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3.1 Introduction

The rapid expansion of cities and the continuously increas-
ing population in urban areas lead to the establishment of
settlements in mountainous areas. This phenomenon has
increased the impact of natural disasters, particularly land-
slides, in these mountainous areas. Landslides result in
severe property losses, human casualties, and environmental
damage. (2) Data interpretation is frequently based on the
expert knowledge and experience of an analyst, as well as
his or her familiarity with the area (Chen et al. 2014;
Malamud et al. 2004). (3) Finally, additional errors can be
introduced while translating image interpretation results into
thematic maps (Malamud et al. 2004). High-resolution
LiDAR-derived DEMs can depict ground surfaces and pro-
vide valuable information on the topographic features of
possible landslide-affected areas that are covered by dense
vegetation (McKean and Roering 2004). In addition,
high-resolution DEMs can be utilized to identify landforms
with a scale of a meter to a few meters and provide useful
information about rocky and densely vegetated areas (Tarolli
2014; Van Westen et al. 2008). Minimal changes in terrain
information can be easily detected using LiDAR data (Chen
et al. 2015). In general, LiDAR data have a definite
advantage because of their capability to penetrate vegetation
canopies and provide valuable information on topographic
conditions. This advantage makes LiDAR data different
from other data sources, such as aerial photographs, in terms
of detecting slope failure under dense vegetation (Pradhan
et al. 2016). LiDAR data and their derivatives, such as
hillshade, surface roughness, slope, and contour maps, pro-
vide significant and valuable information about active geo-
logical processes, such as landslides, which reshape the
topography of an area. Overall, LIDAR data can serve as a
promising tool for enhancing landslide inventory maps
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(Kasai et al. 2009). However, distinguishing different types
of landslides is important for studying the geomorphological
development of hillsides and the mitigation of landslide
hazards (Dou et al. 2015; Lin et al. 2013).

The remainder of this paper is organized as follows: The
study area and data set are described in Sect. 2. The research
methodology and the types of landslides, namely shallow
and deep-seated landslides, are explained in detail in Sect. 3.
The results are presented and discussed in Sect. 4. Finally, a
brief summary, including the main findings and future
directions, is presented in Sect. 5.

3.2 Types of Landslides

A landslide is the motion of the mass of debris, rocks, or a
portion of the earth down a slope under the impact of gravity
(Cruden and Varnes 1996; Guzzetti et al. 2012). Landslides
are classified as either shallow or deep-seated, depending on
the movement characteristics and landslide volume (Brunetti
et al. 2009; Guzzetti et al. 2012). Shallow and deep-seated
landsides differ in terms of size, volume, and damage
influence (Zézere et al. 2005). However, landslide mass
volume is difficult to evaluate (Brunetti et al. 2009). Shallow
landslides are typically associated with short high-intensity
rainfall, whereas most large-scale deep-seated landslides
result from the interaction between long-term rainfall and
natural denudation processes (Zézere et al. 2005). A land-
slide can demonstrate a sliding, flowing, falling, or toppling
movement, but numerous landslides also exhibit a combi-
nation of two or more types of these movements either at the
same time or during their lifetime (Cruden and Varnes
1996). A high-resolution DEM is necessary to study the
characteristics of different types of landslides (Dou et al.
2015). Several techniques with various image sources have
been utilized to distinguish landslide (Chang et al. 2012;
Chen et al. 2014; Cruden and Varnes 1996; Dou et al. 2015;
Korup 2006; Ma et al. 2016; Rau et al. 2012; Yu et al. 2015;
Z&zere et al. 2005). Figure 3.1 shows a simple diagram
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illustrating the different landslide types. Meanwhile, Fig. 3.2
shows the general sketch of shallow and deep-seated land-
slides which is overlaid on contour map.

