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Abstract Systems with a rich array of sensors but limited power and/or processing
resources have more potential information available than they can use and are forced
to subsample the data. In this work, we build on observability analysis for general
nonlinear systems to provide a basis for a framework to investigate dynamic sensor
selection to optimize a measure of observability, specifically the condition number
of an observability Gramian. This optimization is then applied to a sample system of
natural Frenet Frames with sensing allowed to alternate between bearing and range
measurements relative to a fixed beacon.

1 Introduction

Small autonomous vehicles can carry an array of simple, lightweight sensors; how-
ever, the ability to utilize the sensors is subject both to processing and to power
constraints especially for sensors that have intensive power and processing needs.
Inertial sensors, acoustic sensors (sonar), compasses, and cameras are commonly
used in small aerial and underwater vehicles to provide estimates of the orientation
and acceleration of the vehicle as well as local information, such as nearest objects
and object recognition. To estimate global position, aerial vehicles typically rely on
GPS; in indoor, underwater, or other GPS-denied environments, other methods are
required, such as range and bearing measurements to a beacon at a known location.
More complex tasks rely on the integration, or ‘fusion,’ of data from multiple sen-
sors and multiple types of sensors. Given the constraints of power and computation
time, the question arises as to how to best select among available sensors to optimize
available resources while meeting information requirements.
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To address this question, we draw inspiration from biological sensing. Biological
species collect vast quantities of sensory input that is filtered and prioritized based on
the potential information that it can supply; for example, one species of bat uses both
vision and sonar, but sonar signals become more frequent as the light levels drop
(when vision becomes less informative) and during landing (when more precise
distance estimates are required) [1]. From this biological example, we develop here
a framework for subsampling sensors based on the information they can provide
about the state of the system.

The ability of a system to uniquely determine its state from the available sensor
readings is characterized by its observability. In contrast to linear systems, observ-
ability of a nonlinear system may be affected by its trajectory, and thus by the partic-
ular control input history. Further, observability in nonlinear systems may be a local
property with some areas of the state space being more or less observable for a given
set of sensors and control inputs. Whether or not a system is observable at a given
state can be determined by examining whether or not an invertible relationship can
be found between the measurement and control histories and the desired states. In
many cases, both linear and nonlinear, the question of observability can be addressed
locally by generating an appropriate observabilitymatrix (e.g., through linearization)
and checking for sufficient rank. Hermann and Krener [2] presented a method for
evaluating observability of continuous-time nonlinear systems, and Albertini and
D’Alessandro [3] extended the theory to discrete-time nonlinear systems, finding a
similar rank condition on the co-distribution of the observation space. Related exten-
sions have also been developed in hybrid systems addressing conditions under which
switched systems are observable [4–6].

These rank conditions generally provide a binary measure of observability; one
can determine how ‘well’ a system can be observed by using a metric on a scalar-
valued function of the information contained in the observability matrix. A common
function used for metric-based observability is the observability Gramian. In order to
construct an observabilityGramian for a nonlinear system, the choices are to linearize
around a viable trajectory and use the linear time-varying observability Gramian [7]
or to employ the empirical observability Gramian, which calculates the output energy
from perturbations of the initial state [8]. The latter provides a practical method of
computing output energy, as in Scherpen’s work on balancing nonlinear systems [9],
but has more recently found application in studying the observability of nonlinear
systems [10] with the distinct advantage that an analytic solution is not required: the
method only requires the ability to simulate the system and its outputs.

These tools have been well utilized to study autonomous vehicles, both in prov-
ing basic observability and in going a step further to design trajectories or system
structure to optimize observability. Discrete-time observability analysis has been per-
formed and observers developed for micro underwater vehicles based on a six degree
of freedom (DOF) system model with intermittent beacon range-only measurements
augmented by inertial measurements and depth sensors for dead reckoning [11]. The
observability of nonholonomic integrators, a class of nonlinear systems, was studied,
and the coupling of control and observability was exploited to optimize a measure
of the system observability through choice of controls [12]. The sensor placement
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problem has also been approached using observability analysis to choose optimal
sensor locations and types [13].

