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Abstract
Craniopharyngiomas are rare, histologically benign tumors that arise in the
suprasellar space. As noted by Harvey Cushing as early as 1932, these lesions
while benign in nature are frequently adherent to adjacent critical structures,
which makes complete surgical resection challenging. Because a microscopic
gross total resection is rarely obtained, adjuvant radiotherapy plays an important
role in the management of these lesions. However, given the proximity of critical
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normal tissues adjacent to or even within target volumes, radiation therapy may
be associated with adverse effects. Both surgical- and radiation-induced adverse
effects are compounded by the frequent presence of morbidities arising from the
tumor itself. While morbidities are frequent, patients with craniopharyngioma
have excellent survival outcomes. Thus, practitioners of all specialties must take
great care in treatment planning and survivorship in order to optimize post-
treatment outcomes.

16.1  Epidemiology

Craniopharyngiomas are uncommon, suprasellar, histologically benign tumors that
have an incidence of about 1.3 per million person years without a clear preponder-
ance based on gender or race (Bunin et al. 1998). In the United States, craniopha-
ryngiomas constitute about 1–3% of all brain tumors with an estimated 350 new
cases per year (Bunin et al. 1998; Jane and Laws 2006). However, in other parts of
the world, craniopharyngiomas may be more common, with the relative incidence
reportedly 11.6% in Africa compared to 3.9% in Japan (Izuora et al. 1989; Stiller 
and Nectoux 1994).

There is a bimodal age distribution for patients with craniopharyngioma. The
first peak incidence is in children between 5 and 14 years with craniopharyngiomas
representing about 4–6% of all pediatric brain tumors. The second peak is among
older adults aged 65–74 years, which represents 1–4% of adult brain tumors (Bunin
et al. 1998; Samii and Tatagiba 1997; Moore 2000). Histologic type also differs by
age with adamantinomatous craniopharyngiomas most commonly found in the
pediatric patients and papillary-squamous in adults (Muller 2014).

16.2  Predisposing Factors: Etiology and Genetics

Currently, there are no known genetic or environmental risk factors that predispose
to the development of craniopharyngiomas. Rather, it is believed craniopharyngio-
mas arise spontaneously from the squamous-cell remnants of Rathke’s pouch, along
a line from the nasopharynx to the diencephalon (path of the primitive craniopha-
ryngeal duct and adenohypophysis) (Sughrue et al. 2010; Petito et al. 1976).

As mentioned, there are two histologic subtypes of craniopharyngioma.
Adamantinomatous is the most frequent and is commonly cystic with pockets of
dark brown, “crank-case oil-like” fluid. Histologically, this subtype has epithelial
lobules and palisading epithelium, which resemble tooth-forming tissues. The cyst
fluid is rich in cholesterol that accumulates from membrane lipids, as well as keratin
that comes from the top layer of desquamated keratinized squamous cells, which
can often calcify. The second type of craniopharyngioma is the papillary-squamous
subtype that exhibits well-differentiated, non-keratinizing squamous epithelium
with papillary projections; these rarely calcify (Muller 2014; Sughrue et al. 2010). 
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A metaplastic origin to the papillary subtype from the adenohypophyseal cells has
been suggested but remains controversial (Sughrue et al. 2010).

Newer data suggests the two histologic subtypes have different molecular aber-
rations. Activation of the WNT signaling pathway appears to drive the development
of adamantinomatous craniopharyngiomas. Buslei and colleagues showed that this
subtype contains mutations in CTNNB1, the gene that encodes β-catenin (Buslei
et al. 2005). In contrast, the papillary subtype contains mutations in the BRAF onco-
gene (Brastianos et al. 2014; Sekine et al. 2002; Marucci et al. 2015). Targeted
genotyping has identified CTNNB1 mutations in nearly all adamantinomatous
(96%) craniopharyngiomas and BRAF mutations in nearly all papillary subtypes
(95%) (Brastianos et al. 2014). Such insights will hopefully lead to the development
of new therapeutic approaches in coming years.