3.2.1 Deep-Seated Landslide

Deep-seated landslides are characterized by slope move-
ments occurring on high-relief-energy hillsides; the span of
this landslide type is comparable with the entire slope, but
the displacements are relatively small compared with the
slope itself (Goudie 2004; Kellerer-Pirklbauer et al. 2010).
This type of landslides can be reactivated during intense
events, and they can evolve into destructive failures.
Deep-seated landslides are generally difficult to recognize in
the field, especially when they happen in densely forested
areas where quick revegetation occurs, such as in tropical
forests. Vegetation indices are particularly helpful in rec-
ognizing deep-seated landslides (Vohora and Donoghue
2004). In general, optical images are unsuitable for analyz-
ing this type of slope failures because they are usually
covered by vegetation. To identify and map deep-seated
landslides, the automation of recognition procedures and the
integration of optical sensors with other remote sensing
techniques have been proven to be highly effective (Delgado
et al. 2011; Moine et al. 2009), and LiDAR data have been
found useful (Agliardi et al. 2009). Automatic algorithms
have been applied to achieve this task, such as supervised
classification methods (Kasai et al. 2009) and standard signal
processing techniques. Chen et al. (2015) showed that
LiDAR data with 1-m resolution are sufficient for mapping

the geomorphology of forested areas and identifying deep-
seated landslides.

3.2.2 Shallow Landslide

A shallow landslide is the movement of a mixture of water,
soil, and debris; this landslide type starts on steep slopes
during periods of intense rainfall (Bugnion et al. 2009). Thus,
this landslide type is a threat to infrastructure, buildings,
roads, and railways. The use of remote sensing images for
shallow landslide detection is common; however, field data
are necessary for verification. This concern is primarily
ascribed to the swiftness and the spatial diffusion of these
slope failures. Optical sensors, which can extract geomorphic
features and cover a wide area, are suitable for studying
shallow landslides (Gao and Maro 2010). Visual interpreta-
tion has also been proven useful for mapping this landslide
type because the boundaries are frequently distinct after a
shallow landslide event. Furthermore, automatic and semi-
automatic classification algorithms have been tested in recent
years (Heleno et al. 2015; Ma et al. 2016; Stumpf et al. 2014;
Wiegand et al. 2013). The use of very-high-resolution
(VHR) satellite images (e.g., GeoEye and WorldView) can
provide high accuracy for detecting shallow landslides and
creating databases of susceptible areas (Zizioli et al. 2014).
The automated analysis of airborne laser scanning data has
been used for post-event analysis, such as for mapping
earthquake- or typhoon-triggered shallow landslides (Rau
et al. 2012) and rainfall-induced landslides (Bai et al. 2012).
Visual interpretations, such as shaded relief maps, slope

Fig. 3.1 Shallow landslide (red polygon) and deep-seated landslide (yellow polygon) in the study area
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Fig. 3.2 General sketch of types
of landslide
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maps, and contour maps, derived from LiDAR-based DEMs
were used by (Pomlija et al. 2014) to create a catalog of
shallow landslides. In addition, rainfall-induced shallow
landslides have been predicted using empirical rainfall
thresholds or spatially distributed, physically based numeri-
cal models (Hong et al. 2015; Vennari et al. 2014). Attempts
have been made to forecast this type of landslide using
numerical models with both predisposing factors, e.g.,
landform curvature (van Asselen and Seijmonsbergen 2006)
and the main triggering factor, i.e., rainfall (Segoni et al.
20009).

3.3 Study Area

The Cameron Highlands in Malaysia is a tropical rain forest
area located in the latitude range 4°22'52"-4°25'48" N and
the longitude range 101°22'30"-101°23'30" E. The
Cameron Highlands is an active landslide site, and the
selected subset has an aerial coverage of approximately
24.38 km®. The average annual rainfall in the area is
2660 mm. Its average daytime temperature is moderate
(~24 °C), whereas its nighttime temperature is 14 °C.
A large portion of the area (80%) is forested, and the land
slopes range from 80° to flat areas (0) Fig. 3.3.

