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Abstract
Chromium is a micronutrient found in several oxidation states, being trivalent
chromium and hexavalent chromium the most prevalent. Although it is present
in several foods in small quantities, there is still no recommended average
requirement. Studies show that during the various life stages, there are
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different needs of ingestion of this mineral. Despite the low molecular weight,
there is a small absorption capacity of chromium and its absorption occurs in
the intestine by passive transport. Along with other metallic ions, its transport
is related to the performance of transferrin, and there may be competition for
sites that bind to iron and other minerals. Chromium is related to changes that
encompass carbohydrate and lipid metabolism. Therefore, some studies indi-
cate that chromium-deficient diets may favor insulin resistance, with conse-
quent development of type 2 diabetes. This mineral is also present in
nutritional supplements featuring various structures such as chromium
picolinate, chromium histidinate, chromium chloride, and chromium
nicotinate. Trivalent chromium demonstrated an important role in gene
expression, mainly in hepatocytes, insulin activity, and adiposity. Studies
have investigated the effects of chromium supplementation on diabetes, obe-
sity, and dyslipidemia, but the results are still incipient for the development of
guidelines recommending supplementation in risk groups.

Keywords
Chromium · Biological availability · Nutritional requirements · Glucose · Insulin
resistance · Insulin · Type 2 diabetes mellitus · Cholesterol · Dyslipidemias ·
Deficiency · Micronutrients · Toxicity

List of Abbreviations
AI Adequate intake
CASQ 1 Calsequestin 1
CIDEA Cell-death-induced DNA fragmentation factor
Cr3+ Trivalent chromium
Cr6+ Hexavalent chromium
CrCl3 Chromium chloride
CrPic Chromium picolinate
CrSP Complex of chelated chromium with small peptides
DGAT 2 Decylglycol transferase
EAR Estimated average requirement
ENO 3 Enolase 3
Glut 4 Glucose transporter in muscle and adipose tissue dependent on insulin
GPI 1 Glucose phosphate isomerase1
IGF-1 Insulin-like growth factor 1
IRS-1 Insulin receptor substrate 1
IRS-2 Insulin receptor substrate 2
Kg Kilograms
LDL-c Low-density cholesterol
mRNA Messenger ribonucleic acid
NBC Chromium nicotinate
Ph Hydrogenation potential
PI3k Phosphatidylinositol-3-kinase
RDA Recommended dietary allowance
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TPM 1 Tropomyosin-1
TTP Tocopherol transfer protein
UCP 1 Uncoupled protein 1
UL Tolerable upper intake levels
VLDL Very low-density lipoproteins
WHO World Health Organization
μg micrograms

Introduction

Since its discovery in the eighteenth century, chromium has had several uses as dyes
in the textile industry, manufacture of refractories, and metal alloys due to its
corrosion capacity (Ensminger et al. 1990; Zelicoff and Thomas 1998). In the
twentieth century, the scientific community obtained important findings about the
role of chromium in carbohydrate metabolism through the potentiation of insulin
signaling (Jeejeebhoy et al. 1977; Vincent 1999). Due to the importance of this
micronutrient in the diet, this chapter aims to present the nutritional needs and the
main dietary sources of this element, the processes involved in digestion, absorption,
transport, and mechanisms of action of chromium in metabolism and its relation with
the modulation of gene expression. Because of the increasing use of chromium as a
nutritional supplement, this chapter further discusses its effects on type 2 diabetes
mellitus and obesity, as well as adverse reactions and toxicity.

Studies indicate a relationship between chromium, health, and disease. But it is
still necessary to better understand this micronutrient, such as food, nutritional,
biochemical, and public health aspects in order to enable the findings to determine
nutritional recommendations for healthy individuals and support guidelines for
chromium supplementation in vulnerable groups.

Nutritional Requirements and Food Source

Chromium is a micronutrient present in nature in various valence states, being
trivalent (Cr3+) and hexavalent (Cr6+) the most common. Cr3+ is the most stable
oxidation state and, possibly, the most common form present in the diet, due to the
reducing action of food substances (IOM 2001).

In foods, Cr3+can be found, originally identified in brewer’s yeast (Schwarz and
Mertz 1959). Despite being found in various foods, its amount in most of them does
not exceed 2 μg per serving (Roussel et al. 2007) (Table 1).

