 � c1 ¼ 2a2 � c1: ð3:17aÞ

The initial condition (3.2a) and the boundary condition (3.2c) contribute nothing
to the system, whereas the boundary condition (3.2b) gives

c1 ¼ 0: ð3:17bÞ

The non-trivial solution of the simultaneous system (3.17a) reads as

a2
a1

¼ 1
2
; a1 6¼ 0: ð3:18Þ
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Therefore, the similarity variables, according to Eq. (3.14a), are constructed as

g ¼ y

t
a2
a1

¼ y
t1=2

¼ yt�1=2; ð3:19aÞ

and

f gð Þ ¼ u

t
c1
a1

¼ u
t0
¼ u: ð3:19bÞ

Thus, u ¼ f ðgÞ and g ¼ yt�1=2 are the (new) similarity variables which trans-
form governing Eq. (3.1) to the self-similar form. The presence of the factors
U0 and 1ffiffi

m
p in Eq. (3.3) with f ðgÞ and yt�1=2, respectively, is just for the sake of

non-dimensionalization; also the presence of a factor 1
2 in the definition of g (in

Eq. 3.3) is simply to manipulate the constant coefficient in the transformed
Eq. (3.4). These are actually the niceties and have nothing to do with the process of
determining the similarity variables. For further examples and a bit more detail on
this topic, the interested reader is referred to follow a very nice book by Ames [11].
The method will be applied to the boundary-layer equations in Chap. 5 where a
detailed account on the construction of similarity variables is presented.
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Chapter 4
Solution Techniques

The inherited nonlinear character of the boundary-layer equations is the great
barrier in finding their exact analytic solution. The boundary-layer equations do not
get linearized in any boundary-layer flow, assumed however simple, except the
Stokes’ unidirectional flow. The level of difficulty increases sufficiently if one
switches from two-dimensional to three-dimensional flow or takes the unsteadiness
into account simultaneously. The fundamental reason behind this fact is the
non-vanishing character of the inertial part of the (Navier–Stokes equations)
boundary-layer equations, where the nonlinearity actually comes from. On the other
hand, it is also required to be realized that the boundary-layer equations are
developed after the great simplification of the original Navier–Stokes equations. For
example, in the steady two-dimensional boundary-layer flow the second component
of the Navier–Stokes equations vanishes completely giving only @p=@y ¼ 0. The
constancy of the pressure across the boundary-layer and the applicability of the
Bernoulli’s equation inside the boundary-layer regarding the pressure gradient term
also resolve the important issue of pressure gradient term in these flows. However,
the material presented in this Book is strictly limited to the incompressible fluid
having constant properties in the laminar and turbulent flow situations where almost
more than three quarters of the Book are devoted to the laminar flow only.
Therefore, most of the problems presented in this Book do not pose a significant
level of difficulty to the investigator, but still they could not be taken so easy as of
biting the soft cake. Regarding the solution point of view, the involved laminar
problems can be classified into two categories, namely the self-similar and the
non-similar flows.

As explained in the previous chapter the self-similar flows allow transformation
of the governing partial differential equations to ordinary differential equations, thus
reducing the difficulty in solution quite significantly. However, the non-similar
flows do not offer such facility; consequently, a nonlinear pde is to be solved for
these flows. Series solution techniques presented in Sect. 4.1 and the numerical
techniques presented in Sect. 4.2.1 are recommended for the former case in order to
obtain the analytic and numerical solutions, respectively. For the latter case, the
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implicit finite-difference scheme commonly known as the Keller’s Box method is
highly recommended which has unconditional quadratic convergence of the solu-
tion procedure. A brief introduction to this scheme is given in Sect. 4.2.2. The
turbulent flows discussed in Part D can equally be studied either analytically or
numerically. Usually, the theoretical analysis, either analytic or numerical, most
often, requires the availability of experimental data. The numerical treatment
involves the selection of appropriate turbulent model, whereas the integral methods
require the velocity ansatz and the appropriate modeling of Reynolds stresses. On
the basis of comparison made between the experimental and numerical or theo-
retical solution, the selection of the appropriate model in the numerical computa-
tions or the velocity ansatz in the integral methods can be made. Without the
availability of experimental data the reliability of solution is hard to achieve.

Along with the previously described feelings of being deprived, another impor-
tant proof of negligence of the flows due to the moving continuous solid surfaces
is the non-availability of the experimental data for the turbulent flows. In the absence
of such experimental data it is not easy to claim for the approximate solution to be
sufficiently correct as the uncertainty remains always there. In this Book, the tur-
bulent flow has been studied with the help of integral method just for the sake of
mathematical beauty and of course because of its easy treatment. A detailed account
on integral methods has been given in Sect. 4.3.

4.1 Series Solution

The idea of obtaining the solution of a differential equation in the form of a series is
very old where the famous power-series methods had continuously been utilized in
finding the solution of linear ordinary differential equations with variable coeffi-
cients since too long. Such type of methods is of equal importance for the solution
of nonlinear equations also. Perturbation methods constitute an important class of
approximate series solution methods. The perturbation methods are usually par-
ticular to the power-series expansion in the form of a parameter so deemed as small
or large. Mostly, the boundary-layer problems do not involve any small or large
parameter which could be considered small or large to construct the asymptotic
perturbation series. In such situations the idea of representing the solution in the
form of a series, without requiring the presence of small or large parameter in the
system, is of fundamental importance.

Blasius [1], while solving his famous Blasius flow Eqs. (1.2) and (1.4), utilized
the idea of series solution and obtained a complete solution in the form of a series.
Since then, this solution is commonly referred as the Blasius series solution. The
Blasius method of series solution was further explained by Prandtl [2] and
strengthened by Bairstow [3] and Goldstein [4]. However, the Blasius’ series
solution served as accurate method for the Blasius flow but failed completely in the
case of cylinder in cross-flow. In this case the Blasius series requires sufficient
upgradation in order to produce acceptable results. Howarth [5] developed another,
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similar, method of series solution for the calculation of boundary-layer separation in
the retarded flow past a flat-plate. The Howarth’s series solution happened to be
very accurate and calculated the flow separation quite exactly. Similarly, Seban and
Bond [6], Curle [7], and Wang [8] also utilized the series method in order to capture
the effects of transverse curvature in the axisymmetric viscous flow along a long
slim cylinder. A thorough review of literature reveals that such series solution
methods, as developed and utilized in the above studies, are of ad hoc nature and do
not have their wider applicability. The reason for this is their typical construction,
which actually is the object oriented, based on the particular information of the flow
under consideration. This is the reason behind the fact that such a so-constructed
series solution method applies successfully to one problem but blows away for the
other.

The above-cited few references [1–4, 6–8] are just a few glimpses from the
history of boundary-layers in view of solution methods. It is now easy to understand
that such ad hoc methods, though rich in mathematics, based strictly on the physics
of flow, found no wider acceptance and hence became outdated nowadays. In
comparison with these methods the general series solution methods, namely the
power-series and the perturbation methods, are still alive and are utilized in diverse
areas of science and engineering. In this section we intend to introduce the reader a
series solution method having less limitations and wider applicability, namely the
homotopy analysis method (HAM). This method has widely been applied to the
boundary-layer equations, and quite exact solutions have been obtained because of
it. Important related studies are mentioned in [9–27] where the interested reader is
referred to consult.

Homotopy analysis method is actually an extension of the conventional per-
turbation methods depending upon no small or large parameter. This method has
been developed due to the idea of homotopy, an important concept in topology. For
a given nonlinear problem, the method assumes an initial linear problem (admitting
the giving boundary conditions) and constructs a homotopy between the assumed
initial linear problem and the actual nonlinear problem involving an embedding
parameter p (say) such that 0� p� 1. As p varies from 0 to 1 continuously, the
problem so-constructed deforms uniformly from initial solution to the final solution.
The idea of HAM was first introduced by Liao [9] in his doctoral thesis and was
further improved and applied to various differential equations in [10]. However, the
homotopy analysis method is quite popular in the solution of laminar self-similar
boundary-layer equations and the people already in the field are very well aware of
it. But a brief description of the method seems necessary here just to familiarize the
reader with the HAM.

Consider a nonlinear differential equation N u xð Þð Þ ¼ 0 where x denotes the
independent variable and u is the dependent variable. Corresponding to this non-
linear equation we choose a linear differential operator L such that Lf ¼ 0,
whenever f ¼ 0. Liao [10] defined homotopy between the original nonlinear
equation and the newly selected linear one as:
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1� pð ÞL �u x; p; �h;Hð Þ � u0ðxÞ½ � ¼ p�hH xð ÞN �u x; p; �h;Hð Þð Þ; ð4:1Þ

with p 2 ½0; 1� such that �u x; p ¼ 0ð Þ ¼ u0ðxÞ and �u x; p ¼ 1ð Þ ¼ uðxÞ. This means
that the initial solution u0ðxÞ continuously deforms to become the final solution uðxÞ
as p varies from 0 to 1. The parameter �h denotes the auxiliary parameter, and H xð Þ
is designated as the auxiliary function. Equation (4.1) is called the zero-order
deformation equation, whereas the mth-order deformation is obtained due to the m
times differentiation of Eq. (4.1) with respect to p at p ¼ 0 and is given by

L um xð Þ � vmum�1ðxÞ½ � ¼ �hH xð ÞRm xð Þ; ð4:2Þ

where

Rm xð Þ ¼
Xm

k¼1

cm�k xð Þ; cn xð Þ ¼ 1
n!
@nNð�u x; pð ÞÞ

@pn

����
p¼0

; ð4:3Þ

and

vk ¼ 0 for k� 1;
1 for k[ 1:

�
ð4:4Þ

According to the Taylor series, expansion of �u x; pð Þ about p ¼ 0 is given by

�u x; pð Þ ¼ u0 xð Þþ
X1

m¼1

um xð Þpm; um xð Þ ¼ @m�u x; pð ÞÞ
@pm

����
p¼0

: ð4:5Þ

If the series (4.5) converges as p ! 1, then �u x; 1ð Þ represents the solution of the
nonlinear equation N u xð Þð Þ ¼ 0 where the mth term of the solution series is
obtained by solving mth-order deformation equation (4.2).

The convergence of the solution series, with sufficient number of terms, depends
strongly upon the auxiliary parameter �h. The determination of the interval of
admissible values of �h for which the solution series converges is of fundamental
importance. However, with an interval of admissible values of �h in hand it is still
crucial to decide for the appropriate value of �h so that the solution is accurate. In
this regard the calculation of residual error is the best approach to make the solution
accurate. The m terms of the solution series can easily be calculated with the aid of
some suitable computing software such as the Mathematica, MATLAB, or Maple.
There are several other versions of homotopy analysis method with certain modi-
fications or simplifications contributed by others or Liao himself which are of equal
importance within the limits of their applicability. Such progresses can be found in
Refs. [28–37].

36 4 Solution Techniques



4.2 Numerical Methods

The tremendous development in the field of fluid dynamics in general and in
aerodynamics in particular can simply be indebted to the development of modern
numerical techniques toward the computation of flow and heat transfer phenomena
in complex flows involving complicated geometries. The foundation of an entirely
new branch of modern fluid dynamics, namely the computational fluid dynamics
(CFD), is obvious evidence in the support of this fact. The creation of the
state-of-the-art sophisticated subsonic to hypersonic space vehicles, ranging from
the commercial aircrafts to the high-speed jets and the missile systems, is directly
attributed to the impressive achievements of the modern CFD. Therefore, the
importance of numerical techniques in the study of fluid dynamics problems can
never be denied. Due to the availability of the high-performance computing machines
and the development of computation-oriented computer software, the computation
of numerical solution to the nonlinear differential equations is not that costly now,
as it was a few decades back. Due to these facts, the accuracy of numerical methods
has so been improved to an extent that they are now usually called as the “numerical
exact solutions.”

Under these circumstances the numerical solution of the fluid dynamics prob-
lems is highly appreciated and is widely acceptable with no hesitation. The scarce
of the analytic or approximate methods in the turbulent flows is so severe where the
numerical methods are the ultimate choice. Based on the levels of difficulty and the
convenience of the user, diverse CFD softwares have been developed by utilizing
the modern CFD tools. Such CFD softwares are widely being used by the engineers
in industry as well as the researchers in academia. As far as the requirement of this
Book is concerned, the considered problems can successfully be handled by
implementing the following (but not essentially these) numerical methods on a
desktop computer in a simple computing software such as Mathematica, Maple,
MATLAB, or Mathcad.

4.2.1 RK Methods/Built-in Packages

However, the majority of the problems presented in this Book are those which can
be classified as similar or non-similar in nature. The self-similar flows have been
modeled in the form of boundary value problems involving ordinary differential
equations, whereas the non-similar flow modeling results in a partial differential
equation. A boundary value problem involving ordinary differential equation can
simply be solved with the help of famous Runge–Kutta method. This method
transforms the given ode, having order � 2, into a system of first-order initial value
problems, and then integrates it numerically. This method has widely been used in
the study of self-similar boundary-layer flows. This method also has the great
capacity of finding the dual or multiple solutions to the Falkner-Skan equations
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whether the flow is past the wedge or due to the stretching/shrinking surface. The
details of this method can easily be found in any text book on numerical methods or
in [38] where the information on the other numerical methods has also been given.

Alternatively, one can also utilize the easily available ode solving packages in
the above-mentioned software such as Mathematica, MATLAB, or Mathcad.
However, it is important to emphasize that the solution of the self-similar problems
is not limited to the RK methods only rather they can also be solved with the aid of
any suitable numerical scheme such as finite-difference schemes.

4.2.2 Keller’s Box Method

The mathematical modeling of non-similar boundary-layer flows results in the form
of boundary value problems involving the partial differential equations. Such pdes
cannot be solved with the help of aforementioned series solution method (HAM) or
the RK methods, in general. In this regard an implicit finite-difference scheme,
commonly known as the Keller’s Box scheme, is highly recommended. This
method was first developed by Herbert B. Keller [39] and was improved further by
Keller and Cebeci. The method was first employed to the boundary-layer equations
by Keller and Cebeci [40, 41] and Cebeci and Keller [42, 43]. Because of these
studies the method was found to be very appropriate for the solution of boundary-
layer equations. They (Cebeci and Keller) concluded that the method converges
unconditionally for these flows having convergence rate of order two. They further
pointed out that the method is quite easier to program and executes much faster.
Further details on this method can be found in [44, 45] and the references therein.

The utilization of Keller’s Box method first transforms the given pde to a system
of first-order differential equations. The resulting first-order nonlinear system is then
solved using Newton’s method with the aid of block-tridiagonal factorization
technique. The computations are carried out on an arbitrary rectangular grid where
the derivatives are approximated by central difference quotients averaged at the
middle of the net blocks. As mentioned above, this scheme is very useful in the
integration of non-similar flow equations and the author’s personal experience with
this scheme is also very good. This scheme can equally be employed to the
self-similar equations with no extra labor.

4.3 Integral Methods

Most of the practical boundary-layer flows are comprised of the turbulent flows
because of their abundant occurrence in almost all real physical phenomena.
Because of their complex nature no complete theory has yet been developed to
explain their behavior in general. The most crucial step in the handling of turbulent
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flows is the modeling of Reynolds stresses. Based upon empirical and semi-
empirical information several turbulent models have been developed which are
applicable within their limited domains. Due to this fact, it is generally postulated
that all solutions available for turbulent flows are the approximate solutions.
However, with the development of modern CFD tools, the simulated results, which
are quite trustworthy and helpful in the development of modern technologies, are
possible, but the theory has been stuck here. The improvement in the simulated
results is continuously being brought by the introduction of new empirical or semi-
empirical turbulent models. Under these circumstances the approximate integral
methods are the only option for the theoretical study of turbulent boundary-layers
because of the availability of universal wall laws and the velocity ansatz.

The most fundamental integral methods are due to von Karman [46] and
Pohlhausen [47], developed for the study of viscous flow past a flat-plate. The
Pohlhausen method was improved significantly by Holstein and Bohlen [48] in
addition to the other contributors. For details on review of developments in
Pohlhausen method the reader is referred to follow [49]. Another important integral
method is due to Thwaites [50] which calculates the laminar flow separation quite
exactly. Besides these very few methods there are various other diverse integral
methods available in the literature, but it is impossible to cite all of them here. It is
important to remember that the integral methods are strongly dependent upon
certain assumptions among which most frequent are the velocity profiles. Because
of such assumptions they usually do not provide acceptable results in the laminar
flows. This is the primary reason for their negligence in these flows. However, with
the availability of universal wall laws and universal velocity profiles, they provide
quite reasonable approximation with fewer efforts for the turbulent flows. Because
of this reason they did not become outdated even yet besides the tremendous
improvements in the simulation techniques. This actually proves their applicability
and acceptability in the calculation of turbulent boundary-layers. A detailed account
on the integral methods for turbulent boundary-layers can be found in [49] and [51].

The turbulent boundary-layer flows have been presented in the last part of this
Book. First integral method for the turbulent flows due to moving continuous
surfaces is because of Sakiadis [52, 53] for the two-dimensional and axisymmetric
flows. The Sakiadis’ solution has been extended to 1/nth power-law profile, and the
Crane’s flow has also been investigated in Chap. 12.
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Chapter 5
The Criterion of Self-similarity for Wall
Velocities

The laminar boundary-layer flows can mainly be subdivided into two subclasses,
namely the self-similar flows and the non-similar flows, as mentioned previously.
Among these two classes, the self-similar flows had been more popular and studied
extensively in the previous decades. The reason behind their wider acceptance is
twofold: first, because of their governing boundary-layer equations, which are pdes
actually, but readily reduce to ordinary differential equations by means of the
similarity transformations, thus facilitating greatly toward their solution explo-
ration; second, such self-similar flows help greatly toward the understanding of flow
character within the boundary-layer. Because of these advantages, the self-similar
boundary-layer flows, especially two-dimensional, have extensively been studied
not only for the finite plate but also for the continuous sheet. The theory can almost
be considered as complete for the self-similar flows past finite surfaces, but is still
pending for the continuous surfaces. In this particular class of flows, the develop-
ment had neither been quick nor been complete; rather, it had been contributed in
bits. For example, Sakiadis [1] first introduced the self-similar solution for the
continuous flat surface moving with uniform velocity. Crane [2] introduced the
self-similar solution for variable wall velocity by restricting it to the linear form and
referred it as the linear wall stretching. Later, the nonlinear stretching wall velocity
was introduced by Banks [3] and Magyari and Keller [4] for the power-law and
exponential wall velocities, respectively. This development is strictly restricted to
the two-dimensional case; in view of these developments, the (two-dimensional)
self-similar flows due to power-law wall velocities can be regarded as explored
completely,1 but the flows due to exponential wall velocities still require further
exploration. The situation is far more adverse in the cases of three-dimensional and
axisymmetric flows.

The available literature on three-dimensional flows is mainly restricted to the
linear stretching velocities in two lateral directions. Some self-similar solutions

1Complete in a sense (see Sect. 3.1). This statement does not deny the existence of any other
self-similar solution.
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corresponding to the exponential bilateral wall velocities have also been reported
without covering the whole class. In this regard, three-dimensional self-similar flow
due to a stretching sheet was introduced by Wang [5] in which he considered linear
stretching in the two lateral directions. The axially symmetric case of self-similar
flow due to a stretching cylinder was also introduced by Wang [6] where he again
assumed the linear stretching velocity at the surface of the cylinder. Another type of
axis-symmetric flow, due to a stretching surface, is the case of stretching disk flow
which was introduced by Fang [7] by considering the linear radial stretching of the
flexible circular disk. In all the aforementioned cases of three-dimensional and
axisymmetric flows, the criterion of self-similarity has not been explored com-
pletely, thus requiring a thorough investigation regarding the identification of
self-similar wall velocities in these cases. After having done all this, one will be
more quite in claiming that the criterion of self-similarity in view of the stretching/
shrinking wall velocities has completely been determined for the continuous sur-
faces. This will in turn help to complete the theory of self-similar laminar boundary-
layers due to moving continuous surfaces.

In view of above-cited history regarding the, in bits, development of the
self-similar boundary-layer flows due to moving continuous surfaces, a student or a
new researcher in this area misleadingly perceives that the identification of such
particular wall velocities for which the similarity solution exists is just by luck or
due to the hit-and-trial method. This is the reason behind the fact that whenever a
new self-similar solution was introduced in this area, it was immediately adopted
by almost all the researchers involved with this topic. The same is the fact with
the “shrinking sheet flow” which has also been adopted by a huge number of
researchers despite the fact that the self-similar modeling introduced by Miklavcic
and Wang [8] is, somewhat, wrong. But even then, the involved authors are con-
tinuously following the incorrect formulation and are publishing wrong results on
this topic. A detail account on this issue is given in Chap. 7.

Therefore, keeping these facts in mind the systematic approach toward the
determination of self-similar criterion for any flow situation has been explained and
employed to the two-dimensional, three-dimensional, and axisymmetric flow situ-
ations in this chapter. The allowed wall velocities in the aforementioned cases for
which the self-similar solutions exist have been determined, and the corresponding
self-similar governing systems have also been derived.

5.1 Two-Dimensional Flow

Consider a flexible impermeable flat sheet emerging from a slit (situated at the point
0; 0ð Þ) in the positive x-direction with velocity uw xð Þ. The x-axis has been taken
aligned to the sheet, and the y-axis goes deep into the fluid vertically upward by
fixing the origin of the coordinate system at the orifice. The fluid is assumed to be
viscous and incompressible following the Newton’s law of viscosity. Outside the
boundary-layer, the fluid velocity is denoted by u1 and is assumed to be zero.
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Because of the absence of any potential flow and the utility of the boundary-layer
assumption, the pressure gradient within the boundary-layer, formed on the moving
continuous sheet, is zero. In this situation, the flow is steady and two-dimensional in
nature. A schematic of the flow is shown in Fig. 5.1.

Based on the flow assumptions, the appropriate velocity vector reads as:

V ¼ u x; yð Þ; v x; yð Þ; 0½ �: ð5:1Þ

Consequently, the governing boundary-layer system (2.10)–(2.12) reduces to

@u
@x

þ @v
@y

¼ 0; ð5:2Þ

u
@u
@x

þ v
@u
@y

¼ m
@2u
@y2

; ð5:3Þ

subject to the boundary conditions [due to Eq. (2.17)]

u ¼ uw xð Þ; v ¼ 0; at y ¼ 0
u ¼ 0; at y ¼ 1

�
: ð5:4Þ

Further simplification to the system (5.2)–(5.4) can be achieved by introducing
the stream function w x; yð Þ owing to the following relation with the velocity
components:

u ¼ @w
@y

; v ¼ � @w
@x

: ð5:5Þ

Due to Eq. (5.5), the equation of continuity (5.2) is satisfied identically and
Eqs. (5.3) and (5.4) take the form

Fig. 5.1 Schematic of the
two-dimensional flow and the
coordinate system
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@x

@2w
@y2

¼ m
@3w
@y3

; ð5:6Þ

@w
@y ¼ uw xð Þ; @w@x ¼ 0; at y ¼ 0
@w
@y ¼ 0; at y ¼ 1

)
; ð5:7Þ

respectively. Equations (5.6) and (5.7) are the representative equations for the
considered two-dimensional flow with certain possible simplifications to be
determined.

These equations shall now be applied the procedure of group theoretical
approach in obtaining the similarity transformations, as explained in Sect. 3.3.
According to the general theory, we need to introduce the scaling of all the variable
quantities involved in the system (5.6)–(5.7). Therefore, we choose a scaling group
of the form:

�x ¼ ka1x; �y ¼ ka2y; �w ¼ ka3w; �uw ¼ ka4uw; ð5:8Þ

where k is the scaling parameter and ai i ¼ 1; . . .; 4ð Þ denote the scaling exponents.
Utilization of the group (5.8) transforms the system (5.6)–(5.7) in the form of new
variables as

ka1 þ 2a2�2a3 @
�w

@�y
@2�w
@�x@�y

� ka1 þ 2a2�2a3 @
�w

@�x
@2�w
@�y2

¼ m k3a2�a3 @
3�w
@�y3

; ð5:9Þ

ka2�a3 @�w
@�y ¼ k�a4�uw;

@�w
@�y ¼ 0; at �y ¼ 0

@�w
@�y ¼ 0; at �y ¼ 1

)
: ð5:10Þ

The restriction of invariance of the system (5.6)–(5.7) under the action of scaling
group (5.8) requires that all the constant coefficients in (5.9) must have the same
powers of k and the same applies to Eq. (5.10) also. This gives rise to a system of
algebraic equations in ai i ¼ 1; ::; 4ð Þ of the form

a1 þ 2a2 � 2a3 ¼ 3a2 � a3; a2 � a3 ¼ �a4: ð5:11Þ

Before we solve the system (5.11), it is important to decide, first, about the
variable to be eliminated among the original independent variables x and y. In this
case, the obvious choice is x. This gives rise the consideration of two cases
regarding the zero and nonzero character of a1, the scaling exponent of x:

Case I a1 6¼ 0ð Þ
In this case, the division by a1 to the system (5.11) is possible and results in the
system
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1þ 2
a2
a1

� 2
a3
a1

¼ 3
a2
a1

� a3
a1

;
a2
a1

� a3
a1

¼ � a4
a1

;

admitting the non-trivial solution of the form

a3
a1

¼ 1� a2
a1

;
a4
a1

¼ 1� 2
a2
a1

:

The ratio a2
a1
has appeared as the free variable and will be treated as an arbitrary

constant in the subsequent process. Based on this solution, the new variables are
constructed as follows (see Eq. 3.14):

g ¼ y
xa2=a1

; f gð Þ ¼ w x; yð Þ
xa3=a1

; a � const: ¼ uw xð Þ
xa4=a1

: ð5:12Þ

Let us say

1� 2
a2
a1

¼ m an arbitrary constantð Þ; ð5:13Þ

due to which Eq. (5.12) takes the form

g ¼ x
m�1
2 y; w ¼ x

mþ 1
2 f gð Þ; uw ¼ axm; ð5:14Þ

where η and f gð Þ are the new independent and dependent variables, respectively,
and a is a pure constant having suitable dimensions. These variables shall be called
the similarity variables if they successfully transform the system (5.6)–(5.7) of
partial differential equations to an equivalent system of ordinary differential equa-
tions. The utilization of Eq. (5.14) in the system (5.6)–(5.7) immediately gives the
self-similar system of the form

mf 02 � mþ 1
2

� �
ff 00 ¼ mf 000; ð5:15Þ

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ 1; f 0 1ð Þ ¼ 0; ð5:16Þ

where the previous variables have successfully been removed. Therefore, the
variables η and f gð Þ (given in Eq. 5.14) can safely be regarded as the similarity
variables. Notice that in Eq. (5.14), the wall velocity follows the form uw ¼ axm

which is of the power-law type. Thus, the case a1 6¼ 0 results in the power-law wall
velocity criterion of the moving continuous surface for which the resulting system
(5.15)–(5.16) is self-similar. Notice that Eq. (5.15) is exactly the same as it is for
the Falkner–Skan [9] flow. This can also be written as
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2m
mþ 1

f 02 � ff 00 ¼ mf 000; ð5:17Þ

if the variable η is scaled by a factor of
ffiffiffiffiffiffiffiffi
mþ 1
2

q
:

Case II a1 ¼ 0ð Þ
In this case, the system (5.11) reduces to the form

2a2 � 2a3 ¼ 3a2 � a3; a2 � a3 ¼ �a4;

which admits a non-trivial solution, given by

a3 ¼ �a2; a4 ¼ �2a2:
Here a2 serves as the free variable, whereas a3 and a4 are determined using a2.

Let us put �2a2 ¼ m, where m is an arbitrary constant and is local to this case, due
to which the above solution is modified as

a2 ¼ �m
2
; a3 ¼ m

2
; a4 ¼ m: ð5:18Þ

For the case a1 ¼ 0, the similarity variables are constructed as (see Eq. 3.15):

g ¼ y
ea2x

; f gð Þ ¼ w x; yð Þ
ea3x

; a � const: ¼ uw xð Þ
ea4x

: ð5:19Þ

Substituting the values of ai i ¼ 2; 3; 4ð Þ from Eq. (5.18) into Eq. (5.19), one gets
the new variables of the form

g ¼ ye
m
2x; w ¼ e

m
2xf gð Þ; uw ¼ aemx; ð5:20Þ

which transform the system (5.6)–(5.7) to the form

m f 02 � 1
2
ff 00

� �
¼ mf 000; ð5:21Þ

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ 1; f 0 1ð Þ ¼ 0: ð5:22Þ

Evidently, Eqs. (5.21) and (5.22) are independent of the previous (original)
variables. Therefore, the transformations (5.20) can be regarded as similarity
transformations and the system (5.21)–(5.22) as the self-similar one. In this case,
the wall velocity came out of the exponential form, i.e., uw ¼ aemx, where m is an
arbitrary constant exponent. Thus, the case a1 ¼ 0 leads to another type of simi-
larity solutions for this problem caused by the exponentially varying motion of the
continuous surface.

In the available literature, only the case for m ¼ 1 has been discussed in the case
of exponentially stretching or shrinking wall velocities. The consideration of other
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values of m finally completes this class of self-similar flows. This, ignorance of the
other values of m, was actually the “incompletion” which we have pointed out in
the start of this chapter regarding the two-dimensional flows due to moving con-
tinuous surfaces. However, it is again emphasized that, besides the use of the word
“complete,” we do not claim the nonexistence of any other self-similar solution to
this case. The meanings of this completion over here are in the sense that we have
explored the self-similar solutions completely, corresponding to the chosen group
of scalings.

At the end of this section, it is quite important to summarize that the imple-
mentation of group theoretical procedure resulted in two self-similar forms of the
two-dimensional boundary-layer equations with the restriction that the wall velocity
uw xð Þ must either follow the power-law form ðuw ¼ axmÞ or the exponential form
ðuw ¼ aemxÞ. That is, if the wall velocity is taken either of the forms the flow will be
self-similar; otherwise, it will be non-similar. Such a restriction on the form of
variable wall velocity is actually regarded as the criterion of self-similarity to this
case.

5.2 Three-Dimensional Flow

In the continuation of above, two-dimensional case, it is again assumed that the
fluid of our interest is viscous and incompressible following the Newton’s law of
viscosity. A semi-infinite body of fluid is assumed to be occupying the upper half
space and bounded by an infinite flexible sheet situated at y ¼ 0. The flow is
assumed to be caused by the variable motion of the sheet surface in two lateral
directions. The flow geometry and the chosen system of coordinates are shown in
Fig. 5.2.

This type of flow was first considered by Wang [5] in 1984 where he assumed
uniform stretching velocities in the two lateral directions and obtained a self-similar
solution. Unsteady case of this flow due to an impulsively started stretching sheet
was considered by Takhar et al. [10]. Another three-dimensional flow due to a

Fig. 5.2 Three-dimensional
flow schematic and the
associated system of
coordinates
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stretching sheet was also considered by Wang [11] where he considered unidi-
rectional stretching of the sheet in a rotating fluid. Recently, Liu et al. [12] assumed
the exponential stretching wall velocities in the two lateral directions and obtained a
self-similar solution to this case. This had been very much unfortunate that the
three-dimensional flow due to nonlinear (power-law) wall velocities and the other
powers (other than 1) of the exponential wall velocities have not been given any
attention, so far. It is therefore important to consider a flow in which the lateral wall
velocities have been assumed to be the general functions of x and z coordinates,
that is uw x; zð Þ and ww x; zð Þ. The group theoretical procedure will be employed to
determine the similarity criterion for the wall velocities by determining the explicit
forms of the functions uw x; zð Þ and ww x; zð Þ.

Based on the above assumptions, the flow is essentially three-dimensional owing
to the boundary-layer character. Therefore, the velocity vector for such a steady
three-dimensional flow reads as

V ¼ u x; y; zð Þ; v x; y; zð Þ;w x; y; zð Þ½ �: ð5:23Þ

Compatible to this velocity vector, the governing system comprises of Eqs. (2.10)–
(2.12) and the appropriate boundary conditions are described as

u ¼ uw x; zð Þ; v ¼ 0;w ¼ ww x; zð Þ; at y ¼ 0
u ¼ 0; w ¼ 0; at y ¼ 1

�
: ð5:24Þ

Similar to the previous section, the continuity equation can be made satisfied
identically by introducing the two stream functions w x; y; zð Þ and / x; y; zð Þ which
have the following relations with velocity components:

u ¼ @w
@y

; w ¼ @/
@y

; v ¼ � @w
@x

þ @/
@z

� �
: ð5:25Þ

The above stream functions were first introduced by Moore [13] and were
further refined by Geis [14] for the rectangular Cartesian coordinates. Due to (5.25),
the equation of continuity (2.10) satisfies identically by reducing the number of
unknowns from three to two. Consequently, Eqs. (2.11), (2.12), and (5.24) readily
transform to the new form

@w
@y

@2w
@x@y

� @w
@x

@2w
@y2

� @/
@z

@2w
@y2

þ @/
@y

@2w
@y@z

¼ m
@3w
@y3

; ð5:26Þ

@w
@y

@2/
@x@y

� @w
@x

@2/
@y2

� @/
@z

@2/
@y2

þ @/
@y

@2/
@y@z

¼ m
@3/
@y3

; ð5:27Þ

and
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@w
@y ¼ uw x; zð Þ; @/

@y ¼ ww x; zð Þ; @w
@x þ @/

@z ¼ 0; at y ¼ 0
@w
@y ¼ 0; @/

@y ¼ 0; at y ¼ 1

)
: ð5:28Þ

Let us consider a one-parameter group of scalings, of all the involved inde-
pendent and dependent variables, of the form

�x ¼ ka1x; �y ¼ ka2y; �z ¼ ka3z; �w ¼ ka4w; �/ ¼ ka5/; �uw ¼ ka6uw; �ww ¼ ka7ww;

ð5:29Þ

where k is the scaling parameter and ai i ¼ 1; . . .; 7ð Þ are the scaling exponents. In
this case too, the procedure is exactly the same as was implemented in the previous
section. The details of the procedure can, therefore, be skipped by retaining the
major steps. However, the author feels it necessary and useful, especially for the
students, to proceed with a bit more detail in order to facilitate the reader.
Moreover, this chapter in general and this section in particular include the crux of
this book; therefore, a bit more detail seems not that costly. The extra burden of this
chapter will be compensated in the forthcoming chapters. The substitution of (5.29)
into the system (5.26)–(5.28) results in the following system in bared notation:

ka1 þ 2a2�2a4 @�w
@�y

@2�w
@�x@�y

� @�w
@�x

@2�w
@�y2

� �
� k2a2 þ a3�a4�a5 @�/

@�z
@2�w
@�y2

� @�/
@�y

@2�w
@�y@�z

� �

¼ mk3a2�a4 @
3�w
@�y3

;

ð5:30Þ

ka1 þ 2a2�a4�a5 @�w
@�y

@2�/
@�x@�y

� @�w
@�x

@2�/
@�y2

� �
� k2a2 þ a3�2a5 @�/

@�z
@2�/
@�y2

� @�/
@�y

@2�/
@�y@�z

� �

¼ mk3a2�a5 @
3�/
@�y3

;

ð5:31Þ

and

ka2�a4 @�w
@�y ¼ k�a6�uw; ka2�a5 @�/

@�y ¼ k�a7 �ww; ka1�a4 @�w
@�x þ ka3�a5 @�/

@�z ¼ 0; at �y ¼ 0
@�w
@�y ¼ 0; @�/

@�y ¼ 0; at �y ¼ 1

)
:

ð5:32Þ

The requirement of invariance of the system (5.26)–(5.28), under the group of
scalings (5.29), requires that the system (5.30)–(5.32) must be free from the con-
stant coefficients appearing in the powers of k. This is certainly possible if the
following linear system of equations holds:
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a1 þ 2a2 � 2a4 ¼ 2a2 þ a3 � a4 � a5 ¼ 3a2 � a4; ð5:33Þ

a1 þ 2a2 � a4 � a5 ¼ 2a2 þ a3 � 2a5 ¼ 3a2 � a5; ð5:34Þ

a2 � a4 ¼ �a6; a2 � a5 ¼ �a7; a1 � a4 ¼ a3 � a5: ð5:35Þ

Note that this case involves three independent variables; in order to transform the
system (5.26)–(5.28) to an equivalent system of ordinary differential equations, one
must eliminate two independent variables from the original three. Before solving
the system (5.33)–(5.35), it is, therefore, quite important to decide for the variable
to be eliminated first. Being slack within the boundary-layer, one among the x and
z can equally be chosen and this choice will not affect the final result. We prefer to
choose x to be eliminated first. In this way, two cases arise corresponding to the
zero and nonzero character of the scaling exponent a1.