3.4 Material and Method

The multistep overall workflow of the current research is
presented in Fig. 3.4. First, remote sensing data and land-
slide inventories were preprocessed to remove the noise and
outliers from the data and prepare them for the subsequent
steps. Second, a high-resolution digital elevation model
(DEM) (0.5 m) was derived from the LiDAR point clouds
and used to generate other LiDAR-derived products and
landslide conditioning factors, such as slope, aspect, height
(nDSM), hillshade, and intensity. Third, the LiDAR-derived
products were combined by correcting their geometric dis-
tortions and incorporating them into a coordinate system.
Then, the combined products were prepared for feature
extraction using a geographic information system (GIS).
Fourth, a multiresolution algorithm was used to segment the
data and create image objects. In this step, the fuzzy logic
supervised approach proposed by Zhang et al. (2010) was
used to select the best combination of segmentation
parameters (i.e., scale, shape, and compactness). Fifth, rel-
evant attributes were selected using the correlation-based
feature selection method (CFS), which ranks the attributes
from the most important to the least important. Rule sets
were developed by applying a decision tree (DT) algorithm
using the training set of the landslide inventories and the
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Fig. 3.3 Study area showing a analysis area; and b test area

selected relevant attributes. Rule sets were developed for the curve (AUC) values. Finally, the results were exported
extracting five land types that were enumerated as follows: into GIS to detect the precise location and direction of the
(1) bare soil, (2) cut slope, (3) building, (4) vegetation, and landslides by overlaying the classified segments and the
(5) landslide. The validation of the rule sets was based on the hillshade on the slope and aspect data to visualize other
receiver operating characteristic curves and the area under characteristics of landslide (i.e., runoff, volume, and width).
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Fig. 3.4 An overview of the
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method adopted in the present

l [ ! !
study ! ! ! !
' | LiDAR Point Cloud | | Fuzzy based !
[ | I | Segmentation Parameter | |
i i i i
| ; ] : |
: Pre-processing : : Segmentation :
| ; mE : |
i i Correlation-Based i
I _Deriv ! | !
._ LiDAR-Derives data | | | | Feature Selection (CFS) | |
: : : '- ! :
i i i i
i i i Relevant Feature i
: Composite Bands : : Selection :
I
e ] e e
T '_______: :"______'__________i
|
l| Rules sets development : : New Rule Set i
! by DT i | Development :
i I I l i
i l I I i
i ! ! Detection of Landslide i
i Validation of Rule Set : : Types :
| !
I
| [ | i ‘ |
i : : Overlaying i
} Landslide Detection i i Slope & Aspect :
i : Hr——— E——|
‘ : R S i
i | . |
| i " T 1
: Transferability 1 i Field Validation i
I I |
! i i ! i
} i i i
i : : Accuracy assessment :
emeeee o ' e
3.4.1 LiDAR Data non-ground points, with the spatial reference of

The LiDAR point cloud was acquired over 25 km?* of the
ringlet and surrounding area in Cameron Highlands at a
flying height about 1510 m. The data were captured on
January 15, 2015. The point density is closely 8 points per
square meter with a 25,000 Hz pulse rate frequency. The
absolute accuracy of the LiDAR data should meet the
root-mean-square errors (RMSE) of 0.15 m in the vertical
axis and 0.3 in the horizontal axis. Orthophotos were also
acquired by the same system for the study area to support
landslide identification and characterization.

A digital elevation model at 0.5-m spatial resolution was
interpolated from LiDAR point clouds after removing the

GDM?2000_Peninsula_RSO. The derived DEM helps in
generating a number of derived layers that support land-
slide identification and characterization . In the current
study, hillside, intensity, height (nDSM), slope, and aspect
were derived from the LiDAR-based DEM Fig. 3.2,
(Fig. 3.9).