While sensor placement provides a static answer to observability optimization, a
sensor scheduling approach allows for a dynamic subset of available sensors to pro-
videmeasurements at each time step. Specifically, we are interested in the scheduling
problem of selecting from a variety of sensors that provide unique types of sensor
data and that are co-located on a moving platform. This problem is studied for a lin-
ear time-varying system with linear measurements in [14] and has similar goals and
challenges to the more widely studied problem of determining how to best employ
a distributed array of networked sensors to measure something in the external envi-
ronment [15–17] such as tracking a target [18]. One of the larger challenges for these
optimal observability problems is the rapidly increasing dimensionality as a func-
tion of the number of sensor options (e.g., type, number, possible locations), cost
function, number of system states, and number and type of system controls: except
for a subset of nicely posed systems (for example, linear systems with quadratic
cost functions), finding the exact optimal solution to a particular problem requires
an exhaustive tree-search of all possible sensor schedules [15].

In this work, we construct and provide a preliminary study of a framework to
address the question of sensor scheduling. We are particularly interested in the appli-
cation of these methods to nonlinear systems. A comparison is provided for the dif-
ference between the results for the Gramian of a linearization of the system dynamics
about a valid, nominal trajectory and for the use of the empirical Gramian for the
original nonlinear system. To ground the results in likely physical applications, we
demonstrate the study for the Frenet frame model of motion of a vehicle in 3D space.
The Frenet frame model is a version of the nonholonomic integrator, a canonical
nonlinear system model for SE(3) that represents many real systems, such as air-
craft, surface water vessels, and underwater vehicles. With this system structure, we
incorporate sensors for range and bearing relative to a fixed and known beacon and
address the optimal selection of the next sensor measurement. A range of trajectories
with different radii of curvature and placement relative to the beacon are considered,
and the resulting sensor schedules are compared.

The work here is organized as follows. Section2 provides an overview of the
methods used for determining the observability of general dynamic systems, our
optimization problem is introduced in Sect. 3, followed by the introduction, observ-
ability analysis, and optimization results for an example system in Sect. 4. Finally,
we discuss the results of our initial study of this type of sensor scheduling problem
and the future work that we plan to do in Sect. 5.

2 Observability

While all digital systems have continuous-time dynamics and discrete-timemeasure-
ments, often the update rate of the measurements is fast enough to reasonably use
a continuous-time framework for both the dynamics and measurements. Given this
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assumption, a great deal of thework in nonlinear observability analysis has addressed
continuous-time systems. Here, we are specifically interested in switching the sen-
sors on and off, so a discrete-time framework is more relevant. To facilitate the
discussion below, both the familiar continuous-time version of observability and the
related discrete-time version are presented briefly. In either case, we are concerned
with the ability to distinguish the initial state from other states given a set of known
controls and measurements.

To begin, we will denote discrete-time system dynamics as

�d : x[k + 1] = f(x[k],u[k]), k = 0, 1, 2, . . .
y[k] = h(x[k]),

and continuous-time system dynamics as

�c : ẋ(t) = f̃(x(t),u(t))
y(t) = h(x(t))

where the states x[k], x(t) ∈ M and measurements y[k], y(t) ∈ Y , respectively lie
within connected, differentiable manifolds M ⊂ R

n and Y ⊂ R
p, and the controls

u[k],u(t) ∈ U lie within connected, differentiablemanifoldU ∈ R
m . In cases where

a result applies to both �d or �c, the subscript will be dropped for brevity. The
following definitions in [3] regarding observability will be employed here.

Definition 1 Indistinguishable states x1, x2 ∈ M , denoted x1 I x2, will produce iden-
tical outputs for any identical combination of controls. A state x1 ∈ M is observable
if being indistinguishable from state x2 implies x1 = x2 for all x2 ∈ M . The system
� is observable if x1 I x2 =⇒ x1 = x2 ∀ x1, x2 ∈ M .

Definition 2 State x0 ∈ M is locally weakly observable if there exists some neigh-
borhood W of x0 such that for each x1 ∈ W , x0 I x1 =⇒ x0 = x1. A system � is
locally weakly observable if all states x0 are locally weakly observable.

Definition 3 State x0 ∈ M is locally strongly observable if there exists some neigh-
borhood W of x0 such that for each x0, x1 ∈ W , x0 I x1 =⇒ x0 = x1. A system �

is locally strongly observable if all states x0 are locally strongly observable.

2.1 Analytical Observability

The underlying principle for determining analytical observability is the same for con-
tinuous and discrete-time systems: check for the existence of a relationship between
the outputs, inputs, and states that can be inverted to uniquely determine the initial
state from the outputs and inputs. The outcomes of this type of study provide insight
into the requirements for control function structure and limitations on allowable tra-
jectories or sensor placement to enable full observability. In either the continuous
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or discrete scenario, the process can be locally reduced to a rank condition on a
matrix composed of either a sequence (discrete) or the derivatives (continuous) of
the outputs.

