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Preface

The significant growth of world’s population and the rapid expansion of cities generate great
challenges for decision makers and put an increasing number of people at hazards. Even
though it is impossible for human being to prevent natural disasters, there have been great
efforts to create knowledge, design methods, and frameworks to assess, prepare, and mitigate
the potential effects of natural hazards. Among natural disasters, landslides pose considerable
risks to people’s livelihood and to the environment. They cause significant disruption and
economic losses by the devastation of major infrastructures such as settlements, transportation,
power and communication lines, and other utilities. Several landslide triggering factors such as
intense rainfall, earthquakes, volcanic eruptions, hurricanes, and human activities threaten
many parts of the world and increase the potential of landslides. Hence, it has been important
to put significant efforts to advance landslide studies and design effective and practical tools
that could be used by decision makers.

Landslide is defined as “the movement of a mass of rock, debris, or earth down a slope.”
They result from the failure of hill slope materials driven by the force of gravity. Landslides
are also known as slope failure and they are classified into several types according to the type
of mass movement. The basic types of landslide movements are fall, topple, slide, flow, and
spread. Landslides occur almost worldwide and cause significant disasters with very great
impacts to the society. They are studied in many countries, and scientific and engineering
fields and a wide variety of innovations have been proposed to enhance our understanding
of their mechanisms. In general, landslides occur in a variety of landscapes characterized by
the cliff, steep slopes, and unstable geology. There are many other factors contribute to the
landslide occurrence such as slope curvature, weathering, water content, sediment availability,
climate, vegetation, and anthropogenic inputs. However, most of the time, landslides are
triggered by one factor or combination of factors such as heavy rainfall, earthquakes, or glacial
erosions. Thus, it is important for scientists to understand the links between these factors and
the concept of landslide risk. This has allowed them to accurately predict the distribution of
future landslides, estimate and simulate their extents, and quantify their impacts to the human
life and property.

Assessment of landslides usually involves several modeling techniques using a wide range
of data sources. Overall landslide assessments comprise detection of landslide scarps, pre-
diction of the spatial distribution of potential future landslides, modeling hazards and vul-
nerability, and estimating landslides risks and their impacts. For the detection of landslide
scarps, the key methods are interpretation of aerial photographs, change detection, topographic
and geomorphological analysis of laser scanning data. In addition, a wide range of
knowledge-based, statistical, and machine learning methods are used for predicting potential
future landslides in a given area. For example, the popular methods are analytic hierarchy
process, frequency ratio, logistic regression, and support vector machines. On the other hand,
techniques for modeling landslide hazards are generally well documented. Their concepts are
based on integrating the spatial and temporal variations of triggering factors with potential
landslide zones. Furthermore, to model landslide risks, understanding of the elements at risk
including exposure information is considered a critical factor. Exposure information is
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produced by obtaining the best available data, statistics, spatial and attribute data about
buildings, demographics, community infrastructure, and agricultural commodities. This
information allows to model landslide vulnerability through the use of curves that describe a
probable damage severity or economic loss for a particular type of infrastructure when it is
subjected to some level of hazard. Finally, modeling of landslide risk is based on statistical
information about past events and their estimated impacts. Overall, risk models can be used to
perform cost–benefit analysis for various forms of mitigation involving short-term solutions,
such as early warning and response, along with long-term solution, such as land use planning
and improvements to building codes and infrastructure.

The practical development of landslide risk models requires comprehensive data for each
step of modeling. In the recent times, LiDAR (light detection and ranging) is widely used for
landslide investigations to create accurate digital elevation models which enable extracting
several precise topographic, geomorphological, and hydrological factors used in several steps
of overall landslide assessments. The key advantages of using LiDAR for landslide studies are
high-resolution landslide contours, which permits identifying landslide scarps and displaced
materials and delineating geomorphological features of landslides such as scarps, mobilized
material, and foot. Other advantages include automating landslide mapping, penetrating
vegetation canopies, and supporting simulations of debris flows and rock falls at small scales
due to their high-density points collected over the focused area.

Landslides occur worldwide; however, rainfall-induced slides tend to be much greater in
tropical hilly areas. Mountainous terrain and heavy tropical rains put dense populations and
infrastructures at risk. Thus, monitoring different types of landslides can be useful for miti-
gating the effects of these disasters and properly plan for potential future events.