3.4.2 Object-Based Image Analysis (OBIA)

An object-based approach considers the spatial, spectral, and
texture attributes of the features in the classification process;
thus, it is different from other classification approaches such
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Fig. 3.5 LiDAR-derived data used for identification the location and direction of landslide include a intensity; b hillshade; ¢ DTM; d height;

e slope; and f aspect

as traditional pixel-based (Pradhan et al. 2016). The results
of an object-based approach are more accurate (Rau et al.
2014) than pixel-based classification (Tehrany et al. 2014).
As one of the most significant classification schemes, OBIA
can provide valuable information for landslide inventory

mapping (Guzzetti et al. 2012). It is considered suitable for
landslide inventory mapping because its image segmentation
and classification processes resemble human knowledge, and
existing knowledge can be transferred into a machine algo-
rithm in the form of rule sets, which have been implemented



3 Optimized Rule Sets for Automatic Landslide ...

in landslide mapping (Barlow et al. 2003; Pradhan et al.
2016; Stumpf and Kerle 2011).

Image segmentation is the first step of OBIA (Pradhan
et al. 2016). In this step, homogeneous pixels are grouped
into non-overlapping regions based on spectral and geo-
metric characteristics (Pal and Pal 1993). Multiresolution
segmentation is a common algorithm that has been utilized
in various earth science studies (Blaschke 2010). Numerous
features of the objects can be used in multiresolution seg-
mentation. In the current study, three parameters, namely
scale, shape, and compactness, are selected for the analysis
(Pradhan et al. 2016). Determining these parameters using
the traditional trial-and-error method is a time-consuming
and work-intensive procedure (Pradhan et al. 2016). There-
fore, automatic and semiautomatic methods have been used
to identify the optimal parameters in various studies (Anders
et al. 2011; Belgiu and Dragut 2014; Dragut et al. 2010).
Among the advanced methods for automatically selecting
segmentation parameters are the Taguchi optimization
technique proposed by and the fuzzy logic supervised
approach presented by (Zhang et al. 2010). Therefore,
automatic methods that utilize optimization algorithms
(Pradhan et al. 2016) can best reduce the time required for
selecting the segmentation parameters.

The selection of a small (possibly the minimum) feature
set yields the best possible classification results, which is
desirable for practical reasons (Kursa and Rudnicki 2010).
Therefore, significant attributes should be selected to
enhance the results of landslide detection in a certain area
(Kursa and Rudnicki 2010). The selection of important (or
relevant) attributes can help differentiate between landslide
and non-landslide areas as well as better classify landslides
according to their types (Van Westen et al. 2008). Several
studies have used multiple attribute integration for landslide
detection (Borghuis et al. 2007; Danneels et al. 2007; Hervas
and Rosin 1996; Tapas R Martha, Kerle, Jetten, van Westen,
& Kumar, 2010; Tapas Ranjan Martha et al. 2011; Moine
et al. 2009; Stumpf and Kerle 2011). Chen et al. (2014) used
10 attributes for landslide identification; their results showed
that the selected relevant attributes provided valuable
information for landslide identification. The current study
primarily aims to optimize the parameters of segmentation
and the attributes for developing transferable rule sets for
landslide detection and their characteristics by using
high-resolution LiDAR data.

3.4.3 Image Segmentation

Image segmentation, which is a fundamental step of OBIA,
is realized using both spatial and spectral information
(Darwish et al. 2003). Segmenting the presented object by
delineating their boundaries directly affects the quality and

57

performance of the classification process. Various segmen-
tation algorithms have been previously elaborated and
applied to remote sensing data sets (Dey et al. 2010). The
purpose of these algorithms is to determine relatively
homogenous and powerful segments. In the current study,
the image segmentation process was implemented by first
identifying the three main parameters. These parameters
control the segmentation results and affect the classification
process (Moller et al. 2007; Tian and Chen 2007). A super-
vised fuzzy logic approach was used to select the optimal
parameters because the traditional method for identifying the
aforementioned parameters is time-consuming.