Case I a1 6¼ 0ð Þ
Dividing the system (5.33)–(5.35) by a1ð6¼ 0Þ throughout and solving subse-
quently, one finds

a2
a1

¼ A;
a3
a1

¼ B;
a4
a1

¼ 1� A;
a5
a1

¼ B� A;
a6
a1

¼ 1� 2A;
a7
a1

¼ B� 2A;

ð5:36Þ

due to which the new variables are constructed as:

n ¼ z
xa3=a1

; g ¼ y
xa2=a1

; F n; gð Þ ¼ wðx; y; zÞ
xa4=a1

; G n; gð Þ ¼ /ðx; y; zÞ
xa5=a1

;

Fw ¼ uwðx; zÞ
xa6=a1

; Gw ¼ wwðx; zÞ
xa7=a1

:

ð5:37Þ

Assuming that 1� 2A ¼ m (an arbitrary constant), we finally get

n ¼ x�Bz; g ¼ x
m�1
2 y; w ¼ x

mþ 1
2 F n; gð Þ; / ¼ xB�

m�1
2 G n; gð Þ; ð5:38Þ

with

uw x; zð Þ ¼ xmFw nð Þ; wwðx; zÞ ¼ xB� m�1ð ÞGw nð Þ; ð5:39Þ

where B is also an arbitrary constant which can also be chosen equal to zero. For the
sake of generality, B will be treated as nonzero in the further proceedings.

At this stage, the variables x has been absorbed in the new independent variables
n and g which are now 2ð¼ 3� 1Þ in number. The above new variables (5.38) and
(5.39) transform the system (5.26)–(5.28) to the form
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m
@F
@g

� �2

�Bn
@F
@g

@2F
@n@g

� mþ 1
2

� �
F
@2F
@g2

þBn
@F
@n

@2F
@g2

� @G
@n

@2F
@g2

þ @G
@g

@2F
@n@g

¼ m
@3F
@g3

;

ð5:40Þ

Bþm� 1ð Þ @F
@g

@G
@g

� Bn
@F
@g

@2G
@n@g

� mþ 1
2

� �
F
@2G
@g2

þBn
@F
@n

@2G
@g2

� @G
@n

@2G
@g2

þ @G
@g

@2G
@n@g

¼ m
@3G
@g3

;

ð5:41Þ

and

@F
@g ¼ Fw nð Þ; @G

@g ¼ Gw nð Þ; mþ 1
2

� �
F � Bn @F

@n þ @G
@n ¼ 0; at g ¼ 0

@F
@g ¼ 0; @G

@g ¼ 0; at g ¼ 1

)
: ð5:42Þ

Evidently, the variable x has been eliminated successfully indicating that the
process can be continued further for the elimination of one more independent
variable. For doing so, we again assume a one-parameter group of scalings of the
variables involved in the system (5.40)–(5.42):

�n ¼ kb1n; �g ¼ kb2g; �F ¼ kb3F; �G ¼ kb4G; �Fw ¼ kb5Fw; �Gw ¼ kb6Gw;

ð5:43Þ

where biði ¼ 1; . . .; 6Þ are the scaling exponents to be determined. The group (5.43)
transforms the system (5.40)–(5.42) to the form

k2b2�2b3 m
@�F
@�g

� �2

�B�n
@�F
@�g

@2�F

@�n@�g
� mþ 1

2

� �
�F
@2�F
@�g2

þB�n
@�F

@�n

@2�F
@�g2

" #

� kb1 þ 2b2�b3�b4
@ �G

@�n

@2�F
@�g2

� @ �G
@�g

@2�F

@�n@�g

� 	
¼ mk3b2�b3

@3�F
@�g3

;

ð5:44Þ

k2b2�b3�b4 ðBþm� 1Þ @
�F

@�g
@ �G
@�g

� B�n
@�F
@�g

@2 �G

@�n@�g
� mþ 1

2

� �
�F
@2 �G
@�g2

þB�n
@�F

@�n

@2 �G
@�g2

� 	

� kb1 þ 2b2�2b4
@ �G

@�n

@2 �G
@�g2

� @ �G
@�g

@2 �G

@�n@�g

� 	
¼ mk3b2�b4

@3 �G
@�g3

;

ð5:45Þ

and
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kb2�b3 @�F
@�g ¼ k�b5 �Fw; kb2�b4 @ �G

@�g ¼ k�b6 �Gw;

k�b3 mþ 1
2

� �
�F � B�n @�F

@�n

h i
þ kb1�b4 @ �G

@�n
¼ 0;

9=
; at �g ¼ 0

@�F
@�g ¼ 0; @ �G

@�g ¼ 0; at �g ¼ 1

9>>=
>>;: ð5:46Þ

The requirement of invariance of the system (5.40)–(5.42) under the group
(5.43) leads to the system of linear algebraic equations in biði ¼ 1; . . .; 6Þ given as

2b2 � 2b3 ¼ b1 þ 2b2 � b3 � b4 ¼ 3b2 � b3; ð5:47Þ

2b2 � b3 � b4 ¼ b1 þ 2b2 � 2b4 ¼ 3b2 � b4; ð5:48Þ

b2 � b3 ¼ �b5; b2 � b4 ¼ �b6; b1 � b4 ¼ �b3: ð5:49Þ

Again, before solving the system (5.47)–(5.49) the selection of the leaving
variable is mandatory. In view of the expressions of n and η given in Eq. (5.38), the
natural choice is n. In the group of scalings (5.43), b1 is the scaling exponent of the
variable n. The zero and nonzero character of b1 is again of particular importance in
the construction of new variables. Before we continue with the solution of the
system (5.47)–(5.49), it is worth remembering that we are already proceeding the
Case I a1 6¼ 0ð Þ and the ongoing process is actually a part of Case I. Therefore, the
cases b1 6¼ 0 and b1 ¼ 0 need to be designated as the subcases of Case I. Thus,
from now onward the cases b1 6¼ 0 and b1 ¼ 0 shall, respectively, be designated as

Case I; Subcase I a1 6¼ 0; b1 6¼ 0ð Þ,
Case I; Subcase II a1 6¼ 0; b1 ¼ 0ð Þ.

Case I; Subcase I a1 6¼ 0; b1 6¼ 0ð Þ
The nonzero character of b1 allows the division of the system (5.47)–(5.49) by b1
everywhere. This results in the following system of algebraic equations

2
b2
b1

� 2
b3
b1

¼ 1þ 2
b2
b1

� b3
b1

� b4
b1

¼ 3
b2
b1

� b3
b1

; ð5:50Þ

2
b2
b1

� b3
b1

� b4
b1

¼ 1þ 2
b2
b1

� 2
b4
b1

¼ 3
b2
b1

� b4
b1

; ð5:51Þ

b2
b1

� b3
b1

¼ � b5
b1

;
b2
b1

� b4
b1

¼ � b6
b1

; 1� b4
b1

¼ � b3
b1

; ð5:52Þ

which ultimately solves as

b3
b1

¼ � b2
b1

;
b4
b1

¼ 1� b2
b1

;
b5
b1

¼ �2
b2
b1

;
b6
b1

¼ 1� 2
b2
b1

: ð5:53Þ
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Having this solution in hand, the new variables are thus constructed as

f ¼ n
n�1
2 g; F n; gð Þ ¼ n

n�1
2 f fð Þ; G n; gð Þ ¼ n

nþ 1
2 g fð Þ; ð5:54Þ

where the wall profiles read as

Fw nð Þ ¼ ann�1; Gw nð Þ ¼ bnn: ð5:55Þ

where n denotes an arbitrary (dimensionless) constant constructed as

1� 2
b2
b1

¼ n: ð5:56Þ

Furthermore, the constants a and b are also arbitrary, having suitable dimensions
which are usually referred to as the stretching or shrinking rates. Consequently, the
system (5.40)–(5.42) transforms as:

m� B n� 1ð Þð Þf 02 � mþ 1
2

� B
n� 1
2

� �� �
ff 00 � nþ 1

2

� �
gf 00 þ n� 1ð Þf 0g0

¼ mf 000;

ð5:57Þ

m� 1� B n� 1ð Þð Þf 0g0 � mþ 1
2

� B
n� 1
2

� �� �
fg00 � nþ 1

2

� �
gg00 þ ng02 ¼ mg000;

ð5:58Þ

and

f 0 ¼ a; g0 ¼ b; mþ 1
2 � B n�1

2

� �� �
f þ nþ 1

2

� �
g ¼ 0; at f ¼ 0

f 0 ¼ 0; g0 ¼ 0; at f ¼ 1
�
; ð5:59Þ

where the ′ denotes differentiation with respect to f. Clearly, the system (5.57)–
(5.59) is a system of ordinary differential equations from where the, absorbed
(previous), independent variables have completely been eliminated.

Since the scaling groups of one-parameter transformations have been utilized,
therefore, the reduction in the number of independent variables at each step is also
one. This is the reason for the elimination of x and z in two steps. However, it is also
possible to eliminate more than one variable at once; for doing so, one must utilize
the multi-parameter group of scalings. The details of such a procedure can be found
in Refs. [15, 16]. After having determined the suitable similarity transformations
due to one-parameter group of scalings, it then stays not necessary to transform the
original system (5.26)–(5.28) to the self-similar form (5.57)–(5.59) in two steps,
essentially. An integrated set of similarity transformations is possible to obtain by
combining Eqs. (5.38) and (5.54) as
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f ¼ z
n�1
2 x

m�1
2 �B n�1

2ð Þy; w ¼ z
n�1
2 x

mþ 1
2 �B n�1

2ð Þf fð Þ; / ¼ z
nþ 1
2 x

m�1
2 �B n�1

2ð Þg fð Þ; ð5:60Þ

which can directly transform the system (5.26)–(5.28) to the self-similar form
(5.57)–(5.59) in a single step. Similarly, the obtained wall velocities after com-
bining Eqs. (5.39) and (5.55) in their final form read as

uw ¼ axm�B n�1ð Þzn�1

ww ¼ bxm�1�B n�1ð Þzn

�
: ð5:61Þ

Case I; Subcase II ða1 6¼ 0; b1 ¼ 0Þ
Substitution of b1 ¼ 0 does not affect the system (5.47)–(5.49) by any large. The
resulting system does admit a non-trivial solution of the form

b3 ¼ �b2; b4 ¼ �b2; b5 ¼ �2b2; b6 ¼ �2b2: ð5:62Þ
This solution can also be recovered by multiplying Eq. (5.53) by b1 and sub-

stituting b1 ¼ 0 subsequently. In this case, the new variables are constructed as

f ¼ g
eb2n

; f fð Þ ¼ F n; gð Þ
eb3n

; g fð Þ ¼ G n; gð Þ
eb4n

; ð5:63Þ

and the wall velocities come out of the form

a � const: ¼ Fw nð Þ
eb5n

; b � const: ¼ GwðnÞ
eb6n

; ð5:64Þ

where a and b are constants having suitable dimensions. With the aid of Eq. (5.62),
one explicitly finds from Eqs. (5.63) and (5.64) that

f ¼ e
n
2ng; F n; gð Þ ¼ e

n
2nf fð Þ; G n; gð Þ ¼ e

n
2ng fð Þ; ð5:65Þ

and

Fw nð Þ ¼ aenn; Gw nð Þ ¼ benn; ð5:66Þ

where n is an arbitrary (dimensionless) constant defined by

�2b2 ¼ n: ð5:67Þ

The use of similarity variables (5.65) transforms the system of partial differential
Eqs. (5.40) and (5.41) to the system of ordinary differential equations, given by

mf 02 � mþ 1
2

� �
ff 00 � n

2
gf 00 þ nf 0g0 � Bnn f 02 � 1

2
ff 00

� �
¼ mf 000; ð5:68Þ
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Bþm� 1ð Þf 0g0 � mþ 1
2

� �
fg00 � n

2
gg00 þ ng02 � Bnn f 0g0 � 1

2
fg00

� �
¼ mg000;

ð5:69Þ

from which the previous variable n has not been eliminated completely. However,
the elimination of n can be ensured by choosing the arbitrary constant

B ¼ 0: ð5:70Þ

This is important to remember that this particular choice of B is particular to this
case only and does not apply to other cases in general. By doing so, the self-similar
system reads as:

mf 02 � mþ 1
2

� �
ff 00 � n

2
gf 00 þ nf 0g0 ¼ mf 000; ð5:71Þ

m� 1ð Þf 0g0 � mþ 1
2

� �
fg00 � n

2
gg00 þ ng02 ¼ mg000: ð5:72Þ

The use of the similarity variables (5.65) and the so determined wall velocity
laws (5.66) transform the boundary conditions (5.42) to the form

f 0 ¼ a; g0 ¼ b; mþ 1
2

� �
f þ n

2 g ¼ 0; at f ¼ 0
f 0 ¼ 0; g0 ¼ 0; at f ¼ 1

�
: ð5:73Þ

The unified transformations for this case are obtained by combining (5.38) and
(5.65) as

f ¼ x
m�1
2 e

n
2zx

�B
y; w ¼ x

mþ 1
2 e

n
2zx

�B
f fð Þ; / ¼ xBþ m�1

2 e
n
2zx

�B
g fð Þ;

which cannot serve as similarity transformation until B ¼ 0: Owing to Eq. (5.70),
the above transformation takes the form

f ¼ x
m�1
2 e

n
2zy; w ¼ x

mþ 1
2 e

n
2zf fð Þ; / ¼ x

m�1
2 e

n
2zg fð Þ; ð5:74Þ

which can directly transform original Eqs. (5.26)–(5.28) to the self-similar form
(5.71)–(5.73). Accordingly, the compact form of the wall velocity functions can
also be obtained by combining Eq. (5.66) with Eq. (5.39). Consequently, after
incorporating Eq. (5.70), one finally obtains

uw ¼ axmenz; ww ¼ bxm�1enz: ð5:75Þ

To this end, the Case I ða1 6¼ 0Þ and the two subcases of it corresponding to
b1 6¼ 0 and b1 ¼ 0 which were named as “Case I; Subcase I” and “Case I;
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Subcase II,” respectively, have been completed. Further proceeding of the proce-
dure requires the reconsideration of the system (5.33)–(5.35) for the case a1 ¼ 0. In
the series of “main cases,” this case is designated as “Case II ða2 ¼ 0Þ.”
Case II ða2 ¼ 0Þ
With the substitution a2 ¼ 0, the system (5.33)–(5.35) admits the (non-trivial)
solution of the form

a4 ¼ �a2; a5 ¼ a3 � a2; a6 ¼ �2a2; a7 ¼ �2a2 þ a3; ð5:76Þ

where a2 and a3 are the free variables, hence arbitrary. Substituting

�2a2 ¼ m and a3 ¼ B; ð5:77Þ

the new variables, constructed in the same way as did in the previous cases, come
out to be

n ¼ e�Bxz; g ¼ e
m
2xy; w ¼ e

m
2xF n; gð Þ; / ¼ e Bþ m

2ð ÞxG n; gð Þ: ð5:78Þ
The wall velocities also involve the exponential functions and come out of the

form

uw ¼ emxFw nð Þ; ww ¼ eðBþmÞxGw nð Þ: ð5:79Þ

With the aid of these new variables, the original system (5.26)–(5.28) transforms
to the following new system involving two independent variables:

m
@F
@g

� �2

�m
2
F
@2F
@g2

� @G
@n

@2F
@g2

þ @G
@g

@2F
@n@g

� Bn
@F
@g

@2F
@n@g

� @F
@n

@2F
@g2

� �
¼ m

@3F
@g3

;

ð5:80Þ

Bþmð Þ @F
@g

@G
@g

� m
2
F
@2G
@g2

� @G
@n

@2G
@g2

þ @G
@g

@2G
@n@g

� Bn
@F
@g

@2G
@n@g

� @F
@n

@2G
@g2

� �
¼ m

@3G
@g3

;

ð5:81Þ

@F
@g ¼ Fw nð Þ; @G

@g ¼ Gw nð Þ; m
2 F � Bn @F

@n þ @G
@n ¼ 0; at g ¼ 0

@F
@g ¼ 0; @G

@g ¼ 0; at g ¼ 1

)
: ð5:82Þ

In order to eliminate n from the system (5.80)–(5.82), one again requires to
follow the same procedure as was performed in Case I. It is worth noting that the
names of the variables in (5.80)–(5.82) are, however, exactly the same as they are in
(5.40)–(5.42), but are entirely different, in actual. Therefore, for the sake of doing
mathematics the similarity in their symbolic names can be utilized in order to avoid
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the replication of similar things. In this way, staying limited to their symbolic names,
we employ the group (5.43) to the above system (5.80)–(5.82). Transforming
Eqs. (5.80)–(5.82) to the form of new variables, defined in Eq. (5.43), and imposing
the restriction of invariance, one is finally left with the system of following linear
equations:

2b2 � 2b3 ¼ b1 þ 2b2 � b3 � b4 ¼ 3b2 � b3; ð5:83Þ

2b2 � b3 � b4 ¼ b1 þ 2b2 � 2b4 ¼ 3b2 � b4; ð5:84Þ

b2 � b3 ¼ �b5; b2 � b4 ¼ �b6; b1 � b4 ¼ �b3: ð5:85Þ

Following the previous practice, let us decide to eliminate the variable n for
which two cases arise regarding the zero and nonzero character of b1. The cases
b1 6¼ 0 and b1 ¼ 0 shall be referred to as the Subcase I and Subcase II, respectively.
In the perspective of Case II ða1 ¼ 0Þ, they shall finally be referred to as “Case II;
Subcase I” for a1 ¼ 0 & b1 6¼ 0 and “Case II; Subcase II” for a1 ¼ 0 & b1 ¼ 0.

Case II; Subcase I ða1 ¼ 0; b1 6¼ 0Þ
Interestingly, the system (5.83)–(5.85) is the same as (5.47)–(5.49). Utilization of the
assumption b1 6¼ 0 in the system (5.83)–(5.85) produces the same non-trivial
solution as given in Eq. (5.53) with b2

b1
as an arbitrary constant. Therefore, the con-

struction of new variables follows immediately from Eq. (5.54) and the expressions
of the wall velocities are also exactly the same as given in Eq. (5.55). Thus, the new
variables in this case read as

f ¼ n
n�1
2 g; F n; gð Þ ¼ n

n�1
2 f fð Þ; G n; gð Þ ¼ n

nþ 1
2 g fð Þ; ð5:86Þ

and the wall velocities come out to be

Fw nð Þ ¼ ann�1; Gw nð Þ ¼ bnn; ð5:87Þ

with a and b serving as (pure) constants having suitable dimensions. In terms of
new variables, Eqs. (5.80) and (5.81) take the form

ðm� B n� 1ð ÞÞf 02 � 1
2

m� B n� 1ð Þð Þff 00 � nþ 1
2

� �
gf 00 þ n� 1ð Þf 0g0 ¼ mf 000;

ð5:88Þ

ðm� B n� 1ð ÞÞf 0g0 � 1
2

m� B n� 1ð Þð Þfg00 � nþ 1
2

� �
gg00 þ ng02 ¼ mg000; ð5:89Þ

and the boundary conditions (5.82), with the aid of Eq. (5.87), transform as
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f 0 ¼ a; g0 ¼ b; 1
2 m� B n� 1ð Þð Þf þ nþ 1

2

� �
g ¼ 0; at f ¼ 0

f 0 ¼ 0; g0 ¼ 0; at f ¼ 1
�
: ð5:90Þ

Combination of Eq. (5.86) with Eq. (5.78) and of Eq. (5.87) with Eq. (5.79)
gives, respectively, the unified form of the similarity variables and the associated
wall velocities, as

f ¼ z
n�1
2 e

1
2ðm�Bðn�1ÞÞxy; w ¼ z

n�1
2 e

1
2ðm�Bðn�1ÞÞxf fð Þ; / ¼ z

nþ 1
2 e

1
2ðm�Bðn�1ÞÞxg fð Þ;

ð5:91Þ

and

uw ¼ azn�1eðm�Bðn�1ÞÞx; ww ¼ bzneðm�Bðn�1ÞÞx: ð5:92Þ

It is evident that the system (5.88)–(5.90) is in the self-similar form and can also
be recovered by applying the transformation (5.91) directly to the system (5.26)–
(5.28).

Case II; Subcase II ða1 ¼ 0; b1 ¼ 0Þ
The choice b1 ¼ 0 is the same as that in the case “Case I; Subcase II.” Therefore,
the system of linear Eqs. (5.83)–(5.85), at b1 ¼ 0, recovers to the same results as
given in Eq. (5.62). Consequently, the new variables in the present case are exactly
the same as those constructed in Eq. (5.65), in symbolic sense. Just to avoid any
confusion, we prefer to write here the new variables of the present case given by

f ¼ e
n
2ng; F n; gð Þ ¼ e

n
2nf fð Þ; G n; gð Þ ¼ e

n
2ng fð Þ; ð5:93Þ

which are, of course, of the same form as given in Eq. (5.65), but are entirely
different (from 5.65) in physical sense because of the different definitions of n and g
in these two cases. Similarly, the wall velocity profiles of this case, given by

Fw nð Þ ¼ aenn; Gw nð Þ ¼ benn; ð5:94Þ

are also similar to those given in Eq. (5.66), in symbolic sense. According to the
variables defined in Eq. (5.93) and the wall velocities given in Eq. (5.94), the
system (5.80)–(5.82) readily transforms to the form

mf 02 � m
2
ff 00 � n

2
gf 00 þ nf 0g0 � Bnn f 02 � 1

2
ff 00

� �
¼ mf 000; ð5:95Þ

Bþmð Þf 0g0 � m
2
fg00 � n

2
gg00 þ ng02 � Bnn f 0g0 � 1

2
fg00

� �
¼ mg000; ð5:96Þ
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with

f 0 ¼ a; g0 ¼ b; 1
2 m� Bnnð Þf þ 1

2 ng ¼ 0; at f ¼ 0
f 0 ¼ 0; g0 ¼ 0; at f ¼ 1

�
: ð5:97Þ

Again, similar to the case “Case I; Subcase II” the system (5.95)–(5.97) is not
free from the previous variable n. Choosing B ¼ 0, the self-similar system for the
present case furnishes as

mf 02 � m
2
ff 00 � n

2
gf 00 þ nf 0g0 ¼ mf 000; ð5:98Þ

mf 0g0 � m
2
fg00 � n

2
gg00 þ ng02 ¼ mg000: ð5:99Þ

f 0 ¼ a; g0 ¼ b; mf þ ng ¼ 0; at f ¼ 0
f 0 ¼ 0; g0 ¼ 0 at f ¼ 1

�
: ð5:100Þ

Unification of Eqs. (5.93) and (5.78) gives the complete set of similarity vari-
ables (under the assumption B ¼ 0Þ

f ¼ e
1
2ðmxþ nzÞy; w ¼ e

1
2ðmxþ nzÞf fð Þ; / ¼ e

1
2ðmxþ nzÞg fð Þ; ð5:101Þ

due to which Eqs. (5.26)–(5.28) can directly be transformed to the system (5.98)–
(5.100) in a single step. Combination of Eqs. (5.94) and (5.79) gives the final form
of the velocity functions (after substituting B ¼ 0Þ

uw ¼ aemxþ nz; ww ¼ bemxþ nz: ð5:102Þ

In the above calculations, the self-similar equations of the generalized
three-dimensional flow, due to the bidirectional motion of the flexible continuous
sheet, have been furnished. The utilized group theoretical approach splits itself into
four separate cases and produces different self-similar systems for each case.
Normally, in a case, when there is only one variable to be eliminated, as in the
two-dimensional case, Sect. 5.1, two types of the wall velocity function are
obtained, namely the power-law (given in Eq. 5.14) and the exponential form
(given in Eq. 5.20). The nonzero case of the scaling exponent of the leaving
variable results in the power-law wall velocity, and the vanishing value of such
scaling exponent produces the exponential form of the wall velocity in order to end
up with a self-similar system. In other words, this can also be rephrased as that these
two cases corresponding to zero and nonzero character of the scaling variable
promise to end up with a self-similar system provided that the wall velocities must
follow either exponential form or the power-law form, respectively. From here, it
can easily be perceived that if the self-similar solution to the boundary-layer
equations exists, the wall velocities (or reference velocities) must follow either
power-law or exponential form, in general. The converse of this does, however, not
apply in general. This is because the self-similarity of the involved partial
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differential equations is strictly associated with the requirement of their reduction to
the ordinary differential equations, free from the previous variables completely.
From Eqs. (5.68)–(5.69) and Eqs. (5.95)–(5.96), it is obvious that the power-law
or exponential form of the wall velocities did not guarantee the self-similarity of
the whole system. Thus, in general, the requirement of the wall velocities to follow
the power-law or exponential forms is the first ingredient and the requirement of
reduction of the governing system of pdes to an equivalent system of odes by
eliminating the previous variables completely is the second ingredient. These two
fundamental ingredients of self-similarity are actually executed due to the similarity
transformations. Hence, the appropriate wall velocity functions (power-law or
exponential) and the suitable similarity transformations along with the condition of
thorough elimination of the previous variables from the transformed system in new
variables ensure the self-similarity of the boundary-layer equations. If any one of
these ingredients is not fully achieved, the self-similarity cannot be guaranteed.

Finally, regarding the forms of wall the velocity functions in the perspective of
self-similarity, it is concluded that wall velocities can never take any form other
than the power-law or exponential ones. Neither a linear combination of the two
families nor a linear combination of any two particular entities of the same family
can be taken, in general, in order to obtain the self-similar solution. For example,
the self-similar solution exists for the famous Falkner–Skan [9] equation if the
potential flow follows the power-law form, i.e., u1 xð Þ ¼ axm: The value m ¼ 0
recovers the Blasius [17] case u1 xð Þ ¼ U0 ¼ const:, while the value m ¼
1ðu1 xð Þ ¼ axÞ recovers the wedge flow. It is well known that the similarity
solution exists in these two cases. However, there is no self-similar solution for the
combination of these two, that is, when the potential velocity is a combination of
the two u1 xð Þ ¼ U0 � axð Þ. This type of potential flow is particular to the famous
Howarth’s [18] non-similar flow.

In the currently treated three-dimensional flow, there were two variables x & z to
be eliminated. In this case too, there were two choices for the wall velocities to
follow, namely the power-law and the exponential one. In this case, the product of
the two families has appeared as another possible form of the wall velocities as can
be seen in Eqs. (5.61), (5.75), (5.92), and (5.102). This is because of the fact that
the variables have been eliminated successively, and the exponential and the
power-law cases of the descendent variables are automatically combined with either
the exponential or the power-law cases of the preceding elimination. That is, the
power-law in x has been combined by the power-law in z (Eq. 5.61) and expo-
nential in z (Eq. 5.75); similarly, exponential wall velocity in x has been combined
with the power-law in z (Eq. 5.92) and exponential in z (Eq. 5.102). Thus, the wall
velocity functions defined in Eqs. (5.61), (5.75), (5.92), and (5.102) define the
criterion of self-similarity for the wall velocities in three-dimensional flow due to a
moving continuous flat surface. If the wall velocities deviate from the forms given
in these equations, the self-similarity is not guaranteed.
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5.3 Axially Symmetric Flow

In the previous two sections, the planner cases of two- and three-dimensional flows
near the flat surfaces have been considered. In the case of axially symmetric flows,
the solid surface of interest would be the solid body of revolution either flat or
non-flat. In the case of non-flat surfaces, the surface curvature imparts significant
effects on the flow characteristics within the boundary-layer. Consequently, the
surface curvature also plays an important role while determining the self-similar
wall velocities. A long, slim continuous cylinder is a trivial example of the body of
revolution involving surface curvature. On the other hand, the circular flat disk is
the example where the surface involves no curvature besides being an axially
symmetric body of revolution. Thus, the circular cylinder and the circular disk shall
be the objects of our interest in this section. Different from the previous two planner
cases, some important facts shall be revealed regarding the cylinder and the disk
geometries in view of the similarity criterion because of the axially symmetric
nature of these flows.

5.3.1 Moving Cylinder

Consider a long continuous solid cylinder, having symmetry about the z-axis,
immersed in a viscous and incompressible fluid and moving with velocity u ¼
uwðzÞ in the steady state. The circular cylinder might be of constant as well as of
variable cross section. Therefore, in general, the radius of the cylinder is taken as
RðzÞ, varying in z. The schematic of the flow and the chosen system of coordinates
is shown in Fig. 5.3. The governing equations in this case are the same as (2.13)
and (2.14) subject to the boundary condition

u ¼ uw zð Þ; v ¼ 0; at r ¼ R zð Þ
u ¼ 0; at r ¼ 1

�
: ð5:103Þ

Introducing the stream function of the form

u ¼ 1
r
@w
@r

; v ¼ � 1
r
@w
@z

; ð5:104Þ

due to which Eq. (2.13) satisfies identically and Eq. (2.14) transforms to

1
r
@w
@r

@2w
@r@z

þ 1
r2
@w
@r

@w
@z

� 1
r
@w
@z

@2w
@r2

¼ m
1
r2
@w
@r

� 1
r
@2w
@r2

þ @3w
@r3

� 	
: ð5:105Þ

The procedure of finding the self-similarity criterion in this case is the same as
implemented in the previous two sections. We, therefore, assume a one-parameter
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group of scaling transformations for the variables involved in Eqs. (5.105) and
(5.103), of the form

�z ¼ ka1z; �r ¼ ka2r; �w ¼ ka3w; �uw ¼ ka4uw; �R ¼ ka5R: ð5:106Þ

The restriction of invariance of the governing system under the group of scalings
will be imposed in order to get a system of linear equations in the scaling expo-
nents. The non-trivial solution of this system will lead toward the construction of
new variables. In view of the boundary-layer character, the leaving variable must be
z. Accordingly, the two cases arise regarding the zero and nonzero character of the
scaling exponent a1. The details of determining the new variables have been
omitted in order to avoid the repetition of previously exercised steps. Therefore, the
similarity variables for the case a1 6¼ 0 are given directly as

g ¼ rz
m�1
2 ; w ¼ zf gð Þ: ð5:107Þ

The wall velocity and the cylinder radius come out of the form

uw ¼ azm; R zð Þ ¼ R0z
1�m
2 ; ð5:108Þ

where R0 denotes the fixed reference radius of the cylinder corresponding to the
case m ¼ 1.

With the help of transformation (5.107), Eq. (5.105) transforms as

m
f 0

g

� �2

� f
g

f 00

g
� f 0

g2

� �
¼ m

1
g
d
dg

g
d
dg

f 0

g

� �� �
; ð5:109Þ

and boundary conditions (5.103), in view of Eqs. (5.107)–(5.108), take the form

f 0 ¼ aR0; f ¼ 0; at g ¼ R0

f
0 ¼ 0; at g ¼ 1

�
: ð5:110Þ

Fig. 5.3 Axisymmetric flow
and the associated system of
coordinate shown
schematically
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Equations (5.109) and (5.110) are completely free from the previous variables;
therefore, they can be regarded as self-similar. Consequently, Eq. (5.107) con-
tributes as the similarity transformations to this case.

Equation (5.108) contains interesting information regarding the similarity cri-
terion of this case. The power-law wall velocity has been obtained for the case
a1 6¼ 0 as it has also happened in the previous two sections. The different thing in
this case is the involvement of z in the expression of R for m 6¼ 1. For m ¼ 1, one is
left with the linear wall velocity case (see Eq. 5.108) for which the radius of
cylinder stays fixed. Corresponding to the other values of m, the particular con-
struction of η does not allow the radius of the cylinder to stay constant. This means
that the nonlinear stretching of the cylinder is possible only if the cylinder radius
does not stay constant but follows the power-law form (defined in Eq. 5.108),
analogous to the boundary-layer thickness. The boundary-layer thickness in the
nonlinear stretching flow varies as z

1�m
2 which actually guides the body contour of

the axially symmetric body of revolution to follow the same law, i.e., z
1�m
2 . This

simply reflects that the similarity solution is possible for the power-law velocities if
the cylindrical surface does also vary in the same manner as does the boundary-
layer thickness; otherwise, the solution must be non-similar. Another, worth noting,
difference between the planner and the axisymmetric flows is the case of constant
wall velocity. In the case of moving sheet, the self-similar Sakiadis flow is
recovered immediately, by taking m ¼ 0, without imposing any restriction on the
sheet’s thickness. On the other hand, the self-similar solution is, though recovered,
in the cylinder case for m ¼ 0 but with a compromise on the thickness of cylinder.
If one forces the cylinder’s radius to be constant (for m ¼ 0Þ, the self-similarity is
lost and the classical Sakiadis’ non-similar flow due to a moving continuous
cylinder is recovered. This was in fact the reason behind the utilization of
approximate integral method by Sakiadis to his (non-similar) flow. Very few
audiences are aware of the fact that Sakiadis started the cylinder case with the
non-similar flow. Hence, the radius of the cylinder can be made to stay constant
(only) if the cylinder is being stretched with linear velocity, in order to ensure the
existence of self-similar solution. In this way, the case of moving cylinder is much
more interesting in comparison with the two-dimensional case and needs to be
explored completely. So far, the available literature concerning the continuous
cylinder is strictly limited to the cases m ¼ 0 and m ¼ 1, only.

In the case a1 ¼ 0, the exponential forms of wall velocity and the cylinder radius
are obtained, which are given by

uw ¼ aemz; R zð Þ ¼ R0e�
m
2z: ð5:111Þ

The corresponding similarity variables are constructed as

g ¼ re
m
2z; w ¼ f gð Þ; ð5:112Þ
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which transform Eq. (5.105) to the form

m
f
0

g

� �2

¼ m
1
g
d
dg

g
d
dg

f
0

g

� �� �
: ð5:113Þ

The boundary conditions (5.103), in view of Eqs. (5.111)–(5.112), transform as

f 0 ¼ aR0 at g ¼ R0

f 0 ¼ 0; at g ¼ 1
�
: ð5:114Þ

Thus in the case of continuous cylinder too, the power-law and exponential
forms are the ultimate wall velocities in order for the existence of self-similar
solution. This fact will also be proved in Chap. 10 while modeling the non-similar
flows. Regarding the nonlinear stretching/shrinking of the cylinder, the curvilinear
system of coordinates as considered in Chap. 10 is recommended. The conventional
cylindrical system of coordinates, however, creates certain ambiguities in the
mathematical formulation.