This book at the first describes the fundamental concept of using LiDAR for landslide
applications and assessment. A general overview of laser scanning systems in the context of
landslide studies is explained to support understating the followed materials of the book. As a
preliminary step, landslide and debris flow inventory mapping and characterization is pre-
sented with diverse illustrations. This is followed by a detailed landslide susceptibility map-
ping procedures including optimization of landslide conditioning factors, effects of spatial
resolution of DEM, and detailed comparative analysis of a large number of models used in the
literature. Besides, identification of debris flow source areas and its assessment using empirical
models will be discussed. In addition, landslide risk assessment using multihazard scenarios
will be described. Furthermore, LiDAR techniques in rockfall hazard assessments is also
investigated and discussed in details.

This book is organized into 17 chapters.
Chapter 1 briefly discusses about the active remote sensing systems, such as light detection

and ranging (LiDAR) which are widely used in landslide disaster management and risk
mitigation. The main advantage of these technologies is the production of high-resolution
digital elevation models (DEMs). Such models allow detailed mapping of terrain and
extraction of geomorphological features, which are extremely important in landslide assess-
ment. Therefore, this chapter provides an overview of the use of LiDAR in landslide inves-
tigations. First, it introduces the main components of LiDAR systems and the basic concept of
laser measurements and then discusses the accuracy and resolution of typical laser scanning
systems. Second, it provides information about LiDAR data processing (i.e., point cloud
filtering, geometric calibration). Third, it discusses the main products of LiDAR that are useful
for landslide investigation and modeling. Finally, it describes and illustrates several landslide
applications where LiDAR data are beneficial.

Chapter 2 proposes a semiautomatic supervised approach for the detection of landslides in
man-made slopes. Several techniques have been proposed for landslide mapping using remote
sensing data in the literature, especially in unstable slope areas. Generally, cut slopes are
created to mitigate the risk of land failure for areas that have high probability of failures. This
method creates new challenges for landslide mapping in these areas. Five classifiers were
evaluated for object-based landslide detection using airborne LiDAR data coupled with
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orthophotos. This chapter aims to: (1) to prepare spectral, spatial, and texture features, as well
as LiDAR-derived parameters for landslide detection using supervised classification schemes;
(2) to evaluate five well-known classifiers (i.e., Bayes k-nearest neighbor, support vector
machine (SVM), random forest (RF), and decision tree) for landslide detection, thereby
determining the best algorithms; and (3) to produce an inventory map of landslides and
man-made slopes of the study area using the best classifiers found in the second objective.
Results of landslide factor and feature analyses showed that landslides and cut slopes are
extremely difficult to separate using only LiDAR-derived parameters. Orthophotos are useful
information for the separation of landslides from other features, such as grassland, buildings,
and water bodies. Spatial and texture features are also important for landslide detection. A field
validation was also applied using a landslide inventory map collected from multiple field
investigations. This inventory map shows landslide locations, type, geometry, and direction.
Landslide inventory was also used to train the classifier, thus improving sampling accuracy.
The result of the analysis showed that SVM and RF achieved relatively high user and producer
accuracies, and indicated a good classification of landsides and cut slopes simultaneously. In
comparison, SVM performed better than RF for landslide and cut slope classification. Overall
assessment indicated that the separation between cut slopes and landslides using LiDAR data
and orthophotos in supervised classification is possible and can be improved. The resulting
landslide inventories are valuable resources for both the geomorphological investigation of
landslide events and hazard assessment and susceptibility analysis in landslide-prone regions.