3.4.4 Correlation-Based Feature Selection

Selecting only the relevant attributes enhances the quality of
landslide identification and classification in a particular area
(Kursa and Rudnicki 2010). Working with a large number of
attributes generates several problems. First, the algorithms
are slowed down because numerous resources have to be
considered (Kursa and Rudnicki 2010). Second, a higher
number of attributes than the number of observations result
in low accuracy (Kohavi and John 1997). Third, irrelevant
input features may lead to overfitting (Chen et al. 2014).
Therefore, important attributes should be selected to improve
the accuracy of the feature extraction results. In the current
study, CFS was performed using Weka 3.7 software to select
the relevant attributes. The method established by (Li et al.
2016) was adopted in this study. The CFS algorithm was
applied to all the LiDAR-derived data and the additional
texture and geometric features. CFS was performed to
determine the feature subsets to be used for developing the
rules for landslide identification and characterization.
The CFS method has two basic steps: ranking the initial
attributes and eliminating the least important attributes
through an iterative process.

3.4.5 DT Classifiers

DT methods are data mining techniques that generate a
graphical illustration of the feature classification process
(Daniel 2014). In OBIA, the most important phase is the
construction of the image interpretation model (knowledge) for
the segmented objects. However, executing OBIA with other
classifiers that are considered “black boxes” may be difficult;
by contrast, DT classifiers are like “white boxes”; that is, users
can easily interpret the links between the variables of different
classes and the explanatory variables of remote sensing data
(Li et al. 2016). The model generated via a DT method can be
either a predictive or a descriptive model. Basically, estab-
lishing DT classifiers does not require the elaborate setting of
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the domain knowledge or attribute; consequently, it has
become popular for exploratory knowledge discovery. This
type of method can provide a rapid and powerful mode of
showing the structures of a data set and handle a
high-dimensional data set. In the current study, a DT algorithm
was used to generate the rule sets for landslide identification
and characterization using CFS-derived attributes.

3.4.6 Landslide Mapping

An object-based classification method using a DT algorithm
was used to produce a landslide inventory map for the study
area. In this method, training data were required. Landslide
training samples were collected from the orthophotos of the
locations where landslides were identified via visual inter-
pretation. The image objects were then classified using the
DT algorithm, and rule sets were generated for landslides,
non-landslide features, and the two types of landslides (i.e.,
shallow and deep-seated). The important features, namely
mean slope, area, mean intensity, and gray level
co-occurrence matrix (GLCM) homogeneity, were selected
using the CFS method in Weka 3.7 software. Furthermore,
classification was executed using the J48 algorithm in Weka
3.7. Consequently, rule sets were developed to differentiate
landslides from non-landslide features, such as vegetation,
building, bare soil, and man-made slopes. In addition, other
rule sets were developed to distinguish the two types of
landslides. The classification results were validated using the
ROC method and through field investigations.

3.5 Results
3.5.1 Segmentation Parameters Selected Using
a Fuzzy Logic Supervised Approach

The optimal segmentation parameters (i.e., scale, shape, and
compactness) were selected using the fuzzy logic supervised
approach developed by (Zhang et al. 2010). The best values
of the segmentation parameters were determined based on an
adequate number of training samples, which included shal-
low and deep-seated landslides. Table 3.1 shows the selec-
ted values for the three parameters. For example, the initial
segmentation parameter values inputted into the fuzzy-based

Table 3.1 Segmentation
parameters

Initial parameters

No. Scale Shape
20 0.3
50 0.1
80 0.1
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optimization tool were 20, 0.3, and 0.1 for scale, shape, and
compactness, respectively, as shown in (Fig. 3.6a). From
these initial values and after 100 iterations, the best values
for scale, shape, and compactness derived from the opti-
mization tool were 46.37, 0.37, and 0.401, respectively.

