
Simulation Foundations, Methods and Applications

Stuart Berry
Val Lowndes
Marcello Trovati Editors

Guide to
Computational
Modelling for
Decision Processes
Theory, Algorithms, Techniques and
Applications

Simulation Foundations, Methods
and Applications

Series editor

Louis G. Birta, University of Ottawa, Canada

Advisory Board

Roy E. Crosbie, California State University, Chico, USA
Tony Jakeman, Australian National University, Australia
Axel Lehmann, Universität der Bundeswehr München, Germany
Stewart Robinson, Loughborough University, UK
Andreas Tolk, Old Dominion University, USA
Bernard P. Zeigler, University of Arizona, USA

More information about this series at http://www.springer.com/series/10128

Stuart Berry • Val Lowndes
Marcello Trovati
Editors

Guide to Computational
Modelling for Decision
Processes
Theory, Algorithms, Techniques
and Applications

123

Editors
Stuart Berry
Department of Computing and Mathematics
College of Engineering and Technology
University of Derby
Derby
UK

Val Lowndes
University of Derby
Derby
UK

Marcello Trovati
University of Derby
Derby
UK

ISSN 2195-2817 ISSN 2195-2825 (electronic)
Simulation Foundations, Methods and Applications
ISBN 978-3-319-55416-7 ISBN 978-3-319-55417-4 (eBook)
DOI 10.1007/978-3-319-55417-4

Library of Congress Control Number: 2017934055

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Outline of Content

This book is organised into three sections, Part I introduces modelling techniques
and models used to represent application used later to evaluate solution processes
and procedures.

Part I: Introduction to Modelling and Model Evaluation.
This part introduces modelling methodologies and models to be used as starting

points to enable the derivation of efficient and effective solution techniques.
Part II: Case Studies.
This part presents a series of case studies to demonstrate how heuristic and

analytical approaches may be used to solve large complex problems.
A series of case studies are presented where models are constructed and then

analysed and evaluated to derive efficient and effective ways to produce good
solutions.

Within Part I:
Chapter 1: Model Building. This chapter introduces the modelling

methodologies:

Activity life cycles and problem analysis using activity life cycles.
Constructing models from “Big Data”.
Blackboard modelling.

Chapter 2: Introduction to Cellular Automata in Simulation. This chapter aims
to show how both these approaches can be used as modelling tools.

Introduction to cellular automata.
Cellular automata are introduced by way of Conway’s Game of Life and
applying agents.

v

Simulating the spread of an infection through a population.
Traffic modelling, investigating traffic flows.

Chapter 3: Introduction to Mathematical Programming. The aim in this chapter
is to demonstrate how a mathematical programming model can be used to describe
and explain the complexity of a planning problem and hence lead towards an
efficient solution technique or methodology.

Whether (these) problems have easy solutions or because of the inherent com-
plexity of the form of the required solution, they are better approached using
heuristic techniques (generally accepting good rather than best solutions).

To achieve this objective, the following problems are presented:

Diet problems, the very obvious formulations (Stigler and Dantzig), lead to an
undesirable solution (only one meal!), and a more heuristic approach is needed
to add incorporate multi-objectives that typically minimise cost while max-
imising variety/taste.
Knapsack problems, showing how many problems are reducible to knapsack
problems and are therefore appropriate for the use of heuristic solution
techniques.
Network flow problems, again many planning problems can be modelled as
network flow problems and hence can be solved easily.

Chapter 4: Heuristic Techniques in Optimisation. This part introduces approa-
ches that can be used to obtain good solutions to hard or large problems comparing
and contrasting the effectiveness and efficiency of heuristic approaches to
problem-solving.

To achieve this objective, the following approaches are presented:

Genetic algorithms implementations illustrated through its application in pro-
ducing solutions to knapsack problems, travelling salesman problems,
scheduling problems, and quadratic assignment problems.
Tabu search implementations illustrated through its application in producing
solutions to financial planning and travelling salesman problems.

Chapter 5: Introduction to the Use of Queueing Theory and Simulation. This
chapter shows how queueing theory and simulation techniques can be applied to
design efficient and effective service systems.

The major sections are concerned with the following:

Queueing theory leading to “quick” modelling, how queueing theory can be
employed to carry out an evaluation of a manufacturing system.
Simulation modelling, introducing an alternative approach to modelling com-
plex planning problems.

vi Preface

Part II: Case Studies
This part presents a series of case studies to demonstrate how heuristic and

analytical approaches may be used to solve large complex problems.
A series of case studies are presented where models are constructed and then

analysed and evaluated to derive efficient and effective ways to produce good
solutions.

May be solved typical suggested applications, presenting alternative approaches
to problem solving

Chapter 6 describes an investigation into the appropriateness of heuristic
methodologies in the solution of

Travelling salesman problem.
Garbage collection problem, a multiple travelling salesman (type) problem.
Production planning and control problems, where a seemingly hard problem can
be shown to be solvable using a simple heuristic approach reducing the need for
cost data.

Chapter 7 describes how an efficient heuristic approach can be derived from an
initial complex model using the following:

Flow shop scheduling, showing how a hard problem can be approached using
heuristic methods.
Transport planning, deriving approaches to evaluate the benefits to be gained
from the installation of an active traffic control system and the paradoxes
resulting from changes to transport planning.

Chapter 8 describes an investigation into the production of an efficient and
effective means of scheduling air traffic controllers, where the method used has to
have the ability to respond (create a new schedule) rapidly to staff availabilities.

Chapter 9 describes how a multiple objective optimisation problem can be
solved by the incorporation of techniques from genetic algorithms and fuzzy logic
into a mathematical programming methodology.

This approach is illustrated by its application into the provision of solutions to a
diet problem with the extended objectives:

Minimise cost.
Produce a healthy diet.
Produce a large variety of good diets.

Chapter 10 describes an investigation into the application of fuzzy logic showing
how it can be used to derive a dynamic method of scheduling operations in a
workshop.

Preface vii

This approach is applied to a workshop where there are multiple objectives:

Importance of customer and delivery due dates, using fuzzy logic to derive work
schedules.

Chapter 11 describes how an approach based on tabu search methodologies can
be employed to derive optimal control settings.

This approach is illustrated through its application to a Surround Sound 5
speaker system determining settings so that the system could produce “perfect”
directional sound.

Chapter 12 describes how system dynamics modelling can be employed to
describe the output from complex decision making processes.

Models are constructed to describe

the changes in the Dow Jones index, from growth to decline, and
the changes in the dominant mode of transport (with time) and the effect of these
changes on the prior dominant modes.

Chapter 13 describes the use of queueing theory in the evaluation of traffic
control systems (traffic lights) showing how the system could be improved through
the use of “available forward road capacity” that is passing information between
traffic lights.

Chapter 14 describes case study investigations into the use of cellular automata
and agent-based simulations.

The case studies are based on message passing, by mobile devices, within a
closed environment (a shopping centre for example) and
The spread of a fire and the improved positioning of the fire exits in a closed
environment.

Chapter 15 discusses the use of “Big Data” to derive models.
Three case studies are provided.

Criminology,
Depression evaluation, and
University admissions.

Derby, UK Stuart Berry
Val Lowndes

Marcello Trovati

viii Preface

Contents

Part I Introduction to Modelling and Model Evaluation

1 Model Building . 3
Val Lowndes, Stuart Berry, Marcello Trovati and Amanda Whitbrook

2 Introduction to Cellular Automata in Simulation 55
Val Lowndes, Adrian Bird and Stuart Berry

3 Introduction to Mathematical Programming 75
Val Lowndes and Stuart Berry

4 Heuristic Techniques in Optimisation . 121
Val Lowndes and Stuart Berry

5 Introduction to the Use of Queueing Theory and Simulation. 145
Val Lowndes and Stuart Berry

Part II Case Studies

6 Case Studies: Using Heuristics . 175
Val Lowndes, Ovidiu Bagdasar and Stuart Berry

7 Further Use of Heuristic Methods . 199
Val Lowndes, Stuart Berry, Chris Parkes, Ovidiu Bagdasar
and Nicolae Popovici

8 Air Traffic Controllers Planning: A Rostering Problem 237
Richard Conniss

9 Solving Multiple Objective Problems: Modelling
Diet Problems . 251
Val Lowndes and Stuart Berry

10 Fuzzy Scheduling Applied to Small Manufacturing Firms 265
Val Lowndes

ix

11 The Design and Optimisation of Surround Sound Decoders
Using Heuristic Methods . 273
Bruce Wiggins, Stuart Berry and Val Lowndes

12 System Dynamics Case Studies. 285
Chris Parkes, Stuart Berry and John Stubbs

13 Applying Queueing Theory to the Design of a Traffic Light
Controller. 299
James Hardy

14 Cellular Automata and Agents in Simulations 307
Kim Smith, Richard Hill, Stuart Berry and Richard Conniss

15 Three Big Data Case Studies . 333
Marcello Trovati and Andy Baker

Part III Appendices

16 Appendix A: Queueing Theory. 349
Stuart Berry

17 Appendix B: Function Optimisation Techniques Genetic
Algorithms and Tabu Searches . 355
Val Lowndes and Mirko Paskota

18 Appendix C: What to Simulate to Evaluate Production Planning
and Control Methods in Small Manufacturing Firm’s 377
Val Lowndes and Stuart Berry

19 Appendix D: Defining Boolean and Fuzzy Logic Operators. 381
Val Lowndes

20 Appendix E: Assessing the Reinstated Waverly Line 383
Stuart Berry and John Stubbs

21 Appendix F: Matching Services with Users in Opportunistic
Network Environments . 387
Stuart Berry

References . 391

Index . 395

x Contents

Contributors

Ovidiu Bagdasar College of Engineering and Technology, University of Derby,
Derby, UK

Andy Baker College of Engineering and Technology, University of Derby,
Derby, UK

Stuart Berry College of Engineering and Technology, University of Derby,
Derby, UK

Adrian Bird College of Engineering and Technology, University of Derby,
Derby, UK

Richard Conniss College of Engineering and Technology, University of Derby,
Derby, UK

James Hardy University of Derby, Derby, UK

Richard Hill College of Engineering and Technology, University of Derby,
Derby, UK

Val Lowndes University of Derby, Derby, UK

Chris Parkes College of Engineering and Technology, University of Derby,
Derby, UK

Mirko Paskota College of Engineering and Technology, University of Derby,
Derby, UK

Nicolae Popovici Babes-Bolyai University, Cluj-Napoca, Romania

Kim Smith College of Engineering and Technology, University of Derby, Derby,
UK

John Stubbs College of Engineering and Technology, University of Derby,
Derby, UK

xi

Marcello Trovati Department of Computer Science, Edge Hill University,
Ormskirk, UK

Amanda Whitbrook College of Engineering and Technology, University of
Derby, Derby, UK

Bruce Wiggins College of Engineering and Technology, University of Derby,
Derby, UK

xii Contributors

Part I
Introduction to Modelling

and Model Evaluation

This section introduces modelling techniques and constructs models to represent
and analyse planning problems in business, industry and the management of
facilities.

These constructed models are evaluated; can they be solved in a reasonable time
using standard analytical techniques or should the solution be approached using
heuristic methods or heuristic methodologies?

Chapter 1
Model Building

Val Lowndes, Stuart Berry, Marcello Trovati
and Amanda Whitbrook

Section 1.1 introduces the use of system dynamics in modelling and then uses this
approach to construct models to describe real applications.
Section 1.2 introduces the concepts needed to construct models using available
data, modelling using Big Data.
Section 1.3 introduces modelling using blackboard architecture; this provides a
flexible, symbolic artificial intelligence (AI) method for the cooperative modelling
and then solution of complex problems.

1.1 Introduction to System Modelling

The purpose of system dynamics modelling is to develop understanding and then
the improvement of systems. The first stage in this process is the construction of a
logical model (influence diagram) to describe a system.

V. Lowndes (Retired)
University of Derby, Kedleston Road, DE22 1GB Derby, UK
e-mail: v.p.lowndes@derby.ac.uk

S. Berry (&) � A. Whitbrook
College of Engineering and Technology, University of Derby,
Kedleston Road, DE22 1GB Derby, UK
e-mail: s.berry@derby.ac.uk

A. Whitbrook
e-mail: a.whitbrook@derby.ac.uk

M. Trovati
Computer Science, Edge Hill University, St Helens Road, Ormskirk,
L39 4QP Lancashire, UK
e-mail: marcello.trovati@edgehill.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_1

3

This model can then lead to sets of equations describing the operation of the
system. These can be used to simulate the system to gain understanding of its
dynamic behaviour and to be able to evaluate alternative policies, leading to
improvements within the system.

A series of small examples are used to introduce this modelling process. Where
information is available, the behaviour predicted by these models is compared with
reality, i.e. what has happened in reality.

1.1.1 Introducing Influence Diagrams

Modelling using influence diagrams is introduced through the following illustrative
examples:

• Stock control model: used to illustrate the basic modelling notation.
• Spending/saving model: used to illustrate the construction of an influence dia-

gram and to introduce the concept of “positive” and “negative” feedback loops
• House building, financial models and population modelling: so that the pre-

dictions from the models (positive or negative loops) can be compared with
reality.

• Transport modelling: extending the work to demonstrate the effect of govern-
ment policy on transport provision (the “Beeching” cuts for example).

Example A: Stock Control Policies
A company holds stocks of finished goods to be able to satisfy demand; when
stocks are low, more newly manufactured items are added to the finished goods
stock; in this example, the available stock (for use) is “influenced” by production
and demand (see Fig. 1.1).

The direction of the arrow from [despatched] to [production] indicating the
production levels is influenced by the quantity of items dispatched, and the arc label
(D) indicates the delays between each event.

Where

Demand Influences Number dispatched

Number dispatched Influences Production

Production Influences Available stock

Available stock Influences Number dispatched

4 V. Lowndes et al.

The model constructed from this diagram will have the form:

Dispatched is described by the function f(Demand, Stock)
Dispatchedi = Minimum(Demandi-3,Stocki)

Assuming a delay of 3 between receipt of order and despatch.

Production is defined by f(Dispatched) or following through
f(Dispatched, Demand, Stock) or by implication

f(Dispatched, Demand, Stock, production))
Productioni = Maximum(Dispatchedi-2,Demandi-5,MinProduction)

Assuming a delay of 2, dispatched and production request.

Stock is described by the function f(stocki-1,Productioni-1,Dispatched)
Stocki= Stocki-1+ Productioni-1 - Dispatched

Assuming a delay of 1 between production and stock ready for use.

The next stage gives examples to introduce approaches to the production of
“influence diagrams” and the notation used to analyse the resultant model.

1.1.1.1 Categorising Dependencies (Links) in a Model

An initial (causal) analysis is used to categorise an influence diagram and hence the
underlying model, essentially the causal analysis asks: (Fig. 1.2).

If the input value increases, what is the effect on the output value? leading to the
categorisation of the links as either positive (+) or negative (−) links.

Connecting between inflation rate and prices, as inflation rises, then so too do
prices giving:

Fig. 1.2 a Positive arc: if
“inflation rate” increases then
“prices” will rise. b Negative
arc: if “demand” increases
then “stock levels” will fail

Available

Demand

Production

Dispatched

Fig. 1.1 Production

1 Model Building 5

Connecting between demand and stock levels, as demand rises, it follows that
stock levels will fall:

In carrying out this analysis always start with…“if the input rises…” starting
with the opposite “…if the input falls…” can lead to double negative statements and
some confusion in the following analysis.

1.1.1.2 Categorising a Model

Having categorised all the links, a loop in a model can fall into one of the two
states: positive or negative feedback loops. In general, a negative loop indicates a
“goal-seeking” model here there will be convergence, whereas a positive feedback
loop indicates unrestricted growth or decay (Fig. 1.3).

Fig. 1.3 Categorising feedback loops

6 V. Lowndes et al.

• State 1, a positive feedback loop would lead to “unconstrained” growth or
decline, while

• State 2, a negative feedback loop would lead to a steady-state solution
(goal-seeking).

1.1.2 Model Evaluation/Validation, Comparing the Model
with Historic Data

Here, a model is constructed and evaluated showing that its behaviour replicates the
real situation.

Example B: House-Building Model
An initial model links house buying with house prices and housing stock giving

a model with a negative feedback loop, ignoring the overall demand for housing
(Fig. 1.4).

Analysing Influences in the diagram leads to the consequent effects:

House prices Up Then House building Down Negative effect

House building Up Then Housing stock Down Negative effect

Housing stock Up Then House prices Down Negative effect

Thus giving the model cycle from and returning to a given starting position

House building Up Gives Housing stock Down

Housing stock Down Gives House prices Up

House prices Up Gives House building Down

Fig. 1.4 First house price
model

1 Model Building 7

Continuing to complete the cycle of effects

House building Down Gives Housing stock Up

Housing stock Up Gives House prices Down

House prices Down Gives House building Up

Completing the cycle shows the goal-seeking behaviour of this model.
Extending the model through the addition of house construction gives a second

loop (Fig. 1.5).
The additional loop adds the influences

House construction Up Then Housing stock Up

Housing stock Up Then House prices Down

House prices Up Then House buying Down

House buying Down Then House construction Down

Thus, adding to the existing model cycle starting from the same starting
position

House buying Up Gives House construction Up

House construction Up Gives Housing stock Up

Housing stock Up Gives House prices Down

House prices Down Gives House buying Up

Finally, adding financial considerations into the influence diagram gives the
model: (Fig. 1.6).

Fig. 1.5 Second house price model

8 V. Lowndes et al.

All housing models contain a negative loop; however, a fuller model would
include “people needing housing” and “construction of social housing” (see
appendix for an extended model).

1.1.3 Example C: Developing Financial Models

These models investigate the movement of stock market share prices. The first
model investigating the effect of investor confidence on share price movements and
the second (extended) model adding the effect of short selling on the first model.
Notice that these models demonstrate the effect of positive feedback loops and
explain the movement of stock market prices (Fig. 1.7).

1.1.3.1 Effect of Investor Confidence on Financial Markets

This model can be constructed in stages.

Stage 1: share price and its effect on investor confidence, as the price increases, then
confidence will also increase (Fig. 1.8)
Stage 2: now add the effect of investor confidence on the sale of shares, assuming
that when confidence is rising, the investors will tend to hold onto the shares to give
Stage 3: as the sale of shares increase, then the share price will fall, giving the
completed model (Fig. 1.9).

Fig. 1.6 House pricing model

1 Model Building 9

This model exhibits a positive feedback loop {+, −, −}, and hence, either an
uncontrolled increase or decrease in share values will result from this model:

Increase in share prices gives

Share price Up Leads to Investor confidence Up

Investor confidence Up Leads to Sale of shares Down

Sale of shares Down Leads to Share price Up

Decrease in share prices gives

Share price Down Leads to Investor confidence Down

Investor confidence Down Leads to Sale of shares Up

Sale of shares Up Leads to Share price Down

Fig. 1.7 a Start financial
model b start financial model
c first financial model

10 V. Lowndes et al.

The direction (of movement of share prices) is changed only through the effect of
external factors.

Using this model, simulation models were constructed first starting with low
investor confidence; the results from this simulation produced the plots of “share
price” and “share holding” showing how they both fall with time.

Conversely, if the investors start with high confidence, the plots show how both
share price and share holding grow with time.

Finally, if the investor state starts in one mode (high confidence), then switching
the next plot shows the effect on share prices and investor holding.

Fig. 1.8 a , b and c: Simulating stock holdings

Fig. 1.9 FTSE index

1 Model Building 11

Validating the Model
This effect is demonstrated in both FTSE and Dow Jones historic data log plots;
both the FTSE and the Dow Jones data can be shown to have several changes of
direction moving from a period of continual growth to a period of continual decline;
in addition, the Dow Jones plot also demonstrates that there can be periods where
the plot is stationary (Fig. 1.10).

Turning points, changes from growth to fall or from fall to growth in the FTSE
Index, occur at (about) 2003; 2007; 2009; 2010.

Similarly, plotting the Dow Jones, log(price) and movements for the period
1902–2012 gave (Fig. 1.11).

With Dow Jones turning points, marked above in Fig. 1.11, at (about) 1902;
1929; 1936; 1946; 1964; 1984; 2002;

Replotting the Dow Jones Index (log price) over a shorter time period, up to
1935, shows the dramatic effect of this model around the time of the Wall Street
Crash (1929–1933); here, attempts to halt the fall failed until external events caused
the changed direction.

Here, turning points seem to occur at 1924, 1929, 1932 and 1934.

Fig. 1.10 a Dow Jones index
b growth periods in Dow
Jones index

12 V. Lowndes et al.

Fig. 1.11 Growth periods in
Dow Jones index

Fig. 1.12 a Modelling investor confidence and shares, b modelling investor confidence and
shares and c modelling investor confidence and shares d alternative model for investor confidence
and shares

Finally, plotting the Dow Jones Index over the period from 1991 not only shows
the same effects during this period but also that the changes in direction tend to
occur more frequently (Fig. 1.12).

Here turning points at 1991, 1994, 1999, 2003, 2007, 2009 and 2015 on average
every 4 years.

1 Model Building 13

1.1.3.2 Example D2: Effect of Investor Confidence and Short Selling

Definition: Short sale is the sale of securities or commodities not owned by the
seller (who hopes to buy them later at lower price); hence, short-selling cause falls
in asset prices.

Short selling and the results from short selling have been known for a long time:

• “He who sells what isn’t his’n, must buy it back or go to pris’n.”—Daniel Drew, 1797–
1879, American financier.

• 1609—The Dutch East India Co protests to the Amsterdam Exchange after short sellers
make enormous profits on its stock. Leading to the first ever regulations on shorting in
the following year

• 1733—Britain bans naked short selling. “Investopedia” ref South Sea Bubble.
• 1932—US President Herbert Hoover condemns short selling for speculative profit on

the New York Stock Exchange. www.reuters.com/article/us-sec-shortselling-history

Developing the influence model, from the base investor confidence model
(Fig. 1.13).

Then, adding in investor confidence events gives:
Finally, as the sale of shares increases, then the short-selling quantity will

increase.
This model exhibits only positive feedback loop {+, −, −} and {+, −, +, −};

hence, short selling will have the following effect on share prices:

Increase in short selling gives

Short selling Up Leads to Share price Down

Share price Down Leads to Investor confidence Down

Investor confidence Down Leads to Sale of shares Up

Sale of shares Up Leads to Short selling Up

Notice that a similar model exists with respect to the short-selling price:
An analysis of this model gives:

Fall in short selling price gives

Short selling price Down Leads to Share price Down

Share price Down Leads to Investor confidence Down

Investor confidence Down Leads to Sale of shares Up

Sale of shares Up Leads to Short selling price Down

Comparing this model with the stock market when “falls” occurred in the 1990s
and 2000s and 2010s.

14 V. Lowndes et al.

http://dx.doi.org/10.1007/978-3-319-55417-4_3

1.1.4 Population Modelling

Again, two models are presented investigating population changes in a closed
society, for example Easter Island an isolated Pacific Ocean island, in the first
model no technological developments and in the second there are technological
developments.

Fig. 1.13 a–c Developing the model, d results from a simulation based upon this model

1 Model Building 15

Basic “Easter Island” model

Stage 1: as the population increases, then the space available for food production
falls.
Stage 2: as the space for food production increases, then the resources available per
person also increases.
Stage 3: linking to give the final model, a negative goal-seeking loop (Fig. 1.14).

Notice that

Population Up Leads
to

Available
space

Down

Available
space

Down Leads
to

Resources
per person

Down

Resources
per person

Down Leads
to

Population Down Population Down Leads
to

Available
space

Up

Available
space

Up Leads
to

Resources
per person

Up

Resources
per person

Up Leads
to

Population Up

Applying this model using Easter Island, data gave the population plot
Where population and resources are tending towards a steady state, as expected

with periods of population growth and population decline.
Note Easter Island was “discovered” at a time when the population was in the

first “state of decline” shown in the population plot.
Allowing for technological development produces the model (Fig. 1.15):
Leading to an increasing population, compare this with the Earths continual

development of food sources and the total population growth.

1.1.5 Transport Modelling

Travellers choose the most appropriate mode of transport to reach their chosen
destination. They could travel by rail, or car, or bicycle or by other forms of public
transport or even walk.

This model investigates the interaction between the use road (car) and rail
transport and the subsequent expansions of the road and rail systems.

Stage 1: only road travel is considered giving (Fig. 1.16):
The model suggesting that road capacity is continually increasing, generally true,

in the absence of any alternative mode of transport.

16 V. Lowndes et al.

Fig. 1.14 a Second population model b world population estimates

1 Model Building 17

Journey
times

Up Leads
to

Road
Building

Up

Road
building

Up Leads
to

Demand for
Roads

Up Demand for
Roads

Up Leads
to

Journey
times

Up

Journey
times

Up Leads
to…

Similarly, extending the model by incorporating rail changes could produce
another model containing only positive feedback loops, thus implying, as in the
1960s, that road provision is (continually) increasing and rail provision declining.

However, when increases in road capacities or the development of the road
network are not, or no longer, a viable option, this model becomes:

Here there exists a negative feedback loop leading to an equilibrium state:

• {Demand for Road Travel; Road journey times; Demand for railways; Supply of
Railways; Demand for road travel}

• { +, +, +, −}

The alternative modelling approach, using travel cost, also gives a model with a
negative feedback loop

• {Supply of railways; Rail Journey costs; Demand for Railways}
• {+, −, +}

Here, paradoxically, the increased demand for rail travel can act to cause
developments in the rail system and thus act to reduce demand!

Further development leads to the more comprehensive model given by:

Fig. 1.15 Modelling road building

18 V. Lowndes et al.

Fig. 1.16 a Modelling the effects of roads on rail demand b–d modelling the effects of roads on
rail

1 Model Building 19

Fig. 1.16 (continued)

20 V. Lowndes et al.

A negative feedback loop with respect to rail travel gives an overall goal-seeking
model for both road and rail travel.

{Desirability of cars;

Demand for roads;

Road journey time;

Supply of roads;

Demand for rail;

Carriage loading;

Desirability of trains;

Desirability of cars}

Changes {+, +, +, −, +, −, −} A negative loop

1.2 Constructing Models from “Big Data”

1.2.1 Introduction

Data science is a relatively new research field consisting of well-established
methods and approaches to address the need to identify actionable knowledge from
the continuous creation of data. In particular, the use of the existing techniques has
led the discovery of new research directions, with groundbreaking results.

There are a variety of mathematical and statistical tools to identify and discover
knowledge, which can be used to facilitate the decision-making process. In par-
ticular, these include Bayesian and dependency networks, which provide modelling
tools to determine how mutual relationships between concepts influence the
knowledge captured by such networks. In the rest of this section, we will discuss
their main theoretical properties, which be fully exploited in the two case studies
discussed in part 2.

Bayesian and Dependency Networks
Bayesian networks (BNs) are graphical models, which capture independence
relationships among random variables, based on a basic law of probability called
Bayes’ rule [1]. They offer an efficient modelling framework in risk and decision
analysis with a variety of applications, such as safety assessment of nuclear power
plants, risk evaluation of a supply chain and medical decision support tools [2].
More specifically, BNs are defined by nodes, representing objects based on a level
of uncertainty, also called random variables, which are connected by edges indi-
cating a dependence relationship between them. Furthermore, Bayesian networks
also contain quantitative information, which represents a factorisation of the joint
probability distribution of all the variables in the network.

1 Model Building 21

Suppose, for example, we want to explore the chance of finding wet grass on any
given day. In particular, assume the following

1. A cloudy sky is associated with a higher chance of rain,
2. A cloudy sky affects whether the sprinkler system is triggered and
3. Both the sprinkler system and rain have an effect on the chance of finding wet

grass.

In this particular example, no probabilistic information is given. The resulting
BN is depicted in the following Fig. 1.17.

It is clear that such graphical representation provides an intuitive way to depict
the dependence relations between variables.

In the definition of BNs, the most complex statements do not refer to depen-
dencies, but rather about independences (i.e. absence of edges in the graph), as it is
always possible to determine dependence through the conditional probability tables
when an edge is present, even though the reverse is not true.

The definition of a BN can be carried out either through explicit data analysis, or
via literature review and expert elicitation. These are typically manually intensive
tasks depending on the size and complexity of the data sets analysed, especially
when they exhibit unstructured components. There is extensive research on the
extraction of BNs from text corpora. For example, in [3], the authors suggest a
domain-independent method for acquiring text causal knowledge to generate
Bayesian networks. Their approach is based on a classification of lexico-syntactic
patterns which refer to causation, where an automatic detection of causal patterns
and semi-validation of their ambiguity is carried out. Similarly, in Kuipers [4], a
supervised method for the detection and extraction of causal relations from open
domain texts is presented. The authors provide an in-depth analysis of verbs, cue
phrases that encode causality and, to a lesser extent, influence.

Dependency networks (DNs) have also been attracting increasing attention
within several research fields. These types of networks are similar to BNs, which,
however, allow cycles (that is a path starting and ending at the same node) enabling
a more computationally efficient approach and making them more applicable
especially when large and unstructured data sets are considered [5].

Fig. 1.17 Representing a
Baysian network

22 V. Lowndes et al.

Text Mining

Text mining (TM) consists of computational techniques to achieve human language
understanding via linguistic and semantic analysis. Such methods have been shown
to be crucially important in the way we can represent knowledge described by the
interactions between computers and human (natural) languages [6].

Language is based on grammatical and syntactic rules which can be captured by
patterns or, in other words, templates that sentences with similar structure follow.
Such language formats enable the construction of complex sentences, as well as
framing of the complexity of language.

In order to understand the properties of human language, a variety of methods
have been developed to address the complexity and challenges posed by it. These,
broadly speaking, fall into three categories: symbolic, statistical and connectionist.

In the symbolic approach, linguistic properties are mapped onto precise and
well-understood knowledge representation [7]. Once the linguistic rules have been
defined, the hierarchical structure of the semantic concepts within the corre-
sponding textual fragments is identified. Subsequently, the properties associated
with the different textual components are investigated to provide an insight into
their structure. Symbolic methods have been widely exploited in a variety of
research contexts such as information extraction, text categorisation, ambiguity
resolution, explanation-based learning, decision trees and conceptual clustering.

On the other hand, the statistical properties from observable data and the
investigation of large documents can be used to develop generalised models based
on smaller knowledge data sets and significant linguistic or world knowledge [8].
They have many applications such as parsing rule analysis, statistical grammar
learning and statistical machine translation, to name but a few.

The connectionist approach integrates statistical learning with representation
techniques to allow an integration of statistical tools with logic-based rule manip-
ulation, generating a network of interconnected simple processing units (often
associated with concepts) with edge weights representing knowledge. This typically
creates a rich system with an interesting dynamical global behaviour induced by the
semantic propagation rules. In Troussov et al. [9], a connectionist distributed model
is investigated pointing towards a dynamical generalisation of syntactic parsing,
limited domain translation tasks and associative retrieval.

General Architecture and Various Components of Text Mining

A grammar is a set of well-defined rules which govern how words and sentences are
combined according to a specific syntax. A grammar does not describe themeaning of
a set of words or sentences, as it only addresses the construction of sentences
according to the syntactic structure of words. Semantics, on the other hand, refers to
the meaning of a sentence [8]. In computational linguistics, semantic analysis is a
muchmore complex task since its aim is the full understanding of the meaning of text.

Any text mining process consists of a number of steps to identify and classify
sentences according to specific patterns, in order to analyse a textual source.
Broadly speaking, in order to achieve this, we need to follow these general steps:

1 Model Building 23

1. Textual data sources are divided into small components, usually words, which
can be subsequently syntactically analysed.

2. These, in turn, create tokenised text fragments, which are analysed according to
the rules of a formal grammar. The output is a parsing tree—in other words, an
ordered tree representing the hierarchical syntactic structure of a sentence.

3. Once we have isolated the syntactic structure of a text fragment, we are in the
position of extracting relevant information, such as specific relationships and
sentiment analysis.

More specifically, the main components of text mining are as follows:

Lexical Analysis

Lexical analysis is the process which analyses the basic components of texts and
groups into tokens [10]. In other words, lexical analysis techniques identify the
syntactic role of individual words which are assigned to a single part-of-speech tag.

Lexical analysis may require a lexicon which is usually determined by the
particular approach used in a suitably defined TM system, as well as the nature and
extent of information inherent to the lexicon. Mainly, lexicons may vary in terms of
their complexity as they can contain information on the semantic information
related to a word. More research is currently being carried out to provide better
tools in analysing words in semantic contexts [see 11 for an overview].

Part-of-Speech Tagging.

Part-of speech tagging (POS) allows to attach a specific syntactic definition
(noun, verb, adjective, etc.) to the words which are part of a sentence. This task
tends to be relatively accurate, as it relies on a set of rules which are usually
unambiguously defined. Often, POS tasks are carried out via the statistical prop-
erties of the different syntactic roles of tokens [8]. Consider the word book.
Depending on the sentence it belongs to, it might be a verb or a noun. Consider “a
book on chair” and “I will book a table at the restaurant”. The presence of specific
keywords, such as “a” in the former, and “I will” in the latter, provides important
clues as to the syntactic role that book has in the two sentences. One of the main
reasons for the overall accuracy of POS tagging is that a semantic analysis is often
not required, as it is based on the position of the corresponding token.

Parsing

Once the POS tagging of a sentence has identified the syntactic roles of each token,
each sentence can be considered in its entirety. The main difference with POS
tagging is the fact that parsing enables the identification of the hierarchical syntactic
structure of a sentence. Consider, for example, Fig. 1.18b depicts the parsing tree
structure of the sentence “This is a parsing tree”. Note that each word is associated
with a POS symbol which corresponds to its syntactic role [8].

24 V. Lowndes et al.

Named Entity Recognition

An important aspect of text analysis is the ability to determine the type of the
entities, which refer to words, or collections of them. For example, determining
whether a noun refers to a person, an organisation or geographical location (to name
but a few) substantially contributes to the extraction of accurate information and
provides the tools for a deeper understanding. For example, the analysis of “dogs
and cats are the most popular pets in the UK” would identify that dogs and cats are
animals and the UK is a country. Clearly, there are many instances where this
depends on the context. Think of “India lives in Manchester”. Anyone reading such
sentence would interpret, and rightly so, India as the name of a specific person.
However, a computer might not be able to do so and determine that it is a country.
We know that a country would not be able to “live” in a city. It is just common
sense. Unfortunately, computers do not have the ability to discern what common
sense is. They might be able to guess according to the structure of a sentence, or the
presence of specific keywords. This is a very effective example of semantic
understanding, which comes natural to humans, but a very complex task to
computers.

Coreference Resolution

Coreference resolution is the process of determining which text components refer to
the same objects. For example, relation resolution attempts to identify which
individual entities or objects a relation refers to. Consider the following sentence,

Text
Lexical

Analysis Tokenisation Syntactic
Analysis

Parse Tree

Text analysis, including:

- Relation Extraction
- Sentiment Analysis
- Concept extraction
- Probabilistic knowledge

extraction

(a)

(b)

Fig. 1.18 a Text missing, b the parsing tree of the sentence “This is parsing tree”

1 Model Building 25

“We are looking for a fault in the system”. Here, we are not looking for any fault in
the system, rather for a specific instance.

Relation Extraction

The identification of relations between different entities within a text provides
useful information that can be used to determine quantitative and qualitative
information linking such entities. For example, consider the sentence “smoking
potentially causes lung cancer”. Here, the act of smoking is linked to lung cancer by
a causal relationship. This is clearly a crucial step in building BNs, even though
such analysis requires a deep understanding of the associated textual information.

Concept Extraction

A crucial task in information extraction from textual sources is concept identifi-
cation, which is typically defined as a one or more keywords, or textual definitions.
The two main approaches in this task are supervised and unsupervised concept
identification, depending on the level of human intervention in the system.

In particular, formal concept analysis (FCA) provides a tool to facilitate the
identification of key concepts relevant to a specific topical area [12]. Broadly
speaking, unstructured textual data sets are analysed to isolate clusters of terms and
definitions referring to the same concepts, which can be grouped together. One of
the main properties of FCA allows user interaction, so that user(s) can actively
operate the system to determine the most appropriate parameters and starting points
of such classification.

Sentiment Analysis
This instance of information extraction from text focuses on the identification of
trends of moods or opinions associated with textual sources.

Broadly speaking, its aim is to determine the polarity of a given text which
identifies whether the opinion expressed is positive, negative or neutral. This also
includes emotional states, such as anger, sadness and happiness, as well as intent,
such as planning and researching. Sentiment analysis can be an important tool is
obtaining an insight into relationships among concepts in BNs, since it can support
the process of relation discovery. In fact, not all the information contained in text is
unambiguously described. Consider, for example, the sentence “I am very surprised
by your irrational fear that spiders can kill you”. Here, rather than drawing a definite
conclusion that spiders are linked with death, a sceptical assessment of such rela-
tionship is noted.

Topic Recognition

This procedure attempts to identify the general topic of a text by grouping a set of
keywords which appear frequently in the documents. These are then associated with
one of more concepts to determine the general concept trend.

26 V. Lowndes et al.

Semantic Analysis

Semantic analysis determines the possible meanings of a sentence by investigating
the interactions among word-level meanings in the sentence. This approach can also
incorporate the semantic disambiguation of words with multiple senses. Semantic
disambiguation allows the selection of the sense of ambiguous words, so that they
can be included in the appropriate semantic representation of the sentence [13]. This
is particularly relevant in any information retrieval and processing system based on
ambiguous and partially known knowledge. Disambiguation techniques usually
require specific information on the frequency with which each sense occurs in a
particular document, as well as on the analysis of the local context, and the use of
pragmatic knowledge of the domain of the document. An interesting aspect of this
research field is concerned with the purposeful use of language where the utilisation
of a context within the text is exploited to explain how extra meaning is part of
some documents without actually being constructed in them. Clearly, this is still
being developed as it requires an incredibly wide knowledge dealing with inten-
tions, plans and objectives [8]. Extremely useful applications in TM can be seen in
inference techniques where extra information derived from a wider context suc-
cessfully addresses statistical properties [4].

1.2.2 The Automatic Extraction of Bayesian
Networks from Text

The mathematical constraints posed by Bayes’ rule and general probability theory
create a significant challenge. As a consequence, the identification of suitable
Bayesian networks is often carried out manually usually by a modeller. However,
this can be extremely time-consuming and based on only specific, often limited,
sources depending on the modeller’s expertise. As a consequence, the ability to
automatically extract the relevant data would potentially add enormous value in
terms of increased efficiency and scalability to the process of defining and popu-
lating BNs. However, extracting both explicit and implicit information, and making
sense of partial or contradictory data, can be a complex challenge.

Dependence Relation Extraction from Text

As discussed above, nodes in BNs, which are connected by edges, indicate that the
corresponding random variables are dependent. Such dependence relations must be
therefore extracted from textual information, when present. The conditional
dependencies in a Bayesian network are often based on known statistical and
computational techniques, which are based on a combination of methods from
graph theory, probability theory, computer science and statistics. Linguistically
speaking, a dependence relation contains specific keywords which describe that two
concepts are related to a certain degree. Consider the sentence “lung cancer is more
common among smokers”. There is little doubt that we would interpret this as clear

1 Model Building 27

relation linking lung cancer with smoking. However, there is not a precise linguistic
definition to determine a relationship between two concepts from text, due to its
content dependence. When a full automation of the process of textual information
extraction is carried out, a clear and unambiguous set of rules ensures a reasonably
good level of accuracy. As a consequence, it is usually advisable to consider causal
relationships, which are a subgroup of dependence relationships [1]. In fact, they
are likely to convey a much stronger statement, and they are more easily identified
due to a more limited set of linguistic rules that characterise them. Going back to the
above example, saying that smoking causes lung cancer assumes a direct link
between them. We cannot arguably say the contrary, but there are other cases where
there is a less marked cut-off. If we are only looking for causal relationships when
populating a BN, we might miss out several dependence relations. However,
accuracy is much more preferable. The integration of an automatic BN extraction
with human intervention usually addresses such issue.

Variables’ Identification

Mapping a representative to a specific variable is closely linked to the task of
relation extraction. However, this is partially a modelling choice by the user based
on the set of relevant concepts. Consider again the sentence “smoking causes lung
cancer”. If this was rephrased as “smokers are more likely to develop lung cancer”,
we would need to ensure that “smoking” and “smokers” are identified as a single
variable associated with the act of smoking. In a variety of cases, this can be
addressed by considering synonymy. However, such as in our example, it might
also happen that they refer to the same concept, rather than being the same concept.
Formal concept analysis (FCA) is one of the computational techniques that can be
successfully applied in this particular context [8].

Probability Information Extraction.

An essential part in the extraction and subsequent creation of BNs involves the
processing of the textual sources to determine probability of variables.

Sentences may capture some probabilistic relationships between concepts even
though very few of them might provide conclusive and unambiguous information,
which can be utilised to reason. In fact, the combination of qualitative and quan-
titative data creates a variety of challenges, which need to be addressed to produce
relevant and accurate information.

The identification, assessment and ranking of specific keywords (and their
combinations), when describing probability, can provide a useful insight into the
structure of the corresponding relationships. However, Big Data research focuses on
the interrelations of diverse and multidisciplinary topics, resulting in the intrinsic
difficulty in finding a common ground in terms of the linguistic features that specific
probabilistic description should have.

In [2], an automated method to assess the influence among concepts in
unstructured sets is introduced. Despite not being directly related to BNs, it shows
potential in the extraction of the mutual co-occurrence properties between nodes.

28 V. Lowndes et al.

Aggregation of Structural and Probabilistic Data.

This step integrates the steps discussed above, to construct fragments of BNs via
user’s interaction.

Figure 1.19 depicts this process in a sequential set of steps. However, the
repeated implementation of such steps in a series of loops might be required to
obtain meaningful BN fragments.

General Architecture

The general architecture of the extraction of fragments of BNs from text corpora
consists of the following components:

1. Existing and predefined information on specific topics would be incorporated
into a database, or Knowledge Database (KDB) consisting of

(a) Historical data from structured DBs,
(b) Bayesian networks built on existing data and
(c) Data entered by modeller(s) and manually validated.

The KDB is an important component since it is based on information which is
considered “reliable”. In a variety of cases, the KDB is maintained by modelling
experts to ensure that the data are regularly updated to prevent any inconsistency
and ambiguity.

2. The user would interact with the system by specifying further textual sources
and structured data sets.

3. The extraction and data aggregation stage consists of the identification of the
appropriate textual data associated with such unstructured data sets, as well as
the removal of any data duplication. An essential part of this process is to
address any qualitative and quantitative inconsistency. As discussed above, BNs
have strict mathematical constraints which make any fully unsupervised auto-
matic extraction prone to inaccuracies and inconsistencies. As a consequence,
human intervention is often advisable to minimise any such error.

Fig. 1.19 Architecture of Bayesian network extraction from textual information

1 Model Building 29

4. Finally, the BN is visualised, providing

(a) Relevant information on the structure of the BN,
(b) Description of the different parameters and
(c) Any required action in order to address any inconsistency which could not

be resolved automatically. This is typically an interactive step, where the
result can be updated by the user as well as focused on a specific part of the
BN (Fig. 1.20).

1.3 The Blackboard Architecture

1.3.1 Introduction

The blackboard architecture represents a flexible, symbolic artificial intelligence
(AI) method for the cooperative solution of complex problems. Systems that use
this architecture have been in existence since the 1970s. In the beginning, they were
used mainly for solving signal-processing problems, for example speech recogni-
tion with Hearsay-II (see [14]) and interpretation of sonar with HASP (see [15]).
Following Hearsay-II and HASP, the blackboard architecture became very popular
and was associated with many diverse application areas including mission control
systems for satellites, military object tracking and detection, printed text recognition
for scanners, fault diagnosis, assembly arrangement, and planning and scheduling,
to name just a few. In the early nineties, the architecture endured a period of relative

Fig. 1.20 General architecture of Bayesian networks for crime detection as discussed in Trovati
[5]

30 V. Lowndes et al.

obscurity, which has mostly been attributed to a lack of formalism, but since the
turn of the century it has enjoyed something of a renaissance, in some cases as a
hybrid system coupled with a Bayesian Belief Network, with applications such as
robotic mapping (see [16]) and logistics planning for the US military (see [17]). The
blackboard architecture has also been adopted by the computer game AI community
for solving decision-making and agent coordination problems (see [18]), although
there is some controversy about whether game AI blackboard systems are actually
“true” blackboard systems.

Blackboard systems (BBSs) have many properties that make them suitable for
solving complex problems that require progression through different stages (with
many paths to those stages) to reach the final solution [19]. These include problems
that can be viewed as a search for the “best” solution given a set of constraints [20].
BBSs provide a flexible method for incremental reasoning about a problem and its
solution, building up the solution in step-by-step manner by opportunistically
examining different paths at different levels of abstraction. This means that the
system’s exploratory properties are high compared with systems or algorithms that
used fixed, predetermined methods such as forward or backward chaining
rule-based systems. BBSs can also deal with large quantities of diverse, uncertain,
incomplete or inaccurate data [21] and can integrate different kinds of knowledge in
order to solve a given problem. This makes them highly useful for solving problems
with limited and imperfect input data, problems that require the combination of
many separate diagnostic components, dynamic decision-making problems and
problems involving systems of systems.

1.3.2 Architecture

The original blackboard architecture was developed in the early 1970s with the
Hearsay-II (HSII) speech recognition project [14], but has evolved to some extent
since then (literature review for further details). The aim of the HSII project was to
build a system that could manage complex and ill-defined problems without the
requirement for a formal model, so that enhancements could easily be made [19].
The deliberate flexibility of the design has led to a number of different interpre-
tations of BBS terminology and definitions. This section aims to clarify its core
definition and design and also to dispel some of the myths surrounding BBSs. First,
the analogy to a set of experts gathered around a blackboard is explained, and then,
the key components of the BBS are listed and described. The essential properties of
the BBS are then reported, either as advantages or disadvantages of the architecture.
This section also includes a review of the main problem types that are suited to
solution with BBSs, provides some definitions and briefly discusses the history and
availability of toolkits for frameworks for BBSs.

1 Model Building 31

1.3.2.1 Analogy

The BBS architecture is based on the concept of a group of experts using a physical
blackboard as a shared workspace for constructing a solution to a problem. The first
step is to write a description of the problem and the initial data on the blackboard.
Each expert waits until an opportunity arises to apply their particular knowledge to
the problem, at which point they may contribute by writing information on the
blackboard; this information may take many forms including a partial solution, an
informed suggestion about which solution paths or avenues of exploration to select
next, an alternative solution, a candidate complete solution, an agreement to a
candidate solution or partial solution, or a disagreement about a candidate solution
or partial solution. The aim of each contribution is to provide insights that will
enable the experts to progress closer to a complete solution that is optimal in some
way. Thus, the contributions continue until an agreed solution is reached.

An important consideration is managing the flow of the problem-solving, i.e.
deciding who takes the chalk next in the event that more than one expert identifies
an opportunity to contribute; they cannot interact with the blackboard simultane-
ously as this would cause confusion. The intuitive way to impose control is to
nominate an independent arbiter, who decides which expert should contribute next.
However, a consistent basis for making that decision is still needed. The arbiter
needs to be able to assess the benefits of the potential contributions in some way.
One method of proceeding is to ask all of the candidate experts to estimate the value
of their contribution, selecting the one who makes the highest estimate.

The scenario described above has some important properties. First, the experts
act independently and are self-contained. Their approach to solving the problem
and the knowledge they possess about it (in terms of their prior experience, the level
they have reached and the focus of their expertise) can differ vastly, which means
that very diverse contributions can be made. Second, the problem is solved in an
opportunistic fashion, i.e. the flow of expert contributions is not predetermined or
prescriptive. They respond when they have something worthwhile to contribute
based on their perception of previous contributions. This is also an event-based
method of problem-solving. The event that triggers an expert to ask to contribute is
the writing of a partial solution (or other information) that allows that expert to
apply his or her knowledge to the problem.

1.3.2.2 Components

The blackboard AI architecture is analogous to the scenario described above. It
consists of three main components:

• The Knowledge Sources (analogous to the experts in the human system)
• The Control Component (analogous to the arbiter in the human system)
• The Blackboard (analogous to the physical blackboard in the human system)

32 V. Lowndes et al.

Each of these components is now described in detail.

Knowledge Sources
In the AI system, the contributions to the problem solution are made by a set of
“artificial experts”, i.e. a set of diverse problem-solving algorithms known as
knowledge sources (KSs). As in the analogy, these programs are self-contained,
operate completely independently from one another and may have different
strengths and weaknesses to bring to the problem. Thus, within the system of
systems, each KS may be viewed as a black box with its implementation details
hidden from the others. A given KS may reason by any means, for example by
top-down, bottom-up, goal-driven, data-driven or opportunistic methods [22].
However, each KS needs to be able to understand the information that is con-
tributed by the others and also the current state of the problem-solving. Thus, the
BBS requires a common information representation that is understood by all KSs.
For example, a particular blackboard application may have one KS based on an
artificial neural network (ANN) design, one that uses a forward-chaining production
system, one that uses fuzzy logic reasoning and one that implements Dempster–
Shafer models. The production system KS does not need to understand how the
ANN works, but it needs to be able to interpret the contributions that are output by
the ANN as the KSs are required to work together to solve the problem, as in the
human analogy. If the KSs contribute different types of information, then each KS
must be able to understand each of these different types.

The KSs contribute information when they are able (they have something to
contribute) and when activated (they are selected for contribution). Each KS has a
precondition attached to it to determine whether it should be activated and an action
that describes what it will do when activated.

Control Component
In the AI system, the control component is analogous to the arbiter. It is inde-
pendent of the KSs and is tasked with selecting an estimate of the “best” candidate
KS to make a contribution to the problem solution. The mechanism for control in
BBSs has evolved considerably over time but was fairly simple in early systems;
each candidate KS was asked to determine an estimate of its cost (to system
resources) and value (expected usefulness of the contribution). The control com-
ponent merely combined these two metrics in some way to establish which KS
should contribute next.

Blackboard
The component in the AI system that is analogous to the physical blackboard in the
human system is also called a blackboard. However, in the AI system, this is a
shared memory location that acts as a repository for all of the information about the
problem including the input data, the problem statement and all of the
KS-contributed information (solution path suggestions, partial solutions, alternative
solutions, candidate complete solutions, final complete solutions, agreements and
disagreements). The information deposited on the blackboard is often referred to as

1 Model Building 33

a hypothesis. The blackboard component can be thought of as a global database for
KS hypotheses.

The blackboard serves as the main, in-direct communication mechanism
between the KSs; their outputs are recorded on it, and these are read from it and
understood by the other KSs. In addition, contributions made to the blackboard
(events) may trigger a response from one or more KSs.

Some BBSs have blackboards that are subdivided into some way to categorise
the hypotheses that they hold. The division may take the form of levels, sections,
areas, a hierarchy of levels (as in HSII) or some combination of these, and the
information in each part of the blackboard may also be sorted in some way, for
example alphabetically or by the time it was contributed. In addition, some systems
use a number of blackboards for categorisation. The reason for subdivision is to
enable information to be located efficiently. Early BBSs tend to retain all of the
information placed on them for the entire duration of the program life cycle.
Information that appears to be irrelevant is kept because its use often becomes
apparent later on during the program execution. However, some later systems
permit deletion of information that is regarded as “outdated”.

1.3.2.3 Similarities to Other Systems

There are some similarities between BBSs and symbolic rule-based
decision-making systems, also known as production systems (see [23]), for
example expert systems. Rule-based systems consist of a semantic reasoning sub-
system and a set of rules with preconditions and actions. The semantic reasoning
subsystem takes an action from the rule set based on its relationship to the input
data, i.e. a rule is fired when conditions in the input data match its precondition. The
rules in these systems are like the KSs in BBSs, which are triggered under certain
conditions, but rule-based systems differ in that the rules are interdependent, which
reduces the flexibility of these systems. As stated above, KSs operate independently
of one another and are thus highly flexible. BBSs were, in fact, first proposed as a
generalisation of rule-based systems with “rules” that could take any format and
trigger [18].

1.3.2.4 Algorithm

As in the analogy, the BBS algorithm proceeds in an event-based manner. Any
change to the blackboard is an event, and KSs can also cause events when they
write their hypothesis to the blackboard. Any event can result in a match with a KS
precondition. When its precondition is matched, a KS becomes a candidate for
contributing to the blackboard, i.e. executing its action, and it competes with other
KS candidates to execute that action on the blackboard.

34 V. Lowndes et al.

The control component is responsible for selecting one of the candidate KSs,
based upon the current state of the blackboard. In some systems, the control
component is also charged with managing the events that trigger the KSs, but its
chief function is to rank the candidates and select the most highly ranked. The
methods for rating and ranking the KSs differ between BBSs. Some of the different
approaches are discussed in the literature review.

1.3.2.5 Properties

This section is subdivided into the advantages and disadvantages of BBSs. The
main contenders in each category are summarised as follows. Advantages: BBSs
are flexible and general and solve problems incrementally in a step-by-step manner.
They are opportunistic in the way that they tackle the search space leading to more
sophisticated searches. They can also handle both a wide variety of data types and
imperfect data. Disadvantages: the methodology suffers from a lack of formalism.
In addition, the BBS architecture does not scale down to more simple problems and
scales poorly for large search spaces. Further details about each of these properties
are provided in the following subsections.

Advantages
BBSs have an important advantage over more traditional problem solvers that use
rules, for example production systems. Production systems are prescriptive; there is
a set of order for firing the rules, i.e. all reasoning is either forward or backward
chaining. In BBSs, the problem-solving is opportunistic in that the most appropriate
KS is selected, for example in speech recognition words that are understood well
can be used to limit the search for interpretations of poorly sensed words. In
addition, the solution is built incrementally in a step-by-step manner in response to
events on the blackboard; there is no predetermined prescription for the triggering
of KSs. KSs respond to events as and when they happen, and it is the interaction
between the KSs (via the blackboard) that determines the solution paths explored
and thus the final solution. The exploratory properties of the BBS search are
therefore high in comparison with rule-based systems, which results in a much more
sophisticated search of the solution space. In fact, BBSs show emergent properties
in that their behaviour is governed by the interactions between a number of inde-
pendent, interacting agents (the KSs) that follow relatively simple rules.

The BBS architecture is modular and is thus highly general and flexible when it
comes to solving knowledge-based problems. As the KSs are independent, they can
be adapted, added and removed from the system to improve its performance or to
adapt it to solve other problems. This is in contrast to rule-based systems, where, for
example, removal of a rule might affect the logic of the system leading to poor
performance.

The control component and the structure of the blackboard can be designed in
many different ways, permitting much freedom for the BBS application developer.
BBS applications can also be built incrementally because of the system flexibility.

1 Model Building 35

When designing, the application a developer may thus postpone decisions about,
for example, which KSs to include or what control strategy to employ, until the
system has reached an appropriate level of experimentation and testing. This is
especially important for novice developers, who are learning to build BBS
applications.

Another major advantage is the ability of BBSs to handle quite severe limitations
in input data and also to handle a wide variety of data types. They are capable of
dealing with ambiguity, incomplete data, uncertain and imprecise data and large
quantities of data. They can also work with and can integrate different data types,
which makes them particularly suited to the solution of problems that require the
combination of many separate diagnostic components, dynamic decision-making
problems, data fusion problems and problems involving systems of systems. They
can also work with data that arrives asynchronously and sporadically [17].

BBSs are also capable of following multiple lines of reasoning concurrently.
Once the relationships between hypotheses are established, each can be linked to
others that justify or clarify it.

Disadvantages
Unfortunately, the chief advantage of BBSs, flexibility, is directly related to their
main disadvantage in that it has led to a lack of formalism in defining them. This
drawback is often cited as the major reason for their abandonment following the
“AI Winter” (around 1990), where more formal frameworks were generally adopted
for dynamic decision-making. The dismissal of less formal methods has had an
impact on the perception of BBSs and their place in AI. Notably, BBSs receive only
three sentences in Russel and Norvig [24], which is widely regarded as the leading
textbook on AI, and in the latest edition [25], there is no mention of them. BBSs
were recast as Bayesian Blackboard Systems (BBBSs) in response to this drawback
(see [26]).

BBSs have traditionally been used for solving problems that are complex and
ill-defined. Erman has suggested that the advantages of BBSs do not scale down to
simpler problems [19]. Thus, unless a problem is sufficiently complex to warrant
use of a BBS, then it is best to use a simpler architecture. A simpler architecture is
also favourable when dynamic decisions do not need to be made or if an application
contains only one system. Another well-documented drawback is the difficulty in
estimating the value of potential KS actions. This has led to the design of more
sophisticated control components for BBSs and also, later, their integration with
Bayesian Belief Networks. These developments are discussed further in Sects. 3.3
and 3.4.1.

Although the early BBSs demonstrated that they worked well with complex,
dynamic decision problems, they ran into difficulties when the search space became
too large [20]. In fact, this was another reason for their decline in the 1990s, as the
processors of the time were not powerful enough to deal with the extra computation
burden.

36 V. Lowndes et al.

1.3.2.6 Definitions

The flexibility that is a key feature of the BBS design has led to some confusion
about its definition and some of the terminology surrounding it. This section aims to
clarify some of the misunderstandings.

First, the game AI community and some other sources tend to define BBSs as
merely a means for sharing common data among subsystems, i.e. the view is that
they can be thought of simply as a global database or communication medium. In
the seventies, eighties and nineties, this view was very much frowned upon; for
example, Corkill states that a system with a global database also requires a set of
KSs and a control component to be classed as a BBS [19]. However, as BBSs are
now widely used in game development, this definition has become somewhat
acceptable. Tuple spaces, a form of distributed shared memory, are also often
confused with BBSs (see [27]). They provide a repository for tuples that can be
accessed concurrently by, for example, different processors, but there is no
requirement for a set of KSs to work together to solve a problem. Tuple spaces are
said to use the blackboard metaphor (referred to in this chapter as the blackboard
analogy), but the metaphor is, in fact, only partially implemented.

Second, there has been a lack of agreement between authors regarding some of
the terminology. To counteract this, Engelmore has listed a set of definitions to
distinguish between blackboard systems, models, frameworks, applications, archi-
tectures and shells [28]. This chapter adopts most of the definitions in Engelmore
with some slight modifications. The terminology used in this chapter is summarised
as follows: the term architecture is used to refer to the general core design and set
of components of the blackboard AI method. The term method refers to the pro-
cedural details of the algorithm, which effectively represent a computational
interpretation of the analogy [29]. The term system refers to a particular design
implementation; for example, HSII is a blackboard system (BBS) with a specific
design for the control component. Application is used to refer to the use of a given
BBS to solve a particular problem; for example, HSII is an application when it is
used to solve the speech recognition problem. Framework is used to refer to
commercial or academic tools that enable a developer to build a BBS based on, for
example, supplied program methods and subroutines. Shells are synonymous with
systems in some sources (e.g. [30]), but the term is not used in this chapter.

1.3.2.7 Problem Types and Applications

This section examines the types of problems that are particularly suited to solution
using a BBS. The discussion in the section “Analogy” highlighted the advantages
of BBSs and linked the flexibility of allowed input data (e.g. incomplete and
uncertain data), the modular design and the incremental solution-building approach
with capacity for solving problems that require the combination of many separate
diagnostic components. Thus, case-based reasoning and dynamic decision-making
problems such as speech recognition, signal understanding, symbolic learning,

1 Model Building 37

robot vision, image understanding, structure identification, vehicle monitoring and
tracking, robot map creation, fault and disease diagnosis, planning and scheduling,
and information fusion problems are all suited to solution using a BBS. For
example, a robot building a map of an area may rely upon infrared and sonar sensor
data to attempt to trace an image of its environment. Both of these data types are
unreliable, and the environment may be changing dynamically. However, a BBS is
able to fuse the data from the two input types as it arrives, make sense of the
resulting information and reason about it.

In general, any problem with a number of different, interacting components that
requires the integration of diverse expertise is a candidate BBS problem. This
includes complex problems with very large search spaces and problems that suffer
from combinatorial explosion, as well as ill-defined and poorly structured problems,
for example problems where the goals are not clear or where the solution path from
the initial state to the goal state is highly irregular [21]. Cooperating agent systems
and distributed and parallel AI problems are also good candidates for solution with
a BBS. It is the integration of several different KSs that makes BBSs applicable to
the solution of a wider variety of problem types. Most other symbolic AI methods,
for example production systems, can only deal with knowledge about a single
problem domain. This tends to limit them to the solution of diagnosis-type prob-
lems, which are much simpler than interpretation-type problems such as speech
recognition. The reasons for this are discussed further in the section “Combination
with Bayesian Belief Networks”. Furthermore, many production systems are only
capable of working offline; they cannot handle the arrival of new information on the
fly, whereas BBSs have this capability.

It is also possible to solve problems with hard, real-time constraints (i.e. prob-
lems with deadlines for the solution) using the BBS model (see [31]), although
more sophisticated and predictable control strategies are needed to allow accurate
estimation of action durations, as the computation time and use of other resources
need to be considered. The system also needs a mechanism for assessing the
trade-offs between cost and effectiveness of actions. This requires it to be able to
predict resource usage [20].

The literature review provides examples of BBSs solving some of the problem
types listed in this subsection. It is presented in chronological order so that it also
acts as a guide to the “History and Evolution” of BBSs as well.

1.3.2.8 BBS Frameworks and Toolkits

There was very little software to support the development of BBSs for a long time
after their conception. Thus, initially, many researchers and application developers
had to build them from scratch [19]. Hearsay-III (see [32]) was developed in
response to the demand for a domain-independent framework upon which to build a
BBS. The framework, which sat on top of a relational database called AP3, was
used to develop many other systems including a BBS that was applied to a crisis
management task (see Hayes-Roth et al. [33]). Another early development toolkit

38 V. Lowndes et al.

was Corkill’s GBB framework (see [34], which was used to build a satellite control
system for the Canadian Space Agency. It was also used for logistics planning in
the US Army and for design engineering projects at Ford. Many toolkits are now
available commercially, for example BEST (Blackboard-based Expert System
Toolkit), designed by the Mihailo Pupin Institute. BEST, which is designed to run
in the Windows environment, is implemented using C++ and Arity Prolog and uses
the MEKON inference engine. Many open-source resources are also available to
assist developers; for example, the source code, a toolkit and a software develop-
ment kit for the computer game “No One Lives Forever 2” (NOLF2, developed by
Monolith Productions), which implemented a BBS architecture, are available (see
[35]).

1.3.3 Literature Review

BBSs began with the Hearsay-II (HSII) speech recognition system built at Carnegie
Mellon University in the early 1970s, although the notion of an “artificial black-
board” being used to share ideas to solve a problem was first conceived by Allen
Newell in 1962 (see [36]). The success of the Hearsay-II project inspired many
other researches to adopt the blackboard architecture for applications such as signal
interpretation, for example in the HASP/SIAP systems [15], and planning [37]. The
model became very popular throughout the 1980s for solving complex AI prob-
lems, both with academic researchers and also in industry where it was employed
by, for example, Cambridge Consultants Ltd. as the BLOBS system to implement
reasoning about time-dependent data [38] and as the MUSE system to solve
real-time problems [39]. Fujitsu in Japan also developed a BBS called ESHELL for
problem diagnosis in cranes, as well other applications (see [28]).

There has been considerable development of the architecture since the early
systems. Many of the initial enhancements concentrated upon modifying the control
component, and there was a general move away from data-based control towards
more goal-oriented control [20]. Other researchers focused on extending the
architecture to distributed applications using, for example, networks of BBSs [40].
Parallel BBSs were also investigated in [41] and by Bell Laboratories (see [42]).
BBSs became very scarce in the academic literature following the early 1990s. This
has largely been attributed to their lack of formalism, but may also be related to the
move of many of the early BBS proponents and researches from academia to
industry. BBSs made a reappearance in the literature from around the year 2000
when several researchers attempted to merge the architecture with Bayesian Belief
Networks (see, e.g. [16]) in an attempt to give it more rigour. Although academic
papers about BBSs remain fairly scarce, the architecture continues to be very
popular today in commerce and industry, both in the Bayesian hybrid format and in
formats that are very close to the original architecture. For example, they are widely
used by the computer gaming industry to control non-player character

1 Model Building 39

(NPC) behaviour (see [35]), are used by Adobe to recognise text and have been
used to manage satellite operation in Canada.

1.3.3.1 Prehistory

Allen Newell was the first person to use the term “blackboard” in AI literature [36].
In his 1962 paper about organisational problems in programs such as chess-playing
programs, he refers to a set of workers looking at the same blackboard, each capable
of reading what is on it, writing to it and judging when they have something
worthwhile to contribute to it. He likens the situation to Selfridge’s Pandemonium
[43], where a set of demons shriek with varying levels of loudness in response to
what they see. He goes on to discuss ways to organise the synthesis of complex
processes using hierarchically organised subroutines [44]. These early ideas
eventually led to the development of production systems with preconditions and
actions. Interestingly, the term “demons” is still used to describe the set of rules
with satisfied preconditions in production systems.

The term “blackboard” was mentioned again by Herbert Simon in 1966 in an
article that was later published in 1977 [45]. In this article, the information gen-
erated about problem-solving that was fixed in permanent memory was referred to
as the “blackboard”. The article also talks about the creation of subgoals and the use
of a hierarchy of goals and subgoals to achieve the original overarching goal. Simon
suggested his ideas about blackboards to Raj Reddy and Lee Erman, when they
were preparing for the Hearsay project, although many of the ideas that eventually
emerged from Hearsay were centred around the needs of the application, i.e. speech
understanding [44]. Thus, most of the core properties and components of black-
board systems, such as opportunistic problem-solving, different levels of abstraction
and KS collaboration, were derived directly from those needs.

1.3.3.2 The First BBS—Hearsay-II

This section looks in detail at the system that is widely regarded as the first BBS,
Hearsay-II (HSII). HSII was created for speech recognition, evolving directly from
Hearsay-I (HSI) (see [46]). HSI was a prototype blackboard system, but is probably
not cited as the first BBS because there was no dynamic control component and also
because it did not work well. In HSI, information sharing among the KSs was
carried out only at the word level, so it was difficult to add non-word KSs and
determine the value of their hypotheses [47]. KSs were also activated using a
hypothesise-and-test paradigm, rather than by a control component that dynami-
cally selected the most appropriate KS.

The most popular reference for HSII is [14], which describes the final developed
BBS. Earlier incarnations of HSII implemented a data-directed control approach,
where KSs were activated in response to events on the blackboard if their pre-
conditions were satisfied, and all KSs were checked for this. The data-driven

40 V. Lowndes et al.

approach tries to answer the question “what should the system do given the
available data?”

The final HSII system (described in [14]) has an agenda-based control mecha-
nism referred to as the scheduler. Rather than checking the preconditions of all the
KSs, which can be time-consuming, this incarnation of HSII categorises events into
types and the KSs provide lists of the event types they are interested in. The
scheduler then needs only to check the preconditions of KSs with event types that
match the given blackboard event. KSs with matching types and satisfied precon-
ditions are instantiated, are referred to as Knowledge Source Instantiations (KSIs)
and are placed on the agenda. Note that some sources refer to Knowledge Source
Activation Records (KSARs) rather than KSIs, but the terms are interchangeable.
Once instantiated, the scheduler has access to information about the action each KSI
would execute and the likely changes this would make to the blackboard. The
agenda thus consists of all the actions that the system could possibly take next. The
scheduler chooses the best KSI action based upon ratings of its contribution and
cost, i.e. there is an estimate of how much progress it is likely to make towards
solving the problem and another estimate of computational cost; the winning KS is
then removed from the agenda. The cycle repeats until a different event takes place
or there are no more KSIs on the agenda. The scheduler’s rating calculation is a
weighted linear function of several variables and is known as the expected value of
the KSI; the result of the calculation tells the system which particular line of
reasoning it is best to pursue; i.e., the hypothesis with the maximum expected value
is the one considered worthy of further investigation.

The blackboard in HSII consists of a hierarchy of levels; for example, there is
phrase level, a word level and a syllable level. There are also classes for each
hypothesis associated with each level, and the levels contain a set of dimensions so
that information can easily be retrieved when needed.

The KSs consist of acoustic, lexical, syntactical and semantic reasoning systems
[17]. These KSs examine the blackboard for information that they can work with,
for example hypotheses about adjacent words. When activated, a KSI posts a new
hypothesis onto the blackboard. For example, a KSI may use the rules of grammar
to generate words likely to appear next in a phrase or sentence, and another may
actually detect words directly from the source. When a KS posts a hypothesis,
which could be a partial solution, it then attempts to verify it in a test stage, where it
may be refined. The entire process represents a search for a hypothesis that explains
the data at each level of abstraction [17].

ARPA funded the speech recognition umbrella research program of which
Hearsay was a part, and at the end of the project, the various systems that emerged
were analysed and compared [29]. HARPY (see [48]), which employed a Markov
algorithm to perform its analysis, was deemed the best in terms of performance,
although it was not as flexible as HSII. Control was generally considered a problem
in HSII because the decisions were based upon the scheduler’s rating of the local
and immediate effects of KSI actions. Using such a limited expected value, function
can lead to poor performance because actions are not independent of one another;
indeed, they can have very complex interrelationships. A more accurate expected

1 Model Building 41

value would depend upon when the actions were executed and the next actions in
the sequence. Thus, in HSII, the global effects of actions and the long-term state of
the blackboard had to be abstracted by using models of the intermediate state to
predict them. This was a way around the problem, but what was really needed was a
method for linking potential actions and goals. HSII struggled because it was forced
to deal with uncertainty about whether a given hypothesis was part of a solution and
also with uncertainty about the expected values of actions. This led the HSII team
and other researchers to enhance the control mechanism in HSII; effective control is
especially important when uncertainty of the input data and problem-solving
knowledge is high [20].

1.3.3.3 Development of Control Mechanisms

The BBSs that followed HSII tended to adapt and improve the control component
in some way because of the flaws in the original design. In addition, HSII was only
capable of handling a single input phrase and could not deal with strict scheduling
deadlines. It thus became necessary to create more elaborate control mechanisms to
address these problems since multiple inputs could potentially overload the
blackboard and the agenda, and predictable control structures were needed for hard
time constraints to allow accurate estimation of action durations.

In general, there was a move away from implicit representation of goals, as in
HSII, towards more explicit representation of goals and their relationships to the
overarching goal, so that more efficient and sophisticated goal-oriented control
mechanisms could be implemented [20]. Thus, goal-directed reasoning, which can
be defined as reducing a problem from a set of abstract high-level goals into more
detailed low-level subgoals and planning, was introduced to BBSs. In contrast to
the data-driven approach, the goal-directed approach tries to answer the question
“what should the system do to solve the problem?” This is essentially achieved by
identifying sequences of actions capable of satisfying goals and subgoals. The
system terminates when all the goals have been achieved, and the resulting solution
is deemed acceptable in some way. There may be other solutions that meet the
constraints of the input data, but the system must be capable of selecting the “best”
one. Thus, many different search strategies can be employed, for example a focused
depth-first search that pursues a particular solution if it is preferred, or a more
exhaustive breadth-first search that pursues all potential solutions until a particular
one is favoured.

The control mechanisms that evolved from HSII began to use methods for
making more accurate predictions about the long-term effects and global value of an
action by representing goals in a more detailed and explicit way. They also began to
limit the rerating of KSIs by restricting the number on the agenda to those more
likely to be executed, increasing the efficiency of the algorithm. This subsection
chronicles the development of the control component from its agenda-based
approach in HSII through to the event-based approach seen in HASP/SIAP [15], the
hierarchical approach used in CRYSALIS [49, 50] and the goal-directed

42 V. Lowndes et al.

architecture of DVMT [40], which also included incremental planning. The BB1
[22] and RESUN [51] and Carver and Lesser [52] control mechanisms are also
discussed as further extensions to the goal-directed approach.