Chapter 3 discusses about a new approach for detection of different types of landslides such
as shallow and deep seated. A good landslide inventory map is a prerequisite for analyzing
landslide susceptibility, hazard, and risk as well as for studying the evolution of a landscape
affected by landslides. Using traditional methods for landslide detection is challenging because
of the presence of dense vegetation in landslide locations and the time-consuming large-scale
projects that are concomitant with these methods. Data derived from LiDAR can depict ground
surface and provide valuable information on the topographic features of locations hidden
under dense vegetation. This study presents an automatic LiDAR-based landslide detection
method and discusses its capability to differentiate between shallow and deep-seated landslides
as well as its transferability. An existing supervised approach was adopted to optimize seg-
mentation parameters (i.e., scale, shape, and compactness). Subsequently, a correlation-based
feature selection technique was used to select relevant attributes for developing the set of rules.
The rules were developed using a decision tree algorithm. An object-based approach was
applied to identify the locations and characteristics of landslides. To validate the method, the
area under the curve was used. The accuracy of landslide detection on the test site was 0.82,
and the accuracy of detecting shallow and deep-seated landslides were 0.80 and 0.83,
respectively. The intensity derived from the LiDAR data and texture significantly affects the
accuracy of differentiating shallow from deep-seated landslides. Therefore, the current study
demonstrated that LiDAR data are highly efficient in detecting landslide characteristics in
tropical forested areas.

Chapter 4 presents a Taguchi-based Random Forest technique for landslide detection from
LiDAR and QuickBird satellite image. Landslide mapping in tropical regions is challenging
because of the rapid vegetation growth. Hence, increasing the performance of landslide
mapping with remote sensing skills is essential. This chapter proposes an efficient method-
ology to detect and map the landslide-prone areas located in Bukit Ma’okil, Johor, Malaysia,
using an integration of high-resolution LiDAR with high-resolution QuickBird satellite ima-
gery. An object-based classification method was used to distinguish the landslide-prone areas
from non-landslide features. The Taguchi technique and Random Forest (RF) methods were
employed to optimize the segmentation process and to select important features, respectively.
The rule-based technique was also used for object-based classification. The Taguchi opti-
mization applied in the current research allowed the selection of suboptimal segmentation
parameters by conducting 25 experiments, each evaluated by kappa coefficient. The appli-
cation of the RF method significantly contributed in selecting the most relevant features for
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ruleset development and classification. Landslide and non-landslide locations were detected,
and the confusion matrix was used to examine the proficiency and reliability of the results. The
overall accuracy was 90%. The current research integrated object-based analysis and opti-
mization method as a pioneering landslide detection application to reduce time for image
classification. The successful production of a reliable and accurate landslide inventory map
confirmed the efficiency of the methodology. Therefore, the results derived from the proposed
method can assist researchers and planners in implementing and expediting landslide inven-
tory mapping.

In contrast to Chap. 4, Chap. 5 presents debris flow detection using LiDAR data in a
tropical forested area. Debris flow is one of the most destructive mass-wasting events. Debris
flow is also referred as mudslide, lahars, or debris avalanche, which is a rapid mass movement
mainly triggered by intense precipitation or rapid snow melt that starts on steep mountain
channels. The loosen materials are saturated with water-formed debris flows. Debris flow can
be catastrophic because it is associated with the loss of human life and property destruction.
Given the rapid population growth, especially in mountainous region, source areas prone to
debris flow should be identified. In this study, LiDAR, a high-resolution airborne laser
scanning data, was used to obtain debris flow-related parameters. First, a digital elevation
model (DEM) was generated from the LiDAR point clouds as a primary source of data. The
parameters were constructed in GIS environment, which contains slope, plan curvature and
flow accumulation derived from a DEM. The datasets were converted to ASCII grids for
importation in Flow-R (Flow path assessment of gravitational hazards at a Regional scale)
software. Many softwares were developed to understand debris flow behavior. In this research,
Flow-R model was used because it can produce significant results based on the quality of the
DEM, thereby obtaining reliable results for identification of debris flow sources. Various DEM
resolutions (1, 2, 5, and 10 m) were generated for identification of debris flow source areas and
consequent determination of an optimized resolution. Landslide inventory map, which was
prepared mostly from field investigation, was used for validation. The landslide inventory map
was buffered to 20 and 50 m for each DEM resolution. The results from buffered zones were
later used to generate the intersection between the buffered zones and the source area produced
from Flow-R. Additionally, high-resolution ortho-images were used as supplementary data to
visualize the location of debris flow source areas. The results revealed that DEM with 1-m
resolution produced the highest accuracies among all DEM resolutions. According to the
sources and landslide inventory data, buffering and intersection were 72% and 93% from 20-
and 50-m resolutions, respectively. On the contrary, the DEM of 2-m resolution achieved 45%
and 79% of buffering and intersection from 20 and 50 m, respectively. The DEM of 5-m
resolution achieved the accuracies of 17% and 31%. Finally, the lowest accuracy was pro-
duced by DEM with 10-m resolution at 3% for each 20 and 50 m from buffering and
intersection methods. The present findings showed a good compromise between landslide
inventory location and modeling source resulting from 1-m DEM resolution. Nevertheless,
results obtained from 2 and 5 m still produced significant information about debris flow source
areas (but not at an optimum detection), whereas DEM with 10 m produced poor result.

