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Abstract This paper proposes a system architecture for tracking multiple ground-
based objects using a team of unmanned air systems (UAS). In the architecture
pipeline, video data is processed by each UAS to detect motion in the image frame.
The ground-based location of the detected motion is estimated using a geolocation
algorithm. The subsequent data points are then process by the recently introduced
Recursive RANSAC (R-RANSASC) algorithm to produce a set of tracks. These
tracks are then communicated over the network and the error in the coordinate frames
between vehicles must be estimated. After the tracks have been placed in the same
coordinate frame, a track-to-track association algorithm is used to determine which
tracks in each camera correspond to tracks in other cameras. Associated tracks are
then fused using a distributed information filter. The proposed method is demon-
strated on data collected from two multi-rotors tracking a person walking on the
ground.

1 Introduction

The objective of this paper is to describe a new approach to real-time video tracking
of multiple ground objects using a team of multi-rotor style unmanned air systems
(UAS). Many UAS applications involve tracking objects of interest with an on-board
camera. These applications include following vehicles [15], visiting designated sites
of interest [12], tracking wildlife [17], monitoring forest fires [8, 13], and inspecting
infrastructure [24]. Current approaches to real-time video tracking from UAS can be
brittle, and state-of-the-art techniques often require fiducial markings, or extensive
human oversight.

There are numerous challenges in developing an object tracking system. For exam-
ple, object tracking often involves finding image features and tracking those features
from frame to frame. However, feature matching has a relatively high error rate, and
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the errors introduced by incorrect matches do not follow a Gaussian distribution.
In addition, each measurement cycle, or image pair, produces many measurements
where false measurements occur at a relatively high rate. Another challenge is dis-
tinguishing tracks from the background, especially when they stop moving, or have
color and features similar to the background. Furthermore, even when objects of
interest are correctly identified in each frame, the data association problem, or the
problem of consistently associating the measurements with the correct object, can
be difficult. Finally, many applications require that the system track many objects in
the environment.

In this paper, we introduce a complete solution for trackingmultiple ground-based
objects using cameras on-board a team of UAS. Our solution draws upon several
distinct technologies including geolocation [4, 7, 11], multiple target tracking [6,
28], track-to-track data correlation [1, 2], and distributed sensor fusion [16, 18].

In our framework we assume that there are multiple air vehicles each carrying
an on-board camera. The computer vision algorithm on each vehicle returns a set
of points in the image frame that may correspond to ground-based objects. In the
implementation reported in this paper, we look for moving objects. The set of poten-
tial measurements are then processed using a geolocation algorithm and the GPS
and IMU measurements on-board each vehicle, to project the measurements onto
the ground plane. The geolocation algorithm is described in Sect. 2.2. The data is
then processed using a newly introduced multiple target tracker called Recursive
RANSAC [15, 21, 22]. The R-RANSAC algorithm produces a set of tracks that are
communicated betweenvehicles on the team.TheR-RANSACalgorithm is described
in Sect. 2.3. Unfortunately, the geolocation process is imprecise, introducing poten-
tial biases between vehicles. For every pair of tracks, the bias must be determined,
and our approach to this problem is described in Sect. 2.4. Since each object may not
be seen by every UAS, it is necessary to determine whether tracks seen by UAS a, are
also seen by UAS b. Our approach to track-to-track association is given in Sect. 2.5.
Associated tracks are then fused using an information filter as described in Sect. 2.6.
Finally, flight results using the complete system are described in Sect. 3.

2 System Architecture

The architecture for the tracking system that will be described in this paper is shown
in Fig. 1. EachUAS instantiates a tracking pipeline that includes six key components.
The first component in the pipeline, as shown in Fig. 1, is the UAS and gimbaled
camera. We assume that the UAS contains an autopilot system, as well as a pan-tilt
camera that can be automatically controlled to point along a desired optical axis. In
this paper, wewill assume an RGB camera and enough processing power on-board to
process images at frame rate, and to implement the other components in the system.
The second component shown in Fig. 1 is the Geolocation block. The purpose of the
geolocation block is to transform the image coordinates into world coordinates based
on the current pose of the UAS. A detailed description of the geolocation block is