Continuous-Time Systems

Assume that �c is nonlinear in the states, x(t), linear in the control inputs, ui (t), and
that it can be written in the control affine form

ẋ(t) = f̃0(x(t)) +
m∑

i=1

f̃ i (x(t))ui (t) = f̃(x(t),u(t)),

where f̃0 is termed the drift, and f̃ i are termed the control vector fields. The collection
of terms forming theobservability space,Oc, are constructed from the timederivatives
of the output functions:

d

dt
h =

(
∂

∂x
h
)
f̃(x(t),u(t))

d

dtl
h = d

dt

(
d

dtl−1
h
)

, l ∈ N.

These time derivatives can be equivalently represented using Lie derivatives,
defined as

L f̃i
h = ∂h

∂x
f̃ i ,

with repeated and mixed derivatives respectively calculated as

Lk
f̃i

=
∂Lk−1

f̃i
h

∂x
f̃ i and L f̃ j

L f̃i
= ∂(L f̃ j

h)

∂x
f̃ i ,

the latter arising from use of switching (area generating) controls captured by the
Lie bracket of the vector fields [f̃ i , f̃ j ] = (∂ f̃ j/∂x)f̃ i − (∂ f̃ i/∂x)f̃ j . The observability
space of �c, Oc, is thus also the span of the Lie derivatives with respect to the drift
and control vector fields, that is Oc = span{h, L f̃i

h, . . . }, and is alternately termed
the observability Lie algebra. Determining whether the relationship between the
terms in the observability space, Oc, and the states can be inverted is generally
analytically intractable, but one can address the question locally using the inverse
function theorem and the local co-distribution of the observability matrix. If dOc,
the co-distribution of Oc at a point in the state space x0, is full rank, then the system
is locally weakly observable at that point [2].
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If the system is linear time-invariant with f̃(x(t)) = Ãx(t) + B̃u(t) and y =
h(x(t)) = Cx(t), then differentiating the output gives

⎡

⎢⎢⎢⎣

y
y(1)

...

y(n)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

C
C Ã
...

C Ãn−1

⎤

⎥⎥⎥⎦ x +

⎡

⎢⎢⎢⎣

0
B̃
...

C Ãn−2 B̃ + · · · + C B̃

⎤

⎥⎥⎥⎦ u = OLT Ix + U u. (1)

where superscripts in parentheses indicate time derivatives and OLT I is the
continuous-time observability matrix. As all terms other than the state are assumed
known, if OLT I is full rank, and thus has an invertible square submatrix, then the
system is observable. Thus, in the linear case, regardless of the control action, observ-
ability is completely determined by the observability matrix.

Discrete-Time Systems

The conditions for discrete-time observability are presented for a single input-single
output system by Albertini and D’Asessandro in [3]. Given the system �d , let the
system dynamics for a choice of control, u ∈ U , be denoted fu(x) = f (x,u). Then,
define the output sequence, Θ1,Θ2, ..., at each time step, k ≥ 1, as a function of the
inputs as

Θ1 = {h(·)}
Θk = {h( fu j ◦ · · · ◦ fu1(·)|∀i = 1, . . . , j,ui ∈ U, and 1 ≤ j ≤ k − 1}, (2)

where ◦ denotes composition, andOd = ∪k≥1Θk is the collection of themeasurement
functions. As with continuous-time nonlinear systems, the inverse function theorem
is generally employed to find a local inversion of this relationship between states,
measurements, and controls. For system �d and state x0, the co-distribution ofOd at
x0 is given by dOd(x0). If the co-distribution is full rank, that is, rank(dOd(x0)) = n,
then the system is locally weakly observable at x0.

This condition naturally holds for linear(ized) systems as well but without the
need to employ the inverse function theorem. Assume that �d can be written as the
linear time-varying system

�d,LT V : x[k + 1] = A[k]x[k] + B[k]u[k], k = 0, 1, 2, . . .
y[k] = C[k]x[k];

then the measurements in the sequence defined in (2) can be written as

y[k] = C[k]
(
Φd [k, 0]x[0] +

k−1∑

i=1

Φd [k, i + 1]B[i]u[i]
)
,
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where the discrete state transition matrix is defined as

Φd [k f , 0] =
k f −1∏

k=0

A[k]. (3)

In the time-sinvariant case, Φd [k f , 0] simplifies to Ak f , and the sequence of mea-
surements compiled into the discrete-time linear time-invariant observability matrix
is the same form as the continuous case, OLT I , defined in (1).