Chapter 6 discusses about the optimization of landslide conditioning factors using LiDAR
data. Landslide susceptibility modeling (LSM) is the basic step in overall hazard and risk
assessment. This chapter presents the optimization of landslide conditioning factors and an
analysis of their effects to improve the accuracy of landslide susceptibility models and provide
insights into landslide conditioning factors. A landslide inventory map with 132 landslides
was prepared based on multisource remote sensing data. A total of 15 landslide conditioning
factors were used, including LiDAR-derived and non-LiDAR-derived factors. First, multi-
collinearity analysis was conducted to remove highly correlated factors from further analysis.
Second, ant colony optimization was used to select significant landslide conditioning factors
from the initial 14 factors for further analysis. Data mining techniques, including support
vector machine (SVM) and random forest (RF), were used to analyze the effects of the selected
landslide conditioning factors on the prediction rate accuracy of the susceptibility models.
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Several landslide susceptibility maps were produced for the study area, and the best map was
recommended for future land use planning. Results of the multicollinearity analysis showed
that the topographic roughness index was highly correlated with the remaining factors, and
thus, this factor was removed and not used in LSM. In the factor analysis, 8 underlying factors
were extracted from the 15 landslide conditioning factors. All the factors were well repre-
sented by the 8 extracted factors because the corresponding communalities (i.e., correlation
with the retained factors) were generally high. After multicollinearity and the factor effect were
analyzed, 6 experiments classified into 2 main groups were conducted. In the first group, all
the 14 factors were examined, whereas the second group included only the LiDAR-derived
factors. In the first group, the 3 experiments included 5 factors, 10 factors, and all the 14
factors. In the second group, the 3 experiments involved 3 LiDAR factors, 6 LiDAR factors,
and 8 LiDAR factors, which were the total number of LiDAR factors derived from the digital
elevation model. These subsets were evaluated using the SVM and RF models. On the one
hand, the highest accuracy was achieved using the RF model and 10 factors selected from the
14 initial factors. On the other hand, the lowest accuracy was achieved using the SVM model
and only the LiDAR-derived factors. The results showed that LSM should be developed using
only significant factors, whereas non-LiDAR factors were important to achieve accurate
landslide mapping for a study area.

Chapter 7 discusses about the effect of spatial resolution of DEM in landslide susceptibility
mapping. As mentioned previously, landslide susceptibility maps are the main products
required for hazard and risk assessments, as well as for land use planning. Spatial data play an
essential role in determining the quality of landslide susceptibility maps. Therefore, the spatial
resolution of digital elevation models (DEMs) was assessed in this study, and an optimal
spatial resolution for landslide susceptibility mapping (LSM) at small-scale catchments was
determined. A total of 192 landslide inventories were collected from multisource remote
sensing data for the study area. In addition, 13 landslide conditioning factors were derived
from a LiDAR-based DEM and existing geodatabases of the study area. Logistic regression
was used as the modeling technique to produce landslide susceptibility maps. The accuracy
of the susceptibility maps was assessed using several accuracy metrics, namely the area under
the curve of a receiver operating characteristic, the kappa coefficient, overall accuracy, and
spatial agreement. The spatial agreements were determined using empirical information
entropy and average susceptibility values. Results indicated that the importance and multi-
collinearity of the landslide conditioning factors are sensitive to the spatial resolution and
source of the DEM. The optimal spatial resolution was 2 m with a predictive accuracy of
0.963, a kappa coefficient of 0.88, and an overall accuracy that approximates 94.02. The
entropy map showed that the produced models generally presented high spatial similarities
(entropy value � 0.33), which covered nearly 71% of the study area. Furthermore, the 30-m
LiDAR DEM was more capable of predicting future landslides and identifying landslide
scarps and flanks than the 30-m DEM based on the Advanced Spaceborne Thermal Emission
and Reflection Radiometer. Therefore, a finer spatial resolution does not always guarantee a
higher prediction rate. In addition, the selection of DEM spatial resolution and source depends
on the objective of the study and the amount of details required in landslide susceptibility
maps.