Tracking Multiple Ground Objects … 251

Fig. 1 Architecture for tracking multiple ground-based objects of interest using a team of UAS

given in Sect. 2.2. The next component shown in Fig. 1 is the Recursive RANdom
SAmple Consensus Multiple Target Tracking (R-RANSACMTT) block. This block
uses image features in world coordinates to create and manage object tracks. This
block performs several key tasks including data association, new track formation,
track propagation, track collation, and track deletion. We define a track to be the
time history of the system state (position, velocity, acceleration, etc.), as well as the
associated covariance matrix. A more detailed description of this block will be given
in Sect. 2.3. The current tracks maintained by each UAS is shared across the network
with other UAS. The current collection of tracks is used in the Bias Estimation
block shown in Fig. 1 to estimate the translational and rotational bias between each
pair of tracks in the network, and thereby place all tracks in the coordinate system
of the ith UAS. Additional details about this process will be described in Sect. 2.4.
The collection of tracks are then processed by the Track-to-track Association block
shown in Fig. 1. This block uses a statistical test on a past window of the data to
determine which tracks maintained by the ith UAS are statistically similar to the
tracks maintained by the jth UAS. The details of this block are described in Sect. 2.5.
When tracks are determined to be similar, they are fused in the Track Fusion block
shown in Fig. 1. Track fusion is accomplished using an information consensus filter,
as described in Sect. 2.6.

2.1 UAS and Gimbaled Camera

The techniques that are outlined in this paper are applicable to both multi-rotor
systems and fixed wing vehicles. Independent of the type of aircraft used, we will
assume that the sensor suite on-board the aircraft consists of a GPS aided IMU and
associated filter algorithms that are able to estimate the 3D world position of the
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UAS, as well as the inertial attitude of the UAS. We will also assume an altimeter
that estimates the current height above ground of the aircraft. The altimeter may be
a laser altimeter, or it may be an absolute pressure sensor that estimates the height
above ground using the pressure difference between the take-off position and the
current position. We will assume a flat earth model to simplify the discussion and
equations. When an elevation map of the environment is known, the extension of
these ideas to more complex terrain is conceptually straightforward.

Wewill assume that theUAScarries a gimbaled camera,where the gimbal canboth
pan and tilt, and possibly roll. For fixed wing vehicles, pan-tilt gimbals are common.
For multi-rotor systems, pan-roll and pan-tilt-roll gimbal systems are common.

2.2 Object Geolocation

The UAS and gimbaled camera block shown in Fig. 1 produces a video stream, as
well as state estimates obtained by filtering the on-board sensors.Wewill assume that
the video stream is processed to produce a list of pixels, or image coordinates that
represent possible measurements of objects on the ground. The task of the Geoloca-
tion block shown in Fig. 1 is to transform each image coordinate in the feature list
into an inertial position on the ground. Object tracking can be performed in either
the camera frame, or in the inertial frame. In order to perform object tracking using
a team of UAS, the measurements of the objects need to be in a common reference
frame. In this paper, we assume that all UAS on the team have GPS, therefore it
makes sense to use GPS to define the common inertial reference frame, and to track
the objects in the inertial frame. Transforming image coordinates to inertial coordi-
nates is called geolocation in the literature. Geolocation algorithms for small UAS
are described in [4, 5, 7, 10, 11, 23, 29].

Let I denote the inertial frame, let Ua denote UAS a, and let Fk denote the kth

feature of interest. Let pIUa
denote the inertial position of UAS a, and pIFk

denote the
inertial position of the kth feature. Define the line of sight vector between UAS a
and the kth feature, expressed in the camera frame as �

Ca
UaFk

= pCa
Fk

− pCa
Ua
. If RGa

Ca

denotes the rotation matrix from the camera frame to the gimbal frame of UAS a,
RBa
Ga

denotes the rotation matrix from the gimbal frame to the body frame of UAS a,
and RI

Ba
denotes the rotation of the body frame of UAS a to the inertial frame, then

the basic geolocation equation is given by [5]

pIFk
= pIUa

+ RI
Ba

RBa
Ga

RGa
Ca

�
Ca
UaFk

. (1)