16.3  Presenting Symptoms

Craniopharyngiomas are slow growing tumors that can reach rather large sizes
before diagnosis. Retrospectively, symptoms attributable to the tumor are often
apparent at least months, if not years, prior to diagnosis (Muller 2008, 2013).
Patients can experience a wide range of symptoms that are largely dependent upon
the exact location of the tumor and subsequent compression of nearby critical struc-
tures including the optic chiasm, optic nerves or tracts, pituitary stalk, or hypothala-
mus. However, the initial clinical symptoms may also be commonly related to
nonspecific signs of intracranial pressure, including headaches (Fig. 16.1). Moderate 
to severe daily headaches are found in approximately 50% of patients at presenta-
tion, with etiologies related to obstructive hydrocephalus, meningeal irritation, or
traction on pain-sensitive structures (Khan et al. 2013).

Visual symptoms or endocrine abnormalities are more specifically attributable to
suprasellar tumors, like craniopharyngiomas. The presentation and severity of
symptoms range based on the tumor location. For instance, pressure on the optic
chiasm may result in temporal quandrantanopias. However, a variety of visual
symptoms are possible based on the particular growth pattern of the tumor and
include: diplopia, blurred vision, decreased acuity, or in severe cases sometimes
unilateral blindness. Visual symptoms tend to be the presenting sign more common
in adults (~80%) than children (~20–60%) (Sughrue et al. 2010; Muller 2013).

Endocrine deficiencies are also common due to disruption of the hypothalamic-
pituitary axis. At diagnosis, up to almost 90% of patients present with at least one
hormone deficit, most commonly growth hormone (GH) (75%), followed by gonad-
otropins (40%), adrenocorticotropic hormone (ACTH) (25%), and thyroid-
stimulating hormone (TSH) (25%) (Muller 2008; Caldarelli et al. 2005; Hoffman 
et al. 1992). Each hormone deficit has its own associated symptoms. For instance,
GH deficiencies result in growth retardation and delayed bone age. Low gonadotro-
pin levels interfere with pubertal changes, which may be more clinically apparent in
adolescents. Low TSH levels result in hypothyroidism leading to fatigue, cold intol-
erance and weight gain (Rath et al. 2013; Rose et al. 1999).
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Overall, there is a relatively specific constellation of symptoms in patients with
suprasellar tumors. Therefore, patients presenting with a combination of headaches,
visual impairment, and signs of endocrine abnormalities (decreased growth rate,
short stature, or polydipsia/polyuria) should be evaluated for a craniopharyngioma
(Muller 2010).

16.4  Radiographic Findings

While plain radiographs are rarely used for diagnosis of this disease, several classic
findings can be seen on these films. First, most patients have sellar abnormalities,
including enlargement (~65%) or erosion (~44%) (Moore 2000). Second, tumor-
associated calcifications can also be seen on plain radiographs, which are more
common in children (up to 90%) due to the preponderance of the adamantinoma-
tous histology (Warmuth-Metz et al. 2004).

a b

c d

Fig. 16.1 This example depicts a 16-year-old female who presented with headaches, visual
changes, and amenorrhea. On MRI (a), she was found to have a suprasellar mass with radiologic
changes consistent with craniopharyngioma. She underwent a subtotal resection as confirmed with
postoperative imaging (b). She then received postoperative proton beam radiation therapy to a dose
of 50.4 cGE in 28 fractions using a 3-field passive scatter technique (c, d)
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A computed tomography (CT) scan is commonly the initial imaging obtained for
workup of patients with the previously discussed symptomatology. On CT, the
tumors are characteristically described as suprasellar and lobular with a central
solid component surrounded by multiple, various sized, hypodense cysts.
Calcifications are also best demonstrated by CT (Warmuth-Metz et al. 2004). 
Additional imaging is typically performed using magnetic resonance imaging
(MRI); this is particularly useful for providing detailed information related to the
anatomic relationship of the tumor to nearby structures. On T1-weighted images,
the solid tumor component (appears isointense without contrast) and cyst rims typi-
cally enhance with contrast and the cyst fluid may appear hypo-intense. Conversely,
on the T2-sequence, the tumor will typically appear hyperintense.