5.3.2 Radial Motion of Flexible Disk

Consider a flexible flat circular disk of infinite radius immersed in an incom-
pressible viscous fluid. The disk geometry and the associated system of coordinates
are shown in Fig. 5.4. Following the notation convention practiced in the existing
literature, particular to the disk flow, r is taken as the radial coordinate and z is taken
as the axial coordinate where u and w denote the velocity components along these
axes, respectively. The disk is being stretched or shrunk in the radial direction with
a velocity uwðrÞ as shown in Fig. 5.4. Because of no involvement of any circular
motion, the angular component of velocity is zero. Therefore, the suitable velocity
vector for this flow in the steady-state form reads as

V ¼ u r; zð Þ; 0;wðr; zÞ½ �; ð5:115Þ

due to which the governing equations of this flow are the same as given in
Eqs. (2.15) and (2.16). The appropriate boundary conditions read as

u ¼ uw rð Þ; w ¼ 0; at z ¼ 0
u ¼ 0; at z ¼ 1

�
: ð5:116Þ

Introducing the stream function wðr; zÞ which is related to the velocity com-
ponents as
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u ¼ 1
r
@

@z
rwð Þ; w ¼ � 1

r
@

@r
rwð Þ: ð5:117Þ

Because of Eq. (5.117), the equation of continuity (2.15) is satisfied identically
and Eq. (2.16) takes the form

@w
@z

@2w
@r@z

� w
r
@2w
@z2

� @w
@r

@2w
@z2

¼ m
@3w
@z3

: ð5:118Þ

The group theoretical procedure will be employed to Eqs. (5.118) and (5.116) in
order to find the self-similarity criterion for this flow. The variables involved in this
system are r; z;w and uw for which the scaling group reads as

�r ¼ ka1r; �z ¼ ka2z; �w ¼ ka3w; �uw ¼ ka4uw: ð5:119Þ

The substitution of Eq. (5.119) into the system (5.118) and (5.116) subject to the
condition of invariance under (5.119) gives rise to a system of simultaneous
algebraic equations, similar to the previous problems. In this case, we decide
to eliminate r due to which two cases arise for the values of a1, namely
a1 6¼ 0 and a1 ¼ 0: In the case a1 6¼ 0; the similarity variables so constructed are
(by omitting the details of their derivation)

g ¼ r
m�1
2 z; w ¼ r

mþ 1
2 f gð Þ; ð5:120Þ

which successfully transform Eq. (5.118) to the self-similar form, given by

mf 02 � mþ 3
2

� �
ff 00 ¼ mf 000; ð5:121Þ

subject to the restriction that the wall velocity must follow the power-law form
defined by

uw ¼ arm: ð5:122Þ

Fig. 5.4 Disk geometry and
the chosen system of
coordinates
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Accordingly, the boundary conditions (5.116) transform as

f 0 ¼ a; f ¼ 0; at g ¼ 0
f
0 ¼ 0; at g ¼ 1

�
: ð5:123Þ

Thus, Eqs. (5.121) and (5.123) are in self-similar form based on the condition
that the wall velocity must follow the power-law form given in Eq. (5.122).

In the case a1 ¼ 0, the group theoretical procedure ends up with the transfor-
mations involving exponential form, such as

g ¼ e
m
2rz; w ¼ e

m
2rf gð Þ; ð5:124Þ

with the wall velocity following the exponential form, given by

uw ¼ aemr: ð5:125Þ

Utilization of the transformations (5.124) transforms Eq. (5.118) to the form

mf 02 � 1
r
ff 00 � m

2
ff 00 ¼ mf 000: ð5:126Þ

Obviously, the variable r has not been eliminated completely from the equation
after the utilization of Eq. (5.124). This simply reflects that the transformations
(5.126) cannot transform the Eq. (5.118) to the self-similar form and implies that the
self-similar solution is not possible in this case. Thus, in the case of circular disk,
the similarity solutions are limited to the power-law case only and the exponential
wall velocities fail to produce the self-similar solution. The mathematical reason
behind this fact is the appearance of r as a variable coefficient in the second term of
Eq. (5.126) which is impossible to eliminate.

5.4 Restriction on Wall Suction/Injection

This has already been explored in the previous sections that the self-similar solu-
tions are the limited solutions and are possible only if the wall velocities follow
certain particular forms. In the case of cylinder, the radius of the cylinder also
undergoes certain restrictions in addition to the wall velocities in order to ensure the
self-similarity. The similar situation persists for the cases when one also takes into
account the wall suction/injection in the boundary-layer. This section is devoted to
the determination of those particular wall suction/injection profiles which do not
break the self-similarity of the considered flow.

Corresponding to the two-dimensional and three-dimensional cases, the normal
wall velocity shall be denoted by vwðxÞ and vwðx; zÞ, respectively. Being a function
of x and ðx; zÞ, the wall velocities vwðxÞ and vwðx; zÞ serve as variable quantities in
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the governing system. Similar to the other variable quantities, either dependent or
independent, the considered groups of scalings shall be appended by another
scaling transformation of the variable vw. In doing so, the obtained system of linear
equations (due to the restriction of invariance) will also be increased by one more
equation resulting from the boundary condition v ¼ vw at y ¼ 0 in Sects. 5.1 and
5.2. Consequently, the non-trivial solution of the system of such algebraic equations
in scaling exponents will also include the solution for the scaling exponent of vw
which will subsequently be utilized in the construction of corresponding new
variables.

Particular to Sects. 5.1 and 5.2, the scaling group for vw could be taken of the
form

�vw ¼ kcvw; ð5:127Þ

where c denotes the scaling exponent. Combining Eq. (5.127) with the group (5.8)
and following the subsequent procedure executed in Sect. 5.1, the system (5.11) is
appended by an additional linear equation of the form

a1 � a3 ¼ �c; ð5:128Þ

which, for the case a1 6¼ 0, admits the solution

� c
a1

¼ a2
a1

: ð5:129Þ

In view of Eq. (5.14), the wall velocity vw xð Þ comes out of the form

vw xð Þ ¼ dx
m�1
2 ; ð5:130Þ

where d denotes a pure constant having suitable dimensions. The positive and
negative values of d characterize the injection and suction velocities, respectively,
while d ¼ 0 designates no suction or injection at the wall. It is important to note
that the power-law form of the wall velocity (given in Eq. 5.14) does also require
the normal wall velocity to follow the same (power-law) form in order to ensure the
self-similarity. The same is the case with exponential wall velocity (5.20) which
requires the suction/injection velocity also to follow the exponential form, given by

vw xð Þ ¼ de
m
2x: ð5:131Þ

The trend follows similarly in Sect. 5.2 where the suction/injection velocity not
only follows the power-law and exponential forms but also is a product of the two.
The details have, however, been omitted completely for the sake of brevity.
Corresponding to the every case of Sect. 5.2, the suction/injection velocity has been
obtained as follows:
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Case I; Subcase I

vw x; zð Þ ¼ dx
m�1
2 �B n�1

2ð Þzn�1
2 ; ð5:132Þ

Case I; Subcase II

vw ¼ dx
m�1
2 e

n
2z; ð5:133Þ

Case II; Subcase I

vw x; zð Þ ¼ de
1
2 m�Bðn�1Þð Þxz

n�1
2 ; ð5:134Þ

Case II; Subcase II

vw x; zð Þ ¼ de
1
2 mxþ nzð Þ: ð5:135Þ

Accordingly, the corresponding boundary conditions at the wall also modify as

1
2

mþ 1� B n� 1ð Þð Þf ð0Þþ nþ 1
2

gð0Þ ¼ �d; ð5:136aÞ

mþ 1
2

� �
f ð0Þþ n

2
gð0Þ ¼ �d; ð5:136bÞ

1
2

m� B n� 1ð Þð Þf ð0Þþ nþ 1
2

gð0Þ ¼ �d; ð5:136cÞ

1
2

mf ð0Þþ ngð0Þð Þ ¼ �d; ð5:136dÞ

which, respectively, refer to the cases “Case I; Subcase I,” “Case I; Subcase II,”
“Case II; Subcase I,” and “Case II; Subcase II.” The corresponding boundary
conditions of the two-dimensional case can also be recovered from Eq. (5.136a)–
(5.136d).

The cases of axially symmetric flow due to continuous cylinder or circular
flexible disk follow in the similar manner. In the case of continuous cylinder, when
the surface velocity obeys the power-law profile the second condition in Eq. (5.110)
at g ¼ R0 modifies as

f ¼ �dR0: ð5:137Þ
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In the case of circular flexible disk, the second condition in Eq. (5.124) at g ¼ 0
modifies as

mþ 3
2

f ð0Þ ¼ �d; ð5:138Þ

where the wall velocity obeys power-law profile.
By the end of this chapter, the criterion of self-similarity for the planner and the

axisymmetric cases has in general been derived. The wall velocities, other than the
derived ones, will make the flow non-similar. The power-law, exponential, and a
product of the two have been discovered for the three-dimensional flow, whereas
the exponential wall velocity has been extended for various powers of the already
known exponential wall law in the two-dimensional case. Regarding the axisym-
metric flow due to moving cylinder, the nonlinear and exponential stretching or
shrinking have been discovered. The case of linear stretching or shrinking has been
extended to the nonlinear one in the case of circular flexible disk. In what follows,
the determination of self-similarity criterion regarding the wall velocities in the
above-named flow situations has completely been discovered.
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Chapter 6
Viscous Flow Due
to Accelerated/Decelerated Stretching
Surfaces

The criterion of self-similarity regarding the stretching or shrinking wall velocities
has been determined in the previous chapter including the cases of two-dimensional,
three-dimensional, and axially symmetric flows. The so-determined particular
power-law and exponential wall velocities have been observed to be responsible for
the existence of self-similarity in the above-named flows. As a matter of fact, the
governing equations in this chapter are the ordinary differential equations (due to the
self-similarity) which have been solved numerically using the MATLAB built-in
package, commonly known as bvp4c. In this regard the self-similar systems obtained
in the previous chapter shall be made dimensionless in order to facilitate the flow
analysis. The ranges of the power-law or exponential index regarding the existence
of solution and the regions of multiple solutions have also been identified in some
cases. In some appropriate cases the already published results have also been
reconfirmed and the previously ignored cases have also been pointed out as well. It is
particularly emphasized that the correct understanding of the stretching or shrinking
sheet flows can only be ensured when the accelerated or retarded behavior of the wall
velocities is taken into account. The more intense realization of the importance of
this fact will be experienced in Chap. 7 while discussing the shrinking sheet flow.

6.1 Two-Dimensional Case

The simplest case among the three major categories considered in Chap. 5 is the
case of two-dimensional flow. Because of this reason it has been considered first
for the discussion of boundary-layer flow due to the stretching surfaces. Two
independent self-similar systems have been derived for this case corresponding
to the power-law and exponential wall velocities. Before we start discussion on
the flow governed by these systems, it is appropriate to first normalize them. The
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normalization of these systems is not difficult but requires some care. The careful
handling of this procedure results in the correct dimensionless similarity transfor-
mations, especially in the case of shrinking sheet flow. We consider the power-law
case first for which the similarity transformations are given in Eq. (5.14).

Let us write the similarity variable and the velocity functions in the form

g ¼ Ax
m�1
2 y; u ¼ axmf 0 gð Þ; v ¼ � a

A
x
m�1
2

mþ 1
2

� �
f þ m� 1

2

� �
gf 0

� �
: ð6:1Þ

The constant A is unknown to be determined having suitable dimensions such
that g is finally dimensionless, a is also a constant (as described in Chap. 5) having
suitable dimensions such that axm finally has the dimensions of velocity; the ratio
a=A in the expression of v arose due to the equation of continuity (5.2) by satisfying
it identically. The substitution of Eq. (6.1) into Eq. (5.3) results in the self-similar
equation of the form

mf 02 � mþ 1
2

� �
ff 00 ¼ mA2

a
f 000; ð6:2Þ

which is the same as Eq. (5.15) with the coefficient of f 000 modified by a little.
Equation (6.2) could be in dimensionless form if the dimension of the ratio mA2

a is
equal to 1. At this stage, before moving any further, it is very much important to
incorporate the character of the constant a, first. This step is very much important
and is usually ignored, especially in the shrinking sheet problems. Notice that, if
a[ 0, then there is no need to stop here, but when a\0, it is then quite necessary
to incorporate the sign of a here, in order to end up with correct dimensionless
similarity transformations and hence the equation also. In all the cases, considered
in Chap. 5, the positive values if aða[ 0Þ refer to the stretching surface, whereas
the negative values of a ða\0Þ refer to the shrinking surface. In this way it seems
better to write a ¼ ��a where �a[ 0 have the same dimensions as does the constant
a. By doing so Eq. (6.2) modifies as

mf 02 � mþ 1
2

� �
ff 00 ¼ � mA2

�a
f 000: ð6:3Þ

Equation (6.3) can be made completely dimensionless if one chooses A ¼ ffiffiffiffiffiffiffi
�a=m

p
.

With this particular choice of A Eq. (6.3) reads in dimensionless form as

mf 02 � mþ 1
2

� �
ff 00 ¼ �f 000; ð6:4Þ
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where the “+” and “−” signs refer, respectively, to the stretching and shrinking
surface cases. In this way Eq. (6.1) also modifies as

g ¼
ffiffiffiffiffiffiffi
�a=m

p
x
m�1
2 y; u ¼ axmf 0 gð Þ;

v ¼ � � ffiffiffiffiffi
�am

p
x
m�1
2

mþ 1
2

� �
f þ m� 1

2

� �
g f 0

� �� �
;

or

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw xð Þ

mx

r
y; u ¼ uw xð Þf 0 gð Þ;

v ¼ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw xð Þm

x

r
mþ 1
2

� �
f þ m� 1

2

� �
g f 0

� �" #
;

ð6:5Þ

where uw xð Þ is the power-law wall velocity given in Eq. (5.14). Utilization of
similarity transformations (6.5) into boundary conditions (5.4) results in the
dimensionless boundary condition, given by

f 0 ¼ 1; f ¼ 0; at g ¼ 0
f 0 ¼ 0; at g ¼ 1

�
ð6:6Þ

which is though the same as Eq. (5.16), but the variables involved here are now in
dimensionless form.

The system of Eqs. (6.4)–(6.6) constitutes the dimensionless self-similar system
for the two-dimensional flow, either the sheet is being stretched or shrunk following
the power-law wall velocities. Similarly, the self-similar system (5.20)–(5.22),
corresponding to the exponential wall laws, reads in dimensionless form as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw xð Þ

mL

r
y; u ¼ uw xð Þf 0 gð Þ; v ¼ � �m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw xð Þm

L

r
f þ gf 0ð Þ

" #
; ð6:7Þ

m f 02 � 1
2
ff 00

� �
¼ �f 000; ð6:8Þ

f 0 ¼ 1; f ¼ 0; at g ¼ 0
f 0 ¼ 0; at g ¼ 1

�
ð6:9Þ

where uw xð Þ ¼ ��ae
mx
L : The coefficient of skin-friction in these two cases is calcu-

lated as

Cf ¼ 2sw
quw xð Þ2 ; where sw ¼ l

@u
@y

				
y¼0

: ð6:10Þ
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The utilization of Eqs. (6.5) and (6.7) in Eq. (6.10) gives the dimensionless form
of the skin-friction coefficient corresponding to the power-law and exponential wall
velocities, respectively, as

ffiffiffiffiffiffiffiffiffiffiffiffi
�uw xð Þx

4m

q
Cf ¼ f 00 0ð Þ

and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw xð ÞL

m

q
Cf ¼ f 00 0ð Þ

9>>>>>>>=
>>>>>>>;
: ð6:11Þ

The second boundary condition at g ¼ 0, in Eqs. (6.6) and (6.9), modifies to

f 0ð Þ ¼ � � dffiffiffiffiffi
�am

p :
2

mþ 1

� �
; and f 0ð Þ ¼ � � dffiffiffiffiffi

�am
p :

2
ffiffiffi
L

p

m

� �
; ð6:12Þ

respectively, when the wall suction or injection is also taken into account. In the
case of stretching sheet flow, “+” sign will be considered, and in the case of
shrinking sheet flow, “−” sign will be selected in either of the above systems. Since,
in this chapter, we are particularly interested in the stretching sheet flows, the
consideration of “−” sign will stay pending till the next chapter.

Equations (6.4) and (6.6) have extensively been studied for the “+” sign case,
and the corresponding range of values of m regarding the existence and uniqueness
of the solution has also been determined in literature. Such ranges have been
reported by van Gorder et al. [1] which were further corrected by Paullet and
Previte [2], subsequently. According to Paullet and Previte the claim of uniqueness
of solution made by van Gorder et al. is limited to the interval 0�m�1 and
infinitely many solutions exist for the values � 1

3\m\0; where the values m� � 1
3

do not admit any solution bearing the character f gð Þ[ 0 and f 00 gð Þ\0 for all
g[ 0. This fact has also been confirmed in the current numerical computations.
The velocity graphs are plotted in Fig. 6.1 against g for different values of m. It can
be seen in this figure that upon increasing the values of m the boundary-layer
thickness decreases gradually by limiting the variations in velocity to a thinner and
thinner region close to the wall. In this thin region the velocity varies rapidly by
starting with the wall velocity value and approaches asymptotically to the potential
velocity. For the increasing values of m the flow remains adhered to the wall and
exhibits strong boundary-layer character. For the decreasing values of m the
boundary-layer becomes thicker and thicker and tends to be blown away, more
particularly, when m decreases with negative values. This effect can also be con-
firmed from Table 6.1 where the values of the skin-friction coefficient can be seen
approaching zero as m ! �1=3: Upon further decreasing the value of m by
crossing m ¼ �1=3 the equation seizes of producing the results. This is actually in
accordance with the generally known fact about the boundary-layer flows that the
boundary-layer establishes in the accelerated flow and blows away in the retarded
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flow situations. In physical point of view, when uw xð Þ[ 0, the positive values of m
correspond to the accelerated wall velocities, whereas the negative values of m
correspond to the retarded wall velocities. This finally designates the considered
cases, corresponding to m > 0 and m < 0, as the accelerated and decelerated flows,
respectively.

The graphs of the wall velocity function uw xð Þða[ 0Þ against x in the accel-
erated ðm[ 0Þ and decelerated ðm\0Þ cases are shown in Fig. 6.2. At our opinion
the designation of the stretching or shrinking wall velocity as accelerated or
decelerated is of fundamental importance in the understanding of boundary-layer
flow due to moving continuous surfaces.

The importance of the plots given in Fig. 6.2 will further be realized while
studying the shrinking sheet flow in the next chapter. Thus, Fig. 6.1 finally reveals
that the stretching sheet flow is suitable to be studied for the accelerated wall
velocity (especially, in the absence of wall suction) because for the retarded wall
velocity the boundary-layer separates at m ¼ �1=3 and needs some assistance
(such as suction) for its survival at further smaller values of m. Continuing the
analysis of stretching sheet flow it can further be realized from Fig. 6.1 that the
retarded wall velocity assists the flow until m ¼ �1=3, whereas this value is m ¼
�0:091 in the Falkner-Skan flow. This simply reflects that the moving surface

Fig. 6.1 Velocity profile
corresponding to the
stretching sheet flow

Table 6.1 Values of −f″(0)
for a > 0 for different m

�f 00ð0Þ
m Power-law Exponential

−1/3 0.0000

−1/5 0.23426

−1/10 0.35026

0 0.44375

1/10 0.52353 0.2870

1/2 0.77037 0.6409

1 1.00000 0.9064

2 1.34846 1.2818

5 2.06894 2.0267

10 2.89607 2.8662
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boundary-layers assist the flow for some further retarded velocities as compared to
the Falkner-Skan boundary-layers. This is simply because of the reason that the
skin-friction in the moving surface boundary-layers is greater than those due to
potential flow past a finite surface. In the simple cases, namely, the Blasius and the
Sakiadis, the skin-friction is 66% greater in Sakiadis flow as compared to the
Blasius flow. The variation of the skin-friction coefficient with respect to m is
shown in Fig. 6.3 where the graph of �f 00ð0Þ has been shown as an increasing
function of m. Multiplicity of solution in this case has already been proved for the
values �1=3\m\0 by Paullet and Previte [2] which is, however, not a topic of
interest, here.

(a)

(b)

(c)

Fig. 6.2 a Power-law
accelerated wall velocities
(m > 0), b power-law
decelerated wall velocity
(m < 0), c accelerated and
decelerated exponential wall
velocities
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The velocity profile of the exponentially stretching sheet case is plotted in
Fig. 6.4. Qualitatively, similar behavior of the velocity profile is observed as seen,
previously, in the power-law case, corresponding to the increasing values of m.
However, the boundary-layer thickness is significantly smaller in this case in
comparison with the power-law case. The velocity graphs (see Fig. 6.4) tend to
become linear as one assumes the values of m smaller and smaller by keeping
m[ 0: This can readily be observed from Eq. (6.8) that the inertial part of the
momentum equation minimizes to be negligible as m ! 0, by staying positive.

Consequently, the inertial forces vanish out and the creeping flow situation is
reached which does not obey the boundary-layer behavior. Notice that as m ! 0 the
wall velocity uw xð Þ ¼ �ae

mx
L becomes constant, but self-similar Eq. (6.8) does not

reduce to the Sakiadis flow (Eq. 1.2). However, the Sakiadis flow is immediately
recovered from Eq. (6.4) for the limit m ! 0 where the power-law velocity
uw xð Þ ¼ �axm also recovers the Sakiadis wall velocity as m ! 0. This actually
reveals that the Sakiadis flow is a special case of the power-law class and expo-
nential wall laws do not recover the constant wall velocity case any way. The values
of the skin-friction coefficient for the exponential stretching case are also listed in
Table 6.1 from where it is clear that the magnitude of skin-friction coefficient
decreases gradually as m approaches to 0; this fact can also be confirmed from

Fig. 6.3 Coefficient of wall
skin-friction plotted against m

Fig. 6.4 Velocity profile of
the exponentially stretching
sheet
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Fig. 6.5. Particular to this case it can, in general, be stated that the solution1 exists
for 0\m\1 with an exception of very small neighborhood of m at m ¼ 0. On the
other hand no solution exists at all for m\0 in this case. That is, different from the
power-law wall velocities, the exponential wall velocities do not tolerate the
retarded flow any way.

6.2 Three-Dimensional Case

It has already been observed, in Chap. 5, that the similarity criterion for the
three-dimensional flow due to a moving continuous sheet involves not only the
power-law and exponential wall velocities but also a product of the two where the
wall expressions involve power-law as well as the exponential forms simultane-
ously. Because of this reason the three-dimensional case had further been splitted
into four different cases in the course of developing the self-similar equations. The
non-dimensionalization of all such cases has been carried out (here) in the same
manner as it has already been done in Sect. 6.1. After omitting the details of the
procedure, the self-similar systems corresponding to the four classified cases read as:

“Case I; Subcase I”

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sgn að Þuw x;zð Þ

mx

q
y; u ¼ uw x; zð Þf 0 gð Þ; kw ¼ Sgn að Þ

Sgn bð Þww x; zð Þg0 gð Þ;

v ¼ � Sgn að Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sgn að Þuw x;zð Þm

x

q
mþ 1� B n� 1ð Þð Þf þ m� 1� B n� 1ð Þð Þg f 0

þ nþ 1ð Þgþ n� 1ð Þgg0
� �

9>=
>;;

ð6:13Þ

Fig. 6.5 Coefficient of
skin-friction in the
exponentially stretching sheet
case

1The “solution” here means the solution obeying the boundary-layer character.
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m� Bðn� 1Þð Þf 02 � mþ 1
2

� B
n� 1
2

� �� �
ff 00

� nþ 1
2

� �
gf 00 þ n� 1ð Þf 0g0 ¼ Sgn að Þf 000;

ð6:14Þ

m� 1� Bðn� 1Þð Þf 0g0 � mþ 1
2

� B
n� 1
2

� �� �
fg00

� nþ 1
2

� �
gg00 þ ng02 ¼ Sgn að Þg000;

ð6:15Þ

subject to the boundary conditions

f 0 ¼ 1; g
0 ¼ Sgn bð Þ

Sgn að Þ k;
1
2 mþ 1� B n� 1ð Þð Þf þ 1

2 nþ 1ð Þg ¼ 0; at g ¼ 0

f 0 ¼ 0; g0 ¼ 0; at g ¼ 1

)
;

ð6:16Þ

where k ¼ bj j= aj j is the dimensionless ratio of the magnitudes of the two stretching
rates. In all the subsequent cases the definitions of n, u, and w shall stay the same as
defined in Eq. (6.13) subject to the consideration of appropriate definitions of
uw(x, z) and ww (x, z) in accordance with the considered particular cases, whereas
the normal component of velocity, v, will vary in all such cases.

“Case I; Subcase II”

v ¼ � Sgn að Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sgn að Þuw x; zð Þm

x

r
mþ 1ð Þf þ m� 1ð Þgf 0 þ n gþ gg0ð Þ½ �; ð6:17Þ

mf 02 � mþ 1
2

� �
ff 00 � n

2
g f 00 � 2f 0g0ð Þ ¼ Sgn að Þf 000; ð6:18Þ

m� 1ð Þf 0g0 � mþ 1
2

� �
fg00 � n

2
gg00 � g02

 � ¼ Sgn að Þg000: ð6:19Þ

The boundary conditions in this case are the same as given in Eq. (6.16) except
the condition on v at g ¼ 0 which modifies as

1
2

mþ 1ð Þf þ ngð Þ ¼ 0; at g ¼ 0: ð6:20Þ

In this case the self-similar wall velocities read as
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uw x; zð Þ ¼ axme
nz
L ; wwðx; zÞ ¼ bxm�1e

nz
L ; ð6:21Þ

where L denotes the appropriate characteristic length in the z-direction.

“Case II; Subcase I”
In this case the definition of g changes by a little as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sgn að Þuw x; zð Þ

mL

r
y; ð6:22Þ

where the variable x in the denominator in (in Eq. 6.13) has been replaced by L.
The velocity component v reads, in this case, as

v ¼ � Sgn að Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sgn að Þuw x; zð Þm

L

r
m� B n� 1ð Þð Þ f þ gf 0ð Þ þ nþ 1ð Þgþ n� 1ð Þgg0½ �;

ð6:23Þ

m� Bðn� 1Þð Þ f 02 � 1
2
ff 00

� �
� nþ 1

2

� �
g f 00 þ n� 1ð Þf 0g0 ¼ Sgn að Þf 000; ð6:24Þ

m� Bðn� 1Þð Þ f 0g0 � 1
2
fg00

� �
� nþ 1

2

� �
gg00 þ ng02 ¼ Sgn að Þg000; ð6:25Þ

with

m� B n� 1ð Þð Þf þ nþ 1ð Þg ¼ 0; at g ¼ 0: ð6:26Þ
“Case II; Subcase II”
In this case g is exactly the same as given in (6.22), but the normal velocity
component becomes of the form

v ¼ � Sgn að Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sgn að Þuwðx; zÞm

L

r
m f þ gf 0ð Þ þ n gþ gg0ð Þ½ �; ð6:27Þ

mf 02 � m
2
ff

00 � n
2

g f
00 � 2f

0
g

0
� 

¼ Sgn að Þf 000 ; ð6:28Þ

mf 0g0 � m
2
fg00 � n

2
gg00 � 2g02

 � ¼ Sgn að Þg000; ð6:29Þ

with

1
2

mf þ 2ngð Þ ¼ 0; at g ¼ 0: ð6:30Þ
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In view of the available literature the three-dimensional flow is almost unex-
plored at the most. Only the power-law and the exponential forms of the wall
velocity have been considered with the limited scope. Wang [3] was the first who
considered steady three-dimensional flow due to a stretching sheet in two lateral
directions. He assumed the linear wall velocities of the form

uw ¼ ax; ww ¼ bz;

and introduced the similarity variable g ¼ ffiffiffiffiffiffiffi
a=m

p
y. This particular form of the

stretching velocities is already included in the case “Case I; Subcase I” and can
readily be recovered by choosing m ¼ n ¼ 1. All those cases corresponding to other
values of m and n are still pending, particularly the cases, when the wall velocities
follow power-law in the two variables simultaneously. According to the current
notation the Wang’s stretching velocities can also be written as uw x; zð Þ ¼ ax1z0 and
ww x; zð Þ ¼ bx0z1. Regarding the exponential wall laws the self-similar solution was
introduced by Liu et al. [4] by assuming the exponential stretching velocities in the
two lateral directions. The exponential wall laws and the resulting self-similar sys-
tem introduced by [4] can readily be recovered from Eqs. (6.27)–(6.29) by choosing
m ¼ n ¼ 1, and the corresponding boundary conditions can be recovered from
Eq. (6.30). For the exponential case too, the cases corresponding to the other values
of m and n different from zero are still pending. Thus, the explored cases of
power-law and exponential wall velocities have only been explored for m ¼ n ¼ 1
which are also included in the present cases, namely “Case I; Subcase I” and “Case
II; Subcase II,” respectively. Besides these two cases, the cases “Case I; subcase II”
and “Case II; subcase I” are totally unexplored and have never been studied earlier to
the best of our knowledge. Thus, in total, the three-dimensional flow due to a
stretching or shrinking sheet has not been studied completely yet and requires
extensive investigations in order to discover its all cases. At this stage the author,
however, refrains to engage in the solution of the above four systems corresponding
to the said four classified cases. It certainly seems impossible to report their complete
analysis by considering the cases of all values of m and n and their particular ranges
regarding the existence/non-existence and uniqueness/non-uniqueness in detail
within a single section of this chapter. This has therefore been left to the interested
audience to get involved into this interesting class of three-dimensional boundary-
layers and explore the unknown cases. The aim of the author, particular to this
section, is just to introduce the dimensionless self-similar modeling of three-
dimensional flow due to the moving continuous flat sheet.

6.3 Axially Symmetric Case

In the previous chapter the axially symmetric flow has also been considered for the
continuous cylinder and for the flexible circular disk. In the case of cylinder the
self-similar solution exists for both the power-law and the exponential wall velocities.
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The case of disk is, however, restricted to the power-law wall profiles only. Because
of different flow geometries the discussion of axially symmetric case has further
been splitted into two subsections.

6.3.1 Continuous Stretching Cylinder

The self-similar system in this case has been given in Eqs. (5.107)–(5.110) where
the wall velocity and the cylinder’s surface vary following the power-law form. The
said self-similar system in dimensionless form reads as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw zð Þ

mz

r
r; u ¼ uw

1
g
f 0 gð Þ; v ¼ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw zð Þm

z

r
1
g
f þ m� 1

2
f 0

� �" #
;

ð6:31Þ

m
f 0

g

� �2

� f
g

f 00

g
� f 0

g2

� �
¼ � 1

g
d
dg

g
d
dg

f 0

g

� �� �
; ð6:32Þ

f 0 ¼ ReR0 ; f ¼ 0; at g ¼ ReR0

f 0 ¼ 0; at g ¼ 1
�
; ð6:33Þ

where ReR0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�aR2

o=m
p

is the Reynolds number based on the fixed reference
radius Ro of the cylinder. With this particular definition, the Reynolds number
actually characterizes the curvature of the cylinder’s surface. Here the selection of
“þ ” and “�” sign on the RHS of Eq. (6.32) is particular to the stretching or
shrinking cylinder cases, respectively. Equation (6.32) involves several divisions
by g and its integral powers, with most of the terms of it, which obviously makes it
somewhat complex, mathematically. Boundary conditions (6.33) also involve ReR0

which also seems inconvenient regarding the numerical integration process and the
mathematical compactness, as well. Equations (6.32) and (6.33) can, however, be
recasted into a simple form having domain from 0 to 1 by eliminating the variable
coefficients from the inertial part of Eq. (6.32) and the Reynolds number ReR0 from
the boundary conditions by introducing the new variable �g as

�g ¼ g2 � Re2R0

2ReR0

: ð6:34Þ

Consequently, system (6.32)–(6.33) simplifies to (after dropping the bars)

mf 02 � ff 00 ¼ � 1þ 2jgð Þf 00½ �0; ð6:35aÞ
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f 0 ¼ 1; f ¼ 0; at g ¼ 0
f 0 ¼ 0; at g ¼ 1

�
; ð6:35bÞ

where j ¼ 1=ReR0 denotes the curvature parameter. Equation (6.35a) reduces to the
system developed by Wang [5] for the linear stretching case by choosing m ¼ 1.
The studies conducted by Grubka and Bobba [6], Munawar et al. [7, 8], and Butt
et al. [9] can also be recovered by substituting m ¼ 1 in the present system when the
additional assumptions considered by [6–9] are ignored. When the surface suction
or injection is also taken into account the second boundary condition in Eq. (6.35b)
at g ¼ 0 modifies as

f 0ð Þ ¼ � � dffiffiffiffiffi
am

p
� �

; ð6:36Þ

where the wall suction/injection velocity also follows the power-law form given by

vw ¼ dz
m�1
2 : ð6:37Þ

The constant d is the dimensionless constant and designates the normal wall
velocity as wall suction or injection corresponding to its “−ve” or “+ve” values,
respectively, whereas the selection of “+” or “−” sign on RHS in Eq. (6.36) refers
to the stretching or shrinking cases, respectively.

The other values of m different from unity correspond to the nonlinear
power-law stretching of the cylinder. Corresponding to these values of m the
cylinder’s shape also varies due to which the cylinder may be regarded as of
variable thickness.

The shapes of the cylinder’s surface corresponding to different values of m are
shown in Fig. 6.6a–d. The other family of cylinders for which the similarity
solutions are possible belongs to those whose body contours follow the exponential
form. This happens when the wall velocity function does follow the exponential
wall law given in Eq. (5.111), corresponding to which the self-similar system is
given in Eqs. (5.112)–(5.114).

Following the previously exercised steps the self-similar system for this case
reads as

mf 02 ¼ � 1þ 2jgð Þf 00½ �0; ð6:38aÞ

f 0 ¼ 1; at g ¼ 0
f 0 ¼ 0; at g ¼ 1

�
: ð6:38bÞ

The variable shapes of the cylinder’s surface governed by the exponential radius
function, given in Eq. (5.111), are plotted in Fig. 6.7a–d.

Notice that the above self-similar modeling corresponding to the cylinder’s
shapes generated by the functions R zð Þ ¼ R0z

1�m
2 and R0e�

m
2Lz seems to really valid to
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all those shapes generated by these functions. However, the situation is not that
general, in actual. The current modeling is, however, restricted to the bodies whose
longitudinal curvature is not that significant rather deems to be negligible. The
longitudinal curvature jl is given by

jl ¼
d2

RðzÞ
ds2l

1� dR zð Þ
dsl

� 2 �
d2RðzÞ
ds2l

; ð6:39Þ

where 1� dR zð Þ
dsl

� 2
� 1 and sl denotes the longitudinal arc length variable. This fact

has further been explained in Sect. 10.1 of Chap. 10. Thus, the current analysis

corresponds only to those shapes of the cylinder’s surface for which d2
RðzÞ
ds2l

� 0.

In Sect. 10.1, it will be shown that the self-similarity criterion is quite hard to

(a)

(b) (c)

(d)

Fig. 6.6 a Body contours of the cylinder’s surface corresponding to various values of m,
b cylinder of constant radius obtained at m = 1, c cylinder (paraboloid) obtained at m = 0,
d cylinder having infinite opening at the orifice obtained at m = 2
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determine for very slender shapes of the cylinder or the bodies of revolution. In
Eq. (5.108) the value m ¼ 1 recovers the case of cylinder of uniform thickness;
m ¼ 0 a paraboloid of revolution; and m ¼ �1 a circular cone. The positive values
of mð[ 1Þ (in Eq. 5.108) correspond to the shapes having infinite opening at the
orifice ðx ¼ 0Þ and squeeze continuously downstream. Similar is the situation for
m[ 0 with the exponential surface shapes; in this case the opening of the cylinder
stays, however, finite at the orifice.

In view of the wall velocity forms given in Eqs. (5.108) and (5.111) the values
m\0 correspond to the retarded wall velocities in either case. The power-law
stretching case has been observed to survive till m ! �1þ ; atm ¼ �1 the coef-
ficient of skin-friction becomes zero and turns positive for values m\� 1. Such an
intelligent solution of the present problem denies the possibility of the forms
associated with the values m\� 1 in the case of power-law stretching of the

(a)

(b)

(d)

(c)

Fig. 6.7 a Body contours of the cylinder’s surface whose cross section varies exponentially,
b cylinder’s surface whose radius varies exponentially; obtained at m = −1, c exponentially
varying cylinder obtained at m = 0.5, d shape of the cylinder having large opening at the orifice
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cylinder. Similarly, in the case of exponential stretching, the coefficient of wall
skin-friction turns positive, immediately, upon taking m\0 after attaining the value
f 00 0ð Þ ¼ 0 at m ¼ 0. In this case the retarded wall velocities completely fail in
establishing the boundary-layer flow any way. Another reason behind this fact is the
role of transverse curvature of the particular cylindrical shapes associated with these
values of m \� 1ð Þ. For such cylinders the radius near the orifice does not stay
very larger than the thickness of the boundary-layer there; rather, the boundary-
layer thickness becomes of the order of cylinder’s radius. Such a situation is
actually not covered by the current equations. The velocity graphs for different
values of m are plotted in Figs. 6.8 and 6.9 corresponding to the power-law and
exponential cases, respectively. Clearly, the boundary-layer thickness increases and
the skin-friction decreases upon reducing the values of m. This can simply be
attributed to the retarded nature of the wall velocities for decreasing values of m. As
the values of m ! �1þ for j ¼ 0:2, the velocity curve approaches to attain the
S-shape which is ultimately attained at m ¼ �1 in the power-law case, as shown in
Fig. 6.8. The situation is quite similar in the case of exponential wall velocity also.
Upon increasing the values of m the flow establishes in the boundary-layer, and for
decreasing values of m the boundary-layer thickness starts to grow. However, the
so-called S-shape is not attained at m ¼ 0, in this case, besides the vanishing
behavior of the skin-friction coefficient. This is because of the reason that the
sufficiently small values of m actually kill the inertial part of the momentum
equation, in self-similar form, thus resulting in no boundary-layer behavior for these
values of m. In this case too, the boundary-layer thickness decreases and the
boundary-layer stays attached with the cylinder’s surface for the accelerated wall
velocities. This in turn causes to increase the surface skin-friction in the case of
accelerated wall velocities.