The only element that is not available in Eq. (1) is the line of sight vector �
Ca
UaFk

. If
we assume a pin-hole model for the camera, and that the focal length of the camera
is f , and that the pixel location of the kth feature is (εxk , εyk ), then the line of sight
vector is given by
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�
Ca
UaFk

= LUaFkλ
Ca
UaFk

, (2)

where LUaFk is the unknown length of the line of sight vector, and

λ
Ca
UaFk

= 1√
ε2xk + ε2yk + f 2

⎛
⎝

εxk
εyk
f

⎞
⎠

is the direction of the line of sight vector expressed in the camera frame. To determine
LUaFk additional information about the terrain needs to be available. If an elevation
map of the terrain is known, then LUaFk is determined by tracing the ray given by the
right hand side of Eq. (1) to find the first intersection with the terrain. In other words,
find the first α > 0 such that

pIFk
= pIUa

+ αRI
Ba

RBa
Ga

RGa
Ca

λ
Ca
UaFk

intersects the terrain model. If the terrain is flat and the altitude h is known, then the
equation for the length of the line of sight vector is given by [5]

LUaFk = h(
kI

)�
RI
Ba

RBa
Ga

RGa
Ca

λ
Ca
UaFk

,

where kI = (0, 0, 1)� is the unit vector pointing to the center of the earth.
Therefore, the geolocation block projects all 2D features in the image plane, into

3D features in the world frame, and returns a set of features in the inertial frame.

2.3 Multiple Object Tracking

The next step in the tracking pipeline shown in Fig. 1 is Recursive Random Sample
Consensus Multiple Target Tracking (R-RANSACMTT). The function of this block
is to process the inertial frame measurements and to produce a set of tracks that
correspond with objects on the ground. The R-RANSAC algorithm was recently
introduced in [20] for static signals with significant gross measurement error, and
extended in [21] to multiple target tracking, and in [15] to video tracking.

A graphic that highlights key elements of the algorithm are shown in Fig. 2.
Figure2a shows a single object on the ground, where the black dots represent current
and pastmeasurements. The small box around the object is a decision ormeasurement
gate. As shown in Fig. 2b a set of trajectories that are consistent with the current
measurement are created. For a given object, there many bemany trajectories that are
consistent with the current measurement. A set of these trajectories with the largest
number of inlier measurements are retained in memory, and the trajectories that
continue to be consistent with the measurements are retained. When other objects
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Fig. 2 Multiple object tracking using the R-RANSAC algorithm

appear, as shown in Fig. 2c they will generate measurements that are not in the
measurement gate of existing tracks. When that happens, the initialization step is
repeated, and a set of trajectories consistent with that measurement are added to
memory. The R-RANSAC algorithm will have a bank of M possible trajectories in
memory, and so pruning, merging, and spawning operations are key to its operation.
In theory, the algorithm is capable of trackingM − 1 objects.

The R-RANSAC algorithm assumes a motion model for the objects of the form

x[t + 1] = Ax[t] + η[t] (3)

y[t] = Cx[t] + ν[t], (4)

where the size of the state is N , and where η[t] and ν[t] are zero mean Gaussian ran-
dom variables with covarianceQ and R, respectively. We have found that for moving
objects like pedestrians and vehicles on a road, constant acceleration and constant
jerkmodels tend toworkwell [14]. The algorithm requires that all pastmeasurements
be retained in memory for the pastD samples. The R-RANSAC initialization process
begins by randomly selecting N − 2 time delays in the interval [1,D − 1] denoted
as {d1, . . . , dN−1}. At each time delay, one measurement is randomly selected and
denoted as {yd1 , . . . , ydN−1}. A measurement is also randomly selected at time t − D
and denoted y[t − D]. The state at time t − D can then be reconstructed from the
equation
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⎛
⎜⎜⎜⎜⎜⎝

y[t]
y[d1]

...

y[dN−1]
y[t − D]

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

CAD

CAD−d1

...