Cr3+ is an important nutrient in the diet, but in the absence of scientific evidence,
the Estimated Average Requirement (EAR) of its daily intake has not been
established yet. Adequate Intake (AI) (Table 2) is the only establishment to date.
The Tolerable Upper Intake Level (UL) has also not been defined, since only a few
serious adverse effects were found as a result of its high intake (IOM 2001).
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Considering life stages, healthy individuals do not represent risk groups for
chromium deficiency. Thus, the AI of chromium was based on the average of food
consumption. In this case, for children from 0 to 6 months of exclusive
breastfeeding, the nutritional recommendation was based on the content of chro-
mium in breast milk, and for children from 7 to 12 months, the quantity of this
mineral present in breast milk and in healthy complementary foods was considered
(IOM 2001).

For people from 1 to 50 years, there appears to be no increased nutritional
requirements of chromium; therefore, the AI of this mineral was based on the
average of chromium present in an adequate diet (IOM 2001). For individuals
above 51 years, the AI of chromium was also determined from the average amount
of this nutrient found in a balanced diet, within the energy requirement for this age
group (IOM 2001). There is not sufficient scientific evidence to prove a greater

Table 1 Chromium
content of foods

Foods Cr content (μg/serving)
Radish 2.61

Beef steak 2.88

Grapefruit juice 2.94

Grilled chicken 3.83

Pork rib 4.20

Broccoli gratin 4.40

Leek 5.18

Kiwi 5.09

Orange 6.22

Apple 6.80

Boiled potatoes 10.20

Dark chocolate 14.28

Roussel et al. (2007)

Table 2 Daily adequate intake (AI) of chromium (mg)

Age Male

Female

Pregnancy Lactation

0–6 months 0.2 0.2

7–12 months 5.5 5.5

1–3 years 11 11

4–8 years 15 15

9–13 years 25 21

14–18 years 35 24 29 44

19–30 years 35 25 30 45

31–50 years 35 25 30 45

51–70 years 30 20

>70 years 30 20

IOM (2001)
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requirement for chromium in this age group for the prevention of diseases, such as
diabetes mellitus type 2 (Mccormick 2012).

In the case of pregnant women, there are no studies that confirm the requirement
for chromium supplementation during pregnancy (IOM 1990). Therefore, to obtain
the AI of chromium, the recommendation for a nonpregnant woman, of the same age
group, added to the requirement for this mineral to fetal supply was considered (IOM
2001). For lactation, the AI of chromium was based on the AI for women of the same
age group added to the amount of chromium required for replacement of chromium
found in breast milk (IOM 2001).

For individuals with chronic diseases such as diabetes, several studies used
additional doses in order to verify the effects of chromium in humans and generate
evidence for supplementation recommendations. However, the current evidence
does not support a positive effect to the supplementation with chromium in the
treatment of diabetes (Abdollahi et al. 2013).

Digestion, Absorption, and Transportation

Although Cr3+ is the most stable oxidation state, its absorption is low because it
presents difficulty in crossing the plasma membrane (Mertz 1992). As for Cr6 +, it
has strong oxidative capacity, mainly in acid media, and is linked to oxygen in the
form of chromate (CrO4

2�) or dichromate (Cr2O7
2�), which are the easiest com-

pounds to absorb by the plasma membrane. During transport through the membrane,
Cr+6 is detoxified to Cr+3 and reacts with protein components and nucleic acids
inside the cell (Pechova and Pavlata 2007).

Specifically during ingestion, the Cr+6 dichromate is mixed with saliva and in the
stomach it is reduced in Cr+3 by hydrochloric acid and thermosensitive-reducing
agents present in the gastric juice (Kirman et al. 2013). An enzyme of great
importance in the process of chromium reduction is pent gastrin, which stimulates
gastric secretion, and Cr6+ is reduced into Cr3+ by hydrochloric acid, especially in
individuals who remain in prolonged fasting (Stollenwerk and Grove 1985).

An in vitro study also demonstrated the conversion of Cr6 + to Cr+3 by the enzyme
glutathione (GSH). By means of the spectrophotometric analysis, it was observed
that the excess of the GSH enzyme accelerated the conversion reaction of Cr6 + to
Cr+3. It has also been shown that this reaction is strongly pH-dependent, being
slower in pH 7.4 solutions than at pH values below 5.0 (Wiegand et al. 1984).