The effects of the transverse curvature parameter j are also shown in Figs. 6.10
and 6.11 where the velocity profiles have been plotted for various values of j.
Evidently, the velocity gradients near the wall increase upon increasing the surface
transverse curvature parameter, j in both the figures.

Close to the wall the velocity starts with the sharp gradients, for increasing
values of j, and immediately starts to decrease subsequently onward whereby
causing the graphs to cross over the others. Consequently, the velocity dies out
slowly in the upper part of the boundary-layer, thus increasing the boundary-layer
thickness. The effects of curvature parameter are, however, more pronounced in the
power-law case as compared to the exponential case.

The variation of the coefficient of skin-friction with respect to the parameters
m and j is shown in Figs. 6.12 and 6.13 for the considered two cases. The
numerical values of the coefficient of skin-friction are also listed in Table 6.2.
Increased values of the surface skin-friction corresponding to the large surface
curvature reveal the assistive role of surface curvature toward the prevention of flow
separation. Such assistance is actually provided by the favorable pressure gradient
in the flows past a finite flat body. This fact has also been observed by Probstein and
Elliott [10] for the bodies of revolution of finite lengths. With this observation the
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retarded flow cases for m\� 1 and m\0 corresponding to the power-law and
exponential wall laws, respectively, can be made to survive to some extent, by
taking sufficiently large values of j.

It is therefore possible to find the ranges of admissible values of m (in both
cases) corresponding to every value of j; however, this has not been done in the
present analysis. Another supportive agent in the case of retarded flow is the wall
suction velocity. For the values m\� 1 or m\0 the solutions are also possible to
make exist with the introduction of sufficient wall suction at the cylinder’s surface
in these two cases.

Fig. 6.8 Velocity profile in
the power-law stretching case

Fig. 6.9 Velocity profile in
the exponential stretching
case

Fig. 6.10 Effects of surface
curvature on the velocity
profile (power-law case)
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6.3.2 Radially Stretching Disk

In the case of radially stretching circular disk the self-similar solution is possible for
the power-law stretching velocity only, as determined in the second last section of
Chap. 5. The admissible wall velocity has been described in Eq. (5.122), and the
corresponding self-similar system is given by Eqs. (5.121) and (5.123), while the
corresponding similarity variables have been defined in Eq. (5.120). This
self-similar system has also been non-dimensionalized in the same manner as it is

Fig. 6.11 Variation in
velocity profiles for different
j (exponential case)

Fig. 6.12 Effects of
curvature parameter on the
skin-friction coefficient
(power-law case)

Fig. 6.13 Coefficient of
skin-friction for different
values of j (exponential case)

92 6 Viscous Flow Due to Accelerated/Decelerated …



done in the previous sections of this chapter. The similarity variables in the
dimensionless form are, therefore, given by

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw rð Þ

mr

r
z; u ¼ uw rð Þf 0 gð Þ;

v ¼ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw rð Þm

r

r
mþ 3
2

f þ m� 1
2

gf 0
� �" #

;

ð6:40Þ

due to which governing Eqs. (5.121) and (5.123) take the form

mf 02 � mþ 3
2

� �
ff 00 ¼ �f 000; ð6:41Þ

and

f 0 ¼ 1; f ¼ 0; at g ¼ 0
f 0 ¼ 0; at g ¼ 1

�
; ð6:42Þ

respectively. Equation (6.41) can further be recasted in a more compact form given
by

2m
mþ 3

f 02 � ff 00 ¼ �f 000; ð6:43Þ

which is obtained due to the scaling of g by
ffiffiffiffiffiffiffiffi
mþ 3
2

q
. It must be noted that such a

scaling in g must always be compensated by the same scaling in f ðgÞ, as in the
Falkner-Skan case. Because of this scaling of g Eq. (6.43) has taken the form
similar to the two-dimensional equation given in Eq. (5.17) with a little difference
in the coefficient of f 02. Equation (5.17) and (6.4) are the alternative forms of each

Table 6.2 Values of −f″(0)
for different m and j
(power-law stretching
cylinder)

�f 00ð0Þ
m j ¼ 0:25 j ¼ 0:5 j ¼ 2:0

10 2.7336 2.8290 3.3596

7 2.3224 2.4172 2.9393

5 2.0001 2.0940 2.6077

3 1.6120 1.7042 2.2047

1 1.0905 1.1778 1.6486

0 0.7056 0.7826 1.2078

−0.2 0.6057 0.6779 1.0832

−0.4 0.4925 0.5576 0.5576

−0.8 0.2021 0.2373 0.4698

−1.0 0.0000 0.0000 0.0172
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other in the two-dimensional stretching sheet flow. Equivalently, Eq. (6.43) does
also own the same form with a slightly modified coefficient. It, therefore, seems
reasonable to not solve Eq. (6.43) again but to recover its solution from the known
solution of (6.4), derived in Sect. 6.1. This can easily be done by first naming the
coefficients of the two equations as

b1 ¼
2m

mþ 1
; and b2 ¼

2m
mþ 3

: ð6:44Þ

In the two-dimensional case the corresponding ranges of existence and unique-
ness and non-uniqueness of the solution of Eq. (5.17) or (6.4) are already known
and mentioned in Sect. 6.1. It has, there, been concluded that the solution is pos-
sible for the values �1\b1\2 whereby infinitely many solutions exist for
�1\b1\0 and no solution at all for b1\� 1 (see Paullet and Previte [2]).
Corresponding to these ranges of b1 the respective ranges of m are:
0�m\1; � 1

3\m\0 and m\� 1=3 which, respectively, correspond to the
existence of unique solution, infinitely many solutions, and no solution at all,
respectively. Since Eqs. (6.43) and (5.17) are of the same form, the above ranges of
b1 are, therefore, also applicable to b2 without any change. Thus, Eq. (6.43) also
admits a unique solution if b2 2 0; 2ð Þ, infinite many solutions if b2 2 �1; 0ð Þ, and
no solution when b2\� 1. Corresponding to these ranges of b2 the respective
ranges of values of m (in the stretching disk case) for which Eq. (6.43) admits a
unique solution, many solution, and no solution are obtained due to Eq. (6.44) as
0�m\1; �1\m\0 and m\� 1, respectively. With the availability of these
ranges it is now possible to explore the disk case completely without solving
Eq. (6.43). The above ranges can also be confirmed by noting that b2 � b1 if m is
replaced by 3m in the expression of b2. Thus, in the disk case it can directly be
obtained from the two-dimensional case by replacing m by 3m in the
two-dimensional solution. Therefore, the solution in the disk case is possible if
� 1

3\3m\1 or �1\m\1, which is the same as determined above. This lowest
initial value of m in the disk case, beyond which no solution exists, is absolutely
correct and has also been confirmed numerically. The corresponding velocity
graphs are shown in Fig. 6.14 where the velocity curves can obviously be seen
approaching the typical S-shape as m ! �1þ ; the same fact can also be conformed
from Fig. 6.15 where the coefficient of skin-friction can be seen dying out at
m ¼ �1. Clearly, for increasing values of m the coefficient of skin-friction increases
and the boundary-layer thickness decreases (see Figs. 6.14 and 6.15).

In order to further ensure the above-mentioned fact the two equations, namely
the two-dimensional and the disk flow, have been solved independently, and the
results are listed in Table 6.3.

Clearly, the values of m for which the (disk) Eq. (6.43) recovers the two-
dimensional results are a multiple of 3 of the corresponding values of m in the two-
dimensional case. Hence, the value of m for which the two equations produce the
same results is a multiple of 3 (for the disk case) of the values independently chosen
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in the two-dimensional case. This is the reason due to which minimum value of
m ¼ �1=3 (in the two-dimensional case) has been prolonged to m ¼ �1 in the disk
case. This means that a situation which arises for a particular value of m in the
two-dimensional case does also appear in the disk case but at the value 3m.
Therefore, Eq. (5.17) is equally applicable to the two-dimensional and the
axisymmetric disk flows simultaneously. This actually means that the disk case
need not to be studied separately; rather, it is already included in the two-
dimensional case. It seems worth mentioning that the reported graphs have been
plotted by solving Eqs. (6.41) and (6.42) numerically.

Fig. 6.14 Velocity profile for
different m (stretching disk
case)

Fig. 6.15 Coefficient of
skin-friction plotted against
m (stretching disk case)

Table 6.3 Equivalence of
the two-dimensional and the
disk cases

Two-dimensional case The disk case

m mþ 1
2


 ��1=2
f 00ð0Þ mþ 3

2


 ��1=2
f 00ð0Þ m

0 0.6276 0.6276 0

1/5 0.7668 0.7668 3/5

1/3 0.8299 0.8299 1

1 1.0000 1.0000 3

3 1.1486 1.1486 9

−1/7 0.4645 0.4645 −3/7

−1/5 0.3704 0.3704 −3/5

−1/21 0.5816 0.5816 −1/7
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In view of the above discussion this can finally be concluded that the disk flow
owns exactly the same character as does the two-dimensional sheet flow. After
having explored the two-dimensional flow in full detail there lefts nothing behind to
be studied in the disk flow, regarding the mathematics concerned. However, in
physical point of view the value b2 ¼ �1 refers to the value m ¼ �1 of the
stretching exponent. In comparison with the two-dimensional flow the power-law
retarded velocity has further been extended to the value m ¼ �1 in the disk case.
This means that the axial symmetry allows for the further retarded velocities as
compared to the planner geometry.

In light of the above-mentioned facts it is important to note that such a com-
parison and resemblance between the two-dimensional and the disk cases have
never been pointed out to the best of our knowledge. These observations, noted
above, became actually possible due to the availability of Eqs. (6.41) or (6.43) in
the form of m which motivates one to compare it with Eq. (5.17). Because of the
non-availability of the self-similar formulation, for the general case of power-law
stretching of the disk, it has extensively been studied by number of researchers
without making any connection with the two-dimensional case. However, the
studies related to the rotating stretchable disk do not find any such resemblance with
the two-dimensional flow. Therefore, the above discussion is strictly restricted to
the case when the circular component of velocity is absent in the disk flow. The
two-dimensional solution does not apply to the stretching disk case if the flow is
three-dimensional because of the rotation of the outer fluid or that of the disk itself.

When the disk surface is assumed to be porous and wall suction or injection is
permissible, then the second condition in Eq. (6.42) at g ¼ 0 modifies as

f 0ð Þ ¼ � � dffiffiffiffiffi
am

p � 2
mþ 3

� �
; ð6:45Þ

which, in view of above discussion, is also of the similar form as the first condition
of Eq. (6.12), corresponding to the two-dimensional case.

6.4 Surface Texture

In the previous three sections the self-similar flows have been studied in view of the
admissible wall velocities both the lateral and normal components by considering
the surface of interest as flat except in the case of cylinder. In the special case of
constant cross section the cylinder can still not be regarded as flat but enters in the
category of flat surface bodies in a sense that such a stretching cylinder maintains
constant thickness as do the other flat surfaces such as the sheet or the disk. In
Sect. 6.3.1 it has been seen, in the nonlinear stretching case, that the cylinder fails to
maintain the constant cross section throughout its length and the existence of
self-similarity requires the variable thickness of it. On the other hand, the stretching
sheet or the disk did not lose the property of constant thickness either being
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stretched nonlinearly or exponentially. A natural question arises, what happens to
the self-similarity conditions if the thickness of the stretching surface is not kept
constant? Does the similarity solution persist or the similarity breaks down? The
answer to this question does also come from Chap. 5 where the similarity criterion
of all the considered flows has been demonstrated in view of the wall velocities. As
a rule of thumb, it is easy to guess that the variable thickness of the non-flat body
can be of the power-law form or of the exponential form as is evident from the
cylinder case. With this discussion, we shall restrict ourself to the two-dimensional
case only and will left the three-dimensional and the disk cases to the reader as they
follow in the same manner.

Similar to the cylinder case let us denote the non-flat surface of the two-
dimensional sheet as SðxÞ where x is the variable due to which the thickness of the
sheet varies (schematic diagram is shown in Fig. 6.16). By doing so, another vari-
able does enter to governing system (5.2)–(5.4) or (5.6)–(5.7) where the boundary
conditions at y ¼ 0 in Eq. (5.7) have been shifted at y ¼ SðxÞ. Consequently,
the scaling group (5.8) will include one more scaling �S xð Þ ¼ kasS of the variable
SðxÞ which contributes another equation a2 ¼ as to system (5.11) admitting the
solution as

a1
¼ 1�m

2 ða1 6¼ 0Þ and as ¼ � m
2 ða1 ¼ 0Þ. The subsequent construction of

the new variables results in the following two forms of the variable surface thickness
function

S xð Þ ¼ Kx
1�m
2 and S xð Þ ¼ Ke�

m
2x; ð6:46Þ

where K is a constant having suitable dimensions not necessarily the same in the
two definition. The values of K actually scale the surface gradients, and the values
K[ 1 correspond to the surfaces having great curvature.

Governing Eqs. (5.2)–(5.4) have been obtained under the boundary-layer
assumptions and the pressure gradient term @p

@x has been ignored, there, because
of the flat surface texture. If the surface texture involves considerably large surface
gradients, then the assumption @p

@x ¼ 0 remains no more valid. Therefore, Eq. (6.46)
is applicable only to those situations where the surface curvature is small. The
utilization of the dimensionless similarity variable g defined in (Eq. 6.5) reduces the
surface conditions from y ¼ SðxÞ to g ¼ ReK where ReK ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

aK2=m
p

is the
Reynolds number based on the surface gradient parameter K. This Reynolds
number is of the same form as does the ReR0 based on the fixed cylinder’s radius R0

in Sect. 6.3.1. The rest of the things, corresponding to the variable thickness of the
sheet case, follow exactly in the same manner as have already been done in
Sect. 6.3.1 for the case of cylinder. The two-dimensional flow due to the stretching
sheet of variable thickness following the power-law wall velocity profile has
already been studied by Fang et al. [11] where they have discussed the curvature
effects on the velocity and skin-friction. Dual solutions have also been reported for
an interval of values of m having finite length. The mathematics follows the similar
in the case of exponentially varying surface thickness also. Following similar
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procedure one can also find the variable surface shapes for the three-dimensional
and the disk cases accordingly.

Finally, at the end, it seems better to give a brief summary of the facts discussed
throughout this chapter. It has finally been concluded that the stretching surface
flows do not experience any problem, regarding their existence, in the case of
accelerated wall velocities, whereas the uniqueness of the solution vanishes out in
the case of retarded wall velocities. Particular to the stretching surfaces, the
accelerated wall velocities correspond to the values m[ 0 and the decelerated wall
velocities refer to the values m\0. It should, however, be remembered that the
two-dimensional and the disk problems do not admit solution for all negative values
of m but in some limited intervals in the left neighborhood of m ¼ 0. For such
negative values of m the solutions are observed to be non-unique rather,
uncountable. In the plots, given in this chapter, the second or other multiple
solutions have intentionally been discarded and only those solutions have been
reported which are meaningful in the physical sense. In Sect. 6.3.2 it has been
concluded that the solution of stretching disk problem is already included in the
two-dimensional case which can immediately be recovered by a suitable scaling of
the values of m in the two-dimensional case. Similar to the wall velocities, the
self-similarity does persist for the non-flat surfaces also provided; the surface tex-
ture follows either power-law or exponential forms in accordance with the wall
velocities. Section 6.4, in the continuation of the topics considered in Chap. 5,
completes the course of determination of self-similarity criterion for the flows due
to moving continuous surfaces in view of their wall velocities and the surface
textures of the moving continuous surfaces.

Fig. 6.16 a–b Variable thickness of the sheet shown schematically
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Chapter 7
Viscous Flow Due to the Shrinking
Surfaces

In the preceding chapter, attention has particularly been given to the viscous flows
due to stretching continuous surfaces only. This chapter is therefore particularly
devoted to the shrinking sheet/surface flows. However, honestly speaking, the
shrinking surface case does not own any great potential which could require a
separate chapter for its consideration. In reality the title of the preceding chapter
was better to be ended by the phrase “motion of continuous surfaces” instead of
“stretching surfaces,” and the cases of shrinking surfaces were also appropriate to
be appended to the respective sections of the stretching surface flows. Even with the
realization of these facts, we are still forced to devote a separate complete chapter to
this flow case. The reason behind this is the existing huge volume of archived
literature on the shrinking surface flow, which can safely be regarded incorrect
based upon the incorrect mathematical formulation and inappropriate handling of
the problem. Because of such mishandling, the involved authors obtained wrong
results which subsequently forced them to device unrealistic and non-physical
reasoning for the explanation and justification of such wrong results. It is now
generally perceived that the shrinking sheet/surface problems do not admit a
solution in the absence of any wall suction. On the basis of their wrong analyses,
most of the involved authors claimed that the shrinking surface problems offer more
nonlinear phenomena in comparison with the stretching surface flows besides the
fact that they are also governed by, almost, the same equations as do the flows due
to stretching surfaces. Such conclusions are absolutely wrong and have nothing to
do with the shrinking surface problems. The erroneousness of these facts and their
correction has been presented in the coming sections.

The biggest misfortune with the shrinking surface problems is the general
acceptance of the existing wrong self-similar formulation and hence the wrong
results by the audience concerning this topic. This resulted in the immediate
adaptations of the available wrong results by most of the researchers working in this
field. Consequently, a huge number of wrong publications have so far been con-
tributed to the pool of archived literature which is continuously going on increasing
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by every passing year. This mistake has so widely been spread that it has now
become absolute because of the availability of authentic published literature on the
back of it. The appropriate venue for the correction of this mistake was actually the
same forum where the first wrong result, on this topic, was published. The author
has already tried this option, but the editor simply refused by saying that the
reviewers are against the publication of this correction. However, the comments of
the reviewers have never been shared with the author despite his several requests to
the editor concerned and even the all editorial board members. Having experiencing
such a bad response and knowing the intensity of the growing fundamental mistake,
the author finds this chapter as a great opportunity for the description of the erro-
neousness of the existing literature on this topic and for the presentation of correct
mathematical formulation and hence the correct analysis and the results of this
problem.

7.1 An Overview of Existing Literature

The criterion of self-similarity for the variable wall velocities uw and ww has already
been determined in Chap. 5 for various flow situations. In view of the definitions of
the obtained wall velocities, the flow is designated as due to a stretching surface if
the lateral wall velocities are positive (for example uw [ 0, in the two-dimensional
case), and the flow is designated as shrinking surface flow if the wall velocities are
negative, that is uw\0. Such a flow was introduced by Miklavcic and Wang [1]
where they considered a three-dimensional flow due to linear bilateral stretching of
the porous flexible sheet. In view of the coordinate system chosen in Sect. 2.1.3, the
boundary conditions of [1] read as

uw ¼ �uref xð Þ; ww ¼ � �m� 1ð Þwref zð Þ; vw ¼ �V ; at y ¼ 0; ð7:1Þ

where

uref xð Þ ¼ ax and wref zð Þ ¼ az ð7:2Þ

The constant að[ 0Þ involved in above wall velocities was designated as the
constant shrinking rate in [1]. Therefore, the wall velocities (7.2), with að[ 0Þ, can
simply be regarded as stretching wall velocities. However, the presence of “�” sign
in Eq. (7.1) makes these wall velocities, overall, negative by providing a reason for
their designation as shrinking wall velocities. The factor ð�m� 1Þ serves as an on/off
switch corresponding to �m ¼ 2 or �m ¼ 1, respectively. The similarity variables
introduced by Miklavcic and Wang [1] are given by

g ¼
ffiffiffi
a
m

r
y;

u
uref xð Þ ¼ f 0 gð Þ; w

wref xð Þ ¼ m� 1ð Þf 0 gð Þ; v ¼ � ffiffiffiffiffi
am

p
�mf gð Þ; ð7:3Þ
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due to which they obtained the self-similar governing equation of the form

f 02 � �mff 00 ¼ f 000; ð7:4Þ

subject to the boundary conditions

f 0 0ð Þ ¼ �1; f 0ð Þ ¼ V
�m

ffiffiffiffiffi
am

p � s; f 0 1ð Þ ¼ 0: ð7:5Þ

Corresponding to the value �m ¼ 1, Eq. (7.4) becomes exactly the same as
Eq. (6.4) (for m ¼ 1; and with the selection of “þ ” sign on right-hand side) which
corresponds to the two-dimensional stretching sheet flow. The similarity transfor-
mations (7.3) are also those valid for the stretching sheet flow; see for instance
Eq. (6.5). Thus, so far, it has been obvious that the similarity transformations
(Eq. 7.3) and the self-similar equation (Eq. 7.4), derived originally for the shrinking
sheet flow, are actually those governing the stretching sheet flow. The only dif-
ference between the stretching and shrinking sheet flow, due to the formulation in
[1], is of the boundary condition

f 0 0ð Þ ¼ �1; ð7:6Þ

where the “�” sign has appeared on the RHS of Eq. (7.6) which gets vanished for
the stretching sheet case. Thus, according to the formulation proposed in [1], the
only difference between the self-similar systems governing the stretching sheet or
shrinking sheet flow is the absence or presence of “�” sign on the RHS of
Eq. (7.6), respectively.

After solving the system (7.4) and (7.5), Miklavcic and Wang [1] concluded that
the solution to this problem does not exist at all unless an adequate suction is
allowed at the shrinking surface. The authors of [1] ended their paper by stating that
“the shrinking sheet studied in this paper offers a wealth of nonlinear fluid phe-
nomena.” With such a claim of nonexistence and nonlinear phenomena owned by
Eqs. (7.4) and (7.5), the shrinking sheet flow attracted number of researchers who
immediately got involved with these equations in order to investigate the existence
and uniqueness of such flows. On the other hand, several other researchers got also
involved with this problem by considering the heat-mass transfer and other physical
assumptions, such as the impact of magnetic field or the role of porous medium. In
all such studies, the contributing authors definitely obtained wrong results which
lead them to make the false conclusions justified by non-physical reasoning. The
reason behind such a false conclusions is that the shrinking sheet problem has
neither been formulated correctly nor been studied in the perspective of correct
physics of this flow. The elaboration of this fact will stay pending till Sect. 7.5.

Despite the presence of more than hundred peer-reviewed research papers on the
shrinking surface flow, the author intentionally refrains from citing any or few of
them. At the author’s opinion, citing few of them is as bad as ignoring the most of
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them. The reference [1] has also been cited with great regret, but it was unavoid-
able. Otherwise, it was not possible to move on this topic anyway.

7.2 Erroneousness of the Existing Shrinking Sheet Results

The misfortune with the shrinking sheet flow is twofold, as concluded in the above
section: First one is the erroneous nature of the self-similar modeling (7.3)–(7.5),
and the second, and perhaps more important one is the improper handling.
Erroneousness of the system (7.3)–(7.5) persists because of the wrong selection of
reference velocity in the process of non-dimensionalization. In Eq. (7.3) the
velocity components u and w have been normalized due to the reference velocities
urefðxÞ and wref zð Þ, respectively. Similarly the definitions of g and v have also been
furnished because of the reference velocity urefðxÞ. But actually the correct refer-
ence velocities in this case are uw and ww (see Chap. 6) that is “�urefðxÞ” and
“�wrefðzÞ” instead of “urefðxÞ” and “wrefðzÞ,” respectively. Because of this reason
the “�” sign appearing on the right-hand side of the first two boundary conditions
in Eq. (7.1) have not been removed in the self-similar boundary conditions (7.5). If
the correct reference velocities “�urefðxÞ” and “�wrefðzÞ” are utilized, the men-
tioned “�” sign in the indicated boundary condition in Eq. (7.5) gets vanished by
turning it into the form f 0 0ð Þ ¼ 1, which is the same as for the stretching sheet flow.
Consequently, a negative sign appears on the right-hand side of Eq. (7.4) with the
term f 000 by making it “�f 000”, instead. This fact has also been explained by
Batchelor [2] in his book while discussing the boundary-layer flow past a flat plate.

As we stated above, the second misfortune with this problem is that, it has never
been studied in view of its correct physics. Only one aspect of the shrinking sheet
flow has so far been explored at the most, which is the flow due to a “retarded
shrinking sheet,” and the accelerated aspect of the shrinking sheet flow has totally
been ignored. This is the reason due to which the accelerated or decelerated des-
ignation of the stretching or shrinking velocities has particularly been emphasized
throughout this Book.

7.3 Accelerated/Decelerated Shrinking Wall Velocities

Consider the unidirectional stretching/shrinking of the sheet defined by

uw xð Þ ¼ axm; ð7:7Þ

where m is the stretching/shrinking exponent and a is the constant stretching/
shrinking rate. Corresponding to a[ 0, uwðxÞ denotes the stretching of the wall,
whereas a\0 denotes the shrinking of the surface. The wall velocity (6.7) has
already been plotted in Fig. 6.2 for the stretching sheet case corresponding to
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several values of m. From this figure, it is clear that for +ve values of m; uwðxÞ
increases as x increases, representing the accelerated wall velocity. On the other
hand, for negative values of m, the wall velocity uwðxÞ decreases as one moves
along the stretching sheet referring to the decelerated nature of the wall velocity.
Now in the shrinking sheet case, the direction of motion of the sheet has been
reversed to the direction of motion of the stretching sheet, that is, in the −ve x-
direction. Because of this fact, the wall velocity is designated as accelerated when
m\0 and decelerated when m[ 0 as depicted in Fig. 7.1. As one moves in the −ve
x-direction, the velocity magnitude increases for m\0 (see Fig. 7.1a, d) and
decreases for m[ 0 (see Fig. 7.1b, c). Therefore, the flow studied in [1] is actually
retarded in nature because of the form of considered shrinking wall velocity having
positive exponents of x and z in Eq. (7.2).

This is a common character of the boundary-layers that the boundary-layer flow
is assisted by the accelerated reference velocity which actually makes the
boundary-layer to stay attached with the solid surface, whereas the retarded refer-
ence velocities, being unable to assist the flow, separate the boundary-layer from
the solid surface creating a wake behind the point of separation and causing a
reverse flow, subsequently. This fact is commonly known as the phenomena of
separation. Another well-known fact in the theory of boundary-layers is that, the
occurrence of separation can simply be delayed or the separating boundary-layer
can easily be made to stay attached with the solid surface by the introduction of
sufficient wall suction at the solid surface. In actual, the coefficient of wall
skin-friction, gradually, becomes smaller and smaller in the separating boundary-
layer and ultimately becomes zero, i.e., f 00 0ð Þ ¼ 0, at the point of separation.

(a) (b)

(c) (d)

Fig. 7.1 Shrinking wall velocities for different m: a, b power-law wall velocity, c, d exponential
wall velocity
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The introduction of sufficient suction at the wall surface prevents the value of f 00ð0Þ
from becoming zero due to which the boundary-layer stays attached to the solid
surface. The same does actually happen in the case of decelerated shrinking sheet
(for m ¼ 1) considered by Miklavcic and Wang [1]. In this case too, the flow can
obviously be made to exist if sufficient amount of suction is introduced at the solid
surface; and the same has been done and concluded in [1]. However, because of
ignoring the correct nature of the shrinking wall velocity, the authors, in the last
paragraph of [1], argued that the stretching of the sheet “induces far-field suction
toward the sheet, while the shrinking sheet would cause a velocity away from the
sheet.” “Thus from physical grounds, vorticity of the shrinking sheet is not confined
within a boundary-layer, and the flow is unlikely to exist unless adequate suction on
the boundary is imposed.” These false arguments actually lead them to draw the
wrong conclusion of nonexistence of solution for the shrinking sheet flow which
was further agreed upon by the subsequent authors.

On the basis of above-mentioned limited and wrong analyses pertaining to the
shrinking surface problems, it has generally been perceived that the shrinking sheet
flow is far more difficult from the stretching sheet flow and exhibits dramatic
changes. Such a conclusion is totally misleading, because the correct analysis of the
shrinking sheet flow based on the correct self-similar modeling has never been
made. Such a correct analysis reveals that, in general, the flow behavior is similar to
the stretching sheet flow, qualitatively. The difference between the two flows is only
of quantitative nature which is quite natural. A detailed discussion on the shrinking
sheet flow is given in Sect. 7.5.

7.4 Correct Self-similar Formulation

The problem with the existing self-similar formulation of the shrinking sheet flow
is basically the wrong selection of reference velocity for the purpose of non-
dimensionalization, as pointed out in Sect. 7.2. The criterion for the self-similar
wall velocities for these flows is the same as it is for the case of stretching surfaces
as derived in Chap. 5. Thus the self-similar solution exists, for a shrinking surface
flow, if the wall velocity follows either power-law or exponential form. For the sake
of simplicity, the two-dimensional case is preferred to be discussed here for the
purpose.

The corresponding self-similar wall velocities in this case read as uw ¼ axm and
uw ¼ aemx, corresponding to the power-law and exponential forms, respectively.
Particular to the shrinking sheet case, we choose to say a ¼ ��a; �a[ 0. With this
substitution, Eq. (6.1) takes the form

g ¼ Ax
m�1
2 y; u ¼ ��axmf 0 gð Þ; v ¼ �a

A
x
m�1
2

mþ 1
2

� �
f þ m� 1

2

� �
g f 0

� �
; ð7:8Þ
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Hence, Eq. (6.4) becomes

mf 02 � mþ 1
2

� �
ff 00 ¼ �f 000; ð7:9Þ

with the restriction that A ¼ ffiffiffiffiffiffiffi
�a=m

p
. The utilization of this value of A in Eq. (7.8)

results in

g ¼
ffiffiffiffiffiffiffiffi
�axm

mx

r
; u ¼ ��axmf 0 gð Þ; v ¼

ffiffiffiffiffiffiffiffiffiffi
�axmm
x

r
mþ 1
2

� �
f þ m� 1

2

� �
g f 0

� �
:

Notice that, particular to this case, uw ¼ ��axm. Because of this form of uwðxÞ the
above equation can also be rewritten as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uwðxÞ

mx

r
; u ¼ uw xð Þf 0 gð Þ; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw xð Þm

x

r
mþ 1
2

� �
f þ m� 1

2

� �
g f 0

� �
:

ð7:10Þ

Consequently, the boundary condition u ¼ uw xð Þ ¼ ��axm at y ¼ 0 simplifies to
f 0 0ð Þ ¼ 1 carrying no “−” sign with 1 (on RHS), whereas Eq. (7.9) carries a −ve
sign with the term f 000 on right-hand side, as pointed out in Sect. 7.2. Evidently,
Eqs. (7.9) and (7.10) are exactly in accordance with the Batchelor’s comment, in
this regard. Note that Eqs. (7.9) and (7.10) can directly be obtained from Eqs. (6.4)
and (6.5) by selecting the −ve sign among the “±” signs. Thus the dimensionless
self-similar systems presented in Chap. 6 include both the cases, namely, the
stretching and shrinking surface cases. Equations (7.9) and (7.10) thus finally prove
the erroneousness of the existing (due to [1]) self-similar dimensionless formulation
of the shrinking surface flows by endorsing the claim made in the start of this
Chapter, in this regard. The same follows in the case of exponential wall law and
the three-dimensional and axisymmetric cases.

7.5 Viscous Flow Due to an Accelerated/Decelerated
Shrinking Sheet

In Sect. 7.2, the error in the shrinking surface flows was designated to be twofold;
first was concerned with the mathematical formulation, while the second was
related to the insufficient analysis of the flow. The mathematical error has been
fixed in the preceding section, while the correct flow analysis will be presented
here. In doing so, attention will only be focused to the two-dimensional flow again
because of its simple nature. The cases of power-law and exponential wall veloc-
ities, for this flow, have been investigated in full detail. In the two cases, power-law
or exponential shrinking velocities, the boundary conditions are the same as those
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valid for the stretching sheet flow given in Eq. (6.6). The governing self-similar
equations in dimensionless form for the said two cases are Eqs. (7.9) and (6.8),
respectively, with the selection of “−” sign among the “±” signs on the right-hand
side.

Corresponding to the power-law shrinking case, the dimensionless velocity f 0ðgÞ
has been plotted against g for several values of m in Fig. 7.2. Our analysis shows
that for m[ 0 no solution exists, but for m\0 the solution seems to exist but does
not obey the boundary-layer character. Such a trend continues if one further
decrease the values of m till m ¼ �1. However, it is noted that at m ¼ �0:99 the
solution does not differ from the solution at m ¼ �1 by any large. Therefore, the
value m ¼ �0:99 has been taken as the maximum threshold beyond which the
shrinking sheet flow does not exist. Although the shrinking velocity is accelerated
for �0:99\m\0 and f 00ð0Þ 6¼ 0, still the velocity profile fails to exhibit the
boundary-layer character. Actually, it seems that, for �0:99\m\0, the wall
velocity is too weak to be insufficient to cause a boundary-layer flow in the adjacent
fluid. Thus the solution does not exist for m[ � 0:99 in the case of power-law
shrinking of the sheet. In contrast, the stretching sheet flow also survives for the
retarded wall velocities till m[ � 1=3 in the power-law case. This gives an
obvious clue regarding the weaker coefficient of skin-friction for the shrinking sheet
flow in comparison with the stretching sheet flow corresponding to the same
magnitude of stretching/shrinking exponent mj j. This fact can readily be confirmed
from Table 7.1 where the values of f 00ð0Þ have been listed for the two cases. The
identification of the range m\� 0:99 for the existence of solution to the shrinking
sheet case is based upon numerical investigations and can further be refined.
A rigorous mathematical analysis can provide the exact value of m beyond which
the solution does not exist; involving in such a task is, however, not the objective of
this chapter. Upon further decreasing the values of mð\� 1Þ, the solution follows
the boundary-layer character in a more pronounced manner as shown in Fig. 7.2
without exhibiting any unusual behavior. In qualitative sense, their behavior is
exactly the same as in the case of stretching sheet flow. But quantitatively, they do
slightly differ from the stretching sheet flow. This fact can also be confirmed by
comparing the values of f 00ð0Þ in Table 7.1, once again. The variation of f 00ð0Þ
against m, obtained due to correct formulation, is also given in Fig. 7.4.

Fig. 7.2 Velocity profile for
power-law shrinking sheet
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The availability of correct formulation does allow for making an interesting
observation here. The present (correct) Eqs. (7.9) and (6.6) can also be recovered
from those of Miklavcic and Wang [1] (7.4 and 7.5) by replacing f by �f in (7.4)
and (7.5); taking �m ¼ 1 and s ¼ 0. This means that due to the existing formulation
due to [1], the velocity �f 0ðgÞ has actually been studied instead of f 0ðgÞ. This
simply reverts the things in opposite to the actual situation. Because of this reason,
the graphs obtained due to the existing (wrong) formulation are the mirror images

Fig. 7.3 Velocity profile for
exponentially
stretching/shrinking sheet

Table 7.1 Values of f ″(0) for power-law and exponential shrinking sheet cases due to the current
and existing formulations

m Current formulation Existing formulation

uw ¼ �axm

�1=3�m� 10ð Þ
uw ¼ ��ae

mx
L

m?0ð Þ
uw ¼ ��axm

m� � 1ð Þ
uw ¼ ��ae

mx
L

m\0ð Þ
uw ¼ ��axm

m� � 1ð Þ
−1/3 −0.00000

−1/5 −0.23426

−1/10 −0.35026

0.0 −0.44375 −0.00200 0.00200

±1/10 −0.52353 −0.28662 0.28662

±1/2 −0.77037 −0.64092 0.64092

±1.0 −1.00000 −0.90638 −0.81651 0.90638 0.81651

±2.0 −1.34846 −1.28183 −1.21603 1.28183 1.21603

±5.0 −2.06894 −2.02673 −1.98473 2.02673 1.98473

±10.0 −2.89607 −2.86630 −2.83648 2.86630 2.83648

Fig. 7.4 Variation of −f ″(0)
against m (power-law case)
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of those plotted due to the (present) correct formulation (see Fig. 7.2). From here it
is also possible to deny the nonexistence of the solution to this case, even due to the
existing wrong formulation, without the presence of adequate wall suction, as
claimed by Miklavcic and Wang [1]. Clearly, their Eqs. (7.4) and (7.5) do admit the
physically deemed meaningful solution for the values m� � 1 in the absence of
any wall normal velocity. The same fact can also be confirmed from Table 7.1 by
comparing the values of f 00ð0Þ due to the two formulations. The magnitude of the
values of f 00ð0Þ is exactly the same (due to the two formulations) but is opposite in
sign.

