
Chapter 1
Model Building

Val Lowndes, Stuart Berry, Marcello Trovati
and Amanda Whitbrook

Section 1.1 introduces the use of system dynamics in modelling and then uses this
approach to construct models to describe real applications.
Section 1.2 introduces the concepts needed to construct models using available
data, modelling using Big Data.
Section 1.3 introduces modelling using blackboard architecture; this provides a
flexible, symbolic artificial intelligence (AI) method for the cooperative modelling
and then solution of complex problems.

1.1 Introduction to System Modelling

The purpose of system dynamics modelling is to develop understanding and then
the improvement of systems. The first stage in this process is the construction of a
logical model (influence diagram) to describe a system.

V. Lowndes (Retired)
University of Derby, Kedleston Road, DE22 1GB Derby, UK
e-mail: v.p.lowndes@derby.ac.uk

S. Berry (&) � A. Whitbrook
College of Engineering and Technology, University of Derby,
Kedleston Road, DE22 1GB Derby, UK
e-mail: s.berry@derby.ac.uk

A. Whitbrook
e-mail: a.whitbrook@derby.ac.uk

M. Trovati
Computer Science, Edge Hill University, St Helens Road, Ormskirk,
L39 4QP Lancashire, UK
e-mail: marcello.trovati@edgehill.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_1

3

This model can then lead to sets of equations describing the operation of the
system. These can be used to simulate the system to gain understanding of its
dynamic behaviour and to be able to evaluate alternative policies, leading to
improvements within the system.

A series of small examples are used to introduce this modelling process. Where
information is available, the behaviour predicted by these models is compared with
reality, i.e. what has happened in reality.

1.1.1 Introducing Influence Diagrams

Modelling using influence diagrams is introduced through the following illustrative
examples:

• Stock control model: used to illustrate the basic modelling notation.
• Spending/saving model: used to illustrate the construction of an influence dia-

gram and to introduce the concept of “positive” and “negative” feedback loops
• House building, financial models and population modelling: so that the pre-

dictions from the models (positive or negative loops) can be compared with
reality.

• Transport modelling: extending the work to demonstrate the effect of govern-
ment policy on transport provision (the “Beeching” cuts for example).

Example A: Stock Control Policies
A company holds stocks of finished goods to be able to satisfy demand; when
stocks are low, more newly manufactured items are added to the finished goods
stock; in this example, the available stock (for use) is “influenced” by production
and demand (see Fig. 1.1).

The direction of the arrow from [despatched] to [production] indicating the
production levels is influenced by the quantity of items dispatched, and the arc label
(D) indicates the delays between each event.

Where

Demand Influences Number dispatched

Number dispatched Influences Production

Production Influences Available stock

Available stock Influences Number dispatched

4 V. Lowndes et al.

The model constructed from this diagram will have the form:

Dispatched is described by the function f(Demand, Stock)
Dispatchedi = Minimum(Demandi-3,Stocki)

Assuming a delay of 3 between receipt of order and despatch.

Production is defined by f(Dispatched) or following through
f(Dispatched, Demand, Stock) or by implication

f(Dispatched, Demand, Stock, production))
Productioni = Maximum(Dispatchedi-2,Demandi-5,MinProduction)

Assuming a delay of 2, dispatched and production request.

Stock is described by the function f(stocki-1,Productioni-1,Dispatched)
Stocki= Stocki-1+ Productioni-1 - Dispatched

Assuming a delay of 1 between production and stock ready for use.

The next stage gives examples to introduce approaches to the production of
“influence diagrams” and the notation used to analyse the resultant model.

1.1.1.1 Categorising Dependencies (Links) in a Model

An initial (causal) analysis is used to categorise an influence diagram and hence the
underlying model, essentially the causal analysis asks: (Fig. 1.2).

If the input value increases, what is the effect on the output value? leading to the
categorisation of the links as either positive (+) or negative (−) links.

Connecting between inflation rate and prices, as inflation rises, then so too do
prices giving:

Fig. 1.2 a Positive arc: if
“inflation rate” increases then
“prices” will rise. b Negative
arc: if “demand” increases
then “stock levels” will fail

Available

Demand

Production

Dispatched

Fig. 1.1 Production

1 Model Building 5

Connecting between demand and stock levels, as demand rises, it follows that
stock levels will fall:

In carrying out this analysis always start with…“if the input rises…” starting
with the opposite “…if the input falls…” can lead to double negative statements and
some confusion in the following analysis.

1.1.1.2 Categorising a Model

Having categorised all the links, a loop in a model can fall into one of the two
states: positive or negative feedback loops. In general, a negative loop indicates a
“goal-seeking” model here there will be convergence, whereas a positive feedback
loop indicates unrestricted growth or decay (Fig. 1.3).

Fig. 1.3 Categorising feedback loops

6 V. Lowndes et al.

• State 1, a positive feedback loop would lead to “unconstrained” growth or
decline, while

• State 2, a negative feedback loop would lead to a steady-state solution
(goal-seeking).

1.1.2 Model Evaluation/Validation, Comparing the Model
with Historic Data

Here, a model is constructed and evaluated showing that its behaviour replicates the
real situation.

Example B: House-Building Model
An initial model links house buying with house prices and housing stock giving

a model with a negative feedback loop, ignoring the overall demand for housing
(Fig. 1.4).

Analysing Influences in the diagram leads to the consequent effects:

House prices Up Then House building Down Negative effect

House building Up Then Housing stock Down Negative effect

Housing stock Up Then House prices Down Negative effect

Thus giving the model cycle from and returning to a given starting position

House building Up Gives Housing stock Down

Housing stock Down Gives House prices Up

House prices Up Gives House building Down

Fig. 1.4 First house price
model

1 Model Building 7

Continuing to complete the cycle of effects

House building Down Gives Housing stock Up

Housing stock Up Gives House prices Down

House prices Down Gives House building Up

Completing the cycle shows the goal-seeking behaviour of this model.
Extending the model through the addition of house construction gives a second

loop (Fig. 1.5).
The additional loop adds the influences

House construction Up Then Housing stock Up

Housing stock Up Then House prices Down

House prices Up Then House buying Down

House buying Down Then House construction Down

Thus, adding to the existing model cycle starting from the same starting
position

House buying Up Gives House construction Up

House construction Up Gives Housing stock Up

Housing stock Up Gives House prices Down

House prices Down Gives House buying Up

Finally, adding financial considerations into the influence diagram gives the
model: (Fig. 1.6).

Fig. 1.5 Second house price model

8 V. Lowndes et al.

All housing models contain a negative loop; however, a fuller model would
include “people needing housing” and “construction of social housing” (see
appendix for an extended model).

1.1.3 Example C: Developing Financial Models

These models investigate the movement of stock market share prices. The first
model investigating the effect of investor confidence on share price movements and
the second (extended) model adding the effect of short selling on the first model.
Notice that these models demonstrate the effect of positive feedback loops and
explain the movement of stock market prices (Fig. 1.7).

1.1.3.1 Effect of Investor Confidence on Financial Markets

This model can be constructed in stages.

Stage 1: share price and its effect on investor confidence, as the price increases, then
confidence will also increase (Fig. 1.8)
Stage 2: now add the effect of investor confidence on the sale of shares, assuming
that when confidence is rising, the investors will tend to hold onto the shares to give
Stage 3: as the sale of shares increase, then the share price will fall, giving the
completed model (Fig. 1.9).

Fig. 1.6 House pricing model

1 Model Building 9

This model exhibits a positive feedback loop {+, −, −}, and hence, either an
uncontrolled increase or decrease in share values will result from this model:

Increase in share prices gives

Share price Up Leads to Investor confidence Up

Investor confidence Up Leads to Sale of shares Down

Sale of shares Down Leads to Share price Up

Decrease in share prices gives

Share price Down Leads to Investor confidence Down

Investor confidence Down Leads to Sale of shares Up

Sale of shares Up Leads to Share price Down

Fig. 1.7 a Start financial
model b start financial model
c first financial model

10 V. Lowndes et al.

The direction (of movement of share prices) is changed only through the effect of
external factors.

Using this model, simulation models were constructed first starting with low
investor confidence; the results from this simulation produced the plots of “share
price” and “share holding” showing how they both fall with time.

Conversely, if the investors start with high confidence, the plots show how both
share price and share holding grow with time.

Finally, if the investor state starts in one mode (high confidence), then switching
the next plot shows the effect on share prices and investor holding.

Fig. 1.8 a , b and c: Simulating stock holdings

Fig. 1.9 FTSE index

1 Model Building 11

Validating the Model
This effect is demonstrated in both FTSE and Dow Jones historic data log plots;
both the FTSE and the Dow Jones data can be shown to have several changes of
direction moving from a period of continual growth to a period of continual decline;
in addition, the Dow Jones plot also demonstrates that there can be periods where
the plot is stationary (Fig. 1.10).

Turning points, changes from growth to fall or from fall to growth in the FTSE
Index, occur at (about) 2003; 2007; 2009; 2010.

Similarly, plotting the Dow Jones, log(price) and movements for the period
1902–2012 gave (Fig. 1.11).

With Dow Jones turning points, marked above in Fig. 1.11, at (about) 1902;
1929; 1936; 1946; 1964; 1984; 2002;

Replotting the Dow Jones Index (log price) over a shorter time period, up to
1935, shows the dramatic effect of this model around the time of the Wall Street
Crash (1929–1933); here, attempts to halt the fall failed until external events caused
the changed direction.

Here, turning points seem to occur at 1924, 1929, 1932 and 1934.

Fig. 1.10 a Dow Jones index
b growth periods in Dow
Jones index

12 V. Lowndes et al.

Fig. 1.11 Growth periods in
Dow Jones index

Fig. 1.12 a Modelling investor confidence and shares, b modelling investor confidence and
shares and c modelling investor confidence and shares d alternative model for investor confidence
and shares

Finally, plotting the Dow Jones Index over the period from 1991 not only shows
the same effects during this period but also that the changes in direction tend to
occur more frequently (Fig. 1.12).

Here turning points at 1991, 1994, 1999, 2003, 2007, 2009 and 2015 on average
every 4 years.

1 Model Building 13

1.1.3.2 Example D2: Effect of Investor Confidence and Short Selling

Definition: Short sale is the sale of securities or commodities not owned by the
seller (who hopes to buy them later at lower price); hence, short-selling cause falls
in asset prices.

Short selling and the results from short selling have been known for a long time:

• “He who sells what isn’t his’n, must buy it back or go to pris’n.”—Daniel Drew, 1797–
1879, American financier.

• 1609—The Dutch East India Co protests to the Amsterdam Exchange after short sellers
make enormous profits on its stock. Leading to the first ever regulations on shorting in
the following year

• 1733—Britain bans naked short selling. “Investopedia” ref South Sea Bubble.
• 1932—US President Herbert Hoover condemns short selling for speculative profit on

the New York Stock Exchange. www.reuters.com/article/us-sec-shortselling-history

Developing the influence model, from the base investor confidence model
(Fig. 1.13).

Then, adding in investor confidence events gives:
Finally, as the sale of shares increases, then the short-selling quantity will

increase.
This model exhibits only positive feedback loop {+, −, −} and {+, −, +, −};

hence, short selling will have the following effect on share prices:

Increase in short selling gives

Short selling Up Leads to Share price Down

Share price Down Leads to Investor confidence Down

Investor confidence Down Leads to Sale of shares Up

Sale of shares Up Leads to Short selling Up

Notice that a similar model exists with respect to the short-selling price:
An analysis of this model gives:

Fall in short selling price gives

Short selling price Down Leads to Share price Down

Share price Down Leads to Investor confidence Down

Investor confidence Down Leads to Sale of shares Up

Sale of shares Up Leads to Short selling price Down

Comparing this model with the stock market when “falls” occurred in the 1990s
and 2000s and 2010s.