CAD−dN−1

C

⎞
⎟⎟⎟⎟⎟⎠
x̂[t − D]. (5)

It can be shown that if the system is observable, then there is a unique solution for
x̂[t − D] [19]. The state x̂[t − D] is propagated forward to the current time t using
the discrete-time steady-state Kalman filter

x̂−[τ + 1] = Ax̂[τ ]

x̂[τ + 1] =
{
x̂−[τ + 1] + L(y[τ ] − Cx̂[τ ]) τ ∈ {t, t − d1, . . . , t − dN−1, t − D}
x̂−[τ + 1] otherwise,

(6)

where
L = PpC

�S−1, (7)

is the Kalman gain, S = (CPpC� + R) is the innovation covariance and Pp is the
steady state prediction covariance that satisfies the algebraic Riccati equation

Pp = APpA
� + Q − APpC

�S−1CPpA
�. (8)

The quality of the initialized track is then scored by counting the number of
measurements that are consistentwith that track.LetYτ be the set of allmeasurements
received at time τ , and let Yτ (z, γ ) be the set of measurements that are aMahalanobis
distance of γ from z at time τ , i.e.,

Yτ (z, γ ) = {y ∈ Yτ : (z − y)�S−1(z − y) ≤ γ },

then the consensus set at time t for the jth track {x̂j[τ ]}tτ=t−D, is defined to be

χ j[t] =
t⋃

τ=t−D

Yτ (Cx̂
j[τ ], γ ).

The inlier ratio ρ j(t) for track j is defined to be the size of the consensus set divided
by the total number of measurements, i.e.,

ρ j[t] =
∣∣χ j[t]∣∣∑t

τ=t−D |Yτ |
. (9)

The inlier ratio is a measure of the quality of the the track.
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After a set of tracks have been initialized, the R-RANSAC algorithm processes
the set of measurements Y [t] as follows. Let Gj[t] be a defined gate for the jth track
at time t where

Gj[t] = {z ∈ R
p : (z − Cx̂j[t])�S−1(z − Cx̂j[t]) ≤ γ }.

The set of measurements Y [t] ∩ Gj[t] are combined using the probabilistic data
association (PDA) algorithm [3], and then used to update the associated Kalman
filter. Measurements that are outside of the gate for every existing track, are used to
spawn new tracks, based on the previously defined initialization method. Two tracks
are combined when their outputs are within a certain threshold of each other over a
specified window of time.

2.4 Track Alignment

Object tracks produced by the R-RANSACMTT algorithm are communicated across
the network to other team members as shown in Fig. 1. When UAS a receives a track
from UAS b, UAS a must determine if the track corresponds to any of its existing
tracks.We call this the problem of track-to-track association. However, before testing
for track-to-track association, the tracks from UAS a must be aligned with the track
from UAS b.

Let x̂jm|n[t] represent the jth track estimated by UAS m at time t, where the state
is represented in the coordinate frame of UAS n. Each UAS will maintain a set of
tracks in their own coordinate frame. In other words, UAS a will maintain the track
of its jth object as x̂ja|a. The track can be transformed into the coordinate frame of
UAS b using

x̂ja|b[t] = Rb
a

(
x̂ja|a[t] + dba

)
,

where Rb
a is the transformation matrix that rotates the coordinate frame of UAS a into

the coordinate frame of UAS b, and dja|b is the associated translation. For example,
when the state consists of the 2D ground position, velocity, and acceleration, then

Rb
a = I3 ⊗

(
cos θ − sin θ

sin θ cos θ

)

dba = (
βn βe 0 0 0 0

)�

where ⊗ represents the Kronecker product and θ is defined as the relative rotational
bias angle between the two tracks about the negative down axis, and where βn and
βe are constants representing the north and east translational bias.

Two tracks x̂ja|a and x̂kb|b are aligned over a window of length D by solving the
optimization problem
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(Rb
a
∗
, bba

∗
) = arg min

(Rb
a,b

b
a)

t∑
τ=t−D+1

∥∥∥x̂kb|b[τ ] − Rb
a(x̂

j
a|a[τ ] + dba)

∥∥∥ . (10)

It should be noted that obtaining a solution from the optimizer does not guarantee that
the tracks are associated. To determine whether the tracks originate from the same
object requires solving the track-to-track association problem, which is discussed in
the next section.