3.5.2 Attributes Selected Using the CFS
Approach

The use of a large number of attributes can decrease the
accuracy of landslide detection because of the presence of
irrelevant attributes. Therefore, significant attributes were
selected using the CFS method. Table 3.2 shows the 10
attributes selected out of the initial 35 attributes, including
spatial, texture, geometric, and LiDAR derivatives. As
shown in Table 3.2, the most important attribute is the mean
intensity of LiDAR data, followed by the mean digital ter-
rain model DTM or altitude. Texture attributes, such as the
gray level difference vector contrast, GLCM homogeneity,
and GLCM StdDev, were also significant in detecting
landslides and determining their types using LiDAR data. In
addition, area, height, and GLCM standard were the last
three important attributes.

3.5.3 Rule Sets Developed for Landslide
Detection and Characterization

Rules sets were developed using the DT algorithm, and the
optimized attributes were selected via CFS. In general, six
sets of rules were established for extracting various features
or land cover types, including vegetation, bare soil, cut
slope, building, and landslide. The rules developed for
landslide identification included mean slope, area, mean
intensity, and GLCM homogeneity. The thresholds for these
attributes are provided in Table 3.3. Figure 3.7 illustrated
the results of rule set based on analysis area. For example,
the selected threshold for the mean slope attribute is 28°.
This result indicates that most of the landslides in the study
area fall from a relatively highly sloped area, and the chance
of landslides occurring in flat terrain areas is minimal. The
rules developed for identifying cut slopes included attributes
such as mean height, GLCM StdDev, and area of objects. On
the basis of the rules developed for landslide and cut slope

Iteration (optimal parameters)

Compactness Scale Shape Compactness
0.1 46.37 0.37 0.401

0.1 73.52 0.52 0.5

0.1 100.33 0.65 0.65
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Fig. 3.6 a Initial segmentation for training site; b optimal segmentation for training site; ¢ initial segmentation for test site; and d optimal

segmentation for test site

detection, intensity and texture attributes (i.e., GLCM
StdDev and GLCM homogeneity) are the most important
attributes to differentiate the two land cover types.

The deep-seated landslides (10) in the study area are less
than the shallow landslides (29). The detection accuracy for
deep-seated landslides is higher than that for shallow land-
slides. (Lin et al. 2013) demonstrated that LiDAR data could
significantly aid in identifying deep-seated landslides, par-
ticularly for densely vegetated areas. This current study
showed that texture and LiDAR intensity attributes were

more significant for distinguishing between the two landslide
types than other attributes. Table 3.4 shows that GLCM
homogeneity and mean intensity attributes can effectively
differentiate shallow from deep-seated landslides.

3.5.4 Model Transferability

In hilly and densely vegetated terrains, such as the Cameron
Highlands, discriminating between landslides and man-made
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Table 3.2 Outcomes of the Attribute No. times Rank
attributes selection for landslide
detection Mean intensity 20 1
Mean DTM 20 2
GLDV contrast 20 3
GLCM homogeneity 20 4
GLCM StdDev 20 6
Mean slope 20 7
Area 20 8
Height 20 9
GLCM standard 20 10
Table 3.3 Rules defined for Features Rules define Attributes
landslide identification from
non-landslide Vegetation 5.1 < Mean slope > 1.3 LiDAR derivatives
Area > 2837 Spatial
Bare soil GLCM standard <= 26.6 Spatial
Area <= 4905 Spatial
Cut slope Mean height <= 113.8 LiDAR derivatives
GLCM StdDev > 30.3 Spatial
Area <= 2837 Spatial
Building Mean slope > 2.3 LiDAR derivatives
Mean height > 113.8 LiDAR derivatives
Landslide Mean slope > 28.0748 LiDAR derivatives

Area > 4905

Spatial
Mean intensity <= 255.49 LiDAR derivatives
GLCM homogenous > = 0.0496 Spatial

slopes and distinguishing between the two types of land-
slides are challenging. Consequently, the results of trans-
ferability of the developed rule sets form analysis area to the
entire area were tested as shown in Fig. 3.8. Two types of
landslides were differentiated, namely shallow and
deep-seated, by developed new rule set see Table 3.4. The
results are shown in Fig. 3.9. Stumpf et al. (2011) said that
the overall accuracy of landslide detection applied to other
areas even if the same method was used for model devel-
opment would frequently decrease. This decline in accuracy
is ascribed to various reasons, including differences in
landslide characteristics and environmental conditions. Dif-
ferences in the sensors used, spatial resolutions of images,
and illumination conditions are among the other challenges
mentioned in a recent study (Rau et al. 2014).