16.5  Workup

Initial assessment for craniopharyngiomas usually consists of obtaining adequate
neuroimaging with CT brain and subsequent MRI, as discussed above. Features
such as calcifications and cystic regions often help to narrow the differential diag-
nosis, making other lesions such as germ cell tumors less likely. Depending on the
acuity and need for neurosurgical intervention to manage hydrocephalus, additional
workup is warranted.

Ideally, patients with tumors that are suspicious for craniopharyngioma should
receive evaluation and management by a multidisciplinary team with subspecialists
from neurosurgery, radiation oncology, medical oncology, endocrinology, ophthal-
mology, and neuropsychology. A baseline visual acuity exam is useful in determin-
ing where there is optic pathway compression and for establishing baseline function.
Additionally, since most patients have at minimum partial hypopituitarism, a com-
plete endocrine assessment is important, especially in order to identify adrenal or
thyroid dysfunction prior to surgery. Finally, despite their relatively unique appear-
ance, imaging alone does not suffice to establish the diagnosis of craniopharyngi-
oma, and histologic confirmation in required (Moore 2000; Sughrue et al. 2010; 
Muller 2010).

16.6  Treatment

The optimal therapeutic strategy for craniopharyngiomas remains controversial.
The two basic approaches include either an aggressive surgical resection that
attempts a gross total resection (GTR) versus a more conservative surgery followed
by radiation therapy to treat residual disease. Unfortunately, the published literature
and lack of randomized data have not been able to resolve the debate. Notably,
biases against either strategy are based primarily on morbidities associated with
historical cohorts. For instance, significant advances in neurosurgical techniques
have decreased the morbidity of resections and perhaps more aggressive approaches
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are warranted. Similarly, radiation therapy techniques have evolved rapidly allow-
ing for more accurate, conformal dose deposition while minimizing radiation to
nearby critical structures. Therefore, it is imperative that an experienced multidisci-
plinary team evaluate patients with craniopharyngiomas tumors for personalized
and optimal treatment planning.

16.6.1  Surgery

Surgery is indicated in all patients in order to achieve a histologic diagnosis, allow
for cyst or hydrocephalus decompression, and to minimize disease burden (Van
Effenterre and Boch 2002). Some surgeons believe that an aggressive GTR is
required for cure, while others believe the morbidity associated with that approach
is too great and opt for cyst drainage and a subtotal resection (STR) with planned
postoperative radiation therapy (Aggarwal et al. 2013; Fahlbusch et al. 1999; 
Merchant et al. 2002; Sanford 1994; Stripp et al. 2004; Weiner et al. 1994; Yasargil 
et al. 1990; Clark et al. 2013; Schoenfeld et al. 2012).

Initial surgical intervention is focused on relieving acute symptoms related to
these tumors. In patients presenting with hydrocephalus, decompression of the
lesion itself is the favored treatment approach to restore CSF flow (Fahlbusch et al.
1999; Choux and Lena 1979). However in severe cases, an external drain may be
required to relieve pressure prior to tumor resection.

The approach to surgical resection is dependent on the location and makeup of
the tumor. Historically, a common surgical approach included a right frontotempo-
ral incision (Fahlbusch et al. 1999). Also, suprasellar tumors were also resected
using a transcranial approach, while prechiasmatic tumors may be best visualized
via a supraorbital craniotomy (Moore 2000). For tumors that are primarily intra-
sellar, an endoscopic, transsphenoidal approach may provide optimal visualization
while remaining minimally invasive (Elliott et al. 2011; Zona and Spaziante 2006). 
More commonly, newer techniques including microsurgery, endoscopic assistance,
and minimally invasive approaches have allowed neurosurgeons to improve the
quality of their resections while minimizing morbidity (Sughrue et al. 2010; Muller 
2008, 2013). Ultimately, the intraoperative findings will dictate the degree of
resection.

16.6.2  Radiation Therapy

Factors, which most impact the choice of whether to proceed with adjuvant radio-
therapy or observation, are most often the presence of residual disease and the age
of the patient. For tumors arising in very young patients, a discussion is warranted
regarding the appropriateness of observation since very young children are particu-
larly susceptible to adverse radiation effects. However, because incompletely
resected lesions have a high rate of local relapse without adjuvant therapy
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(71–90%), postoperative radiotherapy should be recommended in patients with sub-
total resection (Clark et al. 2013; Becker et al. 1999).