2.5 Track-to-Track Association

After the tracks have been aligned, the next step shown in Fig. 1 is to test whether the
two tracks do in fact originate from the same source. This is the classical track-to-
track association problem [1]. The problem is formulated as a hypothesis test, where
the two hypotheses are

H0 : The two tracks originate from the same object.

H1 : The two tracks do not originate from the same object.

The association problem is solved over the past D measurement. Define the error
vector as

x̃kbja [t] =

⎛
⎜⎜⎜⎜⎝

x̂kb|b[t − D + 1] − Rb
a(x̂

j
a|a[t − D + 1] + dba)

x̂kb|b[t − D + 2] − Rb
a(x̂

j
a|a[t − D + 2] + dba)

...

x̂kb|b[t] − Rb
a(x̂

j
a|a[t] + dba)

⎞
⎟⎟⎟⎟⎠

. (11)

Under the null hypothesis x̃kbja [t] is a zero mean Gaussian random variable with
covariance P0, and under the alternative hypothesis x̃kbja [t] is a zero mean Gaussian
random variable with covariance P1. The covariance matrix P0 is known and will
be discussed below. On the other hand, the covariance matrix P1 is not known, and
depends on the unknown true difference between the two unassociated tracks.

In the ideal case, where both P0 and P1 are known, the test statistic that follows
from the log-likelihood ratio is [26]

L = x̃kbja [t]� (
P−1
0 − P−1

1

)
x̃kbja [t]. (12)

However, because P1 is unknown, this test statistic is unusable. We instead adopt the
test statistic

D[t] = x̃kajb [t]�P−1
0 x̃kajb [t]. (13)
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Under H0,D[t] is a central chi-square random variable with DN degrees of freedom
[26]. Under H1, we use the Cholesky factorization P−1

1 = W�W to write

D[t] = x̃kajb [t]�W�Wx̃kajb [t] = (Wx̃kajb [t])�Wx̃kajb [t]. (14)

Here, Wx̃kajb [t] is a zero mean Gaussian random variable with covariance WP1W�.
Depending on the relationship between W and P1, D[t] may or may not be a chi-
square random variable [26]. In the event that D[t] is a chi-square random variable,
it has less than DN degrees of freedom.

Because the likelihood ratio is an increasing function ofD[t], by theKarlin–Rubin
theorem, the following test is a uniformly most powerful test for testing H0 against
H1 [26]:

φ(D[t]) =
{
1, ifD[t] > Dα

0, ifD[t] ≤ Dα

(15)

where φ(D[t]) = 1 means H0 is rejected and φ(D[t]) = 0 means H0 is not rejected.
The decision threshold is found as follows. For a given false alarm probability

α = P (φ(D[t]) = 1 | H0) = P (D[t] > Dα | H0) , (16)

Dα is computed from

α = 1 − FD|H0(Dα)

= 1 −
∫ Dα

0

1

�(Nnx/2)2(Nnx/2)
x(Nnx/2)−1ex/2dx. (17)

Note that under H0 this produces a probability of detection Pd = 1 − α.
Under H0, x̃kajb [t] is a zero mean Gaussian random variable with covariance P0

where the covariance is expressed as

P0 = lim
t→∞E

{
x̃kajb [t]x̃kajb [t]�}

, (18)

and where
x̃kajb [t] = x̂ka [t] − x̂jb [t],

and where x̂ka [t] ∈ RDN×1 is the stacked vector associated with the past D estimates
of the kth track as observed by UAS a. Define the true track to be xka and the track
estimation error to be x̃ka = x̂ka − xka . Then P0 can be written as

P0 = lim
t→∞E{x̃kajb [t]x̃kajb [t]�}

= lim
t→∞E{(x̂ka [t] − x̂jb [t])(x̂ka [t] − x̂jb [t])�}

= lim
t→∞E{(x̃ka [t] + xka [t] − x̃jb [t] − xjb [t])(x̃ka [t] + xka [t] − x̃jb [t] − xjb [t])�}.
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Under hypothesis H0, the two tracks originate from the same source, and since they
are aligned in the same coordinate frame we have that xka = xjb . Therefore

P0 = lim
t→∞E{(x̃ka [t] − x̃jb [t])(x̃ka [t] − x̃jb [t])�}

= lim
t→∞E{x̃ka [t]x̃k�

a [t]} + lim
t→∞E{x̃jb [t]x̃j�b [t]}

− lim
t→∞E{x̃ka [t]x̃j�b [t]} − lim

t→∞E{x̃jb [t]x̃k�
a [t]}.