2.2 Observability Gramians

While the above analysis can determine whether or not a system is observable,
it does not provide any quantitative characteristics of observability. An alternative
approach to observability that admits the use of a metric is that of the observability
Gramian. In particular, by incorporating structural or controlled parameters into the
system description, these metrics can be used to determine best parameter choice for
maximal observability.

Linear Observability Gramian

The traditional form of the observability Gramian applies to linear systems. The
discrete-time observability Gramian, Wo,d , is defined for a linear, time-varying sys-
tem as

Wo,d [k0, k f ] =
k f∑

k=k0

ΦT
d [k, k0]CT [k]C[k]Φd [k, k0], (4)

where Φd [k, 0] is defined as in (3). The continuous-time observability Gramian,
Wo,c, is constructed using the continuous-time state transition matrix, Φc(t, t0), as

Wo,c(t0, t f ) =
∫ t f

t=t0

ΦT
c (t, t0)C

T
c (x0(t))Cc(x0(t))Φc(t, t0)dt, (5)

where Φc(t, t0) satisfies

∂

∂t
Φc(t, t0) = Ã(x(t),u(t))Φc(t, t0).

If the observability Gramian, Wo,d [k0, k f ] or Wo,c(t0, t f ), is full rank, n, for some
time step k f or t f , then the linear time-varying system is observable. Measures
of observability based on the Gramian follow in section “Measures of Nonlinear
Observability”.
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The observability Gramian Wo,c can be used to study the observability of the
nonlinear system �c by linearizing the system about some nominal trajectory,
(x0(t),u0(t)), using the first term of a Taylor series expansion of f̃(x(t),u(t)) eval-
uated along the trajectory to get the linear, time-varying system

�c,LT V : ˙̄x = Ac(x0(t),u0(t))x̄(t) + Bc(x0(t),u0(t))ū(t)
ȳ = Cc(x0(t))x̄(t),

where ¯ denotes deviation from the nominal trajectory and

Ac(x(t),u(t)) = ∂ f̃(x(t),u(t))

∂x

∣∣∣∣∣
x(t)=x0(t),u(t)=u0(t)

Bc(x(t),u(t)) = ∂ f̃(x(t),u(t))

∂u

∣∣∣∣∣
x(t)=x0(t),u(t)=u0(t)

Cc(x(t),u(t)) = ∂h(x(t))
∂x

∣∣∣∣
x(t)=x0(t)

.

A linear, time-varying discrete-time approximation of �c can be produced by
using the matrix exponential to calculate the discrete state space matrix Ad [k] =
exp{Ac(kΔT )}, where ΔT is the size of the time step, which is in turn used to calcu-
late Φd [k, 0] from (3).

Empirical Observability Gramians

The linear Gramians can provide a basis for analysis and optimization of nonlinear
systems; however, it is important to remember that the linear approximations do
not capture all of the dynamics of the nonlinear system and thus do not always
provide accurate results. It is not uncommon that a linearized system would be
classified as unobservable when the original nonlinear system in fact observable. To
demonstrate this phenomenon, consider the scalar system ẋ = u with measurement
function y = cos(x). Assuming nonzero controls, the nonlinear observability co-
distribution will be dO =span{cos(x), sin(x)} which will always have a dimension
of 1 and thus be observable. The linearized measurement function ȳ = − sin(x)|x0
will render the system unobservable when x0 = 2πk. Also, in the linearized system,
the controls are predetermined along the nominal trajectory, and thus cannot be used
for analysis in the same way as in the original nonlinear structure.

To extend the use of observability Gramians to nonlinear systems, Lall,
Marsden, and Glavaški introduced the empirical observability Gramian [8], which
uses perturbations, εei , of the initial state, x0 = x(0), to quantify changes in the
output measurements. The original version did not include the control explicitly, so
instead we use the continuous-time empirical observability Gramian from [19]:
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W ε
c (t f , x0,u0(t)) = 1

4ε2

∫ t f

0
Φε(t, x0,u0(t))TΦε(t, x0,u0(t))dt.