Numerous radiation therapy techniques exist and have been utilized with excel-
lent outcomes in terms of disease control for these tumors. It is, however, worth
noting that no prospective studies evaluating the benefits of advanced technology
exist, in terms of reduced radiation adverse effects, either for photon or proton ther-
apy. In the majority of published literature, photon-based therapies, both tradition-
ally fractionated and hypo-fractionated stereotactic techniques have been employed
(Merchant et al. 2002, 2006; Becker et al. 1999; Habrand et al. 1999, 2006; Minniti 
et al. 2009). Merchant and colleagues conducted a single arm prospective study of
reduced margin 3D conformal radiation therapy for pediatric patients with cranio-
pharyngioma (Merchant et al. 2006). In a total of 28 patients, the solid and cystic
tumor components along with a 1 cm expansion were targeted to a dose between 54
and 55.8 Gy with acceptable rates of disease control. Greenfield and colleagues
have also retrospectively evaluated the use of intensity modulated radiation therapy
techniques (Greenfield et al. 2015). These investigators documented high rates of
disease control but also noted a high burden of pre-radiotherapy comorbidities
including endocrinopathies. More recently, dosimetric studies of volumetric arc
therapy (VMAT) have been conducted and indicate that close attention to beam
angles is important in order to minimize hippocampal exposure (Uto et al. 2016).

In addition to studies using common 1.8 Gy fractionation schemes, given the
relatively well-demarcated tumor boundaries on imaging, radiosurgery, or hypo-
fractionated stereotactic radiotherapy have also been explored in the treatment of
these tumors. For radiosurgery, the most commonly employed platform has been
gamma knife. Patients selected for gamma knife radiotherapy typically have small
tumors, measuring less than 3 cm; also, there must be a safe separation (generally
3–5 mm depending on stereotactic delivery technique) between the target and
nearby critical structures such as the optic chiasm in order to allow for adequate
target coverage while respecting normal tissue constraints. Reported doses deliv-
ered in single fractions using gamma knife range from 12 to 14 Gy (Amendola et al.
2003; Kobayashi 2009; Mokry 1999; Chung et al. 2000). In these select patients,
reported disease control rates seem acceptable and toxicities minimal (Lee et al.
2014; Park et al. 2011; Xu et al. 2011). However, patient numbers included are
small and outcomes for adult and pediatric patients are frequently not separated.
Given various differences in patient selection (i.e., tumor volumes, etc.), it is diffi-
cult to compare these results to traditional fractionated regimens.

As for many pediatric brain tumors, proton therapy is increasingly used in the
treatment of craniopharyngiomas. Boehling and colleagues described in detail the
dosimetric advantages of proton therapy including the potential for sparing of vas-
cular structures and the hippocampus, especially with advanced proton therapy
delivery modalities, namely intensity modulated proton therapy (IMPT) (Boehling
et al. 2012). One of the preliminary reports by Luu and colleagues on the use of
proton therapy for patients with craniopharyngiomas showed equivalent local con-
trol rates (88%) as compared to previous photon-based studies (Luu et al. 2006). 

16 Craniopharyngioma



302

More recently, a multi-institutional study comparing proton therapy to photons,
again reported comparable outcomes (Bishop et al. 2014).

16.7  Radiation Details

Currently, for traditionally fractionated therapies, doses range from 50.4 to 54 Gy
delivered at 1.8 per fraction. The commonly used upper limit of 54 Gy likely repre-
sents the tolerance for structures such as the optic chiasm, which are frequently
immediately adjacent to the target (Merchant et al. 2002, 2006; Bishop et al. 2014; 
Kiehna and Merchant 2010). Advanced photon-based therapies have improved nor-
mal tissue sparing, which includes the use of intensity modulated radiation therapy
(IMRT) (Greenfield et al. 2015; Merchant et al. 2013). In a single institution series, 
24 patients were treated to a dose of 50.4 Gy using IMRT, and the 5- and 10-year
progression-free survival rates were consistent with those seen with 3D conformal
or other photon-based therapies (Greenfield et al. 2015). Regarding target delinea-
tion, the gross tumor volume (GTV) is typically easily visualized and delineated
following fusion of MR imaging with treatment planning CT. While there is some
discussion of whether or not all cystic areas should be included in the GTV, tumor
cells could be present in the cyst walls, which is the reason to ensure coverage with
the prescription isodose line.