The absorption of chromium occurs in the intestine by passive transport, along
with other metal ions, mainly in the portion of the jejunum and, to a lesser extent, in
the ileum and duodenum, as demonstrated in an experiment with rats (Chen et al.
1973). In humans, there is also evidence that the absorption of chromium begins in
the jejunum (Ducros 1992). Chromium in foods has increased absorption by the
presence of amino acids, ascorbic acid, high levels of carbohydrates, oxalate, and
aspirin in the diet, while phytates and antacids (sodium hydrogen carbonate, mag-
nesium hydroxide) reduce Cr concentrations in the blood and in others tissues
(Stoecker 1999).
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Inorganic chromium compounds exhibit low absorption, less than 3%, regardless
of the dose or chromium status. On the other hand, chromium complexes in the diet
are more available than simple chromium salts (Fairweather-tait 1992), that is, the
organic sources of Cr+3 are better absorbed (Ohh and Lee 2005).

In nutritional supplements, studies on the bioavailability of chromium are con-
troversial; some show that chromium chloride has less bioavailability (0.1–0.4%)
than chromium picolinate (2.8%) (Commission 2002). However, due to the toxic
effect of picolinate in inducing renal insufficiency, anemia, and hemolysis, the
nicotinate compound of chromium has shown greater bioavailability and lower
toxicity (Bagchi et al. 2002). More recently, the soluble and ionic forms of chromium
phenylalaninate [Cr (D-Phen3), Cr (L-Phen3)] and chromium hydrochloride (CrCl3)
have been found to be better absorbed than the organic chromium trispicolinate
(CrPic3), chromium nicotinate (CrNic2), and chromium propionate (CrProp) com-
pounds (Laschinsky et al. 2012).

After absorption, chromium is transported in the blood by transferrin and can
compete with binding to iron and other minerals (Quarles et al. 2011). The trans-
ferrins are proteins (molar mass ~ 80 kDa) that bind reversibly to metal ions,
exhibiting greater selectivity for Fe+ 3. However, the binding of Cr+3 to the Fe+ 3

sites of the carrier protein may be related to the detoxification process, more than the
transport of an essential trace element (Levina et al. 2016).

The affinity of transferrin to metal ions varies according to environmental condi-
tions, especially pH (Brock 1985). The binding of transferrin to chromium occurs
similarly to its attachment to iron. The chromium binds to transferrin’s two sites.
When each chromic ion binds to the tyrosine residues of transferrin, changes occur in
the ultraviolet spectrum of the protein, which was detected by means of Raman
resonance (Aisen et al. 1969; Ainscough et al. 1980).

Chromium in Glucose and Lipid Metabolism

Chromium is postulated with functions that mainly cover carbohydrate metabo-
lism. Increased plasma glucose levels stimulate insulin secretion, which binds to
the α subunit of its trans membrane receptor and favors the transport of Cr+3

through the chromo-transferrin (Cr-Tf) complex. In the intracellular medium,
four chromium atoms bind to a protein called apo-chromodulin which becomes
active in the form of holo-chromodulin (Fig. 1). Holochromodulin binds to the β
subunit of the insulin receptor, amplifies the signal, and activates the kinase
activity of the receptor (Vincent 2000). However, the European Food Safety
Authority (EFSA) by the Scientific Opinion on Dietary Reference Values for
Chromium suggests there is insufficient evidence on chromium’s action mecha-
nism that supports its essentiality on glucose metabolism (EFSA 2014).

Intracellular signaling of insulin begins with its binding to the α subunit,
which promotes conformational change and β subunit auto-phosphorylation,
with a consequent increase in receptor kinase activity. Activation of the insulin
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receptor kinase triggers a cascade of intracellular phosphorylation. Initially,
phosphorylation of its intracellular protein substrates (IRS-1 and IRS-2, respec-
tively) phosphorylates the p85 regulatory subunit and activates the p110 subunit
of phosphatidylinositol-3-kinase (PI3k), favoring the conversion of phosphati-
dylinositol-4,5 -phosphate (PI3k -inactive) in phosphatidylinositol-3,4,5-triphos-
phate (PI3k-active) (White and Kahn 1994).

Active PI 3-kinase is important in regulating mitogenesis, cell differentiation, and
insulin-stimulated glucose transport. It promotes phosphorylation of protein kinase
B (AKT) and other phosphoinositois kinase-dependent (PDKs) (White and Kahn
1994; Myers and White 1993).