Further work by Powel and Morgansen [20] defines the discrete-time version as

W ε
d [k f , x0,u0[k]] = 1

4ε2

k f∑

k=0

Φε[k, x0,u0[k]]TΦε[k, x0,u0[k]] (6)

whereΦε(t, x0,u0(t)) andΦε[k, x0,u0[k]] are defined similarly by perturbations of
the output in each direction at each time (step). The discrete-time version is given as

Φε[k, x0, u] = [
y+1 − y−1 · · · y+n − y−n

]

with y±i = y[k, x0 ± εêi , u] where êi denote elements of the standard orthonormal
basis in R

n , and the magnitude of the perturbation, ε, is chosen relative to the mag-
nitude of the states; in the subsequent example, ε = 0.01 (a reasonable choice for
states with magnitude on the order of one [10]).

Measures of Nonlinear Observability

Eigenvalues of an observability Gramian provide measures of observability of the
system [10]. The maximum eigenvalue, λ1(W ), gives an idea of how much out-
put energy is in the most observable state. Similarly, the minimum eigenvalue
λn(W ), gives an idea of how much output energy is in the least observable state.
For a well-conditioned estimate, it is desirable to have similar energy in the most
and least observable states so that a small change in one state does not over-
whelm changes in another state. This relation is captured by the condition number,
κ(W ) = λ1(W )/λn(W ) that takes a minimum value of unity. It is worthwhile to
note that each of these measures can be characterized as convex functions of the
observability [21].

One variation on the condition number which will prove useful here is defining it
using the largest and smallest singular values instead of eigenvalues:

κ(W ) = σ1(W )/σ3(W ). (7)

This change accommodates systems with constraints built into their definitions that
cause some of the eigenvalues of the Gramian to have value zero (since the observ-
ability Gramian is positive definite by definition, the smallest eigenvalue would be
zero, rendering the standard condition number useless).
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3 Switched Sensing Optimization

Given a set of sensors with sufficient resources to use only a subset of the available
sensors or their data at a time, our goal here is to use measures of observability to
determine which sensor(s) should be used at any point in time to maximize observ-
ability. We begin by introducing a sensor selection switch into the discrete system
description,�d . Specifically, assume that a set of p sensors is available, each ofwhich
is respectively described by the measurement function, yi , i ∈ {1, . . . , p}. For each
sensor, incorporate a binary-valued switch function si ∈ {0, 1} where si = 1 if the
sensor is active, and si = 0 if the sensor is inactive. The measurement functions for
the system at each time step, k, can then be described by

yi [k] = si [k]hi [k], i ∈ {1, . . . , p}, si [k] ∈ {0, 1}.

To restrict the number of active sensors to pk , the constraint
∑p

i=1 si [k] = pk would
be applied at each time step. Alternatively, pk could represent some resource budget
and ci could represent the relative resource usage of sensor i ; then the constraint
would be

∑p
i=1 ci si [k] ≤ pk .

At each time stepwe then seek to choose si [k] to optimize some preferredmeasure
of observability, J (s), subject to the constraints. Stated in the simplest form, this
problem is written as

min
s

J (s) (8)

subject to si [k] ∈ {0, 1} ∀i, k
p∑

i=1

ci si [k] ≤ pk ∀k.

Thecost function, J (s), could beoneof the convexmeasures described in the previous
section. The constraints require that a sensor be either on or off (unfortunately this
constraint is not convex) and that a maximum number of sensors is not exceeded at
any time step.

3.1 Finite Look-Ahead Optimization

For the current work, we introduce a model predictivecontrol type scheme to find the
exact solution to locally optimize the mixed-integer program for choosing one of two
sensors (p = 2 and pk = 1 for all k) with a look-ahead of N time steps. We employ
thismethod rather than calculating over an entire trajectory because the computations
required to calculate each option N steps for even the simplest case of two sensors
grows as 2N . This optimization becomes infeasible for even moderately large N or
for larger numbers of sensors. To determine the optimal sensor selection for time step
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k = K + 1, the empirical and linear Gramians are calculated with data from k = 1
to K with the optimal sensor sequence and then from K + 1 to K + 1 + N with
each of the potential sensor sequences. The sequence with the minimum condition
number at K + N + 1 is chosen, and the first sensor (or subset of sensors) in the
sequence is selected for time K + 1. Thus, (8) becomes

min
s[k],k=K+1,...,K+N+1

J (W ∗[K + N + 1], s) (9)

subject to si [k] = {0, 1}, i = 1, . . . , p, and k = 1, . . . , K + N + 1
p∑

i=1

si [k] = 1, k = 1, . . . , K + N + 1.

whereW ∗[K + N + 1] is either the linear Gramian,Wo,d [0, K + N + 1], defined in
(4) over a nominal trajectory (x0(t),u0(t)) or the empirical Gramian, W ε

d [K + N +
1, x0,u0[k]], defined in (6) calculated from numerical simulation. In other words: at
each time step K , the sensor sequence is optimized over a finite look-ahead, the first
sensor in that sequence is selected for the next time step K + 1, and the process is
repeated now incorporating the K + 1 measurement, as outlined in Algorithm 1.