In the preceding discussion, it has been observed that the shrinking sheet flow is
similar to the stretching sheet flow in qualitative sense but differ quantitatively. The
situation is quite more favorable in the case when the shrinking wall velocity obeys
the exponential form. In contrast to the exponentially stretching sheet flow, which
exists for m[ 0, the shrinking sheet flow exists for m\0. In this case, corre-
sponding to the accelerated wall velocity ðm\0Þ, the governing self-similar system
of shrinking sheet flow comes out to be exactly the same as for the exponentially
stretching sheet flow m[ 0. Consequently, the shrinking sheet flow follows exactly
the same behavior, in toto, as does the stretching sheet flow in the case of expo-
nential wall velocity. The graphs of the velocity profiles are given in Fig. 7.3
corresponding to different values of m. Clearly, the stretching and shrinking cases
exhibit the same behavior (qualitatively) when mj j is taken the same for these flows.
It is also observed that as mj j increases, the graphs exhibit the boundary-layer
character more clearly which is in accordance with the fact observed in the
accelerated flows; that is, upon increasing the values of mj j the layer thickness
decreases and the skin-friction increases at the wall (see Figs. 7.3 and 7.5).
Figure 7.5 depicts that the magnitude of f 00ð0Þ increases with mj j, and this increase
is more pronounced for smaller values of mj j. In this case too, the results due to
wrong formulation have also been plotted in the lower part of Fig. 7.3 where the
resulting graphs are again the mirror images of the corresponding correct graphs
(Fig. 7.4).

In view of the above flow analysis, it can now easily be realized that the shrinking
sheet flow has never been studied in accordance with the correct physics.
Furthermore, the claims of exhibition of dramatic changes by this flow have also
been falsified due to the above analysis. The so-called dramatic changes and the

Fig. 7.5 Variation of −f ″(0)
against m (exponential
shrinking)
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exhibition of “more nonlinear” phenomena attributed, particularly, to the shrinking
sheet flow can also be experienced for the stretching sheet flow (e.g., power-law
case) by taking the value ofm\� 1=3. The stretching sheet problem does not admit
any solution for m\� 1=3 as does the shrinking sheet problem for m[ � 0:99
(in the power-law case). Therefore, it can finally be concluded that the facts which
had generally been admitted about the shrinking sheet flow are actually based upon
the improper handling and incomplete analysis of the shrinking sheet flow. Studying
only one aspect of this flow, namely, the retarded flow due to a shrinking sheet (by
taking m[ 0, only) had been a consequence of losing the correct physics of this
flow.

7.6 Axially Symmetric Flow

Two axially symmetric flows have been considered in this section, namely, due to
the shrinking continuous cylinder and the radially shrinking circular disk. For these
two cases the non-dimensionalization of the corresponding self-similar systems has
already been given Chap. 6. It has also been observed in Sect. 6.3 that the disk
problem needs not to be studied separately rather the results for this case can readily
by recovered from the two-dimensional case. It has also been found that any situ-
ation appearing in the two-dimensional flow, corresponding to some particular value
m� (say) of m, does also exist in the disk case for the value m ¼ 3m�. Because of this
important fact, the shrinking disk problem also needs not be studied separately,
rather it can be discovered from the results of the respective two-dimensional case,
directly. In the preceding section, it is found that the shrinking sheet flow exists for
m� � 0:99 and that for m[ � 0:99 the solution does not obey the boundary-layer
behavior. Consequently, in the disk case, the solutions must start at m ¼ 3�
�0:99ð Þ ¼ �2:97 and persist for all m\� 2:97, whereas for m[ � 2:97 the
solution must not obey the boundary-layer character. In order to seek further
authentication of this fact, the above values ðm� � 2:97Þ have also been confirmed
by solving Eq. (6.41) subject to the boundary condition (6.42) by selecting the “−”
sign with f 000. The obtained velocity curves are shown in Fig. 7.6 corresponding to
the power-law case, whereas the exponential wall velocity is not admitted by the
self-similar disk flow. From Fig. 7.6 it is clear that for larger values of mj j the
boundary-layer flow is established more and more by confining itself in a very thin
region close to the shrinking disk. The reason behind this is the accelerated nature of
the shrinking wall velocity (for m\0) for which the solution is shown to exist
without requiring any suction or injection at the shrinking surface. The values
�2:97\m\0, though negative have, however, been discarded because the solution
in this range does not fully exhibit the characteristics of boundary-layer flow. The
asymptotic behavior of the velocity plots is observed to be dis-satisfactory in this
range of values ofm. Near the valuem ¼ �2:97, the solutions are quite sensitive and
the numerical infinity is significantly large. Although the solution does converge, the
asymptotic behavior near the edge of the boundary-layer is delayed quite long, for
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these values of m. Since the threshold value m ¼ �2:97 has been determined due to
the two-dimensional solution. Therefore, any correction in the threshold value of
two-dimensional case (i.e., m ¼ �0:99) will lead to the further correction to the
value m ¼ �2:97, in the disk case.

Similar to the stretching cylinder case, the shrinking cylinder case has only been
studied for the linear wall velocity, in the existing literature. According to the
existing formulation, the shrinking wall velocity in the cylinder case has also been
constructed by putting a “−” sign with the stretching wall velocity. Since the
available literature on the stretching cylinder is strictly limited to the linear
stretching case. Therefore, the shrinking case of cylinder is also limited to the linear
wall law only. In this way, the accelerated cases of the power-law and exponentially
shrinking cylinder have, so far, not been considered, similar to the two-dimensional
case. According to the correct self-similar modeling, as explained previously,
Eqs. (6.35) and (6.38) govern the shrinking cylinder flow with the selection of “−”
sign among “±” on the right-hand sides of Eqs. (6.35a) and (6.38a) corresponding
to the power-law and exponential shrinking velocities, respectively. In this case too,
the solution does not exist in the case of retarded wall velocities (i.e., m[ 0),
similar to the previous two cases. Because of the presence of surface curvature
parameter j, the so-called threshold value of m (say m�), which bifurcates the
domain of m into two parts corresponding to the regions of existence and nonex-
istence of the solution is not unique. This threshold value m� bears continuous
dependence upon the curvature parameter and changes upon varying the values of
j. For large values of j, the threshold value m�j j is small and vice versa. Again in
this case, it is not possible for the author to report the threshold values of m
corresponding to every value of j as we already pointed out in the previous chapter.

Our numerical solution shows that within the admissible range of values of m,
the numerical infinity is significantly large for small values of mj j despite the
convergence of the solution. Therefore, sufficiently large values of mj j have been
considered while plotting the graphs in this case. The flow behavior, in general, is
somehow similar to that as it is in the stretching cylinder case. The boundary-layer
thickness decreases upon increasing the values of mj j (see Fig. 7.7). Consequently,
the skin-friction increases as shown in Fig. 7.8. The increasing values of j also
contribute to increase the coefficient of skin-friction (see Fig. 7.8), thus assisting the
flow in the weak wall velocity situations. Some numerical values of the coefficient
of skin-friction corresponding to different values of m and j are also listed in

Fig. 7.6 Velocity profile for
shrinking disk
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Table 7.2. This assisting role of j is exactly the same as observed in the stretching
cylinder case in the previous chapter. The effect of j on the velocity profiles within
the boundary-layer is also the same as in the stretching cylinder case; very close to
the wall the velocity decreases upon increasing j, and soon after, the curves cross
over the others and die out slowly in the upper part of the boundary-layer (see
Fig. 7.9).

Similar behavior is observed in the exponential shrinking case and the results
have been depicted in Figs. 7.10, 7.11, and 7.12. Despite the difference in threshold
values of m, from those of power-law shrinking case, the qualitative behavior of the
current two cases (the power-law and exponential shrinking of the disk) is, however,
exactly the same, in qualitative sense. Moreover, the flow behavior in the present
exponentially shrinking cylinder case is also the same as in the corresponding case of

Fig. 7.7 Velocity profile for
shrinking cylinder at j = 0.3

Fig. 7.8 −f ″(0) plotted
against m for shrinking
cylinder

Table 7.2 Values of −f ″(0)
at different m and j for
power-law shrinking cylinder
case

�m �f 00ð0Þ
j ¼ 0:25 j ¼ 0:5 j ¼ 1:0

20 3.7139 3.8101 3.9968

25 4.1489 4.2455 4.4334

30 4.5416 4.6385 4.8271

40 5.2378 5.3351 5.5248

50 5.8498 5.9474 6.1384

70 6.9115 7.0093 7.2017

80 7.3846 7.4825 7.6752

100 8.2490 8.3470 8.5401
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exponentially stretching cylinder case. This fact again denies the exhibition of any
“dramatic” behavior of the shrinking surface flow in comparison with the stretching
surface flow. The reason behind this fact is the consideration of correct flow equa-
tions and the appropriate values of m in the shrinking surface cases.

Fig. 7.9 Velocity for
different j for power-law
shrinking cylinder at m = −30

Fig. 7.10 Velocity at
different j for exponentially
shrinking cylinder at m = −10

Fig. 7.11 Velocity profile of
exponentially shrinking
cylinder at j = 0.2

Fig. 7.12 Values of −f″(0)
plotted against m for
different j
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Variation in velocity due to j and m is shown in Figs. 7.10 and 7.11, respec-
tively. The behavior of coefficient of skin-friction in view of the variation of m and
j follows the same as observed in the power-law shrinking case. Numerical values
of the coefficient of skin-friction for various values of m and j are listed in
Table 7.3. The solution in the shrinking cylinder case can also be made to exist for
m[ 0 provided a sufficient amount of suction/injection is introduced at the
cylinder’s surface.
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Table 7.3 Values of −f ″(0)
at different m and j for
exponentially shrinking
cylinder
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Chapter 8
Unsteady Flow Due
to the Stretching/Shrinking Surfaces

The preceding three chapters have strictly been restricted to the cases of steady
viscous flows due to the motion of continuous surfaces. The similarity criterion has
been established for such flows regarding the rectangular and axisymmetric flow
geometries. So far, attention has not been given to the unsteady flows of this
category regarding the existence of self-similarity, in this book. The determination
of the self-similarity criterion for unsteady flows follows in the same manner as has
already been practiced in Chap. 5. However, just to remind, it is restated here in
order to proceed the current discussion further. Mathematically, any boundary-layer
flow can be self-similar provided that the number of independent variables involved
can be reduced to one so that the governing partial differential equations can be
reduced to ordinary ones by staying invariant under the scaling transformations
utilized for this purpose. The elimination of the time variable t follows in the same
manner as does the elimination of spatial “slack” variables. However, interesting
situation arises, in the unsteady flows, while reducing the auxiliary data to the new
variables. In all the previous problems, we had been lucky enough because the
investigated problems did not contain any auxiliary data corresponding to the
leaving slack variable(s). However, the unsteady problems considered in this
chapter do essentially involve the initial condition at t ¼ 0 or t\0.

Due to the unsteady boundary-layers, the time variable t also serves as the slack
variable and eventually leaves the system while constructing the new (similarity)
variables. The only surviving variable is the normal space variable in these flows
too. Consequently, all the original auxiliary data, either initial or the boundary
conditions, have finally to be represented in the form of boundary conditions (only)
defined (most probably) at the ends of the new spatial domain corresponding to the
new similarity variable running across the boundary-layer. This means that the
elimination of t could only be possible if either the casted initial condition can fully
be represented by any one of the (transformed) boundary conditions of the system
or the problem does not involve the initial condition at all. This fact necessitates the
utilization of the concept of ill- or well-posedness of any initial or boundary value
problem because the criterion of the self-similarity depends strongly upon it. For an
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ill-pose problem, there are three possibilities; (i) the problem is non-similar, (ii) the
problem is self-similar and admits a unique similarity, and (iii) the problem is
self-similar but admits many similarity variables. The situation is, however, limited
for the well-posed problems. The well-posed problems can either be non-similar or
self-similar admitting the unique similarity. The unsteady flows, having prescribed
initial data, do fall into this category; thus limiting the pool of unsteady
self-similarity solutions in the boundary-layer flows. The importance of the initial
condition and its coalition with (at least one) boundary condition for the existence
of self-similarity will be explained in the following section.

This chapter includes the case of two-dimensional and axisymmetric boundary-
layer flows due to moving continuous surfaces. The corresponding self-similarity
criterion has been determined and discussed in detail in Sect. 8.1. The procedure
follows the same for the three-dimensional case also. Two-dimensional unsteady
flow due to the stretching or shrinking sheet is discussed in Sect. 8.2 and the cases
of cylinder and disk in Sect. 8.3.

8.1 Criterion of Self-similarity

8.1.1 Two-Dimensional Case

Consider the two-dimensional boundary-layer flow due to a moving continuous flat
surface started impulsively at time t ¼ 0. The steady case of this flow has already
been considered in Sect. 5.1, and the flow schematic is shown in Fig. 5.1. The
difference between the present case and that considered in Sect. 5.1 is only the
impulsive start of the surface motion where other flow assumptions are the same in
these two cases. In view of the above assumptions, the boundary-layer equations in
this case are obtained from the system (2.10)–(2.12), by

@u
@x

þ @v
@y

¼ 0; ð8:1Þ

@u
@t

þ u
@u
@x

þ v
@u
@y

¼ m
@2u
@y2

; ð8:2Þ

subject to the initial and boundary conditions

u x; y; tð Þ ¼ 0; at t ¼ 0; 8x; y; ð8:3Þ

and

u x; y; t[ 0ð Þ ¼ uw x; tð Þ; v x; y; t[ 0ð Þ ¼ 0; at y ¼ 0
u x; y; t[ 0ð Þ ¼ 0; at y ¼ 1

�
; ð8:4Þ
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respectively. The criterion of self-similarity of the above system is determined
following the same procedure as executed in Sect. 5.1 by introducing the scaling in
time of the form

�t ¼ ka0 t; ð8:5Þ

to the group of scalings (5.8). Consequently, the system (5.11) includes one more
equation due to the term @u

@t in Eq. (8.2) and modifies as

a0 þ a2 � a3 ¼ a1 þ 2a2 � 2a3 ¼ 3a2 � a3; a2 � a3 ¼ �a4: ð8:6Þ

Obviously, the inclusion of a new equation to the system (5.11) will cause to
further restrict the simultaneous solution of the system (5.11) which will, in turn,
cause to reduce the number of self-similar solutions produced by the system (5.11).
This fact is going to be confirmed in the next few steps.

Note that Eq. (8.2) involves three independent variables, which are to be reduced
to one by the elimination of t and x. Since, the group consisting of Eqs. (5.8) and
(8.5) involves one parameter, the elimination of t and x follows successively in two
steps. The elimination of t generates two cases regarding the nonzero and zero
character of a0.

Case I a0 6¼ 0ð Þ
In this case the new variables are constructed as

n ¼ xt�ðnþ 1Þ; g ¼ yt�1=2;w ¼ tnþ
1
2F n; gð Þ; uw x; tð Þ ¼ tnFw nð Þ; ð8:7Þ

which transform the system (8.2)–(8.4) to the form

n
@F
@g

þ @F
@g

� n� 1ð Þn
� �

@2F
@n@g

� 1
2
gþ @F

@n

� �
@2F
@g2

¼ m
@3F
@g3

; ð8:8Þ

@F
@g ¼ Fw nð Þ; @F@n ¼ 0; at g ¼ 0
@F
@g ¼ 0; at g ¼ 1

)
: ð8:9Þ

The definition of g given in Eq. (8.7) reflects that at t ¼ 0 or y ¼ 1; g ¼ 1.
This means that the initial condition defined in Eq. (8.3) (at t ¼ 0) and the boundary
condition at y ¼ 1 in Eq. (8.4) shall be represented by a single boundary condition
at g ¼ 1. Such a restriction, arose, due to the particular form of the similarity
variable g which, in fact, requires the initial condition ðat t ¼ 0Þ and the boundary
condition (at y ¼ 1) to coalesce. Fortunately, the initial condition (8.3) and the
boundary condition (8.4) at y ¼ 1 have the forms which allow them to coalesce. If,
for example, any one of them was different from zero prohibiting them to coalesce,
the similarity transformations (8.7) were not possible to construct. The impact of
absence of initial condition will be discussed a bit later.
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The elimination of n from the system (8.8) and (8.9) requires the once more
utilization of one-parameter scaling group of the form

�n ¼ kb1n; �g ¼ kb2g; �F ¼ kb3F; �Fw ¼ kb4Fw: ð8:10Þ

The substitution of group (8.10) and the condition of invariance of the system
(8.8)–(8.9) gives rise to the linear system of equations in biði ¼ 1; . . .; 4Þ as

b2 � b3 ¼ b1 þ 2b2 � 2b3 ¼ 3b2 � b3; b2 � b3 ¼ �b4: ð8:11Þ

Based on the elimination of n, two cases arise for the zero and nonzero character
of b1. Similar to Chap. 5, the successive elimination of t and x requires to organize
the procedure of group-theoretic approach into the form of major cases and sub-
cases. Thus, following the analogy of Sect. 5.2, we proceed in the same fashion.

Case I; Subcase I a0 6¼ 0; b1 6¼ 0ð Þ
The system (8.11) admits a non-trivial solution (for b1 6¼ 0) due to which the new
variables are constructed as

f ¼ g;F ¼ n f fð Þ;Fw nð Þ ¼ an; ð8:12Þ

which successfully eliminate the variable n from Eqs. (8.8) and (8.9).
Consequently, Eq. (8.8) transforms to an ordinary differential equation of the form

f 0 � 1ð Þf 0 � 1
2
fþ f

� �
f 00 ¼ mf 000; ð8:13Þ

subject to the boundary conditions

f 0 ¼ a; f ¼ 0; at f ¼ 0
f 0 ¼ 0; at f ¼ 1

�
: ð8:14Þ

The unified similarity transformations which transform Eqs. (8.2)–(8.4) directly
to the system (8.13)–(8.14), are obtained by combining Eqs. (8.7) and (8.12) as

f ¼ yt�
1
2;w ¼ xt�

1
2f fð Þ; uw x; tð Þ ¼ ax

t
: ð8:15Þ

Case I; Subcase II a0 6¼ 0; b1 ¼ 0ð Þ
Consideration of the value b1 ¼ 0 leads to the trivial solution of the system (8.11)
which denies the possibility of any new variables at all. Consequently, the
self-similarity does not exist in this case.

Case II ða0 ¼ 0Þ
The system (8.6) admits a non-trivial solution after the substitution of a0 ¼ 0, due
to which the new variables are constructed as
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n ¼ xe�nt; g ¼ y;w ¼ entF n; gð Þ; uw x; tð Þ ¼ entFw nð Þ: ð8:16Þ
It is important to note that the above definition of g does not involve the variable t,

meaning that the initial condition (8.3) is impossible to coalesce with the boundary
condition (8.4) at y ¼ 1. Thus the process of reducing the variables in the system
(8.1)–(8.4) with the surety of its invariance cannot be proceeded any further.
However, if for instance, the initial condition (8.3) is ignored then the ongoing
process may be continued provided the transformation (8.16) eliminates t from
Eq. (8.2) completely. With the aid of Eq. (8.16), Eqs. (8.2) and (8.4), respectively,
take the form

n
@F
@g

þ @F
@g

� nn

� �
@2F
@n@g

� @F
@n

@2F
@g2

¼ m
@3F
@g3

; ð8:17Þ

and

@F
@g ¼ Fw nð Þ; @F@n ¼ 0; at g ¼ 0
@F
@g ¼ 0; at g ¼ 1

)
; ð8:18Þ

where the previous variables have completely been removed. Notice that, with the
availability of the initial condition (8.3) the problem stands well-posed in time and
admits only one similarity transformation as did in the previous case (case I) and no
similarity in the present case at all. This is in accordance with the facts which we
already have mentioned some earlier. The reduction of Eqs. (8.2) and (8.4) to the
form (8.17) and (8.18), respectively, is a consequence of the ill-posed nature of the
problem which has been “switched on” with the exclusion of the initial condition
(8.3); in the following cases the initial condition (8.3) will continue to stay ignored.

Further elimination (of n) is straightforward for which the system of linear
equations is the same as Eq. (8.11). Two cases are essential regarding the zero and
nonzero character of b1 here.

Case II; Subcase I a0 ¼ 0; b1 6¼ 0ð Þ
The assumption b1 6¼ 0 results in the construction of new variables given by

f ¼ g;F ¼ n f fð Þ;Fw nð Þ ¼ an; ð8:19Þ

which transform the system (8.17)–(8.18) to the form

f 02 � ff 00 ¼ mf 000; ð8:20Þ

f 0 ¼ a; f ¼ 0; at f ¼ 0
f 0 ¼ 0; at f ¼ 1

�
; ð8:21Þ

by eliminating the variable n, completely. The case “Case II; Subcase II
ða0 ¼ 0; b1 ¼ 0Þ” is similar to the case “Case I; Subcase II” resulting in no new

8.1 Criterion of Self-similarity 121



variables at all. The transformations (8.16) and (8.19) can be combined to get the
unified transformations of the form

f ¼ y;w ¼ xf fð Þ; uw x; tð Þ ¼ ax; ð8:22Þ

which are the same as for the case of steady flow due to linear stretching or
shrinking of the wall. The reason behind such an “unexpected” result, for the
unsteady equation, is the removal of initial condition (8.3) from the auxiliary data
(8.3)–(8.4). Thus with the presence of (8.3) the problem turns well-posed in time
and admits only one similarity, namely, Eq. (8.15) (“Case I; Subcase I”) or no
similarity at all (“Case II”).

From Eq. (8.15) it is clear that the wall velocity uw x; tð Þ is linear in x and does
not admit the general power-law profile. This means that the self-similar solution to
this case is possible if the sheet is being stretched or shrunk linearly. Other
self-similar wall velocities, admitted in the steady flow, have simply been killed by
the unsteady nature of the flow.

8.1.2 Axially Symmetric Case

In this category of boundary-layer flows, caused because of the stretching or
shrinking of a continuous surface, the axisymmetric flow occurs in the case of
cylinder or the disk. The self-similarity criterion for the two-dimensional unsteady
flow near the stretching or shrinking sheet has been determined in Sect. 8.1.1 where
it is seen that the similarity in time ultimately kills the spatial similarity corre-
sponding to the nonlinear and exponential wall velocities leaving behind the linear
wall law only [see for example Eq. (8.15)]. The same pattern follows in the case of
axially symmetric flows, namely the cylinder or the disk cases. It will be seen that
the similarity in time is only possible if the cylinder or the disk is being stretched or
shrunk linearly. No self-similar solution is possible for nonlinear or exponential
wall velocities in the unsteady case.

Following the procedure presented in the last section, one readily finds that the
self-similar system corresponding to the stretching or shrinking cylinder having
impermeable surface reads as

f ¼ rt�1=2; u ¼ zt�
1
2

r
f 0 fð Þ; v ¼ � 1

r
f fð Þ; ð8:23Þ
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d
df

f
d
df

f 0

f
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; ð8:24Þ

subject to the boundary conditions
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f 0 ¼ aR0; f ¼ 0; at f ¼ R0

f 0 ¼ 0; at f ¼ 1
�
: ð8:25Þ

The admitted wall velocity uw comes out of the form

uw z; tð Þ ¼ az
t
: ð8:26Þ

Notice that the term on right-hand side of Eq. (8.24) is the same as it is in
Eq. (5.109) (for the self-similar steady flow), whereas the left-hand side of
Eq. (5.109) (with the restriction m ¼ 1) has been appended by the first two terms
appearing in the left-hand side of Eq. (8.24). The mentioned two terms are actually
the contribution of the non-steady convective term appearing in Eq. (2.14). The
boundary conditions (8.25) are, however, the same as they are in the steady case for
m ¼ 1; see Eq. (5.110).

An interesting feature, quite particular to the cylinder case, is that the
self-similarity solutions are impossible due to a stretching or shrinking cylinder of
constant thickness except in the cases of linear stretching or shrinking wall
velocities. In Chap. 6, it has already been seen that the nonlinear or exponential wall
velocities are permissible only if the thickness of the cylinder also varies in the
similar manner (that is following the power-law or exponential form) as does the
wall velocity. Such a variable nature of the cylinder radius is also derived due to the
self-similarity in time in the unsteady case. Interestingly, the similarity in time
exists only for the linear wall velocity, when the radius stays constant spatially, but
requires the time dependent swallowing of the cylinder surface in the unsteady case.
In this way, the above self-similar system (8.23)–(8.26) is only valid if the cylinder
radius varies in time as

R z; tð Þ ¼ R0t
1=2: ð8:27Þ

The fundamental reason behind this fact is that the boundary-layer thickness
varies in time d� ffiffi

t
p

in the unsteady case of stretching/shrinking cylinder [see
Eq. (8.23)]. The existence of self-similarity to this case requires the cylinder’s
radius also to vary in the same manner as does the boundary-layer thickness. This
fact has also been identified in Chap. 6 for the respective steady flow case.

The requirement of linear wall velocity for the existence of self-similarity in time
continues to persist in the case of disk flow also. The stretching or shrinking wall
velocity in the case of disk comes out to be of the form

uw r; tð Þ ¼ ar
t
; ð8:28Þ

admitting the similarity transformations
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f ¼ zt�1=2; u ¼ rt�1f
0
fð Þ;w ¼ �2t�1=2f ðfÞ; ð8:29Þ

due to which Eq. (2.15) is satisfied identically and Eq. (2.16) reduces to the form

f 0 � 1ð Þf 0 � 2
1
2
fþ f

� �
f 00 ¼ mf 000; ð8:30Þ

subject to the boundary conditions

f
0 ¼ a; f ¼ 0; at f ¼ 0
f
0 ¼ 0; at f ¼ 1

�
: ð8:31Þ

Again in this case too, the unsteady term in Eq. (2.16) has contributed the terms
�f 0 � f f 00 on the LHS of Eq. (8.30) where the rest of the equation is that applicable
to the steady flow due to linearly stretching or shrinking disk. The stretching and
shrinking character, of the cylinder or the disk, is characterized by the positive and
negative values of the constant a appearing in Eqs. (8.26) and (8.28), respectively.

8.2 Two-Dimensional Unsteady Self-similar Flow

8.2.1 Stretching Sheet Flow

In the previous section, it has been determined that in the case of two-dimensional
unsteady flow the wall velocity must be of the form uw x; tð Þ ¼ ax

t and the corre-
sponding self-similar system is that given in Eqs. (8.13)–(8.14). Before solving this
system, it is convenient to cast it into dimensionless form first. The procedure of
non-dimensionalization exercised in Chap. 6 will be followed here. Proceeding that
way, the similarity transformations (8.15) in dimensionless form read as

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw x; sð Þ

mx

r
y; u ¼ uw x; sð Þf 0 fð Þ; v ¼ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw x; sð Þm

x

r
f ðfÞ

" #
; ð8:32Þ

and the wall velocity takes the form

uw x; sð Þ ¼ ax
s
; s ¼ at; ð8:33Þ

where a[ 0 corresponds to a linear stretching whereas a\0 denotes the linear
shrinking of the sheet. Accordingly, Eqs. (8.13) and (8.14) also modify as
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f 0 � ð�1Þð Þf 0 � �f
2

þ f

� �
f 00 ¼ �f 000; ð8:34Þ

f 0 ¼ 1; f ¼ 0; at f ¼ 0
f 0 ¼ 0; at f ¼ 1

�
: ð8:35Þ

The form adopted in Eq. (8.32) has intentionally been given in order to make the
similarity transformations of the unsteady case compatible with the similarity
transformation of the steady case. Furthermore, it also provides an opportunity for
making an important note here. Because of Eqs. (8.1) and (8.32) is satisfied
identically, and Eq. (8.2) transforms as

t
uw

@uw
@t

þ t
@uw
@x

f 0
� �

f 0 � 1
2
f f 00 þ t

uw
v
@u
@y

� �
¼ f 000: ð8:36Þ

The assumption of unidirectional flow ðv ¼ 0Þ and constant wall velocity
ðuw x; tð Þ ¼ U0Þ reduces the above Eq. (8.36) to the form

f 000 þ 1
2
f f 00 ¼ 0; ð8:37Þ

subject to the boundary conditions [from Eq. (8.4)]

f 0 ¼ 1; f ¼ 0; at f ¼ 0
f 0 ¼ 0; at f ¼ 1

�
; ð8:38Þ

which is the famous Stokes’ first problem. This shows that the current self-similar
formulation is a generalization of the corresponding unidirectional flow situation
which can easily be recovered from the current one. Another worth noting fact is
the resemblance among the unidirectional and two-dimensional cases regarding the
development of boundary-layer with respect to time. The definition of f in
Eq. (8.32), in view of Eq. (8.33), reads as

f ¼ yffiffiffiffi
mt

p : ð8:39Þ

This means that, in the two-dimensional case too, the boundary-layer thickness
varies ðd� ffiffiffiffi

mt
p Þ in the same way as for the unidirectional case [Stokes’ first

problem, Eq. (3.3)].
Due to Eq. (8.32) the coefficient of skin-friction reads in this case as

1
2

ffiffiffiffiffiffiffi
Rex

p
Cf ¼

ffiffiffi
s

p
f 00 0ð Þ; ð8:40Þ
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where Rex ¼ ax2=m is the local Reynolds number. The velocity graph in this case is
shown in Fig. 8.1, and the coefficient of skin-friction has been plotted against s in
Fig. 8.2. Clearly, the velocity dies out asymptotically, exhibiting the boundary-
layer character. The penetration depth in this case is g1 ¼ 3:7714, which is 72%
greater than that ðg1 ¼ 2:190Þ in the Stokes’ first problem. The penetration depth
has been calculated when the velocity in the boundary-layer becomes 99% of the
external potential velocity. Figure 8.2 depicts that the coefficient of skin-friction
intends to attain the steady state as the time increases. Qualitatively, the behavior is
the same as for the unidirectional flow.

Such an unsteady self-similar flow is not new for the stretching sheet flow; rather
it had already been studied by several authors since long. Devi et al. [1] considered
three-dimensional unsteady flow due to a linearly stretching sheet in two lateral
directions. They considered the wall velocities of the form (according to current
system of coordinates)

uw ¼ ax 1� k�sð Þ�1;ww ¼ bz 1� k�sð Þ�1; ð8:41Þ

where k� is a pure constant and is commonly known as the unsteadiness parameter
in literature. In such a way s is restricted to be smaller than unity. Consequently, the
constant k� appears as a coefficient of the linear terms on the left-hand side of
Eq. (8.13). According to the running practice, the effects of the so-called unsteady
parameter are usually studied on the velocity profile and the wall skin-friction.
However, the factor 1� k�sð Þ�1 appearing in Eq. (8.41) is analogous to the factor
s�1 appearing in Eq. (8.33). Thus the two forms can be regarded equivalent and
used for further flow analysis.

Fig. 8.1 Velocity profile for
unsteady stretching sheet flow

Fig. 8.2 Coefficient of
skin-friction against s for
unsteady stretching sheet
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8.2.2 Shrinking Sheet Flow

The system (8.34)–(8.35) governs the shrinking sheet flow if one chooses “−” sign
among the “�” signs on both sides of the Eq. (8.34). By doing so the resulting
system does not admit any solution at all. The reason is that, with the choice a\0,
the wall velocity given in (8.33) represents retarded shrinking velocity (in x) due to
the +ve value of the power-law index m (i.e., m ¼ 1). In Chap. 7, it has already
been explained that the shrinking sheet problems do admit meaningful solution only
in the case of accelerated wall velocities. The existence of a physically meaningful
solution in the current case is possible if the shrinking sheet is permeable and the
normal wall velocity is different from zero that is vwðx; sÞ 6¼ 0. The criterion of
self-similarity determined in Sect. 8.1.1 recommends the following form of normal
wall velocity

vw ¼ ds�1=2; ð8:42Þ

so that the self-similarity in time persists as described in Eqs. (8.32) and (8.33).
Following the dimensionless form of the similarity transformations given in
Eq. (8.32), the second boundary condition at f ¼ 0 in Eq. (8.35) modifies as

�f 0ð Þ ¼ �s; ð8:43Þ

where s ¼ d=
ffiffiffiffiffi
am

p
is the dimensionless parameter representing the normal flow

velocity. Notice that the positive values of d correspond to the constant wall
injection, whereas the negative values of d indicate the constant wall suction as
evident from Eq. (8.42).

It is observed that the system (8.34)–(8.35) after taking the condition (8.43) into
consideration with the selection of “−” sign among “�” signs in the Eqs. (8.34) and
(8.43) does admit a meaningful solution for sufficiently large values of sj j. The
current analysis indicates the existence of some critical value sc of s corresponding
to which the solution exists when s\sc, whereas the existence of any physical
solution for s[ sc is not confirmed. Staying on the safe side, the value s ¼ �3 has
been chosen in the light of current numerical solution. However, a rigorous
mathematical analysis of this problem would reveal the correct threshold value of s.
It is also observed that the second solution does also exist in this case but has not
been captured intentionally. The velocity graphs in this case have been plotted in
Fig. 8.3 against f for different values of the parameter s. It can be observed that the
strong suction velocity assists the flow in following the boundary-layer behavior.

The impact of wall suction on the coefficient of wall skin-friction has also been
shown in Fig. 8.4. Clearly, the skin-friction increases by increasing the magnitude
of s which in turn makes the boundary-layer to stay attached with the shrinking
surface, thus preventing the separation to occur. Some numerical values of f 00ð0Þ
corresponding to different values of the parameter s are given in Table 8.1.
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The form of the normal wall velocity (8.42) is also applicable to the stretching sheet
flow where the “+” sign must be selected among “�” signs in Eq. (8.43).

8.3 Axially Symmetric Unsteady Self-similar Flow

The similarity criterion for the unsteady axially symmetric cases, namely the
cylinder and the disk, has already been determined in Sect. 8.1. So far it has also
been realized that these two axially symmetric flows do not have any thing com-
mon. However, the disk case finds great resemblance with the two-dimensional case
as shown in the previous two chapters. Being different in nature, the cylinder and
the disk cases are therefore analyzed separately for the unsteady case also.

8.3.1 The Cylinder Case

The corresponding self-similar system (8.24)–(8.25) in dimensionless form reads as

��1
2

f 0

f
þ f 00

� �
þ f 0

f

� �2

� f
f

f 00

f
� f 0

f2

� �
¼ � 1

f
d
df

f
d
df

f 0

f

� �� �
; ð8:44Þ

Fig. 8.3 Velocity profile for
unsteady shrinking sheet case

Fig. 8.4 Coefficient of
skin-friction against s for
shrinking sheet flow
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subject to the conditions

f 0 ¼ ReR0 ; f ¼ 0; at f ¼ ReR0

f 0 ¼ 0; at f ¼ 1
�
; ð8:45Þ

where the similarity transformations (8.23) in dimensionless form are furnished as

f ¼
ffiffiffiffiffiffiffiffiffi
�uw
mz

r
r; u ¼ uw

f
f 0 fð Þ; v ¼ � �

ffiffiffiffiffiffiffiffiffiffiffi
�uwm
z

r
1
f
f ðfÞ

" #
: ð8:46Þ

Similar to the steady case, presented in Sect. 6.3, the domain of interest
ReR0 � f\1 can again be transformed to ½0;1Þ due to the transformation (6.34).
The utilization of Eq. (6.34) in the system (8.44)–(8.45) transforms it to the form
(after dropping the bars)

f 0 � ð�1Þð Þf 0 � �1
2j

1þ 2jfð Þþ f

� �
f 00 ¼ � 1þ 2jfð Þf 00½ �0; ð8:47Þ

f 0 ¼ 1; f ¼ 0; at f ¼ 0
f 0 ¼ 0; at f ¼ 1

�
: ð8:48Þ

The steady flow equation of this case Eq. (6.35) can immediately be recovered
from this system by ignoring the contribution of temporal the local acceleration on
the left-hand side of Eq. (8.47).