The phosphorylation mechanism of the p110 subunit of PI3K is stimulated by
the chromium present in the cytosol of the cell. Chromium also activates AKT,
which stimulates the translocation of the glucose transporter (GLUT4) to the
membrane, which is important for the glucose uptake process (Whiteman et al.
2002). The activated AKT phosphorylates other pathways assisting in the conduc-
tion of glucose transport (Wang et al. 2006; Dong et al. 2008). Chromium still
inactivates PTP-1B which is a protein phosphatase considered to be a negative
regulator of insulin signaling (path not shown in the figure) (Goldstein 2002;
Sreejayan et al. 2002).

Glucose Blood

Apo-chromodulin

Cr-Tf

Insulin Blood

Apo-chromodulin

Holo-Chromodulin

Holo-Chromodulin

1

2
3

4

Fig. 1 Action of chromium in glucose metabolism. : Increased glucose and insulin secretion

that bind to the α subunit of its receptor, , : The insulin receptor (IR) becomes active
through insulin binding and promotes conformational change in the β subunit ( ) and favors the
entry of Cr+3 into the cell through the chromo transferrin complex (Cr-Tf), to : conversion

of the inactive form apo-chromodulin ( ) to the active form holochromodulin ( ), : Final
active form holo-chromodulin attaches to the site at the insulin receptor ( ) (Adapted from
Vincent 2000)
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The transient positive regulation of AMPK by chromium leads to a higher
uptake of glucose, that is, chromium favors the cholesterol efflux of membranes,
which causes GLUT4 translocation and consequently glucose uptake (Fig. 2)
(Chen et al. 2006).

Although chromium is involved in various mechanisms of glucose metabolism, it
was found that chromium nicotinate supplementation did not promote increased
insulin sensitivity and reduce blood glucose in diabetic subjects (Guimarães et al.
2013; Abdollahi et al. 2013).

There are also studies that report the relationship of chromium with lipid metabo-
lism. Elevated blood cholesterol levels and aortic plaque formation were observed in
rats fed a chromium-deficient diet, but not in animals supplemented with chromium
chloride (Schroeder 1969). Later, a reduction in atherosclerotic plaque was observed in
rabbits when they received potassium chromate injection (Abraham et al. 1980).

In humans, evidence on the importance of chromium in lipid metabolism has
occurred from analyses of aortas of people who died of cardiovascular disease. They
had less chromium than aorta from healthy people who were victims of an accident
(Schroeder et al. 1970). Later, it was found that people with cardiovascular disease

Membrane
cholesterol eflux Glucose

Cell
Membrane

Insulin
Insulin
Receptor  (IR)
P

P
P
P

IRSP
P

Cr

Cr
Glut-4
Vesicles

PKB (AKT)

Cr

(PI3-K)

Glucose

PDKs

Cr

AMPK PP

Citoplasm

p110 p85

Fig. 2 Putative mechanisms by which chromium augments cellular glucose uptake. Chromium
(Cr) showed increased kinase activity via phosphorylation of the insulin receptor β (IR-β), which
was associated with the downstream insulin receptor (IRS-1, IRS-2 respectively), which was
phosphorylated thereby the p85 regulatory subunit and p110 subunit of the phosphatidylinositol
3-kinase (PI3K) protein and phosphoinositde-dependent kinases (PDKs). Chromium also assists in
the signaling and phosphorylation of protein kinase B (AKT) leading to translocation of vesicles of
glucose 4 (Glut4). The transient upregulation of cyclic adenosine monophosphate-activated protein
kinase (AMPK) leads to increased uptake of glucose. Chromium mediates cholesterol efflux from
membranes causing Glut4 translocation and glucose uptake (Adapted from Hua et al. 2012)
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had lower serum chromium concentrations when compared with healthy people
(Newman et al. 1978; Simonoff et al. 1984).

Studies on the effect of chromium supplementation on improving lipid disorders
are controversial. Press et al. (1990) have shown the potential of chromium
picolinate in improving the lipid profile of people aged 25–80 years; however,
Amato et al. (2000) found no promising effect of chromium picolinate on
dyslipidemia in the elderly. In a study performed with diabetic subjects who received
chromium supplementation by means of brewer’s consumption, it showed a decrease
in the levels of triglycerides and low-density lipoprotein (LDL-c) (Sharma et al.
2011). However, another study with diabetic subjects showed no change in total
cholesterol, LDL-c, high-density lipoprotein (HDL-c), and triglycerides after
90 days of supplementation with chromium nicotinate (Guimarães et al. 2013).