Chapter 8 presents an application of k-nearest neighbor (kNN) and logistic regression
(LR) models in landslide susceptibility mapping using LiDAR-derived data. Landslide sus-
ceptibility mapping plays an important role in urban planning and disaster management for
hilly regions. Such task requires various information on the environmental, geotechnical, and
economic aspects of landslides. This paper presents a landslide susceptibility analysis for
Bukit Antarabangsa, Ulu Klang, Malaysia, with kNN and LR models. Data on 31 landslide
events that occurred in the study area were obtained from different sources. Eleven landslide
conditioning factors, including altitude, slope, aspect, curvature, stream power index, topo-
graphic wetness index, soil, geology, land use/land cover, distance from rivers, and distance
from roads, were considered in landslide susceptibility mapping. The main goal of this study is
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to examine the efficiency of the kNN algorithm in landslide susceptibility mapping. This
algorithm has seldom been adopted in this field of study. Comparative assessment was con-
ducted by applying an LR model to evaluate the reliability of the proposed kNN algorithm.
The results of the two models were compared and validated. Same conditioning factors were
employed to build both models. The capabilities of kNN and LR methods were evaluated with
the area under curve technique. Results show that kNN performs better than the LR model.
The success and prediction rates obtained from the testing results of the kNN algorithm are
86.28% and 82.64%, respectively. The success and prediction rates obtained from the vali-
dation results of LR are 75.65% and 72.18%, respectively. kNN algorithm can be used in
spatial planning and can help in hazard mitigation.

Chapter 9 presents an application of support vector machine (SVM) and its different kernels
in landslide susceptibility mapping. The lack of reliable and comprehensive physical
approaches for landslide susceptibility mapping (LSM) has motivated the use of statistical and
machine learning techniques, such as the frequency ratio, weights of evidence, logistic
regression, and artificial neural networks. However, the support vector machine (SVM) has
become increasingly popular because of its capability to deal with high-dimensional spaces
and perform high-accuracy classification. In SVM, the model is trained on a training dataset
with associated input and target output values. This study illustrates the application of a
geographical information system-based SVM modeling for mapping landslide susceptibility
along Jalan Kota in Bandar Seri Begawan, Brunei, to evaluate the spatial correlation between
landslides and each conditioning parameter. These parameters are altitude, slope, aspect,
curvature, stream power index, topographic wetness index, topographic roughness index,
geology, soil, land use/land cover, rainfall, and distance from rivers, roads, and faults. Fur-
thermore, four kernel types, namely radial basis function (RBF), polynomial, sigmoid, and
linear kernels, were applied to examine the performance of SVM kernels. Finally, the effi-
ciency of the output maps was validated using area under curve, which measured the pre-
diction and success rates for each kernel. Among the applied kernel types, RBF performed
better than the others, with a success rate of 88.21% and a prediction rate of 82.90%. Results
of the validation process proved the reasonable strength and feasibility of SVM (particularly
RBF–SVM) in LSM. The proposed model can assist local managers and government officials
in Brunei to formulate landslide mitigation strategies.