14 V. Lowndes et al.

http://dx.doi.org/10.1007/978-3-319-55417-4_3

1.1.4 Population Modelling

Again, two models are presented investigating population changes in a closed
society, for example Easter Island an isolated Pacific Ocean island, in the first
model no technological developments and in the second there are technological
developments.

Fig. 1.13 a–c Developing the model, d results from a simulation based upon this model

1 Model Building 15

Basic “Easter Island” model

Stage 1: as the population increases, then the space available for food production
falls.
Stage 2: as the space for food production increases, then the resources available per
person also increases.
Stage 3: linking to give the final model, a negative goal-seeking loop (Fig. 1.14).

Notice that

Population Up Leads
to

Available
space

Down

Available
space

Down Leads
to

Resources
per person

Down

Resources
per person

Down Leads
to

Population Down Population Down Leads
to

Available
space

Up

Available
space

Up Leads
to

Resources
per person

Up

Resources
per person

Up Leads
to

Population Up

Applying this model using Easter Island, data gave the population plot
Where population and resources are tending towards a steady state, as expected

with periods of population growth and population decline.
Note Easter Island was “discovered” at a time when the population was in the

first “state of decline” shown in the population plot.
Allowing for technological development produces the model (Fig. 1.15):
Leading to an increasing population, compare this with the Earths continual

development of food sources and the total population growth.

1.1.5 Transport Modelling

Travellers choose the most appropriate mode of transport to reach their chosen
destination. They could travel by rail, or car, or bicycle or by other forms of public
transport or even walk.

This model investigates the interaction between the use road (car) and rail
transport and the subsequent expansions of the road and rail systems.

Stage 1: only road travel is considered giving (Fig. 1.16):
The model suggesting that road capacity is continually increasing, generally true,

in the absence of any alternative mode of transport.

16 V. Lowndes et al.

Fig. 1.14 a Second population model b world population estimates

1 Model Building 17

Journey
times

Up Leads
to

Road
Building

Up

Road
building

Up Leads
to

Demand for
Roads

Up Demand for
Roads

Up Leads
to

Journey
times

Up

Journey
times

Up Leads
to…

Similarly, extending the model by incorporating rail changes could produce
another model containing only positive feedback loops, thus implying, as in the
1960s, that road provision is (continually) increasing and rail provision declining.

However, when increases in road capacities or the development of the road
network are not, or no longer, a viable option, this model becomes:

Here there exists a negative feedback loop leading to an equilibrium state:

• {Demand for Road Travel; Road journey times; Demand for railways; Supply of
Railways; Demand for road travel}

• { +, +, +, −}

The alternative modelling approach, using travel cost, also gives a model with a
negative feedback loop

• {Supply of railways; Rail Journey costs; Demand for Railways}
• {+, −, +}

Here, paradoxically, the increased demand for rail travel can act to cause
developments in the rail system and thus act to reduce demand!

Further development leads to the more comprehensive model given by:

Fig. 1.15 Modelling road building

18 V. Lowndes et al.

Fig. 1.16 a Modelling the effects of roads on rail demand b–d modelling the effects of roads on
rail

1 Model Building 19

Fig. 1.16 (continued)

20 V. Lowndes et al.

A negative feedback loop with respect to rail travel gives an overall goal-seeking
model for both road and rail travel.

{Desirability of cars;

Demand for roads;

Road journey time;

Supply of roads;

Demand for rail;

Carriage loading;

Desirability of trains;

Desirability of cars}

Changes {+, +, +, −, +, −, −} A negative loop

1.2 Constructing Models from “Big Data”

1.2.1 Introduction

Data science is a relatively new research field consisting of well-established
methods and approaches to address the need to identify actionable knowledge from
the continuous creation of data. In particular, the use of the existing techniques has
led the discovery of new research directions, with groundbreaking results.

There are a variety of mathematical and statistical tools to identify and discover
knowledge, which can be used to facilitate the decision-making process. In par-
ticular, these include Bayesian and dependency networks, which provide modelling
tools to determine how mutual relationships between concepts influence the
knowledge captured by such networks. In the rest of this section, we will discuss
their main theoretical properties, which be fully exploited in the two case studies
discussed in part 2.

Bayesian and Dependency Networks
Bayesian networks (BNs) are graphical models, which capture independence
relationships among random variables, based on a basic law of probability called
Bayes’ rule [1]. They offer an efficient modelling framework in risk and decision
analysis with a variety of applications, such as safety assessment of nuclear power
plants, risk evaluation of a supply chain and medical decision support tools [2].
More specifically, BNs are defined by nodes, representing objects based on a level
of uncertainty, also called random variables, which are connected by edges indi-
cating a dependence relationship between them. Furthermore, Bayesian networks
also contain quantitative information, which represents a factorisation of the joint
probability distribution of all the variables in the network.

1 Model Building 21

Suppose, for example, we want to explore the chance of finding wet grass on any
given day. In particular, assume the following

1. A cloudy sky is associated with a higher chance of rain,
2. A cloudy sky affects whether the sprinkler system is triggered and
3. Both the sprinkler system and rain have an effect on the chance of finding wet

grass.

In this particular example, no probabilistic information is given. The resulting
BN is depicted in the following Fig. 1.17.

It is clear that such graphical representation provides an intuitive way to depict
the dependence relations between variables.

In the definition of BNs, the most complex statements do not refer to depen-
dencies, but rather about independences (i.e. absence of edges in the graph), as it is
always possible to determine dependence through the conditional probability tables
when an edge is present, even though the reverse is not true.

The definition of a BN can be carried out either through explicit data analysis, or
via literature review and expert elicitation. These are typically manually intensive
tasks depending on the size and complexity of the data sets analysed, especially
when they exhibit unstructured components. There is extensive research on the
extraction of BNs from text corpora. For example, in [3], the authors suggest a
domain-independent method for acquiring text causal knowledge to generate
Bayesian networks. Their approach is based on a classification of lexico-syntactic
patterns which refer to causation, where an automatic detection of causal patterns
and semi-validation of their ambiguity is carried out. Similarly, in Kuipers [4], a
supervised method for the detection and extraction of causal relations from open
domain texts is presented. The authors provide an in-depth analysis of verbs, cue
phrases that encode causality and, to a lesser extent, influence.

Dependency networks (DNs) have also been attracting increasing attention
within several research fields. These types of networks are similar to BNs, which,
however, allow cycles (that is a path starting and ending at the same node) enabling
a more computationally efficient approach and making them more applicable
especially when large and unstructured data sets are considered [5].

Fig. 1.17 Representing a
Baysian network

22 V. Lowndes et al.

Text Mining

Text mining (TM) consists of computational techniques to achieve human language
understanding via linguistic and semantic analysis. Such methods have been shown
to be crucially important in the way we can represent knowledge described by the
interactions between computers and human (natural) languages [6].

Language is based on grammatical and syntactic rules which can be captured by
patterns or, in other words, templates that sentences with similar structure follow.
Such language formats enable the construction of complex sentences, as well as
framing of the complexity of language.

In order to understand the properties of human language, a variety of methods
have been developed to address the complexity and challenges posed by it. These,
broadly speaking, fall into three categories: symbolic, statistical and connectionist.

In the symbolic approach, linguistic properties are mapped onto precise and
well-understood knowledge representation [7]. Once the linguistic rules have been
defined, the hierarchical structure of the semantic concepts within the corre-
sponding textual fragments is identified. Subsequently, the properties associated
with the different textual components are investigated to provide an insight into
their structure. Symbolic methods have been widely exploited in a variety of
research contexts such as information extraction, text categorisation, ambiguity
resolution, explanation-based learning, decision trees and conceptual clustering.

On the other hand, the statistical properties from observable data and the
investigation of large documents can be used to develop generalised models based
on smaller knowledge data sets and significant linguistic or world knowledge [8].
They have many applications such as parsing rule analysis, statistical grammar
learning and statistical machine translation, to name but a few.

The connectionist approach integrates statistical learning with representation
techniques to allow an integration of statistical tools with logic-based rule manip-
ulation, generating a network of interconnected simple processing units (often
associated with concepts) with edge weights representing knowledge. This typically
creates a rich system with an interesting dynamical global behaviour induced by the
semantic propagation rules. In Troussov et al. [9], a connectionist distributed model
is investigated pointing towards a dynamical generalisation of syntactic parsing,
limited domain translation tasks and associative retrieval.

General Architecture and Various Components of Text Mining

A grammar is a set of well-defined rules which govern how words and sentences are
combined according to a specific syntax. A grammar does not describe themeaning of
a set of words or sentences, as it only addresses the construction of sentences
according to the syntactic structure of words. Semantics, on the other hand, refers to
the meaning of a sentence [8]. In computational linguistics, semantic analysis is a
muchmore complex task since its aim is the full understanding of the meaning of text.

Any text mining process consists of a number of steps to identify and classify
sentences according to specific patterns, in order to analyse a textual source.
Broadly speaking, in order to achieve this, we need to follow these general steps:

1 Model Building 23

1. Textual data sources are divided into small components, usually words, which
can be subsequently syntactically analysed.

2. These, in turn, create tokenised text fragments, which are analysed according to
the rules of a formal grammar. The output is a parsing tree—in other words, an
ordered tree representing the hierarchical syntactic structure of a sentence.

3. Once we have isolated the syntactic structure of a text fragment, we are in the
position of extracting relevant information, such as specific relationships and
sentiment analysis.

More specifically, the main components of text mining are as follows:

Lexical Analysis

Lexical analysis is the process which analyses the basic components of texts and
groups into tokens [10]. In other words, lexical analysis techniques identify the
syntactic role of individual words which are assigned to a single part-of-speech tag.

Lexical analysis may require a lexicon which is usually determined by the
particular approach used in a suitably defined TM system, as well as the nature and
extent of information inherent to the lexicon. Mainly, lexicons may vary in terms of
their complexity as they can contain information on the semantic information
related to a word. More research is currently being carried out to provide better
tools in analysing words in semantic contexts [see 11 for an overview].

Part-of-Speech Tagging.

Part-of speech tagging (POS) allows to attach a specific syntactic definition
(noun, verb, adjective, etc.) to the words which are part of a sentence. This task
tends to be relatively accurate, as it relies on a set of rules which are usually
unambiguously defined. Often, POS tasks are carried out via the statistical prop-
erties of the different syntactic roles of tokens [8]. Consider the word book.
Depending on the sentence it belongs to, it might be a verb or a noun. Consider “a
book on chair” and “I will book a table at the restaurant”. The presence of specific
keywords, such as “a” in the former, and “I will” in the latter, provides important
clues as to the syntactic role that book has in the two sentences. One of the main
reasons for the overall accuracy of POS tagging is that a semantic analysis is often
not required, as it is based on the position of the corresponding token.

Parsing

Once the POS tagging of a sentence has identified the syntactic roles of each token,
each sentence can be considered in its entirety. The main difference with POS
tagging is the fact that parsing enables the identification of the hierarchical syntactic
structure of a sentence. Consider, for example, Fig. 1.18b depicts the parsing tree
structure of the sentence “This is a parsing tree”. Note that each word is associated
with a POS symbol which corresponds to its syntactic role [8].

24 V. Lowndes et al.

Named Entity Recognition

An important aspect of text analysis is the ability to determine the type of the
entities, which refer to words, or collections of them. For example, determining
whether a noun refers to a person, an organisation or geographical location (to name
but a few) substantially contributes to the extraction of accurate information and
provides the tools for a deeper understanding. For example, the analysis of “dogs
and cats are the most popular pets in the UK” would identify that dogs and cats are
animals and the UK is a country. Clearly, there are many instances where this
depends on the context. Think of “India lives in Manchester”. Anyone reading such
sentence would interpret, and rightly so, India as the name of a specific person.
However, a computer might not be able to do so and determine that it is a country.
We know that a country would not be able to “live” in a city. It is just common
sense. Unfortunately, computers do not have the ability to discern what common
sense is. They might be able to guess according to the structure of a sentence, or the
presence of specific keywords. This is a very effective example of semantic
understanding, which comes natural to humans, but a very complex task to
computers.