Event-based control in HASP/SIAP
The HASP/SIAP BBS (see [15, 53]) was built to interpret sonar signals and identify
the ships and submarines that produced them. The control architecture extended that
of HSII by specifying the KS preconditions as predefined event types, so that, in
effect, preconditions and event types were merged. Thus, as soon as an event
occurred, the activated KSs were immediately known making the control algorithm
much more efficient. The system used blackboard events, clock events (a time and a
set of events expected to occur at that time), expectation events (events expected to
occur in the future) and problem events (e.g. missing information). HASP also used
a limited hierarchical control structure to distinguish domain knowledge from
knowledge about its application; this was a precursor to the hierarchical control
structure used in CRYSALIS.

The main disadvantage of the modified control mechanism in HASP was that
opportunism in the system became more limited because the predefined event types
governed the KS sequence. In HSII, the KSs were triggered in an ad hoc fashion by
general events.

Hierarchical control in CRYSALIS
CRYSALIS (see Engelmore and Terry 1979; [49]) was used for protein crystal-
lography. Its control mechanism was built on a hierarchy of control knowledge
sources (CKSs) that were tasked with selecting the domain knowledge source
(DKS) to be executed. There were two levels of CKS, a single strategy CKS and a
set of task CKSs corresponding to the system subgoals. The strategy CKS selected a
sequence of task CKSs for execution, which in turn selected a sequence of DKSs
for execution. This technique eliminated the need for KS preconditions. The
strategy CKS looked at the current blackboard hypotheses and made a decision
about where to focus the problem-solving, i.e. determined which subgoals had the
maximum expected value and should be pursued next; it thus provided coarse focus
for the problem-solving. Its selection led to the sequential execution of a set of task
CKSs, which provided the fine focus. Each task CKS in the sequence examined the
conditions on the event list and selected appropriate DKSs for sequential execution.
As in the core BBS architecture, the DKSs examined the blackboard in order to add
or change hypotheses.

The opportunism was reduced in CRYSALIS as in HASP because there was no
method to change focus once a path forward was decided. In HSII, switching
between paths was simple. Moreover, HSII could pursue multiple lines of reasoning
concurrently without a need for backtracking to a previous one. In contrast,
CRYSALIS could follow only one line of reasoning at a time and thus had to
backtrack when required. However, this was not a major problem for CRYSALIS
because it was not designed to solve real-time problems. When researchers began to
require the solution of such problems using BBSs, a different approach to control
was necessary.

1 Model Building 43

Goal-directed control in DVMT
A goal-directed approach to control was first used for the application of distributed
vehicle monitoring in the DVMT BBS (see [40]). This system inserted a goal
blackboard and goal processor (for creating goals on the goal blackboard) into the
core BBS architecture. The goal processor employed three mapping functions:
hypothesis-to-goal, goal-to-subgoal and goal-to-KS. Data-directed goals were cre-
ated on the goal blackboard following the addition or amendment of a hypothesis
on the domain blackboard and use of the hypothesis-to-goal mapping.
Goal-directed subgoals were created on the goal blackboard after the creation of
others via the goal-to-subgoal mapping. KSs were selected to have their precon-
ditions checked in response to the insertion of a goal on the goal blackboard and use
of the goal-to-KS mapping. The resulting KSI ratings incorporated both a
data-directed and goal-directed element by using information about the super-goal,
the hypothesis that gave rise to the goal and the level of the blackboard. DVMT
succeeded in representing explicit goals and the global effects of actions by linking
local effects with higher-level goals.

Control in BB1
In 1986, Hayes-Roth published work on the application of a BBS to solving
arrangement-assembly problems [22]. The task was to arrange a set of given objects
such that a given set of constraints was satisfied. The BBS with
domain-independent knowledge about arrangement assembly was named
ACCORD, and several other BBSs were also created based on the same design but
with focus in a particular domain; for example, the PROTEAN system was tailored
to protein-structure analysis and the SIGHTPLAN system was used for designing
construction site layouts. Both of these systems made use of ACCORD as a KS.
Collectively, the set of assembly-arrangement BBSs were known BB1 systems.

BB1 modified the original HSII control architecture so that additional KSs were
used to build the control plan for the system’s behaviour. In BB1’s control archi-
tecture, the domain problem and the control problem were both solved using the
blackboard model. The architecture used CKSs as in CRYSALIS but also inserted a
control blackboard. It implemented an agenda-based approach to solving the control
problem as in HSII, but introduced a more complex control planning method where
the CKSs incrementally developed control plans on the control blackboard. The
overall architecture can thus be thought of as “blackboard within a blackboard”.
BB1 worked at three levels of abstraction: the strategy (long-term plans), the focus
(goal) and the heuristic (rating function). The long-term plans were reduced to
sequences of substrategies, which in turn were reduced to foci, a set of goals. Each
focus had an associated set of heuristics that were used to rate potential KSI actions
that matched the focus. These could be changed dynamically to suit different
problem-solving stages. KSIs from both the DKSs and CKSs were placed on the
same agenda and rated using the same function.

In addition to a more sophisticated control system, BB1 also introduced learning
KSs to modify facts in the KS knowledge bases and provided an additional
capability for explaining its actions. On each solution cycle, and in response to user

44 V. Lowndes et al.

requests, it was capable of providing information about how the selected actions
matched with the control plan.

The control architecture of BB1 did not compromise the opportunism of the
system as in CRYSALIS and HASP, i.e. actions and plans were both implemented
opportunistically. However, although BB1 succeeded in implementing the deter-
mination of high-level, long-term goals, it did not carry out goal decomposition.

Control in RESUN
Planning represents a search for the best solution and a search for the best way to
find it. The RESUN BBS (see [51, 52]) extended the HSII BBS by replacing the
agenda strategy and engineered complex rating functions with an incremental
control planner that simply carried out a number of less complex searches to make
the best decisions. It was also able to preserve the core BBS opportunistic properties
as it incorporated an additional refocusing mechanism that permitted a posteriori
changes to the planner focusing decisions. This enabled postponement of decisions
when there was insufficient information about a plan, or when two plans could not
be rated against each other without sufficient refinement. Refocusing was allowed at
both a data/event level and at a planning/hypothesis level so that the system could
switch focus in response to developing plans, new hypotheses and input data.

RESUN enabled better resolution of uncertainty in the hypotheses. It worked
with detailed information about the uncertainty of hypotheses and their alternatives
and used explicit statements about the sources of the uncertainty called source of
uncertainty statements (SOUs). The SOUs were attached to hypotheses so that goals
could be generated to eliminate the uncertainty.

RESUN was the most goal-directed control approach of all the BBSs discussed
in these subsections. Most of the others simply added goal-directed methods to the
agenda method. RESUN started with the goal-directed approach and used focusing
to allow data-directed control when necessary for opportunism.

1.3.3.4 More Recent Developments

As mentioned at the start of this section, following the “AI Winter” around 1990,
documentation of BBSs began to decline in the academic literature, largely due to a
lack of formal underpinnings for belief in and decisions about actions. This meant
that the systems could only be assessed empirically. Although they remained
popular in industry, academic researchers were beginning to prefer non-symbolic
(modern AI) approaches to problem-solving or more rigorous statistics-based
approaches. In addition, there was a perception that BBSs were large and unwieldy
requiring vast quantities of code to manage them and their complex data structures
[18]. Another problem was that the initial successes documented in the literature did
not scale well to larger dimensioned problems because the computers in use at the
time did not have the storage or processing power required. Most of the problems

1 Model Building 45

that had been solved with BBSs thus far were NP hard, which meant that solutions
were not tractable in the large limit at the time. For example, in the speech
recognition field, many researchers began to work with simple Hidden Markov
models as they could outperform BBSs like HSII. BBSs were thus recast as
Bayesian Blackboard Systems (BBBSs) in an attempt to define them in modern AI
concepts [26].

During the “AI Winter” some researchers, no doubt dismayed by the sudden
demise of BBSs, undertook work to begin to formalise BBSs. In 1991, Craig
provided a relatively complete mathematical specification for a sample interpreter
BBSs using the Z specification language [see 54]. Velthuijsen used a similar
approach in 1992 but applied the specification to a number of concurrent BBSs
using the CCS language [55]. Craig then extended his 1991 work to provide a
formal account of BBSs that showed that control information could be derived and
represented in temporal logic [56]. Following this, the interpretation problem was
formalised by Whitehair (see [57]) and his paper also analysed BBS systems when
applied to the problem. The paper demonstrated that it was possible to develop
models for opportunistic AI architectures like BBSs.

Combination with Bayesian Belief Networks
A BBBS closely resembles a traditional BBS, with KSs, a blackboard and a control
component. However, in a BBBS, the role of the KSs is to modify Bayesian Belief
Networks (BBNs) on the blackboard rather than direct hypotheses (see [17]). The
Bayesian component provides the hybrid architecture with a foundation in proba-
bility theory, validating the underlying reasoning, i.e. it allows probabilistic models
(that can reason about uncertainty) to be built rather than symbolic ones. In addi-
tion, the integration not only formalises the BBS but extends traditional
belief-based systems by allowing them to be built incrementally. However, Carver
states that some of the flexibility and opportunism is lost in interpretation BBBSs
that work in time slices as they have to compute exact probabilities for all inter-
pretations of new data with no ability to search selectively [26].

A belief network is a directed graph where the set of nodes represents propo-
sitions with associated probability distributions (PDs), some of which may be
conditional (dependent on the PDs of the nodes pointed to). Nodes with uncon-
ditional probabilities are termed evidence nodes. The conditional PDs are stored in
tables known as conditional probability tables (CPTs).

One of the first attempts at integrating BBSs with BBNs was the AIID system
(Architecture for the Interpretation of Intelligence Data), which was developed for
information fusion in military scenarios (see [17]). The problem was to infer an
enemy unit’s strategy given military intelligence, and it required the system to be
able to cope with heterogeneous data (of varying precision and reliability) arriving
sporadically from many different sources. Thus, it was necessary to be able to
understand the meaning of data when it arrived. This is not possible using a simple
data-driven approach as the search space is too large. A method for reasoning about
uncertainty was also needed. Traditional BBSs such as HSII dealt with uncertainty

46 V. Lowndes et al.

implicitly and heuristically via the scheduler rating function. However, in AIID,
each hypothesis was directly associated with a probabilistic uncertainty.

In AIID, the data corresponds to evidence with conditional probability infor-
mation, and the belief network is dynamically created and grown as data are
received and processed. The network consists of nodes that have a type and set of
arguments that identify it, with nodes being associated with hypotheses, previous
observations or background knowledge. In addition to preconditions and actions,
the KSs have a confidence property that embodies their usefulness. When KSIs are
activated, they alter the network in some way; for example, they may post new
nodes to the blackboard, remove existing nodes, add edges or change conditional
probabilities. The KSs themselves can also exist as belief networks that represent
small fragments of knowledge. When a node in the fragment matches a node on the
blackboard, i.e. their types and arguments match, a KS becomes a candidate KS and
may post its knowledge fragment on the blackboard. After being posted, a
knowledge fragment’s two conditional PDs (the one from the KS knowledge
fragment and the one on the blackboard) are combined. The evidence combination
methods vary between BBBSs. As in traditional BBSs, only one KS is run at a time
to maintain tractability, but the difference is that control is maintained by computing
the expected utility of an action, given the available evidence.

BBBSs arose from a need to improve existing methods for solving complex
interpretation problems (such as vehicle tracking, robot map making and speech
understanding) as well as a desire to formalise BBSs. These problems are inherently
much harder to solve than diagnosis problems as an interpretation requires that
instances of input data types are explained in terms of hypotheses about events that
might have given rise to them [26]. Moreover, there are multiple possible inter-
pretations for a given set of input data, as there are many different instances of each
type and many uncertainties because of data noise. The solution space can become
exponentially large for high-dimensioned problems. A system that is able to reason
about the validity of evidence for alternative hypotheses can thus make better
judgements regarding which solution path to follow. Diagnosis problems do not
share the same complexity as there is a single, fixed set of hypotheses, for example
possible faults in engine fault diagnosis. Furthermore, the relations between the data
and the hypotheses are known, and complete, static probability models are easily
constructed. Interpretation problems, on the other hand, lack a model for connecting
data instances with hypotheses. This phenomenon is known as the data association
problem (DAP). BBBNs that attempt to solve interpretation problems can thus only
work with estimates of conditional probabilities, and when performing evidence
propagation, the solutions can only approximate the optimal [26].

Other recent work
Culliton describes the hypothetical use of a BBS to coordinate intelligent units in a
combat computer game [58], referring to BBSs as “the perfect system to use”,
although he states that, initially, the complexity of the architecture prohibited its use
in game design because of limited time, resources and budgets. However, there is
documentation of the use of a BBS for coordinated behaviour in the game NOLF2,

1 Model Building 47

developed by Monolith Productions in 2002 (see [35]). He states that a BBS was
used to handle coordination with respect to the timing of behaviours, pathfinding
and tactics. For example, the architecture solved problems such as preventing
duplication and repetition of behaviour in agents. Contrary to the belief that BBSs
are “code-heavy”, Orkin stresses that use of a BBS allows a reduction in code
volume, is simple to implement and is flexible and maintainable. Furthermore, he
asserts that it simplifies the agent architecture, permits reuse and sharing and allows
complex reasoning to take place. This conflict of opinion may have arisen because
Orkin implemented a more simplified version of the classic BBS, whereas Culliton
was discussing the original, more complex architecture. Indeed, Dill reports that the
term “blackboard architecture” is used differently in game AI than in the academic
literature [59], often being used merely to describe shared memory space that AI
components can use to store knowledge. He cites line-of-site (LOS) checks,
path-planning checks and the coordination of AI components as common uses for
BBSs in game AI, emphasising that the latter may require the more complex, classic
use of BBSs, i.e. independent KSs posting partial solutions to a problem on the
blackboard rather than merely using it as shared memory space.

Millington and Funge on the subject of AI for games, reporting that this method
has been used extensively by game programmers as a mechanism for coordinating
the actions of several independent decision-makers [18]. Their description of BBSs
implies that many systems developed for games follow a more simplified form of
the more classical architecture as seen is HSII, rather than the modernised Bayesian
hybrid architecture. This makes sense as there is generally a less rigorous
requirement in game AI; the purpose behind it is to create believable behaviours
rather than to solve complex problems with large search spaces. Millington and
Funge cite a typical example use of BBSs in a computer game, ballistics planning,
where three different AI systems work with a blackboard to fire at enemy tanks.
There is a route planning subsystem, a target selection subsystem and a ballistics
calculation subsystem. Running each system sequentially is not efficient as the
game environment changes rapidly, and this approach does not allow information to
flow back in the opposite direction. There is a need for all of the AI subsystems to
communicate freely without having to set up individual communication channels.
The solution to this problem is to use the blackboard architecture. Suggested actions
are written to the blackboard by the subsystems where they are stored along with
agreement flags. Actions are only executed if there is full agreement between
relevant subsystems. For example, “fire at tank X” would have an agreement slot
for the ballistics subsystem. The ballistics subsystem could agree, disagree or even
remove the suggested action from the blackboard. It could also post a new sug-
gested action, for example “move into firing position for tank X”, leaving the
original proposition still on the blackboard, but deferring agreement until the cor-
rect position had been reached. This example strongly suggests the game AI def-
inition of BBSs, i.e. the shared data paradigm. Champandard also discusses the use
of BBSs for computer game behaviour coordination [60], citing their main
advantage in game AI as their modularity; as the various systems that need coor-
dinating are independent, they only interact by exchanging information on the

48 V. Lowndes et al.

blackboard. Champandard assets that this reduces the coupling between them,
making the coding structure much more straightforward. Another article that pro-
vides insight into the use of BBSs for game AI is David Mark’s account of an
interview with Damian Isla, a developer at the MIT Media Laboratory who worked
on games such as Halo 2, released in 2004 (see [61]). Mark reports that Isla views
BBSs as architectural constructs for decoupling information gathering and storage
from the decision-making process; multiple decision-making subsystems can work
with the same information simply by looking at the blackboard; for example, the
threat level of an enemy character can be calculated once and saved for all the
subsystems to work with. Isla also likened the blackboard to a unified interface for
all game data, storing the data in a contextually significant way so that relevant
subsystems know what it means. This is an allusion to the definition of BBSs in the
game AI sense of a shared data source for different decision-making components.

Aside from game AI, there have been other recent uses of BBSs. For example,
Khosravi and Kabir used a classic BBS integrated with offline ANN training for
optical character recognition (OCR) of typed text in the Farsi language [62]. In this
BBS, some of the KSs that were used were generated offline a priori as a training
exercise. These took the form of multilayer perceptrons (MLPs), a type of ANN.
Other KSs, mostly classifiers boosted by the MLP training, ran online. In addition,
some KSs were static and some were changed dynamically during run-time. The
control component used confidence values that were usually taken directly from the
classifier outputs to rate the value of potential actions on a scale 0 through 100. As
an example, one KS was a segmentation and recognition module with the task of
breaking words down into individual characters and then recognising them.
Another KS was a vocabulary “expert” containing 55,000 words. Its task was to
match recognised words with words in its database. If a recognised word did not
exist (e.g. because of misclassification of characters), then it would find the word
most similar to the recognised one. The system also used tools to help with the text
recognition, for example a spellchecker and a line detector. The system was capable
of recognising 10 popular Farsi fonts and was tested on 20 real-life documents
producing a recognition rate of about 97% at the word level and about 99% at the
character level.

Fox provided an interesting extension to BBBSs in 2012 by using a hierarchical
Bayesian Blackboard integrated with a Metropolis–Hastings algorithm and a BBN
for map building with a whiskered robot known as CrunchBot [16]. The system was
required to process very large quantities of sparse sensory information in order that
CrunchBot could recognise table-like objects (such as tables, chairs, desks) in its
environment, using only four whisker-like tactile sensors. The solution architecture
was composed of a hierarchical BBS that implemented hypothesis priming and
pruning heuristics integrated with a Metropolis–Hastings algorithm and a Monte
Carlo Markov chain (MCMC) sampling Bayesian network. The observations for
the MCMC were the position and orientation data (with respect to the contact
surfaces) from the whisker sensors. This information was fused with information
about the pose of the robot and hierarchical models relating to furniture objects (e.g.
the recognition of a table leg object infers the presence of a complete table object)

1 Model Building 49

in order to make inferences about the objects encountered and thus build the
map. Each time step was treated as independent inference problem.

The problem tackled was difficult as many incorrect hypotheses can arise when
sparse data are used, and there was often not enough information about the furniture
objects to resolve ambiguities. The authors previously tried to solve the same
mapping problem using particle filtering techniques, but this did not produce the
same level of success as the BBBN system.

1.3.4 Summary

BBSs have been used extensively for solving a wide variety of complex, uncertain,
real-time, dynamic and ill-defined problems, and over the many years since their
conception, they have produced some excellent results. Their problem-solving
power lies in their flexibility, modularity, incremental solution-building approach,
and their ability to handle imperfect data, large quantities of data and data arriving
sporadically and/or asynchronously. They have proved to be a very valuable tool in
domains that require complex, multidimensional searches, for example complex
scheduling and interpretation problems. Moreover, the optimal solution of such
problems remains an open research question, which means that there is ample scope
and opportunity for further research into BBSs, with many different potential design
choices for developers. Although the blackboard architecture is not as popular with
the academic community as it was in its early days, it remains an excellent vehicle
for interesting research projects with a lot to offer for academics, industry and the
game AI community. Symbolic methods may have declined, but the BBS, even in
its core incarnation, is a hybrid architecture capable of incorporating elements of
both modern and classic AI approaches. A recurrent theme throughout the BBS
literature is that the control of the system is at least as important as the domain
knowledge if the system is to be useful, effective and efficient.

References

1. Pearl J (1998) Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann Publishers Inc., San Francisco

2. Trovati M, Bessis N (2015) An influence assessment method based on co-occurrence for
topologically reduced sets. Soft Comput 20(5):2021–2030

3. Sanchez-Graillet O, Poesio M (2004) Acquiring from text. LREC
4. Kuipers BJ (1984) Causal reasoning in medicine: analysis of a protocol. Cogn Sci 8:363–385
5. Trovati M (2016) An overview of some theoretical topological aspects of big data, Big-Data

analytics and cloud computing, theory, algorithms and applications, computer communica-
tions and networks, Springer

6. Liddy ED (2001) A robust risk minimization based named entity recognition system. In:
Encyclopedia of library and information science. Marcel Decker, Inc., New York

50 V. Lowndes et al.

7. Laporte E (2005) Symbolic natural language processing. In: Lothaire (ed) Applied
combinatorics on words, pp 164–209

8. Manning CD, Schutze H (1999) Foundations of statistical natural language processing. MIT
Press, Cambridge

9. Troussov A, Levner E, Bogdan C, Judge J, Botvich D (2010) Spreading activation methods.
In: Dynamic and advanced data mining for progressing technological development:
innovations and systemic approaches, pp 136–167

10. Dale R, Moisl H, Somers HL (2000) Handbook of natural language processing. Marcel
Dekker, Inc., New York

11. Korhonen AYK (2006) A large subcategorisation lexicon for natural language processing
applications. In: Proceedings of LREC

12. Stumme G (1998) Efficient data mining based on formal concept analysis. Lecture Notes in
Computer. Springer, New York

13. Wilks Y, Stevenson M (1998) The grammar of sense: using part-of-speech tags as a first step
in semantic disambiguation. Nat Lang Eng 4:135–143

14. Erman LD, Hayes-Roth F, Lesser VR, Reddy DR (1980) The Hearsay-II speech-
understanding system: integrating knowledge to resolve uncertainty. ACM Comput Surv
12(2):213–253

15. Nii HP, Feigenbaum EA, Anton JJ, Rockmore AJ (1982) Signal-to-symbol transformation:
HASP/SIAP case study. AI Mag 3:23–35

16. Fox CW, Evans MH, Pearson MJ, Prescott TJ (2012) Towards hierarchical blackboard
mapping on a whiskered robot. Robot Auton Syst 60(11):1356–1366

17. Sutton C, Morrison C, Cohen PR, Moody J, Adibi J (2004) A Bayesian blackboard for
information fusion. In: Svensson P, Schubert J (eds) Proceedings of the seventh international
conference on information fusion, pp 1111–1116

18. Millington I, Funge J (2009) Artificial intelligence for games, 2nd edn. CRC Press, Boca
Raton, pp 459–466

19. Corkill DD (1991) Blackboard systems. AI Expert 6(9):40–47
20. Carver N, Lesser V (1994) Evolution of blackboard control architectures. Expert Syst Appl

7:1–30
21. Pang GK-H (2009) Blackboard architecture for intelligent control. In: Unbehauen H

(ed) Control systems, robotics and automation: and intelligent control systems, vol 17.
EOLSS, Oxford, pp 303–316

22. Hayes-Roth B, Johnson V, Garvey A, Hewett M (1986) Application of the BB1 blackboard
control architecture to arrangement-assembly tasks. Artif Intell 1(2):85–94

23. Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs
24. Russell S, Norvig P (1995) Artificial intelligence: a modern approach. Prentice-Hall, New

Jersey
25. Russell S, Norvig P (2016) Artificial intelligence: a modern approach, 3rd edn. Pearson,

Harlow
26. Carver N (1997) A revisionist view of blackboard systems, In: Proceedings of the 1997

midwest artificial intelligence and cognitive science society conference. The AAAI Press,
Dayton, Ohio

27. Gelenter D (1983) Generative communication in Linda. ACM Trans Program Lang Syst 7(1):
80–112

28. Engelmore RS, Morgan AJ, Nii HP (1988a) Introduction. In: Engelmore R, Morgan T
(eds) Blackboard systems. Addison-Wesley, Boston, pp 1–22

29. Craig ID (1995) Blackboard systems. Ablex Publishing Corporation, Norwood, NJ
30. Jones J, Millington M, Ross P (1986) A blackboard shell in PROLOG. In: Proceedings

ECAI-86, pp 428–436
31. Dodhiawala RT, Sridharam N, Pickering C (1989) A real-time blackboard architecture. In:

Jagannathan V, Dodhiawala R, Baum L (eds) Blackboard architectures and applications.
Academic Press Inc., San Diego

1 Model Building 51

32. Balzar R, Erman L, London P, Williams C (1980) HEARSAY-III: a domain-independent
framework for expert systems. In: Proceedings of the first annual conference on artificial
intelligence, pp 108–110

33. Hayes-Roth F, Waterman DA, Lenat DB (1983) Building expert systems. Addison-Wesley,
Reading

34. Corkill DD, Gallagher KQ, Murray KE (1986) GBB: a generic blackboard development
system. In: Proceedings of AAAI-86, pp 1008–1014

35. Orkin J (2003) Applying blackboard systems to first person shooters. [online] slidepayer.com.
Available at: web.media.mit.edu/*jorkin/utgameAI03-Orkin.ppt and http://slideplayer.com/
slide/6102412/. Accessed 16 Apr 2016

36. Newell A (1962) Some problems of the basic organization in problem-solving programs. In:
Yovits M, Jacobi G, Goldstein G (eds) Proceedings of the second conference of
self-organising systems, pp 393–423

37. Hayes-Roth B, Hayes-Roth F, Rosenschein S, Cammarata S (1979) Modelling planning as an
incremental, oppotunistic process. In: Proceedings IJCAI-79, pp 375–383

38. Zanconato (1988) BLOBS—an object-oriented blackboard system framework for reasoning
in time. In: Engelmore R, Morgan T (eds) Blackboard systems. Addison-Wesley. Reading,
pp 335–345

39. Reynolds D (1988) MUSE: A toolkit for embedded, real-time AI. In: Engelmore R, Morgan T
(eds) Blackboard systems. Addison-Wesley, Reading, pp 519–532

40. Lesser VR, Corkill DD (1983) The distributed vehicle monitoring testbed: a tool for
investigating distributed problem solving networks. AI Mag 4(3):15–33

41. Nii HP (1986b) CAGE and POLIGON: two frameworks for blackboard-based concurrent
problem solving. Technical Report KSL-86-41. Stanford University, Stanford

42. Ensor JR, Gabbe JD (1986) Transactional blackboards. Int J Artif Intell Eng 1(2):80–84
43. Selfridge O (1959) Pandemonium: a paradigm for learning. In: Proceedings of symposium on

the mechanisation of thought processes, pp 511–529
44. Nii HP (1986) Blackboard systems: the blackboard model of problem solving and the

evolution of blackboard architectures. AI Mag 7(2):38
45. Simon HA (1977) Scientific discovery and the psychology of problem solving. In: Models of

discovery, Reidel, Boston
46. Reddy DR, Erman LD, Neely RB (1973) A model and a system for machine recognition of

speech. IEEE Trans Audio Electro Acoust AU-21:229–238
47. Engelmore RS, Morgan AJ, Nii HP (1988) Hearsay-II. In: Engelmore R, Morgan T

(eds) Blackboard systems. Addison-Wesley, Reading, pp 25–29
48. Lowerre BT, Reddy R (1980) The HARPY speech understanding system. In: Lea W

(ed) Trends in speech recognition. Prentice-Hall, Englewood Cliffs
49. Terry A (1988) Using explicit strategic knowledge to control expert systems. In:

Engelmore R, Morgan T (eds) Blackboard systems. Addison-Wesley, Reading, pp 159–188
50. Englemore RS, Terry A (1979) Structure and function of the CRYSALIS system. In:

Proceedings of IJCAI-79, pp 250–256
51. Carver N (1990) Sophisticated control for interpretation: planning to resolve sources of

uncertainty. Ph.D. Thesis. University of Massachusetts, Computer and Information Science
Department, Amherst

52. Carver N, Lesser V (1990) Control for interpretation: planning to resolve sources of
uncertainty. Technical Report No. 90-53. University of Massachusetts, Computer and
Information Science Department, Amherst, MA

53. Feigenbaum EA, Nii HP (1978) Rule-based understanding of signals. In: Waterman D,
Hayes-Roth F (eds) Pattern-directed inference systems. Academic Press, New York

54. Craig ID (1991) Formal specification of advanced AI architectures. Ellis Horwood, Chichester
55. Velthuijsen H (1992) The nature and applicability of the blackboard architecture. Ph.

D. Thesis. Faculty of General Science, Limburg University, Maastricht
56. Craig ID (1993) Formal techniques in the development of blackboard systems. Int J Pattern

Recogn Artif Intell 7(2):197–219

52 V. Lowndes et al.

http://slideplayer.com/slide/6102412/
http://slideplayer.com/slide/6102412/

57. Whitehair R (1996) A framework for the analysis of sophisticated control. Ph. D. Thesis.
University of Massachusetts. Computer Science Department

58. Culliton P (2003) Implementing a blackboard-like system for squad-level combat AI Part I.
[online] GameDev.net. Available at: http://www.gamedev.net/page/resources/_/technical/
artificial-intelligence/implementing-a-blackboard-like-system-for-squad-r1931. Accessed 15
Sept 2016

59. Dill K (2014) Structural architecture—common tricks of the trade. In: Rabin S (ed) Game AI
PRO: collected wisdom of game AI professionals. CRC Press, Boca Raton

60. Champandard AJ (2007) Using a static blackboard to store world knowledge. [online]
aigamedev.com. Available at: http://aigamedev.com/open/article/static-blackboard/. Accessed
16 Apr 2016

61. Mark D (2010) Damián Isla Interview on Blackboard Arch. [online] intrinsicalgorithm.com.
Available at: http://intrinsicalgorithm.com/IAonAI/2010/02/damian-isla-interview-on-blackboard-
arch/. Accessed 19 Sept 2016

62. Khosravi H, Kabir E (2009) A blackboard approach towards an integrated Farsi OCR system.
IJDAR 12(1):21–32

1 Model Building 53

http://www.gamedev.net/page/resources/_/technical/artificial-intelligence/implementing-a-blackboard-like-system-for-squad-r1931
http://www.gamedev.net/page/resources/_/technical/artificial-intelligence/implementing-a-blackboard-like-system-for-squad-r1931
http://aigamedev.com/open/article/static-blackboard/
http://intrinsicalgorithm.com/IAonAI/2010/02/damian-isla-interview-on-blackboard-arch/
http://intrinsicalgorithm.com/IAonAI/2010/02/damian-isla-interview-on-blackboard-arch/

Chapter 2
Introduction to Cellular Automata
in Simulation

Val Lowndes, Adrian Bird and Stuart Berry

Cellular Automata and Agents can be used to construct simulations where the
movement/change of status in an individual is to be observed. This section intro-
duces both Cellular Automata and Agent-based simulations.

Cellular automata and Agent-based simulations have been used to study:

• Traffic flow investigating the formation of traffic jams, the cellular automata
representing vehicles (initially a one-dimensional model). N-S

• Conway’s Game of Life. (often two-dimensional models) G-M
• The evolution of epidemics, the cellular automata representing people (often

one-dimensional models)
• Bird/fish flocking, the cellular automata representing a single bird/fish
• Evacuating buildings, the cellular automata representing people.

Section 2.2 introduces Conway’s Game of Life.
Section 2.3 investigates population changes.
Section 2.4 introduces models for Epidemics and fire evacuations and traffic

simulations based around the Nagel and Schreckenberg model for traffic flow.

V. Lowndes
University of Derby, Kedleston Road, Derby DE22 1GB, UK
e-mail: V.P.Lowndes@derby.ac.uk

A. Bird � S. Berry (&)
College of Engineering and Technology, University of Derby,
Kedleston Road, Derby DE22 1GB, UK
e-mail: s.berry@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_2

55

2.1 Defining the Operation of a Cellular Automata-Based
Simulation

A cellular automaton (CA) is a collection of cells arranged in a grid, such that each
cell changes state as a function of time according to a defined set of rules that
includes the states of neighbouring cells.

For example, applying rules to the system status at time zero produces the
system status at time one as shown in Fig. 2.1.

The objective in these simulations is the determination of the behaviour of the
system over a period in time. In particular, what is the final or steady state of the
system, for example does it achieve a steady state.

The simplest cellular automata are one-dimensional, with cells on a straight line,
where each cell can have only two possible states (such as high/low or black/white).
But in theory, a CA can have any number of dimensions, and each cell can have any
number of possible states. The state of each cell changes in discrete steps at regular
time intervals.

The state of a cell at any given time depends on two things:

1. its own state in the previous time step, and
2. the states of its immediate neighbours in the previous time step.

2.2 Conway’s Game of Life

This section uses “Conway’s Game of Life” to introduce the use of a
two-dimensional grid. This game became widely known in 1970 when it was
published in the popular journal Scientific American. See Gotts, in Griffeath and
Moore [1] for background information.

Conway devised the rules for the Game of Life (GOL), aiming to meet the
following three criteria:

* *
* * * * *

* * * * *
* * * * *

* * * * * *
* * * * * *

* *
System status

At time = 0
System status

At time = 1

Fig. 2.1 Sample system
transition

56 V. Lowndes et al.

Criteria for the Game of Life:

1. There should be no initial pattern for which there is a simple proof that the
population can grow without limit.

2. There should be initial patterns that apparently do grow without limit.
3. There should be simple initial patterns that grow and change for a con-

siderable period of time before coming to an end in three possible ways:

• Fading away completely (from overcrowding or becoming too sparse)
• Settling into a stable configuration that remains unchanged thereafter
• Entering an oscillating phase in which they repeat an endless cycle of

two or more periods.

These criteria aimed to ensure that the rules cause the behaviour of the popu-
lation to be unpredictable. It was, however, later shown by Charles Corderman that
Conway’s rules did not guarantee that the criteria were satisfied [1, p. 10].

The game itself consists of an infinitely large 2-dimensional grid of squares, in
which each represent a cell. The status of each cell at time t + 1 depends upon the
status of the system of cells at time t. In Fig. 2.2, the status of cell D5 is derived
from its own status and that of its 8 surrounding cells at time t:

A cell will be denoted as alive if it contains a1 (or a*)
The GOL uses rules to generate the system status at time t + 1 based on the

information (the system status) at time t.

Rules for Conway’s Game of Life:
When a cell is alive at time t:

If two or three of its eight neighbours are alive, it remains alive.
If more than three of its eight neighbours are alive, it dies from overcrowding.
If less than two of its eight neighbours are alive, it dies from loneliness.

When a cell is dead:

If exactly three of its eight neighbours are alive, it comes to life.
In all other cases, the cell remains dead.

Example 1 The rules are applied to the data given in Fig. 2.3 (status at time 0), to
generate the state of the system at time 1 (see Fig. 2.4).

Applying the rules to the data shown in Fig. 2.3 gives:

C4 C5 C6

D4 D5 D6 D5

C4 C5 C6

Fig. 2.2 Cells relevant to status of cell D5

2 Introduction to Cellular Automata in Simulation 57

Applied to live cells:

Cells B2; B3 and C3 surrounded by 2 00live00 cells; this stays alive
Cell E3 and F3 surrounded by only one 00live00 cell; this dies ðnow emptyÞ

Applied to not alive cells

Cell C2 surrounded by 3 00live00 cells; this becomes alive

Combining these results gives Fig. 2.4: the status at time 1.
Applying the rules again to the data displayed in Fig. 2.4 give the status at time 2

as shown in Fig. 2.5.

Example 2 Consider the starting pattern shown in Fig. 2.6. At each iteration, count
the number of non empty cells. A plot of the number of nonzero (live) points at
each iteration is given in Fig. 2.7.

Plotting the number of nonzero (live) points at each iteration gives the graph:
Figure 2.7 shows that a steady state is developing after 36 iterations: approxi-

mately 15 live cells.
When a GOL simulation is performed, the rules are applied until the population

has become ‘stagnant’, which means that it will have adopted one of the following
states:

1 2 3 4 5 6 7 8
A
B * *
C *
D
E *
F *
G
H

Fig. 2.3 Status at time 0

1 2 3 4 5 6 7 8
A
B * *
C * *
D
E
F
G
H

Fig. 2.4 Status at time 1

58 V. Lowndes et al.

1 2 3 4 5 6 7 8
A
B * *
C * *
D
E
F
G
H

Fig. 2.5 Status at time 2

Fig. 2.6 Two parallel lines

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350Fig. 2.7 Plot of number of
live cells

2 Introduction to Cellular Automata in Simulation 59

• There are no more living cells—complete annihilation.
• Cells form a grouping which exhibits no change from one generation to the next

—still life.
• Cells form a grouping which mutate through a given number of generations

resulting in a repetitive cycle.
• Cells traverse the ‘universe’ in a repetitive but translated (in position) manner

and will never collide with any other cells—Gliders and spaceships.

2.3 Investigating Population Growth and Decay

The initial pattern was randomly generated with the number of live cells selected
representing an average 15% loading.

Figure 2.8 shows one initial pattern generated with random 15% loading. By
carrying out several simulations for a particular loading, the most likely state after a
given number of iterations and the terminal state can be identified.

Figure 2.9 shows the number of live cells at each iteration, for the simulation
generated by the initial pattern shown in Fig. 2.8.

This simulation was run for 500 cycles and Fig. 2.9 shows that for this particular
starting pattern, the system converged to a steady state at approximately 470 cycles.

The pattern of live cells (system after 500 iterations) is as shown in Fig. 2.10.
This consists of both static and cyclical shapes. Remember, orientation is not

fixed, so shape X is the same as shape Y.

Fig. 2.8 Initial state 15%
loading

60 V. Lowndes et al.

2.4 Applying Cellular Automata and Agents in Modelling

2.4.1 Agent-Based Modelling: Modelling the Spread
of Infections

The population is represented on an n� n where a healthy person is indicted by a
cell value of 0 and an infected person by a cell value of 1. Each individual (agent)
has an attached record of current duration of their infection.

For example, in Fig. 2.11

0 50 100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

Fig. 2.9 Plot of number of live cells

Fig. 2.10 Finishing state, stable shapes

2 Introduction to Cellular Automata in Simulation 61

A ð4; 3Þ ¼ 1 indicating the cell occupant is infected
S ð4; 3Þ ¼ 5 indicating that the infection has lasted 5 time periods

Probability of infection
This is dependent upon the status of the surrounding cells and the variables

cvði; jÞ ¼ aði; jþ 1Þþ aði; j� 1Þþ aðiþ 1; jÞþ aði� 1; jÞ
Tr = transmission rate

Pði; jÞ ¼ fIðcv;TrÞ
Probability of recovery
This is dependent on the status of the surrounding cells and the duration of the
illness

cvði; jÞ ¼ aði; jþ 1Þþ aði; j� 1Þþ aðiþ 1; jÞþ aði� 1; jÞ
Rr ¼ Recovery rate

Pði; jÞ ¼ fRðcv;RrÞ
Figure 2.12 shows the normalised spread, number contracting the illness and the

duration of the illness, with reducing levels of infection, for a population of 6400.
The worst case, no treatment and highest rate of infection lead to:

Peak number of patients 2460 ðnormalised to have value 1Þ
Percentage of population 38:4%
Maximum duration of epidemic 615 time units

The effect of improved levels of treatment for each level of infection is shown in
Fig. 2.13 where the treatment has improved from that used to create Fig. 2.12.

Peak number of patients 2052 ðnormalised value 2460 as aboveÞ
Percentage of population 32:0%
Maximum duration of epidemic 555 time units

Fig. 2.11 Tables A and S
showing infected cells and
current duration of infection

62 V. Lowndes et al.

In each case both the duration of the epidemic and the maximum number
infected has been reduced.

This agent-based model demonstrates the effect of both preventative and
remedial treatment regimes in restricting the spread of an infectious disease.

2.4.2 Traffic Flow

This application is used to introduce the use of cellular automata because it employs
a simple one-dimensional model, representing a single carriageway road (Note: this
is assuming a model where initially cars are not allowed to overtake).

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Fig. 2.12 Modelling the
effect treatment on infection
spread

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Fig. 2.13 Modelling the
effect improvement in
treatment

2 Introduction to Cellular Automata in Simulation 63

This section shows that although this is the simplest cellular automata-based
model, it is a model where the results can have an immediate consequence, to the
understanding of traffic flow and hence to the derivation of traffic management
policies. The models presented here use the same principles as those in Nagel and
Schreckenberg but the analysis of the results is by way of the average velocity.

2.4.2.1 Notation

vij the velocity of a car j at time i
vi+1,j the velocity of a car j at time i + 1
di,j the distance to the next car j + 1, bumper to bumper, at time i
vmax the maximum attainable velocity (the speed limit)
xij the position of car j at time i.

2.4.2.2 Basic Model

In this model, each cell represents a section of road and each cell will either contain
a car or be empty. The system is updated at regular time intervals, using a set of
rules, the effect of the update being to allow the cars to move along the road.

In Fig. 2.14, the coloured markers show the progress of the cars with time.
Notice that

• the “blue” car travels a total distance of 4 units in two time steps (average
velocity 2)

• the “red” car travels a total distance of 2 units (average velocity of 1).

so a traffic jam is forming at time 2.
The rules to enable this simulation (passage of time) are defined in Nagel and

Schreckenberg and are given by the four steps N-S Rules:

Time 2

Time 1

Time 0

Fig. 2.14 Sample car
movements

64 V. Lowndes et al.

Step 1: acceleration
All cars that have not already reached the maximal velocity vmax accelerate by one unit:
viþ 1) vi þ 1

Step 2: safety distance
If a car has d empty cells in front of it and if its velocity vi+1(after step 1) is larger than d, then the
velocity reduces to d:
viþ 1) min d; viþ 1f g
Step 3: randomisation
With probability p, the velocity is reduced by one unit (if vi+1 after step 2):
viþ 1) viþ 1 � 1

Step 4: driving
After steps 1–3, the new velocity vi+1 for each car j has been determined.
Car j moves forward by v i+1 cells:
xiþ 1;j) xi;j þ viþ 1.

Example 3: Illustrating the operation of the N-S Rules The section of road shown in
Fig. 2.15a contains 4 cars with the given velocities, at Time = 0. Work through each
of the steps (work through the four steps for each of the 4 cars, checking your
velocity calculations against each of the Fig. 2.15b and e. Figure 2.15e gives the
final state at Time = 1 after completion of the N-S Rules. Notice that the road is in
effect a loop, with car 4 in Fig. 2.15a having one empty cell between itself and car 1.

Step 1: For car 1: v1 := v0 + 1 = 3; vmax = 5
Step 2: For car 1: v1 := min (d0, v1) = min(2, 3) = 2
Step 3: Random reduction: if rand < p then v1 := v1−1
Step 4: Drive forward: For car 1: x1,1) x0,1 + v1,1 = 1 + 2 = 3

2.4.2.3 Simulation of Traffic Flow Using MATLAB

The following analysis was completed using a set of MATLAB programs.
Each MATLAB program required the following information to be defined:

• the road length
• traffic density, as a percentage,
• the probability of a car slowing.

At each time step, the simulation records:

• the status of each cell in array a,

– a(i) = 1) presence of a car,
– a(i) = 0) empty cell, no car

2 Introduction to Cellular Automata in Simulation 65

• the status of each car in array vl

– v(i) gives the current velocity of the car in cell i; vi 2 (0, 5).

Figures 2.16 and 2.17 are typical graphical outputs from this program. For
cellular automata, conventionally the vertical axis represents time units and the
horizontal axis distance units. The results displayed in these graphs were generated
using p = 0.5 (probability of a car randomly slowing) with 10% cell loading (traffic
density) (Fig. 2.16) and then with 20% cell loadings (Fig. 2.17).

Notice

(a) In this and the following figures that the vertical axis measures time and the
horizontal axis distance.

Road position
Time t=0

Car
1

Car
2

Car
3

Car
4

vmax = 5, p = 0.5
v0 2 4 3 1
d0 2 5 1 1

Step 1: For car 1: v1 := v0 + 1 = 3; vmax = 5
Road position at

time t = 0
Car
1

Car
2

Car
3

Car
4

v1 3 5 4 2
d0 2 5 1 1

Step 2: For car 1: v1:= min (d0, v1) = min(2, 3) = 2
Road position at

time t = 0
Car
1

Car
2

Car
3

Car
4

Velocity
V1 2 5 1 1
d0 2 5 1 1

Step 3: Random reduction: if rand<p then v1:= v1 - 1
Road position at

time t = 0
Car
1

Car
2

Car
3

Car
4

P=0.5: rand 0.83 0.62 0.31 0 .54
Velocity

v1 2 5 0 1
d0 2 5 1 1

Step 4: Drive forward: For car 1: x1,1 ⇒ x0,1 + v1,1 = 1 + 2 = 3
Road position at

time t= 1
Car
1

Car
2

Car
3

Car
4

Velocity at time 1
v1 2 5 0 1
d1 5 0 2 2

(a)

(b)

(c)

(d)

(e)

Fig. 2.15 a Sample data at time = 0. b Sample new velocities at time = 0, after step 1. c Sample
new velocities at time = 0, after step 2. d Sample new velocities at time = 0, after step 3. e Final
velocities and positions for sample at time t = 1

66 V. Lowndes et al.

(b) The deeper shading indicates the presence of a jam.
(c) A free-forming jam “moves” backwards in time.

Notice that the jams, deeper shaded areas” are parallel.
Extending the “road” length in the second simulation replaces Fig. 2.17 with

Fig. 2.18.
The plot shown in Fig. 2.18 suggests the existence of many regular

“self-forming” queues of traffic in this model and a congested traffic flow.
The program uses two parameters to define the simulation (CA model) to

generate this plot

Density of traffic ¼ 0:20 20% of cells filled Traffic demand
Random slowing ¼ 0:50 50% of cars slow down Driver behaviour

Fig. 2.16 10% cell loading,
free-forming traffic jam

Fig. 2.17 20% cell loading.
Higher density implies more
traffic jams

2 Introduction to Cellular Automata in Simulation 67

2.4.2.4 Analysis of Simulation Results

The traffic simulation program was run several times varying the traffic density, but
keeping p (the probability of a random reduction in speed), constant (at 10%). The
results generated have been used to produce the plot of average car velocity v traffic
density in Fig. 2.19a.

Within the results shown in Fig. 2.19a, there seems to be two phases, traffic
density (road loading x) up to 12% and over 12% giving the models for travel time
T as:

Road loading less than 12% travel time T ¼ 4:9027�0:0044x r2 ¼ 0:94
Road loading more than 12% travel time T ¼ 8:2325e�0:046x r2 ¼ 0:99

for the results shown in Fig. 2.19b, these models become:

Road loading ðxÞ less than 5% travel time T ¼ 4:4048�0:0119x r2 ¼ 0:92
Road loading more than 5% travel time T ¼ 68:208x�1:427 r2 ¼ 0:97

and for the results shown in Fig. 2.19c, these models become:

Road loading ðxÞ less than 15% travel time T ¼ 4:9979�0:0008x r2 ¼ 0:84
Road loading more than 15% travel time T ¼ 11:379e�0:05x r2 ¼ 0:98

Figure 2.19d displays all three models for comparison showing that at normal
loadings, up to 40%, random slowing has a great effect on a roads carrying capacity.
Thus, indicating that at times of high traffic density, the “random” behaviour of
drivers becomes less important, with respect to travel time.

Note 1: when there is no random slowing and all cars are equally spaced, the
implied road loading will be 16.7%.

Fig. 2.18 20% cell loading
extended road length

68 V. Lowndes et al.

Note 2: the stopping distance s (minimum separation in feet) in terms of the
vehicles velocity v (in miles per hour) is given by

s ¼ 0:05v2 þ 2vþ 15;

and as the average car length is 13 feet, thus the loading per mile for free-flowing
traffic, model 7c, is given by

MF ¼ 5280
0:05v2 þ 2vþ 15ð Þþ 13ð Þ

The loading per hour is therefore given by

MFH ¼ 5280v
0:05v2 þ 2vþ 15ð Þþ 13ð Þ

0

1

2

3

4

5

0.00 50.00 100.00
0

1

2

3

4

5

0.00 50.00 100.00

0

1

2

3

4

5

0.00 20.00 40.00 60.00 80.00 100.00

(a) (b)

(c) (d)

0

2.5

5

0.0 20.0 40.0 60.0 80.0 100.0

Fig. 2.19 Average speed against traffic density. a 10% random slowing. b 60% random slowing.
c Average speed against traffic density, no random slowing. d Average speeds against traffic
density, all cases

2 Introduction to Cellular Automata in Simulation 69

At 70mph MF ¼ 16:1 per mile MFH ¼ 1127
At 30mph MF ¼ 39:7 per mile MFH ¼ 1191
At 24mph MF ¼ 50:4 per mile MFH ¼ 1209

Note the optimal velocity is 24 mph; a plot of “flow per hour” against velocity is
shown in Fig. 2.20. This demonstrates that low speeds, less than 15 mph are very
inefficient, low capacity per hour, as are speeds greater than 100 mph.

Note 3: loadings within 10% of the optimal occur at speeds between 12.5 and
44.5 mph.

2.4.2.5 Analysing Traffic Flows

An area of interest is the frequency of occurrence of self-forming jams.
Autocorrelating the historic data can be used to investigate the frequency of jams
within free-flowing traffic. Figure 2.21a shows a plot obtained from correlating the
position data at time t with the position data at time (t–k) over a time span of T time
units. When the data has a perfect pattern, jams occur at regular intervals have the
same length and traffic flows freely between jams the plot of the aurocorrelations
will have this form the jam frequency being indicated by the spacing of the peak
values in the plot.

Figure 2.21b shows the plot obtained for a more normal case when the jams are
not (quite) evenly spaced and not (quite) the same length, but although the peaks do
not have the same magnitude, the plot does give an indication of the jam frequency;
here, the data can be analysed using a Hilbert–Huang transform, see Bird [2] for
details.

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400Fig. 2.20 Road capacity per
hour against traffic speed

70 V. Lowndes et al.

Discussion Points:
Average Velocity and Traffic Flow

• Why would the maximum average velocity, in this model, be 4.9?
• What would be the highest traffic density that would enable traffic to flow freely

without any need to reduce velocity.

Extending the Model
Obvious extensions are:

• Allow overtaking on a single lane road
• Allow for more lanes
• Include different type of vehicles.

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(a)

(b)

Fig. 2.21 a Autocorrelation
perfect flow pattern.
b Autocorrelation not (quite)
perfect flow

2 Introduction to Cellular Automata in Simulation 71

One lane overtaking model N-S Rules (overtaking)
To enable overtaking, on a single carriageway, the model is amended so that each
vehicle carries two possible velocities

Step 1: acceleration
All cars that have not already reached the maximal velocity vmax accelerate by one unit:
viþ 1) vi þ 1

Step 2: safety distance
If a car has d empty cells in front of it and if its velocity vi+1(after step 1) is larger than d, then the
velocity reduces to d:
v1 iþ 1) min d; viþ 1f g
v2 iþ 1) viþ 1

Step 3: randomisation
With probability p, the velocity is reduced by one unit (if vi+1 after step 2):
v1 iþ 1) v1iþ 1 � 1

v2 iþ 1) v2iþ 1

Step 4: driving
After steps 1–3, the new velocity vi+1 for each car j has been determined.
Car j moves forward by vkiþ 1 cells:
If the space is free move with velocity v2 to

xiþ 1;j) xi;j þ v2iþ 1:

otherwise

xiþ 1;j) xi;j þ v1iþ 1:

Multi Lane Models
There are two cases:

Two Lane Model, here there are additional rules to

Allow a vehicle in the inside lane to move out
Allow a vehicle in the outside lane to move in
Prohibit “undertaking”.

Three, or more, lane model, here there are the road rule sets

Inside lane, cars can move out
Middle lane, cars can move in or out
Outside lane, cars can move in
No undertaking

Note: having developed a three lane model, a multilane model follows using the
same rule sets.

72 V. Lowndes et al.

References

1. Griffeaths D, Moore C (2003) New constructions in cellular automata. Oxford
2. Bird A (2011) Early detection of aero engine damage from acoustic emission signatures, PhD

thesis, Derby

2 Introduction to Cellular Automata in Simulation 73

Chapter 3
Introduction to Mathematical
Programming

Val Lowndes and Stuart Berry

Mathematical programming can be used to determine the optimal solution to
planning problems. Typically, mathematical programming modelling has been
applied to problems in the areas:

Production Processes
Production Planning Models
Diet Problems
Manufacturing Processes
Staffing Problems
Transportation Models
Production Planning Models
Travelling Salesman Problems

Many of these applications lead to large complex models, typically Travelling
Salesman Problems, Production Planning Problems and Nurse Scheduling, when
efficient solution methodologies may need to be developed.

Here, models are presented and standard mathematical programming approaches
to solution are evaluated. In general, an investigation follows the following steps.

V. Lowndes
University of Derby, Kedleston Road, Derby DE22 1GB, UK
e-mail: V.P.Lowndes@derby.ac.uk

S. Berry (&)
College of Engineering and Technology, University of Derby,
Kedleston Road, Derby DE22 1GB, UK
e-mail: s.berry@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_3

75

Stages in an Investigation:

(i) Modelling

(a) Derive Constraints
Is the problem either
Linear, or
Nonlinear

(b) What is the Objective
Single objective, or
Multiple objectives

(c) Variables
Are they
Real, or
Integer, or
Binary/Logical

(ii) Deriving a Solution, does this use

(a) Software, Xpressive, or
(b) Heuristics

(iii) Evaluation (of solution), ref the Modelling Cycle (POPS stage 1).

(a) Have we solved the problem
(b) Is the solution acceptable

This section uses a series of scenarios to demonstrate the stages in a modelling
exercise using mathematical programming indicating its benefits and drawbacks.

These examples are as follows:

Diet Problems: historically, these were an early application of Linear Programming.
They are still valid because their solution highlights the problem of usefulness of an
optimal solution and the need to evaluate the generated solution.
Knapsack Problems: another early application of mathematical programming but
an approach with many varied applications.
Production Planning: a basic application chosen to demonstrate the suitability of
the solution generated by the standard approach.

In each example, the size of problem and any structure in the model (its com-
plexity) will be used as a measure of suitability of a LP approach to
problem-solving.

3.1 Applications Model Furniture Manufacture

This example is used to illustrate the stages in the production and evaluation of a
solution from a problem specification.

76 V. Lowndes and S. Berry

N&F produces both tables and chairs. Each item passing through 3 stages, in the
order 1 then 2 then 3, with the times at each stage is given in Table 3.1:

Note only one item can be processed at a stage at any time.
For example, if the firm has the production schedule:
Table, Chair, Table, Chair, …
The daily working could be represented by a Gantt chart, for example (Fig. 3.1):
Normally, it is assumed that the company is (already) in business and that all

production time is available leading to the model:

Maximise 5xþ 7yð Þ
xþ 3y� 60

5xþ 2y� 100
4xþ 4y� 100

Table 3.1 Production
requirements and revenues

Stages Time in stage per
unit of product

Available time

Table Chair

1 1 3 60

2 5 2 100

3 4 4 100

Profit per unit £5 £7

Factory just opened

T1 T2 T3
C1 C2 C3

T1 T2 T3
C1 C2

T1

Factory already in business

T3
C3

T2 T3
C2

T1

Fig. 3.1 Production plans for both new and existing factories

3 Introduction to Mathematical Programming 77

with the optimal solution given by:

Profit ¼ 160: Product 1ð Þ ¼ 7:5: Product 2ð Þ ¼ 17:5

Evaluation: A question, can the firm produce half a chair?
If it can be assumed that this will be finished on the following day, YES
if NO and the variables will have to be declared as integers!
Giving the new solution

Profit ¼ 159: Product 1ð Þ ¼ 8: Product 2ð Þ ¼ 17

Summary of the investigation:

(i) Modelling

(a) Constraints
Linear

1xþ 3y\60
5xþ 2y\100
4xþ 4y\100

Nonlinear or linear
(b) Objective or multiple

Single
Profit = 5 + 7y to be maximised

(c) Variables; real, integer, binary, logical
Real
Initially, assume that the variables are real
Integer
Then, move onto integer if the solution above is not acceptable

(d) Linear constraints and objective function therefore solution obtained using
Software, for example XpressIVE
Heuristics

(ii) Evaluation (of solution)
Have we solved the problem, YES
Is the solution acceptable, YES but say which is the solution.

These questions are to be asked for each model.

78 V. Lowndes and S. Berry

3.2 Applications of Mathematical Programming-Based
Modelling

These examples are presented to illustrate the development of a fully representative
model to describe an application and how this model is refined through the eval-
uation of the generated solutions. The first model to consider is the “Diet Problem”
because this is a longstanding problem and was an initial problem modelled and
solved using computer-based Linear Programming; this problem demonstrates both
the advantages and disadvantages of this LP approach. Later, it is shown how the
problems from this, LP, approach are overcome.

3.2.1 Modelling Diet Problems

A second model construction and evaluation is derived from the “diet construction
problem”; this shows how a model can be successfully developed but the results
(from this basic model) are in practice unacceptable, providing the same diet every
day is not acceptable, to the recipients of the diet, although this diet satisfies dietary
conditions and is inexpensive.

Stigler [1] and Dantzig [2]
Assuming that the aim is to minimise the cost of the diet, the notations are used:

xj the quantity of food type j in the diet
aij the quantity of nutrient i in one unit of food type j
minQi the minimum allowable quantity of nutrient i in a healthy diet
maxQi the maximum allowable quantity of nutrient i in a healthy diet
cj the cost of one unit of food type j

The model becomes: X
j

aijxj �maxQi all nutrients j

X
j

aijxj �minQi all nutrients j

Minimise
X
j

cjxj

 !

Note: nutrients can be vitamins, minerals, fats, carbohydrates and proteins, for
example, and there may be restrictions on the total volume/weight of the diet.

3 Introduction to Mathematical Programming 79

Thus, if mj is the mass of food item j and M is the maximum allowed mass, then
add the constraints: X

j

mjxj �M

However, this model is extended to incorporate the fact that the percentage of
‘type A’ fat is less than 40% of the total fat content of the diet. Assuming that there
are two types of fat A and B, the constraint becomes:

X
fat A

aijxj � 0:4
X
fat A

aijxj þ
X
fat B

aijxj

 !

Or if the selection of a unit of food 1 implies that k units of food 2 must be
selected for inclusion in the diet, the model is extended through the addition of the
constraints:

x2 � kx1

Or if only one food from a group of food types may be chosen, for example food
1 or food 2 or food 3, the model is extended through the addition of the constraints:

x1 �Md1
x2 �Md2
x3 �Md3
d1 þ d2 þ d3 � 1

Notice that if one of these foods must be included, then add the constraints:

x1 �minQ1d1
x2 �minQ2d2
x3 �minQ3d3

here minQ2 for example is the minimum allowable portion of food 2 if food 2 is
chosen to be included in the diet.

Or if the selection of food 1 implies that food 2 must be chosen, then the model
is extended to include the constraints,

x1 �Md1
x2 �minQ2d1

80 V. Lowndes and S. Berry

Summary of the models:

(i) Modelling

(e) Constraints
Linear

Nonlinear or linear

(f) Objective or multiple
Single
Cost to be minimised

(g) Variables; real, integer, binary, logical
Real
Initially, assume that the variables are real
Integer
Then, move onto integer if/when the solution above is not acceptable

(h) Linear constraints and objective function therefore solution obtained
using
Software, for example XpressIVE

Heuristics

(ii) Evaluation (of solution)

Have we solved the problem? YES
Is the solution acceptable? probably NO, lack of variety and/or taste in

the derived diets.

Summary: The solution of Diet Problems is concerned with the determination of
the best selection of items from a given set of available items, but not the palata-
bility of the diet.

3.2.2 Blending 1

Amining company will be operating in an area for the next 5 years. It has just signed
contracts with the local power generation and heavy industrial companies for this
period. Each mine has an annual production capacity, these are estimated as being

Mine Capacity million tonnesð Þ Cost perMillion tonne
1 2 60
2 2:5 50
3 1:3 80
4 3 30

3 Introduction to Mathematical Programming 81

The quality of coal from each mine is given by:

Mine Quality
1 1:0
2 0:7
3 1:5
4 0:5

xi Production quantity at each mine is
qi Quality at each mine
R Required quality
ci Cost per unit at each mine
D Demand per year

In each year, quantities of these ores are blended to produce an acceptable
quality of fuel, initially assume that the required quality is 0.9. If the blended coal
will sell for £10 a tonne, determine the optimal purchasing policy for the company.X

i

xi �D

X
i

qixi �R
X
i

xi

Profit ¼ 10D�
X
i

cixi

Maximise Profit or if it quantity is fixed Minimise total costs.

3.2.3 Blending 2: Animal Feed

There are several available foodstuffs with differing nutrient content. These are to
be mixed to produce a nutritionally acceptable animal feed.

Notation aij quantity of nutrient in one unit of food j
mini minimum allowed percentage content of nutrient i
maxi maximum allowed percentage content of nutrient i
cj cost per unit of food j
R required quantity to be produced

82 V. Lowndes and S. Berry

Model
P
j
aijxj � mini

P
j
aijxjP

j
aijxj � maxi

P
j
aijxjP

j
xj �R

Cost ¼P
j
cjxj

Example An animal feed has to have a weight between W1 and W2

Required ingredients and restrictions

Calcium between 0:8 and 1:2% per weight of the final mixture
Protein at least 22%
Carbohydrates at most 15%

Possible resources are given in Table 3.2:

0:045x1 þ 0:005x2 þ 0:003x3 � 0:012 x1 þ x2 þ x3ð Þ
0:045x1 þ 0:005x2 þ 0:003x3 � 0:008 x1 þ x2 þ x3ð Þ

0:25x1 þ 0:09x2 þ 0:50x3 � 0:22 x1 þ x2 þ x3ð Þ
0:16x1 þ 0:22x2 þ 0:08x3 � 0:15 x1 þ x2 þ x3ð Þ

x1 þ x2 þ x3 �W2

x1 þ x2 þ x3 �W1

Minimise Cost ¼ 10x1 þ 30x2 þ 15x3

But will the livestock be prepared to eat the resultant feedstuff?

3.3 Problems Reducible to Diet Problems

3.3.1 Financial Planning Modelling

There exists a sum of money to be allocated between several investment oppor-
tunities; this section shows how a basic Linear Programming model can be used to

Table 3.2 Ingredient contents

Food sources and nutrient content

Calcium Protein Carbohydrates Cost per unit

Ingredient 1 0.045 0.25 0.16 10.00

Ingredient 2 0.005 0.09 0.22 30.00

Ingredient 3 0.003 0.50 0.08 15.00

3 Introduction to Mathematical Programming 83

select the best investments. As an example, a firm has £90 to invest into one or
more of the projects listed in Table 3.3 costs, and expected returns are as given.

Let xj be the sum of money invested in Project J and assuming that each project
is available more than once (that is xj can have any value), the investment decision
can be modelled as a knapsack problem where the available money corresponds to
the size of the container, here

ProfitP ¼ Return� Cost

Maximise
X
j

Pjxj

()
X
j

Cjxj � 90

The optimal investment policy is as follows: Xx ¼ 4:5 Profit ¼ £27
Questions:

1Þ Can a project be partly chosen? Here; 0:5 of a project
2Þ Can a project be chosen more than once? HereXX [1

Example 3.1a Here, restrict the solutions to integer values. This gives the solution.
Solution:

Profit ¼ 26 X ¼ 1; 4; 0; 0f g

To extend the investigation, consider the effect of not allowing a project to be
chosen more than once.

Here, there are only two possible investments in each project:

• the full amount, or
• nothing.

Therefore, each variable can only have the value 1 or the value 0, binary
variables.

Solution, notice now the reduction in profit and the “left over money”.

Profit ¼ 20 X ¼ 1; 1; 0; 1f g
Unused Money ¼ XX

Table 3.3 Cash flows Cash flows

Time Project W Project X Project Y Project Z

Cost 10 20 30 50

Return 12 26 35 62

84 V. Lowndes and S. Berry

As a final extension to this model if any unallocated monies are invested at 2%
the solution becomes

Profit ¼ 20 X ¼ 1; 1; 0; 1f g
Invested money ¼ 10

3.3.2 Modelling Investment Planning 2

This example introduces the use of logical variables to enable more realistic
solutions, typically what is the minimum investment allowed in a project.

That is if the firm chooses to invest into Project X, then it must invest at least the
quoted minimum quantity, see Table 3.4.

For Project W, either invest:

Between 5 and 10; 0:5� x1 � 1:0;
or Nothing x1 ¼ 0:

logical (binary) variables (only have the value 0 or 1) are needed, let

dW ¼ 1 indicate that Project W has been chosen for investment.

The Model now becomes

Maximise Profit ¼ Return� Investmentf ggiving

Maximise
P
j
Pjxj

()
P
j
Cjxj � 90

xW �MdW
xW �RWdW RW ¼ CWmin=CW

xj binary

Thus, if an investment is made into Project W, then dW is forced to have the
value of 1; otherwise, it has the value 0, and if dW is 1, then xj is forced to have the
value of at least 0:5, otherwise it has the value 0.

Table 3.4 Cash flows

Cash flows

Maximum Project W Project X Project Y Project Z

Maximum Investment (C) 10 20 30 50

Minimum Investment (if chosen) (Cmin) 5 8 18 16

Return at maximum investment 12 26 35 62

3 Introduction to Mathematical Programming 85

3.3.3 Restricting the Investment by Adding Extra Conditions

The firm has to choose

at least one project from group 1 projects fW ; Yg
but no more than one from group 2 projects fX; Zg:

for example projects in group 2 are high risk and should be balanced by investments
in the lower risk projects, group 1.

Using the logical variables in example 3 adding the constraints

d1 þ d3 � 1

d2 þ d4 � 1

produces the required model.
Solution

Profit ¼ 19 Unused money ¼ 0 Plus Interest ¼ 0
Product 1ð Þ ¼ 1 dx 1ð Þ ¼ 1 Profit ¼ 12� 10 ¼ 2f g
Product 2ð Þ ¼ 0 dx 2ð Þ ¼ 0
Product 3ð Þ ¼ 1 dx 3ð Þ ¼ 1 Profit ¼ 35�30 ¼ 5f g
Product 4ð Þ ¼ 1 dx 4ð Þ ¼ 1 Profit ¼ 62�50 ¼ 12f g

Alternatively to balance high- and low-risk projects, there is the additional
requirement that if Project Z is chosen, then Project X must be chosen.

This can be achieved through the addition of the constraint

d4 � d2

giving the final formulation:

Maximise
X
j

Pjxj

()
X
j

Cjxj � 90

xj �Mdj
xj �Rjdj
Rj ¼ Cmin=C all j

d1 þ d2 þ d3 � 1

d1 þ d2 þ d4 � 2

d4 � d2

86 V. Lowndes and S. Berry

Solution

Profit ¼ 18 Unused money ¼ 20 Plus interest ¼ 0:4
X ¼ f0; 1; 0; 1g; dx ¼ f0; 1; 0; 1g

Summary
This model indicates the possible types of variables used to model investment

decision-making.

Real 1:7 units is allowed
Integer 0 or 1 or 2 or 3 units onlyð Þ allowed
Real or integer limited x1\2 for example
Binary invest or don't x1 ¼ 0 or 1
Real with lower limit at least 0:5 of the project

The effect of adding more constraints is to reduce the profit, compare 5a with 5,
when in 5a the variables x(i) are not restricted to integers.

Profits from each model:

Model 1 Profit ¼ 27
Model 1a Profit ¼ 26
Model 2 Profit ¼ 21:67
Model 2a Profit ¼ 20
Model 2b Profit ¼ 22
Model 3 Profit ¼ 20þ 2
Model 4 Profit ¼ 19þ 0
Model 5 Profit ¼ 18þ 0:4

Example Using the data given in Table 3.5, produce a model for their
decision-making process given that they have 1200 units available for investment
and they wish to invest in at least 5 of the projects.

3.3.4 Modelling Investment Planning 2 (Allocating Money
Between Projects)

There exists a sum of money to be allocated between several investment oppor-
tunities with investments occurring over two time periods, any unused money is
forfeit in the first examples and then invested in the later examples.

The aim being to maximise the discounted value of the total returns in the first
examples and then to maximise the terminal value in the later examples.

This section shows how a Linear Programming model can be used to select the
best investments using the 6 time period and 6 investment opportunities example
that can be modelled as a multiple knapsack problem.

3 Introduction to Mathematical Programming 87

Example 1
The decision process can be modelled by the constraints:

10x1 þ 0x2 þ 6x3 þ 12x4 þ 0x5 þ 0x6 � 40

4x1 þ 3x2 þ 4x3 þ 2x4 þ 5x5 þ 5x6 � 20

8x1 � 6x2 þ 4x3 þ 6x4 � 7x5�7x6 � 0

Likewise for periods 3, 4 and 5.
With the aim of maximising the discounted return

22x1 þ 3x2 þ 7x3 þ 13x4 þ 14x5 þ 20x6

General model has the formX
j

Cijxj � � Aj

Maximise
X
j

Rjxj

 !

Solution

Profit ¼ 104 X ¼ f4; 0; 0; 0; 0; 0:8g

Invest 4 units in Project A and 0.8 units in Project F.
(are these values acceptable? and allowed?)

Table 3.5 Investment data and returns

Time Projects

A B C D E F Available

0 −10 – −6 −12 – – 40

1 −4 −3 −4 −2 −5 −5 20

2 8 −6 4 6 −7 −7

3 14 8 8 14 8 8

4 12 5 6 8 10 10

5 6 2 3 5 14 18

Return discounted 22 3 7 13 14 20

Investment opportunities
Investment projects

A B C D E F G H I J K

Invest 100 200 50 250 410 260 300 420 150 80 160

Return 200 320 120 320 560 410 420 490 220 130 320

88 V. Lowndes and S. Berry

3.4 Knapsack Problems

A Second Example of Mathematical Programming Modelling concerns the
knapsack problem. The knapsack problem or rucksack problem is a problem
in combinatorial optimisation: Given a set of items, each with a weight and a value,
determine the number of each item to include in a collection so that the total weight
is less than or equal to a given limit and the total value is as large as possible. It
derives its name from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most valuable items.

The problem often arises in resource allocation where there are financial con-
straints and is studied in fields such as combinatorics, computer science, com-
plexity theory, cryptography and applied mathematics.

3.4.1 Example: Herring Plc

Formulating and developing knapsack models, these models using the data where 7
items are available for packing

Item 1 2 3 4 5 6 7
Weight 10 20 50 20 5 2 1
Value 20 26 40 22 10 8 6
Total weights 108
Container capacity 82

Base model, constraint and objective function

10x1 þ 20x2 þ 50x3 þ 20x4 þ 5x5 þ 2x6 þ 1x7 � 82

Value ¼ 20x1 þ 26x2 þ 40x3 þ 22x4 þ 10x5 þ 8x6 þ 6x7
Maximise ðValueÞ

Modelling questions
Variables are they:

Real is 3:74 allowed? NO
Integer is 7 allowed; that ismultiple items YES
Binary single items only; pack or don't pack: NO

3 Introduction to Mathematical Programming 89

Solution and Evaluations (multiple copies of each item can be packed).

Profit ¼ 492

xi ¼ 0 i ¼ 1 to 6

x7 ¼ 82

Comments…is it feasible to pack, just, one type of item?
Summary of the investigation:

(i) Modelling

(i) Constraints
Linear

Nonlinear or linear

(j) Objective or multiple
Single
Return to be Maximised

(k) Variables; real, integer, binary, logical
Real: Initially assume that the variables are real
Integer: Move onto integer if the solution above is not acceptable

(a) Linear constraints and objective function therefore Solution obtained using
XPRESSIVE

Model 2: Development of model: To restrict the solution to one item of each
type, define the variables to be binary.

Variables are they:

Real is 3:74 allowed? NO
Integer is 7 allowed; that ismultiple items NO
Binary single items only; pack or don't pack: YES

Solution

Profit ¼ 94X ¼ f1; 1; 1; 0; 0; 1; 0g

Summary of the investigation:

(i) Modelling

(b) Constraints
Linear

90 V. Lowndes and S. Berry

Nonlinear or linear

(c) Objective or multiple
Single
Profit to be Maximised

(d) Variables; real, integer, binary, logical
Binary, only one item of each type.

(e) Linear constraints and objective function therefore Solution obtained using
Software, for example XpressIVE

3.4.2 Generic Models for the Basic Problem

A container is to be packed with several items so that the value of its contents is
optimised.