It can be shown using steady-state Kalman filter arguments, that P0 has the
structure

P0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

P PG� P(G2)� . . . P(GN−1)T

GP P PG� . . . P(GN−2)�

G2P GP
. . .

...
...

...
. . . PG�

GN−1P GN−2P . . . GP P

⎞
⎟⎟⎟⎟⎟⎟⎠

, (19)

where P = 2(Pe − Pc), and where Pe is the estimation covariance given by

Pe = Pp − PpC
�(CPpC

� + R)−1CPp, (20)

and Pp is the prediction covariance given by the solution of the Riccati equation in
Eq. (8), and where the cross covariance Pc satisfies

Pc = (I − LC)(APcA
� + Q)(I − LC)�,

where L is the Kalman gain given in Eq. (7), and where

G = (I − LC)A.

The structure of (19) is convenient as it produces an inverse with a tridiagonal
block form, as highlighted in the following theorem.

Theorem 1 Consider the symmetric, positive definite block matrix P0 defined by
(19). The inverse of the matrix P0 is given by

P0
−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

U V 0 . . . 0
V T W V . . . 0

0 V T . . .
...

...
... W V

0 0 . . . V T Y

⎞
⎟⎟⎟⎟⎟⎟⎠

(21)

where
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U = P−1 + GTYG

V = −GTY

W = Y + GTYG

Y = (P − GPGT )
−1

.

The proof of the theorem is in [25].
The theorem allows for a recursion equation to be developed for D in Eq. (13),

which can be used to update the test statistic for a sliding window of data. Using
(21), Eq. (13) can be expanded to

D[t] = x̃[t]�P−1
0 x̃[t] (22)

=
[
x̃[t − D + 1]�Ux̃[t − D + 1] + x̃[t − D + 2]�V� x̃[t − D + 1]

]

+
[
x̃[t − D + 1]�V x̃[t − D + 2] + x̃[t − D + 2]�Wx̃[t − D + 2] + x̃[t − D + 3]�V� x̃[t − D + 2]

]

+
[
x̃[t − D + 2]�V x̃[t − D + 3] + x̃[t − D + 3]�Wx̃[t − D + 3] + x̃[t − D + 4]�V�x̃[t − D + 3]

]

.

.

.

+
[
x̃[t − 2]�V x̃[t − 1] + x̃[t − 1]�Wx̃[t − 1] + x̃[t]�V� x̃[t − 1]

]

+
[
x̃[t − 1]�V x̃[t] + x̃[t]�Yx̃[t]

]
. (23)

Defining

d1[τ ] 
= x̃[τ ]�Ux̃[τ ] + x̃[τ + 1]�V�x̃[τ ]
d2[τ ] 
= x̃[τ − 1]�V x̃[τ ] + x̃[τ ]�Wx̃[τ ] + x̃[τ + 1]�V�x̃[τ ]
d3[τ ] 
= x̃[τ − 1]�V x̃[τ ] + x̃[τ ]�Yx̃[τ ]

the test statistic in (23) can be expressed as

D[t] = x̃[t]�P−1
0 x̃[t]

= d1[t − D + 1]
+ d2[t − D + 2] + d2[t − D + 3] + · · · + d2[t − 2] + d2[t − 1]
+ d3[t].

At the next time step the test statistic is

D[t + 1] = d1[t − D + 2]
+ d2[t − D + 3] + d2[t − D + 4] + · · · + d2[t − 1] + d2[t]
+ d3[t + 1].