Coreference Resolution

Coreference resolution is the process of determining which text components refer to
the same objects. For example, relation resolution attempts to identify which
individual entities or objects a relation refers to. Consider the following sentence,

Text
Lexical

Analysis Tokenisation Syntactic
Analysis

Parse Tree

Text analysis, including:

- Relation Extraction
- Sentiment Analysis
- Concept extraction
- Probabilistic knowledge

extraction

(a)

(b)

Fig. 1.18 a Text missing, b the parsing tree of the sentence “This is parsing tree”

1 Model Building 25

“We are looking for a fault in the system”. Here, we are not looking for any fault in
the system, rather for a specific instance.

Relation Extraction

The identification of relations between different entities within a text provides
useful information that can be used to determine quantitative and qualitative
information linking such entities. For example, consider the sentence “smoking
potentially causes lung cancer”. Here, the act of smoking is linked to lung cancer by
a causal relationship. This is clearly a crucial step in building BNs, even though
such analysis requires a deep understanding of the associated textual information.

Concept Extraction

A crucial task in information extraction from textual sources is concept identifi-
cation, which is typically defined as a one or more keywords, or textual definitions.
The two main approaches in this task are supervised and unsupervised concept
identification, depending on the level of human intervention in the system.

In particular, formal concept analysis (FCA) provides a tool to facilitate the
identification of key concepts relevant to a specific topical area [12]. Broadly
speaking, unstructured textual data sets are analysed to isolate clusters of terms and
definitions referring to the same concepts, which can be grouped together. One of
the main properties of FCA allows user interaction, so that user(s) can actively
operate the system to determine the most appropriate parameters and starting points
of such classification.

Sentiment Analysis
This instance of information extraction from text focuses on the identification of
trends of moods or opinions associated with textual sources.

Broadly speaking, its aim is to determine the polarity of a given text which
identifies whether the opinion expressed is positive, negative or neutral. This also
includes emotional states, such as anger, sadness and happiness, as well as intent,
such as planning and researching. Sentiment analysis can be an important tool is
obtaining an insight into relationships among concepts in BNs, since it can support
the process of relation discovery. In fact, not all the information contained in text is
unambiguously described. Consider, for example, the sentence “I am very surprised
by your irrational fear that spiders can kill you”. Here, rather than drawing a definite
conclusion that spiders are linked with death, a sceptical assessment of such rela-
tionship is noted.

Topic Recognition

This procedure attempts to identify the general topic of a text by grouping a set of
keywords which appear frequently in the documents. These are then associated with
one of more concepts to determine the general concept trend.

26 V. Lowndes et al.

Semantic Analysis

Semantic analysis determines the possible meanings of a sentence by investigating
the interactions among word-level meanings in the sentence. This approach can also
incorporate the semantic disambiguation of words with multiple senses. Semantic
disambiguation allows the selection of the sense of ambiguous words, so that they
can be included in the appropriate semantic representation of the sentence [13]. This
is particularly relevant in any information retrieval and processing system based on
ambiguous and partially known knowledge. Disambiguation techniques usually
require specific information on the frequency with which each sense occurs in a
particular document, as well as on the analysis of the local context, and the use of
pragmatic knowledge of the domain of the document. An interesting aspect of this
research field is concerned with the purposeful use of language where the utilisation
of a context within the text is exploited to explain how extra meaning is part of
some documents without actually being constructed in them. Clearly, this is still
being developed as it requires an incredibly wide knowledge dealing with inten-
tions, plans and objectives [8]. Extremely useful applications in TM can be seen in
inference techniques where extra information derived from a wider context suc-
cessfully addresses statistical properties [4].

1.2.2 The Automatic Extraction of Bayesian
Networks from Text

The mathematical constraints posed by Bayes’ rule and general probability theory
create a significant challenge. As a consequence, the identification of suitable
Bayesian networks is often carried out manually usually by a modeller. However,
this can be extremely time-consuming and based on only specific, often limited,
sources depending on the modeller’s expertise. As a consequence, the ability to
automatically extract the relevant data would potentially add enormous value in
terms of increased efficiency and scalability to the process of defining and popu-
lating BNs. However, extracting both explicit and implicit information, and making
sense of partial or contradictory data, can be a complex challenge.

Dependence Relation Extraction from Text

As discussed above, nodes in BNs, which are connected by edges, indicate that the
corresponding random variables are dependent. Such dependence relations must be
therefore extracted from textual information, when present. The conditional
dependencies in a Bayesian network are often based on known statistical and
computational techniques, which are based on a combination of methods from
graph theory, probability theory, computer science and statistics. Linguistically
speaking, a dependence relation contains specific keywords which describe that two
concepts are related to a certain degree. Consider the sentence “lung cancer is more
common among smokers”. There is little doubt that we would interpret this as clear

1 Model Building 27

relation linking lung cancer with smoking. However, there is not a precise linguistic
definition to determine a relationship between two concepts from text, due to its
content dependence. When a full automation of the process of textual information
extraction is carried out, a clear and unambiguous set of rules ensures a reasonably
good level of accuracy. As a consequence, it is usually advisable to consider causal
relationships, which are a subgroup of dependence relationships [1]. In fact, they
are likely to convey a much stronger statement, and they are more easily identified
due to a more limited set of linguistic rules that characterise them. Going back to the
above example, saying that smoking causes lung cancer assumes a direct link
between them. We cannot arguably say the contrary, but there are other cases where
there is a less marked cut-off. If we are only looking for causal relationships when
populating a BN, we might miss out several dependence relations. However,
accuracy is much more preferable. The integration of an automatic BN extraction
with human intervention usually addresses such issue.

Variables’ Identification

Mapping a representative to a specific variable is closely linked to the task of
relation extraction. However, this is partially a modelling choice by the user based
on the set of relevant concepts. Consider again the sentence “smoking causes lung
cancer”. If this was rephrased as “smokers are more likely to develop lung cancer”,
we would need to ensure that “smoking” and “smokers” are identified as a single
variable associated with the act of smoking. In a variety of cases, this can be
addressed by considering synonymy. However, such as in our example, it might
also happen that they refer to the same concept, rather than being the same concept.
Formal concept analysis (FCA) is one of the computational techniques that can be
successfully applied in this particular context [8].

Probability Information Extraction.

An essential part in the extraction and subsequent creation of BNs involves the
processing of the textual sources to determine probability of variables.

Sentences may capture some probabilistic relationships between concepts even
though very few of them might provide conclusive and unambiguous information,
which can be utilised to reason. In fact, the combination of qualitative and quan-
titative data creates a variety of challenges, which need to be addressed to produce
relevant and accurate information.

The identification, assessment and ranking of specific keywords (and their
combinations), when describing probability, can provide a useful insight into the
structure of the corresponding relationships. However, Big Data research focuses on
the interrelations of diverse and multidisciplinary topics, resulting in the intrinsic
difficulty in finding a common ground in terms of the linguistic features that specific
probabilistic description should have.

In [2], an automated method to assess the influence among concepts in
unstructured sets is introduced. Despite not being directly related to BNs, it shows
potential in the extraction of the mutual co-occurrence properties between nodes.

28 V. Lowndes et al.

Aggregation of Structural and Probabilistic Data.

This step integrates the steps discussed above, to construct fragments of BNs via
user’s interaction.

Figure 1.19 depicts this process in a sequential set of steps. However, the
repeated implementation of such steps in a series of loops might be required to
obtain meaningful BN fragments.

General Architecture

The general architecture of the extraction of fragments of BNs from text corpora
consists of the following components:

1. Existing and predefined information on specific topics would be incorporated
into a database, or Knowledge Database (KDB) consisting of

(a) Historical data from structured DBs,
(b) Bayesian networks built on existing data and
(c) Data entered by modeller(s) and manually validated.

The KDB is an important component since it is based on information which is
considered “reliable”. In a variety of cases, the KDB is maintained by modelling
experts to ensure that the data are regularly updated to prevent any inconsistency
and ambiguity.

2. The user would interact with the system by specifying further textual sources
and structured data sets.

3. The extraction and data aggregation stage consists of the identification of the
appropriate textual data associated with such unstructured data sets, as well as
the removal of any data duplication. An essential part of this process is to
address any qualitative and quantitative inconsistency. As discussed above, BNs
have strict mathematical constraints which make any fully unsupervised auto-
matic extraction prone to inaccuracies and inconsistencies. As a consequence,
human intervention is often advisable to minimise any such error.

Fig. 1.19 Architecture of Bayesian network extraction from textual information

1 Model Building 29

4. Finally, the BN is visualised, providing

(a) Relevant information on the structure of the BN,
(b) Description of the different parameters and
(c) Any required action in order to address any inconsistency which could not

be resolved automatically. This is typically an interactive step, where the
result can be updated by the user as well as focused on a specific part of the
BN (Fig. 1.20).

1.3 The Blackboard Architecture

1.3.1 Introduction

The blackboard architecture represents a flexible, symbolic artificial intelligence
(AI) method for the cooperative solution of complex problems. Systems that use
this architecture have been in existence since the 1970s. In the beginning, they were
used mainly for solving signal-processing problems, for example speech recogni-
tion with Hearsay-II (see [14]) and interpretation of sonar with HASP (see [15]).
Following Hearsay-II and HASP, the blackboard architecture became very popular
and was associated with many diverse application areas including mission control
systems for satellites, military object tracking and detection, printed text recognition
for scanners, fault diagnosis, assembly arrangement, and planning and scheduling,
to name just a few. In the early nineties, the architecture endured a period of relative

Fig. 1.20 General architecture of Bayesian networks for crime detection as discussed in Trovati
[5]

30 V. Lowndes et al.

obscurity, which has mostly been attributed to a lack of formalism, but since the
turn of the century it has enjoyed something of a renaissance, in some cases as a
hybrid system coupled with a Bayesian Belief Network, with applications such as
robotic mapping (see [16]) and logistics planning for the US military (see [17]). The
blackboard architecture has also been adopted by the computer game AI community
for solving decision-making and agent coordination problems (see [18]), although
there is some controversy about whether game AI blackboard systems are actually
“true” blackboard systems.

Blackboard systems (BBSs) have many properties that make them suitable for
solving complex problems that require progression through different stages (with
many paths to those stages) to reach the final solution [19]. These include problems
that can be viewed as a search for the “best” solution given a set of constraints [20].
BBSs provide a flexible method for incremental reasoning about a problem and its
solution, building up the solution in step-by-step manner by opportunistically
examining different paths at different levels of abstraction. This means that the
system’s exploratory properties are high compared with systems or algorithms that
used fixed, predetermined methods such as forward or backward chaining
rule-based systems. BBSs can also deal with large quantities of diverse, uncertain,
incomplete or inaccurate data [21] and can integrate different kinds of knowledge in
order to solve a given problem. This makes them highly useful for solving problems
with limited and imperfect input data, problems that require the combination of
many separate diagnostic components, dynamic decision-making problems and
problems involving systems of systems.

1.3.2 Architecture

The original blackboard architecture was developed in the early 1970s with the
Hearsay-II (HSII) speech recognition project [14], but has evolved to some extent
since then (literature review for further details). The aim of the HSII project was to
build a system that could manage complex and ill-defined problems without the
requirement for a formal model, so that enhancements could easily be made [19].
The deliberate flexibility of the design has led to a number of different interpre-
tations of BBS terminology and definitions. This section aims to clarify its core
definition and design and also to dispel some of the myths surrounding BBSs. First,
the analogy to a set of experts gathered around a blackboard is explained, and then,
the key components of the BBS are listed and described. The essential properties of
the BBS are then reported, either as advantages or disadvantages of the architecture.
This section also includes a review of the main problem types that are suited to
solution with BBSs, provides some definitions and briefly discusses the history and
availability of toolkits for frameworks for BBSs.