Using the notation

Value of each item is vi
Weight of each item is wi

Quantity of item i packed xi; integer valued
Capacity of the container is C

This can be is modelled by:

max Value ¼
X

vixi
h i

Subject to
X
i

wixi �C

Here, the aim is to maximise the value of the goods packed into the knapsack.
Notice that there are 8 variables and 1 constraint; using LP there will be only

one nonzero value in the optimal solution.
Here, the solution will be given by:

x1 ¼ C=2; see note 1:

and if C is an odd number, then this solution is impossible, 7.5 items is meaningless
and averaging is impossible (assuming more than one container).

Therefore, the answer has to have an integer form thus implying a harder
problem to solve.

Expanded problem (normal case)
At most, only one of each type of item may be chosen to be packed giving the

full formulation

3 Introduction to Mathematical Programming 91

max Value ¼
X

vixi
h i

Subject to
X
i

wixi �C xi binary

(note that within packages the variables can be defined to be binary/logical).
These problems can be solved using

Integer Programming,
Dynamic Programming,
Heuristics,
and Others

Notice that in an n variable problem, there are 2n possible solutions where each
variable can be [0, 1].

Notice that N = 12 is four times larger than the N = 3 problem but would take
500 times as long to solve given a full search.

Thus, there may be a need for an alternative approach to solving these problems,
heuristic techniques?

3.4.3 Multiple Knapsack Problem

A more general formulation, of knapsack problems, leads to a model with many
applications, not all applications seem at first to be related to knapsack problems.

Here, there exists a set of items are to be transported, as before, but here using a
set of containers where container j has a capacity of Cj.

Here, the objective may be to

• Maximise the value of the packed items given a fixed number of containers, or
• Minimise the required number of containers to pack all the items, or
• Minimise the cost of the containers needed to pack all the item.

A model can be defined using the binary variables

Xij ¼ 1 indicate that item i is packed in container j
Xij ¼ 0 indicate that item i is not packed in container j

and
It follows that

RXij � 1; to ensure that item i is packed in one of the containers
RWiXij �Cj to ensure that container j is not over-packed
Value ¼ RRViXij Value of items chosen to be shipped, choose the best items to

maximise value

92 V. Lowndes and S. Berry

Question: “How many containers will be needed to pack all these items?”
To Minimise the number of containers needed to pack all the items
If all are to be packed using a minimum number of containers, then

RXij ¼ 1 Each item has to be packed
RXij � djM How does this work?
RWiXij � djCj If used do not exceed capacity

Note: dj ¼ 1 implies container j is used.
Number of containers = Rdj
Minimise {number of containers}
Or to Minimise the cost of containers needed to pack all the items
If all are to be packed at a minimum cost (containers)

RXij ¼ 1 Each item has to be packed
RWiXij � djCj If used do not exceed capacity

Note dj ¼ 1 implies container j is used.
Cost of containers = RCjdj
Minimise {cost of containers}
Or to minimise a function of both number and cost of containers, in this case, the

problem may need to be solved using a heuristic approach.

3.4.4 Logical Constraints

There are situations where logical constraints are needed to ensure that the container
is packed safely.

For example, considering only one item of each type:
If item 1 is packed into container j, then item 2 must be packed into container j,

this requires the additional constraints,

x2j � x1j all j

or if items 1 and 2 cannot be packed into the same container, this requires the
additional constraints

x2j þ x1j � 1 all j

Notice that if multiple items could be packed, additional “logical” variables would
be needed, when items 1 and 2 cannot be packed into the same container giving:

x2j �Md2j all j

d2j þ d1j � 1 all j

3 Introduction to Mathematical Programming 93

3.5 Problems Reducible to Knapsack Problems

3.5.1 Allocating Workers to Tasks

There exists a set of n jobs and a pool of (n) workers to be allocated to these tasks,
each worker could carry out more than one task and the tasks could be completed in
any order.

Models to describe this task can be based around those for the multiple knapsack
problem but also considering:

Work loads evened out,
Staff capabilities, and
Staff changeovers, Manning machines implications.

What’s the objective, how to describe a good solution?
Why solve it using LP methods? Is this an appropriate method/approach?
Basic Model

Let xij ¼ 1 worker i is working at time j
di ¼ 1 worker i is working at ðany) time
Ci cost per session for worker i
mj number of workers needed at time j
n number of available workers
w number of time periods

Then
P
i
xij ¼ mj all i; adequate staffing level at all timesP

j
xij �Mdi all j; recordingworkers i s status;working or not working

With the objective

Minimise
X
i

di

 !
number of workers or

Minimise
X
j

X
i

Cixij

 !
cost of workers

Extended model
To share out the work and to prevent any worker being overloaded, an alter-

native model has the form

94 V. Lowndes and S. Berry

X
i

xij ¼ mjX
j

xij þ T �w
all i; adequate staffing level at all times

MaximiseðTÞ as T is common to all constraints; its valuewill be defined

by that worker assigned the greatest workload

Limiting shift length and allowing breaks
Each worker is limited to working for two time periods from any three, effec-

tively allowing regular breaks from work. This is implemented through the addition
of the constraints

xij þ xi;jþ 1 þ xi;jþ 2 � 2 all i; j ¼ 1; . . .;w� 2

Currency of worker skills
Within some applications, it is essential that the workers retain “currency” for

the task in hand, for example, air traffic controllers who have carry out a particular
role every K days; otherwise, they have to be retrained. However, if they carry out
the task at the start of their working day, their currency value needs to be reset to
correctly represent their training needs.

The following example is used to show the need for updating the currencies.
A model with 5 work stations and 11 workers where each worker cannot work

for more than 2 successive sessions was formulated, and the objective was to
maintain the workers currency.

The solution, see Table 3.6, illustrates the deficiencies associated with this
model; that is:

• The solution could be deduced; the computer model does not add to a “simple”
solution.

• Although workers 5, 11, 10, 9 and 4 have re-validated their currency at the end
of session 1, the model still allocates them to the same task later in the day, in
preference to using another worker and increasing their currency.

• The solution does not employ all workers.

Table 3.6 Allocation of workers to tasks and workers currency

Time

1 2 3 4 5 6 7 8

Work station 1 5 5 8 5 5 8 5 5

2 11 11 1 11 11 1 11 11

3 10 10 7 10 10 7 10 10

4 9 9 3 9 9 3 9 9

5 4 4 6 4 4 6 4 4

3 Introduction to Mathematical Programming 95

This requirement, changing the cost function value, can be achieved through the
addition of the additional constraints and the extended notation:

xijk representing the state of worker iwith respect to task j at time kP
i
xijk ¼ 1 all j; k assign only oneworker to each job at each timeP

j
xijk � 1 all i; k assign atmost one task to eachworker at each time:

In total jkþ ik constraints, for a typical problem of 15 workers, 8 time slots and
12 tasks, give 216 constraints.

Pk�1

1
xijk �Mcijk all i all n; number of controllers;

all k in T the number of dailywork slots:
all j in S the number of different tasks

cik ¼ 1 controller i has completed task j at time k:

An additional njk constraint, for a typical problem of 15 workers, 8 time slots
and 12 tasks, gives 1440 additional constraints.

The currency for worker i at task j in time slot k now becomes

ci 1� cijk
� �þKcijk whereK is themaximum currency

Then, if the controller has not worked at task j the current currency is retained
throughout the day. However, if the controller has worked at this task earlier in the
day the currency is reset to its maximum value. Consequently, controllers are
primarily assigned to tasks so that their currencies (all tasks) are maximised.

But this will generate many constraints and increase the solution time.

3.5.2 Allocation of Workers to Teams

Teams, of m players, are to be selected from a pool of n players for a competition
lasting over d days, so that the skill rating for each team is levelled out. Each player
must be selected at least once but no player may be selected on more than 2 days in
any three days. All players have a skills rating from 1, highest skill, to 10, lowest
skill.

Let xij ¼ 1 indicate that player i is to be a teammember on day j
si skill rating for player i
T number of players in a team

96 V. Lowndes and S. Berry

Basic formulation
P
j
xij � 1 all i; each to be selected at least onceP

i
xij ¼ T all j; select a full teamP

i
sixij ¼ Vj all j; calculate the total team skill rating

Vj �VB all j; find the lowest skilled team

Minimise VBð Þ even out the teams skills.
Extended formulation, add the 2 days from 3 conditions

xik þ xi;kþ 1 þ xi;kþ 2 � 2 for k� 1; . . .; d � 2f g

Notice that if there were more than one type of player, attacker and defender for
example, the constraints would becomeP

j xij � 1 all i, each to be selected at least onceP
j xij ¼ TD all j �D, select the defendersP
i xij ¼ TA all j �A, select the attackersP
i sixij ¼ Vj all j, calculate the total team skill rating

Vj �VB all j, find the lowest skilled team
xik þ xi;kþ 1 þ xi;kþ 2 � 2 for k � 1; . . .; d � 2f g

3.5.2.1 Allocating Workers to Projects

A group of n workers are available to work on m projects, but workers are not
qualified to work on all projects, and each worker holds a skills rating relevant to
each project (1 highest grade, 10 lowest grade), and ideally, the most skilful
workers should be assigned to each project.

Let xij ¼ 1 indicates that worker i is to be a team member on project j
aij ¼ 1 indicates that worker i is able to work on project j
rij skill rating for worker i at project j
Dj number of workers required for project j

Model 1: each worker could be assigned to more than one project

P
i
aijxij ¼ Dj all j

Minimise
P
i

P
j
rijxij

 !
achieve the optimal skills rating

3 Introduction to Mathematical Programming 97

Model 2: each worker could only be assigned to one project

P
i
aijxij ¼ Dj all jP

j
xij � 1 all i

Minimise
P
i

P
j
rijxij

 !

Model 2a: each worker could only be assigned to one project and minimise the
largest project skills rating P

i
aijxij ¼ Dj all jP

j
xij � 1 all iP

i
rijxij ¼ vj all j

vj � vv all j
Minimise vvð Þ

Model 3: all workers must be employed but on no more than 4 projects. Each
project requires 6 workers.P

i
aijxij ¼ Dj all jP

j
xij � 4 all iP

j
xij � 1 all i

Minimise
P
i

P
j
rijxij

 !

Model 4: minimise the maximum score

P
i
aijxij ¼ Dj all jP

j
xij � 4 all iP

j
xij � 1 all iP

i
rijxij ¼ vj all j

vj � vv all j
Minimise vvð Þ

98 V. Lowndes and S. Berry

Sample Data used in validating Models 1 and 2 and results
Models were constructed where there are 12 workers and 5 projects (Table 3.7).

Availability matrix a 1 available 0 not available
Ratingsmatrix r lower number indicatesmore able
Staffing requirement D staff required for each project

Table 3.7 Staff allocations from each model

Solution Data Set 1: allocation of workers to tasks

Model 1 Cost/rating = 19

Project Worker 1 2 3 4 5 6 7 8 9 10 D

1 1 1 2

2 1 1

3 1 1

4 1 1 1 3

5 1 1

Model 2 Cost/rating = 21

Project Worker 1 2 3 4 5 6 7 8 9 10 D

1 1 1 2

2 1 1

3 1 1

4 1 1 1 3

5 1 1

Data Set 2

Model 3 Cost/rating = 68

Project Worker 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1

5 1 1 1 1 1 1

Total/worker 4 4 2 2 3 4 2 2 4 3

Model 4 Cost/rating = 78

Project Worker 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1

5 1 1 1 1 1 1

Total 3 4 2 2 3 4 2 2 4 4

3 Introduction to Mathematical Programming 99

Availabilities Ratings
a :: ½1; 1; 1; 0; 0; r :: ½4; 2; 8; 1; 3;

1; 0; 1; 0; 1; 8; 1; 1; 2; 1;
1; 0; 1; 1; 0; 7; 7; 7; 7; 8;
0; 0; 1; 1; 1; 5; 3; 5; 2; 8;
0; 1; 1; 0; 0; 1; 4; 7; 3; 1;
1; 1; 0; 0; 1; 6; 2; 2; 4; 1;
1; 1; 1; 1; 0; 3; 4; 2; 8; 9;
1; 0; 1; 1; 1; 5; 5; 3; 7; 1;
1; 1; 0; 1; 0; 1; 2; 3; 4; 2;
1; 0; 1; 0; 1� 1; 1; 1; 8; 4�

Demands D :: 2; 1; 1; 3; 1½ �

Models 3 and 4 alternative and additional data

DemandD :: 6; 6; 6; 6; 6½ � :
Workload restrictions 1� xij � 4

3.5.3 Stock Cutting Problems

This problem is used both to illustrate the need for good modelling, when the
problem size increases the model does not increase exponentially in size, and the
use of a Knapsack formulation in modelling a problem from a different area.

The roll of paper shown in Fig. 3.2 is to be cut into smaller rolls to satisfy
customer demand.

Fig. 3.2 The roll of paper in smaller rolls to satisfy customer demand

100 V. Lowndes and S. Berry

For example:
The width of a roll is W and there is a demand ni rolls of width wi.
This problem can be represented by a Knapsack model, let xij be the number of

rolls of width wi cut from roll j.
Leading to the model:
Constraints

Width restriction
Pr
i
wixij �Wj

Satisfy demand
Pk
j
xij � ni

Roll status
Pr
i
xij �Mdj

Objective
Several objectives are again possible:

• Minimise number of rolls cut (equivalent to minimise the number of containers
in a knapsack problem).

Minimise
X

dj

• Minimise the cost of “material” used where Cj is the cost of using roll j.

Minimise
X

Cjdj

Or when demand is greater than capacity, let ui be the unsatisfied demand for
rolls of width wi the model becomes

Constraints

Width restriction
Pr
i
wixij �Wj

Satisfy demand
Pk
j
xij þ ui ¼ ni

Roll status
Pr
i
xij �Mdj

Objective
Several objectives are again possible:

3 Introduction to Mathematical Programming 101

• Minimise unsatisfied demand

Minimise
X

ui

• Minimise cost of unsatisfied demand where ci is the cost per unit of unsatisfied
demand for customer i.

Minimise
X

ciui

3.5.4 More Knapsack “Type” Problems: Set Covering
Problems

A typical example is concerned with the reorganisation of fire services to provide a
good coverage for all towns in the district.

Districts to be serviced

Possible sites for fire stations

Districts served (in an acceptable time) by a fire station

The aim is to determine and locate an appropriate number of fire stations so that
all districts will receive an acceptable service. Whilst minimising costs or number of
fire stations (Fig. 3.3).

Those models developed around the Knapsack problem can be used to determine
the location of a suitable set of fire stations. To use these models, assume that each
district is a “package” and that each fire station is a “container”.

Thus

xij ¼ 1 district i being allocated to fire station j,
dj ¼ 1 fire station site j being used, 0 otherwise
sij ¼ 1 district i could be allocated to fire station j

The basic model is now given by:
For each district (for all i):

X
j

sijxij ¼ 1

102 V. Lowndes and S. Berry

For each possible fire station: X
i

xij �Mdj

The objective function could be either to “Minimise the total number of fire
stations used”:

Minimise
X

dj

or to minimise the cost of the fire stations used:

Minimise
X

Cjdj

This approach also allows more complex modelling to represent more
complex/realistic conditions.

For example, a fire station can service at most N districts, add the constraintsX
i

xij �N for all j;

Fig. 3.3 Possible sites for fire stations

3 Introduction to Mathematical Programming 103

or if the districts demands for service is known, add the constraintsX
i

Dixij �K for all j:

A final aim may be to combine objectives. For example, minimise the number of
fire stations and the distance/time of travel to each district.

Thus combining the objectives

• Minimise the total number of fire stations, and

Minimise
X

dj

• Minimise the total travel time/distance

Minimise
X
i

X
j

dijxij

 !

with the respective importance of each acting to determine the optimal solution.
Finally, it may be desirable to “even out” the demand at each fire station, so

replace capacity constraint X
i

Dixij �K; with

X
i

Dixij þ bj ¼ K all j

and add a third objective

Minimise
X
j

bj

 !
:

This model demonstrating that there may be more than one objective in a
planning problem, and the solution process will need to be developed around the
problem.

104 V. Lowndes and S. Berry

3.6 Network Models

These are an important class of problem where the form and structure of the model
can lead to a simple solution technique.

The base models are as follows:

Transportation Problems, and
Network Flow Problems.

3.6.1 Defining Transportation Problems

This is a special type of Linear Programming problem. This problem type can be
illustrated by the example:

A firm has two depots and three shops, and it wishes to deliver the goods from
the depots (A, B) to the shops (X, Y, Z) as cheaply as possible.

Given the delivery network, 100 items available at A and a demand for 80 at
X (Fig. 3.4; Table 3.8).

The problem can be modelled by considering each depot and shop in turn.
For example, at A it follows that the quantities x11; x12; x13f g dispatched are such

that

x11 þ x12 þ x13 ¼ 140

and at X the quantities {u, x} received

x11 þ x21 ¼ 70

Considering all sources and destinations leads to the full formulation

x11 þ x12 þ x13 ¼ 140

x21 þ x22 þ x23 ¼ 100

x11 þ x21 ¼ 70

x12 þ x22 ¼ 80

x13 þ x23 ¼ 90

with the cost function (to be minimised) given by

cost ¼ 6x11 þ 8x12 þ 3x13 þ 4x21 þ 5x22 þ 9x23

3 Introduction to Mathematical Programming 105

A linear programming problem where the solution has to have an all integer
form with equalities rather than inequalities. But notice that there are only 4
independent equations and 6 unknowns.

Table 3.8 Shipping costs
warehouse to destination

Route Unit shipping cost Quantity using the route

AX 6 x11
AY 8 x12
AZ 3 x13
BX 4 x21
BY 5 x22
BZ 9 x23

Fig. 3.4 Warehouse destination diagram with the cost data

106 V. Lowndes and S. Berry

x11 þ x12 þ x13 ¼ 140

x21 þ x22 þ x23 ¼ 100

x11 þ x21 ¼ 70

x12 þ x22 ¼ 80

Note that: if these are satisfied, then the other (5th) equation must be satisfied.
Such a set of equations can be solved by setting two of the variables to zero and

solving the remaining set of simultaneous equations.
For example, if x21 ¼ 0 and x12 ¼ 0, then the solution is

x11 ¼ 70; x22 ¼ 80; x13 ¼ 70; x23 ¼ 20

Therefore, it seems as if there will be at most 15 possible solutions. A restricted
search space each having 4 nonzero shipments. Therefore, it seems that there should
be an alternative, simple, method to determine the optimal solution, than the
Simplex Method.

{Note: The optimal solution uses no more than
Number of depots + number of shops – 1 routes}

xij quantity sent from warehouse i to shop j
cij cost of sending one item from warehouse i to shop j
Ai stock available at warehouse i
Dj stock available required at shop j

Giving the model:

P
i
xij �Dj all jP

j
xij �Ai all i

Minimise Cost ¼P
i

P
j
cijxij

3.6.2 Assignment Problems

These were originally observed when trying to allocate a set of jobs between a set of
workers. For example, there are three jobs to be allocated between three workers so
that each worker receives one of these jobs. The following cost Table 3.9 indicates
the cost of allocating each job to each worker:

This is a special case of a Transportation Problem number of solutions n!.

xij ¼ 1 worker 1 is assigned to task j
cij cost of assigning worker I to task j

3 Introduction to Mathematical Programming 107

Giving the model:P
i
xij ¼ 1 all j assign all jobsP

j
xij ¼ 1 all i assign all workers

Minimise Cost ¼P
i

P
j
cijxij

Notice that if there are m workers and n tasks, where m > n adding

Ei cost of worker i not being required,

the model becomesP
i
xij ¼ 1 all jP

j
xij ¼ 1 all i

Minimise Cost ¼P
i

P
j

cijxij
� �þ P

i
1� xið ÞEi

3.6.3 Network Flow Models

Many problems can be represented in the form of a network and solutions found by
applying suitable methods of solution.

Problems can involve the following:

• Finding the shortest path/route
• Connecting all points in a network in an optimum manner
• Maximising the flow through a network
• Planning and control of a network of activities finding the shortest completion

time
• Areas reducible to network flows, for example transportation problems.

Examples of networks:

Nodes Branches Flow
Workstations Cable Information
Junctions Roads Traffic
Valves Pipelines Gas

Table 3.9 Worker task cost
data

X Y Z

A 8 12 7

B 10 6 8

C 6 7 6

108 V. Lowndes and S. Berry

3.6.3.1 Shortest Route

The shortest route problem is concerned with finding the shortest route from a
source to a sink through a connecting network with nonnegative distances associ-
ated with respective branches of the network (Fig. 3.5).

The LP formulation of this problem would be as follows, send one item from
node 1 to node N: let

xij ¼ 1 if branch i to j is included in the shortest route
xij ¼ 0 if branch is not used

The objective is to minimise the total cost of going from node 1 to node N, that is

Minimise Z ¼
X
i

X
j

dijxij

where dij is the direct distance between nodes i and j.
Subject to: P

j
x1j ¼ 1 Source nodeP

i
xiN ¼ 1 Sink nodeP

k
xik �

P
k
xkj ¼ 0 all other nodes k:

3.6.3.2 Maximum Flow in a Network

Typically, there exists a quantity of gas at the source and the aim is to send as much
as possible through a network pipes to supply a customer at the end of the network
(Fig. 3.6).

1 N

Fig. 3.5 Finding the shortest
route from a source to a sink
through a connecting network

1 N

Source
available
A units

Sink
supplied
with S units

Fig. 3.6 Network pipes to supply a customer at the end of the network

3 Introduction to Mathematical Programming 109

The LP formulation of this problem would be as follows, let

xij be the quantity sent along the pipe joining nodes i and j,
Cij be the carrying capacity of the pipe joining nodes i and j.

The objective is to maximise the total quantity reaching node N, that is

Maximise Z ¼ S
Subject to:

P
j
x1j �AP

i
xiN ¼ S Sink nodeP

k
xik�

P
k
xkj ¼ 0 all other nodes kP

i

P
j
xij �Cij all pipes

This model can be extended through the addition of pumping stations, with
capacity or/and cost at some of the nodes, for example node N has a capacity of CN

giving the additional constraint

X
k

xNk �CN

Note the objective could have been to satisfy demand or to send as much as
possible or to minimise costs?

3.6.3.3 Network Planning Models (Critical Path Models)

The network in Fig. 3.7 can be represented by the Linear Programming model

Fig. 3.7 Network planning
models

110 V. Lowndes and S. Berry

x2 � x1 þ d12
x3 � x1 þ d13
x3 � x2 þ d23
x4 � x2 þ d24
x4 � x3 þ d34
Minimise x4ð Þ

Following from this model, the case where some jobs could be completed using
alternative technologies, with different costs and completion times, using job (1, 2)
as an example with ds12 as the alternative duration, can be modelled as follows:

x2 � x1 þ d12 � 100ds
x2 � x1 þ ds12 � 100d

dþ ds ¼ 1

x3 � x1 þ d13
x3 � x2 þ d23
x4 � x2 þ d24
x4 � x3 þ d34
Minimise costsð Þ

3.6.3.4 Transhipment Models, Formulation and Problem Size

These are derived from transportation models through the addition of an extra stage
(equivalent to keep the goods in a warehouse), for example Fig. 3.8:

If all factories were connected to each shop, connecting all sources with all
destinations by way of all possible warehouses, this could be presented as a
Transportation problem.

Here, there are 3 sources (m), 3 destinations (n) and 2 warehouses (w); therefore:
there are m� n� w ¼ 18 possible routes to be used by the company.
This can be modelled as a network flow problem, let

xij quantity shipped from factory i to warehouse j
yjk quantity shipped from warehouse j to shop k
cxij cost of shipping an item from factory i to warehouse j
cyjk cost of shipping an item from warehouse j to shop k
Ai available stock at factory i
Cj capacity of warehouse j
Dk demand at shop k.

3 Introduction to Mathematical Programming 111

Giving the constraintsP
j xij �Ai sent from factory iP
i xij �Cj sent to warehouse jP
k yjk �

P
i xij balance stocks at warehouse jP

j yjk �Dk sent to shop kP
i xij �Mdj indicates usage of warehouse j.

3.6.3.5 Production Planning Models

The objective is the determination of a production schedule so that the firm can
satisfy demand whilst minimising costs. The costs to be considered are the pro-
duction costs and holding costs (per unit produced).

Notation used are as foolows:

dj the demand in month j
xj the assigned production in month j
cj the production capacity in month j
pj the unit production cost in month j
h the unit holding cost per month.

Thus, it follows that the xj need to satisfy the constraints:
demand in each month

Fig. 3.8 Trans-shipment model, factory to warehouse to shop

112 V. Lowndes and S. Berry

x1 � d1
x1 þ x2 � d1 þ d2
x1 þ � � � þ xn � d1 þ � � � þ dn

capacity constraint in each month

xj � cj all j

whilst minimising the total cost, where cost is given by:
the production costs

p1x1 þ � � � þ pnxn

the holding costs, and as the month end stocks are given by

s1 ¼ x1 � d1
s2 ¼ ðx1 þ x2Þ � ðd1 þ s2Þ
etc

the holding cost will be given by

hs1 þ hs2 þ � � � þ hsn ¼ hðnx1 þðn� 1Þx2 þ � � � þ 1xnÞ

to give the cost function, Production + Holding

cos t ¼ p1x1 þ � � � þ pnxn þ hðnx1 þðn� 1Þx2 þ � � � þ 1xnÞ

Model Summary
Problem size: n planned production periods imply n variables
Planning for the daily production with a planning horizon of

one week implies 7 variables
one month 20 variables
per year 250 variables

Alternative Model
Additional Notation

xij production in month i for use in month j
xij ¼ 0 i[j no backlogging of orders

Constraints and Objective

Capacity constraint
P

j xij � ci all i
Demand requirement

P
i xij � dj all j

Production costs
P

i

P
j pixij

3 Introduction to Mathematical Programming 113

Holding costs
P

i

P
j j� ið Þhxij

Total cost to be minimised
P

i

P
j j� ið Þhþ pið Þxij

Model Summary
Problem size: n planned production periods imply n(n + 1)/2 variables
Planning for the daily production with a planning horizon of

one week implies 30 variables
one month 190 variables
one day 31375 variables

Data requirement: production costs and holding costs needed to complete the
model.

Both models are equally valid, represent the production planning process, but
which model is best/most appropriate?

On the basis of number of variables, the first is more appropriate; but on the
basis of management information, the second may be the best model. This question
is addressed further within the case study.

3.7 Other Mathematical Modelling Applications

3.7.1 Data Envelopment Analysis

Typically Data Envelopment Analysis concerned with evaluating the performance
of a department within an organisation:

• Is this department performing as well as others?
• Can it improve its performance by acting more like other departments?

To be able to compare a department with other like departments, there needs to
be an agreed formal methodology for comparison.

For example, to demonstrate the need for an agreed methodology, consider the
very straightforward sporting example “which team is the most effective/best
association football team over a season”.

Possible comparison methods used

• Points awarded ½win; draw, loss� ¼ ½2; 1; 0� or ½3; 1; 0�
• Goals scored (S) and conceded (C) ½goal measure� ¼ S�C or S=C
• With the better team having gained the highest number of points and achieved

the highest goal measure.

Alternatively

• Most wins, or win percentage
• Fewest losses.

114 V. Lowndes and S. Berry

The following example aims to show that the application of these rules can lead
to very different results.

Consider a season (8 teams each playing 14 matches) where the results are
presented in Table 3.10:

With the current points awarded, 3 points for a win and 1 for a draw, Haiton are
relegated! and therefore can be said to be less efficient (not as good) than the other
teams.

But could they claim to be better than the other teams if another criteria were to
be used?

Using the alternative system awarding 2 points for a win and 1 for a draw, the
final table would have given either:

Haiton equal top, if all goal differences and number of goals scored are equal, or
Haiton “mid table” if all goal differences are not equal.

In either case, Haiton are not relegated! (Table 3.11).
In fact, Haiton could claim to be the “best team/most efficient” because they

have not lost a match.
Note: In Association Football currently in UK leagues if two teams have equal

points that team with the greater goal difference (scored-conceded) is judged to be
the better team, but historically, they used to use goal ratio (scored/conceded)! this
change can also alter the team’s final standing when they have equal points.

Table 3.10 Association Football league table, current points system

Played
points

Won 3 Drawn 1 Lost 0 Points
total

Goal
difference

Ayton 14 6 2 6 20 15

Beeham 14 6 2 6 20 10

Ceeford 14 6 2 6 20 5

Deeton 14 6 2 6 20 0

Efax 14 6 2 6 20 −7

Fesley 14 6 2 6 20 −11

Geeton 14 6 2 6 20 −12

Haiton 14 0 14 0 14 0

Table 3.11 Association Football league table, previous points system

Won 2 Drawn 1 Lost 0 Points total Goal difference

Ayton 6 2 6 14 15

Beeham 6 2 6 14 10

Ceeford 6 2 6 14 5

Deeton 6 2 6 14 0

Haiton 0 14 0 14 0

Efax 6 2 6 14 −7

Fesley 6 2 6 14 −11

Geeton 6 2 6 14 −12

3 Introduction to Mathematical Programming 115

Data envelopment analysis (DEA), occasionally called frontier analysis, was
proposed by Charnes, Cooper and Rhodes (1978). It is a performance measurement
technique which can be used to enable the evaluation of the relative efficiency of
decision-making units (DMUs) in organisations (above teams in a competition).

Examples of such units to which DEA has been applied are banks, police sta-
tions, hospitals, tax offices, prisons, defence bases (army, navy, air force), schools
and university departments.

Often departments are compared by way of their efficiencies. A problem is how
do you “fairly” compute efficiencies.

Data Envelopment Analysis proceeds by “challenging” each team to select the
best weightings for their inputs (win or draw here) to demonstrate their efficiency
(best overall result).

In this example,

Haiton could choose win 2 points, draw 1 point
Geeton could choose win 3 points, draw 2 points

DEA applied in business: An Illustrative Example
A company operates outlets in three regions each with two inputs and two

outputs:

Company
X Y Z weights

INPUTS A 20 40 30 v1
B 30 20 25 v2

OUTPUTS C 40 30 25 w1

D 30 50 20 w2

To enable comparisons, the company’s management challenges each department
to use this data set to “prove” that they can be considered to be efficient, choosing
the best weighting of their inputs and outputs.

Department X could use input A and output C to show that they are performing
better than the other departments and thus demonstrating their efficiency,

Ratios Output=Input X Y Z
2:0 0:75 1:17

Efficiency% 100 37:5 58:5

Similarly department Y would could use input B and output D to demonstrate
efficiency,

Ratios Output=Input X Y Z
1:0 2:5 1:6

Efficiency% 40 100 64

116 V. Lowndes and S. Berry

A formal approach for each company would require the determination of the
weightings to be attached to each input and output quantity so that their efficiency
rating is maximised. Notice also that each input and output must be used at an
agreed specified weighted level, otherwise they can be assumed to have no
importance.

For company X, this produces the model:

max½ 40w1 þ 30w2ð Þ= 20v1 þ 30v2ð Þ� optimise efficiency
40w1 þ 30w2 � 20v1 þ 30v2 output less than inputX
30w1 þ 50w2 � 40v1 þ 20v2 output less than input Y
25w1 þ 20w2 � 30v1 þ 25v2 output less than input Z

This can be represented as a linear programming problem by setting the input for
company X to a value of 100, giving the model for company X as

max½40w1 þ 30w2�
20v1 þ 30v2 ¼ 100 set input at 100
40w1 þ 30w2 20v1 þ 30v2
30w1 þ 50w2 40v1 þ 20v2
25w1 þ 20w230v1 þ 25v2

Finally, a normal additional condition is that all inputs and outputs must influ-
ence the calculation, and all weights greater than zero, for example each input and
output quantity, must contribute at least 15% towards the total quantity, adding the
constraints:

40w1 � 0:15ð40w1 þ 30w2Þ
30w2 � 0:15ð40w1 þ 30w2Þ
20v1 � 0:15ð20v1 þ 30v2Þ
30v2 � 0:15ð20v1 þ 30v2Þ

Results Efficiency ¼ 100
Weightings w ¼ 0:375; 2:833ð Þ v ¼ 4:250; 0:500ð Þ
Relative Efficiencies Firm X; Y ; Z½ � ¼ 100; 73; 26ð Þ

The weights chosen by firm X show that X could be considered to be operating
efficiently.

The model for company Y will be

3 Introduction to Mathematical Programming 117

max½30w1 þ 50w2�
40v1 þ 20v2 ¼ 100
40w1 þ 30w2 20v1 þ 30v2
30w1 þ 50w2 40v1 þ 20v2
25w1 þ 20w2 30v1 þ 25v2
40w1 � 0:15ð40w1 þ 30w2Þ
30w2 � 0:15ð40w1 þ 30w2Þ
20v1 � 0:15ð20v1 þ 30v2Þ
30v2 � 0:15ð20v1 þ 30v2Þ

Results Efficiency = 100

Weightings w ¼ 2:833; 0:300ð Þ v ¼ 0:375; 4:250ð Þ
Relative Efficiencies Firm½X; Y ; Z� ¼ 87; 100; 59ð Þ

The weights chosen by firm Y show that Y could be considered to be operating
efficiently.

The model for company Z will be

max½40w1 þ 35w2�
30v1 þ 25v2 ¼ 100
40w1 þ 30w2 20v1 þ 30v2
30w1 þ 50w2 40v1 þ 20v2
25w1 þ 20w2 30v1 þ 25v2
25w1 � 0:05ð25w1 þ 20w2Þ
20w2 � 0:05ð25w1 þ 20w2Þ
20v1 � 0:05ð20v1 þ 30v2Þ
30v2 � 0:05ð20v1 þ 30v2Þ

Results Efficiency = 67

Weightings w ¼ 2:282; 0:503ð Þ v ¼ 0:852; 2:798ð Þ
Relative Efficiencies Firm ¼ 100; 100; 67ð Þ

The results indicating that firm Z is inefficient, because in comparison with the
other departments’ inputs and outputs, it is unable to demonstrate that it could be
considered to be efficient. They also demonstrate that firm Z could seem to become
more efficient by acting like either firm X or firm Y.

3.7.2 Goal Programming

In many situations when a model is being constructed to represent a particular
application, there can exist:

118 V. Lowndes and S. Berry

• More than one objective, for example in a diet problem minimise cost and
maximise “taste”

• Conflicting constraints, in a manufacturing context, spend no more than the
allowed budget and make at least the required number of items.

These objectives and constraints are often in conflict:

• the “tasty” diet could include expensive foodstuffs and the economic diet very
non“tasty” foodstuffs, and in general, the cost of the tasty diet will be (much)
greater than the economic diet and the economic diet will not be “tasty”,

• the set budget may not be sufficient to be able to operate the factory (direct and
indirect, fixed and variable costs).

Goal programming aims to reconcile these aims, often satisfying neither, pro-
ducing a compromise solution.

Illustrative Example: production example

Capacity constraints
P
j
aijxj � bi all i

Income target
P
j
rjxj � T

Maximise Profit
P
j
pjxj

Where a conflict between the capacity constraints and the income target may not
allow a feasible solution.

Goal programming proceeds by the addition of “deviational variables” to give
the enhanced model where the constraints have been replaced with equations

Capacity constraints
P
j
aijxj ¼ d�i � dþ

i þ bi all i

Income target
P
j
rjxj ¼ t� � tþ þ T

Minimise deviations from capacities/targets, here minimise overcapacity and
under income generation, measured by d�j and tþ (assuming that unused capacity
dþ
j and higher than target revenue t� are acceptable) to give the objective

Minimise
X
j

wjd
�
j þwtþ

The values for pj and p are weights representing the relative importance of each
capacity and the income target constraint.

The problem now is the determination of suitable costs, consider the extreme
cases:

w very large the objective is simplified to Minimise wtþð Þ generate the target
income at the expense of the addition of extra capacity.

3 Introduction to Mathematical Programming 119

w very small the objective would seem to become Minimise
P

j pjd
�
j

� �
but in

fact, the deviational model is replaced with
Capacity constraints

P
j
aijxj � bi all iP
j
rjxj � T

Maximise Profit
P
j
pjxj

The difficulty in formulating this goal programming model is the determination
of the deviational weights. There are many approaches to goal programming;
however, heuristic approaches can often be applied with more success to this type
of problem.

References

1. Stigler G (1945) Cost of subsistence. J Farm Econ 25:303–314
2. Dantzig GB (1990) The diet problem: interfaces. In: The practice of mathematical

programming vol 20(4), pp 43–47

120 V. Lowndes and S. Berry

Chapter 4
Heuristic Techniques in Optimisation

Val Lowndes and Stuart Berry

These approaches can be useful when the problem to be solved is large and/or
complex, when a timely good solution is considered to be better than a late optimal
solution.

Many problems are such that the model to represent them is too large and
complex to be solved in a reasonable time or the search space is too large, for
example, the travelling salesman problem or scheduling air traffic controllers.

Note that

• in an n city travelling salesman problem, there are n� 1ð Þ! routes to be
(potentially) evaluated; if the route fa; b; c; dg is deemed to be the same as route
fd; c; b; ag, there are ðn� 1Þ!=2 routes.

• while scheduling m tasks between n air traffic controllers implies, in the worst
case, n!ð Þm possible solutions, and

• when n jobs are to be processed through a flow shop, there are n! possible
schedules, more in the case of a job shop.

However, in reality, travelling salesmen have determined good routes, air traffic
controllers are scheduled, and manufacturing work in both flow and job shop
scenarios is scheduled.

In all cases, the planners have used heuristic approaches to determine good
feasible schedules.

There are many approaches used to develop heuristics methodologies and
algorithms which lead to the “solution” of optimisation problems. In general, each

V. Lowndes
University of Derby, Kedleston Road, Derby DE22 1GB, UK
e-mail: V.P.Lowndes@derby.ac.uk

S. Berry (&)
College of Engineering and Technology, University of Derby, Kedleston Road, Derby DE22
1GB, UK
e-mail: s.berry@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_4

121

problem type tends to require a “tailor-made” heuristic or variation on existing
methodologies. Here, two methodologies are presented: one is stochastic (genetic
algorithms), and the other is deterministic (tabu search), to indicate their possible
usages as approaches to problem-solving.

Defining Heuristics
A heuristic contributes to a reduction of search space in a problem-solving activity.
A heuristic approach attempts to understand the mental operations in the thinking
process, i.e. a study of the cognitive processes. Heuristic problem-solving takes a
heuristic approach or uses heuristics in a problem-solving or decision-making situation.

Heuristic programming
A program of work can be defined to be a scheduled procedure of tasks. A heuristic
program is a scheduled procedure of heuristics, that is a formal ordered presentation
of aids to discovery.

Rationale for the use of heuristics?
The heuristic approach is ideally suited to two types of problems:

• problems too large for traditional OR methods; or
• problems too loosely structured or ill structured to be expressed in the math-

ematical terms necessary for the traditional algorithmic models.

If too large, a heuristic approach can provide a shortcut to the process of
deriving/developing a solution, for example a travelling salesman problem. If the
problem is too loosely structured, a heuristic approach can provide an orderly
approach to a solution. However, the solution is not necessarily the optimal solution
or even close to the optimal solution.

4.1 Genetic Algorithms

This approach to the determination of a good solution of an optimisation problem
uses concepts drawn from biology, Holland [1].

Typically, it progresses from an initial set of trial solutions (created randomly) to
a new set/generation of trial solutions by combining selected members of the initial
population, thereby improving the state of the known solution.

This approach can be useful when the problem to be solved is large and/or
complex often with multiple objectives when a timely good solution (compared
with a late optimal solution) is both appropriate and useful.

The concept underlying genetic algorithms is that of natural evolution. In evo-
lution, the problem each species faces is one of searching for beneficial adaptations
to a complicated and changing environment. The knowledge that each species
has gained is embodied in the make-up of the chromosomes of its members.

122 V. Lowndes and S. Berry

Operations that alter this chromosomal make-up are applied when parents repro-
duce. Examples of such operations are random mutation and crossover of chro-
mosomal material between two parents’ chromosomes. Random mutation provides
background variation and occasionally introduces beneficial material into a species’
chromosomes. Crossover exchanges the corresponding genetic material from two
parent chromosomes, allowing beneficial genes of different parents to be combined
in their offspring.

Holland [1] is the founder of the field of genetic algorithms. Holland’s research
evolved around the ability to encode complicated structures as simple representa-
tions (bit strings) and the power of simple transformations to improve such
structures.

He showed that with the proper control structure, rapid improvements of bit
strings could occur so that a population of bit strings could be made to “evolve” like
a population of animals.

He described a genetic algorithm as a control structure with which these rep-
resentations and operations could be managed in order to evolve bit strings that
well-represented solutions to the problem to be solved.

Holland suggested that even in large complicated search spaces, given certain
conditions on the problem domain, genetic algorithms would tend to converge on
solutions that were globally optimal or nearly so.

The design and implementation of a Genetic Algorithm to a particular problem
requires the following components/stages:

• A chromosomal representation of solutions to the problem;
• A way to create an initial population of solutions;
• An evaluation function that plays the role of the environment, rating solutions in

terms of their fitness;
• Genetic operators that generate and alter the composition of offspring during

reproduction;
• Values for the parameters that the genetic algorithm uses (population size,

probabilities of applying genetic operators, etc.
Holland [1], Goldberg [2] and Mitchell [3].

Chapter 17 contains descriptions and examples of methods for selection,
crossover and mutation.

4.1.1 Implementation Examples

The genetic algorithmic implementation tends to be particular to each application.
The following examples aim to show that these stages tend to be particular to each
problem. In each case, selection of parents is based on both Tournament and
Roulette procedures to be able to compare the effectiveness of each approach.

4 Heuristic Techniques in Optimisation 123

4.1.1.1 Knapsack Problems Genetic Algorithmic Approaches

First consider the problem where there are n items but just one container; here, the
objective is the selection of the items to be packed.

Define the variables

wj weight of item j
vj value of item j
C capacity

and

Sij ¼ 1 item j is packed, string i
Sij ¼ 0 item j is not packed

with

Wi weight of packing defined by string i
Vi value of packing defined by string i

Thus, the GA string for an 8 variable problem can have the form:

S ¼ ½1 1 0 1 0 1 1 0�

Indicating a packing list with the weight and value given by

Weight Wi ¼
X

Sijwj and

Value if Wi �C Vi ¼
X

Sijvj however

else Wi [C Vi ¼ 0 ðan infeasible solutionÞ

Example: Suppose C = 160 and there are two strings S1; S2ð Þ

S1 ½1 1 0 1 0 1 1 0� WeightW1 ¼ 142 ValueV1 ¼ 200
S2 ½1 1 1 1 1 1 1 0� WeightW2 ¼ 202 ValueV2 ¼ 330

Imposing the weight restriction gives

S1 WeightW1 ¼ 142 ValueV1 ¼ 200
S2 not allowed WeightW2 ¼ 202 ValueVi ¼ 0

Crossover and mutation can be employed to obtain a good solution; crossover
single or multiple will always provide a “reasonable” possible solution:

Crossover: choose two parent strings and a crossover point to generate new
strings

124 V. Lowndes and S. Berry

parents new strings

Mutation: when a location is selected for mutation, then the new value can be
given by:

Sij ¼ mod2 Sij þ 1
� �

altering the status of item i, or
Sij ¼ Random from 0; 1f g randomly setting the status of item i.

4.1.1.2 Multiple Container Problem

Now consider the problem where the aim is to minimise the number of containers,
or total cost of containers used to pack n items, all items to be packed.

Here, the GA string for an 8 variable problem (assuming that there are 4 con-
tainers available for use) will have the form:

Si ¼ ½1 1 2 1 3 1 4 2�

check capacities for feasibility and then calculate the cost of this solution; the
individual container usages sið Þ are as follows:

s1 ¼ 1 1 0 1 0 1 0 0½ �
s2 ¼ 0 0 1 0 0 0 0 1½ �
s3 ¼ 0 0 0 0 1 0 0 0½ �
s4 ¼ 0 0 0 0 0 0 1 0½ �

With the individual container, weights given by

w0
i ¼

X
j

sijwj

The solution is valid if

w0
i �Ci

n, the cost of the solution, is given by the total cost of the used containers.
Crossover: choose two parent strings and a crossover point to generate new

strings

4 Heuristic Techniques in Optimisation 125

parents new strings

check for feasibility, 4 containers used

Mutation: when a location is selected for mutation, then a possible implemen-
tation would be to replace the existing container number Sij with

Sij ¼ randomf1; 2; 3; 4g; or

This model/implementation can be used to minimise either the number of con-
tainers or the cost of the containers.

Selection for crossover could be by way of either the Tournament or the Roulette
methodologies (see Sect. 17.1 for examples of Tournament and Roulette selection)

Both approaches have been applied to the sample problem with the typical set of
results:

Data:
15 items available to be packed into a container with capacity of 59 units to

maximise the value of items packed.

Weights W ¼ 3 7 2 4 6 11 9 3 2 15 8 6 12 15 4½ �
Values V ¼ 2 6 1 3 5 8 2 5 22 7 3 1 4 6 11½ �

The results from three iterations of the genetic algorithm were as follows:

Best value weight
64 59
64 59
68 59

4.1.1.3 Travelling Salesman Problem Genetic Algorithmic Approach

This example is used to demonstrate that the crossover mechanism is dependent on
the problem.

Defining the variables

dij distance from location i to location j:
cij cost of travelling from location i to location j:

The genetic algorithm string will indicate the order in which the cities are to be
visited, for example in a 10 city problem it could have the form:

126 V. Lowndes and S. Berry

S1 ¼ ½7 8 2 9 3 4 1 0 5 6 1�; or
S1 ¼ ½8 2 7 6 1 0 9 1 5 3 4�

Point crossovers, using two genetic algorithm strings, not be appropriate here, it
could cause multiple visits to the same location.

A simple alternative is to select a single string and a single crossover point

and reverse the order of those jobs after the crossover point

S1 ¼ ½7 8 2 9 3 4 1 6 5 10�

This crossover causes two changes to the order of cities visited

f4; 1g replaces f4; 10g and

f10; 7g replaces f1; 7g

This process can be repeated to perform multiple crossovers

Giving

An alternative crossover is to select two random points giving

extract

M1 ¼ ½9 3 4 10�

Now select another random point in RI and replace the extracted string
Remainder
To give the new string

S1 ¼ ½7 8 9 3 4 10 2 5 6 1�

This crossover has made three changes to the original (visiting order) genetic
algorithm string:

4 Heuristic Techniques in Optimisation 127

f8; 9g replaces f8; 2g;
f10; 2g replaces f10; 5g and
f2; 5g replaces f2; 9g

Mutation can be achieved by: select two positions and exchange the cities
Selection for crossover: use Tournament or Roulette selection

The following example has been “solved” using both a standard genetic algo-
rithmic approach (TSP_GA) and a mini genetic algorithm approach (TSP_miniGA).

In a “mini genetic algorithm” approach, several small (few strings) genetic
algorithms are processed, each generating one good solution. These good solutions
are then used as the starting population for a final genetic algorithm.

Both approaches were applied to a 30 city problem then to a 40 city problem,
applying one crossover on 99% of occasions and 2 crossovers on 1% of occasions.
Comparing the solution times for the 30 city problems

TSP_GA 80 strings and 1500 iterations 100 strings 2500 iterations

6.70 seconds best route cost ¼374

17.53 seconds best route cost ¼374

6.23 seconds best route cost ¼374

6.70 seconds best route cost ¼374

6.21 seconds best route cost ¼375

6.70 seconds best route cost ¼374

with

TSP_miniGA 40 mini genetic algorithm populations

40 strings each with 30 iterations, and final string with 250
iterations

3.20 seconds best route cost ¼370

3.26 seconds best route cost ¼392

3.21 seconds best route cost ¼377

Comparing the solution times for the 40 city problems 100 strings 2500 iterations

TSP_GA 8.60 seconds best route cost ¼506

17.53 seconds best route cost ¼489

8.50 seconds best route cost ¼494

17.06 seconds best route cost ¼499

8.60 seconds best route cost ¼503

16.82 seconds best route cost ¼499

128 V. Lowndes and S. Berry

with

TSP_miniGA 4.42 seconds best route cost ¼530

4.41 seconds best route cost ¼501

4.38 seconds best route cost ¼513

Comparing the solution times for the 20 city problems

TSP_GA 4.35 seconds best route cost ¼251

4.48 seconds best route cost ¼255

4.36 seconds best route cost ¼248

Combining the results obtained using TSP_GA suggested that the solution time
is given by:

Time ¼ 0:1928þ 0:2085 Cities or Time � Cities
5

Continuing the investigation using one crossover on 1% of occasions and 2
crossovers on 99% of occasions indicated that mostly using one crossover gave
better results.

Comparing the solution times for the 40 city problems

TSP_GA 8.58 seconds best route cost ¼548

8.53 seconds best route cost ¼535

8.66 seconds best route cost ¼556

with

TSP_miniGA 4.37 seconds best route cost ¼573

4.39 seconds best route cost ¼560

4.44 seconds best route cost ¼566

4 Heuristic Techniques in Optimisation 129

4.1.1.4 Flow Shop Scheduling Genetic Algorithmic Approach

Define the variables

Tij time required on process i by job j:

The GA string will indicate the order in which the jobs are to be processed, for
example in a 10 job problem, it can have the form:

Sk ¼ ½7 8 2 9 3 4 10 5 6 1�

Essentially, the same problem with the same problems as a travelling salesman
problem except here, there are n! possible solutions compared with n� 1ð Þ!=2
possible solutions with the travelling salesman problem, and the fact that the
resultant schedule following crossover is more changed than with the travelling
salesman problem.

Replacing Sk with ½7 8 2 9 3 4 1 6 5 10� has made 4 changes to the schedule
f4; 1g; f1; 6g; f6; 5g; f5; 10g compared with only two changes in a travelling
salesman problem using the same genetic algorithm string, these were as follows:

f4; 1g and f10; 7g:

Other possible crossovers methodologies retain more of the existing order typ-
ical crossover mechanisms are as follows:

• One point crossover
• Two (multiple point) crossover
• Position-based crossover

All are illustrated using the genetic algorithm string

Sk ¼ f1; 2; 3; 4; 5; 6; 7; 8g

One Point Crossover
One point is randomly selected from Parent 1,
Jobs selected from one side (random) are copied to the child, (Jobs 1, 2 and 3
below); the other jobs are then placed in the order given by the 2nd parent. (i.e. 5, 8,
4, 7 and 6).

130 V. Lowndes and S. Berry

Two Point Crossover
Two points are randomly selected from Parent 1, Jobs outside the 2 crossover points
are mapped to the child (A, B and G, H).

The remaining jobs are copied in the order given by Parent 2 (E, D, C and F).

In an alternative approach, the parents inside the two crossover points are
mapped to the child (i.e. C, D, E and F). The remaining jobs (H, A, B and G) are
then copied in the order given by Parent 2.

Position-based Crossover
N positions are chosen randomly from Parent 1, and these jobs are inherited directly
by the child (B, C, E and H). The other jobs are then placed in the order given by
Parent 2 (A, D, G and F).

4 Heuristic Techniques in Optimisation 131

4.1.1.5 Quadratic Assignment Problem Genetic
Algorithmic Approach

Define the variables

Tij ¼ 1 worker i is assigned to carry out task j
Dij ¼ 1 duration/cost of task j when assigned to task i
Mi allowable working time for worker i

Initially, assuming that each worker is assigned to a single task and each task is
assigned to a single worker, the problem formulation becomes as follows:

X
j

Tij � 1

X
i

Tij ¼ 1

Minimise
X
i

X
j

f Dij; Tij
� �()

where the objective function has a quadratic form.
If more than one task can be allocated to a worker, the formulation becomes as

follows: X
j

DijTij �Mi

X
i

Tij ¼ 1

Minimise
X
i

X
j

f Dij; Tij
� �()

For the basic model with n = 8 jobs and m = 15 workers, the genetic algorithm
string will have the form:

Sk ¼ ½7 8 12 9 3 14 10 5�

For the extended model, each worker could appear more than once.
Crossover: any crossover could be appropriate the simplest (single point) leads

to valid solution strings, for example:

S1 ¼ ½7 8 12 9 3 14 10 5�
S2 ¼ ½3 5 7 11 6 12 13 2�

132 V. Lowndes and S. Berry

Can give the new strings

S3 ¼ ½7 8 12 9 6 12 13 2�
S4 ¼ ½3 5 7 11 3 14 10 5�

Mutation, for a randomly chosen location j, the existing value is replaced with

Sjk ¼ 1þ mod15 Skj þ ceil 15� randð Þ� �
alternatively, exchange two values chosen at random.

4.1.1.6 Fire Station Location Problem Genetic Algorithms
and Fuzzy Logic

The object can be to determine the best locations for a fire station or to determine
the best allocation of districts to be serviced by each, existing, fire station.

Using the notation

xij 2 0; 1f g district i being allocated to fire station j,
dij distance from district i to fire station j,
ri expected demand from district i,
Rj capacity of fire station j
Cj cost of fire station j
dj 2 0; 1f g fire station site j being used, 0 otherwise
sij 2 0; 1f g district i could be allocated to fire station j

The basic model is now given by:
for each district (for all i): X

j

sijxij ¼ 1

X
i

rixij �Rj

for each possible fire station, determine its usage

X
i

xij �Mdj

With the objective function aiming to minimise some function of distance
travelled using the decision model becomes

4 Heuristic Techniques in Optimisation 133

Minimise
X
i

X
j

dnijxij

 !

X
j

xij ¼ 1

X
i

rixij �Rj

Or aiming to minimise both distance and cost the model becomes

Minimise
X
i

X
j

dnijxij

 !
and ðandÞ

Minimise
X
j

Cjdj

 !

X
j

xij ¼ 1

X
i

rixij �Rj

X
i

xij �Mdj

In both cases, the genetic algorithm string can have the form

f4; 3; 5; 2; 2; 1; 4; 3; 3; 1g

that is fire station 1 is allocated to cover cities 6 and 10.
In the second model, fuzzy logic can be used to combine the two objectives, for

example starting with optimal solutions to the two problems:

Minimise C1 ¼
X
j

Cjdj

 !

X
j

xij ¼ 1

X
i

rixij �Rj

134 V. Lowndes and S. Berry

X
i

xij �Mdj

Minimise C2 ¼
X
i

X
j

dnijxij

 !

X
j

xij ¼ 1

X
i

rixij �Rj

The values C1 and C2 can be used to enable the implementation of a fuzzy
logic-based objective.

Technical Notes (see Sect. 17.1 for an example of selection methods).
Selection methods
Roulette
The selection procedure randomly picks out two parent chromosomes, based on
their fitness values, which are then used by the crossover and mutation operators
(described below) to produce two offspring for the new population.

The selection process:

1. sum the fitness of all population members to give the total fitness;
2. generate, from a uniform distribution, a random integer, r, between 0 and total

fitness;
3. select the first chromosome whose cumulative fitness is greater than or equal to r.

Thus, the better strings tend to be selected more often than the others, and thus,
the average fitness of the population (of strings) tends to improve as the process
advances towards convergence (of the fitness values).

Tournament
The selection procedure has two stages:

Stage 1: select at random m strings and from these retain the best, repeat this
process until n strings have been selected.

Stage 2: select two parents from these n strings and perform crossover and
mutation to generate two new strings. Note at this stage, each string is
used only once.

4 Heuristic Techniques in Optimisation 135

4.2 Tabu Search

This is a deterministic method. This search technique operates by stepping through
the solution space constructing a tabu list (of visited solutions) so that the search
does not (repeatedly) return to the same solution.

Glover [4, 5] “invented” the procedure and processes of a tabu search. This is a
heuristic method that allows a search procedure to explore the solution space
beyond local optimality. Application areas include scheduling, resource allocation,
planning and telecommunications.

Tabu search is based on the premise that problem-solving, in order to qualify as
intelligent, must incorporate adaptive memory and responsive exploration. The use
of adaptive memory by tabu search is in contrast to memoryless techniques such as
simulated annealing and genetic algorithms. The emphasis on responsive explo-
ration derives from the supposition that poor strategic choice may produce more
information than a good random choice.

Practical implementations of tabu search seek to exploit the properties of:

(1) Flexible memory—to drive the search into new regions of the solution space;
(2) Responsive exploration—to identify and explore “good” regions of solution

space.

Unlike some other techniques (for example simulated annealing and genetic
algorithms), randomisation is not normally employed to avoid termination at a local
optimum; thus, most tabu search implementations are largely or wholly
deterministic.

Tabu search implementation, consider the first problem

Maximise f x1; . . .; xnð Þ
Subject toP

xi ¼ M
xki the kth iteration for xi

From an initial solution, step 1,X
x1i ¼ M

Investigate all (valid) neighbouring points to determine the best neighbouring
point and move to this point

P
x2i ¼ M

x2i ¼ x1i i 6¼ k; i 6¼ j
x2k ¼ x1k þ h
x2j ¼ x1j � h

adding the previous point to a tabu list, restricting a return to this point.

136 V. Lowndes and S. Berry

Note: the tabu list normally has a fixed finite length, so a solution could be
investigated more than once.

4.2.1 Basic Financial, Investment Problem,
Tabu Search Approach

A sum of money is available for investment into several ðnÞ projects, let
xsi number of units of investment into project i at iteration s
M number of units available to be invested
f ðxs1; . . .; xsnÞ return from the investments at iteration s

Initial solution, let

x1i ¼ M=nð Þ number of units of investment into project i at iteration s
T 1ð Þ ¼ x11; x

1
2; . . .; x

1
n

� �
initial tabu list

after selecting the new solution x21; . . .; x
2
n

� �
, this solution is added to the tabu list

T 2ð Þ ¼ x21; x
2
2; . . .; x

2
n

� �
the initial tabu list

Note that the tabu list can either have an unlimited size or a maximum size. In
the latter case, the more “historic” points are successively removed from the tabu
list, allowing them to be revisited.

4.2.2 Extended Financial, Investment Problem,
Tabu Search Approach

This problem can be extended through the addition of limits on the size of the
investment in each project. This adds the constraints xsi �Mi to be checked at each
iteration.

The minimum and maximum allowed investments into each project are 16 and
24, and the available investment fund is 80 (Table 4.1).

The first two stages in a tabu search, step size 1, are as follows:

Table 4.1 Investment
opportunities points

Cash flows, unit of investment 10, available 80

Time Project W Project X Project Y Project Z

Cost/unit 10 9 11.1 9.6

Return/unit 12 13 12.7 12.4

4 Heuristic Techniques in Optimisation 137

Stage 1 W X Y Z

Current point 20 20 20 20 208

Neighbours 21 19 20 20 206

21 20 19 20 208.4

21 20 20 19 207.2

19 21 20 20 210

20 21 19 20 210.4

20 21 20 19 209.2 Best new point

19 20 21 20 207.6

20 19 21 20 205.6

20 20 21 19 206.8

19 20 20 21 208.8

20 19 20 21 206.8

20 20 19 21 209.2

Stage 2 W X Y Z

Tabu list 20 20 20 20

Current point 20 21 20 19 209.2

Neighbours 21 20 20 19 207.2

21 21 19 19 209.6

21 21 20 18 208.4

19 22 20 19 211.2

20 22 19 19 211.6 Best new point

20 22 20 18 210.4

19 21 21 19 208.8

20 20 21 19 206.8

20 21 21 18 208

19 21 20 20 210

20 20 20 20 208 Tabu

20 21 19 20 210.4

At the next stage, the tabu list will contain the two points

W X Y Z

20 20 20 20

20 21 20 19

138 V. Lowndes and S. Berry

4.2.3 Travelling Salesman Problem

Here, the objective is to produce a route visiting each city only once starting and
finishing at a given city.

A typical route in a 6 city problem could be defined by

4; 6; 1; 2; 5; 3½ �

The search procedure operates by investigating the effect of switching all
allowed pairs of cities, and the best option with respect to cost change from this
search is selected as the next move generating a new route, for example exchanging
the 6 and the 3 to give

4; 3; 1; 2; 5; 6½ �

The tabu list is implemented by prohibiting the move of these cities {6, 3} for a
certain number of iterations.

Thus, giving the routine:

Investigate all possible allowed exchanges
Select the best exchange
Generate the new schedule
Update the tabu list
Repeat.

Typical result from the tabu search: random city positions 40 and 50 city
problem solution plots (Fig. 4.1).

Note in an n city problem ðn[2Þ, there are ððn� 1Þ!Þ=2 possible valid tours,
many possible tours.

Given 40 city problem, for comparison, solutions were obtained to problems
where the cities were placed randomly onto a grid using both a greedy algorithm
and a tabu search.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 4.1 Sample travelling salesman solution plots

4 Heuristic Techniques in Optimisation 139

The results from this investigation were as follows:

Greedy Algorithm solution cost ¼ 476;
Tabu Search solution cost ¼ 455;

The tabu search giving a more economic solution than that obtained from the use
of a greedy algorithm.

Flow shop scheduling can be achieved using the same approach. A similar, but
harder, problem when scheduling n jobs, there are n! possible schedules to be
considered.

4.3 Review Questions

Question 1

Q1:1 A knapsack problem can be defined as:
A container is to be packed with several items so that the value of its
contents is maximised.
For example, six items are available for packing, but the available container
has a maximum capacity of only 100 kg:

Item i 1 2 3 4 5 6

Value vi 13 13 15 17 11 10

Weight wi (kg) 20 20 60 50 10 15

Describe how a genetic algorithm approach could be used to determine how
to pack this container, as an example generate 4 genetic algorithm strings
and carry out at least two iterations.

Q1:2 Show how your model could be adapted so that items 1 and 2 may not both
be packed into the container.

Q1:3 Produce a genetic algorithm model to determine the most appropriate
containers to be used if all items have to be packed. There are five con-
tainers available with capacities and costs.

Container 1 2 3 4 5

Capacity 100 40 50 90 90

Cost 60 10 12 18 50

Question 2
This question is concerned with traffic flow and the control of the traffic flow
through a network.

140 V. Lowndes and S. Berry

An example of a network is given in Fig. 4.2 where the aim of the morning traffic is
to progress from the start (node A) to the finish (node E) as economically as
possible.
The total traffic flow on a typical day is N units, and there are three routes through
the network

ABE,
ACE and
ADE.

The aim is therefore to determine the flows (x, y and z, respectively) along each
route to determine the best solution minimising costs, where the total cost T is given
by

Fig. 4.2 Routes from source
A to destination E

Fig. 4.3 Routes from source
A to destination D

4 Heuristic Techniques in Optimisation 141

Currently, traffic is free to choose its own route and as a result the flows are at an
equilibrium, each costs/times along each route, that is

f xð Þ ¼ g yð Þ ¼ h zð Þ xþ yþ z ¼ N

Example:
Cost functions

f ðxÞ ¼ x2 þ 1;
gðyÞ ¼ yþ 8;
hðzÞ ¼ 4zþ 3
and
N ¼ 12
xþ yþ z ¼ 12

the equilibrium (cost) flows are as follows:

x ¼ 3:57 f ð3:57Þ ¼ 13:74
y ¼ 5:74 gð5:74Þ ¼ 13:74
z ¼ 2:69 hð2:69Þ ¼ 13:76

Q2:1 Assuming a starting traffic flow (4, 4, 4), discuss the form of the neigh-
bourhood and the nature of the tabu list used to obtain a solution to this
problem and carry out three steps to demonstrate the operation of your
implementation.

Q2:2 How could a tabu search be applied to networks shown in Figs. 4.3 and 4.4
where each connection will have an associated cost,

for example: LinkAB unit cost fAB xð Þwhen x units access this link:

Fig. 4.4 Routes from source
A to destination H

142 V. Lowndes and S. Berry

References

1. Holland JH (1992) Adaption in natural and artificial systems. MIT Press, Cambridge
2. Goldberg D (1989) Genetic algorithms in search optimisation and machine learning. Addison

Wesley, MA
3. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge
4. Glover F (1989) Tabu search—Part I. ORSA J Comput 1(3):190–206
5. Glover F (1990) Tabu search—part II. ORSA J Comput 2:4–32

4 Heuristic Techniques in Optimisation 143

Chapter 5
Introduction to the Use of Queueing
Theory and Simulation

Val Lowndes and Stuart Berry

Queueing theory can be used to provide information about systems that can be
represented by a queue/server or by series of queues/servers enabling queueing
theory results to provide a means of estimating the expected performance of a
manufacturing system.

Some of the common examples where queues are encountered are as follows:

• patients in a dentist’s waiting room
• customers in the Post Office
• supermarket checkouts
• road junctions
• aeroplanes waiting to land at an airport
• at a work station in a factory

These applications can be extended to describe

• factory production systems, queues in both series and parallel
• traffic control in a city, queues in series

There are three basic elements in a queueing system.

• The arrivals (need to know the statistical distribution of arrivals)
• The service process (number of servers, the statistical distribution of service

time)
• The queue discipline (FIFO, priority, …)

V. Lowndes
University of Derby, Kedleston Road, Derby DE22 1GB, UK
e-mail: V.P.Lowndes@derby.ac.uk

S. Berry (&)
College of Engineering and Technology, University of Derby,
Kedleston Road, Derby DE22 1GB, UK
e-mail: s.berry@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_5

145

The purpose of queueing theory is to enable us to study (and hence model)
queues in order to be able to predict the effect of changes on a system before we
actually implement those changes. (Implementing change can be very costly).

For example, the investigation might want to consider changes to

• Pattern of arrivals
• Mean length of service
• Number of servers

These changes could then affect

• the average time customers have to wait
• the average number of customers waiting
• the proportion of time the service facility is in use.

Kendall Notation for Queueing Systems
There is a standard notation for classifying queueing systems into different types;
this was proposed by D.G. Kendall.

Systems are described by the notation: A/B/C/D/E.
Where

A Distribution of “Interarrival” times of customers
B Distribution of service times
C Number of servers
D Maximum total number of customers allowed in the system
E Population size

and A and B can take any of the following distribution types:

M Exponential Distribution (random)
D Deterministic
G General distribution

General Results
The derivation of the standard queueing results is outlined in Chap. 16. The fol-
lowing results aim to demonstrate the appropriateness of queueing theory applied to
modelling and evaluating alternative manufacturing systems.

M/G/1 queueing model

average queue length is given by k2r2 þq2

2 1�qð Þ
where r is the variance of the service times.

M/M/1 queueing model

Variance of service time r ¼ 1
l

leading to the standard results

146 V. Lowndes and S. Berry

average queue length q2

1�qð Þ
average number in system q2

1�qð Þ þ q ¼ q
1�qð Þ

average time in system q
1�qð Þ

1
l þ 1

l ¼ 1
1�qð Þ

1
l

M/U/1 Uniform (Rectangular)

Here, the service time distribution will be symmetric about the mean,
1
l � a

� �h i
,

and the variance is given by r2 ¼ a2
3

With the extreme (largest possible) variance when a ¼ 1
l

To give the maximum variance r2 ¼ 1
3l2

giving an average queue length 2
3

q2

1�qð Þ

M/T/1 Triangular

Here, the service time distribution will be symmetric about the mean,
1
l � a

� �h i
,

with the variance given by r2 ¼ a2
6

Thus the “extreme” variance is given by r2 ¼ 1
6l2

with the average queue length now given by 7
12

q2

1�qð Þ

Finally for a deterministic service time M/D/1, the variance is 0

The average queue length is given by 1
2

q2

1�qð Þ

Summary
These results can be used to place limits on the length of the queue:

M=M=1 UPPER LIMIT average length ¼ L
M=U=1 average length \0:67L
M=T=1 average length \0:58L
M=G=1 LOWER LIMIT average length ¼ 0:50L

indicating the rationale for the use of queueing theory where for an application
where jobs arrive randomly the upper and lower limits on the service time can be
calculated from the M/M/1 and M/G/1 results.

Now incorporate average service time in the system, giving estimates for
delivery times.

5 Introduction to the Use of Queueing … 147

M=M=1 1
1�qð Þ

1
l

M=D=1 1
2

q
1�qð Þ

1
l

� �
þ 1

l

These results can be extended to cases where there is limited waiting space, for
example the system can hold at most n customers.

Here P0 ¼ 1� qð Þ= 1� qnð Þ
And Pn ¼ qn 1� qð Þ= 1� qnþ 1ð Þ
note as n ! 1 then P0 ! 1� qð Þ and Pn ! qn 1� qð Þ

5.1 Evaluating Manufacturing Systems Using Queueing
Theory (Random Arrivals)

5.1.1 Manufacturing Systems 1: n Work Stations in Series

A manufacturing system can be considered to be constructed from a series of queue,
workstation pairs, for example (Fig. 5.1).

Consider the two extreme cases:

All service times described by exponential distributions, random k\li all i.
All service times described by deterministic distributions.

In the first case, the arrival rate at each work station will follow the same random
distribution, and hence the average times and numbers in the system can be
obtained by a repeated application of the standard results.

Thus it follows that the Average time in system ¼ P 1
1�qið Þ

1
li
provides an upper

limit.
To calculate a lower limit, first assume that the work stations are such that the

work stations are progressively quicker, that is:

l1\l2\ � � �\ln

Queue 1 Work Station 1 Queue n Work Station n

capacity capacity

Fig. 5.1 n work stations in series

148 V. Lowndes and S. Berry

and that all work times are deterministic in which case queues can only occur at the
first work station and it follows that

Average time in system ¼ Average time queueingþ
X 1

li

and Average time queueing can be approximated by

1
2

q2

1� qð Þ
1
l1

þ 1
2
q
1
l1

¼ 1
2

q
1� qð Þ

1
l1

Giving the lower estimate for Average time in system as

1
2

q
1� qð Þ

1
l1

þ
X 1

li

Notice that simulation modelling can be used to demonstrate that when the job
times are deterministic, then the overall duration is given by

Lower estimate for average time in system ¼ 1
2

qD
1� qDð Þ

1
lD

þ
X 1

li

where qD and lD relate to the dominant (longest no necessarily the first) stage in the
production process. (Simulation, Example 1, gives a validation of this result).

5.1.2 Evaluating Manufacturing Systems 2:
n Work Stations in Series with Rework

The final work station represents final inspection at which point items are either
accepted (and shipped to the customer) or sent back for reworking, see Fig. 5.2,
note that an item could return to the first work station many times.

Although k new jobs arrive per time period, adding the number reworked
(assuming an infinite number of reworks are possible) gives the correct system
loading as

Queue 1 Work Station 1 Queue n Work Station n

Send back to the first work station for reworking (probability p)

Fig. 5.2 n work stations in series with rework

5 Introduction to the Use of Queueing … 149

Arrivals ¼ kþ pkþ p2kþ � � � or kA ¼ k=ð1� pÞ

Therefore, k
1�p\l or

k 1�prþ 1ð Þ
1�p \l; r reworks allowed all i for finite queueing.

Consider the two extreme cases: all service times described by exponential
distributions, random, and all service times described by deterministic distributions.

Each job could pass through the system more than once, so that the average
times in the system need to be calculated as

Expected number of “journeys” through the system 1
1�pð Þ

Expected time in system (exponential service times) 1
1�pð Þ

P 1
1�qð Þ

1
l

Expected time in system (deterministic service times) 1
1�pð Þ

1
2

qD
1�qDð Þ

1
lD

þ P 1
li

� �

5.1.3 Evaluating Manufacturing Systems 3:
Splitting the Jobs

Here, the probability that “routeing a” is followed is p, and the probability that
“routeing b” is followed is (1 − p) (Fig. 5.3).