Status, Toxicity and Adverse Chromium Effects

As previously discussed, chromium is a potentiating agent for insulin signaling
(Vincent 1999; Chen et al. 2011). Thus, it is assumed that their dietary deficiency
may contribute to the development of type 2 diabetes mellitus (IOM 2001). Most of
the patients with diabetes mellitus have low concentrations of serum chromium
(Guimarães et al. 2013), which makes clear the inverse relationship between
HbA1c and serum levels of chromium (Rajendran et al. 2015). Thus, hyperglycemia
may lead to a decrease in serum chromium concentrations and increase its urinary
excretion, worsening diabetes (Gaméz et al. 2002). In healthy subjects, urinary
excretion of chromium did not differ after high glycemic index diets compared to
low glycemic index diets (Hajifaraji and Leeds 2008). Regarding age, there is a
decrease in serum chromium levels in healthy individuals (Rocha et al. 2016).
Table 3 shows studies on chromium status in health and disease.

Regarding obesity, serum chromium levels among obese and eutrophic children
did not differ (Azab et al. 2014). The relationship between serum chromium and
obesity was also not observed in obese women (Yerlikaya et al. 2013). Despite this,
the relationship between obesity and insulin resistance is well established (Zhang
et al. 2015). In this sense, chromium status in adults with visceral obesity plays an
important role in insulin resistance, due to the inverse relationship between capillary
chromium level and HOMA-IR (Kim and Song 2014). The chromium status of the
toenails was also inversely associated with the incidence of metabolic syndrome, as a
function of its relationship with blood lipids (Bai et al. 2015).

Regarding the deficiency diseases, the majority of anemic children due to iron
deficiency presented chromium deficiency (Angelova et al. 2014). Despite the
antagonistic effect of chromium on iron, by competing for the binding to
apotransferrin (Quarles et al. 2011), insufficient intake of iron from the diet can be
accompanied in many cases by borderline or insufficient intake of other micro-
nutrients. On the other hand, in vitamin A deficiency, children with nocturnal
blindness presented high levels of chromium in biological samples (blood, scalp,
and urine (Afridi et al. 2011).
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Table 3 Chromium status in health and disease

Reference Study design Sample characteristics
Sample
size Results

Healthy individuals

Rocha
et al. 2016

Cross-
sectional
study

Healthy individuals 18
to 74 years old

240 There was no difference
in serum and urinary
levels of chromium
between the sexes. Serum
chromium levels
decreased with age.

Metabolic syndrome

Bai et al.
2015

Cohort American adults, aged
20–32 years

3648 Higher toenail chromium
levels in young adulthood
were associated with
lower incidence of
metabolic syndrome.

Prediabetic individuals

Rafiei et al.
2014

Cross-
sectional
study

Prediabetic patients 132 In the group with a normal
level of Cr, serum
chromium levels
decreased with age.

Type 2 diabetes

Rajendran
et al. 2015

Cross-
sectional
comparative
study

Newly diagnosed type 2
diabetes mellitus
patients without any
pre-existing
complications

42 Mean serum chromium
concentration was
significantly lower in
uncontrolled type 2
diabetic patients. There is
a decrease in serum
chromium levels with age.
The decrease in serum
levels of chromium is
greater after 40 years old.

Harani
et al. 2012

Cohort Adults aged 40 to
60 years

278 Serum chromium levels
vary according to glycemic
control in subjects with
type 2 diabetes.
Individuals with poor
glycemic control had
chromium levels 33%
lower than healthy
individuals.
Serum chromium levels
correlated strongly with
insulinemia and HOMA-
IR.

Guimarães
et al. 2013

Randomized
double-blind
clinical trial

Adults with type 2
diabetes

42 Serum chromium
deficiency was observed
in 72% of individuals
with type 2 diabetes.

(continued)
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High levels of chromium are generally observed in individuals who are submitted
to occupational exposure (Scheepers et al. 2008). Inhalation of dust, mist, or vapor
and dermal contact of products containing Cr+6 are the major routes of occupational
exposure to chromium. In humans, there is sufficient evidence for the carcinogenic-
ity of chromium VI compounds. Cr+3 compounds, found in foods, were not classi-
fiable as to their carcinogenicity (IARC 2012).