Algorithm 1 Algorithm for optimal sensor selection with a finite look-ahead.
Initialize W ∗[0] with sufficient measurements to make it sufficient rank
for K = 1 to k f − N do

Calculate W ∗[k] with optimal sensor sequence from 1 to K
for Each sensor sequence S j do

for Each time step k = K + 1 to K + N + 1 do
for Each sensor i = 1 to p do

Calculate W ∗[k] with si [k]hi [k]
end for

end for
Calculate κ(W ∗[K + N + 1]) for the sequence S j

end for
Find j corresponding to the minimum condition number κ of S j
Set the next measurement si [K + 1] as the first measurement in the optimal sequence S j (1)

end for

3.2 Convex Relaxation

To allow for faster solutions, the mixed-integer optimization (8) or (9) could be
relaxed to a convex optimization framework by allowing the sensors to be ’partially’
on during a given time step; to promote sparsity in s (and thus that sensors are
either on or off), an �1 norm can be added to the cost function [21, 22]. With those
modifications, the optimization (8) would become
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min
s

J (s) + c‖s‖1
subject to 0 ≤ si [k] ≤ 1 ∀i, k

p∑

i=1

ci si [k] = 1 ∀k.

The constant scalar, c, in the cost function allowsweighting the importance of sparsity
of s versus minimization of J (s).

4 Application to Frenet–Serret Frames

Frenet–Serret and natural Frenet frames both describe the evolution of an orthogonal
coordinate system along a trajectory [23]. In previous work, the same authors use
natural Frenet frames to design vehicle trajectories for a variety of tasks, such as
pursuit, formationflight, andboundary tracking (see references in [23]). The direction
of motion along a smooth path is defined as the tangent T(s) = γ ′(s), where γ (s)
is the trajectory normalized along its arc s such that γ ′(s) is a unit vector (|γ ′(s)| =
1). Frenet–Serret frames define the additional two vectors to make up an orthogonal
frame as the normal,N(s), perpendicular to the motion in the plane of the curve, and
the binormal, B(s), which completes the set. The evolution of the (T,N,B) frame
is given by the curvature and torsion of the curve. A drawback to this formulation is
that the frame is not well defined when the second derivative of γ (s) is zero. This
constraint motivates the use of a modified version of the Frenet–Serret frames termed
the natural Frenet frame, which we will denote by the orthogonal vector set (t,n,b).
In the natural Frenet structure, the tangent vector is defined as in the Frenet–Serret
frames, t = T, and the remaining vectors are defined to be orthogonal unit vectors
that complete the SO(3) group element (see Fig. 1).

To utilize the natural Frenet frames to describe motion of a vehicle, note that the
‘particle’ model of a vehicle that cannot move directly perpendicular to its current
velocity can be written in the following form:

r′ = t (10)

t′ = nu1 + bu2
n′ = −tu1
b′ = −tu2

where ′ indicates differentiation with respect to arc length, s, or with respect to time,
t , if we assume unit velocity. The controls, u1 and u2, affect the curvature of the path
in the t(t) − n(t) and t(t) − b(t) planes, respectively.

The measurement model considered for this example is a beacon located at the
origin, as depicted in Fig. 1, that provides range and/or bearing measurements of the
system according to
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Fig. 1 Diagram showing the
t − n − b Frenet frame
along a curve, with position
denoted in the global
reference frame by r and the
bearing angle β

hr (x) = 1

2
(r21 + r22 + r23 ) = 1

2
‖r‖22 (11)

hb(x) = arctan

(
r2
r1

)
(12)

where we take the full state vector to be x = [
rT tT nT bT

]T
.