The arrival rate at Queue 2a is therefore pk and at Queue 2b ð1� pÞk; thus, the
average times for both types of job can be estimated using

arrivals k at work station 1 and q ¼ k=l1
pk at work station 2a and q2a ¼ pk=l2a
1� pð Þk at work station 2b and q2b ¼ 1� pð Þk=l2b

Thus, the upper limits can be calculated using the M/M/1 results as follows:

1
1� qð Þ

1
l1

þ 1
1� q2að Þ

1
l2a

and
1

1� qð Þ
1
l1

þ 1
1� q2að Þ

1
l2a

Fig. 5.3 Splitting work

150 V. Lowndes and S. Berry

Lower estimates for average times in system by M/D/1

1
2

qDa
1� qDað Þ

1
lDa

þ
X 1

li
and

1
2

qDb
1� qDbð Þ

1
lDb

þ
X 1

li

5.1.4 Evaluating Manufacturing Systems 4: Jobs Processed
in Batches

Here, jobs arrive in batches of n-like items, are processed individually and then left
as a batch of n items.

The interarrival rate for the batches is k, and the service rate for each item is l,
k\l=n (Fig. 5.4).
As all jobs are processed on a single machine, this could be modelled either as an
M/M/1 system where the service rate is or as an M/D/1 system where the batch is
treated as if it were a single job.

Thus, the upper and lower times in the system can be calculated from

Upper Limit M=M=1
P 1

1�qð Þ
n
l

Lower Limit M=D=1 1
2

q
1�qð Þ

n
l þ P n

l where q ¼ nk=l

5.1.5 Evaluating Manufacturing Systems 5

Manufacturing processes when all jobs move to the next stage at the same time, for
example a KANBAN system and/or a production assembly line (Fig. 5.5).

All stage times are deterministic, and the time between stage movements
T ¼ Max T1; . . .; Tnð Þ
Thus time for job in system nT
Time between successive finished items T
Uniformly distributed with stage n dominant l ¼ T ; r ¼ range

2
ffiffi
3

p

(minimum time at stage n > maxi-
mum time at all other stages)

Therefore, time for job in system is

Normally distributed (n large), l ¼ nT ; rs ¼ r
ffiffiffi
n

p
Time between successive finished items Uniform l ¼ T; r ¼ range

2
ffiffi
3

p

Fig. 5.4 Processing batches
of jobs

5 Introduction to the Use of Queueing … 151

5.1.6 Changing Service Capacities

When there are parallel servers, for example in a bank, not all service points may be
staffed at all times, but when demand is high more servers are used to improve the
service to the customer.
If, for example, when there are 4 customers present additional service capacity becomes
available (doubling the service capacity) the steady state probabilities become

P1 ¼ qP0;P2 ¼ q2P0;P3 ¼ q3P0;P4 ¼ q4

2
P0;P5 ¼ q5

22
P0; . . .

note: P4 ¼ q4

2 P0 ¼ q3 q
2 P0

the effect, on the expression for P0 of the doubling of the service capacity.
Giving

P0 1þ qþ q2 þ q3 þ q4

2
þ q5

22
þ � � �

� �
¼ 1; or

P0 1þ qþ q2
� �þ q3 1þ q

2
þ q2

22
þ � � �

� �� �
¼ 1; or

P0 1þ qþ q2
� �þ q3

2
2� q

� �� �
¼ 1

5.2 Using Simulation to Evaluating Planning and Control
Systems in Flow Shops

To justify the need for alternative approaches to PP&C, consider first a flow shop
consisting of 4 work stations where the job times at each station are deterministic, in
the first case the first work station is dominant and in the second case the final work
station is dominant.

In both cases, there are (always) jobs waiting to be processed before the first
stage; Gantt charts showing the status of the flow shop if all jobs were to start at as
early a date as possible are shown in Fig. 5.6a.

Fig. 5.5 KANBAN system

152 V. Lowndes and S. Berry

Completion times are the same for both cases although more control will be
needed in the second case; here, there will be a constant increasing work in pro-
gress, and hence both increased the costs (material and stock holding) and possibly
an increased requirement for storage space. This problem (work in progress) will
occur whenever the dominant stage is anywhere other than at the first stage; for
example, Fig. 5.6b shows the same result when the third stage is dominant.

Simulation modelling can be used to compare and contrast the use of alternative
methods for planning and control in flow shops, and the methods considered are as
follows:

KANBAN,
CONWIP (CONstant Work In Progress),
Production lines
A greedy system for comparison—start a job when the production stage is ready.

In each case, the following parameters will be calculated

Distribution of job times
Time to produce M items

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(a)

(b)

Fig. 5.6 a Illustrating the effect on total time of JIT, the dominant stage. b Illustrating the effect
on total time of JIT, the dominant stage

5 Introduction to the Use of Queueing … 153

5.2.1 Simulating to Compare and Contrast
Production Line Systems

There exists a production system consisting of N processes in series with a none-
mpty queue of jobs waiting before the first stage.

Two production control systems are simulated:

• A job can move to the next stage when this stage becomes free, no control, and
• Production line where all jobs move at the same time

In each of the simulations, there existed one (absolutely) dominant stage with the
times at all other stages being smaller than the minimum time at this dominant
stage. In each plot, the simulation results are compared with the plot from a normal
distribution with the same mean and variance.

The first pair of plots show the results from the “move when the next machine is
free” simulation, and the second pair the results from the production line simula-
tion. In each case, as the number of stages is increased, the results from the sim-
ulation tend towards being normally distributed (Fig. 5.7).

Two stages Three Stages

Ten Stages Twenty Stages

0 10 20 30 40 50
0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500
0

100

200

300

400

500

600

700

800

900

Fig. 5.7 Comparing production line and greedy control systems

154 V. Lowndes and S. Berry

In each simulation, the job duration on the first machine followed a uniform
duration, between 15 and 25, whilst the job times at all other machines followed a
uniform duration, between 5 and 15.

So that in each case, the first machine is absolutely dominant; the results (mean,
standard deviation and coefficient of variation, v) from these simulations were as
follows:

Machines Move when ready Production line

Mean sd v (%) Mean sd v (%)

2 30.05 4.13 13 38.95 4.02 10

3 40.10 4.95 12 58.52 5.02 9

10 112.8 7.79 7 194.98 9.03 5

20 218.02 10.07 5 390.42 12.27 3

5.2.1.1 Extending the Investigation

The investigation was extended through the simulation of the following cases:

• 20 stages: first [15, 25], rest [5, 15]; first strictly dominant; the minimum time
for a job at the first process is greater than the maximum time at any other
process.

• 20 stages: first [15, 25], rest [10, 20]; first dominant; the average time at the first
process is greater than the average times at all other processes, and the greatest
time at the first process is greater than the greatest time at any other process.

• 20 stages: first [15, 25], rest [10, 25]. First slightly dominant; the average time at
the first process is greater than the average times at all other processes but the
maximum time is not greater than all other maxima.

Note: the variability in process duration is large to emphasise its effect.
The first results are derived from the simulation of a production line where all

jobs move onto the next stage at the same time. The second results are obtained
from the simulation of a KANBAN control system where a job can move onto the
next process when that process becomes free.

Set 1 Results: Production line
20 stages: first [15, 25], rest [5, 15]; first strictly/strongly dominant; here, the first
stage (alone) determines the movement along the production line. Therefore by the
central limit theorem, expect that the total process time will be normally distributed.
The following plots compare the results from a simulation of this configuration with
a normal distribution with the same mean and standard deviation (Fig. 5.8).

5 Introduction to the Use of Queueing … 155

20 stages: first [15,25], rest [10,20]; first weakly dominant

In this case, although the first stage is most often dominant on 76.1% of occasions,
the durations are generated by this distribution (Fig. 5.9).

20 stages: first [15,25], rest [10,25]. First slightly dominant; on (only) 34.4% of
occasions, the durations are sampled from this distribution, and other stages are
dominant on 65.6% of occasions (Fig. 5.10).

Set 2 Results: Move When Next Stage Available
20 stages; first [15, 25] rest [5, 15]; first stage is strictly dominant but here each job
moves when its following stage becomes free. The plot shows that the results from
the simulation are similar to those from a normal distribution with the same mean
and variance (Fig. 5.11).

0

200

400

600

800

1000

330 350 370 390 410 430 450 470 490

Fig. 5.8 Simulation results
blue, Normal distribution with
same mean and variance red

0

200

400

600

800

1000

1200

330 350 370 390 410 430 450 470 490

Fig. 5.9 Simulation results
blue, Normal distribution with
same mean and variance red

0

200

400

600

800

1000

460 470 480 490
0

200

400

600

800

1000

460 470 480 490

Fig. 5.10 Simulation blue: Normal same mean and standard deviation red

156 V. Lowndes and S. Berry

20 stages: first [15, 25], rest [10, 10]; first stage dominant

Again the distribution of the resultant job times is similar to a normal distribution
with the same mean and variance the plots are (Fig. 5.12).

20 stages: first [15, 25], rest [10, 25]; first slightly dominant.

Again the plots are similar (Fig. 5.13).
The results indicating that when a “move-when-able” system is employed within

a flow shop environment, the process time (from starting at the first stage to
completing the final stage) will be (approximately) normally distributed.

0

100

200

300

400

500

170 190 210 230 250

Fig. 5.11 Simulation results
blue, Normal distribution with
same mean and variance red

0

100

200

300

400

500

260 280 300 320 340 360

Fig. 5.12 Simulation results
blue, Normal distribution with
same mean and variance red

0

200

400

600

800

1000

370 420 470 520

Fig. 5.13 Simulation results
blue, Normal distribution with
same mean and variance red

5 Introduction to the Use of Queueing … 157

5.2.2 Simulating a KANBAN System

As an introductory example, a flow shop consisting of five stages was simulated;
the process times at each stage were described by uniform distribution with
parameters, where stage 4 is weakly dominant:

Stage 1 2 3 4 5
Minimum time 6 4 4 8 4
Maximum time 10 8 8 12 8
Average times 8 6 6 10 6 Total Average Times ¼ 36
Dominance N N N D N

Simulating the operation of the KANBAN control system gave the result:

Mean duration ¼ 45:9
Standard Deviation ¼ 2:6

Repeating with the parameters rearranged so that the final stage is dominant

Stage 1 2 3 4 5
Minimum time 4 4 6 4 8
Maximum time 8 8 10 8 12
Average times 6 6 8 6 10 Total Average ¼ 36
Dominance N N N N D

Gave the results Mean duration ¼ 49:9
Standard Deviation ¼ 2:6

Plotting the results together with plots of a normal distribution with the same
parameters gave Fig. 5.14, indicating that in this example the time in system is
approximately normally distributed.

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

Fig. 5.14 Simulation results blue, Normal distribution with same mean and variance red

158 V. Lowndes and S. Berry

Finally, simulating with the machines ordered by way of their (descending)
dominance

Stage 1 2 3 4 5
Minimum time 8 6 4 4 4
Maximum time 12 10 8 8 8
Average times 10 8 6 6 6 Total ¼ 36
Dominance D N N N N

Gave the results Mean duration ¼ 36:3
Standard Deviation ¼ 2:4

Plotting the results with plots of a normal distribution with the same parameters
gave the results as shown in Fig. 5.15.

Repeating to generate extreme values when a flow shop has 5 stages with the job
times described by :

Simulation 1 Simulation 2

Stage 1 2 3 4 5 1 2 3 4 5

15 5 5 5 5 5 5 5 5 15

25 20 20 20 20 20 20 20 20 25

D N N N N N N N N D

Total Average times ¼ 70

Results Mean ¼ 73:5 Mean ¼ 100:2
Standard Deviation ¼ 7:8 Standard Deviation ¼ 100:2

Both plots (Fig. 5.16) indicate that the job times (within the flow shop) are,
approximately, normally distributed.

Note in the second simulation, each job at each stage “occupies” on average a
20-time unit slot, size governed by the job time at the final stage.

0 5 10 15 20 25 30 35 40 45
0

200

400

600

800

1000

1200

1400

1600

1800Fig. 5.15 Comparing
production line and greedy
control systems

5 Introduction to the Use of Queueing … 159

Extending to flow shop with 20 stages indicated a more skewed distribution for
the job times; Fig. 5.17 shows the production time distribution and a normal dis-
tribution with the same mean and variance.

Figure 5.18 shows the result where there are 100 then 200 stages, together with a
plot of the normal distribution with the same mean and variance.

5.2.3 CONWIP Control System

Production control using a CONWIP, or “Limiting the quantity of work in pro-
gress”, methodology has the greatest effect when the final stage in the process is
dominant, similar to the effect of a KANBAN system.

To illustrate the effect of this methodology on a flow, shop a production process
consisting of 20 production stages was simulated; the process times at these stages
were

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

1400

Fig. 5.16 Comparing the effect of the location of the dominant stage

370 375 380 385 390 395 400
0

1000

2000

3000

4000

5000

6000

7000Fig. 5.17 20 stage
production process

160 V. Lowndes and S. Berry

Stage 1 to 19 uniform ½5; 20g
Stage 20 uniform 15; 25½ �;
the final stage was weakly dominant; worst case:

The average time in production (no queueing) is therefore the sum of the “stage
distribution” averages = 257.5.

The results from these simulations were as follows:

Allowed
WIP CONWIP
parameter (x)

Average
time in
system

Standard
deviation of time
in system

Average time to
produce 100
items

Maximum
time in
system

1 257.5 19 25,750 257.5

5 266 19 5335 344

10 279 19 2797 355

15 297 18 1995 378

18 314 17 1763 390

19 321 17 1710 398

20 329 18 1665 410

22 346 19 1595 432

25 375 20 1527 469

28 407 22 1483 496

30 429 24 1462 532

35 487 26 1460 588

40 544 30 1402 665

Suggesting a model for the average time in the system (TIS) with the maximum
allowed work in progress, Fig. 5.19:

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996
0

2000

4000

6000

8000

10000

12000

14000

3980 3982 3984 3986 3988 3990 3992 3994
0

0.5

1

1.5

2

2.5 x 104

Fig. 5.18 100 and 200 stage production processes

5 Introduction to the Use of Queueing … 161

TIS ¼ 0:180x2 þ 0:116xþ 257:6

Note: AverageQueueing Time ¼ 0:1803x2 þ 0:1156xþ 0:1181:
Figure 5.20 shows that with a constant work in progress control system, the

times in the system are approximately normally distributed.

Capacity ¼ 20 Capacity ¼ 10
mean ¼ 329 mean ¼ 278
sd ¼ 17:6 sd ¼ 18:5

Similarly, the simulations estimated the time between successive jobs leaving the
system, and these results are shown in Table 5.1.

These results seem to indicate that an appropriate value for the CONWIP
parameter is greater than the number of stages (x) but probably less than 50% more
than the number of stages.

y = 0.1803x2 + 0.1156x + 257.62
R² = 0.9979

0
100
200
300
400
500
600

0 10 20 30 40 50

Average TISFig. 5.19 Modeling time in
system

260 280 300 320 340 360 380 400 420
0

200

400

600

800

1000

1200

150 200 250 300 350 400
0

200

400

600

800

1000

1200

Fig. 5.20 Comparing production line and greedy control systems

162 V. Lowndes and S. Berry

5.2.4 Summary

When the dominant stage is the first stage within the production process, all
planning and control systems behave in the same way, leading to the same results
(time in system, work in progress and time to produce N items).

Thus, it would seem that when the first stage is not dominant the planning and
control system should act to make this stage dominant.

5.3 Simulating Manufacturing Systems, to Define PP&C
Systems Requirement When Arrivals Are Random

A four-stage production system was simulated with customers arriving randomly
with an interarrival time of 10 and the random stage service times {8, 6, 4, 2} in the
first simulation then reversing the order to {2, 4, 6, 8} in the second simulation.

The results were:

Model Average Queueing Time

Job order Time Total Stage1 Stage2 Stage3 Stage4

2; 4; 6; 8f g 36:47 16:24 0:24 1:09 3:23 11:24

8; 6; 4; 2f g 36:36 16:20 16:20 0:00 0:00 0:00

Thus demonstrating that when arrivals are random and service times determin-
istic, the location of the dominant (slowest) stage does not alter the total time in the
system, but it does indicate that the location of the dominant machine does influ-
ence the need for a formal approach to production planning and control; when the
first stage is dominant, the system is self controlling, and when the final stage is
dominant active control is necessary.

Table 5.1 Effect of CONWIP parameter on completion times

Allowed WIP CONWIP
parameter (x)

Average time between
completed jobs

Standard deviation of
time

1 250 19.3

10 27.0 16.3

15 19.3 9.7

20 16.1 7.0

25 14.8 6.0

30 14.1 5.5

35 13.8 5.3

40 13.6 5.1

50 13.3 4.9

5 Introduction to the Use of Queueing … 163

Same result occurs for a production line system with a nonzero queue of jobs
waiting at the start.

Regardless of the location of the dominant stage, if all other times are the same time
to complete n jobs is the same.

5.4 Review Questions

(A) Introductory Queueing Questions

1. In a supermarket, the arrival of customers at the cash desk is random at an
average rate of 15 every 30 min. The average time it takes to scan and
calculate the cost of customer purchases is 1½ min, and this time is
exponentially distributed.

(i) How long will a customer expect to wait before being served?
(ii) What is the chance that queue length will exceed 5?
(iii) What is the probability that the cashier is working?

[Ans. (i) 4.5 min, (ii) 0.133, (iii) 0.75]
2. A TV repairer finds that the time spent on his jobs has an exponential

distribution with mean 30 min. If he repairs TV sets in the order in which
they come in, and if the arrival of sets is approximately Poisson with an
average rate of 10 per 8 h day,
What is the repairer’s expected idle time each day?
How many jobs are ahead of the average set just brought in?
[Ans. 3 h, 12/3 jobs]

3. An average of 10 customers per hour arrive at a one-window drive-in
“take-away”. Service time per customer is exponential with mean 5 min.
The space in front of the window, including that for the vehicle/driver just
being served, can accommodate a maximum of 3 cars. Other cars can wait
outside this space.

(i) What is the probability that an arriving customer will have to wait
outside the indicated space?

(ii) How long would an arriving customer expect to wait before starting
service?

(iii) How many spaces should be provided in front of the window so that
all arriving customers can wait in front of the window at least 70%
of the time?
[Ans: (i) 0.579, (ii) 25 min, (iii) 7]

164 V. Lowndes and S. Berry

(B) Developing Modelling with Queueing Theory
Q1
A technician fixes broken laptops. The repair time is exponentially distributed
with a mean of 30 min. Broken laptops arrive according to a Poisson stream,
on average 10 broken laptops per day (8 h).

(i) What is the fraction of time that the technician has no work to do?
(ii) How many laptops are, on average, at his repair shop?
(iii) What is the mean throughput time (waiting time plus repair time) of a

laptops?

Q2
In a service station, there is one petrol pump. Cars arrive at the service station
according to the Poisson process. The arrival rate is 20 cars per hour. Cars are
served in order of arrival. The service time (i.e. the time needed for filling and
paying) is exponentially distributed with a mean service time of 2 min.

(i) What is the fraction of cars that has to wait longer than 2 min?
(ii) How does this change if the distribution is no longer exponential?

Q3
A service station has two pumps, one for petrol and the other for LPG. For
each pump customers arrive according to a Poisson process, on average 20
customers per hour for petrol and 5 customers for LPG. The service times are
exponential. For both pumps, the mean service time is 2 min.
Determine the distribution of the number of customers at the petrol pump, and
at theLPG pump, assuming that there are two queues one for petrol and
another for LPG.
Q4
Consider an M/M/1 queue with an arrival rate of 60 customers per hour and a
mean service time of 45 s. A period during which there are 5 or more cus-
tomers in the system is called crowded, and when there are less than 5 cus-
tomers it is quiet.

(i) What is the mean number of crowded periods per day (8 h), and
(ii) How long do they last on average?

(C) Simulation questions

Q1 Construct a simulation model for the application defined in question 1.3. Extend
the model to represent the case where there is a single two-queue system servicing
both pumps and with the customers moving to the first free pump.

Q2 Comparing manufacturing systems
N&F plc operates a small workshop in Ayton producing specialist items. The

workshop currently contains 6 machines and has had a workforce of 6, one worker
for each machine. Currently jobs arrive randomly with, on average, an arrival every
12 min.

5 Introduction to the Use of Queueing … 165

The firm is about to reorganise their production facilities either by buying new
machines or by establishing production lines using their existing machines.

The current system uses the machines organised as the flow shop shown in
Fig. 5.21.

Alternative proposals:
Proposal 1: Replace the machines at stages B and C with two multipurpose

machines (M), job time between 10 and 15, replacing two production stages with
one stage (Fig. 5.22).

Proposal 2: Set up two production lines each (assume that there are now two
machines of type C and 2 machines of type A), and buy an extra machine type C
(Fig. 5.23).

With one machine at each stage and jobs allocated at random to each of these
production lines.

Proposal 3: Set up two production units with a common final stage where 66% of
the jobs are allocated to production unit X (Fig. 5.24).

Production data (Table 5.2).
Using results from queueing theory and by constructing simulation models,

evaluate these alternative systems.
Q3 Production planning at a furniture manufacturing company
The firm produces a range of fireplace surrounds from softwood, hardwood and

stone at its Beeham factory. The production process used varies with the type of
product made; however, the equipment used is given in Table 5.3, and the layout is
shown in Fig. 5.25.

A
A
A

B
B C

Fig. 5.21 Existing workshop

A
A
A

M
M

Fig. 5.22 Proposal 1

A B C

A B C

Fig. 5.23 Proposal 2

unit X B
C

unit Y A B

A
A

Fig. 5.24 Proposal 3

166 V. Lowndes and S. Berry

Currently, during the peak demand seasons, each day the manufacture of 10
units is planned, normally 6 softwood, 3 hardwood, and 1 stone surround using the
factory layout defined by table and Fig. 5.25.

However, the firm has just gained a new contract to supply a DIY chain with on
average 25 softwood kits a week; the production and installation of these surrounds
is described by table and Fig. 5.26, where the finishing tasks are carried out by the
DIY chain’s workers. Note if this new product is successful, the DIY chain intends
to make hardwood and stone surrounds available through their outlets.

Part 1 Proposed system for the DIY kits
Assuming that all workers are multi-skilled, construct a simulation model to

represent the proposed production system as described in Table 5.4 and use this
model to determine the number of machines at each stage and the staffing required
to satisfy this DIY demand.

Table 5.2 Job time parameters at each stage, random or uniform distributed

Machine
type

Job times random job average times in
minutes

Job times uniform job distribution
times in minutes

A 15 Between 10 and 20

B 6 Between 5 and 7

C 5 Between 3 and 6

M 9 Between 8 and 10

Table 5.3 Current manufacturing process

Time (minutes)

Softwood Hardwood Stone

Prepare wood 30 ± 10 120 ± 15 240 ± 60

Make decorations 10 ± 2 15 ± 5 Not relevant

Construct frame 20 ± 10 40 ± 15 15

Finish frame 15 ± 1 30 ± 1 Not relevant

Add decorations 10 ± 1 10 ± 1 Not relevant

Fig. 5.25 Current production system

Fig. 5.26 Proposed production

5 Introduction to the Use of Queueing … 167

Part 2
For each of the model developed in part 1, investigate the effect of machine

breakdowns and repairs on your recommended model.
The breakdown and repair information is given in Table 5.5.
Q4 Evaluation of Alternative service systems at Swifts bank
Swifts Bank operates its retail banking services through a chain of high street

outlets. To improve customer’s service and to reduce costs, Swift’s are considering
the reorganisation of their branch counter services.

Customers arrive randomly, on average one every 1.5 min. About 60% of these
customers are classified as “short-service-time customers”, 30% are
“medium-service-time customers”, 9% are “long-service-time customers” and the
remaining 1% require in-depth advice.

The service times for these customers are as follows:

Short service between 1 and 3 min
Medium service between 2 and 6 min
Long service between 5 and 15 min
In depth advice between 10 and 30 min

Construct appropriate queueing and/or simulation models to evaluate the per-
formance of current service system, considering customer waiting time, queue
length, server idle time and number of servers needed to provide the customers with
a good service.

Part 4.1 Evaluating the current system
Currently, there are four service counters in use with queues of waiting cus-

tomers forming in front of each server, see Fig. 5.27, you may assume that there is
no queue switching.

Table 5.4 Proposed
manufacturing process

DIY chain product time (minutes)

Softwood Hardwood Stone

Wood and
decorations

45 ± 15 140 ± 10 240 ± 60

Construct frame 20 ± 10 40 ± 15 15 ± 5

Finish frame Off site – –

Table 5.5 Breakdown
probabilities and repair times

Breakdown probability and repair times
(minutes)

Softwood Hardwood Stone

Prepare 0.075;
5 ± 1

0.05;
10 ± 3

Not
relevant

Make
frame

0.1; 8 ± 1 0.1; 8 ± 2 Not
relevant

168 V. Lowndes and S. Berry

Part 4.2 Evaluating first alternative system
A first possible reorganisation is to establish two queues: one serving a new

quick service counter (only quick jobs) and the other serving the other three
counters, see Fig. 5.28.

Part 4.3 Evaluating second alternative systems
The second possible reorganisations are

• to establish two queues each serving two counters,
• to establish one queue serving all counters, see Figs. 5.29 and 5.30.

Part 4 Implement a reception (triage) counter to direct customers
The receptionist directs the customers to the queue in front of the most appro-

priate server, see Fig. 5.27, duration 90% 1 min, 10% 2 min (Fig. 5.31).
Simulation Example 1
A process with 4 work stations in series was simulated.

Fig. 5.27 4 servers and 4 queues

Fig. 5.28 2 queues quick service counter

5 Introduction to the Use of Queueing … 169

Fig. 5.29 Two-queue system

Fig. 5.30 Single queue four
servers

Fig. 5.31 Multiple queues and advisor

170 V. Lowndes and S. Berry

In the first simulation, the work station capacities were 10; 5; 3; 2f g,
In the first simulation, the work station capacities were f2; 3; 5; 10g

The results from simulating these cases were

Work stations,
IAT = 20. Job
durations

Simulations Average time in system Estimating formula result

1 2 3 4

10 5 3 2 30,000 25.06 25

2 3 5 10 30,000 24.89 25

Simulation Example 2
A process with 4 work stations in series was simulated. The capacities were

10; 5; 3; 2f g,
The probability of rework and true arrival rates/time unit were

Arrival rate + reworked items Dominant stage q Average time in system

3 0.50 25.0

3.33 0.55 29.5

3.75 0.63 37.0

4.3 0.71 51.5

5.0 0.83 94.5

Simulation 3 Validating calculations for total time in system (TTIS)

Given the formula TTIS ¼ 1
2

q
1�qð Þ

1
l1

� �
þ P 1

l with q ¼ 0:6 at dominant

machine/stage.
Then, TTIS = (0.5 * 1.5 * 12) +(12 + 8 + 4) = 9 + 24 = 33, as obtained from

the simulation.

Arrivals random average interarrival Time = 20 Average times for machine layouts CDF and FDC

Process Service
time

One stage Averages Machine-order
CDF

Times Machine-order
FDC

Times

C 12 Time in system 21.11 Time in system 33.11 Time in system 33.11

WIP 1.06

D 8 Time in system 10.65 Waiting times in queues

WIP 0.54 Queue1 9.11 Queue1 0.49

F 4 Time in system 4.49 Queue2 0 Queue2 2.16

WIP 0.23 Queue3 0 Queue3 6.46

Total
individual
times

36.25 Individual total 3.15
greater than actual value

Total = 9.11

5 Introduction to the Use of Queueing … 171

Part II
Case Studies

These case studies aim to investigate the application of various solution method-
ologies to problems demonstrating that the “best” approach is problem specific and
that the production and analysis of a mathematical model can lead to an efficient
and effective solution methodology.

Chapter 6
Case Studies: Using Heuristics

Val Lowndes, Ovidiu Bagdasar and Stuart Berry

The aim of these case studies is to demonstrate how large and complex
decision-making problems can be “solved” using heuristic methods. These methods
are derived and developed from the known structure of the problem to enable an
efficient solution.

6.1 Using Heuristics to “Solve” Case Studies
from Mathematical Programming

This section shows how the process of producing a mathematical model can lead to
an understanding of the complexity of a problem. Here, travelling salesman
problems and production planning problems are considered to show that one falls
into the category of NP and solved using a heuristic method to give a good solution
(not necessarily optimal) and the other will (and is) always be easily solvable using
a simple heuristic to give an optimal solution.

V. Lowndes
University of Derby, Kedleston Road, Derby DE22 1GB, UK
e-mail: V.P.Lowndes@derby.ac.uk

O. Bagdasar � S. Berry (&)
College of Engineering and Technology, University of Derby,
Kedleston Road, Derby DE22 1GB, UK
e-mail: s.berry@derby.ac.uk

O. Bagdasar
e-mail: O.bagdasar@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_6

175

6.1.1 Modelling the Travelling Salesman Problem

The aim here is to show that it is possible to construct a linear programming model
to determine the optimal solution to the travelling salesman problem. The suitability
of this model is then discussed showing that the number of constraints increases
greatly as the number of cities increases.

This analysis is initially based around developing a model to solve the small
4-city problem,

where

xij ¼ 1 indicates that the salesman will travel from city i to city j

xij ¼ 0 indicates that the salesman will not travel from i to j

Thus, the basic model would seem to require the equations

X
j;j6¼i

xij ¼ 1 leave city i only once; all i:

and X
i;j6¼i

xij ¼ 1 arrive at city j only once all j:

However, this formulation is not satisfactory (will not always produce an
acceptable solution) because these equations can be satisfied by the not valid
solution with “subtours”; for example, in a four town problem, these equations
could be satisfied by:

x12 ¼ 1; x21 ¼ 1 and x34 ¼ 1; x43 ¼ 1 two non-connected sub tours:

Thus, this model will not always produce an acceptable solution, a full tour
visiting each town only once, and has therefore to be extended to prevent the
production of such unacceptable solutions.

Extended Model, to remove subtours
Add the new variables y1; y2; y3; y4 to represent the four towns in this problem.
These variables are used to generate additional constraints (6 extra constraints here)
which will cause the formulation to become infeasible if the model tries to generate
solutions containing subtours.

In this formulation, the tour is assumed to start and end at town 1, and a
constraint is added to represent each possible link between towns.

yi � yj þ n� 1ð Þxij � n� 2ð Þ all i; j[1; i 6¼ j

As an illustration to show that these extra constraints will not allow subtours
whilst allowing valid tours:

176 V. Lowndes et al.

• Consider the effect of subtour 2–3 and 3–2 on these extra constraints

x23 ¼ 1; x32 ¼ 1ð Þ

The constraints generated for route 2–3 and route 3–2 are

y2 � y3 þ n� 1ð Þ� n� 2ð Þ
y3 � y2 þ n� 1ð Þ� n� 2ð Þ

Adding these constraints would give the infeasible condition

2 n� 1ð Þ� 2 n� 2ð Þ FALSE; route prohibited

Hence, these additional constraints have act (here) to prevent subtours occurring
in the solution.

• Now, consider the effect of the invalid tour 2–3, 3–4, and 4–2 on these extra
constraints

x23 ¼ 1; x34 ¼ 1; x42 ¼ 1ð Þ

giving

y2 � y3 þ n� 1ð Þ� n� 2ð Þ
y3 � y4 þ n� 1ð Þ� n� 2ð Þ
y4 � y2 þ n� 1ð Þ� n� 2ð Þ

Add to give an infeasible statement preventing this subtour.

3 n� 1ð Þ� 3 n� 2ð Þ FALSE; route prohibited

• Finally, consider the valid tour 1–2, 2–3, 3–4, and 4–1 x12 ¼ 1; x23 ¼ 1; x34 ¼ð
1; x41 ¼ 1Þ and substitute into the full set of constraints to give

y2 � y3 þðn� 1Þx23 �ðn� 2Þ y2 � y3 þðn� 1Þ� ðn� 2Þ
y3 � y4 þðn� 1Þx34 �ðn� 2Þ y3 � y4 þðn� 1Þ� ðn� 2Þ
y2 � y4 þðn� 1Þx24 �ðn� 2Þ y2 � y4 þ 0 �ðn� 2Þ
y3 � y2 þðn� 1Þx32 �ðn� 2Þ y3 � y2 þ 0 �ðn� 2Þ
y4 � y2 þðn� 1Þx42 �ðn� 2Þ y4 � y2 þ 0 �ðn� 2Þ
y4 � y3 þðn� 1Þx43 �ðn� 2Þ y4 � y3 þ 0 �ðn� 2Þ

add to give 2 n� 1ð Þ� 6 n� 2ð Þ
or 10� 4n which can be TRUE

6 Case Studies: Using Heuristics 177

This can be satisfied for n, hence showing that this model allows valid tours
whilst not allowing invalid tours.

Notice that in an m town problem, the equivalent result for a valid tour would be

ðm� 2Þðn� 1Þ� 1
2
mðm� 1Þðn� 2Þ

or

n� 2m2 � 4mþ 4
m2 � 3mþ 4

� �

This can be solved for a given value of m. Therefore, this model is successful
provided that n is greater than 3 as m becomes large.

Problem Size: For n city travelling salesman problem, an exhaustive search
would require the evaluation of (n−1)!/2 possible tours. A 1000 town problem
would have 999!=2 possible tours, and an exhaustive search would not be com-
pleted in a reasonable time.

This, linear programming, model could determine the optimal tour for any
number of cities; however, if there are n cities, then there will be:

Arrive once n equations
Leave once n equations
Prohibit sub tours ðn� 1Þðn� 2Þ equations;

City variables ðn�1Þ cities
City Links variables ðn�1Þðn�2Þ links

giving

2nþðn� 1Þðn� 2Þ ¼ n2 � nþ 2 constraints and
ðn� 1Þþ ðn� 1Þðn� 2Þð Þ ¼ ðn� 1Þ2 variables; bothOðn2Þ:

Thus, a 1000 town problem (a small problem) will have approximately
1,000,000 constraints and 1,000,000 variables and may not be solvable in a rea-
sonable time.

6.1.2 Applying Heuristic Methods to Travelling Salesman
Problems

This section indicates how a travelling salesman problem can be “solved” using
both genetic algorithmic and Tabu search methodologies.

178 V. Lowndes et al.

6.1.2.1 Genetic Algorithm Implementation

A genetic algorithm approach will use:

String A rearrangement of the cities

Selection for crossover Tournament selection

Crossover Select a point and reverse the order of the cities after this point

Mutation Select two positions and exchange the cities

Examples, using randomly placed cities, have been “solved” using both a
standard genetic algorithmic approach and using a mini-genetic algorithm
approach.

Mini Genetic Algorithm approach, several small (few strings) genetic algorithms are pro-
cessed, each generating one good solution. These solutions are then used as the starting
population for a final genetic algorithm, again employing only a few runs.

Both approaches were applied first to a 30 city problem and then to a 40 city
problem,

with one crossover on 99% of occasions and 2 crossovers on 1% of occasions.

Time Best solution

30 city problem

TSP_GA 100 strings and 2500 iterations 6.51 374

TSP_miniGA 40 mini-GAs. Each 40 strings and 30 iterations.
Final population 250 strings

3.22 380

40 city problem

TSP_GA 100 strings and 2500 iterations 12.9 498

TSP_miniGA 40 mini-GAs. Each 40 strings and 30 iterations.
Final population 250 strings

4.41 515

20 city problem

TSP_GA 100 strings and 2500 iterations 4.4 251

For comparison with one crossover on 1% of occasions and 2 crossovers on 99%
of occasions.

Time Best solution

40 city problem

TSP_GA 100 strings and 2500 iterations 8.6 547

TSP_miniGA 40 mini-GAs. Each 40 strings and 30 iterations.
Final population 250 strings

4.4 566

6 Case Studies: Using Heuristics 179

Summary of GA approaches
The results from these randomly generated problems suggest that better (cheaper)
solutions have been obtained using a genetic algorithm (rather than a set of mini-
genetic algorithms) with mostly one crossover and two crossovers infrequently and
randomly. These results suggested that the solution time could be modelled by:

GASolution timemodel Time ¼ 0:1928þ 0:2085Cities

6.1.2.2 Tabu Search Implementation

Within this implementation, a typical route in a 6 city problem could be represented
by the tour

½4; 6; 1; 2; 5; 3�

The implemented Tabu search procedure operates by investigating the effect of
switching all allowed pairs of cities, and the best option with respect to cost change
from this search is selected as the next move generating a new route, for example
exchanging the 6 and the 3 to give

½4; 3; 1; 2; 5; 6�

The tabu list is implemented by prohibiting the move of these cities {6,3} for a
certain number of iterations, for example

½0; 0; 4; 0; 0; 4�

Here, at the next 4 iterations, no “swaps” using cities 3 or 6 are allowed, and
after each iteration, the tabu list is updated by adding two new tabu cities and
reducing the tabu time for the existing tabu cities.

Giving the Tabu search implementation routine:

Investigate all possible allowed exchanges, n(n−1)/2 possible pairs.
Select the best exchange
Generate the new schedule
Update the tabu list
Repeat.

Typical result from the Tabu search: random city positions and sample solution
plots (Fig. 6.1)

180 V. Lowndes et al.

Results : greedy ¼ 476; tabu search ¼ 455;

Note: Regardless of the size of the tabu period or tabu list, the search could start
to cycle around the same results. The possibility of cycling occurring can be
reduced through the use of a stochastic tabu period, the “tabu period” being ran-
domly generated.

6.2 Extended Travelling Salesman Problem:
Garbage Collection

A related problem is concerned with determining a number of routes/vehicles
needed to collect a given set of garbage. In these problems, there exists a set of
customers represented: for domestic collection, a set of arcs (Fig. 6.2), and for
commercial customers, a set of nodes in a network (Fig. 6.3).

In Fig. 6.2, the quantity of refuse to be collected on each road is shown by the
thickness of the line and the collectors have to traverse the full length of the road
(similar to a postman problem), whereas Fig. 6.3 shows the locations of the com-
mercial customers; here, the collectors are not required to traverse the full length of

-100 0 100 200 300 400 500 600
-100

0

100

200

300

400

500

600

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 6.1 Plots of solutions to travelling salesman problems using a Tabu search

6 Case Studies: Using Heuristics 181

the road, and the quantity of refuse to be collected is indicated by the size if the
location symbol.

The required solution is a set of routes from and returning to the depot such that
both travel time and load restrictions are not violated; notice that if the collections
could be split into “route sets”, this problem is reduced to a set of travelling
salesman problems, thus suggesting the use of a heuristic approach to determine
good solutions.

Methods Investigated

GA Full string break down into loads for best solution testing

GA + TS Combining methodologies, TS to improve the best GA solution

TS To generate half loads, iterative set of loads best order and then exchange between
orders; back to best order and so on. After loads best order construct full routes
and save the best costs

TS + GA To determine the “half” loads, use a greedy approach to construct a set of half
loads, and then, using a Tabu search or genetic algorithm-based approach, convert
these into full loads

Fig. 6.2 Garbage collection
by road

Fig. 6.3 Garbage collection
by customer

182 V. Lowndes et al.

6.2.1 Genetic Algorithm Implementation

Figure 6.4 shows the routes selected by the genetic algorithm applied to a 20 city
problem on a 100� 50 grid

Figure 6.5 shows the routes selected by the genetic algorithm applied to a 16 city
problem on a 20� 20 grid.

6.2.2 Half Loads Sample Results

This approach starts with a set of “half load” routes from the depot, each of these
routes is such that it requires no more than half of the wagons capacity and then
uses an approach using genetic algorithms to select the best routes for the wagons
(joining half routes). If for example the depot is located at (0, 0) with 22 collection
points (Fig. 6.6a); the total load (here) requires 3 wagons and thus 6 half-wagons;
the generated half wagon schedules are shown in Fig. 6.6b, c.

The “half route” end points from this depot location are as follows:

Half route End point
1 ð8; 14Þ;
2 ð0; 12Þ;
3 ð12; 8Þ;
4 ð0; 15Þ;
5 ð3; 15Þ;
6 ð9; 9Þ

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50Fig. 6.4 Garbage collection
routes generated by a genetic
algorithm

6 Case Studies: Using Heuristics 183

Leading to the full routes

1 Half routes 1þ 2 joining distance ¼ 10
2 Half routes 3þ 6 joining distance ¼ 4
3 Half routes 4þ 5 joining distance ¼ 3

Total joining distance ¼ 17

In a second example, the depot is located at the point (15, 7), and the ending
pickup, for the half load schedule, is shown by the symbol “*”; the three full route
can now be constructed by searching the alternative pairings using an exhaustive
search when the number of loads is low and a Tabu search when the number of
alternatives is very high (Fig. 6.7).

Here, the half route end points for this depot location are as follows:

Half route End point
1 ð0; 15Þ;
2 ð1; 6Þ;
3 ð1; 8Þ;
4 ð3; 4Þ;
5 ð2; 11Þ;
6 ð8; 1Þ

Leading to the full routes

1 Half routes 2þ 3 joining distance ¼ 2
2 Half routes 1þ 5 joining distance ¼ 6
3 Half routes 4þ 6 joining distance ¼ 8

Total joining distance ¼ 16

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Fig. 6.5 Routes for wagons 1 and 2 and Routes for wagons 3 and 4

184 V. Lowndes et al.

-2 0 2 4 6 8 10 12 14 16
-2

0

2

4

6

8

10

12

14

16
(a)

(b) (c)

-2 0 2 4 6 8 10 12 14 16
-2

0

2

4

6

8

10

12

14

16

-2 0 2 4 6 8 10 12 14 16
-2

0

2

4

6

8

10

12

14

16

Fig. 6.6 a–c. Half routes 1, 2 and 3 and half routes 4, 5 and 6

-2 0 2 4 6 8 10 12 14 16
-2

0

2

4

6

8

10

12

14

16Fig. 6.7 Generated “half
routes”

6 Case Studies: Using Heuristics 185

6.2.3 Using Genetic Algorithms to Generate Half Loads

To increase the effective search space, genetic algorithms can be used to determine
the half loads and half load end points.

Here the GA string gives a “wagon picking order”, for example the string {2, 3,
5, 1, 4} leads to the routine

Stage 1: Greedy choice picking orders using the order given by

f2; 3; 5; 1; 4g

Wagon 2 picks the nearest collection point
Wagon 3 then picks the closest available (valid) collection point
And so on until
Wagon 4 picks the closest available (valid) collection point

Stage 2: The picking order is now given by

f3; 5; 1; 4; 2g

Wagon 3 then picks the closest available (valid) collection point
And so on until
Wagon 2 picks the closest available (valid) collection point

and so on cycling through the wagons in the order defined by the genetic
algorithm string until all loads have been allocated to a half route. Then, employ a
tabu or exhaustive search to produce full strings, from these half strings, calculating
costs, and then employ crossover mutation to generate a new set of GA strings and
so on.

Genetic algorithm string solutions: in four sample sets of results, the end col-
lection points were as follows:

Sample set, sets of half loads

1 2 3 4

Point Job Point Job Point Job Point Job

1, 8 E 8, 1 A 0,15 G 0,15 G

8, 1 A 2,11 F 3, 4 C 8, 1 A

0,15 G 0,15 G 1, 8 E 1, 6 D

1, 6 D 1, 8 E 5, 1 B 3,15 H

2,11 F 3,15 H 8, 1 A 2,11 F

5, 1 B 3, 4 C 2,11 F 1, 8 E

Half routes total costs

90 90 90 90

186 V. Lowndes et al.

Constructing routes by joining these end points gives the solutions

1 2 3 4

AB AC AB AD

DE EF CE EF

FG GH FG GH

Joining costs, joining two half loads

11 15 15 19

Total costs

101 105 105 109

6.3 Production Planning Problems Network Models

This case study aims to show how that production planning problems can be
represented by a network models; this fact suggests that there may be an effective
heuristic means of deriving optimal, or near optimal, solutions to the problem.

The initial models consider a case where there is a single product, all working is
carried out during the normal working hours, and all the demanded items move
from the source (start) to the sink (despatch).

Each arc has an associated cost and each node a capacity (production capacity)
or requirement (demand).

Production planning problems can be represented as transportation or
trans-shipment problems; note (here) that late deliveries are not allowed! Thus, the
demand from month 2 can only be produced in either month 1 or month 2.

This problem can be formulated as a network flow problem and hence there
probably exists a simple solution technique, see Fig. 6.8b for an example.

Proof of this approach is obtained from an evaluation of the implied linear
programming model.

6.3.1 Production Planning Problems (Mathematical
Programming Techniques)

This case study aims to show how the Mathematical Programming Model for this
problem is used to develop, and validate, a heuristic means of deriving optimal
solutions to such a problem.

The initial models consider a case where there is a single product, and all working
is carried out during the normal working hours. This model is then extended to
investigate cases where overtime working or backlogging orders is allowed.

6 Case Studies: Using Heuristics 187

Notation,

dj the demand inmonth j
cj production capacity inmonth j
pj production cost per unit inmonth j
h unit holding cost per unit per month

Model 1, notation

xj production inmonth j

Thus, it follows that the xj need to satisfy the constraints:

Xj

i¼1

xi � dj all j

xi � ci all i

whilst minimising the total cost, where cost is given by:

C ¼
X
i

pixi þ h
X
i

nþ 1� ið Þxi

See Sect. 3.6.5.3 for the development of this model.
Model 2, this uses the alternative notation

Start

Month 1
Capacity

Month 2
Capacity

Month 1
Demand

Month n
Capacity

Month 3
Capacity

Month n
Demand

Month 3
Demand

Month 2
Demand

25

5

35

5

35

10

30

(b)(a)
Demand

from sales
Production

capacity

Month 1:
required
30

Month 1:
capacity
40

Month 1:
required
45

Month 1:
required
40

Month 1:
required
30

Month 1:
capacity
35

Month 1:
capacity
45

Month 1:
capacity
40

Fig. 6.8 a and b Example allocating production to satisfy demand

188 V. Lowndes et al.

xij production inmonth i for use inmonth j;
xij ¼ 0; i[j no backlogging of orders

Thus, it follows that the xj need to satisfy the constraints:

X
j

xij � ci all i

X
i

xij � dj all j

whilst minimising the total cost, where cost is given by:

C ¼
X
i

X
j

j� ið Þhþ pið Þxij

Data requirement for this model: production costs and holding costs and demand
forecasts.

6.3.2 Evaluation the Model: Simplifying the Cost Function

For both models as

p1 ¼ p2 ¼ � � � ¼ pn

the unit production cost will be constant for production during normal working time
(not normally time period dependent) and as the total production will be (just)
enough to satisfy demand when the aim is to minimise costs, then it follows that

X
pixi ¼ p

X
xi ¼ pX where X ¼

X
xi is a constant

has a constant value, and as a consequence, the cost expression in model 1 can be
reduced to

cost ¼ h nx1 þ n� 1ð Þx2 þ � � � þ 1xnð Þ

and finally as h is common to all terms, then h can be removed to give the simplified
cost expression to be optimised:

cost ¼ nx1 þ n� 1ð Þx2 þ � � � þ 1xnð Þ

Similarly, in model 2, the cost expression reduces to

6 Case Studies: Using Heuristics 189

X
i

X
j

j� ið Þhð Þxij

Notice that both formulations imply that there is no requirement for any precise
costing!

Thus, the production planning process can be modelled by the linear program-
ming formulation:

Model 1
Select xi so that the total cost is minimised:

cost ¼ nx1 þ n� 1ð Þx2 þ � � � þ 1xnð Þ

Whilst satisfying the constraints:

Xj

i¼1

xi � dj all j

xi � ci all i

Model 2
Select xij so that the total cost is minimised

cost ¼
X
i

X
j

j� ið Þhð Þxij

Whilst satisfying the constraints:

X
j

xij � ci all i

X
i

xij � dj all j

In both cases, the objective function has been reduced to “minimise stockholding
time”.

The optimal solution to this problem, both models (which can be verified using
LP package), is to produce as late as possible producing early and storing only
when there is insufficient capacity, thus minimising stockholding time.

These models explain how in particular small manufacturing firms with a low
resource base have been able to operate effectively/profitably; the obvious pro-
duction planning technique is optimal.

This approach, and model 1, will be extended to demonstrate how it can be
applied when there are many items using the same production facilities and where
overtime working or subcontracting could be used by the firm.

190 V. Lowndes et al.

The approach has been employed by a company producing 30 types of item in a single
production unit.

Illustrative example: the (optimal) production schedule will be built backwards
as demonstrated in the example.

Month 1 2 3 4 5 6 7

Capacity 40 40 40 40 40 40 40

Demand 20 20 30 40 30 60 20

This must be the optimal solution; all items are produced as late as possible,
minimising holding costs (Fig. 6.9).

Month 1 2 3 4 5 6 7
Capacity 40 40 40 40 40 40 40
Demand 20 20 30 40 30 60 20

Step1
Find the latest month in which Demand is greater than capacity, here month 7

Capacity 40 40 40 40 40 40 40
Demand 20 20 30 40 30 60 20

and add the excess demand (over capacity) from this month into the previous months
demand, here month 6, to give:-

Capacity 40 40 40 40 40 40 40
Demand 20 20 30 40 50 40 20

repeating the process

Capacity 40 40 40 40 40 40 40
Demand 20 20 30 50 40 40 20

until a feasible production plan has been obtained

Capacity 40 40 40 40 40 40 40
Demand 20 20 40 40 40 40 20

Fig. 6.9 Optimal allocation of production time

6 Case Studies: Using Heuristics 191

6.3.3 Extending the Model to Include Overtime Working

The extended model requires the additional notation, let

yj overtimeworked inmonth j
Oj overtime capacity inmonth j
rp cost of producing an item using overtimeworking:

Then, it follows that the planning process can be modelled by:

Demand x1 þ y1 � d1
x1 þ x2 þ y1 þ y2 � d1 þ d2
x1 þ . . .þ xn þ y1 þ . . .þ yn � d1 þ . . .þ dn

Capacity xj � cj; yj �Cj all j

Production cost p1x1 þ . . .þ pnxn þ rp1y1 þ . . .þ rpnyn

and as the month end stocks are given by

s1 ¼ x1 þ y1 �d1
s2 ¼ x1 þ y1ð Þþ x2 þ y2ð Þ � d1 þ d2ð Þ
sn ¼

P
j

xj þ yj
� ��P

j
dj

holding cost will be given by

X
j

hsj ¼ h n x1 þ y1ð Þþ . . .þ 1 xn þ ynð Þð Þ � h nd1 þ . . .þ 1dnð Þ

and the variable holding cost by

h n x1 þ y1ð Þþ . . .þ 1 xn þ ynð Þð Þ

to give the cost function

cost ¼ p1x1 þ . . .þ pnxn þ rp1y1 þ . . .þ rpnyn þ h n x1 þ y1ð Þþ . . .þ 1 xn þ ynð Þð Þ

However, as p1 ¼ p2 ¼ . . . ¼ pn and
P
j

xj þ yj
� � ¼ P

j
dj

the cost expression will reduced to

cost ¼ r � 1ð Þp1y1 þ . . .þ r � 1ð Þpnyn þ h n x1 þ y1ð Þþ . . .þ 1 xn þ ynð Þð Þ

192 V. Lowndes et al.

Considering the extreme cases shows that:
if r ¼ 1 (no overtime premium), the problem becomes minimised

cost ¼ h n x1 þ y1ð Þþ . . .þ 1 xn þ ynð Þð Þ

The optimal solution is to produce as late as possible (the same as in the basic
problem),

if r is very large, the problem becomes minimised

cost ¼ r � 1ð Þpy1 þ . . .þ r � 1ð Þpyn � y1 þ . . .þ yn

Thus, produce as little as possible on overtime, and when overtime has to be
used, produce as late as possible.

In a more general problem, overtime costs more than normal working but not
infinitely more; there will be the options:

(a) Produce in month n using overtime working, or
(b) Produce in month ðn� kÞ using normal working, k number of month storage

The relevant costs for comparison are as follows:

ðaÞ rp overtime production
ðbÞ pþ kh production plus holding cost

from which it follows that the produce early and store policy will be used when this
option is cheaper than overtime working:

rp� pþ k or k�ðr � 1Þ=h

Thus, when demand in a month exceeds, capacity determines whether the excess
should be produced early or using overtime working using this relationship.

Example: Given the data r ¼ 1:5; p ¼ 5; h ¼ 0:5

Capacity 40 40 40 40 40 40 40
Overtime Capacity 10 10 10 10 10 10 10

Demand 20 20 30 40 30 50 20

Here, the excess demand in period 6 could be produced in month 6 on overtime
or in month 5 and stored for one month, k = 1.

Here, ðr�1Þp
h ¼ ð1:5�1Þ10

0:5 ¼ 10 therefore as k ¼ 1\10
The optimal policy is to produce early and store (Fig. 6.10).

6 Case Studies: Using Heuristics 193

6.3.4 Extending the Model to Include Subcontracting
Production

The extended model requires the additional notation, let

zj quantity subcontracted for use inmonth j
Sj maximumnumber of subcontracted items inmonth j
sp cost of a subcontracted item:

Demand x1 þ z1 � d1
x1 þ x2 þ z1 þ z2 � d1 þ d2
x1 þ . . .þ xn þ z1 þ . . .þ zn � d1 þ . . .þ dn

Capacity xj � cj; zj �Bj all j

Production and subcontracted costs

p1x1 þ . . .þ pnxn þ sp1z1 þ . . .þ spnzn

and as the month end stocks are given by

s1 ¼ x1 þ z1 � d1
s2 ¼ x1 þ z1ð Þþ x2 þ z2ð Þ � d1 þ d2ð Þ
sn ¼

P
j

xj þ zj
� ��P

j
dj

the variable holding cost will be represented by

h nx1 þ � � � þ 1xnð Þ

to give the cost function

Capacity 40 40 40 40 40 40 40
Overtime Capacity 10 10 10 10 10 10 10

Demand 20 20 30 40 30 50 20

Normal Production 20 20 30 40 40 40 20
Overtime 0 0 0 0 0 0 0

Fig. 6.10 optimal use of overtime working

194 V. Lowndes et al.

cost ¼ s� 1ð Þpz1 þ � � � þ s� 1ð Þpzn þ h nx1 þ . . .þ 1xnð Þ

as

p1 ¼ � � � ¼ pn

Extreme cases:
Notice that

s ¼ 1 (no additional cost from subcontracting) the optimal plan is to subcontract all
excess (of capacity) production requirements; in effect, the optimal solution is to
obtain stock as late as possible.

cost ¼ h nx1 þ � � � þ 1xnð Þ

If s is very large, the problem reduces to minimising

cost ¼ z1 þ � � � þ zn

Produce as late as possible using only the existing production capacity.

In a more general problem, subcontracting costs more than normal working but
not infinitely more, there will be the options:

Subcontract for use in month n, or
Produce in month ðn� k) using normal working, store for k months.

The relevant costs for comparison are as follows:

sp subcontracting cost per item production
pþ kh production plus holding cost

from which it follows that the produce early and store policy will be used when this
option is cheaper than subcontracting production:

sp� pþ kh or k� s� 1ð Þp
h

6.3.5 Extending the Model to Include Backlogging
Deliveries

The extended model requires the additional notation, let

zj quantity backlogged in month j
bp cost of a backlogged item

6 Case Studies: Using Heuristics 195

Demand x1 þ z1 � d1
x1 þ x2 þ z1 þ z2 � d1 þ d2
x1 þ . . .þ xn þ z1 þ . . .þ zn � d1 þ . . .þ dn

Capacity xj � cj; zj �Bj all j

Cost function cost ¼ b� 1ð Þpz1 þ . . .þ b� 1ð Þpzn þ h nx1 þ . . .þ 1xnð Þ

Extreme cases:
Notice that if b ¼ 1 (no additional cost from subcontracting), the optimal plan is

to backlog sales so that there are no stockholding costs, and if s is very large, no
backlogging and the problem reduce to minimising

cost ¼ h nx1 þ . . .þ 1xnð Þ

Therefore, produce as late as possible. In a more general problem, backlogging
costs more than normal working but not infinitely more, there will be the options:

Backlog for use in month n, or
Produce in month n using normal working, store for k months.

The relevant costs for comparison are as follows:

bp subcontracting cost per item production
pþ kh production plus holding cost

from which it follows that the produce early and store policy will be used when
this option is cheaper than subcontracting production:

bp� pþ kh or k� ðb� 1Þp
h

6.3.6 One Production Line More Than One Item

Here, the process will be modelled by:

Item 1 Item 2Pj
i¼1

xi1 � dj1
Pj
i¼1

xi2 � dj2 all j

capacity constraints t1xi1 þ t2xi2 �Ci all i
variable costs are given by

PP
n� iþ 1ð Þxji

Therefore, produce all items as late as possible. However if, because of capacity
constraints, if some items have to be produced early produce the cheapest lines
early and the more expensive lines as late as possible.

196 V. Lowndes et al.

6.3.7 Summary

These models demonstrate that:

The optimal production plan can be produced without the need for a complex
model, and often without detailed costing.
The understanding gained from the derivation of a model to represent can lead to an
efficient approach to the derivation of an optimal (or very good) solution.

6.4 Overall Summary: Two Problems

Travelling salesman problem, a known hard problem

Visiting n cities n very largeð Þ
n� 1ð Þ2 variables O n2ð Þ
n2 � nþ 2ð Þ constraints O n2ð Þ

Production Planning Problem (model 2)
Planning for n months, m products (m large)

mnðnþ 1Þ=2 variables O mn2ð Þ
nmþm constraints O mnð Þ

Production Planning Problem (model 1)

nm variables O mnð Þ
nmþm constraints O mnð Þ

An initial assumption, had production planning model 2 been produced, may
have been that production planning problems were like travelling salesman prob-
lems, hard problems, but in general, they have been shown to be an easy problem.

6 Case Studies: Using Heuristics 197

Chapter 7
Further Use of Heuristic Methods

Val Lowndes, Stuart Berry, Chris Parkes, Ovidiu Bagdasar
and Nicolae Popovici

The next section shows not only how a heuristic approach can be employed to solve
hard problems but also how an investigation of the mathematical model can lead to
a simpler solution technique.

7.1 Flow Shop Scheduling

In these problems, there are n jobs to be processed through m machines, in the same
order on each machine, there are n! possible work schedules and the aim is to
determine the optimal or a very good schedule, where the optimal schedule min-
imises the total process time for these jobs.

Often, the number of possible schedules is such that an exhaustive search is not
feasible, solution takes too long and good solutions can be obtained using genetic
algorithms.

As an example, do establish suitable genetic algorithm operators consider an
example containing jobs to be scheduled:

f1; 2; 3; 4; 5; 6; 7; 8g

V. Lowndes
University of Derby, Kedleston Road, Derby DE22 1GB, UK
e-mail: V.P.Lowndes@derby.ac.uk

S. Berry � C. Parkes � O. Bagdasar (&)
College of Engineering and Technology, University of Derby,
Kedleston Road, Derby DE22 1GB, UK
e-mail: o.bagdasar@derby.ac.uk

S. Berry
e-mail: s.berry@derby.ac.uk

N. Popovici
Babes-Bolyai University, Cluj-Napoca, Romania

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_7

199

The genetic algorithm strings are rearrangements of these jobs, for example,

f3; 1; 2; 8; 4; 5; 7; 6g; and f8; 7; 6; 5; 1; 2; 4; 3g

Here, strings are selected for “crossover” using tournament selection, initially
select two strings at random that retain that string with the best (lowest) cost.

Here, crossover is performed by removing a random-length substring from the
selected string

f8; 7; 6; 5; 1; 2; 4; 3g; giving 8; 7; 6; 4; 3f g f5; 1; 2g

and then replacing the substring to give, as an example, the new string

f8; 5; 1; 2; 7; 6; 4; 3g

Finally, mutation is performed by interchanging the positions, in the string, of
two randomly selected jobs.

Example 1: 8 jobs through 4 machines, 8! or 40,320 possible schedules
Implementation: 50 GA strings and a maximum of 50 iterations, at most 2500

schedules tested

The results from 5 runs of the GA routines are shown in Table 7.1. The optimal
solution has a cost of 177 thus demonstrating that the approach using genetic
algorithms is able to generate good work schedules, generating 2500 work schedules
gave similar results to the GA solutions (costs = 181, 178, 178, 177, 179).

Example 2: 12 jobs through 5 machines, 12! or 479,001,600 possible
schedules.

Implementation: 100 GA strings and a maximum of 200 iterations, at most 20,000
schedules tested.

The results from 5 runs of the GA routines as shown in Table 7.2.
A fuller search determined a better solution with the cost 225 again demon-

strating that the GA approach can determine good solutions to large problems.

Table 7.1 Schedules
generated by the genetic
algorithm 8 jobs 4 machines

Cost Job processing schedule

181 1 8 3 6 2 5 4 7

177 8 3 1 2 5 6 4 7

178 1 8 3 6 5 4 2 7

177 8 3 1 5 2 6 4 7

178 1 8 3 5 2 6 4 7

200 V. Lowndes et al.

• Randomly generating 20,000 work schedules gave similar results to the GA
solutions (costs = 234, 232, 234, 230, 232).

Notice that

• If the series of operations is such that
Time at stage 1 > Time at stage 2 > ⋯ > Time at stage n,
the optimal schedule will be such that the final job is chosen so that (time at
stage 2 + ⋯ + time at stage n) is minimised and no other calculation is required.

• If the series of operations is such that
Time at stage 1 < Time at stage 2 < ⋯ < Time at stage n,
the optimal schedule will be such that the first job is chosen so that (time at stage
1 + ⋯ + time at stage n − 1) is minimised and no other calculation is required.

Consequently, in practice scheduling jobs through an n-stage flow shop may
reduce to a very simple problem to be solved “by hand”.

7.2 Transport Paradoxes and Traffic Planning

Transport paradoxes are based on the assumption that travellers are free to choose a
route or transport mode that gives them, what they believe to be, the fastest possible
journey time for themselves. The result of this freedom, or “anarchy”, of choice is
that relative travel times between routes and modes tend to a suboptimal equilib-
rium [1–3]. This equilibrium—Nash equilibrium as it is often known—is subop-
timal insofar as had travellers chosen, or been allocated to, some other route or
mode many would have had faster journeys, and none a slower journey. This
selfish, if understandable, behaviour is based on the anarchy of choice and results in
car travellers on average having longer journey times than need be—the “Price of
Anarchy” [4–6].

Possibly the best-known transport paradox is due to Braess [7], who argued that
on certain road networks, the addition of road capacity may, paradoxically, increase

Table 7.2 Schedules generated by the genetic algorithm 12 jobs 5 machines

Cost Job processing schedule

227 9 3 1 2 5 6 4 12 10 8 7 11

234 9 1 2 4 12 3 5 6 8 7 11 10

237 1 2 12 6 4 7 5 3 8 9 10 11

231 9 1 2 3 4 5 6 12 7 8 10 11

234 3 10 5 12 8 7 1 2 6 4 9 11

7 Further Use of Heuristic Methods 201

rather than decrease journey times due to drivers’ suboptimal choice of route.
Conversely, road capacity reductions can result in faster journey times.
A considerable literature exists focusing on identifying the conditions under which
Braess’ Paradox could occur [8–12] (see Nagurney 1993). Braess’ paradox, how-
ever, just considers road networks while the perhaps lesser known
Downs-Thompson paradox focuses on combined road and rail networks and it is
this paradox which this paper reconstructs and extends.

The basis of this paradox is that road improvements that cause a modal shift
from rail to road transport and result in a consequent disinvestment in the rail
network can ultimately aggravate congestion on the road and so nullify the road
improvements [13] (see Arnott and Small [14]; Ding et al. 2009).

Case studies 1–4 are considered to demonstrate that different solution techniques
can be the most appropriate to solve what seem, at first, to be similar problems.

7.2.1 Case Study 1

There are several independent routes from an origin point to a destination, a city
centre, and the objective here is to determine the benefits to be gained from the
imposition of a traffic management system, measuring the benefits through the total
or average travel time.

The cost/time per travelling unit of travel along each route when xi units access
the route is given by

fi xið Þ i ¼ 1; . . .; n

and the cost/time for all travellers accessing route i will be given byX
xifi xið Þ i ¼ 1; . . .; n

Traffic flow without a traffic management system: Without a traffic management
system, theoretically, the demand for each route will be such that

fi xið Þ ¼ fj xj
� �

all i; j

giving the equilibrium solution.
Traffic flow with a traffic management system: If there could be a perfect traffic

management system, then the demand for each route will be such that the total
travel time/cost T is minimised, where

T ¼
X

xifi xið Þ;
X

xi ¼ N

at the optimal solution, the demand for each of these routes will be such that

202 V. Lowndes et al.

fi xið Þþ xif
0
i xið Þ ¼ fn xnð Þþ xnf

0
n xnð Þ i ¼ 1; . . .; n� 1

In both cases, there is a set of n� 1 simultaneous nonlinear equations to be
solved.

Illustrative example: There are 20 routes available to travellers from an origin to
a destination point, and the total demand is for 120 units of travellers.

A tabu search methodology was first employed to obtain a good solution to this
problem:

for the equilibrium solution minimising the variance of fi xið Þ, and
for the optimal solution minimising the variance of fi xið Þþ xif 0i xið Þ.

The same methodology was then employed to investigate the effects of investing
to improve travel time along the slowest or along the fastest routes or closing
routes.

The results from these investigations are shown in Table 7.3.
These results demonstrating the following:

• A tabu search methodology provides an effective means of solving this problem.
• Some savings could be made from the use of a traffic control system.
• Expensive road improvements may not lead to significant improvements in

travel times.
• It is better to improve the faster roads rather than the slower roads.
• Closing routes does not always significantly change the overall cost/time.
• A “perfect” traffic management system would allow the closure of the slower,

more local, roads with travel times still much less than the equilibrium time
when all roads are available for use.

Table 7.3 Solutions to traffic distribution problems

Optimal solution Equilibrium solution

Cost Percentage change (%) Cost Percentage change (%)

20 routes 404 473

20 routes, improving slowest 403 −0.25 473 0.00

20 routes, improving fastest 400 −1.00 470 0.40

20 routes, slowing fastest 405 0.25 474 0.21

19 routes, closing slowest 411 1.75 476 0.20

18 routes, closing two 431 6.70 496 5.10

17 routes, closing three 615 50.2 680 44.0

The savings from the use of a “perfect” traffic management system compared with cost of the no
control system were between 10 and 15%

7 Further Use of Heuristic Methods 203

7.2.2 Case Study 2

Here, there are several routes from source to destination, but now, some road
segments are common to more than one route, for example:

Route Road segments Demand

1 1, 2 x1
2 1, 7, 4 x2
3 1, 7, 9, 6 x3
4 3, 8, 2

5 3, 4

6 3, 9, 6

7 5, 6

8 5, 10, 4

9 5, 10, 8, 2 x9

The equilibrium flow can be determined using a tabu search, as before, aiming to
minimise the variance of the travel times on these routes.

However, the optimal flow will be determined by minimising the total travel
time summing the total times for each road segment.

Where, for example, the cost from road segment 1 is
x1 þ x2 þ x3ð Þf1 x1 þ x2 þ x3ð Þ.
Here, the determination of the optimal solution, a genetic algorithm-based

approach, has been employed to obtain a good solution.
The genetic algorithm string would indicate the number accessing each of the

available routes, as an example if the total demand were for 25 units of travellers,
each string would indicate the number accessing each of the 9 available routes:

f1:0; 2:0; 4:0; 6:0; 3:0; 2:0; 2:1; 3:0; 1:9g; or
f5:0; 2:0; 1:0; 1:0; 3:0; 5:5; 3:9; 2:4; 1:2g

Selection, for crossover, used tournament selection, and crossover was carried
out in two stages: first crossover, to give

f1:0; 2:0; 4:0; 1:0; 3:0; 5:5; 3:9; 2:4; 1:2g Total ¼ 24:0

f5:0; 2:0; 1:0; 6:0; 3:0; 2:0; 2:1; 3:0; 1:9g Total ¼ 26:0

and then rescaling, to give the new strings

f1:04; 2:08; 4:17; 1:04; 3:13; 5:73; 4:06; 2:50; 1:25g
f4:81; 1:92; 0:96; 5:77; 2:88; 1:92; 2:02; 2:88; 1:83g

204 V. Lowndes et al.

The genetic algorithm is used to convergence; then, the solution, from this
solution as shown in Fig. 7.1, is improved using a tabu search starting from this
best (found) solution. Figure 7.2 shows the current points in a tabu search (from the
starting point determined by the genetic algorithm) to determine the best solution.

This class of problem indicates the advantages and disadvantages of both a
genetic algorithm and tabu search approach to problem solving.

Advantage of genetic algorithms is as follows:

• It can quickly find a good solution.

Disadvantages:

• Can find it hard to improve a good solution.

0 50 100 150 200
60

65

70

75

80

85

90

95Fig. 7.1 Genetic algorithm
results to convergence

0 20 40 60 80 100
56

57

58

59

60

61

62

63

64

65

66Fig. 7.2 Tabu search results

7 Further Use of Heuristic Methods 205

Disadvantages of tabu searchare as follows:

• Efficiency of search is dependent on the starting point and
• The size of the tabu list or tabu duration.

Figure 7.3 shows the progression in the costs of the best solution costs obtained
using

• Genetic algorithm (GA) only and
• Combining genetic algorithm and tabu search (GA + TS).

These plots show the benefits to be gained from the use of a hybrid search
technique where the tabu search acts to improve the existing good solution when
the genetic algorithm finds it hard to be able to move further towards a better
solution, exploiting the advantages to be gained from both approaches to derive an
effective solution technique.

7.2.3 Case Study 3: To Demonstrate that a Seeming Similar
Complex Problem Simplifies to a More Easily Solvable
(Analytically or Using Numerical Methods) Problem

Travellers from several, n, sources wish to reach a single destination point, and at
each source, the travellers have a choice between two available routes (often road or
rail) such that at source i, there are Ni travellers from which xi choose to travel by
routea, and the remainder yi by routeb.

0 50 100 150 200
55

60

65

70

75

80

85

90

95Fig. 7.3 Comparing genetic
algorithm and tabu search
solutions

206 V. Lowndes et al.

Cost/time per traveller Routea Routeb
From source 1 to source 2 f1 x1ð Þ g1 y1ð Þ
From source 2 to source 3 f2 x1 þ x2ð Þ g2 y1 þ y2ð Þ
From source n to source end fn

P
xið Þ gn

P
yið Þ

Thus, the unit cost for a traveller from source 1 to the end destination is

Routea f1 x1ð Þþ f2 x1 þ x2ð Þþ � � � þ fn
P

xið Þ
Routeb g1 y1ð Þþ g2 y1 þ y2ð Þþ � � � þ gn

P
yið Þ;

and the total costs are given by

Routea x1f1 x1ð Þþ x1f2 x1 þ x2ð Þþ � � � þ x1fn
P

xið Þ
Routeb y1g1 y1ð Þþ y1g2 y1 þ y2ð Þþ � � � þ y1gn

P
yið Þ;

Thus, the equilibrium solution is given as the solution to the simultaneous
nonlinear equations:

f1 x1ð Þþ � � � þ fn x1 þ � � � þ xnð Þ ¼ g1 y1ð Þþ � � � þ gn y1 þ � � � þ ynð Þ
f2 x1 þ x2ð Þþ � � � þ fn x1 þ � � � þ xnð Þ ¼ g2 y1 þ y2ð Þþ � � � þ gn y1 þ � � � þ ynð Þ

fn x1 þ � � � þ xnð Þ ¼ gn y1 þ � � � þ ynð Þ

Subtracting gives the set of nonlinear equations to be solved sequentially

f1 x1ð Þ ¼ g1 y1ð Þ
f2 x1 þ x2ð Þ ¼ g2 y1 þ y2ð Þ

fn x1 þ � � � þ xnð Þ ¼ gn y1 þ � � � þ ynð Þ

Notice that if, for example, the alternative route is by rail where the travel time is
independent of the number of travellers, these equations become

f1 x1ð Þ ¼ k1
f2 x1 þ x2ð Þ ¼ k2

fn x1 þ � � � þ xnð Þ ¼ kn

Similarly, the optimal solution is obtained from

T ¼ x1f1 x1ð Þþ x1 þ x2ð Þf2 x1 þ x2ð Þþ � � � þ y1f1 yð Þþ y1 þ y2ð Þf2 y1 þ y2ð Þ
þ � � � xi þ yi ¼ ni all i

Differentiating leads to the equations, to be solved,

7 Further Use of Heuristic Methods 207

f1 x1ð Þþ x1f
0
1 x1ð Þ ¼ g1 y1ð Þþ y1g

0
1 y1ð Þ

fn x1 þ � � � þ xnð Þþ x1 þ � � � þ xnð Þf 0n x1 þ � � � þ xnð Þ;
¼ gn y1 þ � � � þ ynð Þþ y1 þ � � � þ ynð Þg0n y1 þ � � � þ ynð Þ

Notice again that if, for example, the alternative route is by rail where the travel
time is independent of the number of travellers, these equations become

f1 x1ð Þþ x1f
0
1 x1ð Þ ¼ k1

fn x1 þ � � � þ xnð Þþ x1 þ � � � þ xnð Þf 0n x1 þ � � � þ xnð Þ ¼ kn

with solutions obtained analytically or using numerical methods.