Chromium is also present in nutritional supplements such as chromium
picolinate, chromium histidinate, chromium chloride, and chromium nicotinate.
The toxicity of supplements containing Cr+3 compounds depends on the binder.
Study showed chromium picolinate as a mutagenic (Stearns et al. 2002), but the
National Toxicology Program’s technical report found no evidence of carcinogenic
activity of chromium picolinate monohydrate (NTP 2010). Chromium picolinate,

Table 3 (continued)

Reference Study design Sample characteristics
Sample
size Results

Enteral nutrition

Santos
et al. 2017

Prospective
observational
study

Patients aged
26–95 years that
underwent percutaneous
endoscopic gastrostomy

129 The majority (94%) of
individuals with long-
term dysphagia due to
head and neck cancer or
neurological dysphagia
had normal serum levels
of chromium.
None of the patients who
had low levels of serum
chromium had diabetes or
glucose intolerance.
Low levels of serum
chromium were not
related to gender,
glycemia, body mass
index, serum albumin or
transferrin.

Parenteral nutrition

Capone
et al. 2017

Cross-
sectional
comparative
study

Preterm infants
receiving parenteral
nutrition therapy

706 Chromium
supplementation via
parenteral nutrition
promoted better glucose
tolerance and calorie
delivery during the first
week of life, especially in
very low birth weight
infants.

Anemia

Angelova
et al. 2014

Cross-
sectional
study

Children younger than
3 years with iron
deficiency anemia

30 Low serum chromium in
73% of children.
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chromium histidinate, and chromium chloride in high concentrations did not result in
oxidative damage to DNA, in situations of oxidative stress induced by hydrogen
peroxide (Hininger et al. 2007). However, when compared to chromium bound to
niacin, chromium picolinate showed higher production of harmful superoxide anion
and increased DNA fragmentation. Despite this, Cr+3 compounds are relatively
nontoxic and exhibit less oxidative stress and DNA damage when compared to
Cr+6 (Bagchi et al. 2002). The genotoxic effects of Cr+3 are unlikely to occur in
humans or animals when exposed to the physiological or moderately elevated level
of ingestion (Eastmond et al. 2008).

In addition to genotoxicity, adverse effects were reported during studies with
chromium supplementation, such as dizziness, headache, nausea, constipation, flat-
ulence, watery stools (Suksomboon et al. 2014), and itching in the palm of the hands
(Guimarães et al. 2013). However, short-term chromium supplementation at usual
doses of 150–1000 mcg does not increase the risk of adverse effects when compared
with placebo. Even so, the safety of long-term supplementation is not established
(Suksomboon et al. 2014).

The Role of Chromium in Modulating Gene Expression

Cr+3 has been presenting important effects on gene expression. Changes in hepatic
cells, insulin activity, and obesity have already been observed (Peng et al. 2010; Rink
et al. 2006; Wang et al. 2016).

Regarding hepatic cells, an in vitro study with Cr+3 noted improvement in oleic
acid-induced steatosis, as it led to a reduction in the accumulation of lipids, fatty acid
content, and the amount of triglycerides. This occurred because chromium blocked
the transport of oleic acid excess inside the cells to suppress the mRNA and proteins
expressed by the gene cluster of differentiation 36 (CD36); and also to downregulate
the expression of diacylglycerol acyltransferase 2 (DGAT2) (Wang et al. 2016).
CD36 genes express membrane glycoproteins that help in the capture of chylomi-
crons, VLDL, and long chain free fatty acids by cells (Iqbal and Hussain 2009) as
well as stock and secretion of triglycerides in the liver (Kennedy et al. 2011). In turn,
the DGAT2 genes express proteins that help to modulate the synthesis of triglycer-
ides, and their excess can lead to the accumulation of this substance in the liver, and,
consequently, liver steatosis (Yen et al. 2008).

As for the effect of chromium on the activity of insulin, an in vitro study demon-
strated that the use of chromium picolinate (CrPic), complex of chromium chelated
with small peptides (CrSP) and chromic chloride (CrCl3), potentiates the insulin
action. In the presence of chromium, insulin increased the expression of insulin-like
growth factor 1 (IGF-1) gene, responsible for protein synthesis, and reduced levels of
ubiquitin mRNA, responsible for protein degradation (Peng et al. 2010).