Chapter 10 discusses about the quality of landslide inventory by using different approaches.
Landslide susceptibility modeling (or mapping) has been extensively explored in research.
However, its quality is affected by uncertainties in landslide inventory data. The quality of
landslide inventory is examined by experts using aerial orthophotos and field investigations,
which are time-consuming and costly given several landslide records in the inventory data-
base. Therefore, the current study developed an ensemble method based on the idea of active
learning to overcome the landslide inventory data uncertainties. Integrating active learning
modeling into landslide susceptibility assessment can improve the accuracy and generaliz-
ability of the models as it automatically removes problematic landslide inventories. The
specific objective is to evaluate the ensemble disagreement active learning for the spatial
prediction of shallow landslides in Cameron Highlands, Malaysia. The study is conducted
using LiDAR data (i.e., vertical and horizontal accuracies are 0.15 and 0.3 m, respectively).
Nine landslide conditioning factors are prepared and 192 landslide inventories are collected
from various sources such as aerial photographs and high-resolution satellite images (i.e.,
SPOT 5). Results revealed that the active learning approach combined with common models
such as support vector machines (SVM) and logistic regression (LR) can improve the per-
formance of the models. The success rates of the SVM and LR models are 0.81 and 0.84,
respectively, whereas the prediction rates are 0.75 and 0.84. After the integration of active
learning to the models, the success rates increased to 0.88 and 0.89 for the SVM and LR
models, respectively. Furthermore, the prediction rates increased by 0.18 and 0.5 accordingly
for the SVM and LR models. Therefore, findings indicate that the use of active learning in
landslide susceptibility modeling can improve the success and prediction rates of the SVM and
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LR models. In addition, this study suggested that the use of active learning can decrease
collinearity among the landslide factors, thereby improving the final models.

Landslide susceptibility maps help to understand the spatial distribution of landslide
probability, and they also improve landslide risk assessment and land use planning. The
advancement in computer hardware and software has improved the accuracy of many land-
slide susceptibility models. These models are grouped into five categories: expert, bivariate
statistical, multivariate statistical, machine learning, and hybrid methods. Each category has
several models and possesses respective advantages and disadvantages. The advantage of
expert-based models is that they do not require landslide inventory data for model training;
however, their disadvantage is the subjectivity of the judgment of the importance of landslide
conditioning factors. Bivariate statistical models compute the contribution of landslide con-
ditioning factors for landslide occurrence; however, their main drawback is the assumption of
conditional independence. Multivariate statistical models analyze the interaction of all
parameters in controlling the occurrence of landslides; their drawback is the collection of data
over a large area regarding landslide distribution and factor maps. Machine learning models
account for nonlinear relationships and handle uncertainty in landslide inventory data; their
drawback is their time-consuming nature and their susceptibility to overfitting of the data.
Hybrid models can overcome several of the disadvantages of the individual models, but the
complexity of hybrid models is often high. Given the various advantages and disadvantages
of the aforementioned methods, today’s land use planners face the challenge of selecting the
most appropriate model for their needs. Therefore, the main objective of Chap. 11 is to
evaluate the performance and sensitivity of 14 models, frequency ratio (FR), statistical index
(SI), weights of evidence, logistic regression (LR), partial least squares, discriminant analysis,
analytic hierarchy process, fuzzy AHP, support vector machine (SVM), random forest,
decision tree, FR–SVM, LR–RF, and SI–LR, to provide clear guidelines for land use planners
in selecting the most appropriate model. A test site in Cameron Highlands was selected. The
results showed that the best model is the hybrid FR–LR model, with a prediction rate of 0.83.
This model could predict over 75% of the landslide inventories in the very high susceptible
class. It also demonstrated good spatial agreements with several other models.

In contrary to the previous chapters, Chap. 12 presents a detailed landslide hazard, vul-
nerability, and risk assessment along a stretch of North–South Expressways in Malaysia.
Landslides result in high economic and social losses in Malaysia, especially for highway
concessionaries such as the PLUS Expressways Berhad. This study aims to perform landslide
vulnerability and risk modeling for cut slopes along the Gua Tempurung area on the North–
South Expressway in Malaysia. This area was selected because of the frequent occurrences of
landslides along the expressway. Highway concessionaries such as the PLUS Expressways
Berhad allot a large portion of their annual budget to ensuring the safety of this expressway
and making it resilient against natural hazards. Landslide hazards, vulnerability, and risk
zoning maps are considered in the decision-making process involving land use/land cover
(LULC) planning and overall road management in prone areas. The accuracy of the results is
directly related to the spatial data and the methods for obtaining such data. In the present work,
we produced a landslide inventory map depicting the 17 landslide locations identified through
a field survey. The landslide inventory data were randomly divided into a training dataset:
60% (10 landslide locations) for training the models and 40% (7 landslide locations) for
validation. In the first step, a susceptibility map was constructed using the logistic regression
method, in which weights were assigned to each conditioning factor according to its corre-
lation with landslide occurrence. High-resolution LiDAR was used to derive the landslide
conditioning factors for the spatial prediction of landslide-prone regions. Eight conditioning
factors, namely altitude, slope, aspect, curvature, stream power index (SPI), topographic
wetness index (TWI), terrain roughness index (TRI), and distance from river, were used for the
weight calculation. The susceptibility mapping results were validated with the area under the
curve (AUC). The assessment showed 84.91% and 83.00% success and prediction rates,
respectively. In the second stage, a hazard map was calculated using the average of the
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triggering factor (rainfall) for 2014 because most of the landslides in the inventory took place
during this year. Overall landslide susceptibility and hazard maps were prepared for the 5-km
corridor of the highway. However, only the cut slopes were considered in the vulnerability and
risk analysis because they pose a threat to highway users as a result of their frequent reoc-
currence. In the third step, elements at risk, such as risk to road users, relative risk of failure,
likely effect on traffic, and likely repair costs, were considered in the vulnerability assessment.
Each cut slope was examined under these said elements at risk. Subsequently, a value rep-
resenting the sensitivity of each slope was assigned and considered as the vulnerability value.
Finally, a risk map for each cut slope was produced using the derived vulnerability and hazard
information. The map of the risky cut slopes may assist PLUS Expressways Berhad in
improving highway management.