Some debate surrounds the appropriate clinical target volume (CTV) expansion
to be utilized. Historically, larger expansions of 1–2 cm have been employed given
less reliable immobilization and image-guidance. However, more recently, studies
have suggested that a smaller target volume expansion of 5 mm may be safely
employed (Merchant et al. 2013). This is justifiable based on the fact that craniopha-
ryngiomas are not inherently infiltrative, unlike gliomas or other intrinsic brain
tumors. Preliminary studies reporting disease control outcomes utilizing reduced
margin treatments have documented good disease control outcomes (Merchant
et al. 2013). However, it is important to note that the CTV should be customized for
each individual patient; this includes ensuring coverage of areas of adhesion noted
intraoperatively. For photon therapy planning target volume (PTV), expansions will
depend on institutional practices with common values falling between 3 and 5 mm.

16.7.1  Cystic Considerations for Radiation Planning

While it has long been known that craniopharyngiomas may contain cystic compo-
nents, only recently has it been appreciated the dynamic changes that occur within
these structures. Investigators at the Massachusetts General Hospital were among
the first to describe in detail the potential for rapid cystic changes in these tumors
(Winkfield et al. 2009). A group of 24 pediatric patients, 19 with a cystic compo-
nent, underwent treatment. Seventeen of the 19 patients with cysts received surveil-
lance imaging during the course of radiation therapy. Six of these patients had
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imaging evidence of cyst enlargement with 4 requiring revision of the radiation plan
in order to ensure target coverage. The authors recommended routine imaging dur-
ing the course of radiation therapy in patients with tumors containing cystic compo-
nents (Winkfield et al. 2009). Following this initial observation, a subsequent report
from the University of Texas MD Anderson Cancer Center confirmed relatively
frequent cystic changes during irradiation (40%), with some patients requiring
alteration to the treatment plan (20%) (Bishop et al. 2014). Therefore, when small
CTV and PTV expansions are used, weekly or biweekly imaging during treatment
is recommended in patients with cystic components to their tumors in order to
ensure adequate tumor coverage. Additionally, close surveillance imaging is of
greater importance in the setting of reduced CTV margins and/or the use of proton
therapy.

16.7.2  Intracavitary Therapies

A less commonly employed treatment approach is the intracavitary injection of
either β-emitting radioisotopes or sclerosing substances. The radioisotopes
(Schoenfeld et al. 2012) phosphorus or 90yttrium have been used both as a primary
and salvage treatment for cystic craniopharyngiomas, in which they are injected
into the cysts via a catheter. Once within the cyst, photons are emitted by beta decay
allowing for delivery of high doses of radiation to the epithelial lining of the cyst.
Several studies have reported cyst regression in 81–88% of patients (Blackburn
et al. 1999; Leksell 1952; Pollock et al. 1995). Alternatively, intracystic catheters
can be used to instill chemotherapeutic agents (i.e., bleomycin or interferon α) with 
some efficacy (Cavalheiro et al. 2010; Schubert et al. 2009).

16.8  Outcomes

There are not evidence-based guidelines or recommendations regarding a follow-up
plan for patients with a history of craniopharyngioma. However, given the potential
for cystic changes following treatment, a best practices approach would suggest that
neuroimaging should be obtained routinely. Our institutional approach is to obtain
post-radiation imaging 4–6 weeks following completion of treatment and every
3 months thereafter for 2–3 years, at which point longer intervals may be recom-
mended. In addition to monitoring for disease relapse, a multidisciplinary team is
essential to manage disease-related and iatrogenic toxicities. Endocrine function
will need to be closely monitored and supplements added as indicated, especially
for developing children and adolescents; the importance of close endocrine follow-
up cannot be overstated. Periodic visual field testing is also important for early
intervention. Other members of a multidisciplinary team (internists/pediatricians,
neuropsychologists, teachers, dieticians, etc.) may be required depending on the
needs of the patient.
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16.8.1  Outcomes