In discrete time, assuming a sufficiently small time step, ΔT , the dynamics of
transitioning from step k to step k + 1 can be approximated as

x[k + 1] = x[k] + ΔT

(
f0(x[k]) + f1(x[k])u1[k] + f2(x[k])u2[k]

)
(13)

where f1 = [
0T nT −tT 0T

]T
and f2 = [

0T bT 0T −tT
]T
, 0 denoting a vector of

zeros the size of t. It is important to note that while the discrete- and continuous-time
systems have a total of twelve variables, the nine variables from the (t,n,b) frame
have only three degrees of freedom (three dimensional attitude), so the full system
has only six independent states. Thus, when performing observability analysis, we
do not expect to obtain rank n = 12matrices but rather nDOF = 6.When constrained
to a plane, the reduced system has six variables with three degrees of freedom and
three states.

4.1 Analytical Observability Analysis

Using the discrete approximation of the dynamics (13) and measurement functions
(11) and (12), we initially address the observability of the system by considering
a drift only scenario with no controls by calculating the first few time steps of the
dynamics to construct Θ defined in (2). With u = 0, we have the state and measure-
ment functions
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x[k] = [
(rT0 + kΔT tT0 ) tT0 nT

0 bT
0

]T

hr (x[k]) = 1

2
‖r0 + kΔT t0‖22

hb(x[k]) = arctan

(
r0,2 + kΔT

r0,1 + kΔT

)

where the zero subscript indicates the initial state, e.g. r0 = r(0). Investigating the
range and bearingmeasurement functions individually, we take the appropriate direc-
tional derivatives to build the co-distributions for range-only and bearing-only mea-
surements:

dΘr =

⎡

⎢⎢⎢⎣

rT0 0 0 0
rT0 + ΔT tT0 ΔT (rT0 + ΔT tT ) 0 0

...
...

...
...

rT0 + kΔT tT0 kΔT (rT0 + kΔT tT ) 0 0

⎤

⎥⎥⎥⎦

dΘb =

⎡

⎢⎢⎢⎢⎣

−r0,2
r20,1+r20,2

r0,1
r20,1+r20,2

0 0 0 0 0 0

− r0,2+ΔT t0,2
c(1)

r0,1+ΔT t0,1
c(1) 0 ΔT (r0,2+ΔT t0,2)

c(1)
ΔT (r0,1+ΔT t0,2)

c(1) 0 0 0
...

...
...

...
...

...

− r0,2+kΔT t0,2
c(k)

r0,1+kΔT t0,1
c(k) 0 kΔT (r0,2+kΔT t0,2)

c(k)
kΔT (r0,1+kΔT t0,1)

c(k) 0 0 0

⎤

⎥⎥⎥⎥⎦

c(k) = (r0,1 + kΔT t0,1)2 + (r0,2 + kΔT t0,2)2

with 0 a vector of zeros of the same dimension as rT0 . The co-distribution generated
from range-only measurements, dΘr , is not full rank; the first three columns and
next three columns are linearly dependent on each other, so the maximum rank is
three. Similarly, the rank of the co-distribution from bearing-only measurements,
dΘb, is at most three. The system has six degrees of freedom, so with either sensor
and no input, the system is unobservable; with both bearing and range measurements
together, however, the maximum rank is six, and the system is observable except at
singular points where the rank drops below six. These results are consistent with an
analysis of the continuous-time system which is omitted for brevity.

4.2 Optimization with Observability Gramians

Knowing that the system of evolving natural Frenet frames discussed in the previous
section is observable with some combination of measurement functions, we proceed
to address the optimization problem (9). For clarity of presentation, we restrict this
study to a planar version of the system and note that the results will generalize to
the full system. Here, we used the condition number defined in (7). To avoid issues
arising from rank deficiency of the Gramian due to insufficient measurement data, we
initialized the optimization by providing both range and bearing sensors for k = 0.
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This approach is not unreasonable, as it is plausible that an autonomous system
would collect all possible sensor data before embarking on its mission. In all cases,
the look-ahead was N = 5 for both the empirical and linear Gramians, and Matlab
was used to simulate the system dynamics and perform the optimization.

Some informative results from this initial study are provided here, beginning with
the effect of ΔT on sensor selection. This quantity can be interpreted as the sensor
update rate and was held constant for any given trajectory simulation. The optimal
sensor selection for a range of ΔT from 0.25 to 1 for a circular path generated by
a constant control of u1 = 0.25 (u2 = 0 for the planar case) is shown in Fig. 2. The
optimization results from both the empirical observability Gramian and the linear
observability Gramian tended to result in more use of bearing measurements, with
rangemeasurements selectedmore frequently near the initial location and for a couple
of outliers elsewhere on the trajectory. The condition numbers calculated for both
optimization approaches showed similar trends of an initial decrease in condition
number as the trajectory traced the first half of a circle, with values for most test
cases stabilizing around the first full revolution.