7.2.4 Case Study 4: Assessing the Green Benefits
from a Traffic Management System

Without a traffic management system, travellers will choose their mode of travel by
road or by rail, so that the travel time from either mode is the same. This leads to a
paradoxical situations where

• Road travellers choose to use a slow minor road rather than the faster improved
major route and

• The green policy, “to open” more “halts” along an existing route, can lead more
long-distance travellers to choose to travel by road a nongreen result.

7.2.4.1 Case Study 4a: Major Route or Minor Route

Road travel time is modelled by

Troad ¼ aþ bðx=cÞn;

where

x number of travellers using the major, or improved, route
c is the roads’ planned capacity
a the free flow time of travel, as c is large and n[1 then ð1=cÞn � 0
aþ b travel time when the road is at its planned capacity, x ¼ c
n a parameter defined by the road, this will have a value between 1 and 10

Jeong (2008) where n ¼ 10 for an inner city road will and n = 1, 2 or 3 for a
motorway

208 V. Lowndes et al.

For the major route, TMA ¼ 20þ 10 x
100

� �4
fast with a high capacity.

For the minor route, TMI ¼ 21þ 40 x
20

� �7
slow with a lower planned capacity.

The distribution of travellers between these two routes is shown in Fig. 7.4a, the
usage on the minor route starts when the total demand exceeds 56.23 when the cost
per traveller along the major route reaches 21 the base cost for the minor route.

Planners try to stop the use of minor roads through the application of traffic
calming devices or speed limits; however, as shown in the next example, these
merely postpone the use of these minor roads.

For example, replacing

TMI ¼ 21þ 40
x
20

� �7
with

TMI ¼ 23þ 50
x
20

� �7

gave the traffic flow shown in Fig. 7.4b, showing that the minor route still expe-
riences a significant demand from the travellers.

The optimal distribution of traffic (both cases) is given as the solution to the
equation:

First case d
dx x 20þ 10 x

100

� �4� �
þ N � xð Þ 21þ 40 N�x

20

� �7� �� �
¼ 0

Second case d
dx x 20þ 10 x

100

� �4� �
þ N � xð Þ 23þ 50 N�x

20

� �7� �� �
¼ 0

A typical set of results as shown in Table 7.4.
The results demonstrating that there are no real benefits to be gained from a

traffic control system when the alternative modes of travel are a major and a minor
route.

0 20 40 60 80 100 120
0

20

40

60

80

100

120
(a) (b)

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Fig. 7.4 Distribution of travellers between major and minor routes

7 Further Use of Heuristic Methods 209

7.2.4.2 Case Study 4b: Road or Rail Travel the “Green” Paradox

Without a traffic management system, travellers will choose their mode of travel by
road or by rail, so that the travel time from either mode is the same.

As a first example, consider the case where travellers (150 in total) could use
either road or rail transport to access a destination point. Figure 7.5 shows the cost
per traveller for using each mode of transport.

This figure shows the alternative solutions:

Equilibrium solution, cost the same for both modes road = 78, rail = 72 units
Optimal solution road = 47, rail = 103 units

These results illustrate the first paradox that the optimal flow, minimising
average travel time, can only occur when the rail travellers adopt the nonselfish
policy of not transferring to road travel.

A second example concerns the current policy of opening, or reopening, more
halts between an established origin point (start of a commuter line) and an estab-
lished destination point (end of a commuter line). This leads to the paradoxical
situation where a “perceived” green policy, open more rail halts, can lead more
long-distance travellers choosing to travel by road, a “nongreen” result.

Table 7.4 Changes in total travel costs

Demand = 120

Optimal distribution of
traffic cost

Equilibrium distribution of
traffic cost

Percentage increase in
costs (%)

Case 1 3765 3776 0.25

Case 2 3821 3853 0.8

Fig. 7.5 Distribution of travellers between road and rail routes

210 V. Lowndes et al.

Illustrative example: Travel to work commuters from an origin point (S) to their
final destination point (E) has the choice of travelling by road or by rail, see
Fig. 7.6, N travellers in total of whom x choose to travel by road. All the M
travellers from a second origin point A, no rail halt available, have to access the
same road route as those travellers from origin point S.

In an attempt to encourage travel by rail, an additional halt is to be opened at
point (A), y travellers from A will now choose to travel by road, see Fig. 7.6.

The travel times are as follows:

S to A by road f(n) when there are n travellers
A to E by road g(m) when there are m travellers
S to E by rail, no halt at A, k
S to A by rail, halt at A, k1
A to E by rail, halt at A, k2 k1 + k2 > k

Route costs per traveller before new halt:

S to E by road f(x) + g(x + M)
S to E by rail k(N − x)

Total cost all travellers before new halt:

xf ðxÞþ ðxþMÞgðxþMÞ

Route costs per traveller after new halt:

S to E by road f(x) + g(x + y)
A to E by road g(x + y)
S to E by rail (k1 + k2) (N − x)
A to E by rail k2(M − y)

Fig. 7.6 Distribution of traffic

7 Further Use of Heuristic Methods 211

Total cost all travellers after new halt:

xf ðxÞþ ðxþMÞgðxþMÞ

Then, if routes from A are chosen so that road and rail times are equal:

before the new halt f(x) + g(x + M) = k(N − x) solution x = X
after the new halt f(x) + g(x + M) = (k1 + k2)(N − x)

g(x + y) = k2(M − y)
giving f(x) + k2(M − y) = (k1 + k2)(N − x)
as f(x) + g(X + M) = k(N − X) and as y < M
it then follows that f(x) + g(X + y) < f(X) + g(X + M), and

k(N − X) < (k1 + k2)(N − X), then

f ðXÞþ gðXþ yÞ � ðk1 þ k2ÞðN�XÞ\f ðXÞþ gðX þMÞ � kðN�XÞ ¼ 0

and thus, it follows that after the opening of the new halt, more travellers will
choose to travel by road from the more distant destinations, an undesired “non-
green” result.

7.3 Transportation Management: Methods
and Algorithms for Solution

A dilemma often facing transport planners is to choose whether to leave motorists
free to make their own route choices or to try and actively manage the traffic flows
in order to minimise the journey times for all motorists travelling between origin
and destination, i.e. whether “to plan” or “not to plan”? It is the resolving of this
dilemma that provides the focus of this paper.

Assuming that journey time is the only criteria for route choice, car travellers
may be seen as optimisers insofar as they usually want to minimise their own
journey times. Consequently, in the absence of effective traffic control measures,
there tends to be an approximate equilibrium travel time resulting between the
routes available.

In what has become known as Braess’ paradox, the difference between equi-
librium and optimal travel times can lead to the decidedly counter-intuitive result
that adds to road capacity, typically through more road construction, and lead to
slower not faster car journey times [7].

212 V. Lowndes et al.

7.3.1 General Cost of “Origin–Destination” Traffic Flow

A fundamental feature of road transportation is that car travel time is dependent on
the number of cars accessing the route. If there are m� 2 routes between the origin
and destination points, the time ti for a car accessing route iði ¼ 1; . . .;mÞ is a
monotonic increasing polynomial function of the traffic flow xi as measured in
“units of vehicles” per “unit of time” accessing route i, namely

ti ¼ fi xið Þ ¼ ai þ bixi
pi ; ð7:1Þ

where pi � 1; ai � 0 and bi [0, as suggested by the model proposed by Youn et al.
[5].

Denoting the cost of transporting xi vehicles along route iði ¼ 1; . . .;mÞ by

gi xið Þ ¼ xifi xið Þ; ð7:2Þ

the total travel time for n vehicles distributed on m routes is given by formula

T xð Þ ¼
Xm
i¼1

gi xið Þ ¼
Xm
i¼1

xifi xið Þ; ð7:3Þ

where x ¼ ðx1; . . .; xmÞ 2 N
m and x1 þ � � � þ xm ¼ n:

An example in this sense is where travellers can choose, or be directed to, one
from several routes accessing a city centre. Assume that there are three types of
routes available for a commuter

– main highway to city centre (direct and popular) and
– side routes (or rat runs, offering short distance but being easily congested), or

ring roads/motorways (faster, but longer and indirect).

Travel time functions (7.1) for these routes are given in Table 7.5. Here, moving
xi cars along route i costs gi xið Þ ¼ xifi xið Þ.

Therefore, the total travel time of n ¼ x1 þ � � � þ xm cars along these routes is

T xð Þ ¼ g1 x1ð Þþ g2 x2ð Þþ g3 x3ð Þ; from ð7:4Þ

For example, when x ¼ ðx1; x2; x3Þ ¼ ð2; 1; 2Þ, the total travelling cost given by
(7.4) is TðxÞ ¼ 25:4.

Table 7.5 Three routes traffic model

Route type Travel time 1 “car unit” transit time

Main highways to city centre f1 x1ð Þ ¼ 2þ 0:2x31 2:2

Side routes (rat runs) f2 x2ð Þ ¼ 5þ 0:4x52 5:4

Ring roads/motorways f3 x3ð Þ ¼ 6þ 0:1x23 6:1

7 Further Use of Heuristic Methods 213

7.3.1.1 Optimal Versus Equilibrium Solutions

In this section, two main types of traffic management approaches are considered.
First, one may try to find the number of cars to be directed along each route in

such a way that the total travelling time is minimised. Therefore, we consider the
following discrete optimisation problem

Minimise T x1; . . .; xmð Þ
subject to
x1 þ � � � þ xm ¼ n
x1; . . .; xm 2 N:

8>><
>>: ð7:4Þ

Second, admitting that all drivers are allowed to seek to minimise their own
individual travel times, an equilibrium would develop where all travel times are
equal and the steady-state traffic flow along each route could be obtained as a
solution of the following system of equations:

f1 x1ð Þ ¼ � � � ¼ fm xmð Þ
x1 þ � � � þ xm ¼ n
x1; . . .; xm 2 N:

8<
: ð7:5Þ

7.3.1.2 Price of Anarchy

The effect/cost of allowing travellers the free choice of route can be measured using
the price of anarchy is defined by

PA ¼ Cost T at equilibrium
Cost T at optimum

: ð7:6Þ

When the optimal and equilibrium solutions are the same, PA equals 1. Then, the
greater the value of PA, the greater the effect/cost of allowing travellers the free
choice of route and the greater the benefits (travel time), to be gained through
effective traffic management.

7.3.2 Introduction to Solution Methodologies

Considering the following polyhedral set in R
m:

S ¼ f x ¼ x1; . . .; xmð Þ 2 R
mjx1 þ � � � þ xm ¼ n; x1; . . .; xm � 0g; ð7:7Þ

we observe that all problems (7.4) and (7.5) have the same feasible domain, namely

214 V. Lowndes et al.

S \N
m;

whose cardinality is the number of multisets of length m on n, cf. Stanley [15]:

card S \N
mð Þ ¼ nþm� 1

m� 1

� �
¼ nþ 1ð Þ nþ 2ð Þ � � � ðnþm� 1Þ

m� 1ð Þ! : ð7:8Þ

Showing that, for a fixed value m of routes, the total number of feasible points,
card S \N

mð Þ, is the output of n by a polynomial of degree m� 1. For m ¼ 2, the
feasible set S \N

m contains nþ 1 points.

For m ¼ 3, the number of feasible solutions is given by ðnþ 1Þðnþ 2Þ=2, repre-
senting the sequence A000217 of triangular numbers in OEIS [16] which is
approximately 5� 105 for n ¼ 103 and 5� 107 for n ¼ 104.
For m ¼ 4, the formula gives ðnþ 1Þðnþ 2Þðnþ 3Þ=6, representing the sequence of
tetrahedral numbers A000292 in OEIS which is approximately 2� 108 for n ¼ 103

and 2� 1011 for n ¼ 104.

Therefore, for a few links m one can solve the problems (7.4) and (7.5) by
exhaustive search. However, as expected, this method is not suitable for a large
number of routes m or cars n. For this reason, in the next section we present other
efficient methods for the numerical solution of large problems.

7.3.2.1 Solution of the Optimisation Problem (7.4) by Dynamic
Programming

The cost function T of the optimisation problem (7.4) has separable variables, being
a sum of terms containing independent variables (7.3).

Moreover, as we have seen in the previous section, the feasible set S \N
m is

finite.
Therefore, problem (7.4) can be solved using Bellman’s algorithm of dynamic

programming (see [17] or [18]).
This approach is very efficient even for a large number of links and vehicles.
We start by defining recursively the functions

G1; . . .;Gm : 0; n½ � \N ! R for all c 2 ½0; n� \N by Bellman’s functional
equations

G1 cð Þ ¼ g1 cð Þ;
Gk cð Þ ¼ minc2½0;n� \N gk xð ÞþGk�1 c� xð Þ½ �; k ¼ 2; 3; . . .;m:

�
ð7:9Þ

Then, the optimal value of problem (7.4) is given by

7 Further Use of Heuristic Methods 215

min
x2S \N

m
T xð Þ ¼ Gm nð Þ; ð7:10Þ

and an optimal solution

x0 ¼ ðx01; . . .; x0mÞ

of problem (7.4) can be deduced by the following backward recursive procedure:

Let c :¼ n and choose x0m 2 argminx2½0;c� \N gm xð ÞþGm�1 c� xð Þ½ �;
Let c :¼ n� x0m and choose x0m�1 2 argminx2½0;c� \N gm�1 xð ÞþGm�2 c� xð Þ½ �;
. . .
Let c :¼ n� x0m � � � � � x03 and choose x

0
2 2 argminx2½0;c� \N g2 xð ÞþG1 c� xð Þ½ �;

Let x01 :¼ n� x0m � � � � � x03 � x02:

Example 7.1 Consider the particular case when m ¼ 3 and n ¼ 5 and the travelling
time functions f1; f2 and f3 for moving along routes 1; 2; 3 are given in Table 7.5.

According to (7.2), the values of g1; g2 and g3 involved in Bellman’s algorithm
are listed in the table below:

x g1 xð Þ g2 xð Þ g3 xð Þ
0 0 0 0

1 2.2 5.4 6.1

2 7.2 35.6 12.8

3 22.2 306.6 20.7

4 59.2 1658.4 30.4

5 135 6275 42.5

By (7.9), the values for G1 cð Þ ¼ g1 cð Þ are given by

c 0 1 2 3 4 5

G1 xð Þ 0 2.2 7.2 22.2 59.2 135

In order to compute G2 cð Þ, we build the following table, where the numbers
g2 xð ÞþG1 c� xð Þ corresponding to x ¼ 0; 1; . . .; c are listed along antidiagonals.

c − x 0 1 2 3 4 5

X g2(x) G1(c − x)

0 2.2 7.2 22.2 59.2 135

0 0 0 2.2 7.2 22.2 59.2 135
(continued)

216 V. Lowndes et al.

(continued)

c − x 0 1 2 3 4 5

X g2(x) G1(c − x)

0 2.2 7.2 22.2 59.2 135

1 5.4 5.4 7.6 12.6 27.6 64.6

2 35.6 35.6 37.8 42.8 57.8

3 306.6 306.6 308.8 313.8

4 1658.4 1658.4 1660.6

5 6275 6275.0

Then, for every c 2 f0; . . .; 5g, the value G2 cð Þ ¼ min0� x� c g2 xð ÞþG1 c� xð Þ½ �
corresponds to the least entry in the antidiagonal corresponding to c, giving

c 0 1 2 3 4 5

G2 xð Þ 0 2.2 7.2 12.6 27.6 57.8

Similarly, we can compute the values of G3 cð Þ by means of the next table:

c − x 0 1 2 3 4 5

X g3(x) G2(c − x)

0 2.2 7.2 12.6 27.6 57.8

0 0 0 2.2 7.2 12.6 27.6 57.8

1 6.1 6.1 8.3 13.3 18.7 33.7

2 12.8 12.8 15.0 20.0 25.4

3 20.7 20.7 22.9 27.9

4 30.4 30.4 32.6

5 42.5 42.5

The values of G3 cð Þ ¼ min0� x� c g3 xð ÞþG2 c� xð Þ½ � are given by

c 0 1 2 3 4 5

G3 xð Þ 0 2:2 7:2 12:6 18:7 25:4

According to (7.10), the minimum of T is G3 xð Þ ¼ 25:4:
Finally, by going backwards, we deduce an optimal solution x0 ¼ ðx01; x02; x03Þ of

problem (7.4) as follows:

7 Further Use of Heuristic Methods 217

x03 2 argminx2 0;5½ � \N g3 xð ÞþG2 5� xð Þ½ � ¼ 2f g;
x02 2 argminx2 0;3½ � \N g2 xð ÞþG1 3� xð Þ½ � ¼ 1f g;
x01 ¼ 5� x03 � x02 ¼ 2:

7.3.2.2 Transforming the Equilibrium System (7.5) into Optimisation
Problems

Since the equilibrium system (7.5) may be inconsistent (in the absence of integer
solutions), we propose the following approach. For any x ¼ x1; . . .; xmð Þ 2 N

m such
that x1 þ � � � þ xm ¼ n, consider the mean and normalised standard deviation of the
vector ðf1 x1ð Þ; . . .; fm xmð ÞÞ defined by

lðxÞ ¼ 1
m

Xm
i¼1

fi xið Þ

and

r xð Þ ¼
ffi
1

m� 1

Xm
i¼1

fi xið Þ � lðxÞj j2
s

:

Therefore, a counterpart of the equilibrium system (7.5) is represented by the
following discrete optimisation problem:

Minimiser x1; . . .; xmð Þ
subject to
x1 þ � � � þ xm ¼ n
x1; . . .; xm 2 N:

8>><
>>: ð7:11Þ

Notice that whenever the equilibrium system (7.5) is consistent, its solutions are
optimal solutions of problem (7.11).

Conversely, if x0 ¼ ðx01; . . .; x0mÞ is an optimal solution of (7.11), then x0 is a
solution of (7.5) if and only if rðx0Þ ¼ 0.

Also, in contrast to (7.4), the optimisation problem (7.11) cannot be solved by
Bellman’s algorithm, because its objective function r does not have separable
variables. For this reason, we propose two approaches for solving (7.11). One is to
solve the problem with a heuristic method. Alternatively, one may consider the
relaxed version of (7.11) over nonnegative real numbers:

218 V. Lowndes et al.

Minimise r x1; . . .; xmð Þ
subject to
x1 þ � � � þ xm ¼ n
x1; . . .; xm � 0:

8>><
>>: ð7:12Þ

This is solved in the following section by the fmincon routine available in
MATLAB®.

7.3.2.3 Counterparts of the Optimisation Problem (7.4)

We consider the following relaxation of the optimisation problem (7.4):

Minimise T x1; . . .; xmð Þ
subject to
x1 þ � � � þ xm ¼ n
x1; . . .; xm � 0

8>><
>>: ð7:13Þ

and its counterpart

Minimise T x1; . . .; xmð Þ
subject to
x1 þ � � � þ xm ¼ n
x1; . . .; xm [0:

8>><
>>: ð7:14Þ

Denote by cl A and ri A the closure and the relative interior of any set A	R
m, in

the sense of convex analysis [19].
Since the feasible domain of problem (7.13) is the set S introduced in (7.7), it

follows that the feasible domain of problem (7.14) is riS:
Taking into account that S \N

m	S ¼ clðri SÞ and T is continuous, we infer that
the optimal values of problems (7.4), (7.13) and (7.14) satisfy

min
x2S \N

m
T xð Þ� min

x2S
T xð Þ ¼ inf

x2riS
T xð Þ:

Notice that problems (7.4) and (7.13) always have optimal solutions, while
problem (7.14) possesses minimising sequences, but not necessarily minimal
solutions.

The optimisation problem (7.13) will be solved numerically in the next section.
In what concerns the constrained optimisation problem (7.14), we can prove that

it is equivalent to an equilibrium-type system. To this aim, we attach to (7.14) the
Lagrangian function L : int Rm

þ � R ! R defined by

7 Further Use of Heuristic Methods 219

L x; kð Þ ¼ T xð Þþ kH xð Þ; ð7:15Þ

where the objective function T xð Þ ¼ Pm
i¼1 giðxiÞ is given by 7.3 and the constraint

function is defined by

H xð Þ ¼ x1 þ � � � þ xm � n; ð7:16Þ

for all x ¼ x1; . . .; xmð Þ 2 int Rm
þ :

By the classical necessary condition of optimality, it follows that
whenever x0 ¼ x01; . . .; x

0
m

� � 2 int Rm
þ is an optimal solution of (7.14) there

exists k0 2 R such that ðx0; k0Þ is a stationary point of L, that is,

@L
@xi

ðx0; k0Þ ¼ g0i x
0
i

� �þ k0 ¼ 0; i ¼ 1; . . .;m
@L
@k ðx0; k0Þ ¼ H x0ð Þ ¼ x01 þ � � � þ x0m � n ¼ 0:

(
ð7:17Þ

In particular, this shows that x0 is a solution of the following system:

g01 x1ð Þ ¼ � � � ¼ g0m xmð Þ
x1 þ � � � þ xm ¼ n
x1; . . .; xm [0:

8<
: ð7:18Þ

On the other hand, let L0 : int Rm
þ ! R be defined for all x 2 int Rm

þ by

L0 xð Þ ¼ L x; k0ð Þ:

By means of (7.1) and (7.2), we deduce that

d2L0 x0
� �

hð Þ ¼
Xm
i¼1

Xm
j¼1

@2L0
@hi@hj

hð Þhihj ¼
Xm
i¼1

g00i x0i
� �

h2i

¼
Xm
i¼1

bi 1þ pið Þpixp�1
i h2i [0

for all h ¼ h1; . . .; hmð Þ 2 R
mnf0mg such that dH hð Þ ¼ h1 þ � � � þ hm ¼ 0; and

hence, the sufficient optimality condition is fulfilled.
Consequently, a point x0 ¼ x01; . . .; x

0
m

� � 2 R
m is an optimal solution of (7.14) if

and only if it is a solution of the system (7.18).
Comparing (7.18) to (7.5), it is natural to consider the equilibrium-type system:

g01 x1ð Þ ¼ � � � ¼ g0m xmð Þ
x1 þ � � � þ xm ¼ n
x1; . . .; xm 2 N:

8<
: ð7:19Þ

220 V. Lowndes et al.

For any x ¼ x1; . . .; xmð Þ 2 N
m such that x1 þ � � � þ xm ¼ n, we consider the mean

and normalised standard deviation of the vector ðg01 x1ð Þ; . . .; g0m xmð ÞÞ, defined by

�lðxÞ ¼ 1
m

Xm
i¼1

g0i xið Þ

and

�r xð Þ ¼
ffi
1

m� 1

Xm
i¼1

g0i xið Þ � �lðxÞj j2
s

:

As an alternative of the equilibrium system (7.19), we consider the optimisation
problem:

Minimise �rðx1; . . .; xmÞ
subject to
x1 þ � � � þ xm ¼ n
x1; . . .; xm � 0:

8>><
>>: ð7:20Þ

Since r does not have separable variables, we cannot use Bellman’s algorithm.
Hence, this problem will be solved using a heuristic algorithm.

7.3.2.4 Heuristic Algorithms

A tabu search was implemented to determine both the equilibrium and optimal
solutions to this traffic planning problem, solving the discrete optimisation prob-
lems (7.11) and (7.20).

To locate the equilibrium solution, the search starting with an initial allocation,
vehicles to routes, and the resultant cost per vehicle along each route

xi and Ri ¼ f xið Þ

The search starts by locating the following roads:

Route m where fm xmð Þ� fi xið Þ all i and xm [h quantity to be reduced

Route n where fn xnð Þ� fi xið Þ all i quantity to be increased

Reassigning the traffic so that

xm � h and xn þ h

7 Further Use of Heuristic Methods 221

Updating the tabu list, reducing the tabu value for all routes and increasing the tabu
values for routes m and n, so that:

xm cannot be increased until TabuTime has elapsed and

xn cannot be decreased until TabuTime has elapsed.

Updating routine

UðiÞ ¼ maxðUðiÞ � 1; 0Þ;
D ið Þ ¼ maxðDðiÞ � 1; 0Þ

UðmÞ ¼ UðmÞþTabuTime

DðnÞ ¼ DðnÞþTabuTime

At the subsequent stages, find

Routem where fm xmð Þ� fi xið Þ all i; xm [h and D mð Þ ¼ 0
Route n where fn xnð Þ� fi xið Þ all i; and U nð Þ ¼ 0

At each stage, calculate the variance of the route costs, var(RÞ; and record that
solution with the lowest variance as the best found solution.

To locate the optimal solution, the search starts with an initial allocation,

xi

and the “optimality measure”

Ri ¼ fi xið Þþ xif
0
i xið Þ

Calculate the variance of the route costs, var(RÞ; and record that solution with
the lowest variance as the best found solution.

Note: the efficiency of the search is dependent upon the values of the:

TabuTime, and
The stepsize h.

7.3.3 Numerical Results for a Problem with 3 Routes

This example highlights some key features of the traffic problems formulated in the
introduction. For simplicity, we denote x ¼ x1; y ¼ x2 and z ¼ x3.

The individual cost functions f1; f2 and f3 for routes 1, 2 and 3 given in Table 7.5
are

222 V. Lowndes et al.

f1 xð Þ ¼ 2þ 0:2x3; f2 yð Þ ¼ 5þ 0:4y5; f3 zð Þ ¼ 6þ 0:1z2:

In this case, the polyhedral set

S ¼ f x; y; zð Þ 2 R
3 jxþ yþ z ¼ n; x; y; z� 0g ð7:21Þ

depends upon two parameters x and y (as z ¼ n� x� y), while the total number of
feasible points in S is ðnþ 1Þðnþ 2Þ=2.

Some basic features of the solutions of problems (7.4) and (7.11) can be obtained
by computing the values of the cost function Tðx; y; zÞ and the error function
rðx; y; z) and by evaluating their optimum values by exhaustive search.

The results for n ¼ 50 links are depicted in Fig. 7.7. Numerically, the minimum
cost is 7307:7 obtained for ðx; y; zÞ ¼ ð8; 3; 39Þ, while the minimum error is
38:3378, obtained for ðx; y; zÞ ¼ ð9; 3; 38Þ.

Fig. 7.7 Results for xþ yþ z ¼ n ¼ 50. a Total cost Tðx; y; zÞ (surface); b T x; y; zð Þ (contour
plot); c r x; y; zð Þ (surface plot); d r x; y; zð Þ (contour plot)

7 Further Use of Heuristic Methods 223

7.3.3.1 Optimal Cost Solutions

Solutions of the optimisation problem for n ¼ 1; . . .; 100 vehicles are shown in
Fig. 7.8.

In Fig. 7.8a, the cost functions f1; f2 and f3 for the three routes given in Table 7.5
suggest that vehicles follow the route of lower cost (here f3), to minimise cost. Once
the curves intersect, some vehicles are diverted along alternative routes. The integer
solutions for the optimisation problem are shown in Fig. 7.8b.

Notice that there is an almost linear dependence of the solutions with respect to
the traffic size. Also, most of the vehicles travel along the route of minimal power.
For n ¼ 100, the optimal solution is ðx; y; zÞ ¼ ð14; 4; 82Þ.

Figure 7.8c depicts the cost obtained if all vehicles were directed along a single
route. One may notice that the diversion of some vehicles to alternative routes has
an important effect in bringing the cost down. For n ¼ 100, the optimal cost is
64,998.4, while for n ¼ 1000 this increases to 83,059,738.

Finally, Fig. 7.8d illustrates the computational time dependence on the problem
size. As expected for this approach, the time seems to increase quadratically with
the problem size, as suggested by the complexity analysis.

Fig. 7.8 Solution for n ¼ 1; . . .; 100. a Route equations; b optimal solution ðx; y; zÞ for the three
routes; c Total cost compared against fi(n); d Execution time

224 V. Lowndes et al.

For n ¼ 1000 vehicles, one can use Bellman’s algorithm to obtain the solution

ðx; y; zÞ ¼ ð68; 10; 922Þ:

A numerical method using the fmincon MATLAB® routine is also possible,
which generates the solution

ðx; y; zÞ ¼ ð68:2920; 10:1203; 921:5875Þ:

The cost difference is less than 0:001% (83;058; 316:9974 vs. 83;059;738).

7.3.3.2 Equilibrium Problem and Price of Anarchy

At equilibrium

2þ 0:2x3 ¼ 5þ 0:4y5 ¼ 6þ 0:1z2; ð7:22Þ

or when this has no integer solutions, the aim could be to try to minimise the
function

r x; y; zð Þ ¼
ffi
2þ 0:2x3 � lj j2 þ 5þ 0:4y5 � lj j2 þ 6þ 0:1z2 � lj j2

2
;

s
ð7:23Þ

where

l ¼ l x; y; zð Þ ¼ 2þ 0:2x3ð Þþ 5þ 0:4y5
� �þð6þ 0:1z2Þ

3
;

with the constraints xþ yþ z ¼ n and x; y; z 2 N.
The integer solutions for the equilibrium problem are shown in Fig. 7.9a.
The equilibrium and optimal solutions appear to be quite similar. At n ¼ 100,

both solutions yield ð14; 4; 82Þ, while at n ¼ 1000 the optimal solution is
ð68; 10; 922Þ whereas the equilibrium one ð77; 12; 911Þ.

Figure 7.9b depicts the individual vehicle cost/route, while the normalised
standard error r/n with r given by (7.23) shown in Fig. 7.9c presents oscillations.

The price of anarchy shown in Fig. 7.9d is very close to 1, which suggests a
strong coupling between the optimisation and equilibrium problems.

Also, the solution of the equilibrium problem (7.11) is

ð74:73536; 11:58528; 913:6794Þ;

which compares well against the equilibrium integer solution

7 Further Use of Heuristic Methods 225

ð77; 12; 911Þ;

This solution produces an standard deviation rðx; y; zÞ given by formula (7.23)
of 0:0021486. The predicted price of anarchy is PA ¼ 1:005.

7.3.4 A Problem with 20 Routes

When a large number of routes is considered, the problem becomes very complex.
The exhaustive search is no longer an option, and alternative approaches are
required. In this section, we investigate a problem with 20 routes.

We first discuss the optimisation problem, which is solved in integers with
Bellman’s algorithm, then by a heuristic method, and finally, by nonlinear opti-
misation solvers which produces real solutions. The equilibrium problem is solved
over integers with a heuristic method and also over real numbers using numerical
methods. Here, the focus is the variance of fi xið Þ, the travel time along route i when
xi vehicles are present.

Fig. 7.9 Solution for n = 1,…,100. a Equilibrium solution (x, y, z) for the three routes; b single
vehicle time/route at equilibrium; c r(x, y, z)/n; d price of anarchy

226 V. Lowndes et al.

7.3.4.1 Optimal Cost Solutions

In this section, we examine results obtained for the problem optimising the travel
cost. The integer optimisation problem (7.4) is solved by Bellman’s algorithm. Its
discrete alternative (7.20) is solved by the heuristic algorithm, while the solution of
the continuous counterpart (7.13) is obtained by numerical methods.

Solution of (7.4) by Bellman’s Algorithm

Table 7.6 presents the route costs for a problem involving 20 routes, and the
solution produced by Bellman’s algorithm for n ¼ 2000; 3000; 5000 or 10;000 cars.

The distribution of vehicles at the optimal solution is presented in Fig. 7.10. It
can be seen that more than 50% of the vehicles follow link 14, while the links with
power 1 (links 4; 6; 14; 16) took the majority of the traffic.

Table 7.6 Optimal distribution of n cars along m ¼ 20 links obtained by Bellman’s algorithm

Link Nr Link cost function n ¼ 2000 n ¼ 3000 n ¼ 5000 n ¼ 10;000

1 xð2þ 0:1x3Þ 6 7 9 11

2 xð2:3þ 0:02x5Þ 374 6 5 5

3 xð3:5þ 0:01x2Þ 58 72 95 135

4 xð1:8þ 0:15x1Þ 346 530 901 1839

5 xð0:01þ 0:04x2Þ 30 37 48 68

6 xð0:8þ 0:25x1Þ 210 320 542 1105

7 xð0:04þ 0:05x2Þ 27 33 43 61

8 xð0:11þ 0:025x3Þ 10 12 14 18

9 xð0:075þ 0:125x2Þ 17 21 27 38

10 xð0:99þ 0:07x4Þ 4 5 5 6

11 xð2:1þ 0:001x5 7 8 9 10

12 xð0:01þ 0:5x2) 8 10 13 19

13 xð1:5þ 0:1x3Þ 6 7 9 11

14 xð2:8þ 0:05x1Þ 1027 1578 2692 5507

15 xð0:1þ 0:02x4Þ 6 6 7 9

16 xð3:8þ 0:25x1Þ 204 314 537 1099

17 xð0:4þ 0:5x3Þ 4 4 5 7

18 xð0:11þ 0:0025x6Þ 4 5 5 6

19 xð1:75þ 0:125x2) 17 21 27 38

20 xð0:099þ 0:03x4Þ 5 6 7 8

Cost �105 1:035 2:367 6:694 27:319

7 Further Use of Heuristic Methods 227

Bellman’s Versus Heuristic Algorithm

Table 7.7 shows the small difference between the optimum solution obtained by
Bellman’s method and the heuristic method (maximum difference is 3 out of 2692
vehicles at link 14). As expected, the results produced by Belmann’s algorithm give
lower figures for the total cost, as this method is exact. However, the cost difference
is negligible (less than 0:1%).

Bellman’s Versus Nonlinear Optimisation Solution

Table 7.8 compares solutions of the optimisation problem (7.4) given by Bellman’s
algorithm, against numerical solutions of the alternative optimisation problem
(7.13), solved numerically by the MATLAB® solver fmincon.

One can notice that the difference between the solutions is again negligible.
Also, while the cost obtained for the relaxed problem over integers is slightly
smaller, the corresponding cost functions only differ by less than 0:03%:

7.3.4.2 The Equilibrium Problem

As the variables are no longer separated, Bellman’s algorithm can no longer be
applied, while due to the problem’s complexity (for m ¼ 20 and n ¼ 1000, one
would have to evaluate approximately 1030 configurations) exhaustive search is not
an option.

For this reason, the optimisation problem (7.11) is solved by a heuristic algo-
rithm and its relaxed continuous counterpart (7.12) by numerical methods.

Fig. 7.10 Log plot of the
solution of the optimisation
problem (7.4), obtained by
Bellman’s algorithm for m ¼
20 links and n ¼
2000; 3000; 5000; 10;000
vehicles (bottom to top)

228 V. Lowndes et al.

Table 7.7 Optimal solution xi and total solution cost: Bellman (B) versus Heuristic (H)

Link Nr n ¼ 2000 n ¼ 3000 n ¼ 5000 n ¼ 10;000

B H B H B H B H

1 6 6 7 8 9 8 11 12

2 4 4 4 4 5 5 5 6

3 58 58 72 72 95 95 135 135

4 346 345 530 529 901 902 1839 1840

5 30 29 37 37 48 48 68 68

6 210 211 320 320 542 542 1105 1105

7 27 27 33 33 43 43 61 60

8 10 10 12 12 14 14 18 18

9 17 17 21 21 27 26 38 38

10 4 4 5 4 5 5 6 7

11 7 7 8 8 9 8 10 9

12 8 8 10 11 13 14 19 19

13 6 6 7 8 9 8 11 11

14 1027 1027 1578 1578 2692 2695 5507 5506

15 6 6 6 6 7 7 9 8

16 204 204 314 314 537 537 1099 1100

17 4 4 4 4 5 5 7 7

18 4 4 5 4 5 5 6 5

19 17 17 21 21 27 27 38 39

20 5 6 6 6 7 6 8 7

Cost �105 1.0355 1.0359 2.3670 2.3675 6.6941 6.6947 27.3241 27.3290

Table 7.8 Optimal solution xi and cost: Bellman (B) versus real numerical method (R)

Link Nr n ¼ 2000 n ¼ 3000 n ¼ 5000 n ¼ 10;000

B R B R B R B R

1 6 6.37 7 7.35 9 8.77 11 11.13

2 4 3.86 4 4.21 5 4.68 5 5.40

3 58 58.33 72 72.39 95 94.63 135 135.40

4 346 345.93 530 529.77 901 901.16 1839 1838.85

5 30 29.66 37 36.60 48 47.62 68 67.91

6 210 209.56 320 319.86 542 542.70 1105 1105.31

7 27 26.53 33 32.73 43 42.59 61 60.74

8 10 10.18 12 11.71 14 13.96 18 17.69

9 17 16.77 21 20.70 27 26.94 38 38.41

10 4 4.16 5 4.62 5 5.28 6 6.30

11 7 7.04 8 7.66 9 8.52 10 9.83

12 8 8.39 10 10.35 13 13.47 19 19.21

13 6 6.38 7 7.36 9 8.78 11 11.13
(continued)

7 Further Use of Heuristic Methods 229

The solution of the integer optimisation problem (7.11) with 20 links obtained
by the heuristic algorithm is compared against the numerical solution in Table 7.9.
The solutions and their respective costs are very close to each other.

Table 7.8 (continued)

Link Nr n ¼ 2000 n ¼ 3000 n ¼ 5000 n ¼ 10;000

B R B R B R B R

14 1027 1027.78 1578 1579.30 2692 2693.46 5507 5506.46

15 6 5.70 6 6.33 7 7.22 9 8.62

16 204 203.56 314 313.86 537 536.70 1099 1099.31

17 4 3.75 4 4.31 5 5.14 7 6.51

18 4 4.27 5 4.58 5 5.00 6 5.62

19 17 16.64 21 20.59 27 26.85 38 38.36

20 5 5.15 6 5.72 7 6.53 8 7.79

Cost � 105 1.0355 1.0352 2.367 2.366 6.694 6.693 27.324 27.322

Table 7.9 Equilibrium solution xi and cost: Heuristic (H) versus numerical method (R)

Link Nr n ¼ 2000 n ¼ 3000 n ¼ 5000 n ¼ 10;000

H R H R H R H R

1 7 7.97 10 9.21 11 11.01 14 14.00

2 5 4.79 5 5.22 6 5.82 7 6.72

3 71 70.13 88 87.47 115 114.88 165 165.22

4 340 339.31 519 521.71 888 892.13 1822 1837.98

5 36 36.29 45 44.72 58 58.19 83 83.13

6 207 207.58 315 317.00 537 539.17 1097 1106.11

7 32 32.45 39 39.99 53 52.04 74 74.35

8 13 12.81 15 14.73 18 17.56 22 22.27

9 21 20.51 26 25.29 33 32.91 47 47.02

10 5 5.21 5 5.80 7 6.62 8 7.92

11 9 8.73 9 9.51 11 10.59 12 12.24

12 11 10.26 13 12.65 16 16.46 23 23.51

13 11 8.00 9 9.23 11 11.02 14 14.01

14 996 996.59 1547 1541.25 2648 2641.86 5444 5408.75

15 7 7.16 8 7.95 9 9.07 11 10.84

16 196 195.58 305 305.00 525 527.17 1085 1094.12

17 5 4.71 5 5.42 6 6.46 8 8.20

18 5 5.25 6 5.63 6 6.15 7 6.93

19 20 20.19 26 25.02 33 32.70 47 46.88

20 6 6.47 7 7.18 8 8.20 10 19.80

Cost � 105 1.053 1.053 2.398 2.396 6.764 6.768 27.508 27.503

230 V. Lowndes et al.

Table 7.10 presents the route cost fi xið Þ: One can see that the variance of the
continuous problem (7.12) is actually minimised to nearly zero, although the
numerical solution stopped after the default number of 1500 iterations.

Solving the optimisation and equilibrium problems by the heuristic method
when the number of links is reduced by removing inefficient links produces solu-
tions satisfying x1; . . .; xm [0, if sufficiently many vehicles are travelling. This
leads to the minimum traffic demand levels ensuring nonempty routes given in
Table 7.11.

7.3.4.3 Effects of Road Closures and the Price of Anarchy

Here, we investigate the effects of route closures upon the overall travelling cost in
the optimisation problem (7.4), and the impact on the price of anarchy.

Table 7.10 Equilibrium solution single route cost fi xið Þ and variance: Heuristic (H) versus
numerical method (R)

n ¼ 2000 n ¼ 3000 n ¼ 5000 n ¼ 10;000

Link Nr H R H R H R H R

1 36 52.68 102 80.01 135 135.44 276 276.41

2 64 52.68 64 80.01 157 135.44 338 276.41

3 53 52.68 80 80.01 135 135.46 272 276.48

4 52 52.70 79 80.04 135 135.62 274 276.50

5 51 52.68 81 80.01 134 135.44 268 276.45

6 52 52.69 79 80.05 135 135.59 275 276.33

7 52 52.68 76 80.01 140 135.45 273 276.44

8 55 52.68 84 80.01 145 135.44 266 276.42

9 55 52.68 84 80.01 136 135.45 276 276.43

10 44 52.68 44 80.01 169 135.44 287 276.41

11 61 52.68 61 80.01 163 135.44 250 276.41

12 60 52.68 84 80.01 128 135.44 264 276.42

13 52 52.68 74 80.01 134 135.44 275 276.41

14 52 52.63 80 79.86 135 135.89 275 276.24

15 48 52.68 82 80.01 131 135.44 200 276.41

16 52 52.70 79 80.05 135 135.59 275 276.33

17 62 52.68 62 80.01 171 135.44 364 276.41

18 39 52.68 39 80.01 116 135.44 294 276.41

19 51 52.68 86 80.01 137 135.45 277 276.43

20 38 52.68 72 80.01 122 135.44 300 276.41

Variance 58 0.00017 210 0.00143 211 0.01992 1015 0.68122

The integer part of the heuristic results is displayed, while the results of the nonlinear method are
truncated after two decimal places

7 Further Use of Heuristic Methods 231

Table 7.11 Number of vehicles required for strictly positive integer solutions

Nr of links Optimal Equilibrium

20 86 132

19 67 107

18 53 78

17 46 66

16 42 58

15 41 55

14 37 49

13 35 46

12 33 40

11 30 33

10 25 31

9 22 28

8 20 21

7 13 13

6 11 10

5 9 8

4 7 6

3 5 4

Table 7.12 Links sorted by the number of vehicles/route when n ¼ 10;000

Link Nr Link cost function n = 2000 n = 3000 n = 5000 n = 10,000

14 xð2:8þ 0:05x1Þ 1027 1578 2692 5507

4 xð1:8þ 0:15x1Þ 346 530 901 1839

6 xð0:8þ 0:25x1Þ 210 320 542 1105

16 xð3:8þ 0:25x1Þ 204 314 537 1099

3 xð3:5þ 0:01x2Þ 58 72 95 135

5 xð0:01þ 0:04x2Þ 30 37 48 68

7 xð0:04þ 0:05x2Þ 27 33 43 61

9 xð0:075þ 0:125x2Þ 17 21 27 38

19 xð1:75þ 0:125x2) 17 21 27 38

12 xð0:01þ 0:5x2) 8 10 13 19

8 xð0:11þ 0:025x3Þ 10 12 14 18

1 xð2þ 0:1x3Þ 6 7 9 11

13 xð1:5þ 0:1x3Þ 6 7 9 11

11 xð2:1þ 0:001x5 7 8 9 10

15 xð0:1þ 0:02x4Þ 6 6 7 9

20 xð0:099þ 0:03x4Þ 5 6 7 8

17 xð0:4þ 0:5x3Þ 4 4 5 7
(continued)

232 V. Lowndes et al.

Remark from Table 7.6 that link 14 attracts more than half of the vehicles, while
links with power 1 (4, 6, 14, 16) take more than 95:5% of the traffic for n ¼ 10;000.
To confirm that the most loaded segments correspond indeed to the routes with
smaller powers, we sort the routes in the decreasing order of traffic for n ¼ 10;000
vehicles, as illustrated in Table 7.12.

Table 7.13 shows that the proportion of vehicles taking routes of power 1
increases from 89:35% at n ¼ 2000 to 95:5% at n ¼ 10;000, while the percentage
of vehicles taking routes of power decreases from 7:85% at n ¼ 2000 to 3:59% at
n ¼ 10;000.

A legitimate question is then whether it is worth investing in maintaining
low-capacity routes, if the high-capacity roads can accommodate the traffic flow.
For this reason, we shall check what happens if some of the lower capacity routes
are deleted. Road segments are deleted in the decreasing order of the power.

First, roads of power greater than or equal to 3 (10 routes) are closed and the
optimal solution and minimum cost are displayed in Table 7.14. The relative

Table 7.12 (continued)

Link Nr Link cost function n = 2000 n = 3000 n = 5000 n = 10,000

10 xð0:99þ 0:07x4Þ 4 5 5 6

18 xð0:11þ 0:0025x6Þ 4 5 5 6

2 xð2:3þ 0:02x5Þ 4 6 5 5

Table 7.13 Proportion of
vehicles as a function of
power, for the optimum
solution

Power n ¼ 2000 n ¼ 3000 n ¼ 5000 n ¼ 100; 00

1 0.8935 0.9140 0.9344 0.9550

2 0.0785 0.0647 0.0506 0.0359

Table 7.14 Optimal solution when the most productive m ¼ 10 links are maintained

Link Nr Link cost function n = 2000 n = 3000 n = 5000 n = 10,000

14 x(2.8 + 0.05 � x1) 1058 1615 2735 5557

4 x(1.8 + 0.15 � x1) 356 542 915 1856

6 x(0.8 + 0.25 � x1) 216 327 551 1115

16 x(3.8 + 0.25 � x1) 210 321 545 1110

3 x(3.5 + 0.01 � x2) 59 73 95 136

5 x(0.01 + 0.04 � x2) 30 37 48 68

7 x(0.04 + 0.05 � x2) 27 33 43 61

9 x(0.075 + 0.125 � x2) 17 21 27 39

19 x(1.75 + 0.125 � x2) 17 21 27 39

12 x(0.01 + 0.5 � x2) 9 10 14 19

Cost m = 10(�105) 1.083 2.448 6.852 27.715

Cost increase 4.64% 3.42% 2.36% 1.45%

Links sorted by the number of vehicles/route when n = 10,000

7 Further Use of Heuristic Methods 233

increase in the total travel cost compared to the original problem with 20 links
decreases from 4:64% at n ¼ 2000 to 1:45% at n ¼ 10;000 vehicles.

Further, the routes of power 2 are also closed (6 routes) and the results for the
remaining 4 routes of power 1 are displayed in Table 7.15. The relative increase in
the total travel cost compared to the original problem with 20 links decreases from
16:33% at n ¼ 2000 to 6:50% at n ¼ 10;000 vehicles.

The results indicate that the closure of lower capacity roads does increase the
overall optimal cost, especially at low traffic. However, closing roads have a pos-
itive effect on the price of anarchy, which goes down, as shown in Table 7.16.

References

1. Fisk C (1980) Some developments in equilibrium traffic assignment. Transp Res Part B
Methodol 14(3):243–256

2. Horowitz J (1984) The stability of stochastic equilibrium in a two link transportation network.
Transp Res Part B Methodol 18(1):13–28

3. Hartman J (2009) Special issue on transport infrastructure: a route choice experiment with an
efficient toll, networks and spatial economics. Accessible at: http://www.springerlink.com/
content/3721172289268710/fulltext.pdf

4. Roughgarden T (2005) Selfish routing and the price of anarchy. MIT Press, London
5. Youn H, Jeong H, Gastner M (2009) The price of anarchy in transportation networks:

efficiency and optimality control. Phys Rev Lett 101 (19 Sept 2009)
6. Skinner, Carlin (2013) The price of anarchy. Significance
7. Braess D, Nagurney A, Wakolbinger (2005) On a paradox of transport planning (a translation

of the 1968 article). Transp Sci 39(4):446–450
8. Steinberg R, Zangwill W (1983) The prevalence of Braess’ paradox. Transp Sci 17(3):301–318

Table 7.15 Optimal solution when the most productive m ¼ 4 links are maintained

Link Nr Link cost function n = 2000 n = 3000 n = 5000 n = 10,000

14 x(2.8 + 0.05 � x1) 1151 1728 2882 5766

4 x(1.8 + 0.15 � x1) 387 579 964 1926

6 x(0.8 + 0.25 � x1) 234 350 580 1157

16 x(3.8 + 0.25 � x1) 228 343 574 1151

Cost m = 4 (�105) 1.204 2.671 7.336 29.095

Cost increase 16.33% 12.84% 9.59% 6.50%

Links sorted by the number of vehicles/route when n = 10,000

Table 7.16 Price of anarchy

n ¼ 2000 n ¼ 3000 n ¼ 5000 n = 10,000

Price of anarchy (m = 20) 1.0173 1.0136 1.0100 1.0068

Price of anarchy (m = 10) 1.008 1.007 1.005 1.004

Price of anarchy (m = 4) 1 + 485e−5 1 + 2.19e−5 1 + 7.97e−6 1 + 2.01e−6

234 V. Lowndes et al.

http://www.springerlink.com/content/3721172289268710/fulltext.pdf
http://www.springerlink.com/content/3721172289268710/fulltext.pdf

9. Dafermos SC, Nagurney A (1984) On some traffic equilibrium theory paradoxes Transp Res
Ser B 18(2):101–110

10. Catoni S, Pallottino S (1991) Traffic equilibrium paradoxes. Transp Sci 25(3):240–244
11. Pas E, Principio S (1997) Braess’ paradox: some new insights. Transp Res B 31(3):265–276
12. Abrams R, Hagstrom J (2006) Improving traffic flows at no cost. In: Lawphongpanich S,

Hearn D, Smith M (eds) Mathematical and computational models for congestion changing.
Springer, New York

13. Mogoridge M (1997) The self-defeating nature of urban road capacity policy. Transp Policy 4
(1):5–23

14. Arnott R, Small K (1994) The economics of traffic congestion. Am Sci 82:446–455
15. Stanley RP (2012) Enumerative combinatorics, vol 1 (2nd ed.). Cambridge Studies in

Advanced Mathematics, 49, Cambridge University Press, Cambridge
16. The On-Line Encyclopedia of Integer Sequences (2011) https://oeis.org. OEIS Foundation Inc
17. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton
18. Bazaraa MS, Sherali HD & Shetti CM (2006) Non linear programming. Wiley, New York
19. Rockafellar RT (1970) Convex analysis. Princeton Mathematical Series 28, Princeton

University Press, Princeton

7 Further Use of Heuristic Methods 235

https://oeis.org

Chapter 8
Air Traffic Controllers Planning:
A Rostering Problem

Richard Conniss

The air traffic controllers (ATC) rostering problem shares some features with
standard rostering problems reported in the literature, and at the same time has some
unique features that required special attention. All controllers start their careers by
attending a specialised training college to learn the basic skills of ATC. Once a new
controller arrives at their unit, they must undertake a period of on-the-job training.
At any given unit, there will be a set of controlling tasks, or positions, for which the
new controller must become proficient.

Most ATC units have multiple control positions, each with unique demands and
training requirements. Ideally, all controllers will eventually become endorsed
(qualified) in all positions and this is where the first main difference with other
scheduling problems occur. If a controller holds an endorsement in a position, they
are expected to be able to staff that task as required.

This is quite different to the use of qualifications in other rostering problems. As
an example, in many nurse rostering problems qualifications denote the seniority of
an employee. If a senior or more qualified nurse is assigned to a task that would
more normally be undertaken by a more junior colleague, this assignment is
penalised in some fashion by the solution method. The senior nurse is qualified to
undertake the task, but it is seen as an inefficient use of resources as salary is linked
to seniority.

For controllers, the need to maintain familiarity with all tasks for which they are
qualified is safety critical. Skill fade is a significant problem and can induce
potentially catastrophic effects on the safe movement of aircraft. Controller’s sal-
aries are excluded from rostering decisions as their remuneration has no effect on
their ability to execute a task. As such, controllers should be regularly assigned to
each of the positions for which they hold endorsements. One way of measuring this

R. Conniss (&)
University of Derby, Derby, UK
e-mail: r.conniss@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_8

237

familiarity is known as currency, which is used as a measure of an individual’s
competence for a task.

Currency is defined as the number of days since a controller worked produc-
tively in a given position. What is meant by productive work is that a controller has
completed a reasonable amount of work in a position as opposite to just awaiting
traffic. Merely scheduling someone to a task is not sufficient to maintain their skill
set, and as such the values for currency are difficult to predict. They are updated on
a daily basis. The current limit is set at 30 days, and if a controller were to violate
this restriction they would have to undergo a period of retraining and re-qualify for
that position. Clearly, this situation will add to the training burden of a unit and
should be avoided wherever possible; achieving this can be a difficult task for most
units.

Like any employee, controllers require rest breaks throughout the working day.
In the civilian ATC world, there are very strict and legally binding working rules
and conditions to ensure the safety of aviation operations. The rules include
maximum durations for a controller to work in a position (usually 2 h) and fre-
quency of rest breaks and meal breaks. For UK ATC operations these rules are
defined in the Scheme for Regulation of Air Traffic Controllers Hours (SRATCOH)
which is published by the Civil Aviation Authority.

To give a controller a break in a particular position, another qualified controller
must replace them. This transfer of responsibility requires a formal handover pro-
cedure to ensure that the incoming controller is aware of the location and intentions
of all aircraft receiving a service, the local weather conditions, unusual variations to
normal procedures, temporary airspace restrictions and any other information
deemed necessary for safe operations. This requirement prevents controllers from
switching tasks instantaneously, as this hand-over process will always require at
least a few minutes to complete. Usually, this is accomplished by separating con-
troller assignments with a break. The problem is exacerbated when multiple con-
trollers require breaks over several time periods. In this scenario, some chain of
moves must be found that simultaneously gives all controllers a suitable set of
breaks and maintains the required staffing for tasks throughout the day. The goal of
rostering is to produce a single day roster that ensures that qualified controllers are
appropriately assigned to positions, given breaks and whilst maintaining currency.

One of the most difficult aspects of the process for the watch supervisors, whom
are the senior controllers in charge of daily operations, is the initial creation of the
daily schedule. With so many permutations of controllers and qualifications, it can
be extremely difficult to construct a roster that is feasible. An inordinate amount of a
supervisor’s time is spent managing the roster to meet the goals of the day. This
distracts from their core responsibilities to monitor staff and maintain safe ATC
operations, therefore any automated approach that could achieve this part of their
daily responsibility would not only simplify their working day, but could also have
positive effects on flight safety in general. Breaks are monitored continuously,
which places additional pressure onto the supervisor’s workload, and occasionally
controllers can be left in position for an unsuitable length of time. Often late notice
changes to staffing can cause problems, last minute medical appointments, meetings

238 R. Conniss

off site and even the rare controlling incident can all cause disruption. Planning for
these events is almost impossible and as such supervisors are constantly dealing
with new inputs of information, throughout a shift.

An effective algorithm to produce valid rosters has to consider all of the above
restrictions placed on controlling staff. During conversations with senior ATC staff
at RAF Cranwell, a number of key requirements for a daily roster have been
identified.

These are as follows:

• All operational demand for the flying program must be met by qualified
controllers.

• Controllers must have suitable rest breaks.
• The system must be able to adapt to sudden changes in staffing or the opera-

tional flying task.

8.1 Mathematical Model

An appropriate model for a single day roster is required to understand the com-
plexities involved. Given a set of controllers C with c2C, a set of positions P with
p2P and a set of qualifications Q containing tuples c; p; f where f denotes a
currency (familiarity) value in the range f0; . . .; 30g for controller c on position
p. The shift is divided into a set of fixed interval time slots T with t2 T ; and the task
is to find a set of assignments A, containing tuples c; p; t which represent a roster for
an entire shift.

In the model defined, the day is divided into T time slots of 30 min duration for
reasons of simplification. With n controllers i ¼ 1; . . .; n, m positions j ¼ 1. . .m and
t2f1; . . .Tg, the following matrices are defined.

Ri;j;t ¼ 1 controller i is in position j at time t, 0 otherwise
Qi;j ¼ 1 controller i is qualified in position j, 0 otherwise
Dj;t ¼ 1 position j is to be staffed at time t, 0 otherwise
Ai;t ¼ 1 controller i is available to work at time t, 0 otherwise
Ci;j ¼ f0; . . .; 30g currency of controller i in position j, measured in days

This leads to the following set of hard constraints:
A controller must be qualified to work in a position:

Ri;j;t �Qi;j; 8i; j; t

A controller must be available to work in a position:

Ri;j;t �Ai;t; 8i; j; t

8 Air Traffic Controllers Planning: A Rostering Problem 239

If there is a demand for a position, that position must be staffed:X
j

Ri;j;t ¼ Dj;t; 8j; t

Each controller can only be assigned to a single position at a given time slot:X
j

Ri;j;t � 1; 8i; t

Controllers cannot instantaneously switch tasks, and must have a break before
being assigned to a position. This allows for a formal handover of responsibility as
new controllers take on a task.

Ri;j;t �
Xj

k¼1

Ri;k;t þ 1�Ri;j; tþ 1ð Þ; 8i; j; t

A controller must be current in a position to work:

Ri;j;t �Ci;j; 8i; j; t

Additionally, controllers will require sufficient rest breaks during their shift. As it
stands, the RAF has no formal system for defining controller worker hours and as
such rules from civilian ATC have been incorporated into the model. Essentially,
the main rule to consider is that a controller cannot work for longer than 2 h in a
position without a break.

Xsþ 4

t¼s

Xm
j¼1

Ri;j;t � 4; 8i2 1; . . .; nf g; s2f1; . . .; T � 4g

This problem is formulated as constraint satisfaction problem and therefore no
formal objective function is required. However, an evaluation function is defined to
compare solutions quality. Once a valid roster is produced, the currency value for
each (controller, position, time) assignment is retrieved, and the sum of all these
assignments is used as a measure of roster quality. Larger values for this function
are better, implying that controllers with high currency values in a position at the
beginning of the rostering period are assigned to that task in the roster.

X
i

X
j

X
t

Ri;j;t � Ci;j
� �

240 R. Conniss

8.2 Methodology

Given the above restrictions and requirements for successfully scheduling con-
trollers, our proposed algorithm constructs a roster and satisfies the requirements of
a particular day. It ensures controllers are able to take reasonable breaks. It is also
capable of re-rostering due to short notice events.

The rostering problem can be treated as a tree of fixed size. Therefore, the
structure of the developed algorithm is similar to that of the depth first search
(DFS) algorithm. DFS is a procedure for traversing every node in a given graph or
tree, via their connecting vertices. It does this by first selecting a starting node and
then travelling along vertices, always trying to get as far from the start as possible.

Each level of the tree represents a combination of a position and time slot value.
The first layer is the first position to staff in the first time slot of the shift, the second
is the second position and first time slot etc. Each node is the assignment of a
controller at a particular position and time. Figure 8.1 shows the structure of this
approach. Only those controllers who are qualified for a position will appear as
nodes at each level, and the depth of the tree is equal to the product of the number
of positions and the total number of time slots determined by the required length of
planning horizon. A valid roster is any path that stretches from the root node to the
lowest level.

The process to select each new node begins with the creation of a list of all
available controllers and is then divided into three distinct phases. Each phase filters
this list, based on the particular requirements at each stage.

The first phase focusses on ensuring that only suitably qualified controllers are
assigned to a given position. The node under consideration has a position parameter
attached to it. The list of controllers is filtered such that all unqualified controllers
are removed and the resultant list is passed to the next phase.

The second phase considers the temporal restrictions on an assignment and
considers the following three rules as follows:

1. No controller can be assigned to more than a single position per time slot.
2. No controller can change position in consecutive time slots.
3. Maximum work time limits must be enforced, to allow for controller rest breaks.

Any controller which will violate any of the above restrictions will be excluded
from the list.

Fig. 8.1 Example of a roster
tree

8 Air Traffic Controllers Planning: A Rostering Problem 241

The final phase sorts the remaining controllers in the list into a specified order. In
this instance, controllers are ranked according to their currency values, with the
least current controller being assigned to the first element of the list, with the
remaining controllers assigned to subsequent elements in decreasing order of
number of day’s currency. The resultant list is then stored with the node for use by
the search algorithm.

The search is controlled by the state of the list of controllers. If after the filtering
process a controller remains in the list, then this controller will be assigned to the
current node and the search will move on to the next node in the tree. If at any point
the list is found to be empty, this signals to the search that no feasible solution can
be obtained with the current set of assignments. The search then backtracks to the
previous node, removes the assigned controller and inserts the next controller in the
list. The search then continues forward until another empty list of controllers is
found. If after the removal of a controller from a node the search finds that the list is
empty, the search immediately backtracks once more, removes the controller from
the earlier node and continues this process until another controller can be assigned
to a node. The pseudocode representation of the algorithm is shown in Fig. 8.2.

Fig. 8.2 Pseudocode for depth first search algorithm

242 R. Conniss

8.3 Results

The algorithm as proposed has been implemented in C# and suit of experiments
designed to validate the algorithm.

The aim of the experiments is as follows:

1. To test if the algorithm can produce feasible rosters which satisfy all the
problem constraints.

2. To determine if a heuristic ordering on the list of controllers can improve
performance.

3. To assess the effect of ordering the nodes in the search by the qualification
requirements for each position.

To examine the effect of different heuristic sorting methods on performance, four
variants of the search process were created. They are defined as follows:

• dfs: The basic version of the search. No ordering is applied to controller’s
currency or to the order of assignment of controllers to positions. This variant is
useful for finding rosters that are at minimum feasible.

• dfsQ: The set of assignments required are ordered by the number of controllers
qualified for each task. The algorithm attempts to first assign tasks with the
fewest number of qualified controllers, for each time slot. The goal here is to try
and force the search to backtrack as early as possible and leave the most flex-
ibility and choice for assignment to positions with the most number of qualified
controllers.

• dfsC: The set of controllers that are qualified for each position are ordered by
descending currency value and presented for assignment in turn. The intention is
for controllers with the most need to become current. In a particular position to
be the first selected for assignment to any given task. Using currency to order
the newly generated nodes is equivalent to expressing a preference to assign
controllers to positions that they have not worked in for some time. It does not
guarantee that the least current controller in a position is always assigned.

• dfsQC: The final variant is a mix of dfsQ and dfsC. The set of assignments are
first ordered as in dfsQ and then controllers are presented in order of currency as
in dfsC.

To compare the behaviour of each variant, a shared set of controller and task data
was produced for each experiment. Initially, 20 controllers each with their own set
of qualifications and 10 positions were considered. The planning horizon was a
single 9 h day shift consisting of 18 time slots of 30 min duration. Currency values
were randomised at the start of each of the four search process and each of the
variants produced a roster subject to its respective heuristic ordering method.
A total of 30 comparisons were produced, with each comparison comprising a
single solution attempt using each of the 4 algorithms. For each new comparison, a
common set of randomised currency values was used as input values for each
algorithm.

8 Air Traffic Controllers Planning: A Rostering Problem 243

Figure 8.3 shows an example roster produced by the dfs variant of the algorithm,
which shows the assignment of controllers (A–Z) to positions for a particular time
slot (Controller H’s work schedule highlighted as an example).

In the real world, it is unlikely that all staff will be available for every shift, so
the algorithm needs to be able to successfully produce rosters with reduced con-
troller numbers. Fewer controllers imply a different distribution of qualifications
and an increase in the difficulty of creating a valid schedule. Figure 8.4a shows the
distribution of qualifications for the set of controllers and indicates some of the
difficulties associated with finding feasible solutions, Fig. 8.4b shows the qualifi-
cations of the controllers used to construct the roster shown in Figs. 8.3 and 8.4c, d
re-formulate the earlier tables to highlight the controllers needing retraining.
Figure 8.4f drawn from Fig. 8.3 indicates where the controllers have gained or
refreshed endorsements.

The experiment was then extended to include a reduced numbers of controllers.
The aim here is to constrain the search as much as possible to check for changes in
solution time and to validate the algorithms ability to deal with more realistic
staffing levels. As before, each set of comparisons attempts to roster a number of
controllers to 10 tasks and ensures that each controller in the roster receives an
adequate number of rest breaks.

The number of controllers considered in each experiment was gradually reduced,
starting with the most qualified controllers, the full titles for the positions are
defined in Table 8.3.

Table 8.1 shows the average time required to generate a solution given in mil-
liseconds for each set of comparisons, for different numbers of controllers. The
basic dfs and dfsC variants have the largest average time to find a solution, although
they are both relatively quick to find a feasible solution.

The dfsQC and dfsQ variants produce rosters in the shortest time. One inter-
esting feature to note is the trend in solution time decreases from 20 to 17 con-
trollers and then spikes at 16.

Posi on/Time Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

APP S S S X X X K K K K Y Y Y Y S S S S

CWL DIR T T T O O O O X X X X K K K K Y Y Y

BKN DIR O O Y Y Y H H H H S S S S O O O O X

CWL DEPS H H H H S S S S O O O O X X X X Z Z

BKH DEPS X X Z Z Z Z Y Y Y T T Z Z Z Z H H H

ADC M M B B B B E E E E H H H H E E E E

GND Y E E E E W W W W Q Q Q Q M M M M T

PAR W W W W Q Q Q Q M M M M B B B B K K

CWL SRA Q Q Q M M M M B B B B E E V V W W W

BKN SRA B K K K K V V Z Z Z W W W W Q Q Q Q

Fig. 8.3 Example roster produced by depth first search

244 R. Conniss

Posi on/Controller B C D E F G H J K L M N O P Q R S T V W X Y Z

APP q q q q q q q q q q q q q q q

CWL DIR q q q q q q q q q q q q q q q q

BKN DIR q q q q q q q q q q q q q q q q q

CWL DEPS q q q q q q q q q q q q q q q q q q

BKH DEPS q q q q q q q q q q q q q q q q q q

ADC q

GND q

PAR q

CWL SRA q

BKN SRA q

Posi on/Controller K S T V X Y O H Z B E M Q W

APP q q q q q q
CWL DIR q q q q q q q
BKN DIR q q q q q q q q
CWL DEPS q q q q q q q q q
BKH DEPS q q q q q q q q q
ADC q q q q q q q q q q q
GND q q q q q q q q q q q q q q
PAR q q q q q q q q q q q q q q
CWL SRA q q q q q q q q q q q q q q
BKN SRA q q q q q q q q q q q q q q

Posi on/
Controller

C D F G J K L N P R S T V X Y O H Z B E M Q W

APP q q q q q q q q q q q q q q q
CWL DIR q q q q q q q q q q q q q q q q
BKN DIR q q q q q q q q q q q q q q q q q
CWL q q q q q q q q q q q q q q q q q q
BKH DEPS q q q q q q q q q q q q q q q q q q
ADC q
GND q
PAR q
CWL SRA q
BKN SRA q

(a)

(b)

(c)

Fig. 8.4 a Qualifications of controllers by position (q indicates qualified). b Controllers used to
construct roster. c Grouping staff by qualifications. d Grouping staff by qualifications and
currency, indicating training needs. e Controllers used to construct roster maintaining currency.
f Endorsements completed or renewed

8 Air Traffic Controllers Planning: A Rostering Problem 245

Posi on/
Controller

C F J P S V Y Q D G K L N R T X O H Z B E M W

APP 3 6 3 4 4 3 6 5 4 3 4 2 6 3 2
CWL DIR 1 6 5 3 3 2 7 5 3 6 2 2 5 6 7 5
BKN DIR 7 1 3 1 1 6 5 3 3 7 6 4 5 6 6 2 7
CWL 7 6 6 2 3 7 6 2 7 7 6 6 7 5 2 7 6 4
BKH DEPS 7 5 1 4 4 6 6 1 3 6 6 5 5 2 5 7 2 3
ADC 6 7 7 6 6 7 5 7 2 4 4 2 6 5 5 6 2 7 5 6
GND 3 3 3 2 3 7 7 1 6 4 2 5 4 3 2 3 5 2 7 6 5 6 3
PAR 3 3 7 6 5 2 1 4 7 6 6 2 3 4 2 7 6 2 2 7 2 4 4
CWL SRA 6 7 6 6 3 7 7 4 7 4 4 7 4 5 2 5 5 3 3 2 6 5 3
BKN SRA 7 3 6 2 4 1 2 5 7 4 3 3 4 3 7 2 4 4 3 3 3 2 6

Training Allocated C S F V J Y P Q
Posi on/Controller C S F V J Y P H Z B E M Q W
APP q q q q q q q
CWL DIR q q q q q q q
BKN DIR q q q q q q q q
CWL DEPS q q q q q q q q q
BKH DEPS q q q q q q q q q
ADC q q q q q q q q q q q
GND q q q q q q q q q q q q q q
PAR q q q q q q q q q q q q q q
CWL SRA q q q q q q q q q q q q q q
BKN SRA q q q q q q q q q q q q q q

S 3 APP; BKN DIR; CWL DEPS
X 5 APP; CWL DIR; BKN DIR; CWL DEPS; BKH DEPS
K 4 APP; CWL DIR; PAR; BKN SRA
Y 5 APP; CWL DIR; BKN DIR; BKH DEPS; GND
T 3 CWL DIR; BKH DEPS; GND
O 4 CWL DIR; BKN DIR; BKN DIR; CWL DEPS
H 4 BKN DIR; CWL DEPS; BKH DEPS; ADC
Z 3 CWL DEPS; BKH DEPS; BKN SRA
M 4 ADC; GND; PAR; CWL SRA
B 4 ADC; PAR; CWL SRA; BKN SRA
E 3 ADC; GND; CWL SRA
W 4 GND; PAR; CWL SRA; BKN SRA
Q 4 GND; PAR; CWL SRA; BKN SRA
V 2 CWL SRA; BKN SRA
Total 52

(d)

(e)

(f)

Fig. 8.4 (continued)

246 R. Conniss

The trend then re-emerges and continues to reduce, which implies some form of
phase change is occurring in the algorithm. One possible explanation for this is that
the search space size is reduced as the number of controllers is lowered. Early on in
this reduction, the change in size offers a performance boost. At some point, the
effect of making the problem more constrained begins to overcome the gains from
the reduction in search space size, to increase the solution times.

Clearly, the heuristic sorting tends to speed up the search. Table 8.2 shows the
average solution quality for each set of comparisons. The solution quality is the sum
of the currencies of controllers for each assignment. Larger values suggest more
high currency controllers have been assigned and therefore will have the oppor-
tunity to reset their currency. This has the effect of preventing all controllers from
going out of currency over time.

These results imply that dfs is the worst performing variant, with dfsQC pro-
ducing better quality rosters. Intuitively, these results make sense. The dfsQ search

Table 8.1 Average time required to generate a solution given in milliseconds

Search/number of
controllers

20 19 18 17 16 15 14 13

dfs 1.13 19,515 9441 5627 17,322 11,050 32,078 187,795

dfsC 2.43 19,495 9447 5632 17,276 11,047 32,074 187,969

dfsQ 1.30 80 35 71 1076 593 884 7527

dfsQC 1.30 80 34 71 1080 593 884 7495

Table 8.2 Average currency value for solution

Controllers 20 19 18 17 16 15 14 13

dfs 1968 1989 1922 1887 1917 1898 1851 1860

dfsC 2408 2375 2364 2303 2069 2147 2122 2019

dfsQ 1968 1490 1922 1887 1917 1898 1851 1860

dfsQC 2408 2375 2364 2303 2069 2147 2122 2019

Table 8.3 Positions within
ATC planning

Position

APP Approach

CWL DIR Cranwell director

BKN DIR Barkston heath director

CWL DEPS Cranwell departures

BKH DEPS Barkston heath departures

ADC Aerodrome control

GND Ground control

PAR Precision approach radar

CWL SRA Cranwell search radar approach

BKN SRA Barkston heath search radar approach

8 Air Traffic Controllers Planning: A Rostering Problem 247

tries to assign the most difficult (in terms of number of qualified controllers) first,
which means the search is more likely to backtrack earlier. Each time the search
backtracks, it removes large parts of the search space and reduces the number of
possible nodes to be evaluated. This should have the effect of decreasing the
solution time.