While disease control rates are high, craniopharyngiomas are associated with
decreased overall survival compared to the normal population; the 10-year survival
outcomes commonly reported are between 80 and 91% (Schoenfeld et al. 2012; 
Bishop et al. 2014; Merchant et al. 2013; Karavitaki et al. 2006; Pereira et al. 2005; 
Fernandez-Miranda et al. 2012). In addition to the deaths attributable to disease 
progression or surgical mortality, these patients are at higher risk of cardiovascular
and cerebrovascular death (Pereira et al. 2005). Notably, based on the current evi-
dence, there does not seem to be a difference in long-term survival between patients
treated with GTR versus STR and postoperative radiation therapy. However, a
recent SEER study did suggest a short-term survival benefit independently associ-
ated with STR (HR 0.39) and RT (HR 0.45) on multivariate analysis (Zacharia
et al. 2012).

In terms of surgical resection, GTR rates range widely (between about 30 and
75%), with recurrences most commonly reported to occur in about 8–30% of
patients following a GTR (Caldarelli et al. 2005; Fahlbusch et al. 1999; Sanford 
1994; Stripp et al. 2004; Shi et al. 2008; Gardner et al. 2008). Conversely, the rate
of recurrence following a STR alone is unacceptably high (40–75%) without RT
(Fahlbusch et al. 1999; Karavitaki et al. 2005; Villani et al. 1997). However, direct
outcome comparisons are difficult given the variable median follow-up and differ-
ing definitions of disease progression.

Patients that receive STR and postoperative radiation therapy appear to have
similar control rates to GTR with disease relapse occurring in 0–12% of patients
(Schoenfeld et al. 2012; Bishop et al. 2014; Merchant et al. 2013). Several studies
have also differentiated solid from cystic tumor progression. Immediately following
radiotherapy many patients experience transient cyst growth before they regress
(Bishop et al. 2014; Shi et al. 2008). Shi and colleagues reported cyst enlargement
in 11 of 21 patients following radiation therapy. Similarly, Bishop and colleagues
observed a third of patients to have evidence of cyst growth within 3 months of
completing treatment. However, in the majority of cases, growth was transient and
followed by subsequent shrinkage of the cystic component. Reported 3-year recur-
rence rates of the solid tumor component were 5% versus 24% for cysts (Bishop
et al. 2014). Cyst growth is appreciably more challenging to control, but its biologic
significance is undefined.

If tumors recur, management is increasingly difficult primarily because surgical
resection of recurrent tumors is more challenging. The recurrent tumors are com-
monly more adherent to surrounding tissue with poorly defined tissue planes, which
is evidenced by the lower rate of resection (13–53%) achieved at the time of recur-
rence (Fahlbusch et al. 1999; Villani et al. 1997; Duff et al. 2000). For patients that 
recur, surgery alone is unlikely to provide durable control. In a study by Kalapurakal
and colleagues, the 10-year progression-free survival after surgery and radiation
therapy for recurrent tumors was 82–83% compared to 0% for surgery alone
(Kalapurakal et al. 2000). However, withholding radiation in the definitive treat-
ment setting in order to reserve it for use at the time of salvage is not justified based
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on available evidence. In fact, a recently published study by Bishop and colleagues
showed that recurrent cyst growth was associated with poorer visual outcomes and
hypothalamic obesity; furthermore, radiation therapy as salvage therapy negatively
affected endocrine function (Bishop et al. 2014). Therefore, reserving radiation for
salvage in the setting of STR is not advisable.