The system (8.47)–(8.48) is solved (by considering “þ ” sign among “�” signs)
for different values of the curvature parameter j for which the velocity profiles
have been plotted in Fig. 8.5. The small values of j correspond to small surface
curvature for which the circular cylindrical surface becomes flatter and flatter due to
which the flow resembles with the planner case for sufficiently small values of j. This
fact can easily be confirmed from Fig. 8.5 where the boundary-layer thickness is not
that large as is for the value j[ 1. As j increases the boundary-layer thickness also
starts to grow as a consequence of the presence of surface curvature. This, ultimately,
results in a continuous decrease in the wall skin-friction. It has, however, been

Table 8.1 Values of −f″(0)
for different s in the unsteady
shrinking sheet flow

s �f 00ð0Þ
−3 2.4115

−4 3.5930

−5 4.6846

−6 5.7414

−7 6.7804

−8 7.8090

−9 8.8309

−10 9.8482
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observed that after certain critical value jc of j the decreasing trend of values of
skin-friction coefficient turns to increasing on with increasing values of j. According
to the present numerical solution, this value reads as jc ¼ 1:14. The existence of
multiple solutions for certain values of j has also been observed but has not been
reported here.

The coefficient of skin-friction in this case also varies (with time) in the same
way as did in the previous two cases presented in the Sect. 8.2 and therefore have
not been plotted here again. The values of f 00ð0Þ for different values of j are,
however, listed in Table 8.2 and plotted in Fig. 8.6.

The system (8.47)–(8.48) does not allow any solution when the selection of “−”
sign is made among “�” signs on the RHS of Eq. (8.47). Evidently [see
Eq. (8.26)], the current wall velocity corresponds to the retarded linear shrinking
case for which the solution is not possible as has already been discussed in the
two-dimensional case. The solution can, however, be made to exist with the
allowance of sufficient wall suction or injection at the cylinder’s surface. If this is to
be done, one must choose the normal wall velocity of the form

Fig. 8.5 Velocity profile of
unsteady cylinder case for
different j

Table 8.2 Coefficient of
skin-friction for different j for
unsteady cylinder flow

j �f 00ð0Þ
0.05 10.0990

0.10 5.1927

0.20 2.8531

0.40 1.8261

0.50 1.6563

1.00 1.4281

1.10 1.4241

1.14 1.4241

1.143 1.4242

1.15 1.4243

1.50 1.4497

2.00 1.5244

3.00 1.7167

4.00 1.9230

5.00 2.1302
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vw z; sð Þ ¼ ds�1=2; ð8:49Þ

which in dimensionless form reads as

�f ð0Þ ¼ � dffiffiffiffiffi
am

p : ð8:50Þ

The solution to this case has intuitionally been dropped in order to avoid the
repetition of similar results.

8.3.2 The Disk Case

The dimensionless form of Eqs. (8.29)–(8.31) is given by

f ¼
ffiffiffiffiffiffiffiffiffi
�uw
mr

r
z; u ¼ uwf

0 fð Þ;w ¼ � �2

ffiffiffiffiffiffiffiffiffiffiffi
�uwm
r

r
f ðfÞ

" #
; ð8:51Þ

f 0 � ð�1Þð Þf 0 � 2
�1
2

fþ f

� �
f 00 ¼ �f 000; ð8:52Þ

and

f 0 ¼ 1; f ¼ 0; at f ¼ 0
f 0 ¼ 0; at f ¼ 1

�
; ð8:53Þ

where the wall velocity is given is Eq. (8.28) which is also of the same form as it
was in all the previous cases. In the case of stretching disk, the system (8.52)–(8.53)
admits a physically meaningful solution, whereas it seizes to produce any solution
in the case of shrinking disk. Similar to the previous cases the solution can,
however, be made to exist if the normal wall velocity is permissible. Within the
framework of above self-similar system, such a normal wall velocity must be of the
form

Fig. 8.6 Coefficient of
skin-friction of unsteady
cylinder case against j
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ww r; sð Þ ¼ ds�1=2; ð8:54Þ

which in dimensionless form reads as

�f ð0Þ ¼ � dffiffiffiffiffi
am

p : ð8:55Þ

The velocity graph, in the stretching case, is plotted in Fig. 8.7 for which the
coefficient of skin-friction is f 00 0ð Þ ¼ �1:0647. The unsteady case of the stretching
or shrinking disk is special in some sense which makes it unique among the family
of stretching or shrinking disk flows. In the steady-state case, discussed in Chap. 6,
it was finally concluded that the disk flow can directly be recovered from the steady
two-dimensional flow by replacing “m” by “3m” in the two-dimensional solution.
This conclusion fails in the unsteady case because both in the two-dimensional and
in the disk flows the wall velocity follows linear law (m ¼ 1 only) and does not
allow for any other value of m. This prevents one from any manipulation of the
constant coefficients of the equations (corresponding to the said problems) as it was
possible in the steady-state case in order to recover the solution of disk case from
the two-dimensional one by replacing “m” by “3m.” In the present form the
coefficients of Eqs. (8.52) and (8.34) are entirely different and are impossible to
manipulate. Because of this, solution of one case cannot be recovered from the
solution of the other. Therefore, different from the steady flow, the unsteady disk
flow is worth investigation independent of the two-dimensional flow.

Reference

1. C.D.S. Devi, H.S. Takhar, G. Nath, Unsteady, three-dimensional, boundary-layer flow due to a
stretching surface. Int. J. Heat Mass Transf. 29(12), 1996–1999 (1986)

Fig. 8.7 Velocity profile for
unsteady stretching disk flow
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Non-similar Flows



Chapter 9
Two-Dimensional Non-similar Flows

In the foregoing chapters, we had strictly been limited to the self-similar flows due to
moving continuous surfaces of different geometries. Despite the devoted efforts
spent in the previous part, it is yet a matter of reality that the class of self-similar
solutions in all the considered cases is very restricted being strictly limited to the
power-law and the exponential wall velocities. In particular applications, the situ-
ations, in general, need not to follow the power-law or exponential wall velocities
only. In such circumstances, the wall velocity functions are free to adopt any dif-
ferentiable from other than the power-law and the exponential forms. Such classes of
velocity functions are really very large in comparison with the self-similar ones and
have a great potential to cover almost all the other possible wall velocities occurring
in technological applications. Corresponding to all other forms of the wall velocity
functions, the flow will essentially be non-similar in nature. In view of the available
literature on the boundary-layers due to moving continuous surfaces, no significant
efforts have so far been spent in this direction. In this regard, the current part of this
book is of great importance where we intend to introduce the non-similar flows due
to moving continuous surfaces. In Chaps. 9 and 10, the spatial non-similarity in the
planner two-dimensional and the axially symmetric cases has been considered,
respectively, whereas the temporal non-similarity is considered in Chap. 11.

9.1 Non-similar Governing Equations

The previously considered governing system (5.2)–(5.4) for the two-dimensional
self-similar flows is equally applicable to the case of non-similar flows considered
in this section. Different from the self-similar flows, the variable wall velocity uwðxÞ
neither does obey the power-law nor the exponential form in this case. Such a
violation of the self-similarity criterion is actually responsible for the non-similar
designation of the current viscous flows. With this breaking of the similarity
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criterion, the velocity function uwðxÞ is free to assume any other form falling out of
the scope of similarity wall velocities. Such other forms are finally charged by a
partial differential equation to be solved, instead of ordinary differential equation,
for the non-similar flows.

Till the third quarter of the last century, the non-similar flows had been thought
to be difficult to handle because of the limited availability of high-performance
computing machines. This restriction has now been elevated completely because of
the availability of cheap but high-performance computing machines as a conse-
quence of the advent of modern technology. On the other hand, the tremendous
developments in the CFD have now made the solution of non-similar equations
equally that easy as does the solution of odes.

The non-similar formulation of the governing system (5.2)–(5.4) comes directly
from the self-similar formulation with the consideration that @f

@x 6� 0, whereas in the

self-similar flows @f
@x � 0. In this way, the similarity transformations (6.5) do also

work in the non-similar case but with the modified form of the stream function w,
given by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uwðxÞmx

p
f x; gð Þ; ð9:1Þ

where only “+” sign has been considered in the transformation (6.5) which corre-
sponds to the stretching sheet flow only. The case of shrinking wall velocities
follows, however, in the similar way and has been discarded in this discussion.
Because of Eqs. (6.5) and (9.1), the governing system (5.2)–(5.4) transforms to

x
uw

duw
dx
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� 1
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1þ x
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@2f
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þ x
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� @2f
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¼ @3f

@g3
; ð9:2Þ

@f
@g ¼ 1; f ¼ 0; at g ¼ 0
@f
@g ¼ 0; at g ¼ 1

)
: ð9:3Þ

In this case, the coefficient of skin-friction comes out of the form

1
2

ffiffiffiffiffiffiffi
Rex

p
Cf ¼ @2f

@g2

����
g¼0

; Rex ¼ uwx
m

: ð9:4Þ

It is worth noting here that the first two terms on the left-hand side of Eq. (9.2)

own the variable coefficients involving x
uw
duw
dx which is a function of x, in general.

However, situations do exist, for example: uwðxÞ ¼ axm, when the coefficient x
uw
duw
dx

becomes a pure constant. In such situations, the last two terms, involving differ-
entiation w.r.t. x on the left-hand side of Eq. (9.2), do not contribute any more.
Consequently, the pde turns to an ode, thus representing the self-similar situation.
Therefore, Eq. (9.2) can also be regarded as a generalization of the self-similar
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Eq. (6.4) for the stretching sheet case which certainly reduces to Eq. (6.4) when the
variable coefficients become constant. Particular to the case considered in this
section, the non-similarity comes due to the wall velocity only. Equation (9.2) can
further be recasted in a relatively simpler form, given by

2
n
uw

duw
dn

@f
@g

� �2

�f
@2f
@g2

þ 2n
@f
@g

@2f
@g@n

� @2f
@g2

@f
@n

� �
¼ @3f

@g3
; ð9:5Þ

where the utilized change of variables reads as

dn ¼ q2muwðxÞdx; dg ¼ quwðxÞffiffiffiffiffi
2n

p dy; w x; yð Þ ¼
ffiffiffiffiffi
2n

p
f n; gð Þ: ð9:6Þ

The coefficient of skin-friction and the momentum and displacement thicknesses
in terms of the variables (9.6) take the form

Cf ¼ sw
1
2 qu

2
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ffiffiffi
2
n

r
@2f
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����
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; ð9:7Þ

h ¼
ffiffiffiffiffi
2n

p
quw

Z1

0

u2dg; ð9:8Þ

and

d� ¼
ffiffiffiffiffi
2n

p
quw

Z1

0

u dg; ð9:9Þ

respectively.

9.2 Accelerated/Decelerated Non-similar Flows

All differentiable forms of uwðxÞ, in addition to the power-law and exponential
ones, are admissible by the system (9.2)–(9.3). However, the power-law and
exponential wall velocities shall not be considered here because, with these forms
of the wall velocity, system (9.2)–(9.3) reduces to the self-similar form, as men-
tioned earlier. Even with the exclusion of self-similar wall velocities, the family of
non-similar wall velocities is still too large. It is therefore impossible to mention all
such forms here and hence to analyze all of them. However, as an example, the
Howarth’s [1] (like) wall velocity of the form
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uw xð Þ ¼ U0 � ax; ð9:10Þ

is considered where U0 denotes the constant wall velocity and a is a positive
constant. The “þ ” sign refers to the accelerated wall velocity, while the “�” sign
governs the retarded wall law.

Physically, the wall velocity (9.10) is a linear combination of the translating
velocity and the linear stretching or shrinking velocity corresponding to the “þ ” or
“�” sign, respectively. Thus, the shrinking sheet flow, being retarded in nature, is
vulnerable to the separation phenomena, whereas the stretching sheet flow would
involve no separation at all because of accelerated nature of it. With the selection of
“−” sign in Eq. (9.10), it has been calculated that the coefficient of skin-friction
decreases continuously till x�sep: ¼ 0:42, where it becomes zero and changes its sign
further onward to x�sep:. This fact has been depicted in Fig. 9.1 where the velocity
graph tends to attain S-shape with increasing values of x� till x�sep: ¼ 0:42; where the
velocity graph achieves the S-shape and the velocity curve shows the presence of
point of inflection in it. The coefficient of wall skin-friction is shown plotted against
x� in Fig. 9.2 where the function f 00ðx�Þ can be seen hitting zero at x�sep: ¼ 0:42. Due
to Eqs. (9.6) and (9.10), the variables x� and n are related as

n ¼ q2m 1� ax�ð Þx�; ð9:11Þ

where x� ¼ x=L with L denoting suitable characteristic length in the x-direction.
The numerical values of skin-friction coefficient listed in Table 9.1 correspond

to different values of x�. In comparison with the Howarth’s retarded flow [1], the
separation has been delayed by 250% in the present case. The reason behind this is
the increased wall skin-friction in the moving continuous sheet flows as compared
to the sheets of fixed length. Therefore, the increased wall friction thus assists the
boundary-layer flow to survive a quite longer in the infinite continuous wall cases
in comparison with the finite wall cases.

The stretching sheet case of the current non-similar flow involves no such
trouble because of its accelerating nature. Upon advancing along the moving sheet
in increasing x*-direction, the flow establishes more and more by confining itself to
a narrower region near the moving continuous wall. The velocity graphs of this case

Fig. 9.1 Velocity graphs at
different x* locations
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are shown plotted in Fig. 9.3 where the velocity graphs can be seen decreasing
upon increasing the values of x�. Consequently, the coefficient of skin-friction
increases as shown in Fig. 9.4 with x�, thus avoiding the occurrence of flow sep-
aration. The numerical values of the coefficient of skin-friction have also been listed
in Table 9.1 at different x*-stations. The above-reported results have been obtained
due to Eq. (9.5) subject to the boundary conditions (9.3).

For the two-dimensional and axially symmetric non-similar boundary-layer
equations, the famous Keller-Box Method is the appropriate numerical tool which

Fig. 9.2 Variation of
coefficient of skin-friction
while x* approaches the
separation point

Table 9.1 Dimensionless
wall shear values � sw

qU2
0
Re1=2L

x� Shrinking case Stretching case

0.01 4.3134 4.5644

0.05 1.7091 2.2704

0.1 1.0206 1.8139

0.15 0.6859 1.6566

0.2 0.4717 1.5912

0.25 0.3174 1.5670

0.3 0.1992 1.5653

0.35 0.1052 1.5771

0.38 0.0575 1.5886

0.40 0.0288 1.5977

0.42 0.0022 1.6078

Fig. 9.3 Velocity profile for
the accelerated case
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converges unconditionally. An introduction to this method has already been given in
Sect. 4.2.2. The current solution has also been obtained because of this method. The
accuracy of the utilized numerical procedure was first ensured by solving the famous
Howarth’s retarded flow. A comparison of the results obtained due to the current
procedure with those of Howarth’s [1] has been given in Table 9.2. Clearly, the
current solution is in appreciable agreement with the Howarth’s solution [1]. This
authenticates our numerical procedure and allows for the integration of Eq. (9.5)
with the aid of it. The grid independence check has also been applied to the current
numerical procedure, and the results have been shown in Tables 9.3 and 9.4.

Fig. 9.4 Coefficient of
skin-friction plotted against
x* (accelerated case)

Table 9.2 Accuracy of the
method for Howarth’s flow:
dimensionless wall shear
values

sw
qU2

0
Re1=2L

x� Present method Howarth’s [1]

0.0125 2.742 2.739

0.0250 1.773 1.772

0.0375 1.310 1.309

0.0500 1.011 1.011

0.0625 0.790 0.790

0.0750 0.612 0.613

0.0875 0.458 0.459

0.1000 0.314 0.315

0.1125 0.163 0.163

0.1200 0.002 0.000

Table 9.3 Grid
independence in n by fixing
Δη = 0.1 and numerical
infinity equal to 8.0

No. of points x�sep: � sw
qU2

0
Re1=2L

15 0.42 0.0029

22 0.42 0.0026

43 0.42 0.0022

61 0.42 0.0022

85 0.42 0.0023

141 0.42 0.0023

422 0.421 0.0010
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The data presented in these tables show that the current solution is independent of the
grid for appropriate selection of the step sizes in n- and η-directions.

Normally, owing to the boundary-layer behavior, relatively big step sizes in n do
produce the correct results, but regarding the capturing of separation point, the
current analysis reveals that the dense grid provides the much better approximation
in comparison with the coarse one. After several runs, the results reported in
Table 9.1 were calculated by choosing Dn ¼ 0:01 and Dg ¼ 0:1 and taking (the
numerical infinity) g1 ¼ 8:0.

Reference

1. L. Howarth, On the solution of the laminar boundary layer equations. Proc. Roy. Soc.
London A 164, 547–579 (1938)

Table 9.4 Grid
independence in η by taking
numerical infinity equal to 8.0

Dn ¼ 0:01 Dn ¼ 0:001

No. of
points

x�sep: � sw
qU2

0
Re1=2L

x�sep: � sw
qU2

0
Re1=2L

17 0.42 0.0016 0.421 0.0003

81 0.42 0.0022 0.421 0.0010

161 0.42 0.0024 0.421 0.0011

801 0.42 0.0024 0.421 0.0011
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Chapter 10
Axially Symmetric Non-similar Flows

The axially symmetric non-similar flow due to a moving continuous body of rev-
olution has relatively longer history than the self-similar flow of this type. The
axisymmetric flow due to a uniformly translating cylinder of constant cross-section
was first formulated by Sakiadis himself [1]. Interestingly, the equations so
developed for this flow (Eqs. (10.3) and (10.4a) of [1]) did not admit a self-similar
solution at all. The fundamental reason behind such an “unexpected” behavior of
Eqs. (10.3) and (10.4a) of [1] can easily be identified due to Chap. 5 where the
criterion of self-similarity for this case has been derived. Equation (5.108) shows
that the circular cylinder must allow a variable cross-section in order to admit a
similarity solution for the constant wall velocity case. That is, a cylinder of constant
cross-section is unable to admit a self-similar solution if the wall velocity is kept
constant. Sakiadis [2] realized this fact and obtained an approximate non-similar
solution to this problem using the integral method. Thus, in the very beginning of
the study of moving cylinder boundary-layers, Sakiadis had to tackle a non-similar
problem in contrast to the continuous flat surface for which the Sakiadis flow admits
a self-similar solution. In this way, the moving cylinder case turns out to be richer in
physics as well as mathematics in comparison with the moving flat surface case.

The involvement of the transverse curvature in the governing equations of
cylinder case makes the solution of these equations a bit more challenging in
comparison with the equivalent non-similar equations of the moving flat surface.
The boundary-layer thickness increases significantly with the increase of curvature
parameter which requires a considerable time for a single run in the numerical
computations. However, on the other hand, the approximate analytic solution, such
as the series solution or the solution due to some integral method, has been
observed to be very cheap in time and efforts, especially the integral method
solution. This might be the fact because of which Sakiadis avoided the numerical
and the series solution procedures and opted for the integral method in his first
pioneering paper [2] on this particular flow. Amazingly, his integral method, based
on the selection of appropriate velocity ansatz, though very cheap in time and
efforts, produced quite good approximation to the quantities of physical interest
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such as the boundary-layer thickness and, the momentum and the displacement
areas. Sakiadis [2] utilized a logarithmic profile (Eq. (10.5a) of [2]) in his integral
method in order to make his results applicable at the downstream locations. Such a
logarithmic profile was first proposed by Glauert and Lighthill [3] in the calculation
of axisymmetric boundary-layers near a long slim cylinder of finite length. Sakiadis
also observed that, contrary to the continuous flat surface, the quartic profile does
not satisfy the surface boundary condition in the case of cylinder. However, at the
leading edge where the cylinder radius R0 � d (the boundary-layer thickness), it
satisfies the boundary conditions in limiting sense. Consequently, the results due to
quartic profile are limited to a little leading edge neighborhood and deem
un-applicable at the downstream locations where the boundary-layer thickness
grows significantly and violates the restriction R0 � d; in such a region, the
transverse curvature effects are in fact significant.

The worth mentioning significant contributions regarding the calculation of
transverse curvature effects on a cylinder of finite length are due to Seban and Bond
[4], Glauert and Lighthill [3], Curle [5], Probstein and Elliot [6] and Stewartson [7].
Kelly [8] introduced important numerical corrections to the Seban and Bond’s

series solution valid for the interval 0:001\ d=R0ð Þ2\0:04 (where d ¼
ffiffiffiffiffiffi
mx
U1

q
denotes the Blasius boundary-layer thickness). Glauert and Lighthill [3] utilized the
Pohlhausen method [9] and a power-series method to extend the results of [4, 7] for
significantly large values of the curvature parameter d=R0. Their results were further
refined by Curle [5] where he computed few more terms of the approximating
series. The studies on the curvature effects due to a moving continuous cylinder in
the non-similar flow are due to Sakiadis [2] and Crane [10] only, to the best of our
knowledge. Crane [10] revisited the Sakiadis flow [2] and concluded that the flow
resembles the two-dimensional case in the vicinity of leading edge and at the far
downstream locations the boundary-layer decays algebraically instead of expo-
nentially. However, close to the cylinder’s surface he confirmed the logarithmic
behavior of velocity in accordance with the Glauert and Lighthill [3].

The advent of modern technology and the availability of high-performance
computing machines have now made it possible to go for the numerical solution of
such important and complex problems. The famous finite difference schemes have
been observed to work well for the computation of such non-similar flows.
Important contributions in this regard can be seen in Refs. [11–22].

10.1 Governing Equations

The similarity criterion determined in the case of cylinder (in Chap. 5) requires the
variable radius of the cylinder in the cases of power-law and exponential wall
velocities with an exception of the case of linear wall velocity. Thus, for a con-
tinuous slim cylinder the flow will be non-similar whenever the aforementioned
criterion is not fulfilled by the wall velocity and the cylinder radius, simultaneously.
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The boundary-layer equations presented in Sect. 2.1.4, corresponding to the axially
symmetric case, have been derived in terms of typical system of cylindrical coor-
dinates. In Chap. 6, it was, however, realized that such a formulation is, somewhat,
inconvenient because of the description of surface boundary conditions at y ¼ R
instead of y ¼ 0. In order to avoid such an inconvenience, it seems, therefore,
desirable to formulate the governing equations in terms of curvilinear coordinates
ðx; y; hÞ shown in Fig. 10.1. The function r0ðxÞ1 denotes the variable radius of the
body of revolution, x stands for the curvilinear variable in the longitudinal direction
starting from the stagnation point, y is the surface normal coordinate, and h denotes
the circular coordinate.

For a viscous flow coming on to the smooth axisymmetric body of revolution
(shown in Fig. 10.1), the variations in the flow within the boundary-layer along the
circumference are assumed to be zero. Therefore, the resulting flow is similar to
two-dimensional flow in nature. The corresponding boundary-layer equations for an
incompressible steady flow come out of the form (for details, the reader is referred
to follow Ref. [18])

@

@x
ruð Þþ @

@y
rvð Þ ¼ 0; ð10:1Þ

u
@u
@x

þ v
@u
@y

¼ � 1
q
@p
@x

þ m
1
r
@

@y
r
@u
@y

� �
; ð10:2Þ

where u and v denote the x- and y-components of the velocity vector and r is
defined by

r x; yð Þ ¼ r0 xð Þþ y cos a xð Þ: ð10:3Þ

The absence of any potential flow will make the term @p
@x ¼ 0. However, for the

bodies involving significant transverse curvature the second component of the
Navier–Stokes equations yields 1

q
@p
@y � u2

R , where R is the radius of curvature;
otherwise (for moderate surface curvature), it is usually taken equal to zero (i.e.,
@p
@y�0).

Corresponding to the bodies having fixed radius r0 xð Þ ¼ const:, the angle a ¼ 0
which makes r � y in Eq. (10.3) by aligning x with the body axis. In this case,
Eqs. (10.1)–(10.2) reduce to the form

u
@u
@x

þ v
@u
@r

¼ m
r
@

@r
r
@u
@r

� �
; ð10:4aÞ

1Particular to this formulation, the radius of the cylinder will be denoted by r0ðxÞ from now to
onwards.
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@ ruð Þ
@x

þ @ rvð Þ
@r

¼ 0; ð10:4bÞ

which are identical to Eqs. (2.13)–(2.14) after replacing x by z. In the cases when
the body radius is significantly large, such that the previously mentioned condition
is resolved that is, d=r0 � 1, meaning no transverse curvature effects at all. The
rðx; yÞ then becomes independent of y in Eq. (10.3) leading to significant simpli-
fication in Eq. (10.2) by reducing it to the form

u
@u
@x

þ v
@u
@y

¼ m
@2u
@y2

: ð10:5aÞ

Accordingly, rðx; yÞ is replaced by r0ðxÞ (due to Eq. 10.3) in the equation of
continuity (10.1) to give

@

@x
r0uð Þþ @

@x
r0vð Þ ¼ 0: ð10:5bÞ

The above momentum Eq. (10.5a) for axisymmetric case is exactly the same as
for the two-dimensional case or the disk case, but the continuity Eq. (10.5b) is
different from that of two-dimensional case. Equations (10.4a)–(10.5a) are exactly
those as utilized by Boltze [23] for the axisymmetric flows around the bodies of
revolution in his dissertation. These equations apply, for example, to the cases of
circular cylinder in cross-flow and circular disk, respectively. This is the reason
because of which the famous Mangler’s transformations (see for details [24])
transform the axisymmetric equations, involving small transverse curvature, to an
equivalent system of two-dimensional form.

For small transverse curvature, when d
r0
6� 1 but is also not of the order of unity,

Mangler introduced the change of variables as (see for instance [24])

Fig. 10.1 Curvilinear system
of coordinates on a body of
revolution
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d�x ¼ r0
L

� �2
dx; d�y ¼ r0

L
dy; ð10:6Þ

where L denotes a characteristic length. Accordingly, the dependent variables were
also updated but have not been mentioned here. Corresponding to the system
(10.1)–(10.3), the condition for d=r0 to be less than unity, though not so small to be
negligible, cannot be guaranteed to be fulfilled in general. That is, cases may occur
when d=r0 might be of the order of unity, thus making the utility of Eq. (10.6)
questionable. This issue was resolved by Probstein and Elliott [6] by generalizing
the typical Mangler’s transformations (10.6), by leaving their first part unaltered, as

d�x ¼ r0
L

� �2
dx; d�y ¼ r x; yð Þ

L
dy; ð10:7Þ

due to which

�x ¼ 1
L2

Z
r20 xð Þdx and �y ¼ 1

L

Z
r x; yð Þdy ¼ r0

L
þ cos a

2L
y

� �
y: ð10:8Þ

Introducing the stream functions wðx; yÞ such that

ru ¼ @w
@y

; rv ¼ � @w
@x

; ð10:9Þ

and utilizing the change of variables (10.7) to obtain the partial derivatives in terms
of new variables as

@
@x ¼ r0

L

� �2 @
@�x þ @�y

@x
@
@�y

@
@y ¼ r

L

� �
@
@�y

)
; ð10:10Þ

Equation (10.1) is satisfied identically, and the velocity components u and
v transform as

u ¼ �u; v ¼ r20
rL

�v� L
r

� �2
@�y
@x

�u

 !
; ð10:11aÞ

where

@�w
@�y

¼ �u and
@�w
@�x

¼ ��v with w ¼ L�w: ð10:11bÞ

Consequently, Eq. (10.2) transforms to the form
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�u
@�u
@�x

þ�v
@�u
@�y

¼ m
@

@�y
1þ tð Þ2@�u

@�y

	 

; ð10:12Þ

by noting that

r
r0

� �2

¼ 1þ 2L cos a
r20�y

: ð10:13Þ

The parameter t stands for the transverse curvature parameter and is defined as

t ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 cos a

L
L
r0

� �2

�y

s
: ð10:14Þ

For t ¼ 0, Eq. (10.12) reduces to the two-dimensional form including no
transverse curvature effects. Equation (10.12) can be non-dimensionalized with the
availability of appropriate reference velocity and the characteristic length. The

reference length in this case is the boundary-layer thickness d ¼
ffiffiffiffiffiffiffiffiffi
m�x

urefð�xÞ
q

, where

urefð�xÞ is the reference velocity. In this way, the dimensionless variables are defined
as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
uref �xð Þ
m�x

r
�y; �w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uref �xð Þm�x

p
f �x; gð Þ; ð10:15Þ

due to which Eq. (10.12) transforms to a third-order partial differential equation
with variable coefficients of the form

�x
uref

duref
d�x

@f
@g

� �2

� 1
2

1þ �x
uref

duref
d�x

� �
f
@2f
@g2

� @

@g
2þ tð Þt @

2f
@g2

	 


¼ @3f
@g3

þ�x
@f
@�x

@2f
@g2

� @f
@g

@2f
@�x@g

� �
: ð10:16Þ

The non-similar Eq. (10.16) is equally applicable to the self-similar flows also,
provided the variable coefficients of the terms on left-hand side become pure
constants. This in turn seems to provide the criterion of self-similarity to these cases
associated strictly with the simultaneous solution of the system

�x
uref

duref
d�x

¼ const: and 2þ tð Þt ¼ const: ð10:17Þ

Probstein and Elliott [6] investigated the above system in detail and showed that
if either urefðxÞ ¼ axm and r0ðxÞ ¼ R0x

1�m
2 or uref ¼ aemx and r0ðxÞ ¼ R0e�2mx, the

system (10.17) is satisfied identically under the restriction that cos a � 1. Thus, the
allowable forms of the reference velocity and the body radius, due to Eq. (10.17),
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came out of the power-law or exponential form as derived in Chap. 5.
Equation (10.16) transforms to the self-similar forms

mf 02 � ff 00 ¼ 1þ 2jgð Þf 00½ �0; ð10:18Þ

and

m� 1ð Þf 02 ¼ 1þ 2jgð Þf 00½ �0; ð10:19Þ

corresponding to the power-law and exponential reference velocities, respectively.
The variable g in both of the above equations has been scaled by a factor of 1ffiffiffiffiffiffiffi

2�m
p .

For all other forms of the reference velocity irrespective to the form of r0ðxÞ, the
flow will be non-similar and represented by Eq. (10.16) in full. Even in the cases
when the reference velocity does follow the power-law or exponential form but not
the body radius, the flow will again be non-similar governed by the complete
non-similar Eq. (10.16).

In the case of a disk, Eq. (10.5a) serves as the governing system with the
condition r0 � x. In order to make it compatible with the notation used for the disk
problem in the previous chapters, we decide to replace x by r; y by z and v by w in
the above-named system. In this way, the governing system comes out to be

@

@r
ruð Þþ @

@z
rwð Þ ¼ 0; ð10:20Þ

u
@u
@r

þw
@u
@z

¼ m
@2u
@z2

: ð10:21Þ

Similar to the previous two cases, namely, the two-dimensional and the
axisymmetric non-similar flows, the non-similar formulation for the disk flow also
comes directly from the corresponding self-similar one. Introduction of the new
variables of the form (in view of Eq. 6.40)

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
uref rð Þ
mr

r
z; w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uref rð Þmr

p
f r; gð Þ; ð10:22Þ

transforms the momentum Eq. (10.21) to the non-similar form

r
uref

duref
dr

@f
@g

� �2

� 1
2

3þ r
uref

duref
dr

� �
f
@2f
@g2

¼ @3f
@g3

þ r
@2f
@g2

@f
@r

� @f
@g

@2f
@g@r

� �
;

ð10:23Þ

and satisfies the equation of continuity (10.20) identically. The stream function w,
defined in Eq. (10.22), is related to the velocity components as
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ru ¼ @

@z
rwð Þ; �rw ¼ @

@r
rwð Þ: ð10:24Þ

10.2 The Cylinder Case

Particular to the axisymmetric boundary-layers, the problems presented in this book
have been considered in view of two specific geometries, namely the cylinder and
the disk, as mentioned previously. Although the curvature effects have also been
studied in the self-similar flow due to the moving cylinder in Chap. 6, the important
role of the curvature parameter d=r0ðxÞ will be realized in the non-similar flows
considered in this section. In view of curvature effects, the above-mentioned two
cases of the axisymmetric flow can, however, be categorized as the axisymmetric
flows with and without surface curvature, respectively. It seems fruit full to recall
that the non-similarity in the case of a cylinder may arise when either of the wall
velocity or the cylinder radius follows the power-law or exponential form but
essentially not the other, or when both are free to adopt any other form. In such
situations, the transverse curvature plays a significant role within the
boundary-layer and causes to increase the boundary-layer thickness quite signifi-
cantly. The study of curvature effects corresponding to all non-similar wall
velocities and all cylinder shapes is, obviously, impossible to conduct as a general
case here. Therefore, the problems presented in this section are just of exemplary
nature. Their selection has been made by making an analogy with the corresponding
non-similar flow in planner case. In these problems, the cylinder radius is kept
constant ðr0ðxÞ ¼ R0Þ and the surface is assumed to move either uniformly or with
accelerated/decelerated velocities.

10.2.1 Sakiadis Flow

As a first example, the classical Sakiadis problem of a moving cylinder is con-
sidered for which the flow is non-similar, as mentioned in the start of this chapter.
Sakiadis [2] assumed a continuous slim cylinder of infinite length moving uni-
formly along its axis. Because of the absence of flow self-similarity, the governing
partial differential equations with variable coefficients, as derived in previous sec-
tion, do not allow for any simplification at all. Sakiadis determined an approximate
solution to this problem due to the Karman–Pohlhausen integral method. Benefiting
from the results reported by Glauert and Lighthill [3], Sakiadis decided to choose
the logarithmic velocity profile in his integral method for the laminar case.

The integral momentum equation used by Sakiadis is given in Eq. (2.29), and
the logarithmic profile utilized by Sakiadis is of the form
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u
uw

¼ 1� 1
b zð Þ ln 1þ r

R0

� �
; ð10:25Þ

where bðzÞ is an unknown function of z whose dependence upon z represents the
non-similarity in the assumed velocity profile. The substitution of above velocity
ansatz into Eq. (2.29) yields

d
dz

Zb
0

R0uwex 1� x
b

� �	 
2
dx ¼ muw

b
; ð10:26Þ

where x is related to r by the relation r ¼ R0 ex � 1ð Þ. The simplification of

Eq. (10.26) results in the form of curvature parameter 1
4 n ¼

ffiffiffiffiffiffiffi
mz

uwR2
0

q
as

n2 ¼ 8
Zb
0

b 1þ e2b
� �þ 1� e2b

� �� � db
b2

: ð10:27Þ

The coefficient of total drag and the displacement area come out of the form

L
R0

D ¼ H

pR2
0
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�d�

pR2
0
¼ 1

pR2
0

Z1
0

u
uw
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1þ 2b� e2b
� �

; ð10:28Þ

where D denotes the total drag and H=pR2
0 denotes the dimensionless momentum

area, defined by

H

pR2
0
¼ 1
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� �2

2p R0 þ rð Þdr ¼ � 1
2b

2 1þ bð Þþ 1� e2b

b

� �
: ð10:29Þ

Once the values of b are obtained by integrating Eq. (10.27), it is then straight
forward to calculate the momentum area, the coefficient of total drag and the
displacement area from the above equations. Based on this integral method,
Sakiadis generated a table of values of the quantities of physical interest such as the
boundary-layer thickness and the momentum and displacement areas for sufficiently
large values of the curvature parameter n. It was observed that all the three quan-
tities increase by increasing the surface curvature parameter. An important obser-
vation, particular to the cylinder case, is that all the three quantities decrease (in
magnitude) for small values of n and after a critical value of n, they start to increase
continuously. In such a course of analysis, the momentum area is observed to have
the lowest of the minimum, whereas the displacement area achieves the greatest of
the maximum values among the three quantities. The values reported by Sakiadis
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for the said three quantities have been listed in Table 10.1 for several values of the
curvature parameter n.