Finally, the effect of chromium on obesity was observed with supplementation of
niacin-bound chromium (NBC), which acted on adipose tissue by upregulating the
expression of calsequestrin 1 (CASQ1), tropomyosin-1 (TPM1), enolase 3 (ENO3),
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and glucose phosphate isomerase1 (GPI1) genes and downregulating the expression
of Cell-death-induced DNA fragmentation factor (CIDEA), thermogenic uncoupled
protein 1 (UCP1), and tocopherol transfer protein (TPP) genes (Rink et al. 2006).
CASQ1 expressed proteins related to stocks of calcium in the sarcoplasmic reticu-
lum of cells, which may reduce the levels of free calcium inside the cells, thus
promoting better insulin signaling in fat cells (Beard et al. 2004; Lau et al. 2008). As
for the protein tropomyosin, expressed by TPM1 gene, when their levels are
reduced, there is an increasing differentiation of preadipocytes into adipocytes;
therefore, the presence of this protein reduces the amount of fat in adipocytes (Lau
et al. 2008). ENO3 and GPI 1 genes express key enzymes for glycolysis (Lau et al.
2008; Rink et al. 2006). However, CIDEA and UPC1 genes act on the increase in
brown adipose tissue; in addition, a study reported that mice deficient in CIDEA are
slim and have better resistance to the development of obesity and diet-induced
diabetes, because it presented a higher metabolic rate and lipolysis (Lau et al.
2008; Zhou et al. 2003). TPP gene is involved in the transport of α-tocopherol that
will be incorporated into LDL-c; therefore, the reduction in the expression of this
gene can reduce levels of this lipoprotein. The increased expression of TPP can also
increase the antioxidant defense of adipocytes, making breakage of adipose tissue
(Lau et al. 2008; Rink et al. 2006).

Thus, chromium supplementation appears to have beneficial effects regarding the
modulation of gene expression and liver health, obesity, and diabetes. Despite these
results, further studies are needed to generate scientific evidence, since the studies
already carried out were in vitro and in animals.

Policies and Protocol

According to the World Health Organization (WHO), the formulation of a guideline
follows the steps to identify the issues and priority outcomes for public health, to
observe and evaluate the evidence, so that recommendations and implementation for
the prioritized issue solution can be formulated (WHO 2010). The WHO considers
some micronutrients deficiency in specific population groups to the proposition of
guidelines such as the fortification of multiple micronutrients (sachet containing
iron, vitamin A, and zinc and other vitamins and minerals that the country regards
necessary) to children aged between 6 and 23 months (WHO 2011) and the daily
supplementation of iron and folic acid for pregnant women (WHO 2012). Thus, it
appears that the health authorities recommend micronutrient supplementation,
whose deficiency in risk groups is well consolidated by the scientific literature.

In the case of chromium, so far, no policies, programs, and guidelines recommend
this mineral supplementation for risk groups. The evidence is insufficient to support
the use of chromium to improve glycemic control in diabetic subjects. The results of
the studies with chromium supplementation are conflicting and confused, due to
differences in dosage, micronutrient levels achieved with the initial status of chro-
mium supplementation, and methodologies used (Evert et al. 2013). Thus, although
clinical trials are already suggesting that chromium supplementation helps in
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controlling diabetes, obesity, and dyslipidemia, the results are still incipient
(Onakpoya et al. 2013).

Therefore, chromium still does not meet the requirement of consolidated scien-
tific evidence to develop a guideline recommending supplementation in high-risk
groups. More studies are needed on the use of this mineral (Fig. 3), which evaluate
the benefits and safety of use in the short, medium, and long term and showing more
consistent results, so that it forms part of a policy or program of supplementation for
the prevention and/or treatment of both deficiency diseases as chronic. The policies
for the promotion of healthy eating and food and nutritional security can be effective
initiatives for the prevention of micronutrient deficiencies, including chromium, and
for coping with chronic diseases.

Dictionary of Terms

• Nutritional requirements – sufficient intake levels to get nutrient requirements
in healthy individuals.

• Adequate intake (AI) – reference value used when there is insufficient informa-
tion to determine Recommended Dietary Allowance (RDA).

• Upper intake levels (UL) – daily intake limit of the nutrient with no adverse
health effects for the majority of the population.