16.8.2  Toxicities

While patients may present with varying degrees of endocrine or visual dysfunc-
tion, treatment may impart additional morbidity. The rate of endocrine dysfunction
increases significantly after surgical resection given the proximity, and sometimes
involvement, of the tumors to the pituitary-hypothalamic axis (Caldarelli et al.
2005; Hoffman et al. 1992; Merchant et al. 2002). Diabetes insipidus is the most 
commonly reported postoperative endocrine complication. It occurs transiently in
nearly all patients (80–100%) and permanently in 40–93% (Caldarelli et al. 2005; 
Hoffman et al. 1992; Merchant et al. 2002; Poretti et al. 2004). Anterior pituitary
function also is often commonly compromised with several reports suggesting pan-
hypopituitarism in up to 75–100% of patients following surgery (Fahlbusch et al.
1999; Kalapurakal et al. 2000; De Vile et al. 1996). Visual outcomes may also be
influenced by surgical interventions. While some patients experience improvement
in their preoperative visual deficits (41–58%) (Caldarelli et al. 2005; Elliott et al. 
2011), others have further deterioration (2–66%) following resection (Sughrue et al.
2010; Fahlbusch et al. 1999; Poretti et al. 2004). Finally, another commonly under-
reported, yet serious toxicity associated with surgery is hypothalamic dysfunction.
Symptoms include disturbed circadian rhythm, behavioral changes, obesity, or tem-
perature/thirst regulation, and it may worsen in up to 65–80% of patients (Muller
2013; Elliott et al. 2011; Poretti et al. 2004). Other less common morbidities associ-
ated with surgery include neurologic, cerebrovascular, or cognitive complications.
For example, Merchant and colleagues reported a 10-point drop in IQ scores in 15
patients treated with GTR alone (Merchant et al. 2002).

Similar to surgery, it is challenging to distinguish the long-term toxicities of
radiation therapy from disease-related sequelae. The most commonly reported late
toxicity associated with radiation therapy is worsening endocrine dysfunction,
which is observed in 77–95% of patients (Clark et al. 2013; Bishop et al. 2014); 
panhypopituitarism is reportedly induced in 30–46% of patients (Bishop et al. 2014; 
Clark et al. 2012). Reduced visual acuity is also a potential long-term toxicity but is
unusual using modern radiation techniques if normal tissue constraints are met.
Hypothalamic obesity is a particular morbid treatment-related toxicity that requires
specialized management; the impact of radiation therapy on this toxicity is uncer-
tain, but the prevalence of obesity following combined modality treatment has been
reported in 25–55% of patients (Muller 2008; Hoffman et al. 1992; Elliott et al. 
2011; Bishop et al. 2014).

Less common toxicities associated with radiation include neurocognitive decline
and cerebrovascular changes. Merchant and colleagues reported a median drop in
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IQ scores of only 1.25 points in patients treated with surgery and radiation (com-
pared to 10 points in patients receiving aggressive surgery only) (Merchant et al.
2002). Vascular changes and stroke have also been observed in patients treated for
craniopharyngiomas. Mueller and colleagues suggested that the incidence of stroke
is increased tenfold in patients with childhood cancers,(Mueller et al. 2013) with 
several studies specific to craniopharyngiomas reporting rates of late vascular acci-
dents or moya-moya in about 10% of patients after long-term follow-up (Bishop
et al. 2014; Liu et al. 2009; Lo et al. 2014, 2016). Specifically, one cross-sectional
study observed vasculopathies in 32% of patients (n = 6 of 32) (Lo et al. 2016). 
However, modern radiation techniques may lower the rate of late toxicities com-
pared to those reported in historical cohorts.

 Conclusions

Debates regarding the appropriate management of craniopharyngiomas will con-
tinue. Debates include deciding upon the appropriate surgical intervention,
whether radical resection versus limited decompression is indicated. Increasingly,
there is a trend towards limited surgical resection followed by adjuvant radio-
therapy. While radiation oncologists will agree there is an established role for
adjuvant radiation therapy if residual disease is present following surgery, there
is still debate regarding the appropriate treatment modality and/or techniques
(photons vs. protons vs. stereotactic, etc.) as there is no prospective data docu-
menting differing disease control or toxicity outcomes. Beyond neurosurgeons
and radiation oncologists, other providers, particularly endocrinologists, should
routinely be involved in the upfront and continued management of these patients.
Given the excellent survival outcomes for craniopharyngioma patients, all prac-
titioners should focus on minimizing and managing post-treatment morbidities,
thereby improving quality of life for survivors.
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