1 Model Building 31

1.3.2.1 Analogy

The BBS architecture is based on the concept of a group of experts using a physical
blackboard as a shared workspace for constructing a solution to a problem. The first
step is to write a description of the problem and the initial data on the blackboard.
Each expert waits until an opportunity arises to apply their particular knowledge to
the problem, at which point they may contribute by writing information on the
blackboard; this information may take many forms including a partial solution, an
informed suggestion about which solution paths or avenues of exploration to select
next, an alternative solution, a candidate complete solution, an agreement to a
candidate solution or partial solution, or a disagreement about a candidate solution
or partial solution. The aim of each contribution is to provide insights that will
enable the experts to progress closer to a complete solution that is optimal in some
way. Thus, the contributions continue until an agreed solution is reached.

An important consideration is managing the flow of the problem-solving, i.e.
deciding who takes the chalk next in the event that more than one expert identifies
an opportunity to contribute; they cannot interact with the blackboard simultane-
ously as this would cause confusion. The intuitive way to impose control is to
nominate an independent arbiter, who decides which expert should contribute next.
However, a consistent basis for making that decision is still needed. The arbiter
needs to be able to assess the benefits of the potential contributions in some way.
One method of proceeding is to ask all of the candidate experts to estimate the value
of their contribution, selecting the one who makes the highest estimate.

The scenario described above has some important properties. First, the experts
act independently and are self-contained. Their approach to solving the problem
and the knowledge they possess about it (in terms of their prior experience, the level
they have reached and the focus of their expertise) can differ vastly, which means
that very diverse contributions can be made. Second, the problem is solved in an
opportunistic fashion, i.e. the flow of expert contributions is not predetermined or
prescriptive. They respond when they have something worthwhile to contribute
based on their perception of previous contributions. This is also an event-based
method of problem-solving. The event that triggers an expert to ask to contribute is
the writing of a partial solution (or other information) that allows that expert to
apply his or her knowledge to the problem.

1.3.2.2 Components

The blackboard AI architecture is analogous to the scenario described above. It
consists of three main components:

• The Knowledge Sources (analogous to the experts in the human system)
• The Control Component (analogous to the arbiter in the human system)
• The Blackboard (analogous to the physical blackboard in the human system)

32 V. Lowndes et al.

Each of these components is now described in detail.

Knowledge Sources
In the AI system, the contributions to the problem solution are made by a set of
“artificial experts”, i.e. a set of diverse problem-solving algorithms known as
knowledge sources (KSs). As in the analogy, these programs are self-contained,
operate completely independently from one another and may have different
strengths and weaknesses to bring to the problem. Thus, within the system of
systems, each KS may be viewed as a black box with its implementation details
hidden from the others. A given KS may reason by any means, for example by
top-down, bottom-up, goal-driven, data-driven or opportunistic methods [22].
However, each KS needs to be able to understand the information that is con-
tributed by the others and also the current state of the problem-solving. Thus, the
BBS requires a common information representation that is understood by all KSs.
For example, a particular blackboard application may have one KS based on an
artificial neural network (ANN) design, one that uses a forward-chaining production
system, one that uses fuzzy logic reasoning and one that implements Dempster–
Shafer models. The production system KS does not need to understand how the
ANN works, but it needs to be able to interpret the contributions that are output by
the ANN as the KSs are required to work together to solve the problem, as in the
human analogy. If the KSs contribute different types of information, then each KS
must be able to understand each of these different types.

The KSs contribute information when they are able (they have something to
contribute) and when activated (they are selected for contribution). Each KS has a
precondition attached to it to determine whether it should be activated and an action
that describes what it will do when activated.

Control Component
In the AI system, the control component is analogous to the arbiter. It is inde-
pendent of the KSs and is tasked with selecting an estimate of the “best” candidate
KS to make a contribution to the problem solution. The mechanism for control in
BBSs has evolved considerably over time but was fairly simple in early systems;
each candidate KS was asked to determine an estimate of its cost (to system
resources) and value (expected usefulness of the contribution). The control com-
ponent merely combined these two metrics in some way to establish which KS
should contribute next.

Blackboard
The component in the AI system that is analogous to the physical blackboard in the
human system is also called a blackboard. However, in the AI system, this is a
shared memory location that acts as a repository for all of the information about the
problem including the input data, the problem statement and all of the
KS-contributed information (solution path suggestions, partial solutions, alternative
solutions, candidate complete solutions, final complete solutions, agreements and
disagreements). The information deposited on the blackboard is often referred to as

1 Model Building 33

a hypothesis. The blackboard component can be thought of as a global database for
KS hypotheses.

The blackboard serves as the main, in-direct communication mechanism
between the KSs; their outputs are recorded on it, and these are read from it and
understood by the other KSs. In addition, contributions made to the blackboard
(events) may trigger a response from one or more KSs.

Some BBSs have blackboards that are subdivided into some way to categorise
the hypotheses that they hold. The division may take the form of levels, sections,
areas, a hierarchy of levels (as in HSII) or some combination of these, and the
information in each part of the blackboard may also be sorted in some way, for
example alphabetically or by the time it was contributed. In addition, some systems
use a number of blackboards for categorisation. The reason for subdivision is to
enable information to be located efficiently. Early BBSs tend to retain all of the
information placed on them for the entire duration of the program life cycle.
Information that appears to be irrelevant is kept because its use often becomes
apparent later on during the program execution. However, some later systems
permit deletion of information that is regarded as “outdated”.

1.3.2.3 Similarities to Other Systems

There are some similarities between BBSs and symbolic rule-based
decision-making systems, also known as production systems (see [23]), for
example expert systems. Rule-based systems consist of a semantic reasoning sub-
system and a set of rules with preconditions and actions. The semantic reasoning
subsystem takes an action from the rule set based on its relationship to the input
data, i.e. a rule is fired when conditions in the input data match its precondition. The
rules in these systems are like the KSs in BBSs, which are triggered under certain
conditions, but rule-based systems differ in that the rules are interdependent, which
reduces the flexibility of these systems. As stated above, KSs operate independently
of one another and are thus highly flexible. BBSs were, in fact, first proposed as a
generalisation of rule-based systems with “rules” that could take any format and
trigger [18].

1.3.2.4 Algorithm

As in the analogy, the BBS algorithm proceeds in an event-based manner. Any
change to the blackboard is an event, and KSs can also cause events when they
write their hypothesis to the blackboard. Any event can result in a match with a KS
precondition. When its precondition is matched, a KS becomes a candidate for
contributing to the blackboard, i.e. executing its action, and it competes with other
KS candidates to execute that action on the blackboard.

34 V. Lowndes et al.

The control component is responsible for selecting one of the candidate KSs,
based upon the current state of the blackboard. In some systems, the control
component is also charged with managing the events that trigger the KSs, but its
chief function is to rank the candidates and select the most highly ranked. The
methods for rating and ranking the KSs differ between BBSs. Some of the different
approaches are discussed in the literature review.

1.3.2.5 Properties

This section is subdivided into the advantages and disadvantages of BBSs. The
main contenders in each category are summarised as follows. Advantages: BBSs
are flexible and general and solve problems incrementally in a step-by-step manner.
They are opportunistic in the way that they tackle the search space leading to more
sophisticated searches. They can also handle both a wide variety of data types and
imperfect data. Disadvantages: the methodology suffers from a lack of formalism.
In addition, the BBS architecture does not scale down to more simple problems and
scales poorly for large search spaces. Further details about each of these properties
are provided in the following subsections.

Advantages
BBSs have an important advantage over more traditional problem solvers that use
rules, for example production systems. Production systems are prescriptive; there is
a set of order for firing the rules, i.e. all reasoning is either forward or backward
chaining. In BBSs, the problem-solving is opportunistic in that the most appropriate
KS is selected, for example in speech recognition words that are understood well
can be used to limit the search for interpretations of poorly sensed words. In
addition, the solution is built incrementally in a step-by-step manner in response to
events on the blackboard; there is no predetermined prescription for the triggering
of KSs. KSs respond to events as and when they happen, and it is the interaction
between the KSs (via the blackboard) that determines the solution paths explored
and thus the final solution. The exploratory properties of the BBS search are
therefore high in comparison with rule-based systems, which results in a much more
sophisticated search of the solution space. In fact, BBSs show emergent properties
in that their behaviour is governed by the interactions between a number of inde-
pendent, interacting agents (the KSs) that follow relatively simple rules.

The BBS architecture is modular and is thus highly general and flexible when it
comes to solving knowledge-based problems. As the KSs are independent, they can
be adapted, added and removed from the system to improve its performance or to
adapt it to solve other problems. This is in contrast to rule-based systems, where, for
example, removal of a rule might affect the logic of the system leading to poor
performance.

The control component and the structure of the blackboard can be designed in
many different ways, permitting much freedom for the BBS application developer.
BBS applications can also be built incrementally because of the system flexibility.

1 Model Building 35

When designing, the application a developer may thus postpone decisions about,
for example, which KSs to include or what control strategy to employ, until the
system has reached an appropriate level of experimentation and testing. This is
especially important for novice developers, who are learning to build BBS
applications.

Another major advantage is the ability of BBSs to handle quite severe limitations
in input data and also to handle a wide variety of data types. They are capable of
dealing with ambiguity, incomplete data, uncertain and imprecise data and large
quantities of data. They can also work with and can integrate different data types,
which makes them particularly suited to the solution of problems that require the
combination of many separate diagnostic components, dynamic decision-making
problems, data fusion problems and problems involving systems of systems. They
can also work with data that arrives asynchronously and sporadically [17].

BBSs are also capable of following multiple lines of reasoning concurrently.
Once the relationships between hypotheses are established, each can be linked to
others that justify or clarify it.

Disadvantages
Unfortunately, the chief advantage of BBSs, flexibility, is directly related to their
main disadvantage in that it has led to a lack of formalism in defining them. This
drawback is often cited as the major reason for their abandonment following the
“AI Winter” (around 1990), where more formal frameworks were generally adopted
for dynamic decision-making. The dismissal of less formal methods has had an
impact on the perception of BBSs and their place in AI. Notably, BBSs receive only
three sentences in Russel and Norvig [24], which is widely regarded as the leading
textbook on AI, and in the latest edition [25], there is no mention of them. BBSs
were recast as Bayesian Blackboard Systems (BBBSs) in response to this drawback
(see [26]).

BBSs have traditionally been used for solving problems that are complex and
ill-defined. Erman has suggested that the advantages of BBSs do not scale down to
simpler problems [19]. Thus, unless a problem is sufficiently complex to warrant
use of a BBS, then it is best to use a simpler architecture. A simpler architecture is
also favourable when dynamic decisions do not need to be made or if an application
contains only one system. Another well-documented drawback is the difficulty in
estimating the value of potential KS actions. This has led to the design of more
sophisticated control components for BBSs and also, later, their integration with
Bayesian Belief Networks. These developments are discussed further in Sects. 3.3
and 3.4.1.

Although the early BBSs demonstrated that they worked well with complex,
dynamic decision problems, they ran into difficulties when the search space became
too large [20]. In fact, this was another reason for their decline in the 1990s, as the
processors of the time were not powerful enough to deal with the extra computation
burden.

36 V. Lowndes et al.

1.3.2.6 Definitions

The flexibility that is a key feature of the BBS design has led to some confusion
about its definition and some of the terminology surrounding it. This section aims to
clarify some of the misunderstandings.