The curvature effects can best be visualized if the present results are compared
with those of the flat plate case. In this regard, the ratios of the physical quantities
of interest corresponding to the present case with those of the flat plate case are
found to be use full.

Such ratios have, respectively, been determined for the drag coefficient, the
pumping action and the boundary-layer thickness defined as

D
Df

¼ 2 H=pR2
0

� �
CHn

;
q
qf

¼ 2 �d�=pR2
0

� �
C�d�n

;
d
df

¼ 4 d=R0ð Þ
Cdn

;

where the quantities in the numerator correspond to the continuous cylinder
whereas those in the denominator and subscripted by “f” correspond to the con-
tinuous flat plate.

The values of the ratios have been calculated due to Table 10.1 and are listed in
Table 10.2. For smaller values of n, all the ratios yield 1.0 and for increasing values
of n the ratios cross the value 1.0 and depart further on wards. This shows that for
smaller values of n, when the surface curvature is small, the cylinder case resembles
with the two-dimensional case. But for significantly large values of n, the above
quantities of interest are greater in the cylinder case as compared to the flat plate
case. The Sakiadis flow due to a moving cylinder can also be dealt numerically
because of the availability of efficient numerical methods and the high-performance
computing machines.

Table 10.1 Sakiadis’
integral solution

logðnÞ logðH=pR2
0Þ logð�d�=pR2

0Þ logðd=R0Þ
−3.0880 −3.4770 −3.3009 −3.3009

−2.7869 −3.1759 −2.9997 −2.9998

−2.0873 −2.4760 −2.2996 −2.2999

−1.7856 −2.1739 −1.9971 −1.9978

−1.0807 −1.4662 −1.2864 −1.2901

−0.7724 −1.1540 −0.9706 −0.9781

−0.0113 −0.3599 −0.1437 −0.1879

0.3757 0.0774 0.3413 0.2351

0.8781 0.7160 1.0934 0.8054

1.2945 1.3226 1.8200 1.2807

1.6939 1.9632 2.5700 1.7291

2.0926 2.6428 3.3428 2.1685

2.4941 3.3539 4.1342 2.6047

2.8933 4.0888 4.9340 3.0397

3.3076 4.8415 5.7446 3.4742

3.7184 5.6078 6.5621 3.9086

4.1325 6.3849 7.3849 4.3429
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The non-similar formulation of the cylinder case has already been derived in
Eqs. (10.15)–(10.16). However, analogous to the flat plate case, the non-similar
formulation of the cylinder case can also be obtained due to the similarity trans-
formations (Eq. 6.31) by assuming the dimensionless stream function also
depending upon z in addition to the variable r. Various equivalent transformations,
in this regard, are available in the literature among which any one can be replaced
by the other without any mathematical error. The transformations developed by
Probstein and Elliott [6] and Hayes and Probstein [25] as reported by Cebeci and
Smith [17] based upon the typical Mangler transformation are, however, the more
general and mathematically compact. Therefore, the author is more inclined toward
those developed by Cebeci and Smith [17]. However, particular to the Sakiadis
flow, the formulations developed by Seban and Bond [4] and Curle [5] shall be
utilized in order to make the reader familiar with these too. Afterward, in the next
part of this section, corresponding to accelerated/decelerated flows, the aforemen-
tioned formulation due to [6, 25] and [17] will be utilized. Based on [4], Curle [5]
utilized the following change of variables

n ¼
ffiffiffiffiffiffiffiffiffiffi
2mz
uwR0

r
; g ¼

ffiffiffiffiffiffiffi
uw
2mz

r
r2 � R2

0

2R0
ð10:30Þ

The velocity components in terms of stream function are given as

Table 10.2 Ratios of the
quantities of interest: cylinder
case to flat plate case

logðnÞ D=Df q=qf d=df

−3.0880 1.000 1.000 1.000

−2.7869 1.000 1.000 1.000

−2.0873 1.001 1.001 1.001

−1.7856 1.002 1.002 1.002

−1.0807 1.008 1.0017 1.008

−0.7724 1.017 1.034 1.017

−0.0113 1.097 1.204 1.087

0.3757 1.232 1.508 1.181

0.8781 1.686 2.681 1.381

1.2945 2.613 5.475 1.582

1.6939 4.553 12.27 1.771

2.0926 8.693 29.05 1.945

2.4941 17.73 71.28 2.106

2.8933 37.89 176.8 2.256

3.3076 88.73 446.6 2.397

3.7184 189.8 1139.4 2.530

4.1325 437.9 2919.5 2.651
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ru ¼ @w
@r

; rv ¼ � @w
@z

; ð10:31Þ

where the stream function is defined as

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2uwmz

p
R0f n; gð Þ: ð10:32Þ

It is important to mention here that the formulation developed by [6, 25] and
hence [17] utilizes the curvilinear coordinates defined in Fig. 10.1, whereas the
transformations (10.30) utilized by Seban & Bond and Curle are particular to the
typical cylindrical system of coordinates. Because of Eqs. (10.30)–(10.32),
Eq. (2.13) is satisfied identically, whereas Eq. (2.14) transforms to the non-similar
form, given by

0
@f
@g

� �2

�f
@2f
@g2

¼ @

@g
1þ 2ngð Þ @

2f
@g2

� �
þ n

@2f
@g2

@f
@n

� @f
@g

@2f
@g@n

� �
: ð10:33Þ

The boundary conditions (2.27) with vw � 0 transform in terms of new variables
as

@f
@g ¼ 1; f ¼ 0; at g ¼ 0
@f
@g ¼ 0; at g ¼ 1

)
: ð10:34Þ

Important quantities of physical interest such as the coefficient of wall
skin-friction, the momentum and displacement areas are defined as

Cf ¼ sw
1
2 qu

2
w

¼
ffiffiffiffiffiffiffi
2m
uwz

r
@2f
@g2


g¼0

; ð10:35Þ

H

pR2
0
¼ 1

pR2
0

Z1
R0

u
uw

� �2

2prdr ¼ 2n
Z1
0

f 02dg; ð10:36Þ

and

�d�

pR2
0
¼ 1

pR2
0

Z1
R0

u
uw

2prdr ¼ 2nf 1ð Þ; ð10:37Þ

respectively.
The system (10.33)–(10.34) has been solved numerically with the use of famous

Keller-Box finite difference scheme. The current solution is tabulated in Table 10.3
and is compared with the Sakiadis’ integral solution in Fig. 10.2. Clearly, the
integral solution matches quite well with the current numerical solution for small
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values of n and deviates downstream from the numerical solution. Qualitatively, the
Sakiadis’ solution is in accordance with the present numerical solution. However,
the difference between the two solutions is not quite large which does not deny the
acceptability of the Sakiadis’ solution. For such a quite acceptable (approximate)
solution, the credit not only goes to Sakiadis alone but also to the Glauert and
Lighthill who identified the logarithmic profile for the cylinder case. This reflects
that the velocity profile utilized by Sakiadis, the logarithmic one, proved itself to be
the appropriate choice for this case. The graphs of the velocity profile are plotted
against g for different values of the curvature parameter n and are shown in
Fig. 10.3. Upon increasing the values of n, the velocity curves become steep and
steep showing large velocity gradients near the solid surface and extend till far
away from the cylinder causing to increase the boundary-layer thickness,
significantly.

Table 10.3 Numerical
solution of Sakiadis flow

logðnÞ logðH=pR2
0Þ logð�d�=pR2

0Þ logðd=R0Þ
−3.5229 −3.4235 −3.1634 −3.6734

−3.2218 −3.1224 −2.8622 −3.3724

−2.5376 −2.4379 −2.1770 −2.6881

−2.2366 −2.1365 −1.8748 −2.3871

−1.5317 −1.4288 −1.1603 −1.6822

−1.2240 −1.1176 −0.8406 −1.3745

−0.4628 −0.3225 0.0265 −0.6133

−0.0758 0.1137 0.5488 −0.2263

0.4266 0.7442 1.3258 0.2760

0.8430 1.3155 1.9701 0.6924

1.2424 1.9075 2.6328 1.0918

1.6411 2.5095 3.2810 1.4902

2.0426 3.3371 4.3494 1.8902

2.3432 4.0370 5.0496 2.2972

2.8561 4.7662 5.8195 2.7055

3.2669 5.5224 6.6501 3.1164

3.6810 6.2929 7.5238 3.5304

Fig. 10.2 Comparison
between the numerical
solution and the Sakiadis’
integral solution
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10.2.2 Accelerated/Decelerated Flow

The accelerated/decelerated nature of the wall velocity does characterize the
accelerated/decelerated nature of the flow within the boundary-layer. Such types of
wall velocities are not governed by a unique mathematical function but are diverse
in actual. Therefore, we shall restrict our self to the form represented in a linear
combination of uniform translation and uniform stretching/shrinking as given in
Eq. (9.10). The accelerated/decelerated character of the wall velocity will be dis-
tinguished by the selection of “+” or “−” sign as did in the previous chapter. Similar
to the Sakiadis’ non-similar flow, the accelerated/decelerated non-similar flow can
equally be studied due to Eq. (10.16) or following the formulation (10.30)–(10.33).
Accordingly, the variable coefficients of Eq. (10.33) shall be modified and the 0
coefficient of the first term on LHS of Eq. (10.33) will turn out to be nonzero of the

form n
uw
duw
dn . These “modified” variable coefficients actually incorporate the role of

variable wall velocity into the governing system.
This has already been mentioned, in the previous part of this section, that the

non-similar formulation due to [6, 25] and [17] will be utilized in the study of
non-similar flow due to accelerated/decelerated wall velocities. It has already been
seen that the transformations (10.30) are typical to the equations developed in terms
of conventional cylindrical system of coordinates where the surface boundary
conditions are defined at r ¼ R instead of r ¼ 0. To avoid this deficiency and to
incorporate the transverse curvature effects more conveniently, the curvilinear
system of coordinates is introduced in Sect. 10.1 to reach Eq. (10.16). Further
niceties to the formulation developed in Sect. 10.1 were contributed by Cebeci and
Smith [17] due to which the definitions of n; g and w are modified as

dn ¼ q2muw
r0
L

� �2
dx; dg ¼ quwrffiffiffiffiffi

2n
p

L
dy; w x; yð Þ ¼

ffiffiffiffiffi
2n

p
Lf n; gð Þ; ð10:38Þ

where the velocity components are related to w as

Fig. 10.3 Velocity profile
obtained due to numerical
solution of Sakiadis flow
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rqu ¼ @w
@y

; rqv ¼ � @w
@y

: ð10:39Þ

In view of Eqs. (10.38)–(10.39), the equation of continuity (10.1) satisfies
identically and Eq. (10.2) results in the following non-similar equation:

2n
uw

duw
dn

@f
@g

� �2

�f
@2f
@g2

¼ @

@g
1þKgð Þ @

2f
@g2

� �
þ 2n

@2f
@g2

@f
@n

� @f
@g

@2f
@g@n

� �
; ð10:40Þ

where K ¼ 2L
R0

ffiffiffiffi
2n

p
quw

¼ 2
ffiffiffiffiffiffi
2j�n
�u2w

q
; d�n ¼ �uwdx�; and x� ¼ ax

U0
. Equation (10.40) includes

all the terms of Eq. (10.33) with modified coefficients where the first term on the
LHS of Eq. (10.40) was zero in Eq. (10.33) due to the constant wall velocity. Such
a great resemblance between Eqs. (10.33) and (10.40), obtained due to the different
formulations, actually proves the equivalence of the two formulations. Therefore,
the results due to one formulation can easily be shifted to the other one in view of
Eqs. (10.3), (10.32) and (10.38). In the subsequent analysis, we substitute �uw ¼
1	 x� where j has been chosen to be equal to 0.25. The “+” and “−” signs in the
expression of �uw refer, respectively, to the accelerated and decelerated cases. The
boundary conditions in dimensionless form for this case are the same as given in
Eq. (10.34). The physical quantities of interest such as the coefficient of wall
skin-friction, the momentum and displacement thicknesses in terms of the new
variables read as

Cf ¼ sw
1
2 qu

2
w

¼ l

ffiffiffiffiffiffiffiffi
2R2

0

nL2

s
@2f
@g2


g¼0

; ð10:41Þ

h ¼
ffiffiffiffiffiffiffiffiffiffi
2nL2

p
qR0uw

Z1
0

u2dg; ð10:42Þ

and

d� ¼
ffiffiffiffiffiffiffiffiffiffi
2nL2

p
qR0uw

Z1
0

udg; ð10:43Þ

respectively.
The system (10.40) and (10.34) has also been solved numerically through

Keller-Box method. The graphical results are shown in Figs. 10.4, 10.5, 10.6 and
10.7. For the accelerated case, the flow behavior is similar to the corresponding flat
plate case in the sense that no separation occurs. In this case too, velocity graphs
become steeper near the cylinder surface and extend far away from the cylinder
upon moving in the downstream direction, thus confirming the significant increase
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in the boundary-layer thickness (see Fig. 10.4). The coefficient of skin-friction,
corresponding to the accelerated case, is also plotted against the variable x� and
depicted in Fig. 10.5. Clearly, the skin-friction first decreases for very small values
of x� and at a certain critical value of x� it seizes to decrease and start increasing
monotonically, afterward. The graphs of the momentum and displacement thick-
nesses are plotted in Fig. 10.5. Both the thicknesses grow as one moves in the
downstream direction along the cylinder. Numerical values of the coefficient of
skin-friction, momentum and displacement thicknesses have also been generated at
various longitudinal locations and are listed in Table 10.4.

The case of retarded flow due to a moving cylinder is also similar to that of
corresponding moving plate in the sense that it also involves the flow separation.
The point of separation is noted to be x�sep ¼ 0:495 where the value f 00 x�; 0ð Þ
becomes of the order 10�3. The numerical code, however, does not seize to pro-
ducing results, and the solution does converge till the values of x� grow almost up
to the order of unity. The velocity profile is shown to be separated at the value
x�sep ¼ 0:495 by plotting the velocity curves at different values of the variable x� as
shown in Fig. 10.6. The coefficient of skin-friction is plotted in Fig. 10.7 which
shows that the skin-friction decreases continuously and eventually becomes zero at
x�sep ¼ 0:495 which is, in fact, the point of separation. The graphs of the momentum
and displacement thicknesses are also plotted in Fig. 10.7. In this case too, both the
thicknesses increase in the downstream direction, but the rate of increase in this
case is quite less than that of the accelerated case, depicted in Fig. 10.5. The

Fig. 10.4 Accelerated
velocity profile at different
longitudinal locations

Fig. 10.5 Numerical results
for quantities of interest
plotted against x*
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Fig. 10.6 Velocity profile of
the retarded case exhibiting
the flow separation at
x* = 0.495

Fig. 10.7 Physical quantities
of interest plotted against x*

Table 10.4 Numerical results for the accelerated and decelerated cases

x� �uw ¼ 1� x� �uw ¼ 1þ x�

� sw
qU2

0
Re1=2R0

h d� � sw
qU2

0
Re1=2R0

h d�

0.01 4.4803 0.0894 0.1708 4.7355 0.0906 0.1704

0.02 3.1386 0.1268 0.2502 3.5018 0.1303 0.2488

0.05 1.8820 0.2000 0.4212 2.4628 0.2140 0.4145

0.1 1.1832 0.2784 0.6373 2.0151 0.3183 0.6149

0.2 0.6135 0.3761 0.9749 1.8095 0.4899 0.9148

0.3 0.3205 0.4358 1.3111 1.7995 0.6942 1.2742

0.4 0.1296 0.4735 1.6362 1.8010 0.6459 1.1517

0.45 0.0566 0.4861 1.7973 1.8510 0.7975 1.3528

0.48 0.0182 0.4920 1.8956 1.9100 0.9184 1.4958

0.49 0.0062 0.4937 1.9287 1.9182 0.9336 1.5127

0.495 0.0004 0.4945 1.9415 1.9223 0.9412 1.5211

1.00 2.4273 1.7419 2.3491

2.00 3.5596 3.6177 3.4218

3.00 4.7216 5.8476 4.2155

4.00 5.8909 8.3935 4.3869

5.00 7.0628 11.223 5.4491
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numerical values of the coefficient of skin-friction and the two thicknesses are also
listed in Table 10.4.

10.3 The Disk Case

The axially symmetric viscous flow involving no transverse curvature effects is
governed by Eq. (10.5a), in terms of curvilinear coordinates. Equations (2.15)–
(2.16) for the steady case, developed in conventional cylindrical system of coor-
dinates, can immediately be recovered from Eq. (10.5a) and are given in
Eqs. (10.20)–(10.21). As pointed out in the previous section, that Eq. (10.21) is
exactly the same as that of two-dimensional flow and the disk case differs only in
equation of continuity from the two-dimensional flow. Furthermore, while studying
the self-similar disk flow in Chaps. 6 and 7, it has already been discovered that the
stretching/shrinking disk flow needs not to be studied separately, rather the results
of this case can immediately be recovered from those of two-dimensional case with
certain manipulation in the values of m. This fact can also be realized here again
that the non-similar flow due to a stretching or shrinking disk is governed by the
same equation as does the two-dimensional flow but with certain modification in the
coefficients of the equation. Such a modification in the variable coefficients does
also find some analogy with the corresponding self-similar two-dimensional and
disk flows and can be identified by comparing the governing equation of
self-similar and non-similar cases of two-dimensional and disk flows. The
non-similar equation in the disk case reads as

r
uw

duw
dr

@f
@g

� �2

� 1
2

3þ r
uw

duw
dr

� �
f
@2f
@g2

¼ @3f
@g3

þ r
@2f
@g2

@f
@r

� @f
@g

@2f
@r@g

� �
: ð10:44Þ

The boundary conditions, however, stay the same as given in Eq. (9.3) or
(10.34). The variables used in the above equation do also come directly from the
similarity transformations of the respective flow, given by

g ¼
ffiffiffiffiffi
uw
mr

r
z; w ¼ ffiffiffiffiffiffiffiffiffi

uwmr
p

f r; gð Þ; ð10:45Þ

where the velocity functions are related to the stream function by the relations
defined in Eq. (10.24).

All the wall velocities other than the self-similar one can be considered in this
case. The accelerated/decelerated wall velocities considered in the previous sections
(but not limited to those) can also be utilized here. Because of the great similarity of
the disk flow with that of two-dimensional flow, Eq. (10.44) has not been solved for
any case here, just to avoid the repetition of similar results.

160 10 Axially Symmetric Non-similar Flows



References

1. B.C. Sakiadis, Boundary-layer behavior on continuous solid surface: I. Boundary-layer
equations for two-dimensional and axisymmetric flow. AIChE 7(1), 26–28 (1961)

2. B.C. Sakiadis, Boundary-layer behavior on continuous solid surfaces: III. The boundary-layer
on a continuous cylindrical surface. AIChE 7(3), 467–472 (1961)

3. M.B. Glauert, M.J. Lighthill, The axisymmetric boundary layer on a long thin cylinder. Proc.
R. Soc. Lond. A 230, 188–203 (1955)

4. R.A. Seban, R. Bond, Skin-friction and heat-transfer characteristics of a laminar boundary
layer on a cylinder in axial incompressible flow. J. Aeronuat. Sci. 18, 671 (1951)

5. S.N. Curle, Calculation of the axisymmetric boundary layer on a long thin cylinder. Proc.
R. Soc. Lond. A, Math. Phys. Sci. 372(1751), 555–564 (1980)

6. R.F. Probstein, D. Elliott, The transverse curvature effect in compressible axially symmetric
laminar boundary-layer flow. J. Aeronaut. Sci. 23, 208–224 (1956)

7. K. Stewartson, The asymptotic boundary layer on a circular cylinder in axial incompressible
flow. Q. Appl. Math. 3, 113–122 (1955)

8. H.R. Kelly, A note on the laminar boundary layer on a circular cylinder in axial
incompressible flow. J. Aeronaut. Sci. 21, 643 (1954)

9. K. Pohlhausen, Zur näherungsweisen Integration der Differentialgleichung der laminaren
Reibungsschicht. ZAMM 1, 252–268 (1921)

10. L.J. Crane, Boundary layer flow on a circular cylinder moving in a fluid at a rest. ZAMP 23,
201–212 (1972)

11. T.Y. Na, Computational Methods in Engineering Boundary Value Problems (Academic
Press, 1979)

12. H.B. Keller, in A New Difference Scheme for Parabolic Problems, ed. by J. Bramble.
Numerical Solution of Partial Differential Equations, II (Academic Press, New York, 1970)

13. H.B. Keller, T. Cebeci, Accurate numerical methods for boundary-layer flows-I.
Two-dimensional laminar flows. AIAA J. 10, 1193 (1971)

14. H.B. Keller, T. Cebeci, Accurate numerical methods for boundary-layer flows-II.
Two-dimensional turbulent flows. AIAA J. 10, 1193 (1972)

15. T. Cebeci, H.B. Keller, in On the Computation of Unsteady Boundary Layers. Recent
Research on Unsteady Boundary Layers (IUTAM Symp. 1971), vol. I (Les Presses de I’
Universitė Laval, Quebee, Canada), p. 1082

16. T. Cebeci, H.B. Keller, in Laminar Boundary Layers with Assigned wall Shear. Proceedings
of International Conference on Numerical Methods Fluid Dynamics, 3rd edn. Lecture Notes
in Physics, vol. 19 (Springer-Verlag, Berlin and New York, 1973)

17. T. Cebeci, A.M.O. Smith, Analysis of Turbulent Boundary Layers (Academic Press Inc. 1974)
18. T. Cebeci, P. Bradshaw, Momentum Transfer in Boundary Layers (Hempshere Publishing

Company, 1977)
19. M.N. Bui, T. Cebeci, Combined free and forced convection on vertical slender cylinders.

J. Heat Transf.-Trans. ASME 107, 476–478 (1985)
20. T. Cebeci, J. Qasim, Free convective heat transfer from slender cylinders subject to uniform

heat flux. Lett. Heat Mass Transf. 1, 159–162 (1974)
21. T.Y. Na, I. Pop, Flow and heat transfer over a longitudinal circular cylinder moving in parallel

or reversely to a free stream. Acta Mech. 118, 185–195 (1996)
22. H.T. Lin, Y.P. Shih, Laminar boundary layer heat transfer along static and moving cylinders.

J. Chin. Int. Eng. 3, 73–79 (1980)
23. E. Boltze, Grenzschichten an Rotationskörpern. Diss. Göttingen, 1908
24. P.H. Denke, in A matric Method of Structural Analysis. The Proceedings of the Second U.S.

National Congress of Applied Mechanics, 1952
25. W.D. Hayes, R.F. Probstein, Hypersonic Flow Theory (Academic Press, New York, 1959)

References 161



Chapter 11
Time-Dependent Non-similarity

In the previous Part, it has already been seen that the concept of similarity is not
particular to the space variables only but is also equally applicable to the time
variable. Owing to the physical and mathematical meanings of similarity, the cri-
terion of self-similarity in time for stretching/shrinking surfaces has been derived in
Chap. 8. Interestingly, the spectrum of self-similar unsteady flows due to the
stretching or shrinking surfaces is very limited which in turn signifies the diversity
of the non-similar flows to the unsteady case. Even being a very restricted family,
the self-similar unsteady flows have widely been studied in the literature, whereas
the non-similar unsteady flows have not been investigated on such a large scale.
The reason behind this is again the nature of governing non-similar equations which
are in fact the partial differential equations as they usually are in the case of spatial
non-similarity. It is, however, a matter of fact that the temporal non-similarity does
not pose a severe challenge as does the spatial non-similarity. In most of the cases,
it is too light to be resolvable analytically, because of the homotopy analysis
method (HAM) or the other series methods, etc., with great accuracy. In numerical
computations, the straightforward finite difference schemes work well without
requiring the use of Newton’s method for the subsequent linearization of the
nonlinear difference equations as is utilized in the Keller-Box scheme. Gaussian
elimination procedure serves sufficiently for the solution of so-obtained simulta-
neous difference equations. Such analytic or numerical techniques shall be utilized
in the coming Sections by considering some particular types of the surface velocity.

11.1 Two-Dimensional Unsteady Non-similar Flows

The cases of two- and three-dimensional flows follow the same non-similar for-
mulation. Therefore, the preference shall be given the two-dimensional flows
because of their mathematical simplicity in comparison with the three-dimensional
flows. In the unsteady flows, caused due to uniform stretching/shrinking of the
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continuous surfaces, the strength of mathematical difficulty in the non-similar flows
depends mostly upon the nature of the wall velocity assumed. In Chap. 8, it was
determined that the temporal similarity is admitted only for the linear stretching or
shrinking of the sheet when the wall velocity is inversely proportional to t, i.e.,
uw ¼ ax

t or uw ¼ ax
1þ ct. All other forms of the wall velocity yield non-similar flows.

The other source of non-similarity in time is the auxiliary data, that is, the initial and
the boundary conditions. In Chap. 8, it was also realized that for a well-posed
problem, the initial condition (essentially) and at least one of the boundary con-
ditions must coalesce in order to establish the self-similarity. If the auxiliary data do
not allow any such coalescing, then the establishment of self-similarity is impos-
sible. Thus, if the wall velocity does not follow the above-mentioned forms or the
auxiliary data do not allow any coalescing of the initial and boundary condition(s),
the similarity solution will never be permissible. In all such situations, the temporal
non-similarity is deemed unavoidable.

Temporal non-similarity may occur in both the spatially self-similar and
non-similar flows. In this Chapter, we shall, however, restrict ourselves to the case
of spatially self-similar flows. In such flows, the original three variables ðx; y; tÞ
shall be reduced to two due to suitable mixing of the original variables. The
reduction of variables, in two-dimensional flow, from three ðx; y; tÞ to two may
occur in two ways: If the new variable is constructed due to x and t of the form x=t,
then the solutions are usually called pseudo-steady; and if the three variables
ðx; y; tÞ are reduced to two by any other way, then the solutions are called semi-
similar. In all those cases, where the spatial similarity is admissible, the similarity
variable g is already constructed due to y and x, thus allowing no combination of the
form x=t for the new variable. In such flows, the governing unsteady problem is
eventually transformed to a partial differential equation admitting self-similarity in x
and y but no similarity in time. Such a solution falls into the above-mentioned
category of semi-similar solutions. A simple example from this category is the
unsteady Crane’s flow where the flat sheet is started impulsively to be stretching
linearly in x-direction. In this case, the governing equations are given in Eqs. (2.10)
and (2.11) (with w ¼ 0) and the initial and boundary conditions are of the form

at t� 0 : u ¼ v ¼ 0; 8x; y
at t[ 0 :

u ¼ ax; v ¼ 0; at y ¼ 0
u ¼ 0; at y ¼ 1

� 9=
;: ð11:1aÞ

Sometimes they are also casted into the form

at t\0 : u ¼ v ¼ 0; 8 x; y

at t� 0 :
u ¼ ax; v ¼ 0; at y ¼ 0
u ¼ 0; at y ¼ 1

� 9=
; ð11:1bÞ

which in a limiting sense t ! 0 is equivalent to (11.1a), that is,
t ! 0þ ; u ! ax; t ! 0�; u ! 0. However, Eq. (11.1a) will be considered in the
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coming analysis. In Eq. (11.1a), the wall velocity shows linear stretching of the
wall in x-direction for which the similarity variables are given due to (Chap. 6) by

g ¼
ffiffiffi
a
m

r
y;

u
ax

¼ f 0 gð Þ; ð11:2Þ

in the steady flow situation. These new variables completely eliminate the previous
variables from the governing equation, thus reducing it to the self-similar form. The
consideration of unsteadiness in this case makes the variable t to appear in the
equation of motion. Now, if the wall velocity does follow the form given in
Eq. (8.15), then the flow is self-similar while non-similar otherwise. The
non-similar or semi-similar formulation of the problem considered in this
Section requires a proper extension of the similarity transformations (11.2).
Initially, such problems had been investigated due to two different formulations
particular to the small time or large time situations. Finally, a unified transforma-
tion, valid for small time as well as large time, was introduced by Williams and
Rhyne [1]. A thorough discussion on this issue is given in the following paragraph.

The literature available on unsteady flow past the surfaces of finite length is very
much rich and authentic, because of the pioneering contributions of the legends of
the boundary-layer theory, in comparison with the literature on impulsively started
continuous surfaces. Since the history of unsteady flows, caused either due to
impulsively started continuous bodies or the bodies of finite length, goes back to the
classical Rayleigh’s problem, in the Rayleigh’s problem the flow is developed in a
stationary fluid due to the impulsive (uniform) motion of the bounding wall due to
which the vorticity transports from the moving wall to the ambient fluid with the
passage of time. After a while, when sufficient time has elapsed, the flow becomes
fully developed within a finite thin region near the wall beyond which the ambient
situation persists without any change. Such a situation is usually referred to as the
establishment of steady state. Because of the above illustration, the boundary-layer
seems to grow in time, which actually the case is, and is given by dR �

ffiffiffiffi
mt

p
, thus

providing a natural length scale to this flow. Such an availability of appropriate
length scale makes it possible to construct the new similarity variable gR ¼ y=

ffiffiffiffi
mt

p
in order to transform the governing partial differential equation of the Rayleigh’s
problem to an equivalent ordinary differential equation.

On the other hand, an exact similarity solution to the steady two-dimensional
case does also exist which is commonly known as the Blasius solution. How the
normal length scale dR (of Rayleigh’s problem) could be utilized in the Blasius flow
which is steady in nature. In this case, the boundary-layer thickness develops in
streamwise direction (by staying independent of time) due to the presence of
external potential flow. Therefore, the time t in the expression of Rayleigh’s
boundary thickness dR could be replaced by x=uref by interpreting it as the time
required by a fluid particle to reach a distance x. In this way, the length scale dR

modifies to dFS �
ffiffiffiffiffi
mx
uref

q
to be utilized in the construction of similarity variable

gFS ¼ y
ffiffiffiffiffiuref
mx

p
of this flow. In this case, uref denotes the external reference velocity
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of the Blasius or the Falkner–Skan type. The subscripts R and FS are particular to
the Rayleigh problem and the Falkner–Skan flow, respectively. Thus, in the case of
two-dimensional unsteady flow over a finite plate, the Rayleigh’s solution and the
Blasius or Falkner–Skan solution serve as the initial and final solutions,
respectively.

By utilizing the above-named initial and final solutions, the unsteady flow past a
wedge has been formulated by several researchers. Because of the availability of
similarity variables, that is, gR ¼ y=

ffiffiffiffi
mt

p
and gFS ¼ y

ffiffiffiue
mx

p
, two separate formulations

have been developed referring to the small time and large time solutions. While
doing so, the time has been non-dimensionalized as s ¼ uref t

x . Because of the variables
gR and s, the resulting formulation agrees well with the Rayleigh’s solution for small
time but does not match the Falkner–Skan solution for large time. Similarly, the
formulation due to gFS and s fits very well to the Falkner–Skan solution for large s
but deviates from the Rayleigh’s solution for small s. The reason behind this fact is
that the so-obtained non-similar equations change their character as s increases
(starting) from 0 and crosses the value s ¼ 1. Consequently, the transformation
serving appropriate for small s diverges for large s and the vice versa. This fact was
first pointed out by Stewartson [2] in 1951. This issue was finally resolved by
Williams & Rhyne [1] by determining a unified formulation which reduces to gR and
s (formulation) for small s and gFS&s (formulation) for large s. In doing so, the
semi-infinite time domain of s has been collapsed to closed interval 0; 1½ � which in
fact facilitates in the numerical integration of the governing equations. The new time
variable constructed by Williams and Rhyne [1] is given by

n ¼ 1� e�
uref t
x ;

according to which, n ! 0 as uref t
x ! 0 and n ! 1 as uref t

x ! 1. Thus, the
steady-state Falkner–Skan solution appears at the end of the new time interval
ðn ¼ 1Þ, and the Rayleigh’s solution is recovered at the start of the time interval,
that is, at n ¼ 0. For detailed derivation of such a semi-similar (non-similar)
solution, the reader is referred to follow [1].

The transformation developed by Williams and Rhyne has frequently been used
in the study of unsteady laminar flows over continuous surfaces or surfaces of finite
length (see for instance [3–7] and the references there in). Thus, for the unsteady
Crane’s flow, the steady similarity transformations (11.2) extend to the semi-similar
form as

g ¼
ffiffiffiffiffi
a
mn

r
y; w ¼

ffiffiffiffiffiffiffi
amn

p
xf n; gð Þ; n ¼ 1� e�s; s ¼ at; ð11:3Þ

due to which the equation of continuity is satisfied identically and the momentum
equation takes the form
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n
@f
@g

� �2

�f
@2f
@g2

 !
¼ @3f

@g3
þ 1

2
1� nð Þg @

2f
@g2

� n 1� nð Þ @2f
@g@n

; ð11:4Þ

subject to the boundary conditions

f 0; nð Þ ¼ 0;
@f
@g

����
g¼0

¼ 1; and
@f
@g

����
g¼1

¼ 0: ð11:5Þ

Clearly, at n ¼ 0, Eq. (11.4) recovers the Rayleigh’s problem, and at n ¼ 1, it
reduces to the self-similar Crane’s equation. As evident from their name,
semi-similar, such flows do not depart far away from the self-similar solution. Only
in a small neighborhood of n ¼ 0, the solution undergoes temporal transition and
finally achieves the steady-state self-similar solution corresponding to the large
values of n. Because of this fact, the level of (mathematical) difficulty in these
“non-similar” problems is not that severe as it is in the case of spatially non-similar
problems. These problems can easily be solved by usual finite difference schemes.
Asymptotic analytic solutions are also possible due to the conventional asymptotic
expansion (in n) or due to the homotopy methods. The homotopy analysis method,
in particular, works very well with these problems without taking enough long time
or facing the issues of convergence. In contrast, the spatially non-similar equations
are quite hard to solve with such asymptotic series solution methods such as HAM
or HPM.

System (11.4) and (11.5) has been solved analytically due to HAM procedure,
and the results have been depicted in Figs. 11.1 and 11.2. The velocity profile can
be seen plotted against g at different values of the time variable n. For small values
of n, transition from the Raleigh’s solution to that of Crane’s can be seen quite
obvious upon increasing the values of n. For sufficiently large values of n, the flow
is shown fully developed in the steady state with no further dependence upon time.
The coefficient of wall skin-friction modifies in this case as

Re1=2x Cf ¼ n�1=2@
2f

@g2

����
g¼0

; ð11:6Þ

Fig. 11.1 Velocity profile
against η for different n
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where Rex ¼ ax2=m is the local Reynolds number. The values of f 00 n; 0ð Þ have been
plotted in Fig. 11.2 where the wall velocity gradient can be seen increasing rapidly
in the transition time period and stabilizing, afterward, for large values of time.

The same problem was first considered by Wang et al. [8] for the impulsively
started stretching sheet. They utilized the usual similarity transformations intro-
duced by Crane for the steady case (Eq. 11.2) and obtained an asymptotic solution
for small and large time and a numerical solution as a whole. Their, so-reduced,
semi-similar equation appeared in the form

@2f
@g@n

þ @f
@g

� �2

�f
@2f
@g2

¼ @3f
@g3

; ð11:7Þ

which differs mainly, from Eq. (11.4), in the important Rayleigh’s term (second
term on the right-hand side). The first term on the left-hand side of Eq. (11.7) seems
to stay dominant for small time values, but the contribution of the remaining two
terms on the left-hand side, representing the convective acceleration, has also not
been restricted to the large time values as has been done in Eq. (11.4). The basic
reason behind this fact is the utilization of the transformation group gFS&s as we
explained previously. On the other hand, Pop and Na [9] also considered the same
problem by utilizing the other similarity group, namely the gR&s. Consequently,
they obtained an equation of form (11.4) with a bit different coefficient given by

4at �f
@2f
@g2

þ @f
@g

� �2
 !