CHROMIUM AND ITS RELATIONSHIP WITH HEALTH AND DISEASE
What we need to better understand about this micronutrient 

FomentationPublic healthBiochemistryFoods

Analysis of the 
chromium content in
foods

Insertion of content
information into
food composition
tables

Identify clinical signs of
chromium deficiency
Strengthening of policies to
promote healthy food and
food and nutrition security:

Determination of clinical and
nutritional indicators to
identify individuals with
chromium deficiency:

Metabolic syndrome
Resistance to insulin
Overweight
Diabetes
Food consumption

Scientific evidence to determine the nutritional recommendations and
support guidelines for chromium supplementation in vulnerable groups

1IOM, 2001
  EAR: estimated average requirement

Estimates of dietary
intake

Nutricional balance

Nutrition

Understanding the
relationship between
dietary intake, deficiency
and toxicity of Cr+3

Identification of the
benefits and adverse
effects of high dose
supplementation of
chromium1

Controlled studies with
low chromium ingestion
(less than 5 to 15 µg/1000
kcal) to determine the
EAR1

Standardization of the
evaluation of levels of
chromium in biogenic
material including the
definition of reference
values for deficiency and
toxicity, according to the
stage of life and sex

Elucidation of the
relationship between
chromium status and
insulin resistance1

Ensure water and food
free from contamination
(Cr+6 intoxication )
Ensure access to
adequate and healthy
food
Promote breastfeeding

Public and scientific
actions that promote
research on the
chromium nutritional
requirements in different
age groups and
pathological situations

Fig. 3 Research protocol on chromium, health, and disease
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• Estimated Average Requirements (EAR) – estimate of daily intake to get
needs, indicator, or criteria in half of healthy individuals of a given sex or stage
of the life cycle.

• Recommended Dietary Allowance (RDA) – daily consumption level that gets
the nutrient requirement for almost all healthy individuals at a given stage of life
and gender.

• Bioavailability – ratio of drug or nutrient concentration to concentration of drug
or nutrient at the locus of action.

• Chromodulin – low-molecular-weight chromium-binding substance. A 1,5 kDa
peptide, composed of four glycine, cysteine, glutamate, and aspartate residues,
presenting a tetranuclear characteristic linked to four trivalent chromium ions,
being important for insulin signaling.

• Insulin resistance – condition where the physiological response induced by
insulin is lower than expected considering insulin concentration.

• Modulation of gene expression – mechanisms that regulate the synthesis of
proteins or other biomolecules by controlling the transcription of genes respon-
sible for the production of these substances.

Summary Points

• Chromium is an important nutrient in food but, because of the lack of scientific
evidence, the estimated average requirement (EAR) of its daily intake and the
tolerable upper intake levels (UL) have not yet been established.

• Chromium in foods has increased absorption by the presence of amino acids,
ascorbic acid, high levels of carbohydrates, oxalate, and aspirin in the diet, while
phytates and antacids (sodium hydrogen carbonate, magnesium hydroxide)
reduce the absorption of chromium.

• Chromodulin, a low-molecular-weight chromium-binding substance, participates
in the mechanism of amplification of insulin-cell signaling.

• Chromium is present in nature in different states of oxidation, with trivalent
chromium and hexavalent chromium being the most common forms.

• Chromium is absorbed in the small intestine by passive transport. Due to diffi-
culties in traversing the plasma membrane, the absorption of trivalent chromium
is low.

• Hexavalent chromium has strong oxidative capacity and its absorption occurs
more easily through the plasma membrane.

• Chromium is transported by ferritin and there may be competition with other
metals, such as iron.

• Chromium is present in nutritional supplements in various forms such as chro-
mium picolinate, chromium histidinate, chromium chloride, chromium
nicotinate.

• Serum chromium levels vary according to glycemic control in subjects with type
2 diabetes. Serum chromium deficiency appears to be greater in uncontrolled
diabetic subjects.
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• Serum chromium levels decreased with age in healthy subjects.
• Although chromium is involved in several mechanisms of glucose metabolism,

the evidence is not sufficient for long-term therapy in diabetic subjects.
• High levels of chromium are generally observed in individuals who are submitted

to occupational exposure.
• In humans, there is sufficient evidence for the carcinogenicity of Cr6+ com-

pounds. Cr3+ compounds, as found in foods, were not classifiable as to their
carcinogenicity.

• Policies to promote healthy eating and food security and nutrition initiatives can
be effective for the prevention of micronutrient deficiencies, including chromium,
and for coping with chronic diseases.
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