3.6 Discussion

The identification of landslides and their types in densely
vegetated areas, such as the Cameron Highlands, is chal-
lenging because of several reasons, including the presence of
man-made slopes, dense vegetation, and hilly areas. This
study presented a method for automatically detecting land-
slides and their types by using high-resolution LiDAR data.

The quantitative results of landslide identification demon-
strated the robustness of the method. In addition, this study
showed that optimizing the segmentation parameters,
namely scale, shape, and compactness, by using the fuzzy
logic supervised approach was satisfactory for differentiating
non-landslide (i.e., vegetation and cut slope) from landslide
features and between the two landslide types. Creating
accurate objects through the optimized segmentation process
allowed the use of spatial, texture, and geometric attributes
for feature identification. Accurate segmentation is necessary
to distinguish deep-seated from shallow landslides because
landslides can be classified according to their geometric and
texture attributes (Table 3.4).

The selection of the optimal attributes, which are relevant
to a landslide, mainly relies on the experience of the analysts.
Thus, establishing an attribute selection method is imperative
to detect landslides and their characteristics. The relevant
attributes selected using the CFS algorithm simplify the rule
sets used to detect landslides and their types. In addition, the
rules developed with less optimized attributes can be trans-
ferable to the entire study area. The optimized attributes for
detecting landslides and determining their types included
LiDAR-derived data (i.e., slope, height, and intensity), tex-
ture attributes (i.e., GLCM StdDev and GLCM homogene-
ity), and geometric attributes. Computation time and reliance
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Table 3.4 Rules defined to

¢ . Feature types Rules define
differentiate between types of
landslide Deep-seated GLCM homogenous <= 0.05
GLCM homogenous (Direction = 0°) > 0.038
Shallow GLCM homogenous > 0.05

Mean intensity <= 414.3
GLCM homogenous (Direction = 0°) <= 0.038

Attributes

Spatial

Spatial

Spatial

LiDAR derivatives
Spatial
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on the expert knowledge of the analyst were reduced to a
greater extent with the proposed rule sets than with existing
complex rule sets based on image classification.

Field investigation is challenging and tedious for map-
ping landslide inventories (Dou et al. 2015). Although the
visual interpretation of remote sensing data using this
method is reliable, this method is both costly and
time-consuming. A new landslide detection method, which
utilizes LiDAR-derived data, is effective for mapping geo-
morphic features and landslides, particularly in densely
vegetated areas. The natural features of the earth surface are
difficult to recognize using traditional methods (Chen et al.
2015). By contrast, a LiDAR-derived DEM provides addi-
tional terrain data, such as curvature, slope, and hillshade,
which can help better describe the landscape of an area and
identify landslides and their types. The current study used a
LiDAR-derived DEM, as well as texture and geometric
features, for landslide detection and characterization. The
results show that LiDAR data can be effectively used to
analyze and visualize terrains that are difficult to explore

because of the presence of dense vegetation. Furthermore,
the locations of landslides were identified using the proposed
method, and their directions were visualized by overlaying
the slope and aspect factors from the LiDAR-derived data.
The landslides were also rendered in 3D to visualize their
other characteristics, such as width, length, runoff distance,
and depth as shown in Fig. 3.10.