First, the game AI community and some other sources tend to define BBSs as
merely a means for sharing common data among subsystems, i.e. the view is that
they can be thought of simply as a global database or communication medium. In
the seventies, eighties and nineties, this view was very much frowned upon; for
example, Corkill states that a system with a global database also requires a set of
KSs and a control component to be classed as a BBS [19]. However, as BBSs are
now widely used in game development, this definition has become somewhat
acceptable. Tuple spaces, a form of distributed shared memory, are also often
confused with BBSs (see [27]). They provide a repository for tuples that can be
accessed concurrently by, for example, different processors, but there is no
requirement for a set of KSs to work together to solve a problem. Tuple spaces are
said to use the blackboard metaphor (referred to in this chapter as the blackboard
analogy), but the metaphor is, in fact, only partially implemented.

Second, there has been a lack of agreement between authors regarding some of
the terminology. To counteract this, Engelmore has listed a set of definitions to
distinguish between blackboard systems, models, frameworks, applications, archi-
tectures and shells [28]. This chapter adopts most of the definitions in Engelmore
with some slight modifications. The terminology used in this chapter is summarised
as follows: the term architecture is used to refer to the general core design and set
of components of the blackboard AI method. The term method refers to the pro-
cedural details of the algorithm, which effectively represent a computational
interpretation of the analogy [29]. The term system refers to a particular design
implementation; for example, HSII is a blackboard system (BBS) with a specific
design for the control component. Application is used to refer to the use of a given
BBS to solve a particular problem; for example, HSII is an application when it is
used to solve the speech recognition problem. Framework is used to refer to
commercial or academic tools that enable a developer to build a BBS based on, for
example, supplied program methods and subroutines. Shells are synonymous with
systems in some sources (e.g. [30]), but the term is not used in this chapter.

1.3.2.7 Problem Types and Applications

This section examines the types of problems that are particularly suited to solution
using a BBS. The discussion in the section “Analogy” highlighted the advantages
of BBSs and linked the flexibility of allowed input data (e.g. incomplete and
uncertain data), the modular design and the incremental solution-building approach
with capacity for solving problems that require the combination of many separate
diagnostic components. Thus, case-based reasoning and dynamic decision-making
problems such as speech recognition, signal understanding, symbolic learning,

1 Model Building 37

robot vision, image understanding, structure identification, vehicle monitoring and
tracking, robot map creation, fault and disease diagnosis, planning and scheduling,
and information fusion problems are all suited to solution using a BBS. For
example, a robot building a map of an area may rely upon infrared and sonar sensor
data to attempt to trace an image of its environment. Both of these data types are
unreliable, and the environment may be changing dynamically. However, a BBS is
able to fuse the data from the two input types as it arrives, make sense of the
resulting information and reason about it.

In general, any problem with a number of different, interacting components that
requires the integration of diverse expertise is a candidate BBS problem. This
includes complex problems with very large search spaces and problems that suffer
from combinatorial explosion, as well as ill-defined and poorly structured problems,
for example problems where the goals are not clear or where the solution path from
the initial state to the goal state is highly irregular [21]. Cooperating agent systems
and distributed and parallel AI problems are also good candidates for solution with
a BBS. It is the integration of several different KSs that makes BBSs applicable to
the solution of a wider variety of problem types. Most other symbolic AI methods,
for example production systems, can only deal with knowledge about a single
problem domain. This tends to limit them to the solution of diagnosis-type prob-
lems, which are much simpler than interpretation-type problems such as speech
recognition. The reasons for this are discussed further in the section “Combination
with Bayesian Belief Networks”. Furthermore, many production systems are only
capable of working offline; they cannot handle the arrival of new information on the
fly, whereas BBSs have this capability.

It is also possible to solve problems with hard, real-time constraints (i.e. prob-
lems with deadlines for the solution) using the BBS model (see [31]), although
more sophisticated and predictable control strategies are needed to allow accurate
estimation of action durations, as the computation time and use of other resources
need to be considered. The system also needs a mechanism for assessing the
trade-offs between cost and effectiveness of actions. This requires it to be able to
predict resource usage [20].

The literature review provides examples of BBSs solving some of the problem
types listed in this subsection. It is presented in chronological order so that it also
acts as a guide to the “History and Evolution” of BBSs as well.

1.3.2.8 BBS Frameworks and Toolkits

There was very little software to support the development of BBSs for a long time
after their conception. Thus, initially, many researchers and application developers
had to build them from scratch [19]. Hearsay-III (see [32]) was developed in
response to the demand for a domain-independent framework upon which to build a
BBS. The framework, which sat on top of a relational database called AP3, was
used to develop many other systems including a BBS that was applied to a crisis
management task (see Hayes-Roth et al. [33]). Another early development toolkit

38 V. Lowndes et al.

was Corkill’s GBB framework (see [34], which was used to build a satellite control
system for the Canadian Space Agency. It was also used for logistics planning in
the US Army and for design engineering projects at Ford. Many toolkits are now
available commercially, for example BEST (Blackboard-based Expert System
Toolkit), designed by the Mihailo Pupin Institute. BEST, which is designed to run
in the Windows environment, is implemented using C++ and Arity Prolog and uses
the MEKON inference engine. Many open-source resources are also available to
assist developers; for example, the source code, a toolkit and a software develop-
ment kit for the computer game “No One Lives Forever 2” (NOLF2, developed by
Monolith Productions), which implemented a BBS architecture, are available (see
[35]).

1.3.3 Literature Review

BBSs began with the Hearsay-II (HSII) speech recognition system built at Carnegie
Mellon University in the early 1970s, although the notion of an “artificial black-
board” being used to share ideas to solve a problem was first conceived by Allen
Newell in 1962 (see [36]). The success of the Hearsay-II project inspired many
other researches to adopt the blackboard architecture for applications such as signal
interpretation, for example in the HASP/SIAP systems [15], and planning [37]. The
model became very popular throughout the 1980s for solving complex AI prob-
lems, both with academic researchers and also in industry where it was employed
by, for example, Cambridge Consultants Ltd. as the BLOBS system to implement
reasoning about time-dependent data [38] and as the MUSE system to solve
real-time problems [39]. Fujitsu in Japan also developed a BBS called ESHELL for
problem diagnosis in cranes, as well other applications (see [28]).

There has been considerable development of the architecture since the early
systems. Many of the initial enhancements concentrated upon modifying the control
component, and there was a general move away from data-based control towards
more goal-oriented control [20]. Other researchers focused on extending the
architecture to distributed applications using, for example, networks of BBSs [40].
Parallel BBSs were also investigated in [41] and by Bell Laboratories (see [42]).
BBSs became very scarce in the academic literature following the early 1990s. This
has largely been attributed to their lack of formalism, but may also be related to the
move of many of the early BBS proponents and researches from academia to
industry. BBSs made a reappearance in the literature from around the year 2000
when several researchers attempted to merge the architecture with Bayesian Belief
Networks (see, e.g. [16]) in an attempt to give it more rigour. Although academic
papers about BBSs remain fairly scarce, the architecture continues to be very
popular today in commerce and industry, both in the Bayesian hybrid format and in
formats that are very close to the original architecture. For example, they are widely
used by the computer gaming industry to control non-player character

1 Model Building 39

(NPC) behaviour (see [35]), are used by Adobe to recognise text and have been
used to manage satellite operation in Canada.

1.3.3.1 Prehistory

Allen Newell was the first person to use the term “blackboard” in AI literature [36].
In his 1962 paper about organisational problems in programs such as chess-playing
programs, he refers to a set of workers looking at the same blackboard, each capable
of reading what is on it, writing to it and judging when they have something
worthwhile to contribute to it. He likens the situation to Selfridge’s Pandemonium
[43], where a set of demons shriek with varying levels of loudness in response to
what they see. He goes on to discuss ways to organise the synthesis of complex
processes using hierarchically organised subroutines [44]. These early ideas
eventually led to the development of production systems with preconditions and
actions. Interestingly, the term “demons” is still used to describe the set of rules
with satisfied preconditions in production systems.

The term “blackboard” was mentioned again by Herbert Simon in 1966 in an
article that was later published in 1977 [45]. In this article, the information gen-
erated about problem-solving that was fixed in permanent memory was referred to
as the “blackboard”. The article also talks about the creation of subgoals and the use
of a hierarchy of goals and subgoals to achieve the original overarching goal. Simon
suggested his ideas about blackboards to Raj Reddy and Lee Erman, when they
were preparing for the Hearsay project, although many of the ideas that eventually
emerged from Hearsay were centred around the needs of the application, i.e. speech
understanding [44]. Thus, most of the core properties and components of black-
board systems, such as opportunistic problem-solving, different levels of abstraction
and KS collaboration, were derived directly from those needs.

1.3.3.2 The First BBS—Hearsay-II

This section looks in detail at the system that is widely regarded as the first BBS,
Hearsay-II (HSII). HSII was created for speech recognition, evolving directly from
Hearsay-I (HSI) (see [46]). HSI was a prototype blackboard system, but is probably
not cited as the first BBS because there was no dynamic control component and also
because it did not work well. In HSI, information sharing among the KSs was
carried out only at the word level, so it was difficult to add non-word KSs and
determine the value of their hypotheses [47]. KSs were also activated using a
hypothesise-and-test paradigm, rather than by a control component that dynami-
cally selected the most appropriate KS.

The most popular reference for HSII is [14], which describes the final developed
BBS. Earlier incarnations of HSII implemented a data-directed control approach,
where KSs were activated in response to events on the blackboard if their pre-
conditions were satisfied, and all KSs were checked for this. The data-driven

40 V. Lowndes et al.

approach tries to answer the question “what should the system do given the
available data?”

The final HSII system (described in [14]) has an agenda-based control mecha-
nism referred to as the scheduler. Rather than checking the preconditions of all the
KSs, which can be time-consuming, this incarnation of HSII categorises events into
types and the KSs provide lists of the event types they are interested in. The
scheduler then needs only to check the preconditions of KSs with event types that
match the given blackboard event. KSs with matching types and satisfied precon-
ditions are instantiated, are referred to as Knowledge Source Instantiations (KSIs)
and are placed on the agenda. Note that some sources refer to Knowledge Source
Activation Records (KSARs) rather than KSIs, but the terms are interchangeable.
Once instantiated, the scheduler has access to information about the action each KSI
would execute and the likely changes this would make to the blackboard. The
agenda thus consists of all the actions that the system could possibly take next. The
scheduler chooses the best KSI action based upon ratings of its contribution and
cost, i.e. there is an estimate of how much progress it is likely to make towards
solving the problem and another estimate of computational cost; the winning KS is
then removed from the agenda. The cycle repeats until a different event takes place
or there are no more KSIs on the agenda. The scheduler’s rating calculation is a
weighted linear function of several variables and is known as the expected value of
the KSI; the result of the calculation tells the system which particular line of
reasoning it is best to pursue; i.e., the hypothesis with the maximum expected value
is the one considered worthy of further investigation.

The blackboard in HSII consists of a hierarchy of levels; for example, there is
phrase level, a word level and a syllable level. There are also classes for each
hypothesis associated with each level, and the levels contain a set of dimensions so
that information can easily be retrieved when needed.

The KSs consist of acoustic, lexical, syntactical and semantic reasoning systems
[17]. These KSs examine the blackboard for information that they can work with,
for example hypotheses about adjacent words. When activated, a KSI posts a new
hypothesis onto the blackboard. For example, a KSI may use the rules of grammar
to generate words likely to appear next in a phrase or sentence, and another may
actually detect words directly from the source. When a KS posts a hypothesis,
which could be a partial solution, it then attempts to verify it in a test stage, where it
may be refined. The entire process represents a search for a hypothesis that explains
the data at each level of abstraction [17].