The dfsC presents the least current controllers for assignment first. This should
lead to an upward pressure on the values of currency for the solution. The result
being that on average, higher total currency values are found as the first solution.
These values are not optimal, but they are larger than both the dfs and dfsQ
algorithms.

Due to the structure of the implementation of the algorithm, it is relatively simple
to combine both the above sorting methods simultaneously which as demonstrated,
leads to an improvement in both speed and quality of generated rosters.

8.4 Discussions and Future Research

This case study has presented a new class of rostering problem, which is focussed
on a real world application and genuine need for a solution method. The ability to
algorithmically generate daily rosters is of great use to operational controllers and
watch supervisors, alike. The above results show that feasible and useful daily
rosters can be created automatically to satisfy ATC needs, in reasonable time.

The next objective is being able to plan over a longer planning horizon. ATC
units tend to fix staff onto rotating shift patterns to simplify this process. At
Cranwell, staff tends to work a week of the same shift type at a time. These shifts
are usually designated as early, day and late shifts and their durations tend to
overlap. Using the current planning system, this eliminates the need for any con-
sideration of shift patterns. However, there remains the problem of deciding how to
allocate controllers to shift patterns to ensure suitable coverage so that normal
operations can occur.

One possible approach would be when a valid roster is generated for a given
planning horizon, it can be used as a template to create a more general version for
future use. Some controllers share equal sets of qualifications and each such group
can be classified as a controller type. Due to the structure of the training program at
most units, there will only ever be a few of these groups and they will be relatively
stable over time. When planning shift staffing, it then becomes possible to set limits
on which type of controller can be assigned to which shift and still produce a valid
roster. If instead of assigning specific controllers to positions, types of controllers
were assigned then this would allow the system to create general rosters and
experiment with different configurations of staff. As the algorithm is deterministic
and can be restarted, there is no reason for the algorithm to ever truly terminate. As
each new type categorised roster is generated it can be stored and used as the basis
of a new roster, by replacing each type with a controller. These general rosters can
also be rated for specific attributes, e.g. the average number of positions worked by

248 R. Conniss

a controller in a day, as a more varied work day can assist in preventing boredom
and dissatisfaction.

Other preferences can be easily added to the system. This is useful for temporary
situations like annual competency checks. Controllers are regularly checked by a
colleague to ensure they are capable to continue controlling in a particular position.
Usually, the scheduling of these checks is complicated by the need to maintain ATC
operations and currency. Using this algorithm, check preferences can be added to a
roster before it is generated thereby removing the difficulty and because the algo-
rithm is deterministic it is guaranteed that if a valid solution exists it will be found.

The proposed extension of the algorithm will prioritise training, by using the
preference ordering rules explained above. Training starts with a ground school
which lays down the basic rules for a position and includes local peculiarities in
procedures and processes. On completion, the student controller is placed into the
live training environment and for the first time begins to work with real aircraft.
Clearly, this is a critical and potentially dangerous situation and as such an expe-
rienced instructor will be given the responsibility of guiding the student through
their training. What this entails is having both the instructor and student work on the
same position until such point as the student is prepared for examination. After a
successful exam, the student becomes endorsed and can now control independently
for that single position. At RAF air traffic control units, controllers are usually only
posted to that unit for 3–5 years. This causes a constant turnover of staff and creates
a training burden that must be satisfied to ensure effective operations. The current
method employed by the RAF is to define suitable time periods in a day that would
afford the best opportunity to train and to then attempt to roster student/instructor
pairs to those positions. This could be achieved by adding exceptions to the
algorithm that attempt to satisfy these requests, but if such rosters are infeasible the
algorithm would default to producing feasible rosters.

Finally, ensuring a fair allocation of tasks to controllers would be an obvious
next step for the research. Initially, this type of investigation was hampered by the
lack of any method to generate feasible rosters. Using fairness as measure of roster
quality is a recent addition to the literature, but one which requires further inves-
tigation. One possible approach would use a multi-phase approach, beginning with
the current algorithm to generate feasible rosters and then use a secondary heuristic
method to maintain a fair task allocation over time.

8 Air Traffic Controllers Planning: A Rostering Problem 249

Chapter 9
Solving Multiple Objective Problems:
Modelling Diet Problems

Val Lowndes and Stuart Berry

The first objective in solving a diet problem is to select the best set of foods, from a
given list, so that the resultant diet will both satisfy a set of nutrient restrictions and
minimise the total cost of the diet; this cost could be expressed in monetary terms,
for example, as the fat content of the diet.

Optimal solutions to diet problems have been obtained through the use of linear
programming techniques [1–3]. However, although this approach produces the
optimal solution to the problem, (the cheapest diet), the resultant diet tends to be
both unpalatable (typically implying the consumption of the same foods every day)
and unworkable (specifying unrealistic quantities of the chosen food types).

Subsequent investigations have, therefore, concentrated on reformulating the
problem to be able to incorporate a consideration of “taste” into the problem. Where
“taste” could be considered to have been incorporated either through the provision
of a range of diets close to the optimal solution, or by the production of a diet which
is close to a “patients” chosen diet, [2], either requirement tending to produce a
multi-objective linear programming problem or a goal programming problem.

The models and approaches described here are based around this “diet con-
struction problem”; this case study shows how models and solution methodologies
have been developed to enable the construction of a satisfactory diet (both eco-
nomical and palatable) and the effect of this development on the total cost of the
implied daily food intake.

V. Lowndes
University of Derby, Kedleston Road, Derby DE22 1GB, UK
e-mail: V.P.Lowndes@derby.ac.uk

S. Berry (&)
College of Engineering and Technology, University of Derby,
Kedleston Road, Derby DE22 1GB, UK
e-mail: s.berry@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_9

251

More acceptable solutions, palatable and varied, were initially obtained using an
“iterative” linear programming approach where additional constraints were added to
produce an acceptable (tasty/palatable) diet (see Table 9.1); this analysis demon-
strates the shortcomings of the linear programming approach, suggesting that the
model needs to have multiple objectives and that these may be satisfied using an
approach based around genetic algorithm allied to fuzzy logic to synthesise an
alternative (solution) methodology.

9.1 Diet Modelling Development

The basic requirement, from this model, is the derivation of an acceptable (healthy)
diet often minimising costs while supplying attractive diets.

The traditional cost-minimising linear programming formulation of the diet
problem aims to select a set, and quantity, of foods, x, which satisfy the dietary
restrictions, typically

Ax� b

while at the same time minimises the value of a cost function where

cost ¼ c x

Note:

1. Matrix A defines the nutrient content of each food; aij indicating the quantity of
nutrient i in one unit of food j;

2. bi defines the restriction on the quantity of nutrient i in the chosen diet, here
assumed to be the minimum intake per day;

3. cj gives the cost of a unit of food j; and
4. xj gives the quantity of food j in the diet.

The formulated problem will have m variables (foods or food types) and n
constraints (nutrient restrictions), where in general m will be much greater than n;
consequently the optimal solution will consist of at most n nonzero variables
(foods).

The deficiencies of a linear programming, cost-minimising approach can be
demonstrated through the models and modelling of George Stigler in 1938 [4],
solution obtained by “Inspection” and then George Dantzig in 1947 [2] solution
obtained through the use of a “computer program solving linear programming
problems”.

252 V. Lowndes and S. Berry

9.2 Evaluating the Stigler Diet

An early attempt to solve this (diet) problem was by Stigler who utilised heuristic
methods in order to find a solution. The original formulation was concerned with
the construction of an economic, and healthy, diet for a 154-lb male from a list of
77 different foods, in order to fulfil the recommended intake of 9 different nutrients
while keeping expense at a minimum but with consideration of taste.

Stigler’s heuristic method used “trial and error, mathematical insight and agi-
lity”, to eliminate 62 of the foods from the original 77 and from the reduced list
calculating the required amounts of each of the remaining 15 foods to arrive at a
“cost-minimising” solution.

The annual cost of this solution was $39.93 (1939 dollars). When corrected for
inflation using the consumer price index, the cost of the diet in 2005 dollars is
$561.43.

The specific combination of foods and quantities is as follows (Fig. 9.1).
The 9 nutrients that Stigler’s diet took into consideration and their respective

recommended daily amounts were as follows (Fig. 9.2).
Seven years after Stigler made these estimates, the availability of computers and

Dantzig’s simplex algorithm made it possible to solve the problem without relying
on heuristic methods. The exact value was determined to be $39.69 (using the

Stigler's 1939 Diet
Food Annual Quantities Annual Cost

Wheat Flour 370 lb. $13.33
Evaporated Milk 57 cans 3.84
Cabbage 111 lb. 4.11
Spinach 23 lb. 1.85
Dried Navy Beans 285 lb. 16.80
Total Annual Cost $39.93

Approximate quantities per day:
Wheat flour 1 lb
Evaporated milk 0.14 can
Cabbage 0.33 lb
Spinach 0.06 lb
Dried Navy Beans 0.8 lb

Fig. 9.1 Stigler solution

Calories 3,000 Calories
Protein 70 grams
Calcium .8 grams
Iron 12 milligrams
Vitamin A 5,000 IU
Thiamine (Vitamin B1) 1.8 milligrams
Riboflavin (Vitamin B2) 2.7 milligrams
Niacin 18 milligrams
Ascorbic Acid (Vitamin C) 75 milligrams

Fig. 9.2 Recommended
daily consumption of vitamin
and nutrients

9 Solving Multiple Objective Problems: Modelling Diet Problems 253

original 1939 data), a saving of less than 1% from the cost of Stigler’s diet, an
outline of Dantzig’s approach and commentary is available at, and his subsequent
(iterative) attempt to incorporate taste into the diet through the addition of extra
constraints.

These diets seem very unacceptable, no variety, consuming the same foods each
day. Notice that these do have a slight resemblance to the diet in a prison camp
suggested in “One Day in the Life of Ivan Denisovich” Solzhenitsyn [5].

The unpalatability and repetitiveness of the resultant diets follows from the fact
that the formulated problem will have m variables (foods or food types) and n
constraints (nutrient restrictions), where in general m will be very much greater than
n;; consequently the optimal solution will consist of at most n nonzero variables
(foods).

While Stiglers solution cost $39.93 a year and Dantzigs linear programming solution cost
$39.69 a year, a dietician working with the same data at the same time produced a more
palatable diet costing $115 a year.

These results highlighted the facts that

• these problems are easily solved by inspection, giving a near-optimal solution,
and

• a palatable diet could be considered to be acceptable if its cost does not exceed 3
times the optimal cost.

• A linear programming approach cannot produce a varied diet; here the optimal
solution would consist of, at most, 9 foods. To increase this number, extra
constraints would have needed to be included, see Table 9.1 for example of this
approach.

These evaluations not only suggest that this base model is easily solvable but
also suggest that the derived solution is unacceptable, in most applications, and the
model needs to be developed to incorporate elements of taste.

A first attempt to overcome this problem, lack of taste, is described in Dantzig
where the model was extended through the iterative addition of extra constraints.

The deficiencies of this (iterative addition of constraints) approach are supported
by the results from an investigation by S. Chung who constructed diets from the
database and problem definition:

There were 76 foods available, and a planner wishes to produce a diet that minimises costs
while containing sufficient calories and vitamin C. An example containing 76 variables
and two constraints.

Progression to a Solution: A series of 8 models/solutions were constructed
during this investigation each model aiming to overcome the deficiencies, in the
solutions, of the earlier models.

Model 1: Linear programming model 76 variables and 2 constraints
Model 2: Integer solution required

254 V. Lowndes and S. Berry

Models 3–8: Adding extra constraints to limit the quantities of specific foods,
model 8 with 11 constraints and an integer solution only requiring 5 foodstuffs.

With costs increasing from

Model 1: cost £0.48 to
Model 8: cost £1.26 cost increased by 250%.

The unsuitability of this approach can be seen from the fact that no reasonable
meals could be constructed from the foods and quantities of foods selected by these
models.

These results are similar, and probably as palatable as those presented by Stigler
and Dantzig. The major problem with these solutions produced from these models
is the lack of variety in the diets produced, the same small set of foods.

The results generated by these models were:
The next sections show how the use of genetic algorithms is allied to fuzzy logic

can produce many varied (reasonably) economical diets.

9.3 Incorporating Patient Choice into Diets Using Genetic
Algorithms and Fuzzy Logic

This case study discusses the ways in which multi-objective or goal programming
problems can be solved using a combination of genetic algorithms and fuzzy logic.

To illustrate this approach, it simulates the ways in which patients, or dieticians,
select the food to be included within a diet with the aim of producing varied
palatable diets.

Table 9.1 Progressive diets obtained through the addition of extra constraints

Model 1 2 3 4 5 6 7 8

Variables 76 76 76 76 76 76 76 76

Constraints 2 2 3 3 9 9 10 11

Variables Integers Integers Integers Integers

Foods and units of foods chosen from each model

Price £0.48 £0.52 £0.76 £0.79 £0.74 £0.95 £1.11 £1.26

Bread 18.32 17 5 5 14.1 10 5 5

Cabbage 1.22 1 1.06 1 1 1

Banana 1 3.88 5 2

Almonds 1.45 1 0.11 1 1

Cereal 0.001

Carrots 0.48 1 1 1

Kidney beans 1.82 1 3

Milk 0.78 1 1 1

Chickpeas 2

9 Solving Multiple Objective Problems: Modelling Diet Problems 255

• The first part validates the procedure by considering the ways in which genetic
algorithms together with linear programming can be used to incorporate taste
into the construction of diets to satisfy a patient’s nutritional needs.

• The second part discusses how an approach using genetic algorithms can be
used when there is a nonlinear objective, typically optimising taste per cost.

• The final part indicates how fuzzy logic can be allied with the genetic algorithm
approach illustrated in the first part to provide a better mechanism to enable the
production of many efficient diets. This approach enables the quick solution of
nonlinear multi-goal programming problems.

9.3.1 Introduction

Here, genetic algorithms, allied to the traditional linear programming approach, can
provide an alternative approach to the incorporation of taste into diet problems. The
effectiveness of the genetic algorithm approach is demonstrated firstly through its
application to the basic cost-minimising formulation and then to the “taste” for-
mulation [2].

• Firstly, genetic algorithms are shown to provide a range of solutions close to the
optimal solution (diet), thus satisfying the initial criterion defining the incor-
poration of taste into the solution.

• Secondly, how nonlinear objectives can be represented using GAs.
• Finally, they will show how fuzzy logic can be allied with genetic algorithms to

provide an alternative approach, solving the resultant multiple objective goal
programming problem.

These approaches act by simulating the behaviour of the patients, or dieticians,
in continually refining the content of a diet until the resultant diet satisfies all the
constraints and is acceptable to the dietician, or patient.

9.3.2 Genetic Algorithm Implementation

Genetic algorithms can be employed to obtain a set of near-optimal solutions to a
“diet-type” problem, thus incorporating taste into the provision of many diets.

The structure of the LP model of the problem, i.e., many variables, few con-
straints, and the consequent limited number of foods in the optimal solution sug-
gested that the use of a genetic algorithm approach to the problem might prove to be
a viable alternative to the normal linear programming approach. In this approach,
each GA string represents a series of foods which might be included with the diet.

For example, the GA string ½3; 5; . . .; 78� contains mL values. Each value cor-
responds to a food to be considered for inclusion in the diet; here foods 3, 5, etc.

256 V. Lowndes and S. Berry

A set of “mL variable” sub-problems are chosen because it is known that the
optimal solution will consist of no more than n nonzero values, and so mL � n.
The “included” foods are chosen randomly in the initial set of strings.

The kth sub-problem, n constraints, mL variables at the first iteration can be
represented by

Minimise cost Ck1 ¼ ck xk1
subject to Ak xk1 � b

where xk1 indicates the quantity of each food in diet k at iteration 1.
The optimal solutions to each of these sub-problems are obtained using linear

programming techniques, giving an optimal set of foods and quantities and a cost
for the diet, Ck1.

These costs are used to define the fitness function within the genetic algorithm
and are used to generate the next set of sub-problems xi2.

• Tournament selection is used to select the GA strings from the first iteration.
• Crossover is performed as described below, and mutation is implemented by

replacing a food from the string with a randomly chosen other food.

For example, given the two strings and the indicated crossover point,

3; 5; 11; 35; 43; 89
9; 17; 24; 37; 77; 99

gives the new strings

3; 5; 11; 37; 77; 99
9; 17; 24; 35; 43; 89

This process is repeated, that is using the xi,t (iteration t results) to generate the
xi; tþ 1ð Þ (the strings for iteration t + 1), continuing until the solution set converges
on a solution or until a set number of iterations have been completed.

This approach was employed to analyse a 280-food 5-nutrient constraint prob-
lem. The results showed that this (GA) process converges on a solution close to the
optimal solution. Thus, a set of near-optimal solutions are obtained, producing a set
of alternative near-optimal diets, hence incorporating taste through the provision of
a set of alternative diets.

9.3.3 Results

The sample set of data, 280 foods and 5 nutrient constraints, was used to
evaluate this approach. The nutrient requirements to provide an acceptable diet
were obtained from “McCanse and Widdowson’s The Composition of Food’s”,

9 Solving Multiple Objective Problems: Modelling Diet Problems 257

and the food costs/units were generated randomly to produce a large set of trial
problems.

In each case, the GA procedure performed 10 iterations, and every diet with a
cost less than twice that of the optimal cost (obtained from the Linear Programming
formulation) was recorded (a factor of 2 was chosen, so that the results could be
consistent with the cost differential reported from the investigation into the Stigler
diet); the number of such diets is given in Table 9.2.

On average, 48 alternative diets were generated using this approach. Thus, the
provision of a variety of solutions close to the optimal solution validates the use of
genetic algorithms as a technique to introduce taste (by variety) into the diet
problem.

9.4 Taste Formulation

This section investigates the application of the genetic algorithm approach to the
alternative “taste formulation” for a diet problem, and this can be compared with the
approach adopted by Fletcher [2].

This approach starts with an existing diet, many foods, and investigates the
necessary changes to this diet, so that a feasible diet, obeying the nutrient restric-
tions, could be generated. The original diet can be considered to represent the taste
of the “patient”, and the result of the analysis produces a set of diets as close as
possible to this original diet.

9.4.1 GA Problem Formulation and Notation

In addition to the defined set of nutrient constraints

Ax� b
and cost function cost ¼ c x;

there now exists a patient-chosen diet, given by the vector of foods xc, where xci
indicates the quantity of food i in the chosen diet.

Table 9.2 Number of alternative diets

Specified problem Optimal solution (0 cost) Number of solutions with in 2 � 0 cost

A 116 49

B 90 41

C 108 57

D 109 46

258 V. Lowndes and S. Berry

This diet can be assumed to be infeasible; in that the nutrient content does not satisfy all of
the constraints.

If t is the vector defining the quantity of nutrients in this diet from the
pre-selected foods ðt ¼ AxcÞ, then the problem is now reformulated as:

Choose y to satisfy the constraints

A y� b� t

and minimise the cost function

cost ¼ c y:

The final diet will be given by

xc þ y

with a cost given by

cðxc þ yÞ

The genetic algorithm approach described above (see Sect. 9.3.2) was applied to
this problem, producing a range of diets close to the chosen diet.

9.4.2 Results

The same data set was used to evaluate each approach and to simulate the effect of
allowing the customer to choose “favourite foods” 4 foods were randomly chosen
to be included in the diet.

The genetic algorithm procedure employed in Sect. 9.3 was then used to
determine “second” set of foods, such that these together with the pre-chosen foods
would produce a diet that would satisfy the nutrient requirements as cheaply as
possible. Because of the higher cost of the resultant diet (compared with those
obtained in Sect. 9.2), only those diets with a cost less than 1:5� optimal costð Þ
were recorded. On average, 48 alternative diets were generated using this approach.

Table 9.3 displays a typical set of results; it must be noted, however, that the
initial customer selection could lead to an unsolvable problem; for example, the
total fat content from the chosen foods may be greater than the maximum allowed
quantity.

These results show that this approach, using genetic algorithms but allowing the
customer to choose a number of foods, produces more varied but more expensive

9 Solving Multiple Objective Problems: Modelling Diet Problems 259

diets than those produced in Sect. 9.2. Here, a diet will contain 4 preferred foods
and 5 others, whereas in Sect. 9.2 a solution contained up to 5 foods (not neces-
sarily favoured by the customer). A sample solution and the associated diet are
given in Table 9.3.

9.5 Nonlinear Costs Can Be Employed to Incorporate
Multiple Objectives

The problem

Ax� b nutrient and cost constraints
Cost ¼ cx
Taste ¼ tx
MaximiseðTaste=CostÞ

Here, the genetic algorithm string has the form

x ¼ ½1; 0; 0; 0; 1; 2; 0; 0; 1; . . .; 0�

indicating that this diet contains

1 unit of foods 1 and 5
2 units of foods 6 and so on

Evaluation of solution given in x:

If Ax� b then Taste=Cost ¼ tx=cx a valid diet
otherwise Ax\b then Taste=Cost ¼ 0 an invalid diet

Then proceed by crossover and mutation to generate a new population with the
aim of maximising the objective function.

Table 9.3 Number of alternative diets Ga formulation

Specified problem Optimal solution (0 cost) Number of solutions with in 2 � 0 cost

E 222 45

F 212 37

G 184 24

H 195 49

260 V. Lowndes and S. Berry

9.6 Diet Problem Solution Using a Fuzzy Approach

The objective in this approach is still the selection of a set of quantities of foods, x,
which satisfy the dietary restrictions

Ax� b;

and at the same time minimise the value of a cost function where

cost ¼ c x:

However, here the solution makes use of standard sized portions (for example,
200 g portion of minced beef) and starts by generating a set of “genetic algorithm
strings” each representing a possible solution. Each string contains a randomly
chosen set of food portions to be included within the diet, thus xi = 0, or 1, or 2,
or…. representing 0, or 1, or 2 portions of food xi.

This procedure can be implemented on either the basic model (Sect. 9.2) or the
patient choice model (Sect. 9.3).

The nutrient content, for each nutrient, Vi, and cost C of each diet is then
calculated

for all i

Vi ¼
X

j

Aijxj

and

C ¼
X

j

cijxj

Nutritional value and cost have been identified as linguistic variables.
The nutritional constraints and desirable cost are now represented by simple

trapezoidal membership functions, Fig. 9.3. Here, for example, if the fat content of
the diet is between a and c units, then this “diet” would be given a value of 1 (on
target) with respect to this constraint.

Fig. 9.3 Fuzzy membership for fat and protein and costs

9 Solving Multiple Objective Problems: Modelling Diet Problems 261

The fat and protein constraints were obtained from “McCanse and Widdowson’s
The Composition of Food’s”, and the cost target from the optimal solution to the
linear programming problem.

Here, “point a” is at the cost of the minimum cost diet, COPT, “point b” at k1COPT

and ‘point c’ at k2COPT.
Membership of cost, similar statements can be made for protein and fat, is given

by

l xð Þ ¼ 0 x\COPT

l xð Þ ¼ 1 COPT � x� k1COPT

l xð Þ ¼ 1� x�k1COPTð Þ
k2COPT�k1COPTð Þ k1COPT � x� k2COPT

l xð Þ ¼ 0 x� k2COPT

The value of each diet is then determined by combining the fuzzy membership
values for Vi and C using the fuzzy operation of intersection.

N :¼ T
j¼1;J

Vj : lNðxÞ ¼ inf
j¼1;J

lVj
ðxÞ

for all x2X

The value N now represents the fitness of each string within the current popu-
lation of the genetic algorithm. This value is being used as the fitness function
within the genetic algorithm, and new strings are being generated using crossover
and mutation. After a number of iterations, many alternative good diets were
produced.

9.6.1 Example

A problem containing 200 food types and 6 constraints was solved using 40 genetic
algorithm strings. The initial string population was chosen so that on average 5% of
the food stock was included within each string as a single portion (starting the
process with a set of infeasible diets).

The genetic algorithm procedure outlined in 9.3 was then employed until 10
efficient diets had been obtained, where an efficient diet would have a fuzzy value
of 1.

9.6.2 Conclusion

It can be seen, from the results given in Sect. 9.3, that the use of genetic algorithms
does allow the production of a range of nearly optimal diets. Thus, this approach

262 V. Lowndes and S. Berry

can be considered to provide a viable solution to the problem of constructing a set
of alternative diets given a single set of constraints.

The successful results are due to the implicit parallelism within the genetic
algorithm approach that allows an efficient search through the feasible solution
space. This approach has the effect of investigating many solution paths simulta-
neously, thus demonstrating its ability to produce a range of acceptable
near-optimal solutions and hence incorporating taste into diet problems.

The use of fuzzy logic has been shown to produce an equally good variety of
solutions without the need for any integer programming packages.

References

1. Dantzig GB (1990) The diet problem: interfaces. Pract Math Program 20(4):43–47, Jul–Aug
2. Fletcher LR (1994) LP techniques for the construction of palatable human diets. J Oper Res

Soc 68:489–496
3. Smith VE (1964) Linear programming models for determination of palatable diet. J Farm Econ

41(2) 272–283
4. Stigler G (1945) Cost of subsistence. J Farm Econ 25:303–314
5. Solzhenitsyn A (1962) One day in the life of Ivan Denisovich

9 Solving Multiple Objective Problems: Modelling Diet Problems 263

Chapter 10
Fuzzy Scheduling Applied to Small
Manufacturing Firms

Val Lowndes

10.1 Scheduling and Small Manufacturing Firms

A scheduling problem can be considered to be an exercise in finding an appropriate
timetable for the processing of jobs, by machines, such that some performance
measure achieves its optimal value. Within this definition, it can be seen that there
are two aspects to be considered concurrently, the satisfaction of constraints (e.g.
availability of resources) and the optimisation of objectives (e.g. flow-times).

In general, such problems are known to be NP hard and probably as a conse-
quence of this, scheduling has been an active area of research for many years.

Pinedo lists a number of important requirements of real manufacturing that are
not normally met by Operational Research-based models. An example of this is the
existence of multiple objectives, i.e. there is not a single objective but multiple
objectives to be optimised.

Illustrative example, in a job shop, with random job arrivals, where all jobs are
processed on a single machine, the scheduler may need to consider the following
goals:

Satisfy all due dates, however, certain jobs are for particularly important customers and it is
a major priority to ensure that these jobs are completed on time.

These observations are particularly relevant when considering small manufac-
turing firms. These firms experience the same problems as larger firms (or even
worse problems) without the same resources to solve the problem (i.e. create an
effective schedule) Berry [1], typically within a small firm only the owner-manager
is allowed to set up (and change) a production schedule.

V. Lowndes (&)
University of Derby, Kedleston Road, Derby DE22 1GB, UK
e-mail: V.P.Lowndes@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_10

265

10.2 Small Manufacturing Firms

The definition employed here has been synthesised from Berry [1] which estab-
lished a model for a small manufacturing firm as follows:

• The manager is dominant in a small firm imposing the planning and control
system onto the firm,

• Information about the state of the production system and demand is low in small
firms,

• Small firms do not forecast (but respond to demand),
• There are only a few product types in a small firm,
• There are only a few production stages in a small firm, typically 3 with one

dominant stage and
• Effective planning can be achieved by scheduling the dominant stage in the

production system.

These factors indicate that a small manufacturing firm needs a mechanism by
which it can improve its performance through more effective scheduling. The next
section shows how fuzzy logic can be used to schedule production in a typical small
manufacturing firm.

10.3 Fuzzy Modelling

10.3.1 Fuzzification

The first stage in producing a model is to identify those linguistic variables to be
included. It was decided that due date and customer priority were the most sig-
nificant factors, with processing time being of lesser importance for the small firm
model presented above (Sect. 10.3.1).

• Due date Z
• Customer Priority X
• Processing Time

10.3.2 Rule Evaluation

For example:

IF customer priority is BadANDdue� date is Close THEN Reject:

IF customer priority is LowANDdue� date is Close THEN Sequence quite high:

IF customer priority is HighANDdue� date is Distant THEN Sequence quite low:

266 V. Lowndes

10.3.3 Rule Matrix (R)

If more than one job has the same priority at the head of the sequence, then a job
with ‘shortest’ processing time will be selected for processing (Table 10.1).

10.3.4 Sequencing Priority (P)

The general model can be described as a composition or relational product
(Table 10.2).

Suppose T ¼ S � R, where
R 2 FðCLOSE� CUST� PRIÞ; S 2 FðCUST� PRI� DISTANTÞ:
8ðCLOSE;DISTANTÞ 2 CLOSE� DISTANT

lTðCLOSE;DISTANTÞ ¼ sup
z2Z

minflRðCLOSE� CUST� PRIÞ;

lSðCUST� PRI� DISTANTÞg ð10:1Þ

Union

X ¼ A[B , 8x 2 U

½lXðxÞ ¼ lAðxÞ _ lBðxÞ� ¼ 8x 2 U½lXðxÞ ¼ maxflAðxÞ; lBðxÞ�
ð10:2Þ

Table 10.1 Summary of sequencing priorities

Due date
customer priority

Close Distant

B bad Reject Reject

L low Sequence quite high Sequence very low

M medium Sequence high Sequence low

H high Sequence very high Sequence quite low

VI very important Sequence extremely high Sequence medium

Table 10.2 Ordering of
sequence priorities

Sequence

Extremely high EH

Very high VH

High H

Quite high QH

Medium M

Quite low QL

Low L

Very low VL

Reject R

10 Fuzzy Scheduling Applied to Small Manufacturing Firms 267

The fuzzy relation SP representing the sequencing priorities, is derived from an
application of Eq. (10.1)

lSPðCLOSE;DISTANTÞ ¼ sup minflRðCLOSE� CUST � PRIÞ;
lSðCUST � PRI� DISTANTÞg ð10:3Þ

10.4 Application

An example, based around a typical small manufacturing firm, will illustrate how
the rule base enables a job to improve its sequencing priority as the due date gets
closer. Note, however, that a job for a Bad customer will be rejected and not
included in the sequencing schedule. The following example will illustrate the
mechanics of the fuzzy algorithm.

There are six jobs waiting to be processed, one of which is for a customer
considered to be of ‘medium’ importance and two for ‘very important’ customers.
The example has been deliberately chosen to create problems for the scheduler in
the light of conflicting priorities, i.e. of fulfilling all promised due dates whilst
ensuring the satisfaction of the most significant customers.

The due dates range from 0 days for Job 1 (medium) to 28 days for Job 4 (very
important).

The fuzzy values for ‘customer priority’, ‘close’ and ‘distant’ have been derived
according to the definitions given in Appendix A4.

The sequencing priority is then determined by applying Eq. (10.3) in the form:

lSP c; dð Þ ¼ minflc; lcpg _minflcp; ldg;

according to the rule matrix in Table 10.1.

Step 1 Consider Job 1:
Comparing the fuzzy value of ‘customer priority’ with ‘close’ and
‘distant’—

minflc; lcpÞ _minflcp; ldg

lcp = 0.5 (customer priority is medium)
lc = 1.0 (membership of ‘close’)
ld = 0.0 (membership of ‘distant’)

(min{1.0, 0.5} = 0.5) _ (min{0.5, 0.0} = 0.0)
max {0.5, 0.0} = 0.5 ‘close’ (Application of equation 10.2)

Thus: Medium and close => Sequence high; lSP (according to Tables 10.1, 10.3).

268 V. Lowndes

The same procedure is followed for the remaining jobs resulting in the
sequencing priority:

\3; 1; 4; 5; 2; 6[

Job 3 (the head of the sequence) is processed first with a duration of 8 days.
Note: This schedule can be compared with the “earliest due date” schedule:

\1; 3; 2; 6; 5; 4[

Step 2 Implemented after Job 3 has been completed
This will repeat all the tasks in Step 1, for the remaining five jobs
(Table 10.4).
The (now) current sequencing priority is now given by: \1; 2; 6; 4; 5[
thus, Job 1 is processed next—duration 5 days.

Step 3 Implemented after Job 1 has been completed (Table 10.5).
The sequencing priority for the current jobs is now: \2; 6; 4; 5[
This process continued until all jobs in the list of waiting jobs have been
scheduled. The dynamic nature of this process can be demonstrated by
considering the sequence priority each time the machine becomes
available:

Table 10.3 Test example—six jobs waiting to be processed

Job 1 2 3 4 5 6

Due date 0 10 6 28 26 14

Process time 5 1 8 6 2 4

Customer priority M L V.I V.I H L

Fuzzy customer priority 0.5 0.2 1.0 1.0 0.75 0.2

Fuzzy due date close 1.0 0.0 0.4 0.0 0.0 0.0

Fuzzy due date distance 0.0 0.21 0.0 1.0 1.0 0.5

Max–min Close Dist Close Dist Dist Dist

Sequence H VL EH M QL VL

Table 10.4 Test example—five jobs in queue

Job 1 2 4 5 6

Due date −8 2 20 18 6

Process time 5 1 6 2 4

Customer priority M L V. I H L

Fuzzy customer priority 0.5 0.2 1.0 0.75 0.2

Fuzzy due date close 1.0 0.8 0.0 0.0 0.4

Fuzzy due date distant 0.0 0.0 0.93 0.79 0.0

Max–min Close Close Distant Distant Close

Sequence H QH M QL QL

10 Fuzzy Scheduling Applied to Small Manufacturing Firms 269

Table 10.5 Test example—four jobs in queue

Job 2 4 5 6

Due date −3 15 13 1

Process time 1 6 2 4

Customer priority Low V. Imp High Low

Fuzzy customer priority 0.2 1.0 0.75 0.2

Fuzzy due date close 1.0 0.0 0.0 0.9

Fuzzy due date distant 0.0 0.57 0.43 0.0

Max–min Close Distant Distant Close

Sequence Quite high Medium Quite low Quite high

Table 10.6 Comparing
results fuzzy and EDD
schedules

Schedule Delay very important Total all jobs delay

Fuzzy 2 23

EDD 7 20

Step 1 \3; 1; 4; 5; 2; 6[Job 3 processed
Step 2 \x; 1; 2; 6; 4; 5[Job 1 processed
Step 3 \x; x; 2; 6; 4; 5[Job 2 processed
Step 4 \x; x; x; 6; 4; 5[Job 6 processed
Step 5 \x; x; x; 6; 4; 5[Job 5 processed

giving the full implemented job sequence \3; 1; 2; 6; 5; 4[
for comparison, the earliest due date (EDD) schedule would have been
given by

\1; 3; 2; 6; 5; 4[

Notice that the status of Job 4 is continually updated, this demonstrates the
dynamic nature of the scheduling system. The fuzzy schedule can now be
compared with the alternative EDD schedule where it can be seen that the
Fuzzy schedule minimises the delay to very important customers (as
required in small manufacturing firms) but not the total delay (Table 10.6).
This example only considers a static case (no new orders) to illustrate the
methodology; however, in the full dynamic simulation when new orders
are received they are immediately added to the list of waiting jobs and
assigned places in the sequence of jobs at that time when the next job to
be processed is chosen.

10.5 Computational Efficiency

An exhaustive search methodology in this example would investigate 6! possible
production schedules; here, 35 calculations to determine the fuzzy values for each
job are carried out. In an n job problem, the comparative values are n! and n(n + 1).

270 V. Lowndes

10.6 Dynamic Scheduling

The performance of the fuzzy scheduling approach in a small manufacturing firm
was simulated (15 replications) to evaluate its suitability in a dynamic environment
where jobs arrive randomly. The demand level was chosen to be close to the
production capacity so that this methodology could be tested on a commonly
occurring problem in SMF’s, when growth in demand occurs and the planning
system comes under more stress.

Table 10.7 contains the summarised results from all the simulations as per-
centages of jobs completed.

This table displays the information:

• Number of very important late jobs [nT]
• Maximum lateness of a very important job [Tmax]
• Number of very late jobs (>28 days) [VTJ]
• Number of very important jobs late (>7 days) [VIJ]

The fuzzy scheduling system is performing better with all these criteria, in
particular acting to satisfy the demands of the very important customers.

10.7 Conclusions

Fuzzy set theory allows the complexity of real-life issues to be included within the
confines and rigours of the mathematical model. In this paper, a theoretical model
has been presented which demonstrates how fuzzy decision-making can support the
dynamic scheduling process, enabling the conflicting priorities of multi-objectives
to be managed effectively in polynomial time providing a mechanism for efficient
planning, thus supporting the role of the manager, in a small manufacturing firm by
acting as an automated scheduler.

Reference

1. Berry S (1999) Production planning in small manufacturing firms small manufacturing firms

Table 10.7 Simulation
results summary

Planning
system

nT Tmax VTJ VIJ

Fuzzy logic 4 10.1 5 1.6

EDD 5.5 22 6 4.7

10 Fuzzy Scheduling Applied to Small Manufacturing Firms 271

Chapter 11
The Design and Optimisation of Surround
Sound Decoders Using Heuristic Methods

Bruce Wiggins, Stuart Berry and Val Lowndes

11.1 Introduction

Since the introduction of the DVD (both video and audio) surround sound has
become an affordable luxury, surround sound mixing and reproduction equipment
is also in widespread use. The standard speaker configuration, as specified by the
ITU, is a five speaker layout, as shown in Fig. 11.1 However, this is likely to be
expanded upon in the near future, and other, larger, venues are likely to have more
speakers in order to adequately cover a larger listening area.

Due to the likelihood of ever changing reproduction layouts, a more portable
approach should be used in the creation of multichannel material, and such a system
has been available since the 1960s [1].

Ambisonic systems are based on a spherical decomposition of the sound field to
a set order (typically 1st or 2nd order Malham [2], and Leese [3]). The main benefit
of the Ambisonic system is that it is a hierarchical system, i.e. once the sound field
is encoded in this way (into four channels for 1st order and 9 channels for 2nd
order), it is the decoder that decides how the sound field is reconstructed using the
Ambisonic decoding equations [4]. The Ambisonic system was largely researched
and developed by Gerzon, and in 1992, papers were published proposing a method
for the optimisation of Ambisonic decoders for irregular speaker arrays [5]. This
was necessary because the original decoding equations were difficult to solve for
irregular speaker arrays in the conventional way (inverting a matrix of spherical
harmonic coefficients).

B. Wiggins � S. Berry (&)
College of Engineering and Technology, University of Derby,
Kedleston Road, DE22 1GB Derby, UK
e-mail: s.berry@derby.ac.uk

V. Lowndes
University of Derby, Kedleston Road, DE22 1GB Derby, UK
e-mail: V.P.Lowndes@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_11

273

11.2 Irregular Ambisonic Decoding

In order to quantify decoder designs, Gerzon chose two main criteria for designing
and evaluating multi-speaker surround sound systems in terms of their localisation
performance. The two criteria represent the energy and velocity vector components
of the sound field [6]. The vector lengths represent a measure of the ‘quality’ of
localisation, with the vector angle representing the direction that the sound is
perceived to originate from. A vector length of one indicates a good localisation
effect. These are evaluated using the equations shown in Eq. 11.1.

For regular speaker arrays, designing an optimised Ambisonics decoder is
simply a case of using one virtual microphone response for low frequencies and a
slightly different virtual microphone response for the mid- and high frequencies by
the use of shelving filters [7] as shown in Figs. 11.2 and 11.3.

600

1400

800 800

600

1400

800 800

Fig. 11.1 Recommended
loudspeaker layout, as
specified by the ITU

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Virtual microphone responses for a 1st order, eight speaker rig

HF Polar Response
LF Polar Response

Fig. 11.2 Virtual
microphone polar diagrams
that satisfy Eq. 11.1 for a 1st
order, eight speaker rig

274 B. Wiggins et al.

As long as the virtual microphone patterns are the same for each speaker, the
estimated localisation angle is always the same as the encoded source angle, with
only the localisation quality (length of the vector) affected by changing the polar
patterns.

Velocity and energy vector equations

P ¼ Pn
i¼1

gi E ¼ Pn
i¼1

g2i

Vx ¼ Pn
i¼0

gi cos hið Þ=P Ex ¼ Pn
i¼0

g2i cos hið Þ=E

Vy ¼ Pn
i¼0

gi sin hið Þ=P Ey ¼ Pn
i¼0

g2i sin hið Þ=E

ð11:1Þ

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

HF Vector
Length

LF Vector
Length

Speaker

Ambisonic Y Axis

A
m

bi
so

ni
c

X
Ax

is

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1 HF Vector
Length

LF Vector
Length

Speaker

Ambisonic Y Axis

A
m

bi
so

ni
c

X
Ax

is

(a)

(b)

Fig. 11.3 a Velocity and
energy localisation vectors.
Magnitude plotted over 360°
and angle plotted at five
discrete values. Inner circle
represents energy vector, and
outer circle represents
velocity vector. Using virtual
cardioids. b Velocity and
energy localisation vectors.
Magnitude plotted over 360°
and angle plotted at five
discrete values. Inner circle
represents energy vector, and
outer circle represents
velocity vector. Using virtual
patterns from Fig. 11.2

11 The Design and Optimisation of Surround Sound 275

where

gi represents the gain of a speaker (assumed real for simplicity)
n is the number of speakers
hi is the angular position of the ith speaker

When irregular speaker arrays are used, the vector magnitudes, reproduction
angles and overall volume of the decoded sound field all require optimisation
simultaneously, otherwise excessive decoding artefacts will be observed.

For example, consider the non-uniform speaker configuration of the ITU five
speaker layout. If all speakers are fed by virtual microphones oriented in the
direction of the loudspeakers, and with the same, cardioid, polar pattern, then a
sound encoded to the front of a listener will be louder than a sound emanating from
the rear. Also, the perceived direction of the reproduced sound will be distorted, as
shown in Fig. 11.4.

These decoding artefacts are not a problem when the audio is produced for a
fixed set-up (for example, amplitude panned 5.1) since the material is mixed to
sound correct on the chosen speaker layout. This is in contrast to a truly hierarchical
system in which, ideally, it would be possible to reproduce the audio material
accurately regardless of the configuration of the output system. Such a hierarchical
system requires corrections to be made at the decoding stage where the speaker
layout is known.

Due to the added complexity of the speaker arrays response to an
Ambisonic-type decode (see the reproduction angle discrepancies and vector
lengths in Fig. 11.4), Gerzon and Barton [5] proposed that two separate decoders be
used, one for low frequency (<*700 Hz) and another for high frequencies
(>*700 Hz).

This can be achieved using a simple crossover network (preferably using linear
phase, FIR, filters) feeding low and high passed versions of the Ambisonic,

Speakers
Velocity
Vector

Energy
Vector

0,12.25,22.5,
45,90 & 135
degrees
reproduced
angles

Fig. 11.4 Energy and
velocity vector response of an
ITU 5 speaker system, using
virtual cardioids

276 B. Wiggins et al.

B-format, signals to the two decoders where totally separate decoding can be
achieved, not just a microphone polar pattern adjustment as in a regular speaker
array decode.

11.3 Decoder System

1st order Ambisonics is based on four different signals, as shown in Fig. 11.5, an
omnidirectional pressure signal (W), a front–back figure of eight (X), a left–right
figure of eight (Y) and an up–down figure of eight (Z).

The 5 speaker system shown in Fig. 11.1 is a horizontal only system, and hence,
only three of the four available B-format signals are required at the input of the
decoder (W, X and Y). Also, the speaker array in Fig. 11.1 is left/right symmetric
such that the decoder coefficients are arranged to work in mid- and side pairs (i.e.
sum and difference). The Ambisonic encoding equations are given in Eq. 11.2.

The incorporation of a ‘frontal dominance’ control in the decoding system can
also be considered; the definition for this is given in Eq. 11.3. Although this form of
the frontal dominance equation exhibits a nonlinear response to the dominance
parameter, it is used in this investigation to keep compatibility with Gerzon’s
previous paper on this subject [5].

Ambisonic encoding coefficients.

W ¼ 1=
ffiffiffi
2

p

X ¼ cosðhÞ
Y ¼ sinðhÞ

ð11:2Þ

where h is the encoded angle, taken anticlockwise from straight ahead.

Fig. 11.5 Polar patterns of
the four B-format signals used
in 1st order Ambisonics. Red
shows an in-phase response,
and blue shows an
out-of-phase response

11 The Design and Optimisation of Surround Sound 277

Forward dominance equation.

W 0 ¼ 0:5 kþ k�1� �
W þ 8�

1
2 k� k�1� �

X

X 0 ¼ 0:5 kþ k�1� �
X þ 2�

1
2 k� k�1� �

W

Y 0 ¼ Y

ð11:3Þ

where k is the forward dominance parameter (2 > k > 1 for front and 1 > k > 0 for
rear dominance).

The frontal dominance terms are then substituted into the decoding equations to
give a numerical value for each speaker output. Equation 11.4 shows the substi-
tutions used for a 5 channel system.

Decoding equations for each of the five speakers.

CF ¼ ðkWC �W 0Þ þ ðkXC � X 0Þ
LF ¼ ðkWF �W 0Þ þ ðkXF � X 0Þ þ kYF � Y 0ð Þ
RF ¼ ðkWF �W 0Þ þ ðkXF � X 0Þ � kYF � Y 0ð Þ
LB ¼ ðkWB �W 0Þ þ ðkXB � X 0Þ þ kYB � Y 0ð Þ
RB ¼ ðkWB �W 0Þ þ ðkXB � X 0Þ � kYB � Y 0ð Þ

ð11:4Þ

where k denotes a decoding coefficient.
The k and ‘k’ values are chosen so as to optimise the decoded output, with k

having possible values between 0 and 2, and ‘k’ values having a nominal range
between 0 and 1.

Equations used to measure the performance of a decoder design.

Vx ¼
XN
i¼1

gi � cosðSPosiÞ=PV

Vy ¼
XN
i¼1

gi � sinðSPosiÞ=PV

Ex ¼
XN
i¼1

g2i � cosðSPosiÞ
�
PE

Ey ¼
XN
i¼1

g2i � sinðSPosiÞ
�
PE

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
x þE2

y

q
hE ¼ tan�1 Ey

�
Ex

� �
RV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
x þV2

y

q
hV ¼ tan�1 Vy

�
Vx

� �
PV ¼

Xn
i¼1

gi PE ¼
Xn
i¼1

g2i

ð11:5Þ

278 B. Wiggins et al.

where
gi = Gain of the ith speaker
SPosi = Angular position of the Ith speaker.
In order to optimise the solution, the equations used to measure the performance

of the design are given in Eq. 11.5. The conditions that need to be met for the
decoder to be deemed ‘Ambisonic’ are:

• Radius of the localisation vector lengths (RV and RE) should be as close to 1 as
possible for all values of h.

• h ¼ hV ¼ hE for all values of h (where h is the encoded source angle).
• PV ¼ PE and must be constant for all values of h.

In practice, the conditions defined in Eq. 11.5 are difficult to solve because the
best result must be found over the whole 360° of encoded source positions. It is
known that these equations are laborious to solve for five speaker systems Gerzon
[5]. Furthermore, an increase in the number of speakers will result in a dispro-
portionate increase in the complexity of the decoding optimisation problem. Also,
more than one valid solution for each decoder design exists at low and high fre-
quencies. This means that a group of solutions need to be found, followed by
subjective listening tests in order to find the best performing coefficient set.

Due to the laborious and time-consuming nature of decoder optimisation, a
method is needed that can automate this process so that the onus in designing
Ambisonic decoders is shifted from the calculating of the decoding coefficients to
listening to the different decoders, so the optimal system can be decided upon.

11.4 The Heuristic Search Methods

The word heuristic can be used to mean ‘using trial and error’, and mathematical
searches using this technique can lead to the solutions of complex numerical
problems. Heuristic search methods work on the simple principle that any result that
is found (using, say, random starting values) can be tested on its ‘correctness’, with
this then being used to decide on values to try next following some rule depending
on the type of search method used.

As a result of the fact that each parameter has a value from a well-defined range,
0–1 or 0–2, a search method seemed to be a very viable solution. However, if we
wish to determine the settings to two decimal places, there are 2 � 1018 possible
solutions (given that there are 9 search parameters) and an exhaustive search is not
feasible. The first avenue of research taken was that of a genetic algorithm
approach. However, genetic algorithms are particularly well suited to problems that
have large search spaces (i.e. large parameter ranges), and this is not the case here.
Also, a genetic algorithm approach is very good at getting reasonably close to an
accurate solution but will then need optimising further.

This was seen to be overly complicated for our needs, and a method based on the
tabu search (memory-based search) was developed, which is a method that can

11 The Design and Optimisation of Surround Sound 279

achieve accurate results and is a viable option as long as the parameters that are to
be altered have defined limits.

This, slightly adapted, form of a tabu search works by having the decoder coef-
ficients initialised at random values (or values of a previous decoder, if these values
are to be optimised further). Then, the tabu search program changes each of the
tweakable values in turn, plus or minus the step size. The result that is deemed to be
most correct is then kept, and the parameter changed is then restricted to only move in
the successful direction for a set number of iterations (which, of course, will only
happen if this parameter, again, is the best one to move). It must be noted that the
random start position is of great importance, as it helps in the search for a wide range
of solutions as, it the tabu search starts in exactly the same place each time, exactly the
same results will be found (as there is no randomness in the search process itself,
unlike a Genetic Algorithm). The most important part of the tabu search algorithm is
the equations used to measure the fitness (or correctness) of the coefficients used as it
is this one figure that will determine the course that the tabu search takes. As men-
tioned above, three parameters must be used in an equation that represents the overall
fitness of the decoder coefficients presented. These are as follows:

• localisation measure (vector lengths, RV and RE).
• localisation angle (vector angles, hV and hE).
• volume (sound pressure gain, PV and energy gain, PE) of each encoded direction.

As each of these results must be as good a fit as possible for the whole 360° sound
stage, the three parameters must be evaluated for a number of different encoded
source positions. Gerzon evaluated these parameters at 14 points around the unit
circle (7 around a semicircle assuming left/right symmetry), but as computers can
calculate these results extremely quickly, it was decided that encoded sources at 4°
intervals would be used (90 points around the unit circle). Due to the large number of
results for each of the fitness values, an average was taken for each fitness parameter
using a route mean square approach. If we take the example of the fitness of the
vector lengths (localisation quality parameter), and if a mean average is taken, then a
less than one vector length in one part of the circle could be compensated for by a
greater than one vector length elsewhere. However, if we take a good fit to be zero
and use a route mean square approach, then a non-perfect fit around the circle will
always give a positive error value, meaning it is a true measure of the fitness. The
equations used for each of the fitness parameters are shown in Eq. 11.6.

Equations of fitness used to evaluate the decoder coefficients.

VFit ¼
ffiPn
i¼0

1�P0=Pið Þ2
n

s
where : P0 is the pressure at an encoded direction of 0�:

MFit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼0

1�Rið Þ2
n

s
n is the number of points taken around the unit circle:

AFit ¼

ffi
Pn
i¼0

h
Enc

i
�hi

� �2

n

vuut
h Enc is the encoded source angle and h is the localisation angle:

ð11:6Þ

280 B. Wiggins et al.

Given the three measures of fitness in Eq. 11.6, the overall fitness for the high-
and low-frequency versions of the decoder is actually calculated slightly differently.
The low-frequency decoder can achieve a near perfect fit, but the best fit that the
high-frequency decoder can expect to achieve is shown in Fig. 11.3. The best results
were obtained from the tabu search algorithm if the overall fitness was weighted
more towards the angle fitness (AFit from Eq. 11.6.) as shown in Eq. 11.7.

Fitness equations for low- and high-frequency models.

LFFitness ¼ AFitþMFitþVFit

HFFitness ¼ AFitþ MFitþVFitð Þ=2 ð11:7Þ

Fig. 11.6 Tabu search algorithm

11 The Design and Optimisation of Surround Sound 281

The main benefit of the tabu search method is that all three of the conditions to
be met can be optimised for simultaneously, which had not been accomplished in
Gerzon’s paper [5]. For example, if we take the speaker layout used in the Vienna
paper, which is not the ITU standard but is very similar, then the coefficients
derived by Gerzon and Barton [5] would give an energy and velocity vector
response as shown in Fig. 11.7. Several observations can be made from this figure.
There is a high/low localisation angle mismatch due the forward dominance being
applied to the high-frequency decoders input after the localisation parameters were
used to calculate the values of the coefficients. Or, if the frontal dominance is
applied to both the high- and low-frequency decoders, a perceived volume mis-
match occurs with the low-frequency decoder replaying sounds that are louder in

Speakers
Velocity
Vector

Energy
Vector

Sound
Pressure
Level

0,12.25,22.5,
45, 90 & 135
degrees
reproduced
angles

Fig. 11.8 Graphical plot of
the coefficients generated
using a tabu search algorithm.
Encoded/decoded directions
angles shown are 0°, 12.25°,
22.5°, 45°, 90°, 135° and
180°

Speakers
Velocity
Vector

Energy
Vector

Sound
Pressure
Level

0,12.25,22.5,
45,90 & 135
degrees
reproduced
angles

Fig. 11.7 Graphical plot of
the Gerzon/Barton
coefficients published in the
Vienna paper.
Encoded/decoded directions
angles shown are 0°, 12.25°,
22.5°, 45°, 90°, 135° and
180°

282 B. Wiggins et al.

the frontal hemisphere than in the rear. Also, even if these mismatches were not
present, every set of results presented in the Vienna paper showed a distortion of the
decoders reproduced angles. Figure 11.8 shows a set of coefficients calculated
using the tabu search algorithm described in Fig. 11.6 and shows that if all three
criteria are optimised simultaneously, a decoder can be designed that has no angle

0 5 10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Tabu Search Path for W Coefficients

Iteration Number (x 50)

C
oe

f V
al

ue

W Centre
W Front
W Back

0 5 10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Tabu Search Path for X Coefficients

Iteration Number (x 50)

C
oe

f
V

al
ue

X Centre
X Front
X Back

0 5 10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Tabu Search Path for Y Coefficients

Iteration Number (x 50)

C
oe

f V
al

ue

Y Front
Y Back

0 5 10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Iteration Number (x 50)

F
itn

es
s

V
al

ue

Overall Fitness Values during Tabu Search

Fit

Fig. 11.10 A graph showing the transition of the eight coefficients in a typical low-frequency tabu
search run (2000 iterations). The square markers indicate the three most accurate sets of decoder
coefficients (low fitness)

Fig. 11.9 Graphical representation of the decoder virtual microphone patterns obtained from the
three optimum solutions indicated by the squares in Fig. 11.10

11 The Design and Optimisation of Surround Sound 283

or volume mismatches and should reproduce a recording more faithfully than
previously possible. Figures 11.9 and 11.10 show the results and fitness coefficients
of a typical run of the Tabu search algorithm.

11.5 Conclusions

The tabu search algorithm has provided an efficient and effective methodology to
optimise surround sound decoders. This methodology providing an improvement
over the alternative approach [1], allowing for the Vienna equations [11.1] to be
easily solved for virtually any arrangement of speakers and thus simplifying the
design process for Ambisonic decoders. Although the software used to generate the
results presented here concentrates on a typical five speaker, horizontal arrange-
ment, the methodology is applicable to any configuration. This approach has the
advantage of generating multiple sets of good solutions (alternative decoders) in a
single execution of the tabu search program; the existing method generates a single
solution, thus greatly increasing the number of decoders that can be realised and
tested in a very short time.

Reference

1. Borwick J (1981) Could ‘Surround sound’ bounce back. Gramophone, 1125–1126.
2. Malham D, Second and third order ambisonics. http://www.york.ac.uk/inst/mustech/3d_audio/

secondor.html
3. Leese M (2012) Ambisonic Surround Sound. http://members.tripod.com/martin_leese/

Ambisonic/
4. Gerzon MA (1977) Multi-system ambisonic decoder, parts 1 & 2—Wireless World July &

August 1977
5. Gerzon MA, Barton GJ (1992) Ambisonic decoders for HDTV—92nd AES convention,

Vienna. Preprint 3345
6. Gerzon MA (1992) General methatheory of auditory localisation—92nd AES convention,

Vienna. Preprint 3306
7. Farina A, Ugolotti E (1998) Software implementation of B-format encoding and decoding—

104th AES convention, Amsterdam. Preprint 4691

284 B. Wiggins et al.

http://www.york.ac.uk/inst/mustech/3d_audio/secondor.html
http://www.york.ac.uk/inst/mustech/3d_audio/secondor.html
http://members.tripod.com/martin_leese/Ambisonic/
http://members.tripod.com/martin_leese/Ambisonic/

Chapter 12
System Dynamics Case Studies

Chris Parkes, Stuart Berry and John Stubbs

12.1 Transport Planning and Transport Planning
Paradoxes

When going green is not a green policy, this case study is used to demonstrate how
a modelling can develop an understanding of a problem (planners continually make
the same mistakes!).

Given that the current concern is the need for a “green” transport policy, where
green is currently seen as a shift towards public/rail transport and away from a
private/car based transport system, to be able to evaluate the “greenness” of this
policy, it is informative to investigate the historic growth and subsequent decline of
the dominant form of mass transportation of people in the UK. It can be suggested
that the dominant transport system is continually changing in response to customer
demand although it will be shown here that it can also be considered that customer
demand is changing in response to transport changes. This case study investigates
these claims by constructing models to describe and explain changes to the dom-
inant mode of transport.

Over the period of 250 years, mass transport systems have continually devel-
oped with the dominant mode changing from canal to rail to road. The relationship
between alternative modes of transport can be established and illustrated with
influence diagrams, Coyle [1]; these diagrams showing that transport
planning/developments have always encountered the same dilemma, that the newer
form of transport continually expands at the cost of the older form of transport until

C. Parkes � S. Berry (&)
College of Engineering and Technology, University of Derby,
Kedleston Road, Derby DE22 1GB, UK
e-mail: s.berry@derby.ac.uk

J. Stubbs
School of Sciences, University of Derby, Derby, UK

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_12

285

it either reaches (effective) saturation or an alternative (better) transport system
becomes available. However, while a transport system is experiencing its expansion
phase, the net effect is to enable its customers to travel further increasing “urban
sprawl” and hence acting against a move towards a green solution.

12.1.1 Trains and Barges and Motor Vehicles

The changes to the dominant modes of transport in the UK are given in Table 12.1
as

A caveat to this table follows from the development of urban rail systems (for
example London Underground) which were still developing after 1920 with small
extensions to the existing network during the 1920s and 1930s, and the Jubilee line
in the 1970s.

UK Canal length in 1830 was 4000 miles, this length remaining almost constant
until about 1950. As a result of the development of the national rail system, canals
experienced a loss of 2/3 of their trade by 1850 but they retained profitability until
the early twentieth century when the increasing availability of road transport caused
the closure of many canals, most falling into disuse by 1940.

However, note that now increasing canal leisure usage has acted to enable the
restoration of some canals, for example the restoration of the Rochdale canal
through Sowerby Bridge, (T1).

Now, however, road improvements/developments to the road network are no
longer seen to provide a feasible solution to the problem of transporting workers
into the centre of large cities, and as a consequence, investments are being made
into expanding the existing rail network and constructing new urban railways, for
example the Crossrail project in London (T6); these developments being suggested
to provide green solutions to the transport problem.

Section 20.1 contains a summary of the changing transport demand within
London.

Table 12.2 shows the effect of road developments on rail usage, with the decline
in rail usage occurring after the 1920s and the increasing investment in road
transport occurring after the 1930s.

Table 12.1 Eras for dominant modes of transport

Existing major transport system New replacement system

Rudimentary road system To 1770 Canals replace roads

Golden age of canals 1770–1830 Rail replaces canals

Rail network growing 1830–1910 Roads replace rail

Road travel growing 1920 onwards Urban railways and trams

Urban rail/tram systems developments 1980 onwards

286 C. Parkes et al.

12.1.2 Models for New Transport System Developments

The models to be presented here indicate that the “new” mode of transport (cur-
rently suburban tram/rail systems) will enter a period of unconstrained (over)
growth (Model 12.1a) causing its own problems, for example urban sprawl and
increasing living costs, the exact opposite of the intended green policy, for example
the urban sprawl resulting from the Metropolitan line extension in the 1920s T4.

Model 12.1a is a generic model illustrating the (over) development of the new
transport system.

This network has a positive feedback loop indicating unconstrained growth in
the new system giving the expected result

fSystem demand increased leading to System Growth
System growth leading to Reduced Travel Times
travel times reduced leading to Increased System demand
System Demand increased leading to Network Growth and so ong:

12.1.3 Model Validation: Changes in the Transport System,
from Canals to Railways

As a first example of such developments, consider Models 12.1b and 12.2
describing the growth of railways and the parallel decline in canal usage, first a
model for journeys between two points at the time when the a new transport system

Table 12.2 Road and rail changes T2, T3

Road travel Rail travel

Road developments Rail network developments and
demand data

Road construction
development

Date Biographical
details

Year Network
length miles

Passenger
journeys
(millions)

North circular and
east Lancashire

1930s 1840
1860

500
10,000

First motorway 1958 “Preston
By-pass”

1900 18,614 1100

M1 1959 “61.5 miles” 1923 20,289 1772

M62 1970s 1950 19,585 1010

M25 1986 started 1975
London orbital

1960 18,476 1037

M40 1991 1980 10,500 760

M60 2000 Manchester
orbital

2014 10,000 1600

12 System Dynamics Case Studies 287

+

New
System
demand

New
System
growth

-

Travel time
using new

system

-

+

Rail
demand

Rail
Network
growth

-

Travel time
using rail

-

(a)

(b)

Model 12.1 a Modelling new system growth. b Modelling rail network growth

+

-

-

+

-

+

Rail
demand

Travel time
using canal

Canal
demand

Rail network
growth

Travel time
using rail

Model 12.2 Modelling the effect of rail growth on the canals

288 C. Parkes et al.

is expanding followed by a model demonstrating how this newer form of transport
acts to cause a reduction in the demand for the alternative transport system.

This positive feedback loop indicating unconstrained growth in the new railways
giving the expected result of unconstrained growth.

12.1.3.1 Model Validation

Consider the railway network growth, Railway Mania as occurred in the UK in the
1840s, the context of this model where:

fRail demand increased leading to Rail network growth
network growth leading to Reduced Travel Times
travel times reduced leading to Increased Rail demand
Rail Demand increased leading to Rail Network Growth and so ong:

Now to consider the effect of this rail growth on the then existing (alternative)
canal network, the next model shows how the development of rail travel caused the
decline in commercial travel by canal and halted the further development of the
canal system.

Here, there is a negative, equilibrium seeking, loop implying that alongside the
growth in the rail network there will remain some commercial canal systems/usage,

fIncrease in Rail Demand leads to Decline in Canal Demand
Decline in Canal Demand leads to Decline in Canal Travel Time

Decline in Canal Travel Time leads to Decline in Rail Demand
Decline in Rail Demand leads to Increase in Canal Demand

Increase in Canal Demandg until a steady state has been achieved,

Model validation: in the UK, canals were an important part of the transport
system until the mid-twentieth century, T1.

12.1.4 Modelling the Effect of Changes to the Transport
System, Railways and Roads

Now consider the more current road rail system developments, firstly the changes in
road travel; here, Model 12.1a becomes Model 12.3.

This model contains a positive feedback loop implying continuing road devel-
opments, as occurred, major road developments with the motorway system being
constructed after 1958. The first motorway was the Preston By-pass, opened in
1958. Currently the length of motorway is approximately 2300 miles, 1% of total
road length but carrying over 20% of all road traffic.

12 System Dynamics Case Studies 289

Note, however, were there no road development, no road building, Model 12.3 is
replaced with Model 12.4 showing that if there is no road development travellers
would tend to use the alternative system (now rail), a negative feedback loop.

For example, tram/light railways developments in Greater Manchester and Tyne
and Wear.

Now consider the effect of road developments on the existing rail
network/transportation system, shown in Model 12.5; this contains only positive
feedback loops.

Model validation: What happened in the UK

froad building went up, then road travel time went down
road travel time went down; then road demand went up
road demand went up; then road building went up
road building went up; then rail demand went downg

Summary ½rail demand went down; then road demand went up; and so on�

Describing transport system changes with the shift from rail to road transport and
the continuing development of road travel in the period from (about) 1920, see
Table 12.1 for data.

The eventual result from this shift (from rail to road) resulted in the closure of
almost 30% of Britain’s railway route network between 1960 and 1970 and the
majority of the commercial canals. This shift for rail to road transport can be
described by a “Beeching” model describing this time when there were widespread
rail closures resulting from this shift from rail to road transportation (Model 12.6).

Road
building

Road
demand

Road
travel time

+

-

-

Model 12.3 Modelling
changes in road growth

Road
demand

Travelers seeking
alternative transport

d

Road travel
time

-

+

+

Model 12.4 Alternative
mode choice model

290 C. Parkes et al.

12.1.5 A Non-green Result from a Green Policy

A consequence of the 1960s transport planning policies, road before rail, was that
road development continued until, as now, in large conurbations road improve-
ments are no longer feasible. As a consequence investments are being made into
expanding the rail network, for example the Crossrail project in London, but Model
12.1 indicates that this “new” mode of transport (new rail) will enter a period of
unconstrained (over) growth causing its own problems, for example urban sprawl
and increasing living costs. Consider for example the rail growth/investment in and
around London allowing commuters to travel greater distances to work with the
subsequent ever increasing urban sprawl (Model 12.7).

This network has positive feedback loop indicating unconstrained growth in
urban sprawl, non-green result.

-

-

+

-

+
Road
building

Road
demand

Road
travel time

Rail
demand

Model 12.5 Modelling
interactions between demand
for road and rail travel

+

-

+

-

-

+

+

Road
building

Road
demand

Road travel
time

-

Rail
demand

Rail route
closures

Model 12.6 The Beeching model. Note The “Beeching” report HM Treasury [2], HMSO [3]; this
report/investigation recommended the closure of many railway stations and routes

12 System Dynamics Case Studies 291

+
+

+

++

-

-

+
Rail
demand

Increased
house prices

Rail
development

Urban
sprawl

Rail
passengers

Road users

Model 12.7 Consequence of rail developments

frail development increases; then House prices and Urban sprawl increases
House prices increase; then Urban sprawl increases
Urban sprawl increases, then Rail Passengers increase
Rail Passengers increase, then Road users decline
Road users decline, then Rail demand increases;
Rail demand increases then Rail development increases
Rail development increases and so ong

12.1.5.1 Model Validation

Historically, this model has been validated by the “metro land” developments in the
1920s (T4) caused by the metropolitan line (of the London Underground system).

Current validations demonstrating the “not green” results from green develop-
ments have occurred with the rationales for new rail developments. The Crossrail
project in London and the Waverley line reopening into Edinburgh have presented
the non-green consequences from this model as positives supporting these devel-
opments, for example:

quoted benefits from the Crossrail Project (T6) include:

Residential capital values are projected to increase immediately around Crossrail stations in
central London by 25 per cent, and by 20 per cent in the suburbs

• The impact on residential property market will also extend out to Berkshire and
Essex.

quoted benefits Johnston and Causley [4] from the used to justify the Waverley
route reopening in Scotland

• It is also expected that rail links will widen economic and housing opportunities

292 C. Parkes et al.

In both cases, the extended lines into the “countryside” producing non-green
solutions and similar rationales have been given for both Crossrail2 and the
Cambridge–Oxford link.

12.1.6 Conclusion

Thus, these models have demonstrated, paradoxically, that intended green transport
policies do not have “green” results as witnessed by the current rail developments in
and around London and Edinburgh, the models demonstrating (the positive feed-
back loops) that such investment results in increasing urban sprawl leading to
commuters being prepared to travel greater distances to work, and the subsequent
increase in housing prices in the newly reached areas, resulting in the demand for
more rail developments and so on.

So “What is the best green policy?” is it to plan for slow rail journeys and
congested roads? In particular, no extended planned mass (rail or road) transit
systems in and accessing large conurbations? Is the Crossrail project counterpro-
ductive and a big expensive mistake? Should there be investment in better pedes-
trian provision and not in inner city cycleways? and should investment have been
concentrated more on the provision of intercity rail links, to reduce long distance
car travel into major centres, a genuine green policy, Chap. 20 gives relevant travel
to work in London data.

12.2 Further Analysis of the Model for the Dow Jones
Index

Figure 12.1 shows the changes in the Dow Jones index between 1924 and 1940
covering the periods before and after the “Wall Street Crash” in 1929.

The following analysis and models aim to describe the effect of investor con-
fidence on the behaviour of this index as shown in Fig. 12.1 (Fig. 12.2).

0

100

200

300

400

500

1000 2000 3000 4000 5000 6000

Fig. 12.1 Plot of Dow Jones
index 1924–1940

12 System Dynamics Case Studies 293

This model exhibits a positive feedback loop {+, −, −}; hence, either an
uncontrolled increase or decrease in share values will result from this model:

Increase in share prices gives
Share Price up leads to Investor Confidence up
Investor Confidence up leads to Sale of Shares down
Sale of Shares down leads to Share Price up

Decrease in share prices gives
Share Price down leads to Investor Confidence down
Investor Confidence down leads to Sale of Shares up
Sale of Shares up leads to Share Price down

The Dow Jones index Fig. 12.1 (1924–1940, data points 1350–6000) acts to
validate this model. A plot of the index for this period is shown in Fig. 12.4 with
the “phases” within this date indicated by:

Normal growth black linear growth per day 0:085
Abnormal growth red linear growth per day 0:410
Fall brown linear fall per day 0:323
Normal growth black linear growth per day 0:087
Fall brown linear fall per day 0:251
New pattern blue linear growth per day 0:046

The “Break points”, change of model, indicated by this plot approximately
correspond to:

Fig. 12.2 Influence diagram investor confidence and share price

294 C. Parkes et al.

Normal growth period 1 Starts 1924 Calvin Coolidge elected president
Ends 1928 end of Coolidge presidency

Abnormal growth Starts 1928 Herbert Hoover elected president
Ends 1929

Abnormal fall Starts 1929 Index doubled in 15months; previously over 48
Ends 1932 end of Hoover presidency

Normal growth period 2 Starts 1932 Franklin DRoosevelt elected president
Ends 1937
Starts 1937
Ends 1938 Anschluss inAustria and Sudeten Crisis

The abnormal growth and subsequent dramatic fall as observed in this data can
be modelled by Fig. 12.3.

The changes in direction, of the index, being caused by an external event that
affected the confidence of the investors.

The Dow Jones index from 1994 to 2016 exhibits a similar pattern, growth then
greater growth followed by a rapid fall, further validating this model (Fig. 12.4).

Abnormal Growth Oil price rise started in mid 2006 point 8000ð Þ
to a peak price in late 2007 point 8350ð Þ

Abnormal Fall then falling to a low price in late 2008 point 8500ð Þ:

However, plotting the index from 2006(start) to 2009(end) indicates the possi-
bility of an underlying long-term trend in the data (Fig. 12.5).

The bounds shown in Fig. 12.6 indicate the (approximate) times when the
short-term trend in the data changes (from rising to fall, or from falling to rise).

The plots of crude oil prices and Dow Jones index, Fig. 12.7, shows the rela-
tionship between these two indexes.