Landslide hazard and risk maps are essential for hazard mitigation, risk management, and
effective land use planning. Chapter 13 presents a multihazard scenario-based landslide risk
maps for the Ringlet area located in Cameron Highlands, Malaysia. The main source of data is
a digital elevation model (DEM) produced from a high-resolution LiDAR data. In addition,
detailed land use maps, adequate landslide inventory data, and rainfall information were used
to implement the proposed method. First, the landslide susceptibility map was produced by the
logistic regression (LR) model with 12 landslide conditioning factors: altitude, slope, aspect,
curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness
index (TRI), distance from a river, distance from roads, distance from lineament, sediment
transport index, and geology. Next, landslide hazard maps were produced using five different
scenarios: (1) the average intensity of rainfall in any day in a year, (2) the abnormal intensity
of rainfall recorded in a day, (3) 5-year return period, (4) 10-year return period, and (5) 15-year
return period with average intensity of rainfall per day. Then, the landslide vulnerability map
was produced using an exposure-based method by utilizing the detailed land use map and
information from experts and previous works. Finally, five risk maps were produced for the
study area using the five hazard scenarios. The results indicated that the LR model could
predict the future landslides with an accuracy of 84.87%. The average annual economic risk
for landslides was MYR 5,981,379.00 in the study area.

The mapping of debris flow risk areas is an important concern because debris flows could
result in social losses in hazardous regions, especially in mountainous areas. However, debris
flow risk assessment through procedure-based modeling at a medium scale is complex because
of several reasons, such as the complex nature of the phenomenon, the inconsistency of local
conditioning factors, and the variability of modeling factors. A wide range of debris flow
modeling methods has been explored in literature. An effective modeling approach should
provide debris flow susceptibility zonation using only minimum data requirements. In
Chap. 14, distributed empirical models are used for medium-scale debris flow susceptibility
assessments with a light detection and ranging-derived digital elevation model. For debris flow
modeling, Flow-R (Flow path assessment of gravitational hazards at a Regional scale) is
applied for path assessment of debris flow at regional and medium scales. The Flow-R model
requires minimum data input and is flexible to use because of its simple user interface. The
second model, rapid mass movement simulation, is used to simulate the run-out of mass
movement on a 3D terrain. Although only a preliminary assessment of debris flow effects is
presented, the assessment can be useful for land planners and government agencies in their
modeling of debris flows and assessment of further effects. The procedure provided in this work
can also be replicated in other areas through detailed analyses based on available input data.

Chapter 15 presents a thorough review on rockfall susceptibility, hazard, and risk assessment
using different approaches. Rockfalls occur worldwide and annually cause considerable damage
to human life and properties. Therefore, comprehensive research is required to understand the
triggering and auxiliary elements of the hazards of rockfalls as well as to assess and identify
mitigation processes for these calamities. Such research can be used as a reference for managing
future rockfall disasters. Rockfall hazard has recently attracted significant attention and has
motivated numerous studies. Moreover, such studies have gained importance in various
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disciplines with the developments of remote sensing and geographical information system
technologies. Current geoinformation techniques have been used to gather information for
rockfall analyses. This chapter primarily explains the general principles of and themethodologies
for rockfall analyses, including rockfall types, causes, and mechanisms, as well as data sources,
modeling approaches, and light detection and ranging techniques for rockfall assessment.