ARPA funded the speech recognition umbrella research program of which
Hearsay was a part, and at the end of the project, the various systems that emerged
were analysed and compared [29]. HARPY (see [48]), which employed a Markov
algorithm to perform its analysis, was deemed the best in terms of performance,
although it was not as flexible as HSII. Control was generally considered a problem
in HSII because the decisions were based upon the scheduler’s rating of the local
and immediate effects of KSI actions. Using such a limited expected value, function
can lead to poor performance because actions are not independent of one another;
indeed, they can have very complex interrelationships. A more accurate expected

1 Model Building 41

value would depend upon when the actions were executed and the next actions in
the sequence. Thus, in HSII, the global effects of actions and the long-term state of
the blackboard had to be abstracted by using models of the intermediate state to
predict them. This was a way around the problem, but what was really needed was a
method for linking potential actions and goals. HSII struggled because it was forced
to deal with uncertainty about whether a given hypothesis was part of a solution and
also with uncertainty about the expected values of actions. This led the HSII team
and other researchers to enhance the control mechanism in HSII; effective control is
especially important when uncertainty of the input data and problem-solving
knowledge is high [20].

1.3.3.3 Development of Control Mechanisms

The BBSs that followed HSII tended to adapt and improve the control component
in some way because of the flaws in the original design. In addition, HSII was only
capable of handling a single input phrase and could not deal with strict scheduling
deadlines. It thus became necessary to create more elaborate control mechanisms to
address these problems since multiple inputs could potentially overload the
blackboard and the agenda, and predictable control structures were needed for hard
time constraints to allow accurate estimation of action durations.

In general, there was a move away from implicit representation of goals, as in
HSII, towards more explicit representation of goals and their relationships to the
overarching goal, so that more efficient and sophisticated goal-oriented control
mechanisms could be implemented [20]. Thus, goal-directed reasoning, which can
be defined as reducing a problem from a set of abstract high-level goals into more
detailed low-level subgoals and planning, was introduced to BBSs. In contrast to
the data-driven approach, the goal-directed approach tries to answer the question
“what should the system do to solve the problem?” This is essentially achieved by
identifying sequences of actions capable of satisfying goals and subgoals. The
system terminates when all the goals have been achieved, and the resulting solution
is deemed acceptable in some way. There may be other solutions that meet the
constraints of the input data, but the system must be capable of selecting the “best”
one. Thus, many different search strategies can be employed, for example a focused
depth-first search that pursues a particular solution if it is preferred, or a more
exhaustive breadth-first search that pursues all potential solutions until a particular
one is favoured.

The control mechanisms that evolved from HSII began to use methods for
making more accurate predictions about the long-term effects and global value of an
action by representing goals in a more detailed and explicit way. They also began to
limit the rerating of KSIs by restricting the number on the agenda to those more
likely to be executed, increasing the efficiency of the algorithm. This subsection
chronicles the development of the control component from its agenda-based
approach in HSII through to the event-based approach seen in HASP/SIAP [15], the
hierarchical approach used in CRYSALIS [49, 50] and the goal-directed

42 V. Lowndes et al.

architecture of DVMT [40], which also included incremental planning. The BB1
[22] and RESUN [51] and Carver and Lesser [52] control mechanisms are also
discussed as further extensions to the goal-directed approach.

Event-based control in HASP/SIAP
The HASP/SIAP BBS (see [15, 53]) was built to interpret sonar signals and identify
the ships and submarines that produced them. The control architecture extended that
of HSII by specifying the KS preconditions as predefined event types, so that, in
effect, preconditions and event types were merged. Thus, as soon as an event
occurred, the activated KSs were immediately known making the control algorithm
much more efficient. The system used blackboard events, clock events (a time and a
set of events expected to occur at that time), expectation events (events expected to
occur in the future) and problem events (e.g. missing information). HASP also used
a limited hierarchical control structure to distinguish domain knowledge from
knowledge about its application; this was a precursor to the hierarchical control
structure used in CRYSALIS.

The main disadvantage of the modified control mechanism in HASP was that
opportunism in the system became more limited because the predefined event types
governed the KS sequence. In HSII, the KSs were triggered in an ad hoc fashion by
general events.

Hierarchical control in CRYSALIS
CRYSALIS (see Engelmore and Terry 1979; [49]) was used for protein crystal-
lography. Its control mechanism was built on a hierarchy of control knowledge
sources (CKSs) that were tasked with selecting the domain knowledge source
(DKS) to be executed. There were two levels of CKS, a single strategy CKS and a
set of task CKSs corresponding to the system subgoals. The strategy CKS selected a
sequence of task CKSs for execution, which in turn selected a sequence of DKSs
for execution. This technique eliminated the need for KS preconditions. The
strategy CKS looked at the current blackboard hypotheses and made a decision
about where to focus the problem-solving, i.e. determined which subgoals had the
maximum expected value and should be pursued next; it thus provided coarse focus
for the problem-solving. Its selection led to the sequential execution of a set of task
CKSs, which provided the fine focus. Each task CKS in the sequence examined the
conditions on the event list and selected appropriate DKSs for sequential execution.
As in the core BBS architecture, the DKSs examined the blackboard in order to add
or change hypotheses.

The opportunism was reduced in CRYSALIS as in HASP because there was no
method to change focus once a path forward was decided. In HSII, switching
between paths was simple. Moreover, HSII could pursue multiple lines of reasoning
concurrently without a need for backtracking to a previous one. In contrast,
CRYSALIS could follow only one line of reasoning at a time and thus had to
backtrack when required. However, this was not a major problem for CRYSALIS
because it was not designed to solve real-time problems. When researchers began to
require the solution of such problems using BBSs, a different approach to control
was necessary.

1 Model Building 43

Goal-directed control in DVMT
A goal-directed approach to control was first used for the application of distributed
vehicle monitoring in the DVMT BBS (see [40]). This system inserted a goal
blackboard and goal processor (for creating goals on the goal blackboard) into the
core BBS architecture. The goal processor employed three mapping functions:
hypothesis-to-goal, goal-to-subgoal and goal-to-KS. Data-directed goals were cre-
ated on the goal blackboard following the addition or amendment of a hypothesis
on the domain blackboard and use of the hypothesis-to-goal mapping.
Goal-directed subgoals were created on the goal blackboard after the creation of
others via the goal-to-subgoal mapping. KSs were selected to have their precon-
ditions checked in response to the insertion of a goal on the goal blackboard and use
of the goal-to-KS mapping. The resulting KSI ratings incorporated both a
data-directed and goal-directed element by using information about the super-goal,
the hypothesis that gave rise to the goal and the level of the blackboard. DVMT
succeeded in representing explicit goals and the global effects of actions by linking
local effects with higher-level goals.

Control in BB1
In 1986, Hayes-Roth published work on the application of a BBS to solving
arrangement-assembly problems [22]. The task was to arrange a set of given objects
such that a given set of constraints was satisfied. The BBS with
domain-independent knowledge about arrangement assembly was named
ACCORD, and several other BBSs were also created based on the same design but
with focus in a particular domain; for example, the PROTEAN system was tailored
to protein-structure analysis and the SIGHTPLAN system was used for designing
construction site layouts. Both of these systems made use of ACCORD as a KS.
Collectively, the set of assembly-arrangement BBSs were known BB1 systems.

BB1 modified the original HSII control architecture so that additional KSs were
used to build the control plan for the system’s behaviour. In BB1’s control archi-
tecture, the domain problem and the control problem were both solved using the
blackboard model. The architecture used CKSs as in CRYSALIS but also inserted a
control blackboard. It implemented an agenda-based approach to solving the control
problem as in HSII, but introduced a more complex control planning method where
the CKSs incrementally developed control plans on the control blackboard. The
overall architecture can thus be thought of as “blackboard within a blackboard”.
BB1 worked at three levels of abstraction: the strategy (long-term plans), the focus
(goal) and the heuristic (rating function). The long-term plans were reduced to
sequences of substrategies, which in turn were reduced to foci, a set of goals. Each
focus had an associated set of heuristics that were used to rate potential KSI actions
that matched the focus. These could be changed dynamically to suit different
problem-solving stages. KSIs from both the DKSs and CKSs were placed on the
same agenda and rated using the same function.

In addition to a more sophisticated control system, BB1 also introduced learning
KSs to modify facts in the KS knowledge bases and provided an additional
capability for explaining its actions. On each solution cycle, and in response to user

44 V. Lowndes et al.

requests, it was capable of providing information about how the selected actions
matched with the control plan.

The control architecture of BB1 did not compromise the opportunism of the
system as in CRYSALIS and HASP, i.e. actions and plans were both implemented
opportunistically. However, although BB1 succeeded in implementing the deter-
mination of high-level, long-term goals, it did not carry out goal decomposition.

Control in RESUN
Planning represents a search for the best solution and a search for the best way to
find it. The RESUN BBS (see [51, 52]) extended the HSII BBS by replacing the
agenda strategy and engineered complex rating functions with an incremental
control planner that simply carried out a number of less complex searches to make
the best decisions. It was also able to preserve the core BBS opportunistic properties
as it incorporated an additional refocusing mechanism that permitted a posteriori
changes to the planner focusing decisions. This enabled postponement of decisions
when there was insufficient information about a plan, or when two plans could not
be rated against each other without sufficient refinement. Refocusing was allowed at
both a data/event level and at a planning/hypothesis level so that the system could
switch focus in response to developing plans, new hypotheses and input data.

RESUN enabled better resolution of uncertainty in the hypotheses. It worked
with detailed information about the uncertainty of hypotheses and their alternatives
and used explicit statements about the sources of the uncertainty called source of
uncertainty statements (SOUs). The SOUs were attached to hypotheses so that goals
could be generated to eliminate the uncertainty.

RESUN was the most goal-directed control approach of all the BBSs discussed
in these subsections. Most of the others simply added goal-directed methods to the
agenda method. RESUN started with the goal-directed approach and used focusing
to allow data-directed control when necessary for opportunism.

1.3.3.4 More Recent Developments

As mentioned at the start of this section, following the “AI Winter” around 1990,
documentation of BBSs began to decline in the academic literature, largely due to a
lack of formal underpinnings for belief in and decisions about actions. This meant
that the systems could only be assessed empirically. Although they remained
popular in industry, academic researchers were beginning to prefer non-symbolic
(modern AI) approaches to problem-solving or more rigorous statistics-based
approaches. In addition, there was a perception that BBSs were large and unwieldy
requiring vast quantities of code to manage them and their complex data structures
[18]. Another problem was that the initial successes documented in the literature did
not scale well to larger dimensioned problems because the computers in use at the
time did not have the storage or processing power required. Most of the problems

1 Model Building 45

that had been solved with BBSs thus far were NP hard, which meant that solutions
were not tractable in the large limit at the time. For example, in the speech
recognition field, many researchers began to work with simple Hidden Markov
models as they could outperform BBSs like HSII. BBSs were thus recast as
Bayesian Blackboard Systems (BBBSs) in an attempt to define them in modern AI
concepts [26].

During the “AI Winter” some researchers, no doubt dismayed by the sudden
demise of BBSs, undertook work to begin to formalise BBSs. In 1991, Craig
provided a relatively complete mathematical specification for a sample interpreter
BBSs using the Z specification language [see 54]. Velthuijsen used a similar
approach in 1992 but applied the specification to a number of concurrent BBSs
using the CCS language [55]. Craig then extended his 1991 work to provide a
formal account of BBSs that showed that control information could be derived and
represented in temporal logic [56]. Following this, the interpretation problem was
formalised by Whitehair (see [57]) and his paper also analysed BBS systems when
applied to the problem. The paper demonstrated that it was possible to develop
models for opportunistic AI architectures like BBSs.