Based on the geometry of the trajectories in Fig. 2 with respect to the beacon, one
might hypothesize that the clustering of range measurements was relative to location
within the r1 − r2 plane. The sensor selection results in Figs. 3 and 4, however, show
that the geometry of the trajectory with respect to its own start point plays a larger
role. In all cases, there is a cluster of range measurements near the initial location not
only at the beginning of the trajectory, but also on subsequent returns to the initial
point. The range measurement is more often used for the trajectories with larger
radius of curvature. The condition numbers (see Fig. 4) show a general decreasing
trend that is somewhat cyclic around the circle.

The sensor selection results for other periodic (but noncircular) trajectories have
similar characteristics, as seen in Fig. 5. As the trajectory exhibits more extensive
changes in curvature, the range measurements are used more frequently. The trend
is more apparent in the empirical Gramian optimization, however, it is present in
the linear Gramian optimization as well. The condition number for the empirical
observability Gramian maintains a relatively constant mean after an initial decrease.
The condition number for the linear observability Gramian is much smoother, and
shows that the plots with lower curvature have more poorly conditioned estimates as
one would expect based on the work done in [12].

5 Conclusions

We have developed a framework for approaching the sensor selection problem in
nonlinear systems and provided some interesting initial results for a Frenet frame
motion model with beacon range and bearing measurements. These results indicate
that while relative location to the beacon does play a role in sensor selection, the
time history of the trajectory has a greater impact on the optimal sensor selection
(at least for a look-ahead of N = 5). The results support the fact that the choice of
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Fig. 2 Trajectories (top), sensor selection (middle), and condition number with markers for bear-
ing and range measurements (blue triangles and red circles) to the beacon at the origin (black
circles), chosen to minimize the condition number of the empirical (left), and linear (right)
observability Gramian. A constant control u1 = 0.25 was applied while varying the time step,
Δt = {0.25, 0.5, 0.75, 1}. The x-axis for the condition number plots is the angle α[k], measured
counterclockwise from the center of the circle trajectory between the initial location (black square)
and r[k]
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Fig. 3 Trajectories with markers for bearing and range measurements (blue triangles and red
circles) to the beacon at the origin, chosen to minimize the condition number of the empirical,
or linear observability Gramian. The time step was ΔT = 0.5 for all trajectories. Each trajectory
represents a constant control from u = {0.1875, 0.25, 0.375, 0.5} (largest circle to smallest circle)
and the initial state is noted by a black square
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Fig. 4 Condition number of the empirical (top four plots) or linear (bottom four plots) observability
Gramians, corresponding to the trajectories shown in Fig. 3. The time step was Δt = 0.5 for all
trajectories. Each trajectory represents a single control from u = {0.1875, 0.25, 0.375, 0.5}, going
fromsmall (blue) to large (red). The x-axis for the condition number plots is the angleα(k),measured
counterclockwise from the center of the circle trajectory between the initial location (black square)
and r[k]
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Fig. 5 Trajectories (top) and condition number (bottom) with markers for bearing and range mea-
surements (blue triangles and red circles) to the beacon at the origin, chosen to minimize the
condition number of the empirical or linear observability Gramian. The time step was Δt = 0.25
with control u = uA cos(kΔt/2), uA = {0, 0.5, 1, 1.5}

trajectory influences the observability and that curvier paths provide better condi-
tioned observability Gramians.

The framework developed here can be used to address some questions about
nonlinear observability thatwill have direct impact on effective design of autonomous
vehicles and their controllers. The first set of results (Fig. 2) indicate that sensor
sampling rates affect the observability of the system, but further study can be done
to investigate how the sampling rate affects the system and then how to use that
information to help choose the appropriate sensor. Knowing that control choice,
and thus trajectory, influences the observability, we are working to formalize the
relationship between path history and optimal sensor choice, particularlywith respect
to cyclical trajectories and how the history built into the data patterns brings about
the repeated selection of certain sensor types. In addition to the history, the effect of
longer look-ahead and comparison of local and global results should be performed.
Related to these characteristics is the effect of deviating from the planned look-
ahead on the conditioning of the estimate. Sensor fidelity and cost of use as well as
task-specific requirements will also be incorporated.
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