3.6.1 Accuracy Assessment

Various methods and accuracy metrics, such as kappa
indices, overall accuracy, user’s accuracy, and producer’s
accuracy, have been applied to estimate the accuracy of
remote sensing products (Dou et al. 2015). The concept of a
confusion matrix is frequently adopted to simplify the cal-
culation of these accuracy metrics (Radoux and Bogaert
2014). In recent studies, however, the use of kappa indices
has been criticized by several researchers (Pontius and
Millones 2011). Mondini et al. (2011) utilized ROC plots to

Fig. 3.10 3D perspective of detected landslides for the study area
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evaluate remote sensing outcomes by plotting the true pos-
itive value against the positive predictive value (PPV). ROC
plotting is one of the common methods used in engineering
and signal processing; therefore, the use of this method to
evaluate the quality of deterministic and probabilistic
detection and forecast systems is extremely helpful. In the
current study, the landslide detection results were assessed
using the ROC plotting method and further verified through
field investigations. The accuracy assessment is performed
as follows: The locations of the landslides were first col-
lected from the study area using a handheld Global Posi-
tioning System (GPS) device with an accuracy of 5 m.
Subsequently, the ROC curves for shallow and deep-seated
landslides were generated, and the AUCs were calculated.
Figure 3.10 shows the ROC curves for landslide detection
and their types as detected by the method proposed in the
current study. The estimated AUC of landslide detection was
0.82, and the accuracy rates after transferability for shallow
and deep-seated landslides were 0.80 and 0.83, respectively.

Fig. 3.11 ROC curve for (a) 1
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The estimated accuracy rates indicated the effectiveness of
the proposed approach for detecting landslides and distin-
guishing their types (Fig. 3.11).

3.6.2 Field Investigation

A field investigation was conducted as an additional assess-
ment method to examine the reliability of the proposed
method. A handheld GPS device (GeoExplorer 6000) was
used to identify the locations of the landslides, as shown in
Fig. 3.12. The information acquired from field measurements
allowed for the assessment of the precision and reliability of
the produced landslide inventory map. In addition, the field
investigation demonstrated that the landslides detected using
the proposed methodology were accurate. Thus, the current
methodology can identify landslide locations, distinguish
landslide types, and produce a reasonable acceptable land-
slide inventory map for the Cameron Highlands.

(b) 2
0.8
g
E 0.6
w
o
a
[
2 0.4
&
0.2
Detected landslide Shallow landslide
(AUC=0.82) (AUC=0.80)
0.8 1 00 0.2 0.4 0.6 0.8 1

True positive

Deep-seated landslide
(AUC=0.83)

0.2 0.4 0.6 0.8 1
True positive



66

B. Pradhan and M.R. Mezaal

Fig. 3.12 Field photographs taken in the study area during field investigation

3.7 Conclusion

Identifying landslides and their types (i.e., shallow and
deep-seated) in tropical regions is a difficult task. In this
study, an optimized object-oriented rule set was developed
to detect landslides in the Cameron Highlands and differ-
entiate between their types. The main data sources were
high-resolution airborne LiDAR point clouds. Optimized
segmentation was performed using an existing fuzzy logic
supervised approach, and the important attribute subset was
selected using the CFS algorithm. The overall accuracy of
landslide detection using the proposed method was 0.82, and
the prediction accuracy rates for shallow and deep-seated
landslide detection were 0.80 and 0.83, respectively. The
optimization of the segmentation parameters and attributes
improved the computational efficiency of the workflow and
enhanced the transferability of the rule sets into different
spatial subsets within the Cameron Highlands. LiDAR data
were effective and useful for identifying landslides and
distinguishing their types. In addition, the use of LiDAR
data allowed for the identification of other characteristics of
landslides, such as orientation and runoff distance, by

overlaying LiDAR-derived slope and aspect factors on
detected landslide scarps. The optimization of segmentation
parameters and the selection of attributes could also improve
the computational efficiency of the workflow and enhance
the transferability of the rule sets into different spatial sub-
sets within the Cameron Highlands in Malaysia. This study
suggests that developing rule sets based on optimized tech-
niques and using VHR airborne LiDAR-derived data and
spatial attributes are effective in identifying the locations of
landslides and distinguishing their types in tropical regions.
This proposed automatic landslide detection method can be
an important geospatial solution for managing landslide
hazards and conducting landslide risk assessments.
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