Tracking Multiple Ground Objects … 261

Fig. 3 The test statistic at two subsequent time steps. Notice the values that are carried over to the
next time step, as indicated by the arrows. The test statistic at time t + 1 is obtained by taking D[t],
subtracting the values in red, and adding the values in blue

Figure3 illustrates themanner inwhich values from the test statistic at t are carried
over to t + 1. From this figure, it is clear to see that the complete recursion is

D[t + 1] = D[t] − (d1[t − D + 1] + d2[t − D + 2] + d3[t])
+ (d1[t − D + 2] + d2[t] + d3[t + 1]). (24)

It should be noted that the original window contains D time steps, however, Eq. (24)
requires that a window of D + 1 time steps be maintained. To avoid this change in
the window size the recursion equation can be determined in two steps. First, after
the hypothesis test at time t an intermediate value for D[t] is calculated as

D+[t] = D[t] − (d1[t − D + 1] + d2[t − D + 2] + d3[t]).

At time t + 1 the test statistic can then be updated using

D[t + 1] = D+[t] + (d1[t − D + 2] + d2[t] + d3[t + 1]).

The method can be extended to the case where during the construction of (11)
the time difference between subsequent estimation errors is � time steps. Doing so
reduces the observed time correlation in the test statistic (which is theoretically zero,
but nonzero in practice), which enhances the power of the test [27]. In that case, the
recursion for the test statistic becomes

D[t + �] = D[t] − (d1[t − �(D − 1)] + d2[t − �(D − 2)] + d3[t])
+ (d1[t − �(D − 2)] + d2[t] + d3[t + �]). (25)

Note, the recursion requires that the window is slid by � time steps.

2.6 Track Fusion

The final step in the architectures shown in Fig. 1 is to fuse tracks for which the test
statistic exceeds the given threshold. Therefore, if H0 is accepted for a given pair
of tracks, (x̂ka , x̂jb), the objective is to combine or fuse the estimates. The method
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presented in this paper takes advantage of the fusion properties of information fil-
ters [18]. For the steady-state information filter, the information matrix is given by
J = P−1

e , where Pe is given in Eq. (20), and the information vector is given by
zjb [t] = P−1

p xjb [t]. When measurements are received locally, the information filter is
updated using

zjb [t + 1] = JAPpz
jb [t] + C�R−1yjb [t].

When the state x̂ka is to be fused with zjb then the fusion equation becomes

zjb [t + 1] = JAPpz
jb [t] + C�R−1yjb [t] + Rb

aJx̂
ka + (J − I)dba .

3 Simulation and Flight Results

The complete cooperative estimation system shown in Fig. 1 was tested in a tracking
scenario that involved two stationary cameras (simulating a hovering scenario), each
viewing the tracking area from a different point of view, as shown in Fig. 4.

For this test the position and orientation of the cameras were calculated by deter-
mining the mapping of known inertial coordinates to their corresponding locations
in the image frame. A foreground detector based on the KLT method [9] was used
to produce pixel measurements for each object of interest, which were geolocated in
the inertial frame. Note that the inertial frame was specified using a north-east-down
(NED) frame of reference. These measurements in the inertial frame were input to
R-RANSAC, producing states for each object.

The tracks produced by each object can be seen in the Fig. 5, where the green
tracks are from camera V1, while the cyan tracks are from camera V2. This figure
illustrates the rotational and translational biases that separate the associated tracks.

A window of N = 10 state estimates was stored with � = 10. This window was
used to calculate the rotational and translational biases as in Sect. 2.4. The rotation
matrix and bias vectorwere then used to transform the tracks fromone vehicle into the
reference frame of the other vehicle. Applying the bias estimation to two associated
tracks can be seen in Fig. 6.

Fig. 4 Tracking scenariowith two cameras and two ground objects. Each camera views the tracking
area from a different angle
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Fig. 5 The two objects from Fig. 4 are geolocated by two cameras. The circles represent the object
locations at the current time step, while the trails represent the track history. Green denotes the
tracks from V1, and cyan represents the tracks from V2. Due to sensor biases, the associated tracks
are biased from each other

Fig. 6 Two associated tracks, before (left) and after (right) the bias estimation

It is clear that the bias estimation technique was effective in transforming both
tracks into a common reference frame, which is vital for performing the track-to-
track association. The application of the bias estimation to two unassociated tracks
is shown in Fig. 7. Notice that despite the tracks being unassociated the optimizer
still returned a rotation matrix and bias vector that minimized the squared error.