Combination with Bayesian Belief Networks
A BBBS closely resembles a traditional BBS, with KSs, a blackboard and a control
component. However, in a BBBS, the role of the KSs is to modify Bayesian Belief
Networks (BBNs) on the blackboard rather than direct hypotheses (see [17]). The
Bayesian component provides the hybrid architecture with a foundation in proba-
bility theory, validating the underlying reasoning, i.e. it allows probabilistic models
(that can reason about uncertainty) to be built rather than symbolic ones. In addi-
tion, the integration not only formalises the BBS but extends traditional
belief-based systems by allowing them to be built incrementally. However, Carver
states that some of the flexibility and opportunism is lost in interpretation BBBSs
that work in time slices as they have to compute exact probabilities for all inter-
pretations of new data with no ability to search selectively [26].

A belief network is a directed graph where the set of nodes represents propo-
sitions with associated probability distributions (PDs), some of which may be
conditional (dependent on the PDs of the nodes pointed to). Nodes with uncon-
ditional probabilities are termed evidence nodes. The conditional PDs are stored in
tables known as conditional probability tables (CPTs).

One of the first attempts at integrating BBSs with BBNs was the AIID system
(Architecture for the Interpretation of Intelligence Data), which was developed for
information fusion in military scenarios (see [17]). The problem was to infer an
enemy unit’s strategy given military intelligence, and it required the system to be
able to cope with heterogeneous data (of varying precision and reliability) arriving
sporadically from many different sources. Thus, it was necessary to be able to
understand the meaning of data when it arrived. This is not possible using a simple
data-driven approach as the search space is too large. A method for reasoning about
uncertainty was also needed. Traditional BBSs such as HSII dealt with uncertainty

46 V. Lowndes et al.

implicitly and heuristically via the scheduler rating function. However, in AIID,
each hypothesis was directly associated with a probabilistic uncertainty.

In AIID, the data corresponds to evidence with conditional probability infor-
mation, and the belief network is dynamically created and grown as data are
received and processed. The network consists of nodes that have a type and set of
arguments that identify it, with nodes being associated with hypotheses, previous
observations or background knowledge. In addition to preconditions and actions,
the KSs have a confidence property that embodies their usefulness. When KSIs are
activated, they alter the network in some way; for example, they may post new
nodes to the blackboard, remove existing nodes, add edges or change conditional
probabilities. The KSs themselves can also exist as belief networks that represent
small fragments of knowledge. When a node in the fragment matches a node on the
blackboard, i.e. their types and arguments match, a KS becomes a candidate KS and
may post its knowledge fragment on the blackboard. After being posted, a
knowledge fragment’s two conditional PDs (the one from the KS knowledge
fragment and the one on the blackboard) are combined. The evidence combination
methods vary between BBBSs. As in traditional BBSs, only one KS is run at a time
to maintain tractability, but the difference is that control is maintained by computing
the expected utility of an action, given the available evidence.

BBBSs arose from a need to improve existing methods for solving complex
interpretation problems (such as vehicle tracking, robot map making and speech
understanding) as well as a desire to formalise BBSs. These problems are inherently
much harder to solve than diagnosis problems as an interpretation requires that
instances of input data types are explained in terms of hypotheses about events that
might have given rise to them [26]. Moreover, there are multiple possible inter-
pretations for a given set of input data, as there are many different instances of each
type and many uncertainties because of data noise. The solution space can become
exponentially large for high-dimensioned problems. A system that is able to reason
about the validity of evidence for alternative hypotheses can thus make better
judgements regarding which solution path to follow. Diagnosis problems do not
share the same complexity as there is a single, fixed set of hypotheses, for example
possible faults in engine fault diagnosis. Furthermore, the relations between the data
and the hypotheses are known, and complete, static probability models are easily
constructed. Interpretation problems, on the other hand, lack a model for connecting
data instances with hypotheses. This phenomenon is known as the data association
problem (DAP). BBBNs that attempt to solve interpretation problems can thus only
work with estimates of conditional probabilities, and when performing evidence
propagation, the solutions can only approximate the optimal [26].

Other recent work
Culliton describes the hypothetical use of a BBS to coordinate intelligent units in a
combat computer game [58], referring to BBSs as “the perfect system to use”,
although he states that, initially, the complexity of the architecture prohibited its use
in game design because of limited time, resources and budgets. However, there is
documentation of the use of a BBS for coordinated behaviour in the game NOLF2,

1 Model Building 47

developed by Monolith Productions in 2002 (see [35]). He states that a BBS was
used to handle coordination with respect to the timing of behaviours, pathfinding
and tactics. For example, the architecture solved problems such as preventing
duplication and repetition of behaviour in agents. Contrary to the belief that BBSs
are “code-heavy”, Orkin stresses that use of a BBS allows a reduction in code
volume, is simple to implement and is flexible and maintainable. Furthermore, he
asserts that it simplifies the agent architecture, permits reuse and sharing and allows
complex reasoning to take place. This conflict of opinion may have arisen because
Orkin implemented a more simplified version of the classic BBS, whereas Culliton
was discussing the original, more complex architecture. Indeed, Dill reports that the
term “blackboard architecture” is used differently in game AI than in the academic
literature [59], often being used merely to describe shared memory space that AI
components can use to store knowledge. He cites line-of-site (LOS) checks,
path-planning checks and the coordination of AI components as common uses for
BBSs in game AI, emphasising that the latter may require the more complex, classic
use of BBSs, i.e. independent KSs posting partial solutions to a problem on the
blackboard rather than merely using it as shared memory space.

Millington and Funge on the subject of AI for games, reporting that this method
has been used extensively by game programmers as a mechanism for coordinating
the actions of several independent decision-makers [18]. Their description of BBSs
implies that many systems developed for games follow a more simplified form of
the more classical architecture as seen is HSII, rather than the modernised Bayesian
hybrid architecture. This makes sense as there is generally a less rigorous
requirement in game AI; the purpose behind it is to create believable behaviours
rather than to solve complex problems with large search spaces. Millington and
Funge cite a typical example use of BBSs in a computer game, ballistics planning,
where three different AI systems work with a blackboard to fire at enemy tanks.
There is a route planning subsystem, a target selection subsystem and a ballistics
calculation subsystem. Running each system sequentially is not efficient as the
game environment changes rapidly, and this approach does not allow information to
flow back in the opposite direction. There is a need for all of the AI subsystems to
communicate freely without having to set up individual communication channels.
The solution to this problem is to use the blackboard architecture. Suggested actions
are written to the blackboard by the subsystems where they are stored along with
agreement flags. Actions are only executed if there is full agreement between
relevant subsystems. For example, “fire at tank X” would have an agreement slot
for the ballistics subsystem. The ballistics subsystem could agree, disagree or even
remove the suggested action from the blackboard. It could also post a new sug-
gested action, for example “move into firing position for tank X”, leaving the
original proposition still on the blackboard, but deferring agreement until the cor-
rect position had been reached. This example strongly suggests the game AI def-
inition of BBSs, i.e. the shared data paradigm. Champandard also discusses the use
of BBSs for computer game behaviour coordination [60], citing their main
advantage in game AI as their modularity; as the various systems that need coor-
dinating are independent, they only interact by exchanging information on the

48 V. Lowndes et al.

blackboard. Champandard assets that this reduces the coupling between them,
making the coding structure much more straightforward. Another article that pro-
vides insight into the use of BBSs for game AI is David Mark’s account of an
interview with Damian Isla, a developer at the MIT Media Laboratory who worked
on games such as Halo 2, released in 2004 (see [61]). Mark reports that Isla views
BBSs as architectural constructs for decoupling information gathering and storage
from the decision-making process; multiple decision-making subsystems can work
with the same information simply by looking at the blackboard; for example, the
threat level of an enemy character can be calculated once and saved for all the
subsystems to work with. Isla also likened the blackboard to a unified interface for
all game data, storing the data in a contextually significant way so that relevant
subsystems know what it means. This is an allusion to the definition of BBSs in the
game AI sense of a shared data source for different decision-making components.

Aside from game AI, there have been other recent uses of BBSs. For example,
Khosravi and Kabir used a classic BBS integrated with offline ANN training for
optical character recognition (OCR) of typed text in the Farsi language [62]. In this
BBS, some of the KSs that were used were generated offline a priori as a training
exercise. These took the form of multilayer perceptrons (MLPs), a type of ANN.
Other KSs, mostly classifiers boosted by the MLP training, ran online. In addition,
some KSs were static and some were changed dynamically during run-time. The
control component used confidence values that were usually taken directly from the
classifier outputs to rate the value of potential actions on a scale 0 through 100. As
an example, one KS was a segmentation and recognition module with the task of
breaking words down into individual characters and then recognising them.
Another KS was a vocabulary “expert” containing 55,000 words. Its task was to
match recognised words with words in its database. If a recognised word did not
exist (e.g. because of misclassification of characters), then it would find the word
most similar to the recognised one. The system also used tools to help with the text
recognition, for example a spellchecker and a line detector. The system was capable
of recognising 10 popular Farsi fonts and was tested on 20 real-life documents
producing a recognition rate of about 97% at the word level and about 99% at the
character level.

Fox provided an interesting extension to BBBSs in 2012 by using a hierarchical
Bayesian Blackboard integrated with a Metropolis–Hastings algorithm and a BBN
for map building with a whiskered robot known as CrunchBot [16]. The system was
required to process very large quantities of sparse sensory information in order that
CrunchBot could recognise table-like objects (such as tables, chairs, desks) in its
environment, using only four whisker-like tactile sensors. The solution architecture
was composed of a hierarchical BBS that implemented hypothesis priming and
pruning heuristics integrated with a Metropolis–Hastings algorithm and a Monte
Carlo Markov chain (MCMC) sampling Bayesian network. The observations for
the MCMC were the position and orientation data (with respect to the contact
surfaces) from the whisker sensors. This information was fused with information
about the pose of the robot and hierarchical models relating to furniture objects (e.g.
the recognition of a table leg object infers the presence of a complete table object)

1 Model Building 49

in order to make inferences about the objects encountered and thus build the
map. Each time step was treated as independent inference problem.

The problem tackled was difficult as many incorrect hypotheses can arise when
sparse data are used, and there was often not enough information about the furniture
objects to resolve ambiguities. The authors previously tried to solve the same
mapping problem using particle filtering techniques, but this did not produce the
same level of success as the BBBN system.

1.3.4 Summary

BBSs have been used extensively for solving a wide variety of complex, uncertain,
real-time, dynamic and ill-defined problems, and over the many years since their
conception, they have produced some excellent results. Their problem-solving
power lies in their flexibility, modularity, incremental solution-building approach,
and their ability to handle imperfect data, large quantities of data and data arriving
sporadically and/or asynchronously. They have proved to be a very valuable tool in
domains that require complex, multidimensional searches, for example complex
scheduling and interpretation problems. Moreover, the optimal solution of such
problems remains an open research question, which means that there is ample scope
and opportunity for further research into BBSs, with many different potential design
choices for developers. Although the blackboard architecture is not as popular with
the academic community as it was in its early days, it remains an excellent vehicle
for interesting research projects with a lot to offer for academics, industry and the
game AI community. Symbolic methods may have declined, but the BBS, even in
its core incarnation, is a hybrid architecture capable of incorporating elements of
both modern and classic AI approaches. A recurrent theme throughout the BBS
literature is that the control of the system is at least as important as the domain
knowledge if the system is to be useful, effective and efficient.