¼ @3f
@g3

þ 2g
@2f
@g2

� 4t
@2f
@g@t

: ð11:8Þ

Clearly, for small values of time ðt ! 0Þ, Eq. (11.8) recovers the Rayleigh’s
solution, but for large values of time, the last two terms on the right-hand side of
Eq. (11.8) do not seem to vanish out in order to recover the Crane’s solution. Thus,
in order to find a solution which is uniformly valid for all time, the Williams &
Rhyne’s transformations (11.3) are observed to be the perfect choice.

Fig. 11.2 Velocity gradient
function at η = 0 plotted
against n
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11.1.1 Oscillatory Stretching of the Sheet

Continuing with the semi-similar solutions, there are several other forms of the wall
velocities for which the resulting equations are semi-similar. A general criterion in
this regard is the admissibility of spatial self-similarity by the problem. This can
only be ensured when the spatial dependence of the wall velocity follows either the
power-law or exponential form as derived in Chap. 5. The problem considered in
the above discussion, namely the unsteady Crane’s flow, follows the power-law
wall velocity with an impulsive start. Another generalization of the Crane’s flow is
to take the oscillatory stretching rate of the uniform stretching velocity in the form

uw x; tð Þ ¼ a cosxtð Þx:

Such a wall velocity was considered by Wang [10] for which he utilized the
similarity transformation of form (11.2) and introduced the dimensionless time of the
form s ¼ x t. In this case too, he obtained the transformed equation of form (11.7)
given by

St
@2f
@g@s

þ @f
@g

� �2

�f
@2f
@g2

¼ @3f
@g3

; ð11:9Þ

with a perturbation parameter St representing the frequency of oscillations. The
parameter St is defined as the ratio of oscillations’ frequency to the amplitude of
oscillations which is commonly referred as the Strouhal number, that is, St ¼ x=a.
Large values of St correspond to high-frequency oscillations with very small
amplitude. Owing to the physical justification of this behavior, Wang obtained
perturbation solution for large values of St. However, a quite exact analytic or
numerical solution of Eq. (11.9) which is uniformly valid for small and large values
of the Strouhal number is possible to obtain with the aid of commonly used HAM
or finite difference schemes. Abbas et al. [11] considered sinusoidal oscillations in
the stretching rate of a linearly stretching flat sheet immersed in a non-Newtonian
viscoelastic fluid1 under the influence of uniform magnetic field. They utilized the
same transformations as did the Wang [10], that is, Eq. (11.2) by appending s ¼ x t
to it and obtained the semi-similar system of the form

St
@2f
@g@s

þ @f
@g

� �2

�f
@2f
@g2

þM2 @f
@g

¼ @3f
@g3

þK s
@4f

@g3@s
þ 2

@f
@g

@3f
@g3

� @2f
@g2

� �2

�f
@4f
@g4

 !
;

ð11:10Þ

1The non-Newtonian fluids are not a topic of concern here. This problem has been chosen to report
just because of the flow assumptions and solution procedure regardless of the nature of fluid.
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subject to the boundary conditions

@f
@g

����
g¼0

¼ sins; f 0; sð Þ ¼ 0;
@f
@g

����
g¼1

¼ 0;
@2f
@g2

����
g¼1

¼ 0: ð11:11Þ

Ignoring the physical nature of the parameters M;K and s, they have simply
been considered as pure constants. The authors of [11] obtained a purely analytic
solution to the system (11.10)–(11.11), with the aid of HAM, which is uniformly
valid for small and large values of St. They also obtained an efficient numerical
solution to the same system based on the finite difference scheme and reported a
comparison of the two solutions. It is demonstrated (in [11]) that the analytic HAM
solution produces sufficiently accurate approximation in order to meet the numer-
ical one. A listing of numerical values of the skin-friction coefficient is given in
Table 11.1 for various values of the involved physical parameters.

The problems presented under this head are though semi-similar but differ by a
little in the level of difficulty from those considered in this Section prior to this
head, corresponding to the impulsively started sheet. In such problems, the
boundary conditions stay fixed and the time variable needs to be manipulated only
in the governing equations, whereas, in the problems corresponding to the oscil-
latory rate of stretching, the boundary conditions also modify at every next time
step. However, the solution procedure in both the aforementioned cases stays less
hectic than those involving the spatial non-similarity, dealt in the previous two
Chapters.

Table 11.1 Values of the
coefficient of skin-friction due
to [11]

K s M s ¼ 1:5 p s ¼ 5:5 p s ¼ 9:5p

0.0 1.0 12.0 11.678656 11.678707 11.678656

0.2 5.523296 5.523371 5.523257

0.5 −3.899067 −3.899268 −3.899162

0.8 −11.674383 −11.676506 −11.676116

1.0 −15.617454 −15.624607 −15.624963

0.2 0.5 5.322161 5.322193 5.322173

1.0 5.523296 5.523371 5.523257

2.0 6.087060 6.087031 6.087156

3.0 6.769261 6.768992 6.769294

4.0 7.497932 7.406924 7.496870

5.0 8.232954 8.229085 8.228996

1.0 5.0 2.323502 2.323551 2.323548

7.0 3.278018 3.278005 3.278123

9.0 4.197624 4.197771 4.197733

12.0 5.423296 5.523371 5.523257

15.0 6.791323 6.791301 6.791278
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11.2 Axially Symmetric Unsteady Non-similar Flows

The unsteady non-similar flow due to a stretching disk follows similarly to the
two-dimensional case because of the previously determined similarity between the
disk flow and the two-dimensional flow. The case of a stretching cylinder follows
also in a, somehow, similar manner but with a little difference in the governing
equations because of the presence of transverse curvature parameter. Different from
the planner case, the axisymmetric unsteady flow has not been studied any fre-
quently. In this case too, the analogy of semi-similarity persists in the cases when
the spatial dependence of the wall velocity follows the similarity criterion of the
corresponding self-similar flow. As a consequence of it, the resulting equations also
come out of the similar form as did in the previous planner cases. For an unsteady
Crane’s flow due to an impulsively started stretching cylinder, the governing
equations are those given in Eqs. (2.13) and (2.14) subject to the initial and
boundary conditions

at t� 0 : u ¼ v ¼ 0; 8 z; r

at t[ 0 :
u ¼ az; v ¼ 0; at r ¼ R

u ¼ 0; at r ¼ 1
� 9=

;: ð11:12Þ

The so-called semi-similarity transformations of this problem come directly in a
combination of the similarity transformations of the corresponding self-similar
steady flow and those of the famous Rayleigh’s problem following the Williams
and Rhyne’s [1] formulation. The similarity transformations for the steady case are
given in Chap. 6 in dimensionless form. In view of these transformations, the
similarity variables for the present unsteady problem are constructed (due to [1]) as

g ¼ r2 � R2

2R

ffiffiffiffiffi
a
mn

r
; w ¼

ffiffiffiffiffiffiffi
amn

p
Rz f n; gð Þ; n ¼ 1� e�s; s ¼ at: ð11:13Þ

The stream function w ðr; z; tÞ is related to the velocity components u and v as
ru ¼ @w

@r ; rv ¼ � @w
@z due to which the equation of continuity (Eq. 2.13) is satisfied

identically and Eq. (2.14) transforms as

n
@f
@g

� �2

�f
@2f
@g2

 !
¼ @

@g
1þ 2j

ffiffiffi
n

p
g

� � @2f
@g2

	 


þ 1� nð Þ 1
2
g
@2f
@g2

� n
@2f
@g@n

� � ð11:14Þ

Similar to Eq. (11.4), the above equation also recovers the Rayleigh’s flow at
n ¼ 0 and the steady (Crane’s) flow due to a uniformly stretching cylinder at n ¼ 1.
Based upon this reasoning, the solution of Eq. (11.14) is equally applicable to the
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small time as well as to the large time scenarios. The boundary conditions in terms
of transformed variables are given by

f 0; nð Þ ¼ 0;
@f
@g

����
g¼0

¼ 1;
@f
@g

����
g¼1

¼ 0: ð11:15Þ

This problem has already been studied in detail by Munawar et al. [12] including
the heat transfer phenomena for the cases of prescribed surface temperature
(PST) and prescribed heat flux (PHF). Analytic and numerical solutions were
obtained due to the HAM and the finite difference numerical scheme, respectively.
The HAM solution for the dimensionless stream function is obtained in the form of
the series [12]

f n; gð Þ ¼
X1
k¼0

X1
m¼0

X1
l¼0

akm;ln
kgle�mg;

where the akm;l are the constant coefficient of the series and m; l; k are the involved
indices. The initial solution and the linear operator were chosen of the form

f0 n; gð Þ ¼ 1� e�g and L ¼ @

@g3
� @

@g
;

respectively.
In the numerical solution, the authors of [12] utilized the finite difference scheme

by approximating the partial derivatives by the finite differences of the form

@f
@�g

¼ fjþ 1 � fj�1

2D�g
;
@2f
@�g2

¼ fjþ 1 � 2fj þ fj�1

D�gð Þ2 ;

@3f
@�g3

¼ fjþ 2 � 3fjþ 1 þ 3fj � fj�1

D�gð Þ3 ;
@f
@n

¼ fjþ 1 � fj
Dn

where �g ¼ 1
1þ g which transforms the semi-infinite spatial domain 0;1½ Þ to a

bounded interval ½0; 1� in order to facilitate the numerical computations. The
accuracy of the two solutions is shown in Table 11.2 where the analytic and
numerical results reported by [12] have been compared. An excellent agreement can
be seen in the two solutions. The velocity graphs for different values of the time
variable s are shown in Fig. 11.3. Analogous to Fig. 11.1, with the passage of time
the flow develops within the boundary-layer and attains the steady state for suffi-
ciently large values of s. The coefficient of skin-friction in this case is given by

1
2
RexCf ¼ 1

n
@2f
@g2

����
g¼0

: ð11:16Þ
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The variation of 1
2RexCf against n for different values of the curvature parameter

j is shown in Fig. 11.4. Obviously, the skin-friction varies quite rapidly for small
values of time s and stabilizes for sufficiently large values of time. The transition
time is that which is taken by the impulsively started fluid in establishing the fully
developed flow within the boundary-layer. The results of heat transfer phenomena
have intentionally been disregarded, and the interested reader is referred to follow
Ref. [12] in this regard.

Table 11.2 Comparison between the analytic and numerical solutions for different values of the
curvature parameters j and n, at the 13th-order Padé approximation

f 00ð0; nÞ
j HAM results

n ¼ 0:2
Numerical results
n ¼ 0:2

HAM results
n ¼ 0:4

Numerical results
n ¼ 0:4

0.0 −0.65611 −0.65652 −0.74578 −0.74578

0.2 −0.69813 −0.69910 −0.80232 −0.80251

0.5 −0.75824 −0.75816 −0.88255 −0.88260

1.0 −0.85228 −0.85233 −1.00695 −1.00713

1.5 −0.94979 −0.94983 −1.12328 −1.12331

2.0 −1.02509 −1.02515 −1.42200 −1.42200

Fig. 11.3 Velocity profile at
different n values

Fig. 11.4 Coefficient of
skin-friction against n for
different j
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11.2.1 The Case of Oscillatory Stretching

The case of oscillatory stretching rate of the linear stretching velocity of the
cylinder’s surface, for which the steady flow admits a self-similar solution, follows
also in the same manner as does the corresponding planner case. In this case, the
rate of stretching is assumed to be a periodic function of sin or cos as considered in
the previous Section. Different from the previous case, the oscillatory rate of
stretching wall velocity may also be taken as

uw z; tð Þ ¼ a 1þ � cosxtð Þz: ð11:17Þ

This particular form of the wall velocity has also been investigated by Munawar
et al. [13]. In this case, the momentum Eq. (2.14) comes out of the form

@f
@g

� �2

�f
@2f
@g2

¼ j
@

@g
1þ gð Þ @

2f
@g2

� �
� St

@2f
@g@s

; ð11:18Þ

and the equation of continuity (2.13) satisfies identically. The so-called
semi-similarity transformations, as utilized by [13], read as

g ¼ r
R

� �2
�1; w ¼ azR2f g; sð Þ; s ¼ xt; ð11:19Þ

due to which the boundary conditions in terms of new variables are given by

@f
@g

����
g¼0

¼ 1þ �cos s; f 0; sð Þ ¼ 0;
@f
@g

����
g¼1

¼ 0; ð11:20Þ

where � denotes the amplitude of oscillations; for � ¼ 0 (no oscillations), the case of
steady flow is recovered. The coefficient of skin-friction in view of Eq. (11.19)
takes the form

1
2
RexCf ¼ @2f

@g2

����
g¼0

: ð11:21Þ

The variation of velocity and the skin-friction coefficient due to the varying
values of the Strouhal number and the parameter � have been depicted in Figs. 11.5,
11.6, 11.7, 11.8, and 11.9. Clearly, upon increasing the values of amplitude
parameter, the velocity increases and the amplitude of oscillations in the
skin-friction graphs increases. Similar trend persists for the increasing values of the
Strouhal number also. Development of the flow, for initial values of time, can
obviously be seen in Figs. 11.8 and 11.9 where the coefficient of skin-friction
undergoes rapid variations for small time values and established afterward.
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Fig. 11.5 Velocity graph
against η for different �

Fig. 11.6 Effect of Strouhal
number St on velocity profile

Fig. 11.7 Velocity graph at
different time values

Fig. 11.8 Variation of
skin-friction against s
corresponding to various
values of St
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To all the problems, considered in this Chapter, the name “non-similar” flows
has repeatedly been referred, whereas the literature recognizes them as the
semi-similar flows. The reason behind their designation as semi-similar is that they
do not depart far away from the similarity solution and finally attain the steady-state
self-similar solution, particularly in the impulsively started cases. However, besides
such a physical nobility, their governing equations never ever allow the reduction of
three independent variables to one (the self-similar solution). Because of such a
non-reducible nature of their associated manifold, they fail to fulfill the criterion of
self-similarity, in general. This is the fundamental reason due to which they have
been referred as the time-dependent non-similar flows. However, it has also been
stated several times, in this Chapter, that these time-dependent non-similar flows are
not that severe and challenging as do the spatially non-similar flows. Therefore,
besides calling them the semi-similar flows, it must not be confused that they are
not non-similar. Actually, they are non-similar, but the passive nature of temporal
non-similarity does not take them far away from the spatially self-similar solution
due to which they are commonly known as the semi-similar solutions.
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Chapter 12
Turbulent Flow Due to Moving
Continuous Surfaces

The turbulent flow due to moving continuous surfaces is another aspect of the
viscous boundary-layers in addition to the laminar flows presented in the previous
two parts. The literature on turbulent boundary-layer flows due to the moving
(translating) or stretching surfaces is, literally, very few and is strictly limited to the
uniformly moving plate and the slim continuous cylinder cases only. These flows
were also considered by Sakiadis in his pioneering papers [1, 2] on this topic. In
comparison with the laminar flows of this class, the turbulent flows are almost
completely unknown to the best of our knowledge. After the historic initiative of
Sakiadis, the idea had not been progressed, so far, by the subsequent investigators
in the case of turbulent flows. Ultimately, this created a huge gap between the
laminar and the turbulent flows of this class. The present chapter focuses particu-
larly on the turbulent flow due to the translating or stretching continuous surfaces.
Sakiadis [1, 2] considered the turbulent flow due to a uniformly moving flat plate
and a long slim continuous cylinder of constant cross section. In Sect. 12.1, the
Sakiadis’ turbulent flow in the said two cases is being presented while the Crane’s
turbulent flow, namely due to the stretching sheet and the stretching cylinder, has
been considered in Sect. 12.2. Approximate analytic solution in all the four cases
has been obtained due to the integral method approach.

12.1 Turbulent Sakiadis Flow

12.1.1 Two-Dimensional Case

The two-dimensional laminar boundary-layer flow of an incompressible viscous
fluid is governed by Eqs. (2.10)–(2.11) (with w � 0) where the right-hand side
involves the derivative of the laminar shear stress only. In the turbulent
two-dimensional flows too, the governing system [Eqs. (2.10)–(2.11)] stays the
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same but with a modified right-hand side. The shear stress, of turbulent flow, does
not follow the simple Newton’s law of viscosity (only) but involves an additional
contribution due to the turbulent eddies. The description of such turbulent eddies is
not any straightforward and requires their appropriate modeling. Therefore, dif-
ferent describing models for the turbulent Reynolds stresses have been developed,
in this regard. The selection of appropriate turbulent model depends strongly upon
the nature of flow, under investigation. Based upon empirical data, the turbulent
shear stresses have been modeled in terms of physical boundary-layer parameters
and such empirical models have their general acceptability having the capacity of
producing sufficiently accurate results. Nevertheless, the numerical or theoretical
solution of a turbulent flow always requires a comparison with the experiment in
order to state a concrete conclusion about the studied particular flow. Unfortunately,
the Sakiadis’ turbulent flow has never been studied experimentally to the best of our
knowledge. Because of this hindrance, it has always been impossible to compare
the theoretical results with any experimental data.

The current theoretical analysis compromises of an approximate integral method
solution for various power-law velocity profiles. More clear and authentic picture of
these flows will stay pending until the availability of experimental data for these
flows.

Approximate solution
The momentum integral equation for a two-dimensional Sakiadis flow is given

in Eq. (2.26). For laminar flows, the wall shear stress ðsx;0Þ simply follows the
Newton’s law of viscosity, whereas, for turbulent flows, it requires appropriate
modeling. Based on the Blasius law of friction, the famous so-called wall law of the
pipe flow is equally valid for the two-dimensional case also and is given by

sx;0 ¼ qV2
a ;Va ¼ 0:150u7=8w

m
d

� �1=8
; ð12:1Þ

where Va denotes the friction velocity. The momentum and displacement thick-
nesses in this case are defined as

h ¼ Zd

0

u
uw

� �2

dy; ð12:2Þ

and

d� ¼ Zd

0

u
uw

dy; ð12:3Þ

respectively. The momentum integral Eq. (2.26) can also be rewritten in terms of
momentum thickness as
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d
dx

u2wh
� � ¼ sx;0

q
: ð12:4Þ

Sakiadis utilized the famous power-law velocity profile of the form

u
uw

¼ 1� y
d

� �1
n
; ð12:5Þ

in his integral method and chose to use the value n ¼ 7. The substitution of
Eq. (12.5) in momentum integral Eq. (12.4), for n ¼ 7, results in a first-order
ordinary differential equation in dðxÞ, of the form

1
36

dd
dx

¼ 0:0225Re�1=4
d ; ð12:6Þ

where Red ¼ uwd
m is the Reynolds number based on the boundary-layer thickness

dðxÞ. The integration of Eq. (12.6) yields

d
x
¼ 1:01002Re�1=5

x : ð12:7Þ

The availability of dðxÞ helps in furnishing the other quantities of interest such as
the momentum and displacement thicknesses and the coefficient of wall
skin-friction which are calculated as

h
x
¼ 0:028056Re�1=5

x ; ð12:8Þ

d�

x
¼ 0:126225Re�1=5

x ; ð12:9Þ

and

Cf ¼ 0:044890Re�1=5
x ; ð12:10Þ

respectively.
It is a generally observed fact that the velocity profile in the turbulent

boundary-layer becomes fuller upon increasing the flow Reynolds number. In the
same manner, the power-law velocity profile given in Eq. (12.5) becomes fuller
upon increasing the power-law index n, such as n ¼ 8; 9 or 10. In view of the
available experiences with the power-law velocity profile, it has now generally been
admitted that the 1/7th power-law profile approximates well for the turbulent
Reynolds numbers immediately next to the transition region and gives poor
approximation for moderate and higher values of the turbulent Reynolds number.
The 1/8th or 1/9th power-law profiles fit quite well to the experimental data for
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moderate Reynolds numbers, that is, of the order of 107 or 108 and the 1/10th
power-law profile for the turbulent Reynolds numbers of the order of 109 and 1010

as is also observed in the case of rotating disk flow. In what follows, the Sakiadis’
integral solution seems to be limited to small turbulent Reynolds numbers and
requires to be improved for moderate and higher turbulent Reynolds numbers. In
this regard, the values 8, 9, and 10 of the power-law index “n” have also been
considered and the results for physical quantities of interest have been furnished in
the following.

To include the results for other values of n (i.e., n = 8, 9 & 10), the general 1/nth
power-law profile, given in Eq. (12.5), is utilized. In doing so, Eq. (12.6) modifies as

dd
dx

¼ 0:0225C�1
1=n Re

�1=4
d ; ð12:11Þ

which integrates to give

d
x
¼ 0:05745C�4=5

1=n Re�1=5
x ; ð12:12Þ

where C1=n ¼ 1� 2AþB;A ¼ n
nþ 1 ;B ¼ n

nþ 2 : Consequently, Eqs. (12.8)–(12.10)
do also modify and, respectively, read as

h
x
¼ 0:05745ðC�1

1=nRexÞ�
1
5; ð12:13Þ

d�

x
¼ 0:05745

ð1� AÞ
C1=n

ðC�1
1=nRexÞ�

1
5; ð12:14Þ

Cf ¼ 0:09192ðC�1
1=nRexÞ�

1
5; ð12:15Þ

The Sakiadis’ solution for 1/7th profile is also contained in the results given in
Eqs. (12.12)–(12.15) and can readily be recovered by substituting n ¼ 7 (see
Table 12.1). The above results for 1/nth power-law profile are summarized in
Table 12.1 and have also been compared to the case of surface of finite length. The
boundary-layer thickness for continuous surface is quite larger than that of surface
of finite length. Because of this fact, the coefficient of skin-friction is smaller for
continuous surface in comparison with the finite surface. The momentum thick-
nesses in the two cases are, however, comparable, but the displacement thicknesses
of the two cases differ by large from each other.

The velocity curves for n ¼ 7; 8; 9& 10 are plotted in Fig. 12.1 showing that the
velocity becomes fuller upon increasing the power-law index n. The
boundary-layer, momentum and displacement thicknesses, and the coefficient of
skin-friction are plotted in Figs. 12.2, 12.3, 12.4, and 12.5 against the longitudinal

184 12 Turbulent Flow Due to Moving Continuous Surfaces



Table 12.1 Comparison between the continuous and the finite surface cases

1/n d
x Re

1=5
x

h
x Re

1=5
x

d�
x Re1=5x Cf Re1=5x

Continuous surface 1/7 1.01002 0.0280562 0.1262253 0.0448900

1/8 1.20742 0.0268317 0.134158 0.0429307

1/9 1.41769 0.0257761 0.141769 0.0412418

1/10 1.64031 0.0248531 0.149119 0.0397650

Finite surface 1/7 0.3700 0.0360 0.0460 0.0576

1/8 0.3983 0.0354 0.0442 0.0566

1/9 0.4260 0.0350 0.0430 0.0557

1/10 0.4526 0.0343 0.0411 0.0549

Fig. 12.1 Power-law
velocity profile

Fig. 12.2 Variation of
boundary-layer thickness in x

Fig. 12.3 Momentum
thickness plotted against x
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variable x. The three thicknesses, namely the boundary-layer, the momentum, and
the displacement ones grow almost linearly as one progresses in the downstream
direction.

The consequence of the growing boundary-layer thickness is the decrease in the
wall skin-friction coefficient at downstream locations. Furthermore, the momentum
thickness decreases and the displacement thickness increases upon increasing the
values of n.

12.1.2 The Cylinder Case

The turbulent flow due to a moving continuous cylinder was also investigated by
Sakiadis [2] himself with the aid of integral method. He utilized the same 1/7th
power-law profile of the continuous flat plate in this case too. Unfortunately,
Sakiadis failed in obtaining physically reliable results in this case. However, the
method developed by him involves great mathematical beauty and allows a direct
comparison with the results of corresponding flat surface case. The momentum
integral equation applicable to this case is given in Eq. (2.29) (for a permeable
surface), and in the case of impermeable surface, the normal wall velocity must be
taken equal to zero, that is, vw ¼ 0. Following the previous case, Eq. (2.29) (with
vw ¼ 0Þ can also be rewritten as

Fig. 12.5 Coefficient of local
skin-friction plotted against x

Fig. 12.4 Dependence of
displacement thickness upon x
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d
dz

u2w Rh
� � ¼ R

sz;0
q

; ð12:16Þ

where R denotes the radius of the infinite cylinder and h denotes the momentum
thickness given by

h ¼ Zd

R

u
uw

� �2

rdr;

which for the cylinder of constant radius R ¼ R0 reads as

h ¼ Zd

R0

u
uw

� �2

rdr:

The momentum area, in this case, is obtained due to the momentum thickness as

H ¼ p R0 þ hð Þ2�R2
0

h i
:

The famous wall law of the pipe flow, given in Eq. (12.1), is assumed to be
applicable in this case too for the approximation of wall shear stress. The utilization
of the 1/7th power-law profile of the form given in Eq. (12.5) transforms
Eq. (12.16) to the form

d
dz

d
1
36

þ 1
120

d
R0

� �� 	
¼ 0:0225

d
z

� ��1=4

Re�1=4
z : ð12:17Þ

Integration of above equation results in a nice mathematics which allows a direct
comprises between the present case and the case of the corresponding flat contin-
uous surface. Equation (12.17) integrates to give

d
z

1þ 0:167
d
R0

� �� 	
¼ 1:01002

d
z

� ��1=4

Re�1=4
z ;

or

d
R0

¼ k/4=5; ð12:18Þ

where / ¼ z
R0

� �5=4
Re�1=4

z and k comes out to be the ratio of cylinder’s

boundary-layer thickness to that of the flat-plate case, that is, k ¼ d=dp. The cal-
culated values of /, due to Eq. (12.18), give the ratio of the boundary-layer
thickness of the present case to the flat-plate case. For particularly chosen values of
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/, the corresponding values of k are listed in Table 12.2. Contrary to the laminar
case, the calculated boundary-layer thickness in the cylinder case comes out to be
less thick than that of the flat-plate case (see Table 12.2), which is of course
incorrect. In actual, the boundary-layer thickness in the cylinder case is larger than
the corresponding flat-plate case because of the presence of surface curvature. This
fact has also been observed in the self-similar and non-similar flows on a contin-
uous cylinder in the previous two parts. Such a flaw in the present results forbade
one from the further analysis.

The ratio of the surface drag of the two cases, namely the cylinder and the flat
plate, is given by

D
Dp

¼ 1þ 0:152
d
R0

� �
/; ð12:19Þ

which is also underpredicted by the present method (see Table 12.3). Sakiadis held
responsible, however, partly, to the utilized 1/7th power-law profile for such
incorrect results.

The generalization of the Sakiadis’ results for the 1/nth power-law profile is also
obtained by utilizing the general power-law profile given in Eq. (12.5). The
momentum integral Eq. (12.16), after the utilization of Eq. (12.5), results in the
following form

d
dz

d K1 þ 1
2
K2

d
R0

� �� 	
¼ 0:0225

d
z

� ��1=4

Re�1=4
z ; ð12:20Þ

where K1 ¼ �2 A� B� Cð Þ;K2 ¼ AD�1 � 4D;C ¼ B
n ;D ¼ n

2nþ 1 :

Integration of Eq. (12.20) again results in the form of ratio of two
boundary-layer thicknesses, as before, that is,

Table 12.2 Values of k
obtained due to 1/7th
power-law profile

/
1
5 k

0 1.000

0.5 0.987

1.0 0.891

1.5 0.682

2.0 0.500

2.5 0.371

3.0 0.281

3.5 0.220

4.0 0.177

5.0 0.122

6.0 0.088

7.0 0.068
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K1
d
z

1þ 5
9
K2

K1

d
R0

� �
¼ 0:028125

d
z

� ��1=4

Re�1=4
z ;

or

d
R0

¼ k1=n/
4=5; ð12:21Þ

where k1=7 � k. The values of the ratio k1=n are listed in Table 12.4 for different
values of / corresponding to various values of the power-law index n. Evidently,
the 1/8th,…,1/10th profiles also fail to predict the correct results as the ratio ðk1=nÞ
quickly becomes less than 1. However, the ratio is observed to stay greater than 1 a
little bit longer for greater values of n in comparison with the smaller values of n.

Table 12.3 Ratio of the
surface drag predicted by
1/7th power-law profile

/
1
5 D=Dp

0 1.00

0.5 1.00

1.0 1.01

1.5 1.05

2.0 1.11

2.5 1.18

3.0 1.25

3.5 1.33

4.0 1.40

5.0 1.54

6.0 1.65

7.0 1.75

Table 12.4 Summarized
results for various values of
n in the axisymmetric case

/1=5 k1=n
n ¼ 7 n ¼ 8 n ¼ 9 n ¼ 10

0.0 1.009988 1.207380 1.417506 1.640247

0.5 1.001619 1.195741 1.401729 1.619465

1.0 0.902676 1.062546 1.227275 1.397360

1.5 0.697155 0.803691 0.909795 1.017103

2.0 0.508408 0.578480 0.647087 0.715591

2.5 0.375222 0.423967 0.471305 0.518745

3.0 0.285203 0.320999 0.355611 0.390268

3.5 0.223301 0.250739 0.277202 0.303691

4.0 0.179422 0.201166 0.222104 0.243059

5.0 0.123252 0.137952 0.152080 0.166218

6.0 0.090121 0.100778 0.111012 0.121252

7.0 0.068961 0.077076 0.084876 0.092655
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This indicates the requirement of some major modification in the integral method
for the turbulent flow on a continuous cylinder.

12.2 Turbulent Crane’s Flow

The turbulent (Crane’s) flow due to a stretching continuous surface either in the
two-dimensional planer case or axially symmetric case is the subject of this Section.
After the Sakiadis’ pioneering work, the turbulent flow due to moving continuous
surfaces has never been considered to the best of our knowledge. Besides the
fundamental nature of these flows, they still require proper attention by the theorists
and the experimentalists for their complete understanding and further exploration.

At this point, the author takes the privilege to express that the modern devel-
opments in CFD and the commercialization of research have forced the new
entering scientists and the engineers to get involved in the commercially sponsored
research. Consequently, the topics of fundamental research kept on being ignored
with the passage of time and now they have totally become “outdated.” Following
the engineers, the theorists and more particularly the Mathematicians and the
Physicists have also been involved in such a CFD-based research by ignoring the
mathematical/theoretical development of the field. With the continued practice of
this trend, a time may come when the new generation will totally be unaware of the
fundamental topics and tools of research in fluid dynamics. In what follows, the big
lose will definitely be borne by the Mathematics. Therefore, this is a time when the
competent researchers in the field of fluid dynamics must also spend their efforts on
the theoretical research especially on mathematical methods in order to make the
new generations well aware of the advanced research bearing a strong connection
with its essential fundamental basis. Because of these reasons, the famous Sakiadis
and Crane’s flows must be given proper attention by the experimentalists as well as
theorists in order to develop appropriate theoretical procedures regarding their
investigation. The axially symmetric flow of a moving or stretching cylinder, as
considered in the previous and the current sections, respectively, reveals the scarce
of the availability of the authentic data and thus the handicapping of the theoretical
procedures.

In the following, the turbulent viscous flow due to a stretching sheet and a
stretching cylinder is considered. The previously utilized integral method has again
been employed here by using general power-law velocity profile. The presented
results are, however, not any authentic rather misleading in the cylinder case, but
nevertheless have been reported for the purpose of motivation.
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12.2.1 Stretching Sheet

The turbulent flow due to a stretching sheet is also governed by the same equation
[Eq. (2.26)] as utilized in the previous section. The pipe law of friction velocity
[Eq. (12.1)] is also assumed applicable here. In view of these assumptions, the
momentum integral equation [Eq. (2.26)] after the substitution of self-similar 1/nth
power-law profile takes the form

C1=n
1
x2

d
dx

x2d
� � ¼ 0:0225Re�1=4

d : ð12:22Þ

Equation (12.22) admits a solution of the power-law form given by

d
x
¼ Kd

1=n x
ae�3

5 Re�1=5
x ; ð12:23Þ

where Kd
1=n and ae are pure dimensionless constants and are given by

Kd
1=n ¼ 0:022375C�4=5

1=n ; and ae ¼ 3
5
: ð12:24Þ

Corresponding to various values of n, the values of Kd
1=n are shown in

Table 12.5.
Because of these values given in Eq. (12.24), Eq. (12.23) finally furnishes as

d
x
¼ 0:022375ðC4

1=n RexÞ�
1
5: ð12:25Þ

With the aid of Eq. (12.25), the expressions of the momentum and displacement
thicknesses and of the wall skin-friction coefficient are furnished as

h
x
¼ 0:022375ðC�1

1=n RexÞ�
1
5; ð12:26Þ

d�

x
¼ 0:022375ð1� AÞðC4

1=n RexÞ�
1
5; ð12:27Þ

Table 12.5 Values of the
constant coefficient [defined
in Eq. (12.24)] for various
n in the Crane’s flow

1/n Kd
1=n

Two-dimensional Axisymmetric

1/7 0.393461 0.320875

1/8 0.47036 0.381278

1/9 0.552268 0.444873

1/10 0.638992 0.511402
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Cf ¼ 0:116345ðC�1
1=n RexÞ�

1
5; ð12:28Þ

respectively. The above results are summarized in the form of a Table for various
values of n in Table 12.6.

12.2.2 Stretching Cylinder

The case of uniformly stretching cylinder follows similarly as does the case of
uniformly translating cylinder considered in the previous Section. After the sub-
stitution of 1/nth power-law velocity profile given in Eq. (12.5), the governing
momentum integral equation [Eq. (12.16)], in view of Eq. (12.1), takes the form

2K1 1þ 1
2
z
d
dd
dz

þ 1
2
z
R
dR
dz

� �
þK2

d
R

1þ z
d
dd
dz

� �
¼ 0:0225

d
z

� ��5=4

Re�1=4
z :

ð12:29Þ

The above equation follows a solution of the form

d
R0

¼ Kd
1=n

z
R0

� �m1

Re�1=5
R0

; ð12:30Þ

under the restriction that the radius R of the cylinder must also follow the same form
as does the boundary-layer thickness, that is,

R
R0

¼ z
R0

� �m2

Re�1=5
R0

: ð12:31Þ

The constant Kd
1=n and the exponents m1 and m2, appearing in Eqs. (12.30)–

(12.31), are pure dimensionless constants. In this case, it is found that
m1 ¼ m2 ¼ 3=5, and Kd

1=nsatisfies the following equation:

K1 þ 1
2
K2 K

d
1=n ¼ 0:007031 Kd

1=n

� ��5=4
: ð12:32Þ

Table 12.6 Summarized
results for turbulent stretching
sheet flow

1/n d
x Re

1=5
x

h
x Re

1=5
x

d�
x Re1=5x Cf Re1=5x

1/7 0.393461 0.0109295 0.0491827 0.0568182

1/8 0.470360 0.0104524 0.0522622 0.0543382

1/9 0.552268 0.0100412 0.0552268 0.0522006

1/10 0.638992 0.0096817 0.0580902 0.0503314
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The values of Kd
1=n corresponding to different values of n are listed in Table 12.5.

Important quantities of physical interest such as the boundary-layer thickness,
momentum and displacement areas, and the coefficient of wall skin-friction are
given by

d
z
¼ Kd

1=n Re
�1

5
z ;

H
pz2

¼ 2 K1 þ 1
2
K2 K

d
1=n

� �
Kd
1=n Re

�2
5

z ;

�d�

pz2
¼ 2� 2Að Þþ 1� 2Dð ÞKd

1=n

� �
Kd
1=n Re

�2
5

z ;

Cf ¼ 0:045 Kd
1=n

� ��1
4
Re

�1
5

z :

Corresponding to the various values of the power-law index n, the results are
summarized in Table 12.7.
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Table 12.7 Summarized
results for the turbulent
stretching cylinder flow

1/n d
z Re

1=5
z

H
pz2 Re

2=5
z

�d�
pz2 Re

2=5
z Cf Re1=5z

1/7 0.320875 0.018684 0.087083 0.059790

1/8 0.381278 0.017896 0.093280 0.057267

1/9 0.444873 0.017219 0.099391 0.055100

1/10 0.511402 0.016630 0.1050436 0.053214
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