Fig. 12.3 Extended model

12 System Dynamics Case Studies 295

0

4000

8000

12000

16000

20000

5000 7000 9000 11000

Fig. 12.4 Dow Jones index
1994–2016

y = 1.7862x - 3028.3
R² = 0.7291

0

4000

8000

12000

16000

20000

5000 7000 9000 11000

Fig. 12.5 Linear model for
Dow Jones price changes

0

4000

8000

12000

16000

20000

5000 7000 9000 11000

Fig. 12.6 Illustrating
possible buy sell bounds for
the Dow Jones Index

296 C. Parkes et al.

References

1. Coyle RG (1996) System dynamics modelling. Chapman and Hall
2. HM Treasury (2013) Investing in Britain’s future (www.gov.uk)
3. HMSO (1963) The reshaping of british railways parts 1 and 2: R Beeching BRB (http://www.

railwaysarchive.co.uk)
4. Johnston K, Causley J (2013) Take that Dr Beeching: (www.starconference.org.uk)

0

4000

8000

12000

16000

20000

6500 7500 8500 9500 10500

Dow Jones index 2001 to April 2016

0

40

80

120

160

0 50 100 150 200

Crude oil prices 2001 to November 2016

Fig. 12.7 Comparing the Dow Jones index with crude oil prices

12 System Dynamics Case Studies 297

http://www.starconference.org.uk
http://www.starconference.org.uk

Chapter 13
Applying Queueing Theory to the Design
of a Traffic Light Controller

James Hardy

This case study explains some of the esoteric features of traffic light control and
discusses existing systems before introducing a novel control system being
developed as a research problem.

Traffic light systems are used to share a small area of contested roadway with
some predefined declaration of safety, efficiency or fairness. Each of these terms is
open for discussion and can be defined for the context to which it is applied. For
example, safety is generally considered to be the easiest to define and commonly
implies a lack of collisions between vehicles and/or pedestrians. However, collision
effects are by degree; safety is frequently considered to imply that the rate of death
or serious injury is reduced in the event of an accidental collision and not that the
accident was avoided. Efficiency can refer to actual time, useful application of time,
fuel use or generation of undesirable chemical compounds, e.g. CO and CO2.
Fairness is open for even wider interpretation. Fairness can be implied as all
travellers experience the same delay at a physical point, experience the same
average delay over a period, or that delay should be attributed in a pro rata fashion
according to relative queue length or, if the number of lanes is considered, queue
capacity. These interpretations are not intended to be exhaustive; they do give a
flavour of some of the diverse features of traffic control.

Traffic control systems progress through the light sequence in response to one of
two trigger inputs, time and detection. The inputs can be taken in isolation, in
sequence or as a function. Simple examples are as follows:

• Fully timed control. The sequence changes based purely on a clock period, the
period can be fixed for all times of the day, and all days of the week or can be
varied to suit periodicity of traffic flow.

J. Hardy (&)
University of Derby, Derby, UK
e-mail: j.hardy@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_13

299

• Fully detected system. There are several versions of fully detected systems, the
most common version being the pedestrian activated pedestrian crossing.
Timing is still required, the initial change is delayed, the yellow warning is
shown for a period, and the system returns to the initial state after a fixed time
period.

• Vehicle actuated. These systems can be highly complex, ranging from isolated
junction to city wide fully coordinated. Detection can be made using a wide
range of methods including pressure plate, magnetic disturbance, radar, laser
ranging and even sonic methods.

Triggering can be in response to an event such as the time that a vehicle has been
waiting, detected length of queue. Triggering can also be predictive based on
calculated speed of approach, which can also provide traffic calming.
Vehicle-actuated (VA) systems rarely rely on detection alone; minimum and
maximum timing is applied. This ensures that a minimum number of vehicles move
in any cycle and that there is still a periodic change in the event of overloaded or
erroneous detection (faulty detector, parked vehicle and accident).

One of the most significant concerns for any traffic control system is the pos-
sibility and probability of a gridlock situation. Gridlock occurs when there is a
circular effect of traffic flow being recursively blocked by a flow which is ultimately
blocked by the initial block. Gridlock generally occurs over a group of several
junctions and is not restricted to a small area. The most common root cause for
gridlock is a traffic queue from one junction extending back to block another
upstream junction. Three prime methods for avoiding gridlock are (1) reliance on
moral driving standards to require courteous use of shared junction space, (2) ap-
plication of “yellow box” junctions with legal enforcement and financial penalties
and (3) prevention of queue build-up to a length that causes upstream blocking.

Traffic flow in a system can be considered to have infinite input capacity,
especially at the boundary edges of a congested region. Traffic flow in a
free-flowing system is highly stochastic; any number of vehicles can arrive at any
time with any spacing.

The complexity of traffic flow means that simulation is the most commonly
applied analysis tool, but this does not provide a formal proof under all circum-
stances or even under bounded conditions. A formal theoretical understanding can
be derived by result comparison which is only possible when controlled experi-
mentation and measurement are undertaken.

Queueing theory is an obvious tool which could be used to analyse vehicle traffic
queues. However, the application of queueing theory becomes complex as the
junction under consideration becomes more realistic.

300 J. Hardy

13.1 Unidirectional Queueing

This is the simplest queue formation, with timing and control in only a single
direction e.g. East–West. If the junction is considered to be isolated and the entry
and exit roads are identical in terms of physical size and number of lanes, then QT
can be applied with the following attributes:

Normal distribution arrival, deterministic service distribution, single server,
infinite input buffer size, infinite population and fifo service. Using Kendall nota-
tion, this is given as M/D/1/∞/∞/fifo or, more commonly simply M/D/1
(Fig. 13.1).

The distribution of service times is considered to be deterministic as it is event
driven.

In practical terms, the junction described would be quite rare limited to, for
example, a pedestrian crossing in a one-way street. A more common system would
be for a pedestrian crossing in a two-way street (Fig. 13.2).

The controller service interval is the same for both queues which are therefore
interdependent. In real systems, it is unlikely that traffic will arrive at the same rate
from each direction; there is normally a periodic overall inbound or outbound flow
bias. Moreover, urban traffic light systems are generally not isolated; boundary
control points between urban and inter-urban locations are very rarely considered
isolated; the urban system will have a finite population and finite buffer which are
not able to satisfy the much higher flow rate of the multilane, high speed inter-urban
roadway. In this case, the inter-urban to urban direction will be M/D/1/∞/∞/fifo
with a series D/D/1/K/∞/fifo and the urban to inter-urban route is potentially M/D/
1/K/P/fifo.

While it is possible to consider this as two individual systems, vehicular traffic
queues and congestion are temporal events, both directions must be resolved for a
given instance, and multiple instances must be resolved to determine a trend.

13.2 Bidirectional Queueing

The previous scenario might exist at a pedestrian crossing, where vehicle queues
exist in only two directions. If the system under consideration is a vehicular
crossroads as shown below, the solution is more complex (Fig. 13.3).

In this scenario:

East to West flow is subject to two QT networks in series,
West to East is a single QT network with finite input and population,

1 1μλ

Fig. 13.1 Queue server

13 Applying Queueing Theory to the Design of a Traffic Light … 301

North to South flow is subject to two QT networks in series,
South to North is a single QT network with finite input and population.

There is a single controller (l1) for both EW and WE and a single controller (l3)
for both NS and SN. The two controllers l1 and l3 are temporally exclusive. The
controllers l2 and l4 are isolated, independent and unique.

13.2.1 Complex Junction Queuing

Practical road junctions are further complicated by left and right turns which can be
either exclusive or in flow. Each turn can be considered as a separate controller; the
input queue for each direction may or may not be unique. Further levels of

2

11

2μ

μλ

λ

Fig. 13.2 Queue servers at a junction, no direction changes

3 3

1

11

2

3

4
4

μ
μ

μ

μ
μ

μ

λ

λ

λ

λ

2

Fig. 13.3 Queueing at a non-isolated junction

302 J. Hardy

complication are provided by junctions with sequential rather than alternate flow
permission. These can be junctions with odd numbers of entrances and exits, with
unbalanced numbers of entrances and exits (where one-way and two-way traffic
meet) or where traffic priority necessitates sequential “round robin” flow permission
(Fig. 13.4).

13.2.2 Queueing with Detection

The final layer of complication is provided by detection systems. Very few totally
timed traffic light systems exist; detection-based systems are mandated for all new
installations. Detection-based systems change in response to vehicle flow, queue
length, vehicle waiting time or time period (either when there is no traffic flow or
when queueing extends beyond the detection point) (Fig. 13.5).

Systems can, and do, change between detection and time-based triggering
dependant on the current state of traffic flow.

Normal vehicular traffic flow presents numerous opportunities to develop a set of
queuing theory solutions. The major obstacles are that items in the input queue

4

3

11

3

2

4

μ
μ

μ
μ

λ

λ

λ

λ

2

Fig. 13.4 Extended queueing model

13 Applying Queueing Theory to the Design of a Traffic Light … 303

cannot be dropped, the input flow cannot be stopped or controlled, vehicles can
enter and exit input buffers without warning and that multiple queues interact with
each other.

13.2.3 Queueing in a Novel Control System

Existing traffic control systems may be reactive or predictive but always rely in
information gained from input queue detection. Notwithstanding the complications
of real junctions described earlier, our novel controller accepts that there may be a
blocked exit due to a downstream junction and avoids allocating flow time to the
direction that is not feasible. If the junction is already flowing and the exit becomes
blocked, the existing flow permission is ceased. In either case, flow permission
moves to the next sequential state where it is anticipated that traffic flow is feasible.
In the event that no exit is clear, all lights are held in a transient red state and
permission is automatically passed to pedestrian and cycle access. It is assumed, but
not mathematically proven, that this action would result in traffic build-up rather
than reduction. In order to reduce the traffic build-up, a further control signal is
required. When the subject controller takes action based on the information
received from the detector located in the junction exit, a signal is sent to the
controller which is downstream from the exit detector. The signal is a high priority
request for the downstream junction to change to a signal phase which clears traffic
arriving from the subject junction (Fig. 13.6).

Due to the fact that this system considers flow feasibility prior to making a signal
decision, we refer to this as available forward road capacity (AFRC). If all junctions
in an area are equipped with the AFRC system, it is assumed that traffic flowing into
uncongested boundary regions will be given higher flow priority and will therefore
reduce queue lengths and general congestion.

1 1

d1

μλFig. 13.5 Queue with queue
detection

1

d1

2

a d2ad1

1

b

μ μλ

Fig. 13.6 Linking queue detection systems

304 J. Hardy

13.3 Experiments and Discussion

Simulations were carried out on a grid structure comparing control by:

• Timed traffic light changes (TTLC)
• Vehicle-actuated light changes (VALC), and
• Available forward road capacity (AFRC)

Thus traffic light control is either by fixed timing, or stop line detect (VA style)
or stop line and exit detect AFRC.

For the AFRC controller, the status of each junction is read, tested and modified
in numeric order. The subsequent actions of this controller aim to try to remove
blockages and enable the flow of vehicles through the system.

Thus, the action of the AFRC controller at a particular set of traffic lights where
the exit is blocked is to turn this traffic light to red and force the next light to turn to
green (regardless of current state) to attempt to clear this blockage.

The simulations were four periods and the resultant queueing statistics from each
are shown in Fig. 13.7, TTLC blue, VALC red and AFRC black

13.4 Conclusions

These results showing that initially (demand 0–100) not only is there no (real)
difference between the performance of VALC and AFRC but also that a system
based around the basic TTLC performs well. But as demand continues to increase
(demand between 100 and 160), a system based on AFRC outperforms a system
based on VALC. Although for demands up to 150, the results do indicate that the
simpler TTLC system works quite well and may provide a very good solution;
however, for higher demands, it performs very poorly.

0 50 100 150 200 250
0

500

1000

1500

2000

2500Fig. 13.7 Comparing TTLC,
VALC and AFRC control
systems

13 Applying Queueing Theory to the Design of a Traffic Light … 305

Thus, the choice of the most appropriate traffic control will be dependent upon
the expected demand and the cost of the system, however, in summary at:

Low demand (0–100) Any system

Medium demand (100–150) AFRC or VALC

High demand (150–160) AFRC, (note that here TTLC is better than VALC)

Very high demand (over 160) VALC or AFRC but not TTLC

306 J. Hardy

Chapter 14
Cellular Automata and Agents
in Simulations

Kim Smith, Richard Hill, Stuart Berry and Richard Conniss

14.1 Simulating to Evaluate Message Passing Rules

The average mobile phone and tablet that is now available has more computing
power than even a year ago. In particular, the inclusion of Wi-fi capability enables
such devices to be used as part of a Wi-fi-based information sharing network
without needing to modify the existing mobile telephone infrastructure. In addition
to this, the ability to create decentralized wireless ad hoc networks means that there
is no reliance upon any form of network infrastructure, such as switches, routers,
access points and servers.

Ad hoc networks are wireless networks where the nodes communicate directly
with each other, when in range. As devices join together to form the ad hoc
network, messages can be sent, received and relayed between devices.

Each device, or node, within the network can act as the originator of the mes-
sage, the destination of the message, or as a router that passes the message onto
other nodes on a path between the source and destination. As such, a message can
be routed from node to node until it reaches the intended recipient node.

If it is not possible to clearly identify a path between a sending node and an
intended recipient node, then alternative opportunistic network (ON) topology is
required. An ON facilitates the propagation of messages amongst nodes that are
within a physical proximity that allows successful transmission and reception of
messages. Whenever two nodes come within range, they pass messages to each
other, due to the potentially constant mobility of nodes, and messages can be
propagated to nodes that were initially out of range at the point of message creation.

K. Smith � R. Hill � S. Berry (&) � R. Conniss
College of Engineering and Technology, University of Derby,
Kedleston Road, Derby DE22 1GB, UK
e-mail: s.berry@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_14

307

ONs utilize a store-carry-and-forward paradigm where each node holds a copy of
the message, whilst also propagating to other nodes as they come within range. The
objective of an ON is to move messages as quickly as possible whilst minimizing
any load upon the network itself.

14.1.1 Background

A consistent theme of these case studies is to make use of a real-world scenario to
both explain the challenges presented to mobile networked devices, as well as
explore the potential of such environments for the emergence of new business
opportunities (Fig. 14.1).

Consider the scenario of a town centre or a retail mall where shoppers and
potential customers congregate. It is likely that as each user enters a location, their
mobile device can attempt to join an ad hoc network. Through this network,
messages in the form of adverts for services and applications are propagated
amongst the connected devices.

Fig. 14.1 a Network at t = 1. b Network at t = 2. c Network at t = 3

308 K. Smith et al.

Software applications resident on the mobile devices proactively filters any
advertisements that present themselves, retaining only those that the user is inter-
ested in. Service providers such as shop keepers/restaurateurs have the ability to
create and publish to the ad hoc network adverts for new services.

These adverts propagate through the ad hoc network to each device currently
connected, and are selectively displayed or discarded as per the user’s preferences,
whilst also relaying messages to other devices that fall within transmission and
reception range.

14.1.2 Case Studies

The first case study is concerned with simulating message passing protocols in an
opportunistic network.

In second case studies, message passing protocols have been simulated, using
cellular automata that represent the message carriers, first on a grid structure with all
automata/agents moving at the same speed, see Fig. 14.5 for an illustration of such
a system, then secondly where the automata/agents can move in any direction at
different speeds, see Fig. 14.7.

Case Study 1: Matching Services with Users in Opportunistic Network
Environments

Consider the scenario of a town centre or a retail mall where shoppers and potential
customers congregate. It is likely that as each user enters a location, their mobile
device can attempt to join an ad hoc network. Through this network, messages in
the form of adverts for services and applications are propagated amongst the
connected devices.

Software applications resident on the mobile devices proactively filters any
advertisements that present themselves, retaining only those that the user is inter-
ested in. Service providers such as shop keepers/restaurateurs have the ability to
create and publish to the ad hoc network adverts for new services.

These adverts propagate through the ad hoc network to each device currently
connected, and are selectively displayed or discarded as per the user’s preferences,
whilst also relaying messages to other devices that fall within transmission and
reception range.

As a user leaves that location, messages stored on their device are carried until
another location with an ad hoc network is reached. These locations are not con-
nected to each other, and there is no central infrastructure except for the ad hoc
wireless system. The propagation of these adverts between locations is achieved
through the mobility of users.

The very nature of the intermittently connected network as described, with
devices “carrying” adverts between locations, means that an opportunistic ad hoc
network would be a natural solution.

14 Cellular Automata and Agents in Simulations 309

In the context of this, there is a need to be both effective and efficient in matching
adverts (provision) to the user’s device. There are a number of reasons for this.
First, users that are bombarded by unwanted messages are likely to turn their device
off.

Second, unlike a wired network where the devices are connected to mains
power, a mobile device relies on its own scarce resource (battery). All wireless
transmission requires energy, and excessive, irrelevant message propagation will
increase the power consumption of mobile devices.

Finally, excessive message propagation results in increased traffic for the
network.

The overall objective of this work is to facilitate the provision of providing the
relevant adverts to interested parties without crippling an individual device or the
network as a whole.

Consequently, if a device receives multiple copies of the same message, it will
significantly reduce the capacity of the battery. Additionally, the amount of storage
on the device to store adverts is another constraint so as not to interfere with the
normal operation of the device.

With regard to the network, it too has a limit to its capacity, referred to as
bandwidth; this indicates the maximum number and the size of the messages that
can be passed across the network. As the number of messages reaches this limit, the
network becomes congested and further messages are unable to be sent, resulting in
overload.

In order to establish the extent by which messages can be efficiently provisioned
in an ON environment, a number of characteristics need to be monitored and
evaluated such as

• Quantity of adverts arriving at the interested parties;
• Volume of network traffic generated;
• Time taken for interested parties at various points to receive the advert;
• Proportion of interested parties that were reached;
• Amount of energy consumed by a device/the whole network.

Experiment Design

The base scenario that has been used so far is that of mobile users within a retail
shopping mall, which possess devices with wireless network capability.

Within the geography of the shopping mall, users move randomly within the
area. Also, users enter and leave the area (and therefore the network) at random.

The mobility of users will be represented via the random waypoint model [1, 2].
The random waypoint model attempts to capture the movement of humans, and
each node is given random coordinates in the simulation area (waypoint). Each
node moves at a constant velocity directly towards the given waypoint.

At this point, the node pauses and a new waypoint is defined, together with a
new random velocity. Simulations were executed using epidemic and other
non-context-aware routing protocols.

310 K. Smith et al.

Whilst this refers to the base scenario, there are also more specialized scenarios
that can be envisaged.

For instance, when user leaves a location, they may be carrying advertisements
for services that will be recognized by subsequent connections to ad hoc networks
in other locations.

In this way, an originator in one location, having identified that a significant
amount of custom comes from another location, could target that location. For
example, a chain of retail outlets could propagate a voucher that is redeemable in
any one of the bricks and mortar stores.

The propagation of these adverts between locations is achieved through the
mobility of users; it is the mobility of users, which makes the connections in an ad
hoc fashion.

The simulations assume that users move based on the shortest path map-based
movement model [3]. The shortest path map-based movement model is one of a
number of map-based movement models, where the movement of the node is
constrained to a path as defined in a set of map data.

In the map-based model, nodes are able to move randomly along any path,
whereas in the case of the shortest path map-based model, nodes follow the shortest
route to a point on the map.

This point on the map is chosen either as a random point on the map or from a
list of points of interest. In this case, there will only be a single point of interest
provided. This opens up the possibility of defining a range of simulations based on
a number of context-aware routing protocols.

In this research, the matching of services to user’s needs is to be done in an
effective and efficient manner, this including not only the transmission protocol but
also the matchmaking algorithm itself.

In systems where an external broker is used to carry out the matchmaking, there
is a significant overhead due to the time required to communicate to a third party, as
well as the extra network load imposed.

However, given the very nature of an ad hoc network without any infrastructure,
a community broker node would not be viable due to the extra processing and
therefore power dissipated in the process. In such a case, it would be logical for all
the processing needs to be confined within the individual device. This arrangement
has the additional benefit of reducing concerns regarding user privacy concerns as
the user’s profile remains within the device and is not communicated to a third
party.

Network Layer

In the TCP/IP model, the protocol sits at the network layer. Messages are passed up
to the application layer via the transport layer for processing. The proposed
matchmaking service might require messages to be passed from the protocol layer
up to the application layer. It can be assumed that widespread adoption of the
service amongst users would result in myriad user’s preferences being instantiated.
The end result would be that a significant number of these messages would

14 Cellular Automata and Agents in Simulations 311

ultimately be discarded, resulting in wasted processing of raw messages that did not
conform to the preferences of the user.

A more efficient method might be to carry out a first pass of the matchmaking at
the protocol layer. This would allow messages that the user is broadly interested in
to be filtered, and any message types that have not been seen before, to be processed
and passed up to the system application layer for user interaction.

Further processing could then be carried out at the application layer, such as
adding a newly discovered preference into the profile.

How much processing takes place at each level depends upon the speed of the
main processor and the time between received messages. Too many processing
cycles would result in dropped messages, and too little processing would reduce the
accuracy of the matchmaking.

In order to keep the matchmaking algorithm in close proximity to the protocol
layer, a protocol wrapper has been adopted to prevent any direct modifications to
the underlying network protocol. Figure 4.1 illustrates this.

In order to simulate this process, the ONE simulator was selected since it was
designed specifically for opportunistic or delay-tolerant networks. The ONE sim-
ulator is designed to emulate various routing protocols and movement models [4].

The upper layers of the communications stack are not implemented other than a
link that can be used to pass messages up to the next layer. The way the network
layer is implemented in the ONE simulator, is similar to that required in that the
network layer is already in two parts.

Matching Algorithm

The matchmaker algorithm needs to be relatively simple in order to minimize an
additional processing overhead, and will need a clear profile to work with. Even in
this, there needs to be a level of sophistication built into the matchmaking algo-
rithm; otherwise, the system will not gain acceptance with the users. For example,
the system will need to work on multiple levels, i.e. a general descriptor and then a
modifier. An example would be a keyword such as restaurant where the subsequent
second-level keyword would define what type, i.e. French, Chinese, Mexican, etc.
In addition, when an advert for a restaurant that is not in the list of existing
restaurants is received, user input will be required. So, for instance, the device
receives an advert for a Korean restaurant which is not in the profile, it will be
passed to the user so that the user can respond, who would accept or reject the
advert, and the profile would be updated automatically. This would provide a
learning system that could build up a user’s profile on the fly, that is rather than the
user been required to initially input a profile, the device would learn the user’s
preferences based on their response to adverts.

In a simple way, if the system received an advert for a restaurant of type
Chinese, which is already in the user’s profile, it would therefore be matched and
the advert would be passed onto the user.

312 K. Smith et al.

Alternatively, if the user’s profile shows a dislike for French and an advert for a
French restaurant arrives, the profile would indicate that this is not a preferred
option and the advert would not be passed to the user. Then, there would be the
special case where there is currently nothing in the profile, which would be passed
to the user. The user’s response would then cause it to be added to the profile as
either a like or dislike.

An additional concept would be where there were two adverts for restaurants
which are both shown as likes on the user’s profile. The matchmaker algorithm (see
Chap. 16 for the detailed algorithm) could possibly then make a decision based on
the distance to the two restaurants or in a simple case display both adverts.

The message is passed as a list of keywords together with a number that signifies
the number of keywords in the message (levels).

The “user profile” currently consists of a number of sets of keywords, one for
each level to be matched. Also, there are two complete groups of sets: one for
“likes” and the other for “hates”, and example set is shown below. For example, a
three-level information database is shown in Fig. 14.2.

Whilst for a given customer enquiry, this information structure can be refined to
include “likes” and “dislikes” to represent the preferences.

As an example, consider the preference lists:

Likes : ½Restaurant; Level 1
Asian;African; Pacific; Level 2
Chinese� Level 3

Hates ½European;American Level 2
Japanese; French� Level 3

Fig. 14.2 Sample three level database

14 Cellular Automata and Agents in Simulations 313

Incorporating this additional information gives the revised structure (Fig. 14.3).
The algorithm (see Chap. 20) first enters a whilst loop that will step through all

the levels unless the current level that is been tested is either in the hates group or
does not exist in either group. If all levels in the message match those in the likes
group, the pass_level will equal the levels and the message will be displayed. If any
level matches an entry in the hates group, decn will be set to 2 and the message will
be ignored. Whilst if at any level there is no match with either group, the message
will be displayed for user decision.

Sample messages together with the result from the search are shown below:

message 1 Restaurant;American;Brazilian½ � would fail at level 2;
message 2 Restaurant;African;Moroccan½ � would be referred at level 3:

Simulation Results

The matchmaking algorithm has been simulated in MATLAB. To be able to
evaluate the effectiveness of the search, in relation to the number of levels to be
considered, three simulations were carried out.

In each simulation, a node attempted to contact a neighbouring node (mobile
device) and the message compared with this neighbouring device’s user profile
(“likes” and “hates” lists). This determined the level (1, 2 or 3) and message status
at which the search was completed (success, refer or reject), and further, these
results were used to investigate the cost/benefit of the depth of search used (level of
information to be considered).

The three messages simulated were as follows:

Fig. 14.3 Adding information to the database

314 K. Smith et al.

Simulation Run 1 message

Restaurant `likes' High probability
Asian
Indian

Simulation Run 2 message

DIY `likes' Medium probability
Chain store
Carpets

Simulation Run 3 message

Food `likes' VeryHigh probability
Farmersmarket
Indian

In the case study, each mobile device could have up to five members in each of
their “likes” and “hates” sets. Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 define the
probabilities that each keyword at each level of the proposed message will be liked
or disliked by a neighbouring device. For each of the keywords in the message, a
weighting was applied to indicate the user’s preference in their device profile.

The next tables show the effects (proportion of correct decisions) had the search
been halted at each level and the implied work carried out.

The results from the first simulation P_likes(H, M, VH) show that halting the
matching algorithm after two levels (only) results in a 2% maximum error, where an
error occurs when a message has been passed incorrectly (Fig. 14.4).

An interesting result highlighted by these simulations is that the depth of search
required, so that most decisions will be correct, seems to depend upon the pro-
portion of devices expected to like the level 1 category. Table 14.1e shows that the

Fig. 14.4 Illustrating the operation of the first two decision levels

14 Cellular Automata and Agents in Simulations 315

greater the probability of a message being liked at level 1, the greater the depth of
search required to reach the correct decision (to pass or not to pass the message).

Thus, additional knowledge concerning the “liked” status of the options
(probability) within the query could indicate an appropriate depth of search required
to give (mostly) correct decisions, to pass or not pass the message.

Additionally, the simulation indicated how the “cost” measured in terms of the
number of tests carried out is related to the liked status of the top-level option
within the query. The number of option comparisons for each level of search when
N devices are interrogated is shown in Table 14.2, showing that a message where
the top-level category is very popular will cause more work than a message where
the top-level category is unpopular, and a theoretical consideration of an m-level
search is given in Chap. 20.

Table 14.1 Simulation run

Level Likes probabilities Hates probabilities

(a) Simulation run 1

Simulation 1

1 0.3 High 0.1 Low

2 0.1 Medium 0.1 Low

3 0.45 Very high 0.05 Very low

(b) Simulation run 2

Simulation 2

1 0.1 Medium 0.1 Medium

2 0.05 Low 0.3 High

3 0.3 High 0.2 High

(c) Simulation run 3

Simulation 3

1 0.55 Very high 0.2 Medium

2 0.25 High 0.3 High

3 0.05 Low 0.05 Very low

Level Simulation 1 Simulation 2 Simulation 3

(d) Summary of results from all simulation runs

1 0.71 0.90 0.46

2 0.98 0.99 0.87

3 1.00 1.00 1.00

Simulation P (level 1 liked) Percentage of correct
decisions halting at

Level 1 Level 2

(e) Summary of results from all simulation runs

2 0.1 90 99

1 0.3 71 98

3 0.55 46 87

316 K. Smith et al.

Measurement Framework

The protocol benchmark used for comparison of the performance of opportunistic
network protocols is the epidemic protocol. The measurement framework for the
protocol has already been established in prior work [5, 6]. However, a similar
benchmark does not exist for the process of service matchmaking, and it is
important for the validation of experimental findings to establish pertinent metrics.

An initial set of characteristics to monitor is likely to comprise the following:

• Quantity of messages that have been successfully matched with a user’s
preference;

• Time taken to achieve a match;
• Volume of traffic imposed upon the network;
• Latency: the time taken to match a service advertisement to a user;
• Quantity of processor cycles consumed by a mobile device within the network.

This will help infer the quantity of energy consumed by the process.

Once these characteristics have been identified and verified, other challenges can
be evaluated.

In particular, this will permit investigation into the effects of differing user and
device behaviour. A user may arbitrarily decide to simplify the matchmaking
process by deliberately using broad terms to express their preferences. Such users
may be satisfied with a general set of advertisements appearing upon their devices.

Conversely, a user may develop very specific preferences that require several
levels of validation before a successful match is achieved. This will necessitate
more processing cycles, increased network traffic and, as a result, more energy from
the device power source.

The application developer may also wish to either delegate the matchmaking
service to the protocol wrapper, or alternatively use the functionality provided and
extend it by augmenting new functionality.

Such an approach could imbue a device with a greater degree of sophistication
and autonomy in terms of managing the service advertisement management pro-
cess. It is feasible that this could also be a dynamic behaviour that responds to
environmental and system effects such as a low battery, where power needs to be
conserved.

One further aspect is to investigate the effect of user mobility patterns upon the
message propagation and matchmaking process, since a user’s lack of a preference
for a service advertisement should not prevent messages spreading in an ON
environment.

Table 14.2 Summary of
results from all simulation
runs

Case P(L1 liked) Level 1 Level 2 Level 3

2 0.1 N 1.10 N 1.11 N

1 0.3 N 1.29 N 1.31 N

3 0.55 N 1.54 N 1.68 N

14 Cellular Automata and Agents in Simulations 317

The preliminary results for the matchmaking algorithm are promising, and the
next step is to implement the algorithm within the protocol wrapper architecture in
the ONE simulator in order to start optimizing the process.

Conclusions

Opportunistic networking has considerable potential for new business models,
particularly since it avoids the need for traditional infrastructure, yet there is a
proliferation of users with mobile, Wi-fi-enabled devices.

Whilst such devices have typically been smart phones, the wider acceptance and
resulting dependence upon “smart” technology mean that emerging devices, such as
smart watches and such like, serve as enablers for greater connectedness between
users and business organizations.

The realities of ON can already be realized through ad hoc network connections
and a variety of network protocols. However, the potential of more sophisticated
uses of this technology also presents challenges for the research community, such
as the need to be able to efficiently manage and provision network services in an
ON environment.

This research makes use of prior work to establish a measurement framework for
ON, and augments this by proposing a means by which the propagation of mes-
sages can be managed both by users and, more transparently, by the mobile devices
themselves, through the use of a matchmaking algorithm and protocol wrapper.

The protocol wrapper enables matchmaking to be added to the ON protocol of
choice, without requiring modification of the underlying protocol. This architecture
permits a more autonomous approach to managing the matching of service
advertisements to the preferences of users, whilst also providing access to appli-
cation developers who may choose to extend the functionality even further at the
application layer.

Preliminary simulation of the matchmaking algorithm indicates that in excess of
61% of service advertisements can be discarded at the first level, which suggests
that there may be a measurable reduction in power consumption as a result of
reduced processing on mobile devices. As mobile devices reduce in size and
become more pervasive and embedded, this is of particular interest to the research
and business communities.

Case Studies 2a: Effectiveness of Message Transmission/Travel

In this first simulation, each automaton moves along the grid, Fig. 14.5, repre-
senting movements of people in a shopping centre; at each junction, it can choose
its next direction of travel (same direction most likely, reversed direction least likely
and options to turn left or right). In the second simulation, the automata/agents
move in a randomly chosen direction at a randomly chosen velocity. When
“meeting” another automaton, the carrier will pass the message if the receiving
automaton is both able to receive messages and selected to receive messages.

318 K. Smith et al.

In these simulations, a single message enters the grid with a target destination,
and when two devices are “close”, messages are passed according to one of the
rules:

• To any other device with sufficient capacity and passing close enough to the
message carrier

• Randomly to a fixed proportion of devices passing close enough to the message
carrier

• Any other device travelling in the correct direction
• Randomly to another device travelling in the correct direction.

For the first model, simulations were carried out with the density of message
carriers (proportion of available spaces occupied) of 1.5, 0.7, 0.2, 0.1, 0.04%.

Each configuration was simulated 20 times, and the average results, time for the
message to reach the destination and number of messages passed are shown in
Table 14.1 (Table 14.3).

Fig. 14.5 Movement of customers

Table 14.3 Simulation results comparing protocols and efficiency

Device
density
(%)

Area
density
(%)

Directional Non-directional
(random)

Non-directional

Time Messages Time Messages Time Messages

2 25.1 153 187 131 279 114 290

1.5 18.8 150 125 140 227 128 249

0.7 8.8 269 125 225 228 200 245

0.2 2.5 578 112 528 235 397 210

0.1 1.25 807 100 719 258 631 263

0.04 0.5 1502 163 1134 212 888 230

14 Cellular Automata and Agents in Simulations 319

The results (see Table 14.1) from all cases where cost was measured in terms of
the number of messages passed showed that

TimeðdirectionalÞ[Timeðrandom non directionalÞ[Timeðnon directionalÞ

CostðdirectionalÞ\Costðrandom non directionalÞ\Costðnon directionalÞ

Time models (p percentage loading), high correlations

Directional ðDÞ TD ¼ 13:5p�0:60

NonDirectional-randomðNDðrdÞÞ TNDðrdÞ ¼ 13:6p�0:57

NonDirectional ðNDÞ TND ¼ 13:5p�0:54

For a high percentage loading of 10%, p = 0.1, the message passing time esti-
mates for the three models are as follows:

TD ¼ 54
TNDðrdÞ ¼ 51
TND ¼ 47

Notice that as p tends to 1, the times to pass messages converge, and at a loading
of (about) 44.5%, the time differences, directional to non-directional, are less that
5% (Fig. 14.6).

Thus, it would seem that

Low density “non-direction” passes the message much quicker (non-direction
40% reduction in time, but 41% more messages passed)

High density “non-direction” passes the message quicker (but times close
although non-direction does pass more messages).

0

200

400

600

800

1000

1200

1400

1600

0 0.005 0.01 0.015 0.02 0.025

D

ND(rd)

ND

Fig. 14.6 Comparing the
results from the message
passing protocols

320 K. Smith et al.

Recommendations

Low density: “non-direction”, real difference in time to pass message
High density: “direction”, no real difference in times to pass messages and

fewer messages passed.

Message passing models, low correlation, messages passed (M) loading (p)

Directional passing D M ¼ 3:6pþ 98
Non directional Random passing NDðrdÞ M ¼ 2:9pþ 224
Non directional ND M ¼ 2:3pþ 230

Case Studies 2b: Effectiveness of Message Transmission/Travel

The third case study is based on message passing within an “open area/town
square”, where people can move in all directions, see Fig. 14.7. The objective of the
case study is to measure the time required to be able to receive the message at a
given destination.

The simulations were carried out with initial density of message carriers (pro-
portion of available spaces occupied) of 7.5, 5.0, 2.5, 2.0, 1.5, 1.0, 0.5%.

Each configuration was simulated 10 times, and the average results, time for the
message to reach the destination and number of messages passed are shown in
Table 14.4.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120

Fig. 14.7 Target point for message at (50,50). Note: blue colored plus denotes a customer and red
colored asterisks a customer carrying a message

14 Cellular Automata and Agents in Simulations 321

From these results, the following approximate models can be deduced:

T ¼ 80p�0:52 r2 ¼ 0:91 all values of p
T ¼ 66� 5:3p r2 ¼ 0:98 p[1%
P ¼ 24p� 1:5 r2 ¼ 0:92

Repeating the simulation when are the messages passed on only 50% of occa-
sions gave the results (Table 14.5).

From these results, the following approximate models can be deduced:

T ¼ 97p�0:57 r2 ¼ 0:92 all p
T ¼ 65:5� 4:5p r2 ¼ 0:99 p[1%
P ¼ 21p� 0:5 r2 ¼ 0:96

The models derived from the two message passing protocols are compared in
Fig. 14.8, showing that as the percentage loading increases, the time differential
becomes less significant, but Fig. 14.8 shows that as the loading increases, the
percentage increase in messages passed tends towards (approximately) 15%.

Table 14.4 Time to destination and number of messages passed, protocol pass message on all
occasions

Density (p) (%) Time to target (T) Number of messages passed (P)

0.5 131 16

1 69 21

1.5 57 23

2 54 41

2.5 53 45

4.0 44 116

5.0 42 146

7.5 22 158

Table 14.5 Time to destination and number of messages passed, protocol pass message on 50%
of occasions

Density (p) (%) Time to target (T) Number of messages passed (P)

0.5 172 14

1 104 26

1.5 59 22

2 55 38

2.5 55 40

5.0 45 120

7.5 28 132

322 K. Smith et al.

14.2 Fire Evacuation Modelling

The aim is, for a given environment, to investigate the effect of the following:

• Number of people (cellular automata) present
• Number of exits
• Position of exits
• Size of room/exits
• Rate of spread of a fire.

Here, although time to exit the room is important, the expected number of
casualties is of greater importance.

The optimal design is now influenced by the need of the customers to avoid the
spreading fire; so it is expected that this extra constraint could act to change the
previous conclusions.

This case study is developed in the three stages:

• movement of people exiting a room
• spread of a fire in a room
• full model where people are attempting to exit a fire in a room.

14.2.1 Modelling Movements in a Room

Within a closed environment, bar or shopping centre, customers will tend to move
towards certain points, usually displays or service positions.

In a simulation of this scenario, customers are placed at random andmove towards
a service point, nearest or required, but with an allowed randomness; so a customer
could move towards a more distant point. Figure 14.9a shows an early stage in the
cellular automata simulation when customers are attempting to access a service point,
and Fig. 14.9b shows the (less random) paths chosen in the agent-based simulation
where each agent retains a memory of its most recently chosen direction.

0

40

80

120

160

0 2 4 6 8
0

4

8

12

16

0 2 4 6 8

Fig. 14.8 Comparing message passing protocols

14 Cellular Automata and Agents in Simulations 323

Room Evacuation Modelling
Building evacuation drills is a common part of everyday life in the twenty-first
century. Workplaces, universities, hospitals and other institutions by law must have
preplanned procedures to enable the occupants of their premises to escape safely in
case of fire. New building designs must abide by legislation to meet minimum
safety requirements, and the fire service constantly campaigns about the dangers of
fire and the need to be prepared. This case study shows how cellular automata may
be used to construct models to evaluate both building design and fire escape pro-
cedures. The previous simulation is amended so that the destinations are “doors” on
the boundary of the room and having reached the exit the customers/automata leave
the simulation.

Two models can be developed, the first where the automata head towards the
nearest exit, but with some randomly choosing to head towards the further exit and
a second model where most of the agents choose to head towards the “entry” door
and a few moving towards the other (emergency) exit. Figure 14.10 shows plots of
the automata paths to the exit from both models; in each model, there are 100
automata.

The objective, of the simulations, is to investigate the effect of the location of the
emergency exit and the capacity (width) of the “entry” door on the time to evacuate
the area (because the entry door aims to control people coming into this area and it
will tend to have a controlled capacity and width.

In all the simulations, the room had dimensions 100 � 100 with

the “entry” located at the point (100,100) and
emergency exits located at points (100,0), (100,50), (100,80), (100,90).

Each agent chooses their exit point on the basis of the following:

Distance, the closest is more favoured but choice is random and
The influence of their point of entry into the system.

Fig. 14.9 a Random choice of exit. b Leaving by used entrance

324 K. Smith et al.

The results from these simulations (low, high and very high demand) are
summarized in Table 14.6a–c. These results indicate that although the location of
the emergency exit, at high levels of demand, has some effect on the time required
to fully evacuate the area, the capacity of the “entry” point, during evacuation, has a
much greater effect on the time to clear the area.

These results lead to the summaries in Table 14.6d–f indicating that the capacity
of the “entry” point is more important than the location of the emergency exit with
respect to the time required to evacuate a building. In cases of high occupancy, the
width of the entry/exit point becomes very significant, savings of over 50% in total
evacuation time.

However they do indicate that when there is a tendency for customers to aim to
leave using their original entry point then an emergency exit should be located close
to this entry point (as any entry point will have a limited capacity) to enable a
speedier evacuation of the building.

14.2.2 Model 1: Modelling the Spread of a Fire

The location of the fire is generated randomly and the probability that it will spread
into an adjacent cell is a function of the states (on fire or not) of the 8 surrounding
cells.

Figure 14.11a shows a fire starting at a single source, and Fig. 14.11b shows the
fire developing.

Similarly, Fig. 14.11c shows the fire starting at two points, and Fig. 14.11d
shows how this fire develops.

The next stage adds barriers into the room, walls and doorways, for example, to
model their effect on the spread of fire in an enclosed area.

Randomness in choice of exit Most choosing the “entry” as exit

(a) (b)

Fig. 14.10 Illustrating the effect of the different exit choice strategies

14 Cellular Automata and Agents in Simulations 325

Table 14.6 Results from low, high and very high demand simulations

(a) Low demand

Emergency exit Demand = 200 Time for last to leave “entry”
width

Leaving by time 1 2 3

(100,0) “entry” point 180 133 125

Emergency exit 114 100 95

Last to leave 180 133 125

(100,50) “entry” point 171 131 127

Emergency exit 97 95 95

Last to leave 171 131 127

(100,80) “entry” point 168 130 125

Emergency exit 98 104 105

Last to leave 168 126 125

(100,90) “entry” point 168 135 125

Emergency exit 93 100 100

Last to leave 168 135 125

(b) High demand

Emergency exit Demand 500 Time for last to leave “entry”
width

Leaving by time 1 2 3

(100,0) “entry” point 439 222 155

Emergency exit 112 123 119

Last to leave 439 222 155

(100,50) “entry” point 427 209 144

Emergency exit 95 100 103

Last to leave 427 209 144

(100,80) “entry” point 423 213 142

Emergency exit 105 90 115

Last to leave 423 213 142

(100,90) “entry” point 420 209 143

Emergency exit 107 110 105

Last to leave 420 209 143

(c) Very high demand

Emergency exit Demand 750 Time for last to leave “entry”
width

Leaving by time 1 2 3

(100,0) “entry” point 670 338 225

Emergency exit 120 120 124

Last to leave 670 338 225

(100,50) “entry” point 639 329 216

Emergency exit 102 100 98

Last to leave 639 329 216
(continued)

326 K. Smith et al.

This shows how the fire is restrained by the wall and spreads through the
doorway (Fig. 14.11e, f).

The final Fig. 14.11g, is an example of a more complex enclosure, where the fire
is again retarded by the walls and spreads through the open doorways.

14.2.3 Modelling the Effect of Fire and the Movement
of People

These models investigated the effect of the location and size (capacity) of the exits
on the survival of the people.

Model 1: A fixed room without any obstacles was created, and people (cellular
automata) were inserted at random locations. The number of occupants varied
between 1 and 80 (room loading between 1 and 80%); in each case, the occupants
would move towards the exit provided that their route was not blocked by the fire,
causing a detour, or by other people, causing queues at an exit. The starting position

Table 14.6 (continued)

(c) Very high demand

Emergency exit Demand 750 Time for last to leave “entry”
width

(100,80) “entry” point 629 311 208

Emergency exit 120 120 115

Last to leave 629 311 208

(100,90) “entry” point 585 292 204

Emergency exit 115 120 116

Last to leave 585 292 204

(d) Location of emergency exit

Demand (100,0) (100,90) Percentage saving

200 180 168 7

500 439 420 4

750 670 585 13

(e) Width of main exit: Emergency exit at (100,0)

Demand 1 2 3 Percentage saving

200 180 133 125 31

500 439 222 155 65

750 670 338 225 66

(f) Width of exit: Emergency exit at (100,90)

Demand 1 2 3 Percentage saving

200 168 135 125 31

500 420 209 143 66

750 585 292 204 65

14 Cellular Automata and Agents in Simulations 327

of the fire was generated randomly, and the simulations until the room had been
evacuated.

The results from these simulations are shown in Fig. 14.12.
These results can be modelled by the logistic curve

C ¼ 82
1þ 7:2e�0:08Pð Þ

where C is the percentage number of casualties and P is the population.

Model 2: Investigating the Effect of Exit Width
Simulations were carried out, where the width of the exit varied, again with
between 1 and 80 people present. The results are summarized in Fig. 14.13.

These simulations have shown that for normal room loading (office or resi-
dential), there is an advantage to having wider (2 width) exit points, normally, the
door and a specific (extra) fire exit, and for very high loadings, class/lecture rooms,
music concerts and sporting events, there seems to be a need for even wider exits (3
or more width).

Fig. 14.11 Simulating the spread of a fire

328 K. Smith et al.

Fig. 14.12 The effect of
population size on the number
of casualties

Fig. 14.11 (continued)

14 Cellular Automata and Agents in Simulations 329

Model 3: Investigating the Effect of the Exit Location
Three locations for a single exit were considered. The results showed that in the
case of a randomly located fire, the location of the exit does not influence the
number of casualties Fig. 14.14. Hence, it would seem that when designing a
facility with a single exit, when a fire could occur anywhere, the precise location of
the exit is not an important design feature.

Summary: The simulations demonstrated that in the event of a fire occurring in
an enclosed area, the location of the exit is much less significant than the capacity of
this exit. In practice, this implies that the entry point (most used as an exit in
emergencies), which aims to control/restrict entry, must be able to increase its (exit)
capacity in an emergency.

Note: Choice of Emergency Exit
Each agent carries a memory of entry points/exit points and uses this information in
their choice of emergency exit.

For example, for a room with several possible exits with attractiveness
(knowledge-based or user-based) m1;m2; ::;mn, the probability of heading towards
exit i is given by

PðexitiÞ ¼ SiP
Sj

where Si ¼ mi=di

This can be extended through the addition of a crowd effect, where the agents
tend to follow the crowd when the probability is given by

Fig. 14.13 The effect of exit width on the number of casualties

330 K. Smith et al.

PtðexitiÞ ¼ nðdiÞSiP
ntðdjÞSj

where ntðdiÞ relates to the attractiveness of exit i at time t.

References

1. Camp T, Boleng J, Davies VA (2002) Survey of mobility models for ad hoc network research.
Wireless communications & mobile computing (WCMC): Special issue on mobile ad hoc
networking: research, trends and applications, vol 2, pp 483–502

2. Johnson DB, Maltz DA (1996) Dynamic source routing in ad hoc wireless networks. In:
Mobile computing, Kluwer Academic Publishers, pp 153–181

3. Choffnes DR, Bustamante FE (2005) An integrated mobility and traffic model for vehicular
wireless networks. In: Proceedings of the 2nd ACM international workshop on vehicular
ad-hoc networks, pp 69–78

4. Yu S, Al-Jadir L, Spaccapietra S (2005) Matching user’s semantics with data semantics in
location-based services, 1st workshop on Semantics in Mobile Environments (SME’05)

5. Smith A, Berry S (2012) Evaluation of a framework for measuring efficiency in opportunistic
ad-hoc networks, emerging intelligent data and web technologies. In: 3rd international
conference

6. Smith A, Hill R (2011) Towards framework for the evaluation of efficient provisioning in
opportunistic ad-hoc networks. In: Proceedings of the 2011 international conference on P2P,
IEEE Computer Society

Fig. 14.14 The effect of exit location on number of casualties

14 Cellular Automata and Agents in Simulations 331

Chapter 15
Three Big Data Case Studies

Marcello Trovati and Andy Baker

15.1 Case Study 1: Criminology

The utilisation of Big Data within the criminology field has allowed a revaluation of
the traditional assessment and investigation of available data sources, pushing
criminological research towards new frontiers [1, 2]. However, the enormous
amount of data, which is now available from numerous sources focusing on
criminology , has created both challenges and opportunities in the discovery of
innovative approaches to prevent, detect and predict crime.

In particular, an important aspect of current research is the automation of the
decision-making process applied to criminology, see Fig. 15.1, and to enable an
automated assessment of the available data, to facilitate the knowledge discovery
process.

15.1.1 Text Analysis of Datasets

Text fragments were analysed via the Stanford Parser [3] and Python NLTK [2], and
the probabilistic relationships among the different concepts were extracted via text
patterns. The text patterns considered included, first of all, the following quadruples:

NP1;MOD; PROB; keyword;NP2ð Þ

M. Trovati (&)
Department of Computer Science, Edge Hill University,
Ormskirk L39 4QP, UK
e-mail: M.Trovati@derby.ac.uk; trovatim@edgehill.ac.uk

A. Baker
College of Engineering and Technology, University of Derby,
Kedleston Road, Derby DE22 1GB, UK

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_15

333

where

• NP1 and NP2 are the noun phrases, where a noun is the head word.
• keyword refers to probabilistic terms collected and identified in an ontology [1].
• MOD is the keyword modality, which can be either positive or negative,

depending on whether it confirms or negates the existence of a specific prob-
abilistic relationship.

• PROB includes keywords associated with probability, such as may, might,
could and likely.

Similarly, we also define the following pattern:

MOD;VerbKeyword;NP1;NP2ð Þ:

In such case, its components are the same as in the previous pattern, with the
only difference in the characterisation of VerbKeyword, which includes a verb
followed by link, cause and correlation.

An example of the first pattern is the following sentence:

A wealthy background is not likely to influence mental well-being.

This suggests that a wealthy background and mental well-being are probably not
linked by a relation. In particular, the modality, which refers to the keyword “not”,
captures such lack of relationship. Note the presence of a PROB keyword, namely
“likely”. For more details and full theoretical justification, please refer to Trovati
and Bessis [1].

Fig. 15.1 General architecture of Bayesian networks for crime detection as discussed in Trovati
[1]

334 M. Trovati and A. Baker

15.1.2 Node Extraction

In the manual definition of DNs, the identification of the appropriate nodes typically
depends on a variety of parameters, including personal choice. There could be, in
fact, some concepts, such as “day”, which could be considered per se, even though
when an attribute, for example, “cloudy” is associated with them. Alternatively,
“cloudy day” might be considered as a single entity. Clearly, this task is very
complex to fully address when extracting nodes automatically from text, due to the
dependency on the user’s preferences, as well as on the deep semantic under-
standing, which would be required.

In this context, each node refers to a concept consisting of one or more terms
extracted from text, directly identifiable from structured datasets, or from textual
sources to extract collections of nouns, as well as keywords defined by the user.

Similar to Trovati [1], semantically equivalent noun collocations, such as “un-
lawful act”, would be considered equivalent to, for example, “criminal act”. In the
implementation of the system, WordNet was used to identify semantically equiv-
alent objects. In particular, if 〈adj 1, noun 1〉 and 〈adj 2, noun 2〉 such that adj 1 is
semantically similar to adj and so are noun 1 and noun 2, then these would be
regarded as the same entity and combined into a single node v.

This node would subsequently be incorporated into the corresponding stemming
root unless the user wishes to use a different root. For example, words such as
“cats” and “pussy cat” would have the same root “cat”.

15.1.3 Extraction of Dependency Networks

Once the relevant nodes are identified, suitable network(s) are created depending on
the different relations between them defined by the text analysis results.

In particular, the text patterns discussed above provide the links between the
concepts in NP1 and NP2. In the approach used in this context, the nodes contained
in NP1 are pairwise connected with the nodes from NP2, aiming to maximise recall
rather than precision.

Once the network or fragments of networks have been defined, their properties
can be further investigated, which will provide an insight into the probabilistic
relations, based on the threshold pt ¼ 0:5 [1].

15.1.4 Description of the Dataset

Three unstructured datasets were considered for validation purposes. The first
contained research questionnaires containing information concerning change
management process during times of austerity within an English police service.

15 Three Big Data Case Studies 335

A total of 103 interviews were transcribed for subsequent text analysis. The other
two datasets were the Reuters News Corpus and the Brown Corpus [3]. The former
contains news stories for text mining, information retrieval, and machine learning
research and evaluation, with over 800,000 manually categorised newswire stories.
They contain texts from 500 sources, categorised by the relevant genre, such as
news, editorial and reviews. In particular, the extraction of relevant information
obtained from these two datasets would provide further relevant insights. In fact,
while the above interviews contain specific information relevant to a specific
criminology aspect, the Reuter and Brown Corpora can provide further intelligence
and knowledge based on its size and contextual width.

15.1.5 Implementation

The main implementation was carried out in Python 2.7 with the NLTK and
NetworkX libraries. NLTK provides an interface to more than 50 corpora and
lexical resources such as WordNet, which integrates text processing libraries to
classify and analyse textual data as well as semantic reasoning capabilities [1].

The NetworkX library is designed to define, analyse and investigate the proper
[4] ties of complex networks [4]. This was used to define the networks extracted
from the textual sources, and subsequently analyse them via the numerous methods
available in this library. In fact, it contains several algorithms to fully assess the
topology of networks.

15.1.6 Evaluation

All the interviews were merged into a text file, which was subsequently analysed as
based on the following keywords:

• Leadership
• Collaboration
• Austerity
• Financial and staff cuts
• Partnership
• Rehabilitation
• Punishment
• Risk management
• Organisational change
• Service user
• Community penalties
• Public image

336 M. Trovati and A. Baker

• Drugs
• Violence
• Privatisation
• Structural change
• Offender
• Politics
• Police
• Prison
• Sex offenders and
• Mentally disordered offenders.

To maximise the recall of relevant information, we also considered their lexical
variations based on WordNet.

The analysis defined a network with over 15,000 nodes and over 48,000 edges,
exhibiting a scale-free structure as depicted in Fig. 15.2.

Using the method described in Trovati and Bessis [1, 5], the parameter k was
assessed to be approximately 2.9. Subsequently, all the datasets were analysed to
identify suitable nodes, based on the set of keywords described above, and corre-
sponding synonymy properties.

15.1.7 Dependency Network Extraction

Once the nodes and their mutual connections were identified, a group of crimi-
nologists manually assessed the different entries and evaluated approximately 80
concepts, which were subsequently compared with the automated extraction of the
corresponding influences. This generated a recall of 71% and a precision of
approximately 62%.

Fig. 15.2 Scale-free
structure of the network
extracted

15 Three Big Data Case Studies 337

Once the probability extraction algorithm has been carried out, only relations
with an associated probability above the probability threshold were kept.
Figure 15.3 depicts some DNs extracted.

The same group of experts also evaluated the above dependency networks, who
agreed on their topological structure. However, it was noted that an edge between
localness and support should be present.

Fig. 15.3 Two DNs extracted from the datasets

338 M. Trovati and A. Baker

15.2 Case Study 2: Computational Objectivity
in the PHQ-9 Depression Assessment

The Patient Health Questionnaire (PHQ-9) is the most common depression
assessment tool, which aims to identify the severity and type of depression an
individual may be suffering from. It is based on the Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV) criteria, and it consists of nine questions
(each utilised by general practitioners and mental health professionals in the
diagnosis of depression [5]. Each question is scored with values ranging between 0
(“not at all”) and 3 (“every day”) with a general score of 27, as shown in
Table 15.1.

The validity of the PHQ-9 must be constantly monitored. A measure of internal
consistency is the Cronbach’s alpha, which highlights the extent to which all items
in a questionnaire measure the same concept. More specifically, this further assesses
the efficacy of PHQ-9 measure depression [5]. It is computed as

a ¼ K
K � 1

1�
PK

i¼1 r
2
Y

r2X

 !

where

K is the number of items in the test,
r2X is the variance of observed total questionnaire scores and
r2Y is the variance of component i for the current sample of people.

Cronbach’s alpha is within the interval ½0; 1�, whose categorisation is as follows:

• a � 0.9 excellent
• 0.7 � a < 0.9 good
• 0.6 � a < 0.7 acceptable
• 0.5 � a < 0.6 poor
• a < 0.5 unacceptable

The Cronbach’s alpha for the PHQ-9 has been assessed as 0.85, suggesting it is a
good resource for detecting depression. However, due to the importance of
depression, it is crucial to ensure it can be upgraded to the “excellent” category, that
is when a � 0.9.

Table 15.1 Depression
severity score

Outlined depression severity PHQ-9 score

1–4 None

5–9 Mild

10–14 Moderate

15–19 Moderately severe

20–27 Severe

15 Three Big Data Case Studies 339

Analytical hierarchy process (AHP) aims to provide a set of tools to facilitate the
decision-making process with a wide set of applications to a variety of multidis-
ciplinary contexts [5]. The main idea behind AHP is the evaluation of the impor-
tance of specific contributors, which are likely to have an influence on an objective,
by carrying out a pairwise comparison between each and every contributing ele-
ment. This process is based on a rating scale, as depicted in Table 15.2, to deter-
mine the importance of each element when compared with other ones.

Since the PHQ-9 consists of nine questions, each of them can be regarded as
contributors, so that the AHP can be applied aiming to achieve the relevant diag-
nosis. To achieve objectivity, selected experts in the field would need to consider
each pairwise combination of questions so that they could decide and rate which of
the questions they consider more important. Once all the questionnaires have been
completed, an overall mean average can be computed, allowing the construction of
a final analysis pairwise comparison table.

AHP is an efficient method, which can be interactively modified at any stage of
development. Furthermore, it allows a thorough investigation of the problem, so
that any discrepancies can be addressed effectively. Furthermore, the AHP ques-
tionnaire could be distributed to a large number of experts representing particular
statistical cross sections of a population.

15.2.1 A Text Mining Approach

In order to improve the above method, text mining techniques were implemented to
automate the use of the AHP described above. Each question in the PHQ-9
questionnaire contains specific keywords, including the following:

• Pleasure
• Interest
• Hopeless

Table 15.2 Relative importances

Intensity of
importance

Definition Explanation

1 Equal
importance

Two elements contribute equally to objective

3 Moderate
importance

Experience and judgement slightly favour one element
over the other

5 Strong
importance

Experience and judgement strongly favour one element
over the other

7 Very strong
importance

Experience and judgment very strongly favour one
element over the other

9 Extreme
importance

The evidence favouring one element over another is of
the highest possible order of affirmation

340 M. Trovati and A. Baker

• Feeling down
• Depressed
• Asleep
• Sleep
• Tired
• Energy
• Appetite
• Overeating
• Failure
• Feeling bad
• Concentrating
• Moving slowly
• Fidgety
• Restless
• Death and
• Hurting

Such collections of keywords can provide an indication of the type and fre-
quency of their use. In fact, the more often they occur, the more likely they are to be
relevant in depression detection via the PHQ-9. PubMed contains over 24 million
citations and abstracts for biomedical literature, life science journals, and online
books [5].

Over 260,000 abstracts from PubMed were identified by considering the key-
words “PHQ-9” and “depression”. Subsequently, the combination of the keywords
corresponding to each of the nine questions was extracted from the above abstract,
and each of the items was then fed into the AHP method to assess the importance of
the questions.

The results were evaluated by a number of health professionals, who had agreed
on the suggested ordering. Furthermore, the weight of each question was deter-
mined by renormalising the number of occurrences of the corresponding keywords,
which proved more difficult to agree upon by the health professionals, with average
of 40%. This can be easily explained by the fact that this step would require a much
deeper understanding of the issues regarding depression assessment compared to
their ranking.

15.2.2 Conclusion

In this chapter, two study cases have been described, which highlight the impor-
tance of Big Data science and its applications. The exponential amount of data
which is being continuously created poses new challenges, which, if harnessed,
could advance the state-of-the-art technology in a variety of fields, as well as
providing new research direction to further develop theoretical approaches to data
acquisition, analysis and visualisation.

15 Three Big Data Case Studies 341

15.3 Case Study 3: Admissions Project

The objective was the construction of a predictive model to estimate the likelihood
that a given student would progress from an initial enquiry or application to
enrolling onto their chosen course of study.

The initial dataset comprised of 15 variables with categorisation of the values as
shown.

LOC (Location): six-level factor with values

DERBY, NEARBY BIG CITY, NEARBY, OTHER UK, SCOTWALESNI,
NOTUK

AGE: six-level factor with values

18; 19; 20�24; 25�29; 30�34 and 35þ
SEX: two-level factor with values

Male, Female

P2 (POLAR 2): five-level factor with values
P3 (POLAR 3): five-level factor with values

One, Two, Three, Four and Five

ETH (Ethnicity): seven-level factor with values

Asian, Black, Mixed, Missing, Not applicable, Other, White

DIS (Disability): eleven-level factor with values

A No disability,
B A social/communication impairment such as Asperger’s syndrome/other

autistic spectrum disorder,
C Blind or have a serious visual impairment uncorrected by glasses,
D You are deaf or have a serious hearing impairment,
E A long-standing illness or health condition such as cancer, HIV, diabetes,

chronic heart disease or epilepsy,
F A mental health condition, such as depression, schizophrenia or anxiety

disorder,
G A specific learning difficulty such as dyslexia, dyspraxia or AD(H)D,
H Physical impairment or mobility issues, such as difficulty using your arms or

using a wheelchair or crutches,
I A disability, impairment or medical condition that is not listed above,
J Two or more impairments and/or disabling medical conditions,
M Missing

342 M. Trovati and A. Baker

SOCIO (Socioeconomic background): eight-level factor with values

Higher managerial and professional occupations,
Intermediate occupations,
Lower managerial and professional occupations,
Lower supervisory and technical occupations,
Not applicable,
Not classified / missing,
Routine occupations,
Semi-routine occupations,
Small employers and own account workers.

DOM (Domicile country): three-level factor with values

EU (excluding UK), Not EU, UK

TYPE (Type of education institution): eight-level factor with values

Academy, Further education, Grammar school, Independent school, Missing,
Other, Sixth form college, State

DEF (Deferred status): two-level factor with values

Yes, No

LIVE (Where is student living?): three-level factor with values

Home, Other, University

CAMP (Campus attending): three-level factor with values

B, C, Main

PLC (Placed status): two-level factor with values

Placed, Unplaced

ROUTE (Acceptance route): seven-level factor with values

Adjustment, Direct clearing, Extra, Firm choice, Insurance choice,
Main scheme clearing, Unplaced

Thirteen parameters were chosen Fig. 15.4 representing the relative importance
each variable towards the target value “Placed”.

This information was used to construct a predictive model.

15 Three Big Data Case Studies 343

Using the available data for the years 2012, 2013 and 2014 as an initial set of test
data, the predictive model showed a 0.753% error, wrongly forecasting the final
status of the applicants.

As an initial test, of the modelling process, a random sample of 2000 was chosen
from the 2014 applications dataset and used as input data into the model con-
structed from the (full) 2013 data, the results using this test data were that for 97%
of the cases the model accurately forecast the students decision.

Applying 2012–2014 versus the previous year’s data, using location and post-
code only, the following overall projections were available (Table 15.3).

These results, using historic data, indicated that this approach is able to provide
information regarding expected (new student) enrolment using information from
students UCAS data.

Figure 15.5 provides a visual representation of the admissions data, each arrow
representing a causal relationship between variables.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

LOC AGE SEX P2 P3 ETH DIS SOCIO DOM TYPE DEF LIVE CAMP

IM
PO

RT
AN

CE

ATTRIBUTE IMPORTANCE 2011-2014
2011 2012 2013 2014

Fig. 15.4 Relative importance of the chosen factors

Table 15.3 Comparing the results from the model with enrolment data

Number of applicants Number enrolling Projected enrolments Error (%)

2012 16,827 3002 2673 +10.97

2013 17,874 3172 3156 +0.50

2014 19,901 3615 3642 −0.75

344 M. Trovati and A. Baker

References

1. Trovati M, Bessis N (2015) An influence assessment method based on co-occurrence for
topologically reduced big data sets. Soft Computing

2. Bird S, Loper E, Klein E (2009) Natural language processing with python O’reilly media Inc
3. Manning CD, Schutze H (1999) Foundations of statistical natural language processing. MIT

Press, Cambridge
4. Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function

using networkX. Proceedings of the 7th Python in Science Conference (SciPy 2008)
5. Johnson A, Holmes P, Craske L, Trovati M, Bessis N, Larcombe P (2015) A computational

objectivity in depression assessment for unstructured large datasets. Proceedings of IBDS-2015

Fig. 15.5 Causal relationships between parameters

15 Three Big Data Case Studies 345

Part III
Appendices

Chapter 16
Appendix A: Queueing Theory

Stuart Berry

16.1 Introductory Model

The usual introductory models are derived in the situation where both arrivals and
service times are random and there are n-like servers, the M/M/n model. The results
from this model provide an indication of the suitability of the required service in an
application.

16.2 Analysis of a M/M/* Service System: Derivation
of Formula

Arrivals and service times follow an exponential distribution at average rates of
k per time unit (for arrivals k ¼ a and for service k ¼ b); thus

f tð Þ ¼ ke�kt

and the probability of an event/arrival/service completed in the (small) interval:

a ¼ t to b ¼ tþ dt

is given by

S. Berry (&)
College of Engineering and Technology, University of Derby,
Kedleston Road, Derby DE22 1GB, UK
e-mail: s.berry@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_16

349

Zb
a

ke�ktdt ¼ e�ka � e�kb

From which, it follows that

e�ka � e�kb ffi 1� ktþ � � �ð Þ � 1� k tþ dtð Þþ � � �ð Þ ffi kdt

Therefore, it follows that in a small interval of time

P arrivalð Þ ¼ adt
P service endsð Þ ¼ bdt

To complete the analysis, consider the situation where there are n customers in
the system (queueing or being served) and consider how there can (still) be
n customers a time dt later (Fig. 16.1).

Thus, the state where there are n customers in the system at time ðtþ dtÞ could
have been achieved by:

(i) ðn� 1Þ customers at time t, one arrival, none leaving;
(ii) ðnÞ customers at time t, no arrival, none leaving; and
(iii) ðnþ 1Þ customers at time t, no arrival, one leaving.

Giving the probability of n customers in the system at time tþ dt as

Pn tþ dtð Þ ¼ kdt 1� ldtð ÞPn�1 tð Þþ 1� ldtð Þ 1� kdtð ÞPn tð Þþ ldt 1� kdtð ÞPnþ 1 tð Þ

Expanding and neglecting terms Oðdt2Þ gives

Pn tþ dtð Þ ¼ kdtð ÞPn�1 tð Þþ 1� ldt � kdtð ÞPn tð Þþ ldtð ÞPnþ 1 tð Þ

or Pn tþ dtð Þ � Pn tð Þ ¼ kdtPn�1 tð Þþ �ldt � kdtð ÞPn tð Þþ ldtPnþ 1 tð Þ

Dividing by dt and letting dt ! 0 lead to a set of simultaneous differential
equations.

Steady-state results can now be derived from these results:

leave system

join system

n-1 in
system

n in
system

n+1 in
system

Fig. 16.1 Defining queues

350 S. Berry

for n [0 : dPn tð Þ
dt ¼ kPn�1 tð Þþ �l� kð ÞPn tð Þþ lPnþ 1 tð Þ ¼ 0

and for n ¼ 0 :
dP0 tð Þ
dt

¼ �kP0 tð Þþ lP1 tð Þ ¼ 0

Giving the resultant probabilities

P1 ¼ qP0; P2 ¼ qP1 or P2 ¼ q2P0

Note as
P1
i¼0

Pi ¼ 1 then P0
P

qi ¼ 1 thus P0 ¼ 1� q

Using these results, it follows that the average number in system is given by

X1
i¼1

i Pi ¼
X1
i¼1

i qi P0 ¼ qþ 2q2 þ 3q3 þ � � �� �
P0 ¼ q 1þ 2qþ 3q2 þ � � �� �

1� qð Þ

¼q
1

1� qð Þ2
 !

1� qð Þ ¼ q
1� qð Þ

Average number in queue from

X1
i¼1

i� 1ð ÞPi ¼
X1
i¼1

i qi P0 �
X1
i¼1

Pi

¼ q
1� qð Þ � q ¼ q2

1� qð Þ

Average time in queue from

¼ Average time for system on arrivalð Þto clear
¼ Average number in system� Average service time

¼ q
1� qð Þ

1
l

Average time in system

¼ Average time in queueþAverage time to be served

¼ q
1� qð Þ

1
l
þ 1

l

¼ 1
1� qð Þ

1
l

16 Appendix A: Queueing Theory 351

The general formula for the average number in the queue is given by:

k2r2 þ q2

2 1� qð Þ

ForM=M=1 this reduces to q2

1�qð Þ
M=D=1 this reduces to q2

2 1�qð Þ

16.3 Additional Results

For a situation where there is limited waiting space (many applications) if there is
capacity for only k customers, here

Pn ¼ qnP0 for n� k otherwise Pn ¼ 0

Thus
Pk
i¼0

Pi ¼
Pk
i¼0

qiP0 ¼ 1

Pk
i¼0

qi ¼ 1� qkþ 1
� �

=ð1� qÞ
Then P0 ¼ 1� qð Þ= 1� qkþ 1

� �
Also it follows that P customer turns awayð Þ ¼ P system fullð Þ ¼ PðkÞ ¼ qkP0

Notice that

(1) when the service rate is dependent upon the state of the system, for example the
case when there is more than one server, it follows that

Pn tþ dtð Þ ¼ kdtð ÞPn�1 tð Þþ 1� lndt � kdtð ÞPn tð Þþ lnþ 1dt
� �

Pnþ 1 tð Þ

Pi ¼
Q

kQ
lj
P0

(2) if arrivals also depend upon the state of the system

Pn tþ dtð Þ ¼ kn�1dtð ÞPn�1 tð Þþ 1� lndt � kndtð ÞPn tð Þþ lnþ 1dt
� �

Pnþ 1 tð Þ

Pi ¼
Q

kjQ
lj
P0

352 S. Berry

For example, if

lj ¼ kkj then q ¼ 1
k

and Pi ¼ 1
k

� �i
P0 with P0 ¼ 1� 1

k

Or if lj ¼ kkj�1 j ¼ 2; 3; . . .and l1 ¼ l then Pi ¼
Qi�1

j¼2

kj

Qi�1

j¼2

lj

P0

Or when lj ¼ l j ¼ 1. . .k and lj ¼ 2l j ¼ ðkþ 1Þ. . .

Pi ¼ qiP0 i ¼ 1. . .k and

Pi ¼ qi

2k�i
P0 i ¼ kþ 1ð Þ. . .

Example When there are 4 customers in the system, the service capacity is doubled
and this leads to the probabilities:

P1 ¼ qP0;P2 ¼ q2P0;P3 ¼ q3P0;P4 ¼ q4

2
P0;P5 ¼ q5

22
P0; . . .

Leading to an expression to determine P0

P0 1þ qþ q2 þ q3 þ q4

2
þ q5

22
þ � � �

� �
¼ 1; or

P0 1þ qþ q2
� �þ q3 1þ q

2
þ q2

22
þ � � �

� �� �
¼ 1

16 Appendix A: Queueing Theory 353

Chapter 17
Appendix B: Function Optimisation
Techniques Genetic Algorithms
and Tabu Searches

Val Lowndes and Mirko Paskota

17.1 Introducing Genetic Algorithms

This technique was developed by John Holland introducing to attempt to overcome
the problems faced by more classical techniques, in problems where, for example,
there are multiple objectives.

Example:
To determine the maximum (integer) value of the function f ðxÞ ¼ 15x� x2;

0� x� 16.
The method proceeds by generating a set (population) of (random) trial solu-

tions, represented as binary numbers.
Stage 1 (Table 17.1)
Stage 2
From these test values (genetic algorithm strings), select a new set of strings to

be processed.
Method 1: Tournament selection randomly choose 8 pairs of strings from the

list above and carry forward the best string from each pair; for example, Table 17.2
shows the selection of the first 4 new strings.

Stage 3
Generate new strings. For each pair, generate a “crossover” point (Table 17.3).
Repeating stages 1 and 2 until the process converges.
Stage 4
Each element in these new strings is considered for random mutation, typically

if selected its value is reversed.