At every time step the window was slid, the bias estimation applied, and the
track-to-track association performed. The threshold for the test statistic was based on
α = 0.05. The results of the track-to-track association over the entire video sequence
can be seen in Fig. 8. Note that the track-to-track association was performed between
a single track from the first camera with the two tracks from the other camera,
which yielded an associated track pair as well as an unassociated track pair. For each
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Fig. 7 Two unassociated tracks, before (left), and after (right) the bias estimation

Fig. 8 Track-to-track association between two associated tracks and two unassociated tracks. For
each column the top plots represent the determined association over time, where a 0 indicates that
H0 was accepted and a 1 indicates that H0 was rejected. The bottom plots show the test statistic
over time (blue) compared to the threshold (red)

column (the left and right columns representing the associated and unassociated
cases, respectively) the top plots represent the determined association over time; 0
meaning thatH0 was accepted for the track pair, 1 meaning thatH0 was rejected. The
bottom plots show the test statistic over time, compared to the threshold. As seen,
over the entire video sequence the track-to-track association algorithm was able to
correctly accept and reject H0 with PD = 1 and PR = 1.

After H0 was accepted for a given track pair the tracks were fused. The effect
of the track fusion can be seen in Fig. 9. The left plot shows two associated tracks
that were aligned using the bias estimation technique, with no track fusion. Notice
that there were several areas where the two tracks did not fully line up. Over the
entire window (N = 10, � = 10) the RMS error of the position states between the
two tracks is 0.364 m. On the other hand, the right plot shows the tracks with track
fusion applied over the entire window. Here, it can be seen that the fusion caused the
two tracks to be more aligned. As a result, the RMS error over the window decreased
to 0.037 m.
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Fig. 9 Results of the track fusion. On the left two associated track are aligned, however, no track
fusion is performed. It is clear to see that there are areas in which the two tracks did not fully align.
On the right are the same tracks, however, with track fusion applied over the entire window. The
track fusion reduced the differences in the tracks

3.1 Test with Small UAS Platforms

A test was performed with data collected from actual UAS platforms (3DR Y6
multirotor). Again, each UAS viewed the tracking area from a different angle (see
Fig. 10).However, unlike the previous test theUASplatformswere not stationary. The
vehicle states were provided by the 3DR Pixhawk autopilot. Moreover, each vehicle
was equipped with a 3-axis brushless gimbal that was controlled using the BaseCam
SimpleBGC32-bit gimbal controller. Note that the video sequence contained a single
object, thus, the data was used to validate the method under the assumption of H0

only.
The results from the test are summarized in Fig. 11. Overall the algorithm was

effective in associating the two tracks from the different vehicles and had a probability
of detection PD = 1.0. These results affirm the effectiveness of the method in the
presence of actual UAS sensor biases and noise.

Fig. 10 Tracking scenario with two cameras and one ground object of interest. Each camera is
mounted to a UAS platform that is maneuvering and views the tracking area from a different angle.
The red circle indicates the pixel measurement that is used to geolocate the object of interest
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Fig. 11 Track-to-track association between two associated tracks. For each column the top plots
represent the determined association over time, where a 0 indicates that H0 was accepted and a 1
indicates that H0 was rejected. The bottom plots show the test statistic over time (blue) compared
to the threshold (red)

4 Conclusions

This paper presents a complete method for cooperative estimation of ground targets
using a vision-based object tracking system. The method estimates and accounts for
both translational and rotational biases between tracks, and performs a hypothesis
test to determine the track-to-track association. The test statistic is calculated using a
window of estimates and follows a chi-squared distribution. The correlation between
associated tracks, and the correlation in time of the estimation errors, is accounted for
in the calculation of the covariance. This paper also presents a track fusion technique,
which accounts for the estimated biases.

The complete system is demonstrated in actual tracking scenarios. The results
show that the bias estimation is effective in aligning associated tracks from different
vehicles. Moreover, the track-to-track association method is able to make the proper
assignmentswith a high probability of detection and rejection. Lastly, the track fusion
technique decreases the relative estimation error between associated tracks.
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