References

1. Pearl J (1998) Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann Publishers Inc., San Francisco

2. Trovati M, Bessis N (2015) An influence assessment method based on co-occurrence for
topologically reduced sets. Soft Comput 20(5):2021–2030

3. Sanchez-Graillet O, Poesio M (2004) Acquiring from text. LREC
4. Kuipers BJ (1984) Causal reasoning in medicine: analysis of a protocol. Cogn Sci 8:363–385
5. Trovati M (2016) An overview of some theoretical topological aspects of big data, Big-Data

analytics and cloud computing, theory, algorithms and applications, computer communica-
tions and networks, Springer

6. Liddy ED (2001) A robust risk minimization based named entity recognition system. In:
Encyclopedia of library and information science. Marcel Decker, Inc., New York

50 V. Lowndes et al.

7. Laporte E (2005) Symbolic natural language processing. In: Lothaire (ed) Applied
combinatorics on words, pp 164–209

8. Manning CD, Schutze H (1999) Foundations of statistical natural language processing. MIT
Press, Cambridge

9. Troussov A, Levner E, Bogdan C, Judge J, Botvich D (2010) Spreading activation methods.
In: Dynamic and advanced data mining for progressing technological development:
innovations and systemic approaches, pp 136–167

10. Dale R, Moisl H, Somers HL (2000) Handbook of natural language processing. Marcel
Dekker, Inc., New York

11. Korhonen AYK (2006) A large subcategorisation lexicon for natural language processing
applications. In: Proceedings of LREC

12. Stumme G (1998) Efficient data mining based on formal concept analysis. Lecture Notes in
Computer. Springer, New York

13. Wilks Y, Stevenson M (1998) The grammar of sense: using part-of-speech tags as a first step
in semantic disambiguation. Nat Lang Eng 4:135–143

14. Erman LD, Hayes-Roth F, Lesser VR, Reddy DR (1980) The Hearsay-II speech-
understanding system: integrating knowledge to resolve uncertainty. ACM Comput Surv
12(2):213–253

15. Nii HP, Feigenbaum EA, Anton JJ, Rockmore AJ (1982) Signal-to-symbol transformation:
HASP/SIAP case study. AI Mag 3:23–35

16. Fox CW, Evans MH, Pearson MJ, Prescott TJ (2012) Towards hierarchical blackboard
mapping on a whiskered robot. Robot Auton Syst 60(11):1356–1366

17. Sutton C, Morrison C, Cohen PR, Moody J, Adibi J (2004) A Bayesian blackboard for
information fusion. In: Svensson P, Schubert J (eds) Proceedings of the seventh international
conference on information fusion, pp 1111–1116

18. Millington I, Funge J (2009) Artificial intelligence for games, 2nd edn. CRC Press, Boca
Raton, pp 459–466

19. Corkill DD (1991) Blackboard systems. AI Expert 6(9):40–47
20. Carver N, Lesser V (1994) Evolution of blackboard control architectures. Expert Syst Appl

7:1–30
21. Pang GK-H (2009) Blackboard architecture for intelligent control. In: Unbehauen H

(ed) Control systems, robotics and automation: and intelligent control systems, vol 17.
EOLSS, Oxford, pp 303–316

22. Hayes-Roth B, Johnson V, Garvey A, Hewett M (1986) Application of the BB1 blackboard
control architecture to arrangement-assembly tasks. Artif Intell 1(2):85–94

23. Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs
24. Russell S, Norvig P (1995) Artificial intelligence: a modern approach. Prentice-Hall, New

Jersey
25. Russell S, Norvig P (2016) Artificial intelligence: a modern approach, 3rd edn. Pearson,

Harlow
26. Carver N (1997) A revisionist view of blackboard systems, In: Proceedings of the 1997

midwest artificial intelligence and cognitive science society conference. The AAAI Press,
Dayton, Ohio

27. Gelenter D (1983) Generative communication in Linda. ACM Trans Program Lang Syst 7(1):
80–112

28. Engelmore RS, Morgan AJ, Nii HP (1988a) Introduction. In: Engelmore R, Morgan T
(eds) Blackboard systems. Addison-Wesley, Boston, pp 1–22

29. Craig ID (1995) Blackboard systems. Ablex Publishing Corporation, Norwood, NJ
30. Jones J, Millington M, Ross P (1986) A blackboard shell in PROLOG. In: Proceedings

ECAI-86, pp 428–436
31. Dodhiawala RT, Sridharam N, Pickering C (1989) A real-time blackboard architecture. In:

Jagannathan V, Dodhiawala R, Baum L (eds) Blackboard architectures and applications.
Academic Press Inc., San Diego

1 Model Building 51

32. Balzar R, Erman L, London P, Williams C (1980) HEARSAY-III: a domain-independent
framework for expert systems. In: Proceedings of the first annual conference on artificial
intelligence, pp 108–110

33. Hayes-Roth F, Waterman DA, Lenat DB (1983) Building expert systems. Addison-Wesley,
Reading

34. Corkill DD, Gallagher KQ, Murray KE (1986) GBB: a generic blackboard development
system. In: Proceedings of AAAI-86, pp 1008–1014

35. Orkin J (2003) Applying blackboard systems to first person shooters. [online] slidepayer.com.
Available at: web.media.mit.edu/*jorkin/utgameAI03-Orkin.ppt and http://slideplayer.com/
slide/6102412/. Accessed 16 Apr 2016

36. Newell A (1962) Some problems of the basic organization in problem-solving programs. In:
Yovits M, Jacobi G, Goldstein G (eds) Proceedings of the second conference of
self-organising systems, pp 393–423

37. Hayes-Roth B, Hayes-Roth F, Rosenschein S, Cammarata S (1979) Modelling planning as an
incremental, oppotunistic process. In: Proceedings IJCAI-79, pp 375–383

38. Zanconato (1988) BLOBS—an object-oriented blackboard system framework for reasoning
in time. In: Engelmore R, Morgan T (eds) Blackboard systems. Addison-Wesley. Reading,
pp 335–345

39. Reynolds D (1988) MUSE: A toolkit for embedded, real-time AI. In: Engelmore R, Morgan T
(eds) Blackboard systems. Addison-Wesley, Reading, pp 519–532

40. Lesser VR, Corkill DD (1983) The distributed vehicle monitoring testbed: a tool for
investigating distributed problem solving networks. AI Mag 4(3):15–33

41. Nii HP (1986b) CAGE and POLIGON: two frameworks for blackboard-based concurrent
problem solving. Technical Report KSL-86-41. Stanford University, Stanford

42. Ensor JR, Gabbe JD (1986) Transactional blackboards. Int J Artif Intell Eng 1(2):80–84
43. Selfridge O (1959) Pandemonium: a paradigm for learning. In: Proceedings of symposium on

the mechanisation of thought processes, pp 511–529
44. Nii HP (1986) Blackboard systems: the blackboard model of problem solving and the

evolution of blackboard architectures. AI Mag 7(2):38
45. Simon HA (1977) Scientific discovery and the psychology of problem solving. In: Models of

discovery, Reidel, Boston
46. Reddy DR, Erman LD, Neely RB (1973) A model and a system for machine recognition of

speech. IEEE Trans Audio Electro Acoust AU-21:229–238
47. Engelmore RS, Morgan AJ, Nii HP (1988) Hearsay-II. In: Engelmore R, Morgan T

(eds) Blackboard systems. Addison-Wesley, Reading, pp 25–29
48. Lowerre BT, Reddy R (1980) The HARPY speech understanding system. In: Lea W

(ed) Trends in speech recognition. Prentice-Hall, Englewood Cliffs
49. Terry A (1988) Using explicit strategic knowledge to control expert systems. In:

Engelmore R, Morgan T (eds) Blackboard systems. Addison-Wesley, Reading, pp 159–188
50. Englemore RS, Terry A (1979) Structure and function of the CRYSALIS system. In:

Proceedings of IJCAI-79, pp 250–256
51. Carver N (1990) Sophisticated control for interpretation: planning to resolve sources of

uncertainty. Ph.D. Thesis. University of Massachusetts, Computer and Information Science
Department, Amherst

52. Carver N, Lesser V (1990) Control for interpretation: planning to resolve sources of
uncertainty. Technical Report No. 90-53. University of Massachusetts, Computer and
Information Science Department, Amherst, MA

53. Feigenbaum EA, Nii HP (1978) Rule-based understanding of signals. In: Waterman D,
Hayes-Roth F (eds) Pattern-directed inference systems. Academic Press, New York

54. Craig ID (1991) Formal specification of advanced AI architectures. Ellis Horwood, Chichester
55. Velthuijsen H (1992) The nature and applicability of the blackboard architecture. Ph.

D. Thesis. Faculty of General Science, Limburg University, Maastricht
56. Craig ID (1993) Formal techniques in the development of blackboard systems. Int J Pattern

Recogn Artif Intell 7(2):197–219

52 V. Lowndes et al.

http://slideplayer.com/slide/6102412/
http://slideplayer.com/slide/6102412/

57. Whitehair R (1996) A framework for the analysis of sophisticated control. Ph. D. Thesis.
University of Massachusetts. Computer Science Department

58. Culliton P (2003) Implementing a blackboard-like system for squad-level combat AI Part I.
[online] GameDev.net. Available at: http://www.gamedev.net/page/resources/_/technical/
artificial-intelligence/implementing-a-blackboard-like-system-for-squad-r1931. Accessed 15
Sept 2016

59. Dill K (2014) Structural architecture—common tricks of the trade. In: Rabin S (ed) Game AI
PRO: collected wisdom of game AI professionals. CRC Press, Boca Raton

60. Champandard AJ (2007) Using a static blackboard to store world knowledge. [online]
aigamedev.com. Available at: http://aigamedev.com/open/article/static-blackboard/. Accessed
16 Apr 2016

61. Mark D (2010) Damián Isla Interview on Blackboard Arch. [online] intrinsicalgorithm.com.
Available at: http://intrinsicalgorithm.com/IAonAI/2010/02/damian-isla-interview-on-blackboard-
arch/. Accessed 19 Sept 2016

62. Khosravi H, Kabir E (2009) A blackboard approach towards an integrated Farsi OCR system.
IJDAR 12(1):21–32

1 Model Building 53

http://www.gamedev.net/page/resources/_/technical/artificial-intelligence/implementing-a-blackboard-like-system-for-squad-r1931
http://www.gamedev.net/page/resources/_/technical/artificial-intelligence/implementing-a-blackboard-like-system-for-squad-r1931
http://aigamedev.com/open/article/static-blackboard/
http://intrinsicalgorithm.com/IAonAI/2010/02/damian-isla-interview-on-blackboard-arch/
http://intrinsicalgorithm.com/IAonAI/2010/02/damian-isla-interview-on-blackboard-arch/

	1 Model Building
	1.1 Introduction to System Modelling
	1.1.1 Introducing Influence Diagrams
	1.1.1.1 Categorising Dependencies (Links) in a Model
	1.1.1.2 Categorising a Model

	1.1.2 Model Evaluation/Validation, Comparing the Model with Historic Data
	1.1.3 Example C: Developing Financial Models
	1.1.3.1 Effect of Investor Confidence on Financial Markets
	1.1.3.2 Example D2: Effect of Investor Confidence and Short Selling

	1.1.4 Population Modelling
	1.1.5 Transport Modelling

	1.2 Constructing Models from “Big Data”
	1.2.1 Introduction
	1.2.2 The Automatic Extraction of Bayesian Networks from Text

	1.3 The Blackboard Architecture
	1.3.1 Introduction
	1.3.2 Architecture
	1.3.2.1 Analogy
	1.3.2.2 Components
	1.3.2.3 Similarities to Other Systems
	1.3.2.4 Algorithm
	1.3.2.5 Properties
	1.3.2.6 Definitions
	1.3.2.7 Problem Types and Applications
	1.3.2.8 BBS Frameworks and Toolkits

	1.3.3 Literature Review
	1.3.3.1 Prehistory
	1.3.3.2 The First BBS—Hearsay-II
	1.3.3.3 Development of Control Mechanisms
	1.3.3.4 More Recent Developments

	1.3.4 Summary

	References