V. Lowndes (&)
University of Derby, Kedleston Road, DE22 1GB Derby, UK
e-mail: V.P.Lowndes@derby.ac.uk

M. Paskota
College of Engineering and Technology, University of Derby,
Kedleston Road, DE22 1GB Derby, UK

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_17

355

Table 17.1 Genetic algorithm initial population

String x f(x)

1 12 01100 36

2 3 00011 36

3 11 01011 44

4 15 01111 0

5 11 01011 44

6 7 00111 56

7 14 01110 14

8 8 01000 56

Table 17.2 Tournament selection for new strings

Selected string

1 01100 36 01100

4 01111 0

5 01011 44 01011

7 01110 14

5 01011 44 00111

6 00111 56

6 00111 56 00111

4 01111 0

Table 17.3 Crossover to generate new strings

Selected strings Cut point New strings Function value

1 01100 3 01111 15 0

5 01011 01000 8 56

6 00111 4 00111 7 56

6 00111 00111 7 56

5 01011 2 01100 12 36

1 01100 01011 11 44

3 01011 5 01011 11 44

4 01111 01111 15 0

The bold values illustrating the construction of the new strings

Table 17.4 Illustrating the mutation operation

String 0 1 1 0 1

Random number 0.0845 0.0007 0.5004 0.0001 0.9332

New string 0 0 1 1 1

356 V. Lowndes and M. Paskota

Repeating these stages until the process converges.
Typically, if an attached random number is less than 0.001, its value is reversed

(Table 17.4).
Alternative Stage 2: Roulette selection (Table 17.5).
Then, crossover and mutation are carried out as before.
An approach using genetic algorithms, and tournament selection, was used to

determine a “good” solution to the problem:

Maximise ð31x� x2Þ Optimal function value ¼ 240:25

using 8 strings: mutation rate 0.001 (mutate 0.1% of binary values at random).
Stopping when the variance in the 8 function values is less than 0.1,

convergence.
Both sets of results show how the genetic algorithm acts to move the search

towards a good solution. The successive values of the population variance shown in
Fig. 17.1 indicate the convergence in the process.

17.2 Tabu Search

Tabu search is a deterministic search procedure, and if the starting point is repeated
then the end point will be unchanged.

This process tries to extend the search by prohibiting the return (of the search) to
an already visited point until a given number of steps have been completed.

For example,

to minimise f ðx; yÞ ¼ ðx� 1Þ2 þðy� 8Þ2
from the starting point ½x; y� ¼ ½5; 5�
with a step size h ¼ 1 ðlarge just used for an introductionÞ

Table 17.5 Selection by roulette wheel

String x f(x) Cumulative Percentage Random numbers String

1 12 1100 36 36 0.126 0.284 2

2 3 11 36 72 0.252 0.560 5

3 11 1011 44 116 0.406 0.414 5

4 15 1111 0 116 0.406 0.716 6

5 11 1011 44 160 0.559 0.414 5

6 7 111 56 216 0.755 0.129 2

7 14 110 14 230 0.804 0.457 5

8 8 1000 56 286 1.000 0.979 8

17 Appendix B: Function Optimisation Techniques Genetic Algorithms … 357

Step 1

Current point ½5; 5; f ð5; 5Þ ¼ 25�
Tabu list empty

Defining the neighbourhood points, there are 4 such points and function values:

5; 6; 20½ �
4; 5; 18½ � 5; 5; 25½ � 6; 5; 34½ �

5; 4; 32½ �

The best neighbouring point is [4, 5; 18].
Move to this point and place [5, 5; 25] on the tabu list.
End of Step 1:

Average function values Variance of function values

Run 2:

Results:

0 1 2 3 4 5
0

50

100

150

200

250

0 1 2 3 4 5
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 1 2 3 4 5 6
0

50

100

150

200

250

0 1 2 3 4 5 6
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Run 1: plotting by Genetic Algorithm cycle.

Fig. 17.1 Results from the use of a genetic algorithm

358 V. Lowndes and M. Paskota

Current point 4; 5; 18½ �
Tabu list 5; 5; 25½ �

Step 2:

Current point 4; 5; 18½ �
Tabu list 5; 5; 25½ �

Defining the neighbourhood points, there are 4 such points and function values:

4; 6; 13½ �
3; 5; 13½ � 4; 5; 18½ � 5; 5; TABU½ �

4; 4; 25½ �

The best neighbouring point is [4, 6; 13]
Move to this point and place [4, 5; 18] onto the tabu list.
End of Step 2:

Current point 4; 6; 13½ �
Tabu list 5; 5; 25½ �

4; 5; 18½ �

and so on.
The search pattern, starting from the point [5, 5] passes through the best point at

[1, 8], function value 0, optimal solution found, the search path is shown in
Fig. 17.2.

Tabu list contains the points

5; 5; 4; 5; 3; 5; 3; 6; 2; 6; 2; 7; 1; 7; 1; 8; 2; 8; 2; 9

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10Fig. 17.2 Tabu search path

17 Appendix B: Function Optimisation Techniques Genetic Algorithms … 359

Here, the tabu list has infinite length; however, often a finite length is used so
that a point could be visited more than once. As a consequence, the size of the tabu
list can influence the quality of the determined solution.

The next plots were generated using a step size of 0.5 with the optimal solution
located at the point (1, 8).

The plots in Fig. 17.3 show that when the tabu list is very short, the search
cannot escape from a good point.

Note that the difficulty in using a tabu search (only) to disclose the optimal
solution of a problem is also related to the size of the search space, the location of
the starting point and the step size.

Example to illustrate the effect of step size. Here, the optimal solution is at the
point (1, 1).

The starting points were generated randomly to 2 decimal places with a step size
for the search of 0.1.

The first plot shown in Fig. 17.4 demonstrates that the search has successfully
located the optimal point but the search shown in the second plot has not located the
optimal solution, thus showing that a successful search is dependent upon the
starting point and the step size.

Consequently, the search could produce a good solution rather than the optimal
solution.

Infinite Tabu list

Size = 5 Size = 10 Size 50

-2 0 2 4 6 8 10
0
1
2
3
4
5
6
7
8
9

10

0 2 4 6 8 10
0
1
2
3
4
5
6
7
8
9

10

0 2 4 6 8 10
0
1
2
3
4
5
6
7
8
9

10

-2 0 2 4 6 8 10
0
1
2
3
4
5
6
7
8
9

10

Fig. 17.3 Tabu search paths with tabu list size

360 V. Lowndes and M. Paskota

17.3 Comparing “Line Search” Methods, Derivative
and Non-derivative-based Approaches with Heuristic
Approaches

The objective is to determine the location of the minimum value for the function
y = f(x), only one independent variable, comparing the results from line searches
with those obtained using an approach based on genetic algorithms.

Many of these methods are “said” to be applicable, where the function is
quasi-convex (or concave).

Non-differential-based Line Search Methods

This approach follows the methodology (Fig. 17.5):

Search space: Initial range a to b, successively reduced, function values
known

Two new points: determine the function values at c and d

Update reduces the search space:

f3\ f2 new search space c to b

f2\ f3 new search space a to d:

repeating until c and d are sufficiently close.

-0.5 0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

2

-0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

Fig. 17.4 Tabu search showing the effect of step size

f1 f2 f3
f4

a b
c d

Fig. 17.5 Defining 4 point line searches

17 Appendix B: Function Optimisation Techniques Genetic Algorithms … 361

17.3.1 General Case

The “distance” between c and d reduces at each stage; at the first step, the search
space is a to b, then if

ab ¼ 1;

ad ¼ x; cb ¼ x;

ac ¼ bd ¼ 1� x hence cd ¼ ð2x�1Þ

Then, at the second step, the search space is reduced from a to c.
The four points are now as follows:

a; c0; d0 and b0 ð¼ dÞ

then

ab0 ¼ x;

ad0 ¼ x2;

Hence, central width ¼ c0d0 ¼ x ð2x�1Þ,
and at the n-th step, central width ¼ ð2x�1Þxn�1.
Example: x ¼ 0:8 (Table 17.6)

Note : x ¼ 1 after n steps width ¼ 1; no search carried out
x ¼ 0:5 at initial step width ¼ 0; no search carried out

17.3.2 Golden Section Method

This approach uses the interval division approach but reduces the calculations
required by an appropriate selection of the internal points so that at each stage there
is only one new function value to be calculated:

At stage 0 ab ¼ 1; ad ¼ x; cb ¼ x
At stage 1 c0 ¼ d; a0 ¼ c; b0 ¼ b; d is now the only new point:

Table 17.6 Illustrating the reduction in the [0.2, 0.8] search space

Step, search points a c d b Central width cd Width cb

0 0 0.2 0.8 1.0 0.6 0.8

1 0 0.16 0.64 0.8 0.48 0.64

2 0 0.128 0.512 0.64 0.384 0.512

362 V. Lowndes and M. Paskota

As a consequence, it follows that

ad ¼ x and ac0 ¼ 1�x2 ðc0d ¼ x2; ad ¼ 1Þ
x ¼ 1�x2 or x2 þ x� 1 ¼ 0

giving x ¼ 0:6180 the Golden Ratio:

The first 4 steps in a search could have the search points (x values) (Table 17.7).
The question is as follows:
“Is the reduction in calculations counterbalanced by a greater number of stages

to achieve a given convergence?”

17.3.3 Fibonacci Search

This makes use of the Fibonacci sequence, Fnþ 1 ¼ Fn þFn�1, and the first terms in
this sequence are shown in Table 17.8.

Here, the internal points are calculated from the following:

point c ¼ ak þ Tn�k�1

Tn�kþ 1
bk � akð Þ and point d ¼ ak þ Tn�k

Tn�kþ 1
bk � akð Þ

Note: adding gives

cþ d ¼ aþ b as Tn�k�1 þ Tn�k ¼ Tn�kþ 1

where n defines the starting point, number of iterations. Using n = 10, (Table 17.9).
Notice that these values are very similar to those obtained for a search using the

golden Ratio.

Table 17.7 Illustrating the reduction in the Golden Ratio search space

Stage a c d b Width cd Width cb

0 0.000 0.382 0.618 1.000 0.236 0.618

1 0.000 0.236 0.382 0.618 0.146 0.382

2 0.000 0.146 0.236 0.382 0.090 0.236

3 0.000 0.090 0.146 0.236 0.056 0.146

4 0.000 0.056 0.090 0.146 0.034 0.090

Table 17.8 Fibonacci numbers

Term 1 2 3 4 5 6 7 8 9 10 11 12

Number 1 1 2 3 5 8 13 21 34 55 89 144

17 Appendix B: Function Optimisation Techniques Genetic Algorithms … 363

The full search space table shows that differences, in the size of the active space,
only occur at the final stages of the search (Table 17.10).

17.3.4 Catalan Search

This makes use of the Catalan sequence, C1;C2;C3;C4; . . .;Cnþ 1; . . ., where

neighbouring terms of the sequence are related according to the recursion Cnþ 1 ¼
2 ðnþ 1Þ
nþ 2

� �
Cn (see, for instance, Larcombe [1]. The first few terms are explicitly

shown in Table 17.11.
Here, the internal points are calculated from the following:

point c ¼ ak þ Cn�k

Cn�kþ 1
bk � akð Þ and point d ¼ ak þ 1� Cn�k

Cn�kþ 1

� �
bk � akð Þ

Table 17.9 Fibonacci search

Stage a c d b Width cd Width cb

1 0 0.382 0.618 1.000 0.236 0.618

2 0 0.236 0.382 0.618 0.146 0.382

Table 17.10 Comparing golden Ratio and Fibonacci search

Search
step

Fibonacci
numbers

Fibonacci
search

Active
space

Golden section Active
space

1

9 2 0.333 0.667 0.014 0.382 0.618 0.013

8 3 0.400 0.600 0.021 0.382 0.618 0.021

7 5 0.375 0.625 0.035 0.382 0.618 0.034

6 8 0.385 0.615 0.056 0.382 0.618 0.056

5 13 0.381 0.619 0.090 0.382 0.618 0.090

4 21 0.382 0.618 0.146 0.382 0.618 0.146

3 34 0.382 0.618 0.236 0.382 0.618 0.236

2 55 0.382 0.618 0.382 0.382 0.618 0.382

1 89 0.382 0.618 0.618 0.382 0.618 0.618

Table 17.11 Catalan numbers

Term 1 2 3 4 5 6 7 8 9 10 11 12

Number 1 1 2 5 14 42 132 429 1430 4862 16,796 58,786

364 V. Lowndes and M. Paskota

Giving the search regions, again starting with n = 10 (Table 17.12).
This approach has the (slight) advantage that it rejects less of the current search

space; however, convergence (to a required accuracy) will be slower.

Comparing the effectiveness and efficiency of Golden Ratio Search and Genetic
Algorithms applied to 2 variable problems.

Both approaches were applied to determine the minimum point for the (unimodal)
function

f ðx; yÞ ¼ ðx� 1:3467Þ2 þðy� 7:5643Þ2

with a search space 0–10.
The results tending to show that, in this example, the interval division approach

is both more effective and more efficient.

Golden ratio 0:006 s x ¼ 1:3436; y ¼ 7:5656
Genetic Algorithm 40 strings; 20 cycles;

0:04 s x ¼ 1:308; y ¼ 7:57
0:04 s x ¼ 1:354; y ¼ 7:290
0:04 s x ¼ 1:300; y ¼ 7:610
40 strings; 50 cycles
0:06 s x ¼ 1:345; y ¼ 7:560
0:06 s x ¼ 1:300; y ¼ 7:603

Both approaches were also applied to determine the minimum point for the
function, chosen as an extreme case:

f ðx; yÞ ¼ x� 1:3467ð Þ2 þ y� 7:5643ð Þ2 þ k
� �

x� 7:9ð Þ2 þ y� 0:1ð Þ2
� �

Table 17.12 Catalan search

Search step Catalan numbers Catalan search Active space

9 2 0.400 0.600 0.030

8 5 0.357 0.643 0.051

7 14 0.333 0.667 0.079

6 42 0.318 0.682 0.118

5 132 0.308 0.692 0.174

4 429 0.300 0.700 0.251

3 1430 0.294 0.706 0.358

2 4862 0.289 0.711 0.508

1 16,796 0.286 0.714 0.714

58,786

17 Appendix B: Function Optimisation Techniques Genetic Algorithms … 365

Note : k ¼ 0 a function with two minima and f ðx; yÞ ¼ 0 at both points
k[0 the minimum is at the point x ¼ 7:9; y ¼ 0:1:

Initially, set k ¼ 0:1.

Here the Optimal Solution x ¼ 7:9; y ¼ 0:1; f ðx; yÞ ¼ 0

Applying the golden Ratio (area search) gives the non-Optimal Solution.

0:007 s x ¼ 1:3427; y ¼ 7:5656

While the genetic algorithm can obtain the optimal solution, the quality of the
solution is dependent upon the number of strings and the maximum number of
cycles.

The results were as follows:

40 strings; 20 cycles

0:04 s x ¼ 8:514; y ¼ 0:2816 f ðx; yÞ ¼ 42:9262

100 strings; 20 cycles

0:07 s x ¼ 7:7830; y ¼ 0:2322 f ðx; yÞ ¼ 2:9697

0:07 s x ¼ 1:2979; y ¼ 7:490 f ðx; yÞ ¼ 10:590

0:08 s x ¼ 1:2800; y ¼ 7:513 f ðx; yÞ ¼ 10:577

0:07 s x ¼ 7:7921; y ¼ 0:1090 f ðx; yÞ ¼ 1:1398

100 strings; maximum 50 cycles or convergence

0:19 s x ¼ 8:0988; y ¼ 0:01216 f ðx; yÞ ¼ 4:0422

0:17 s x ¼ 8:0101; y ¼ 0:0950 f ðx; yÞ ¼ 1:2182

0:08 s x ¼ 7:9111; y ¼ 0:0990 f ðx; yÞ ¼ 0:0123

0:07 s x ¼ 7:5263; y ¼ 0:1401 f ðx; yÞ ¼ 13:1945

Here, there is no (or little) change in the time for the interval division search, but
the golden search converges to a suboptimal point; note: at each stage, the search
space is reduced by 62%, hence possibly excluding the global optimal solution (as
here).

Whereas the approach using genetic algorithms is able to determine the location
of optimal solution but with greater computation time, a tabu search from the
genetic algorithms converged value can then obtain the optimal solution
(Fig. 17.6).

Then, by setting k ¼ 1, the Optimal Solution is x ¼ 7:9; y ¼ 0:1; f ðx; yÞ ¼ 0.
Note: the golden section search will give the non-optimal solution as before.
The results from an investigation into the use of a genetic algorithm approach

were as follows:

366 V. Lowndes and M. Paskota

40 strings; 20 cycles

0:04 s x ¼ 7:418; y ¼ 0:9368 f ðx; yÞ ¼ 76:2418

0:07 s x ¼ 7:6434; y ¼ 0:2206 f ðx; yÞ ¼ 7:6434

0:10 s x ¼ 7:9077; y ¼ 0:0866 f ðx; yÞ ¼ 0:0239

40 strings; 50 cycles

0:07 s x ¼ 1:5241; y ¼ 7:4695 f ðx; yÞ ¼ 98:804

0:10 s x ¼ 7:8623; y ¼ 1:2093 f ðx; yÞ ¼ 103:20

0:08 s x ¼ 8:5313; y ¼ 0:0735 f ðx; yÞ ¼ 43:376

100 strings; maximum 50 cycles or convergence

0:20 s x ¼ 8:0242; y ¼ 0:1020 f ðx; yÞ ¼ 1:5626

0:20 s x ¼ 7:9225; y ¼ 0:1054 f ðx; yÞ ¼ 0:0535

0:19 s x ¼ 8:0122; y ¼ 0:2201 f ðx; yÞ ¼ 2:6842

0:18 s x ¼ 7:8483; y ¼ 0:3934 f ðx; yÞ ¼ 8:4046

40 strings; 100 cycles

0:08 s x ¼ 7:9121; y ¼ 0:0795 f ðx; yÞ ¼ 0:0567

0:08 s x ¼ 7:8979; y ¼ 0:22; f ðx; yÞ ¼ 1:4096

0:09 s; x ¼ 7:8861; y ¼ 0:1352; f ðx; yÞ ¼ 0:1417

0:09 s; x ¼ 1:4399; y ¼ 6:9997; f ðx; yÞ ¼ 118:594

100 strings; maximum 50 cycles or convergence

0:17 s x ¼ 7:9009; y ¼ 0:0766 f ðx; yÞ ¼ 0:0548

0:20 s x ¼ 7:8707; y ¼ 0:0997 f ðx; yÞ ¼ 0:0852

0:18 s x ¼ 8:6911; y ¼ 0:4405 f ðx; yÞ ¼ 78:398

0 10 20 30 40 50
0

1

2

3

4

5

6

7
x 105Fig. 17.6 Plot of best

function value at each genetic
algorithm cycle

17 Appendix B: Function Optimisation Techniques Genetic Algorithms … 367

Notice that for the (nicer) function

f x; yð Þ ¼ x� 1:3467ð Þ2 þ y� 7:5643ð Þ2 þ 10
� �

x� 4:9ð Þ2 þ y� 6:1ð Þ2
� �

Applying a genetic algorithm with 40 strings for a maximum of 50 cycles gave
the following (Fig. 17.7):

0:06 s x ¼ 4:89; y ¼ 6:11; f ðx; yÞ ¼ 0:0045

0:08 s x ¼ 4:94; y ¼ 6:10; f ðx; yÞ ¼ 0:0290

0:09 s x ¼ 4:88; y ¼ 6:22; f ðx; yÞ ¼ 0:2174

Applying a tabu search methodologies to the function:

f x; yð Þ ¼ x� 1:3467ð Þ2 þ y� 7:5643ð Þ2 þ 0:1
� �

x� 4:9ð Þ2 þ y� 6:1ð Þ2
� �

Solution at x ¼ 4:9; y ¼ 6:1

Starting from a random point, typical search paths are shown in Figs. 17.8a–d. In
each case, the starting point is shown by *, the end point by * and the best point found
by *. Notice, search a does not find the best point, searches b-d find the best point.

The searches were carried out for a fixed number of steps and the resulting
search paths are shown in Figs. 17.8a–d. Searches shown in Figs. 17.8b–d dis-
closed the optimal point so in general the search would need to consist of many
steps to be reasonably sure that the best solution has been found.

The function values, and best known value, at each step in a typical search are
shown in Fig. 17.9.

0 10 20 30 40 50
0

1

2

3

4

5

6

7
x 105Fig. 17.7 Best cost at each

cycle

368 V. Lowndes and M. Paskota

Repeating the searches for the “simpler” function

f x; yð Þ ¼ x� 1:3467ð Þ2 þ y� 7:5643ð Þ2 þ 10
� �

x� 4:9ð Þ2 þ y� 6:1ð Þ2
� �

Showed that here the search is better able to determine the location of the
optimal solution (Fig. 17.10).

Not best point Best point found

0 0.5 1 1.5 2 2.5
4

5

6

7

8

9

10

4 5 6 7 8 9
1

2

3

4

5

6

7
(a) (b)

Best point found Best Point found

3.5 4 4.5 5 5.5 6 6.5
4

5

6

7

8

9

10

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

(c) (d)

Fig. 17.8 a Not best point, b–d best point found

0

100

200

300

0 20 40 60 80 100

Fig. 17.9 Best cost and best
cost at each cycle

17 Appendix B: Function Optimisation Techniques Genetic Algorithms … 369

x ¼ 4:9; y ¼ 6:1 x ¼ 4:92; y ¼ 6:09

Here, if 4 decimal place accuracy is required, the search space (x and y between
0 and 10) has 1010 points, and if the starting point is (0, 0) and the solution is at (10,
10), the path to the solution will consist of 2 105

� �
steps; consequently, a search

would have more than this number of steps.
Solution times: see Fig. 17.11 plotting number of points (N) searched (in

thousands) against time for search (T) gave the model:

T ¼ 0:0022N2 � 0:0313N þ 1:994

Note : whenN ¼ 1; 000; 000 then T ¼ 2170:7 s ðover 36 minÞ
N ¼ 5; 000; 000 then T is over 15 h!!

Hence, an exhaustive or a full tabu search is not viable.

x=4.9, y=6.1 x=4.92, y= 6.09

2 3 4 5 6 7 8 9 10
5

5.5

6

6.5

7

7.5

3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9
(a) (b)

Fig. 17.10 Showing that both searches a and b Paths taken by tabu search

0

20

40

60

80

100

0 50 100 150 200 250

Fig. 17.11 Solution time and
search length

370 V. Lowndes and M. Paskota

Combining Tabu Search with Genetic Algorithms

This combination aims to employ the advantages of both approaches to develop a
more efficient and effective search procedure.

Using as a starting point for the tabu search, the best point generated by the
genetic algorithm, here starting from the point:

x ¼ 4:88; y ¼ 6:22; f ðx; yÞ ¼ 0:2174

The tabu search gave the location of the optimal solution x ¼ 4:9; y ¼ 6:1 with
the path to this solution shown in Fig. 17.12. The tabu search required 0.11 s and
the genetic algorithm 0.20 s giving a total solution time of 0.31 s.

Calculus-based Searches

If the function, f(x), is quasi-convex, it will have the form shown in Fig. 17.13a
with the derivative having the form shown in Fig. 17.13b.

4.7 4.75 4.8 4.85 4.9 4.95 5
6

6.05

6.1

6.15

6.2

6.25Fig. 17.12 Tabu search from
genetic algorithm best point

(a) plot of () (b) plot of ’()0

2.5

5

0 5 10 -1

0

1

2

0 2 4 6 8 10

Fig. 17.13 a Plot of f ðxÞ, b Plot of f 0ðxÞ

17 Appendix B: Function Optimisation Techniques Genetic Algorithms … 371

Interval division-based searches: these can be applied to the derivative of the
function, see previous section.

Bisection and gradient method

At the mid-point of the range, m ¼ ðaþ bÞ = 2, find the value of f 0ðmÞ,

f 0ðmidpointÞ\0 new range midpoint to b
f 0ðmidpointÞ[0 new range a to midpoint

Example:

f ðxÞ ¼ ðx�4Þ4 hence f 0ðxÞ ¼ 4ðx�4Þ3 search range; 0� 6

(Table 17.13)
Continue until converged to the acceptable tolerance; at each step, the search

space is halved, and thus, after n steps, the search space has become

ðb� aÞ 0:5n

Therefore, reduction to a, the space 10�y requires n ¼ ðyþ log ðb� aÞÞ = 0:3010
steps

For example : ðb� aÞ ¼ 1 and y ¼ 4 gives n ¼ 14 steps
ðb� aÞ ¼ 100 and y ¼ 4 gives n ¼ 20 steps

Newton’s Iterative Formula

Starting with the Taylor series

f : < ! < : f ðxÞ ¼ f ðxkÞþ x� xk
� �

f 0 xk
� �þ x� xk

� �2
2!

f 00 xk
� �þO x� xk

� �3h i

Table 17.13 The bisection method an illustrative example

a Mid-point Mid-point slope b New range

0 3 −4 6 m to b

3 4.5 0.5 6 a to m

3 3.75 −0.0625 4.5

3.75 4.125 0.00781 4.5

3.75 3.9375 −0.001 4.125

372 V. Lowndes and M. Paskota

an approximate solution to the equation f ðxÞ ¼ 0 can be determined using the
iterative scheme

xnþ 1 ¼ xn � f xnð Þ=f 0 xnð Þ

Then, as the optimum point for the function f ðxÞ occurs when gðxÞ ¼ f 0ðxÞ ¼ 0;
the required iterative scheme is

xnþ 1 ¼ xn � g xnð Þ = g0 xnð Þ
or xnþ 1 ¼ xn � f 0 xnð Þ = f 00 xnð Þ

Example: to determine the optimal value of the function

f ðxÞ ¼ ðx�4Þ4 þ 2:4

g ðxÞ ¼ f 0ðxÞ ¼ 4 ðx�4Þ3 and

g0ðxÞ ¼ f 00ðxÞ ¼ 12 ðx�4Þ2 with

x0 ¼ 8:

To give the iterative scheme xnþ 1 ¼ xn � 4ðxn � 4Þ3=ð12ðxn � 4Þ2Þ:
Starting with x0 ¼ 8, this gives the solution (Table 17.14):
If this process can be considered to have converged, the optimal value is at the

point x = 4.014.

Multi-variate Unconstrained Optimisation

Definition of Unconstrained Optimisation:

Minimise f ðxÞ such that x 2 <nf g

Here, there exists

an initial point x0

the solution at step k xk

the direction at step k dk to be determined
the step size at step k ak to be determined

Table 17.14 Newton’s
method an illustrative
example

Step n xn xn+1 f′(x) f(x)

0 8.000 6.667 75.88030 52.99319

1 6.667 5.778 22.48305 12.39372

12 4.031 4.021 0.00004 2.40000

13 4.021 4.014 0.00001 2.40000

17 Appendix B: Function Optimisation Techniques Genetic Algorithms … 373

the iterative scheme is described by

xkþ 1 ¼ xk þ akdk

Assumptions: f must be sufficiently smooth and the solution set, and

S x0
� � ¼ x 2 <n such that f ðxÞ� f ðx0Þ� 	

is bounded;

General algorithm for iterative methods for unconstrained optimisation con-
sisting of 4 steps (Table 17.15):

The direction dk ¼ �f 0 xk
� �

, if f is one dimensional,

slope negative f 0 xk
� �� �

then increase xk; xk is less than the optimal point

slope positive f 0 xk
� �� �

then decrease xk; xk is more than the optimal point

Example, one variable: f ¼ x2; df
dx ¼ 2x and let x0 = 4

(Table 17.16)

Table 17.15 Defining the steps in the search procedure

Step

1 Choose an initial point xk

2 Find rf ðxkÞ If rf ðxkÞ ¼ 0 STOP*
3 Find dk ¼ �rf ðxkÞ the next direction.

Chosen so that f decreases

4 Determine the step size ak by solving
Minimise f xk þ akdk

� � j a� 0
� 	

5 Let xkþ 1 ¼ xk þ akdk

Table 17.16 Illustrative example of the search

Step Calculation

1 x0 = 4

2 df
dx ¼ 2x) df

dx x ¼ x0ð Þ ¼ 8

3 d0 = −8 w direction

x1 ¼ x0 þ a0d0 ¼ x0 � 8a0 x1 ¼ 4� 8a

4 f x0 þ a0d0ð Þ� 	 ¼ 4� 8að Þ2
df
da ¼ �16 4� 8að Þ ¼ 0) a ¼ 0:5 New step size

5 x1 ¼ x0 þ a0d0 ¼ 4þ 0:5ð�8Þ ¼ 0 New point x1 ¼ 0

2 df
dx ¼ 2x) df

dx x ¼ x1ð Þ ¼ 0, STOP Optimal point found

374 V. Lowndes and M. Paskota

Example, two variables

Here

x ¼ x1
x2

 �
; f ðx1; x2Þ; rf ¼

@f
@x1
@f
@x2

" #
and dk ¼ �rf xk

� �

when rf xk
� �

is used in finding dk , the group of methods used are called “gradient
methods”.

The path towards the solution, f x; yð Þ ¼ x2 þ 2y2, is shown in Fig. 17.14

The optimal solution is x ¼ 0
0

 �
, and the successive directions were

d0 ¼ �2
�4

 �
; d1 ¼ �8=9

4=9

 �
; d2 ¼ �2

�4

 �
; d3 ¼ �8=9

4=9

 �

These methods (gradient methods) are described by the iterative scheme

xkþ 1 ¼ xk þ akdk where dk ¼ rf xk
� �

However, a parabolic approximation of the curve at the point xk is likely to be
better than a linear approximation.

Cauchy’s method used a linear approximation, and Newton’s method uses a
parabolic approximation.

0 2 4 6 8 10
-2

0

2

4

6

8

10Fig. 17.14 Path to solution

17 Appendix B: Function Optimisation Techniques Genetic Algorithms … 375

Newton’s Method

This is derived from the Taylor series

f : <n ! < : f ðxÞ ¼ f ðxkÞþrf xk
� �

x� xk
� �þH xk

� � x� xk
� �2

2!
þO x� xk

� �3h i

where the Hessian matrix is given by H ¼
@2f

@x1@x1
� � � @2f

@x1@xn

..

. ..
. ..

.

@2f
@xn@x1

� � � @2f
@xn@xn

2
664

3
775

Differentiating the Taylor series leads to the iterative scheme

xkþ 1 ¼ xk � H�1 xk
� �rf xk

� �

Example Minimise x2 þ 2y2
� 	

with x0 ¼ x
y

 �
¼ 3

3

 �

Here, rf ¼ 2x
4y

 �
and H ¼ 2 0

0 4

 �
; thus, H�1 ¼ 1

8
4 0
0 2

 �
¼ 0:5 0

0 0:25

 �
giving Newton’s iterative scheme

x1 ¼ 3
3

 �
� 0:5 0

0 0:25

 �
6
12

 �
¼ 3

3

 �
� 3

3

 �
¼ 0

0

 �

Properties of the method:

Positive Rapid convergence
Negative The Hessian matrix is sometimes hard to find and (even worse)

sometimes cannot be defined

Reference

1. Larcombe PJ, Wilson PDC (1998) On the trail of the catalan sequence. Bull IMA 34(4):
114–117

376 V. Lowndes and M. Paskota

Chapter 18
Appendix C: What to Simulate to Evaluate
Production Planning and Control Methods
in Small Manufacturing Firm’s

Val Lowndes and Stuart Berry

A set of case studies confirmed that there exists a group of small (micro-sized)
manufacturing firms (SMFs) that operate similar production systems and have
similar requirements from a production planning and control system (PP&C). The
features common to all the case study firms are the small number of production
stages together with the fact that all jobs follow the same route through the factory.

The case studies confirmed that:

• The small manufacturing firms are likely to be organised as flow shops with
multiple servers at each stage.

• Typically, there will be three stages in the production process {prepare, make
and finish}.

• In a larger firm, the number of processors at each stage will be chosen so that the
“daily” production capacities at each stage are approximately the same (bal-
anced workshop) whilst in the smaller firm one stage will tend to dominate the
manufacturing process (have the least capacity per time unit).

• In the smaller firms, the manager has an active (crucial) role in the planning and
control function whilst a large firm will tend to have implemented a formal
system.

• Often in a small manufacturing firm, there exists a non-formal but strict planning
and control system, managed by the firms owner/manager.

• A small manufacturing firm has few non-production resources, specifically few
non-production workers.

V. Lowndes
University of Derby, Kedleston Road, DE22 1GB Derby, UK
e-mail: V.P.Lowndes@derby.ac.uk

S. Berry (&)
College of Engineering and Technology, University of Derby,
Kedleston Road, DE22 1GB Derby, UK
e-mail: s.berry@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_18

377

The case studies have also indicated the importance to the firm of being able to
quote accurate delivery times at that time when an order has been received. Therefore,
the simulations need to be able to evaluate the suitability of the alternative approaches
to the estimation of delivery lead times for use in a small manufacturing firm.

The case studies have indicated two approaches in use in such firms:

• fixed lead times regardless of the work in hand (attainable or not)

– normally a fixed delivery time, larger than the manufacturing time
– with all firms quoting the same time, or

• calculating and quoting (to the customer) realistic lead times.

In the first approach, the firm needs to know a realistic quotable value, and in the
second, the firm needs to be able to estimate the job lead time on arrival.

Thus indicating the scope for the simulation exercises, testing possible delivery
times in the first case and evaluating methods to enable the forecasting of pro-
duction times in the second case.

To be able to simulate these firms, the simulation model needs to be able to
satisfy the requirements of each firm:

• A few stages in the process, often three.
• The workshop is organised as a flow shop.
• Possibly multiple servers at each stage, with preferred servers at some stages.
• Seasonal demand patterns.
• Random arrival.
• Deterministic job times or very low variance on the job times.
• Orders both single items and multiple items.
• Several product types, typically three.

The results from the simulation models constructed around these small manu-
facturing firms confirmed that these firms can operate effectively without a large
resource base; in particular, it established that quoting a fixed delivery time, larger
than the manufacturing time, can produce an efficient and effective system planning
and control system.

This policy leads the firms to use the minimal information set model given in
Fig. 18.1, through the removal of “unnecessary” connections; here, there is no
direct contact between sales and production, no longer needed the quoted time is
such that delivery is virtually certain in this time period.

The second simulation demonstrated that the firms can provide these reliable
estimates using either the “order book” or a planning board system.

Comparing the use of the order book/work in progress implies an “active”
regression-based system, (time / number in system, for example) with the use of a
planning board “passive” system which selects the first viable completion time from
the planning board. This comparison indicated that the passive “white board”
system is the most appropriate system being more accurate, requiring less infor-
mation and less management input.

378 V. Lowndes and S. Berry

So how do the firm get it right?

The investigation has shown that crucially in smaller firms the manager has an active
(critical) role in the planning and control function whilst a large firm will tend to have
implemented a formal system.
In fact managers in small firms have often derived and implemented a “sophisticated”
control system from their “hands on” experiences. It must be noted, however, that this
strength for a small firm can become a weakness if the firm grows in size and the manager is
no longer able to carry out the role of controller.

The information from the case study has indicated that the development of
effective and efficient planning and control systems has resulted from:

• A detailed knowledge of the firms operations,

dominant stages and
the manager actively control input, starting (only) what can be finished without
delays

• A knowledge of the behaviour of their competitors

Delivery dates

• A knowledge of the requirements of their customers

What they will accept with respect to delivery, guaranteed dates.

These lead to the information flows shown in Fig. 18.1 with jobs entering the
system in a FIFO order, based on the date of the order being placed, thus min-
imising the planning with the manager allocating overtime working, on the basis of
the number of jobs waiting, to ensure that all the jobs will be ready on time for
delivery to the customers.

Customer

Sales Production
Control

Suppliers

Fixed delivery
date

Production

Fig. 18.1 Information flow model in small manufacturing firms

18 Appendix C: What to Simulate to Evaluate Production Planning … 379

Chapter 19
Appendix D: Defining Boolean and Fuzzy
Logic Operators

Val Lowndes

19.1 Definition Boolean Logic

If an element x
is contained in set A then lAðxÞ ¼ 1 if x 2 A
is not contained in set A then lAðxÞ ¼ 0

As lA [BðxÞ ¼ 1 if x 2 A or x 2 B
and lA \BðxÞ ¼ 1 if x 2 A and x 2 B
Then it follows that A[B ! lA[BðxÞ ¼ max lA xð Þ; lBðxÞ½ �
and A\B ! lA\BðxÞ ¼ min lA xð Þ; lBðxÞ½ �

19.2 Definition Fuzzy Logic

If an element x
has some membership in set A then lA xð Þ ¼ kA 0\kA � 1
has no membership in set A then lAðxÞ ¼ 0

define A[B ! lA[BðxÞ ¼ max lA xð Þ; lBðxÞ½ �
and A\B ! lA\BðxÞ ¼ min lA xð Þ; lBðxÞ½ �

thus 0� lA[BðxÞ� 1 and 0� lA\BðxÞ� 1

V. Lowndes (&)
University of Derby, Kedleston Road, DE22 1GB Derby, UK
e-mail: V.P.Lowndes@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_19

381

Chapter 20
Appendix E: Assessing the Reinstated
Waverly Line

Stuart Berry and John Stubbs

20.1 Transport Modelling

Travel within London. Data from travel-in-london-report-7 within this report
travellers have been categorised by:

RAIL ¼ railway; underground; Dockland Light Railwayf g
ROAD ¼ bus; tram; taxi; car; car passenger; motor cyclef g
WALK ¼ those walking the full journey to their destinationf g

Although the cycling provision has been given a higher priority by transport
planners than the provision for walkers, the available data (see Fig. 20.1) show that
the greater need is the provision appropriate areas for walkers.

S. Berry (&) � J. Stubbs
College of Engineering and Technology, University of Derby,
Kedleston Road, DE22 1GB Derby, UK
e-mail: s.berry@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_20

383

20.2 Assessing the reinstated Waverley Line

The halts Shawfair to Tweedbank have been reopened resulting from the line
extension from Newcraighall to Tweedbank. The (forecast) demand data seems to
indicate that this reopening should have stopped at Gorebridge (over 90% of
potential customers carried) giving a new track length of 7.8 miles and a total track

0

5

10

15

20

1990 2000 2010 2020

RAIL

ROAD

cycle

walk

Fig. 20.1 Forecast annual
return trips per year

Fig. 20.2 Cumulative percentage demand and distance from Edinburgh

384 S. Berry and J. Stubbs

distance 12.1 miles, rather than a new track length of 33.9 miles and total distance
of 38.2 miles to Tweedbank. The shorter railway could then have been viable, an
economic proposition (Fig. 20.2 and Table 20.1).

Table 20.1 Forecast annual return trips in the opening year

Cumulative % demands
from Edinburgh

Cumulative %
new halt
demands from
Shawfair

Distance from
Edinburgh

Tweedbank 21621 647136 100.0 21621 100.0 38.2 New
stationsGalashiels 23431 625515 96.6 23431 94.4 33

Stow 5843 602084 93.0 5843 88.3 26.8

Gorebridge 90019 596241 92.1 90019 86.8 12.1
Newtongrange 52918 506222 78.2 52918 63.5 9.6

Eskbank 130525 453304 70.0 130525 49.8 8

Shawfair 61860 322779 49.8 61860 16.0 8

Newcraighall 986 260919 40.3 4.3 Existing
stationsWaverley 220533 259933 40.1

Haymarket 35329 39400 6.0

Edinburgh
Park

4071 4071 0.6

Total 647136 386217

20 Appendix E: Assessing the Reinstated Waverly Line 385

Chapter 21
Appendix F: Matching Services
with Users in Opportunistic
Network Environments

Stuart Berry

21.1 Search Algorithm

The first iteration of the algorithm is

decn 0 % decision
test level 1 % current level tested
pass test 0 % current level passed

while (test_level < levels) AND (decn=0)
If((ISEMPTY({new_message_type(test_level)}∩ {likes(test_level)})=TRUE)

If((ISEMPTY({new_message_type(test_level)}∩{hates(test_level)})=FALSE)
decn ←2

%dont want to display this message
else

decn ←3
%category not seen, do we want to
add it to likes or hates

end
else

pass_test ← pass_test +1

S. Berry (&)
College of Engineering and Technology, University of Derby, Kedleston Road,
DE22 1GB Derby, UK
e-mail: s.berry@derby.ac.uk

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4_21

387

end
test_level ← test_level +1

end

if pass_level = levels
“display message”

End

if decn = 2
“message ignored”

end

If decn = 3
If message STATUS is good

%“display message”, add to likes?.
%new info at level ‘pass_level + 1’

else
“message ignored”

end
end
“STATUS is good”, depends on parameters to be derived.

21.2 Investigating Effective and Efficient Depths of Search

An investigation of the basic case provides a mathematical basis for truncating the
depth of search dependent upon the form of the query.

21.2.1 Formal Definition of the Search Conditions

The basic search considers only those problems defined formally by:

Lij = “True” option i at level j is liked, and
Hij = “True” option i at level j is not liked

It then follows that the following describe the matching procedures

Hik ¼ “True”½ � ! Hi;j;kþ 1 ¼ “True”
� �

If an option not liked at level k implies that lower level options are not relevant
in this search, and

Lik ¼ “True”½ � ! Li;k�1 ¼ “True”
� �

hence to be required to interrogate an option at level k option, the higher level
options in the query will have been liked.

finally if

388 S. Berry

Lik½ � and: Li;kþ 1 v Hi;kþ 1
� � ¼ “True”

the query will be referred at level k + 1.

21.3 Analysis

If pij is the probability that option i is liked at level j, and qij is the probability that
option i is not liked at level j (note, rij = 1 – pij – qij is the probability of referral at
level j given that the query has been liked at higher levels).

One level search

If a one level search (only) is implemented it follows that

P correct decisionð Þ ¼ 1�p1j
� � þYn

k¼1
pik
Yn
k¼1

pik

and if p1j is small (p1j = e)

P correct decisionð Þ ¼ 1� e 1�
Yn
k¼2

pik

 !
;

giving

1� eð Þ\P correct decisionð Þ\1; close to 1:

But if p1j is large (p1j = P) it follows that

P correct decisionð Þ ¼ 1� P 1�
Yn
k¼2

pik

 !

1�Pð Þ\P correct decisionð Þ\1

Thus, it follows that if p1j is small, a one level search (only) would be appro-
priate and efficient.

Two level search

The second level will only be reached if the query has “passed” at the first level;
hence, it follows that if the search was halted at this level, then:

21 Appendix F: Matching Services with Users in Opportunistic … 389

P correct decisionð Þ ¼ 1�p2jp1j
� � þ 1�

Yn
k¼2

pik

 !

and if p2j is small (p2j = e)

P correct decisionð Þ ¼ 1� ep1j 1�
Yn
k¼2

pik

 !
;

giving

1� eð Þ\P correct decisionð Þ\1:

Thus, it follows that if p1j is not small and p2j is small, a two level search (only)
would be appropriate and efficient.

m level search

Assuming that the probabilities pij are not small, for i = 1 to m − 1, it follows
that

P correct decisionð Þ ¼ 1� 1�
Yn
k¼2

pik

 !
þ
Yn
k¼1

pik

 !

and if pim is small, then it would be efficient and effective to halt the search at this
level.

Thus, a simple rule is to stop at the level when P(likes) is very small, an option
within the query is unpopular hence reducing the cost of the search process.

390 S. Berry

References

1. Aarts E, Lenstra JK (ed) (2003) Local Search in combinatorial optimization. Princeton
University Press, USA

2. Ausiello G et al (1999) Complexity and approximation combinatorial optimisation
problems. Springer, Berlin

3. Back T (1996) Evolutionary algorithms in theory and practice. Oxford University Press,
USA

4. Bagdasar O, Popovici N (2015) Local maximum points of explicitly quasiconvex functions.
Optim Lett 9(4):769–777. doi:10.1007/s11590-014-0781-3

5. Bandemer H, Gottwald S (1996) Fuzzy sets, fuzzy logic, fuzzy methods. Wiley, USA
6. Bazaraa MS, Sherali HD, Shetti CM (2006) Non linear programming. Wiley, USA
7. Beasley JE (ed) (1996) Advances in linear and integer programming. Oxford University

Press, USA
8. Berry S, Lowndes V (2003) Deriving a memetic algorithm to solve heat flow problems—

University of Derby Technical Report.
9. Berry S, Parkes C (2016) Green transport planning paradoxes. Mathematics Today 52(5)
10. Blazewicz J et al (2001) Scheduling computer and manufacturing processes. Springer,

Berlin
11. Braess D, Nagurney A, Wakolbinger (2005) On a paradox of transport planning (a

translation of the 1968 article). Transp Sci 39(4):446-450
12. Buzacott JA, Shanthikumar JG (1993) Stochastic models of manufacturing systems.

Prentice Hall, USA
13. Catoni S, Pallottino S (1991) Traffic equilibrium paradoxes. Transp Sci 25(3):240–244
14. Chambers L (1995a) Evolutionary algorithms in practical handbook of genetic algorithms.

CRC Press, USA
15. Chambers L;(1995) Practical handbook of genetic algorithms vol 1. CRC Press, USA
16. Chambers L (1995) Practical handbook of genetic algorithms vol 2. CRC Press, USA
17. Chambers L (1999) Practical handbook of genetic algorithms vol 3. CRC Press, USA
18. Chen H (2008). Homeland security data mining using social network analysis. In: IEEE

international conference on intelligence and security informatics. Springer, Berlin
19. Cheybani S, Kertesz J, Shreckenberg M (1998) Correlation functions in the

Nagel-Schreckenberg model. J Phys A 31:9787–9799
20. Cipriani TA, Leachman RC (1993) Optimization in industry. Wiley, USA
21. Cipriani TA, Leachman RC (1994) Optimization in industry, vol 2. Wiley, USA
22. Conti M, Giordano S, May M, Passarella A (2010) From opportunistic networks to

opportunistic computing. Commun Mag IEEE 48:126–139
23. Corne D, Dorigo M, Glover F (1999) New ideas in optimization. McGraw Hill, USA
24. Coyle RG (1996) System dynamics modelling: ISBN 9780412617102. Transp Res Ser B,

18(2) (1984):101–110.

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4

391

http://dx.doi.org/10.1007/s11590-014-0781-3

25. Danks D, Griffiths TL, Tenenbaum JB (2002) Dynamical causal learning. NIPSMIT Press,
pp 67–74.

26. Deb K (2001), Multi objective optimization using evolutionary algorithms. Wiley, USA
27. Dhamija R, Tygar JD (2005) The battle against phishing: dynamic security skins. In:

Proceedings of the 2005 symposium on usable privacy and security, ACM.
28. Dhamija R, Tygar JD (2006) Why phishing works. In: Proceedings of the SIGCHI

conference on human factors in computing systems, pp 581–590
29. Ding C, Song S, Zhang Y (2008) Paradoxes of traffic flow and economics of congestion

pricing. In: UNR joint economics working paper series, working paper no 08-007
30. Dolan A, Aldous J (1999) Networks and algorithms. Wiley, USA
31. Dorn J, Froeschl KA (1993) Scheduling of production processes. Ellis Horwood, UK
32. Englemore RS, Terry A (1979) Structure and function of the CRYSALIS system. In:

Proceedings of IJCAI-79, pp 250–256
33. Engelmore RS, Morgan AJ, Nii HP (1988) Hearsay-II. In: R Engelmore, T Morgan

(eds) Blackboard systems. Addison-Wesley, USA. pp 25–29
34. Esser J, Schreckenberg M (1997) Microscopic simulation of urban traffic based on cellular

automata. Int J Modern Phys 18(5):1025–1036
35. Eugster PT, Garbinato B, Holzer A (2005) Location-based publish/subscribe. In

Proceedings of the fourth IEEE international symposium on network computing and
applications, IEEE Computer Society, 279–282

36. Farrar K (1979) Soundfield microphone. Parts 1 & 2—wireless World
37. Forrester J (1961) Industrial Dynamics, MIT Press
38. Gardner B, Martin K (1994) HRTF measurements of a KEMAR dummy-head microphone.

http://sound.media.mit.edu/KEMAR.html
39. Gee ES, Smith CH (1993) Selecting allowances for jobshop performance. Int J Prod Res 31

(8):1839–1852
40. Gelenter D (1983) Generative communication in Linda. ACM Trans Program Lang Syst 7

(1):80–112
41. Gerzon MA (1992) General methatheory of auditory localisation—92nd AES convention,

Vienna. Preprint 3306
42. Ghazi A, Laskey K, Wang X, Barbará D, Shackelford T, Wright E, Fitzgerald J (2006)

Detecting threatening behavior using Bayesian networks. C4I Papers
43. Guan T, Zaluska E, De Roure D (2008)A semantic service matching middleware for mobile

devices discovering grid services. In: Proceedings of the 3rd international conference on
advances in grid and pervasive computing. Springer, Berlin, pp 422–433

44. Hadley G (1970) Systems, non linear and dynamic programming. Addison Wesley, USA
45. Hadley G (1971) Linear programming. Addison Wesley, USA
46. Hamed K (2009) Near-term travel speed prediction utilizing Hilbert–Huang transform.

Comput-Aided Civil Infrastruct Eng 24:551–576
47. Holland JH (1994) Adaption in natural and artificial systems. MIT Press, USA
48. Holmes RB (1975) Geometic functional analysis and its applications. Springer, Berlin
49. Hui P, Crowcroft J, Yoneki E (2007)BUBBLE rap: social-based forwarding in delay

tolerant networks. In: Proceedings of the 2nd ACM international workshop on mobility in
the evolving internet architecture (MobiArch), pp 241–250

50. Jakobsson M (2005) Modeling and preventing phishing attacks. In: Financial cryptography
and data security. Springer, Berlin, pp 89–89

51. John R, Birkenhead R (eds) (2001) Developments in soft computing. Physica-Verlag
52. Johnson LA, Montgomery DC (1974) Operational research in production planning,

scheduling and inventory control. Wiley, USA
53. Kalrath J, Wilson JM (1997) Business optimisation. MacMillan, UK
54. Kirchener A, Schadschneider A (2002) Simulation of evacuation processes using a

bionics-inspired cellular automaton model for pedestrian dynamics. Physica A: Stat Mech
Appl 312(1–2):260–276

392 References

http://sound.media.mit.edu/KEMAR.html

55. Kreher DL, Stinson DR (1999) Combinatorial algorithms. CRC Press, USA
56. Keränen J, Ott T, Kärkkäinen T (2009) The ONE simulator for DTN protocol evaluation.

In: Proceedings of 2nd international conference on simulation tools and techniques
(SIMUTools’09), Rome, Italy, ICST New York, NY USA. ISBN 978-963-9799-45-5,
pp 55:1–55:10

57. Kuokka D, Harada L (1995) Matchmaking for information agents, Readings in Agents,
Morgan Kaufmann, pp 672–678.

58. Lau RY, Yunqing X, Yunming Y (2014) A probabilistic generative model for mining
cybercriminal networks from online social media. Comput Intell Mag 9(1):31–43

59. Lévy P (1994) Collective intelligence: mankind's emerging world in cyberspace. Basic
Books

60. Li HX, Yen VC (1995) Fuzzy sets and fuzzy decision making. CRC, USA
61. Lindgren A, Doria A, Scheln O (2003) Probabilistic routing in intermittently connected

networks. In: Proceedings of the fourth ACM international symposium on mobile ad hoc
networking and computing (MobiHoc 2003), pp 19–20

62. Luc DT (1989) Theory of vector optimisation. Springer, Berlin
63. Luc DT, Schaible S (1997) Efficiency and generalised concavity. J Optim Theory 147–153
64. Man KF, Tang KS, Kwong S (1999) Genetic algorithms. Springer, Berlin
65. McKenna JA (2004) The internet and social life. Ann Rev Psychol 55:573–590
66. Mendel J (2000) Uncertain rule-based fuzzy logic systems. Prentice Hall, USA
67. Morecroft JDW (2015) Strategic modelling and business dynamics: ISBN:

978-1-118-84468-7
68. Morton TE, Pentico DW (1993) Heuristic scheduling systems. Wiley, USA
69. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. Phys

France 2221–2229
70. Neuman J (1951) The general theory of automata. In: Cerebal mechanisms in behavior: the

Hixon symposium. Wiley, USA, pp 1–41
71. Osman IH, Kelly JP (1997) Meta heuristics theory and application, Kluwer
72. Panwalkar SS, Iskander W (1977) A survey of scheduling rules. Oper Res 25:45–61
73. Parker RG (1995) Deterministic scheduling theory. Chapman Hall, USA
74. Papadimitriou CH, Steglitz K (1998) Combinatorial optimisation, Dover
75. Pardalos PM, Resende MGC (ed) (2002) Handbook of applied optimization, Oxford
76. Pinedo M (1995) Scheduling, theory applications and systems. Prentice Hall, USA
77. Poelmans JE (2010) Formal concept analysis in knowledge discovery: a survey. In:

International conference on conceptual structures (ICCS), pp 139–153. Springer, Berlin
78. Popovici N (2005) Pareto reducible multicriteria optimisation problems. Optimization 54

(2005):253–263
79. Schoder D, Gloor P, Metaxas P (2013) Social media and collective intelligence—ongoing

and future research streams. KI—Künstliche Intelligenz 27(1):9–15
80. Schwartz MJ (2011) Epsilon fell to spear-phishing attack. Retrieved 17 June 2014 from

http://www.darkreading.com/attacks-and-breaches/epsilon-fell-to-spear-phishing-attack/d/
d-id/1097119?

81. Shashidhar J, Chen N (2011) A phishing model and its applications to evaluating phishing
attacks. International cyber resilience conference

82. Smith A, Berry S, Hill R (2015) Efficient matching of services with users in opportunistic
network environments. Int J Adapt Innovative Syst, 99–117.

83. Smith A, Berry S (2012) Evaluation of a framework for measuring efficiency in
opportunistic ad-hoc networks. In: Third international conference on emerging intelligent
data and web technologies (EIDWT), 2012, pp 61–65

84. Smith A, Hill R (2011) Towards a framework for the evaluation of efficient provisioning in
opportunistic ad hoc networks. In: Proceedings of the 2011 international conference on
P2P, parallel, grid, cloud and internet computing, IEEE Computer Society, pp 32–36

References 393

http://www.tfl.gov.uk
http://www.tfl.gov.uk

85. Smith A, Hill R (2011) Measuring efficiency in opportunistic ad hoc networks. Int J
Interconnected Netw 12(3):32–36

86. Stahlschmidt S, Tausendteufel H (2013) Bayesian networks for sex-related homicides:
structure learning and prediction. J Appl Stat 40(6):1155–1171

87. Stoer J, Witzgall C (1970) Convexity and optimisation in finite dimensions. Springer,
Berlin

88. Sycara K, Widoff S, Klusch M, Lu JL (2002) LARKS: dynamic matchmaking among
heterogeneous software agents in cyberspace, in cyberspace. Auton Agents Multi-Agent
Syst 173–203

89. Unbehauen (ed) Control systems, robotics and automation: fuzzy and intelligent control
systems, vol 17. Oxford: EOLSS, pp 303–316

90. Turing AM (1950) Computing Machinery and Intelligence. Mind 49:433–460
91. T1: Canal development and decline (www.ukcanals.net)
92. T2: Passenger Rail Usage, Office of Rail and Road, (www.orr.gov.uk)
93. T3: On the Move (www.racfoundation.org)
94. T4: The false paradise of Metroland, (www.spectator.co.uk)
95. T5: Railways Developments (www.victorianweb.org)
96. T6: Travel in London (www.tfl.gov.uk)
97. Vahdat A, Becker D (2000) Epidemic routing for partially connected ad-hoc networks.

Technical report CS-200006, Duke University
98. Verma A, Srivastava A (2011) Integrated routing protocol for opportunistic networks. Int J

Adv Comput Sci Appl 2(3)
99. Wiggins B, Paterson-Stephens I, Schillebeeckx P, The analysis of multi-channel sound

reproduction algorithms using HRTF data—19th AES surround sound conention, Schoss
100. Williams HP (1993) Model solving in mathematical programming. Wiley, USA
101. Williams HP (2009) Logic and integer programming. Springer, Berlin
102. Williams HP (2013) Model building in mathematical programming. Wiley, USA
103. Woolsey RED (1982) The fifth column: production scheduling as it really is. Interfaces 12

(6):115–118
104. Yoneki E, Hui P, Chan S-Y, Crowcroft J (2007) A socio-aware overlay for

publish/subscribe communication in delay tolerant networks. In: Proceedings of the 10th
ACM symposium on modelling. Analysis and simulation of wireless and mobile systems
(MSWiM), pp 225–234.

105. Zadeh LA (1973) Outline of a new approach to the analysis of complex systems & decision
processes. IEEE Trans Syst Manage Cybern SMC 3(1)

106. Zalinescu C (2002) Convex analysis in general vector spaces world scientific, River Edge
107. Zalzala AMS, Fleming PJ (1997) Genetic algorithms in engineering systems; IEE Digital

Library
108. Zhu S, Weibing Z, Jihui H, Xu C (2016) The effects of overtaking strategy in the

Nagel-Schreckenberg model. Eur Phys J B

394 References

Index

A
Agent based simulations, viii

B
Bayesian networks, 27, 29, 30, 334, 392
Beeching, 291
Big Data, 21, 28, 333, 341

C
Catalan search, 364, 365
Cauchy, 375
Cellular automata, 55, 56
Conway’s Game of Life, 55–57

D
Diet problems, 75, 251
Dow Jones, 12, 13, 293–296

F
Fibonacci search, 363, 364
Financial models, 9
FTSE, 12, 295
Fuzzy, 252, 255, 256, 261, 263, 265, 266,

269–271, 381, 391, 394

G
Garbage collection, 181
Genetic algorithms, 180, 199, 205, 206, 255,

256, 258, 259, 262, 279, 365, 366, 371
Golden Ratio, 363, 365, 366

H
House building model, 7

I
Influence diagrams, 4, 5

K
Knapsack problems, 89

L
Lexical analysis, 24
Linear programming, 76, 79, 83, 87, 105, 110,

176, 187, 190, 251, 252, 254, 256–258, 262
Line search, 361

M
Mathematical programming, 75, 76, 89
Message passing, 309, 321

N
Nagel and Schreckenberg, 55, 64
Network flow problems, vi
Newton, 372, 375, 376

P
Part-of-speech tagging, 24
Population modelling, 15

Q
Queueing, 145, 146, 148, 163–166, 300, 303

S
Scheduling, 75, 130, 199, 265
Sentiment analysis, 26
Simulation, 65, 149, 152, 153, 156, 159, 165,

166, 169, 171, 271
Small manufacturing firms, 265, 266
Spread of infections, 61
Stock control, 4
System modelling, 3

© Springer International Publishing AG 2017
S. Berry et al. (eds.), Guide to Computational Modelling for Decision Processes,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-55417-4

395

T
Tabu search, 136, 137, 139, 140, 178,

180–182, 203–206, 279, 357, 360, 366,
368, 370, 371

Traffic flow, 63
Traffic modelling, vi
Transport modelling, 16

U
Unconstrained optimisation, 373

W
Wi-fi, 307, 318

396 Index

	Preface
	Outline of Content

	Contents
	Contributors
	Introduction to Modelling and Model Evaluation
	1 Model Building
	1.1 Introduction to System Modelling
	1.1.1 Introducing Influence Diagrams
	1.1.1.1 Categorising Dependencies (Links) in a Model
	1.1.1.2 Categorising a Model

	1.1.2 Model Evaluation/Validation, Comparing the Model with Historic Data
	1.1.3 Example C: Developing Financial Models
	1.1.3.1 Effect of Investor Confidence on Financial Markets
	1.1.3.2 Example D2: Effect of Investor Confidence and Short Selling

	1.1.4 Population Modelling
	1.1.5 Transport Modelling

	1.2 Constructing Models from “Big Data”
	1.2.1 Introduction
	1.2.2 The Automatic Extraction of Bayesian Networks from Text

	1.3 The Blackboard Architecture
	1.3.1 Introduction
	1.3.2 Architecture
	1.3.2.1 Analogy
	1.3.2.2 Components
	1.3.2.3 Similarities to Other Systems
	1.3.2.4 Algorithm
	1.3.2.5 Properties
	1.3.2.6 Definitions
	1.3.2.7 Problem Types and Applications
	1.3.2.8 BBS Frameworks and Toolkits

	1.3.3 Literature Review
	1.3.3.1 Prehistory
	1.3.3.2 The First BBS—Hearsay-II
	1.3.3.3 Development of Control Mechanisms
	1.3.3.4 More Recent Developments

	1.3.4 Summary

	References

	2 Introduction to Cellular Automata in Simulation
	2.1 Defining the Operation of a Cellular Automata-Based Simulation
	2.2 Conway’s Game of Life
	2.3 Investigating Population Growth and Decay
	2.4 Applying Cellular Automata and Agents in Modelling
	2.4.1 Agent-Based Modelling: Modelling the Spread of Infections
	2.4.2 Traffic Flow
	2.4.2.1 Notation
	2.4.2.2 Basic Model
	2.4.2.3 Simulation of Traffic Flow Using MATLAB
	2.4.2.4 Analysis of Simulation Results
	2.4.2.5 Analysing Traffic Flows

	References

	3 Introduction to Mathematical Programming
	3.1 Applications Model Furniture Manufacture
	3.2 Applications of Mathematical Programming-Based Modelling
	3.2.1 Modelling Diet Problems
	3.2.2 Blending 1
	3.2.3 Blending 2: Animal Feed

	3.3 Problems Reducible to Diet Problems
	3.3.1 Financial Planning Modelling
	3.3.2 Modelling Investment Planning 2
	3.3.3 Restricting the Investment by Adding Extra Conditions
	3.3.4 Modelling Investment Planning 2 (Allocating Money Between Projects)

	3.4 Knapsack Problems
	3.4.1 Example: Herring Plc
	3.4.2 Generic Models for the Basic Problem
	3.4.3 Multiple Knapsack Problem
	3.4.4 Logical Constraints

	3.5 Problems Reducible to Knapsack Problems
	3.5.1 Allocating Workers to Tasks
	3.5.2 Allocation of Workers to Teams
	3.5.2.1 Allocating Workers to Projects

	3.5.3 Stock Cutting Problems
	3.5.4 More Knapsack “Type” Problems: Set Covering Problems

	3.6 Network Models
	3.6.1 Defining Transportation Problems
	3.6.2 Assignment Problems
	3.6.3 Network Flow Models
	3.6.3.1 Shortest Route
	3.6.3.2 Maximum Flow in a Network
	3.6.3.3 Network Planning Models (Critical Path Models)
	3.6.3.4 Transhipment Models, Formulation and Problem Size
	3.6.3.5 Production Planning Models

	3.7 Other Mathematical Modelling Applications
	3.7.1 Data Envelopment Analysis
	3.7.2 Goal Programming

	References

	4 Heuristic Techniques in Optimisation
	4.1 Genetic Algorithms
	4.1.1 Implementation Examples
	4.1.1.1 Knapsack Problems Genetic Algorithmic Approaches
	4.1.1.2 Multiple Container Problem
	4.1.1.3 Travelling Salesman Problem Genetic Algorithmic Approach
	4.1.1.4 Flow Shop Scheduling Genetic Algorithmic Approach
	4.1.1.5 Quadratic Assignment Problem Genetic Algorithmic Approach
	4.1.1.6 Fire Station Location Problem Genetic Algorithms and Fuzzy Logic

	4.2 Tabu Search
	4.2.1 Basic Financial, Investment Problem, Tabu Search Approach
	4.2.2 Extended Financial, Investment Problem, Tabu Search Approach
	4.2.3 Travelling Salesman Problem

	4.3 Review Questions
	References

	5 Introduction to the Use of Queueing Theory and Simulation
	5.1 Evaluating Manufacturing Systems Using Queueing Theory (Random Arrivals)
	5.1.1 Manufacturing Systems 1: n Work Stations in Series
	5.1.2 Evaluating Manufacturing Systems 2: n Work Stations in Series with Rework
	5.1.3 Evaluating Manufacturing Systems 3: Splitting the Jobs
	5.1.4 Evaluating Manufacturing Systems 4: Jobs Processed in Batches
	5.1.5 Evaluating Manufacturing Systems 5
	5.1.6 Changing Service Capacities

	5.2 Using Simulation to Evaluating Planning and Control Systems in Flow Shops
	5.2.1 Simulating to Compare and Contrast Production Line Systems
	5.2.1.1 Extending the Investigation

	5.2.2 Simulating a KANBAN System
	5.2.3 CONWIP Control System
	5.2.4 Summary

	5.3 Simulating Manufacturing Systems, to Define PP&C Systems Requirement When Arrivals Are Random
	5.4 Review Questions

	Case Studies
	6 Case Studies: Using Heuristics
	6.1 Using Heuristics to “Solve” Case Studies from Mathematical Programming
	6.1.1 Modelling the Travelling Salesman Problem
	6.1.2 Applying Heuristic Methods to Travelling Salesman Problems
	6.1.2.1 Genetic Algorithm Implementation
	6.1.2.2 Tabu Search Implementation

	6.2 Extended Travelling Salesman Problem: Garbage Collection
	6.2.1 Genetic Algorithm Implementation
	6.2.2 Half Loads Sample Results
	6.2.3 Using Genetic Algorithms to Generate Half Loads

	6.3 Production Planning Problems Network Models
	6.3.1 Production Planning Problems (Mathematical Programming Techniques)
	6.3.2 Evaluation the Model: Simplifying the Cost Function
	6.3.3 Extending the Model to Include Overtime Working
	6.3.4 Extending the Model to Include Subcontracting Production
	6.3.5 Extending the Model to Include Backlogging Deliveries
	6.3.6 One Production Line More Than One Item
	6.3.7 Summary

	6.4 Overall Summary: Two Problems

	7 Further Use of Heuristic Methods
	7.1 Flow Shop Scheduling
	7.2 Transport Paradoxes and Traffic Planning
	7.2.1 Case Study 1
	7.2.2 Case Study 2
	7.2.3 Case Study 3: To Demonstrate that a Seeming Similar Complex Problem Simplifies to a More Easily Solvable (Analytically or Using Numerical Methods) Problem
	7.2.4 Case Study 4: Assessing the Green Benefits from a Traffic Management System
	7.2.4.1 Case Study 4a: Major Route or Minor Route
	7.2.4.2 Case Study 4b: Road or Rail Travel the “Green” Paradox

	7.3 Transportation Management: Methods and Algorithms for Solution
	7.3.1 General Cost of “Origin–Destination” Traffic Flow
	7.3.1.1 Optimal Versus Equilibrium Solutions
	7.3.1.2 Price of Anarchy

	7.3.2 Introduction to Solution Methodologies
	7.3.2.1 Solution of the Optimisation Problem (7.4) by Dynamic Programming
	7.3.2.2 Transforming the Equilibrium System (7.5) into Optimisation Problems
	7.3.2.3 Counterparts of the Optimisation Problem (7.4)
	7.3.2.4 Heuristic Algorithms

	7.3.3 Numerical Results for a Problem with 3 Routes
	7.3.3.1 Optimal Cost Solutions
	7.3.3.2 Equilibrium Problem and Price of Anarchy

	7.3.4 A Problem with 20 Routes
	7.3.4.1 Optimal Cost Solutions
	Solution of (7.4) by Bellman’s Algorithm
	Bellman’s Versus Heuristic Algorithm
	Bellman’s Versus Nonlinear Optimisation Solution

	7.3.4.2 The Equilibrium Problem
	7.3.4.3 Effects of Road Closures and the Price of Anarchy

	References

	8 Air Traffic Controllers Planning: A Rostering Problem
	8.1 Mathematical Model
	8.2 Methodology
	8.3 Results
	8.4 Discussions and Future Research

	9 Solving Multiple Objective Problems: Modelling Diet Problems
	9.1 Diet Modelling Development
	9.2 Evaluating the Stigler Diet
	9.3 Incorporating Patient Choice into Diets Using Genetic Algorithms and Fuzzy Logic
	9.3.1 Introduction
	9.3.2 Genetic Algorithm Implementation
	9.3.3 Results

	9.4 Taste Formulation
	9.4.1 GA Problem Formulation and Notation
	9.4.2 Results

	9.5 Nonlinear Costs Can Be Employed to Incorporate Multiple Objectives
	9.6 Diet Problem Solution Using a Fuzzy Approach
	9.6.1 Example
	9.6.2 Conclusion

	References

	10 Fuzzy Scheduling Applied to Small Manufacturing Firms
	10.1 Scheduling and Small Manufacturing Firms
	10.2 Small Manufacturing Firms
	10.3 Fuzzy Modelling
	10.3.1 Fuzzification
	10.3.2 Rule Evaluation
	10.3.3 Rule Matrix (R)
	10.3.4 Sequencing Priority (P)

	10.4 Application
	10.5 Computational Efficiency
	10.6 Dynamic Scheduling
	10.7 Conclusions
	Reference

	11 The Design and Optimisation of Surround Sound Decoders Using Heuristic Methods
	11.1 Introduction
	11.2 Irregular Ambisonic Decoding
	11.3 Decoder System
	11.4 The Heuristic Search Methods
	11.5 Conclusions
	Reference

	12 System Dynamics Case Studies
	12.1 Transport Planning and Transport Planning Paradoxes
	12.1.1 Trains and Barges and Motor Vehicles
	12.1.2 Models for New Transport System Developments
	12.1.3 Model Validation: Changes in the Transport System, from Canals to Railways
	12.1.3.1 Model Validation

	12.1.4 Modelling the Effect of Changes to the Transport System, Railways and Roads
	12.1.5 A Non-green Result from a Green Policy
	12.1.5.1 Model Validation

	12.1.6 Conclusion

	12.2 Further Analysis of the Model for the Dow Jones Index
	References

	13 Applying Queueing Theory to the Design of a Traffic Light Controller
	13.1 Unidirectional Queueing
	13.2 Bidirectional Queueing
	13.2.1 Complex Junction Queuing
	13.2.2 Queueing with Detection
	13.2.3 Queueing in a Novel Control System

	13.3 Experiments and Discussion
	13.4 Conclusions

	14 Cellular Automata and Agents in Simulations
	14.1 Simulating to Evaluate Message Passing Rules
	14.1.1 Background
	14.1.2 Case Studies

	14.2 Fire Evacuation Modelling
	14.2.1 Modelling Movements in a Room
	14.2.2 Model 1: Modelling the Spread of a Fire
	14.2.3 Modelling the Effect of Fire and the Movement of People

	References

	15 Three Big Data Case Studies
	15.1 Case Study 1: Criminology
	15.1.1 Text Analysis of Datasets
	15.1.2 Node Extraction
	15.1.3 Extraction of Dependency Networks
	15.1.4 Description of the Dataset
	15.1.5 Implementation
	15.1.6 Evaluation
	15.1.7 Dependency Network Extraction

	15.2 Case Study 2: Computational Objectivity in the PHQ-9 Depression Assessment
	15.2.1 A Text Mining Approach
	15.2.2 Conclusion

	15.3 Case Study 3: Admissions Project
	References

	Appendices
	16 Appendix A: Queueing Theory
	16.1 Introductory Model
	16.2 Analysis of a M/M/* Service System: Derivation of Formula
	16.3 Additional Results

	17 Appendix B: Function Optimisation Techniques Genetic Algorithms and Tabu Searches
	17.1 Introducing Genetic Algorithms
	17.2 Tabu Search
	17.3 Comparing “Line Search” Methods, Derivative and Non-derivative-based Approaches with Heuristic Approaches
	17.3.1 General Case
	17.3.2 Golden Section Method
	17.3.3 Fibonacci Search
	17.3.4 Catalan Search

	Reference

	18 Appendix C: What to Simulate to Evaluate Production Planning and Control Methods in Small Manufacturing Firm’s
	19 Appendix D: Defining Boolean and Fuzzy Logic Operators
	19.1 Definition Boolean Logic
	19.2 Definition Fuzzy Logic

	20 Appendix E: Assessing the Reinstated Waverly Line
	20.1 Transport Modelling
	20.2 Assessing the reinstated Waverley Line

	21 Appendix F: Matching Services with Users in Opportunistic Network Environments
	21.1 Search Algorithm
	21.2 Investigating Effective and Efficient Depths of Search
	21.2.1 Formal Definition of the Search Conditions

	21.3 Analysis

	References
	Index