Rockfall magnitude and frequency vary both spatially and temporally. Therefore, elimi-
nating such phenomenon is a challenge. Proper modeling and assessment can aid defining the
areas at risk thus remedial the effect of rockfall catastrophe. Chapter 16 describes the location
and rockfall characteristics of the study area. The materials used in this study also have been
described. Multicriteria method for rockfall source areas identification has been applied in this
research. Rockfall trajectories modeling and the velocity associated with them have been
explained. Raster modeling using geostatistical method has been applied in this research to
represent the spatial distribution of rockfall. Finally, spatial modeling with AHP method has
been performed in this study to produce rockfall hazard map. As a result, rockfall trajectories
and their characteristics were derived and rockfall hazard map for each scenario was obtained.
In addition, barrier location was suggested and its efficiency eliminating rockfall hazard was
demonstrated.

In general, this book presents the use of LiDAR in landslide assessments providing useful
information and recent findings which will be useful for researchers, graduate and postgraduate
students, and decision makers both in government and private agencies. This book describes the
main applications of landslides such as supervised/machine learning-based detection and
characterization of landslide scarps, spatial prediction of the landslide. It gives a detailed
discussion on factor optimization and effects of the spatial resolution of DEM on landslide
susceptibility mapping. This book also demonstrates identification of the source of debris flow
and its susceptibility assessment by LiDAR data. In addition, this book gives a space for
multiscenario landslide hazard assessment using airborne laser scanning data, landslide vul-
nerability, and risk assessment for multihazard scenarios. Finally, this book describes the
LiDAR techniques in rockfall hazard assessment in tropical regions. Many case studies pre-
sented in this book help decision makers to follow as guidelines for comprehensive landslide
hazard and risk assessment using very high-resolution laser scanning data. This book can be
helpful and valuable for new students/researchers to understand the concept and use of LiDAR
in many landslide applications. The contribution of each chapter of this book advances the
landslide studies, opens new areas, and generates new ideas for better landslide assessment.

I could not have produced this book without the efforts of many people who I would like to
thank here. Foremost among them my own research team members at Department of Civil
Engineering, Universiti Putra Malaysia, and authors from each of the chapters who worked
closely with me to meet the deadlines in developing the scope of each chapter. Thanks to all
my coauthors of individual chapters of this book.

The publication of this book would not have been possible without an excellent cooperation
from my colleagues at Springer Verlag, Germany. Special thanks to Dr. Nabil Khelifi for
motivating and encouraging me to write this book. At Springer Verlag, the efforts from
Reyhaneh Majidi are appreciable.

Finally, I would like to thank my family, wife Sheila, my two adorable kids, Krish Pradhan
and Darsh Pradhan, for their wonderful support and patience in allowing me to spare time to
complete this book.

Kuala Lumpur Biswajeet Pradhan
April 2017
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1Laser Scanning Systems in Landslide Studies

Biswajeet Pradhan and Maher Ibrahim Sameen

1.1 Introduction

Remote sensing techniques have undergone rapid and sig-
nificant improvements in the last few decades. The capa-
bility of new and enhanced remote sensing techniques to
acquire 3D spatial data and very high-resolution terrain
contours allows advanced and effective investigations of
landslide phenomena. Data from multi-sensors supple-
mented with airborne- and ground-based data collection
techniques provide useful information for model develop-
ment, validation, and simulation of natural phenomena
(Scaioni et al. 2014). Among these technologies, interfero-
metric synthetic aperture radar and light detection and
ranging (LiDAR) are two of the most frequently used
methods in landslide studies. Unlike traditional methods,
these techniques provide fast and exact mapping of geo-
morphological elements (Hervás et al. 2003; Ardizzone
et al. 2007; Fernández et al. 2008; Guzzetti et al. 2012;
Daehne and Corsini 2013; Roering et al. 2013). The
emergence of remote sensing (RS) and geographical infor-
mation systems (GISs) has facilitated the application and
extension of various algorithms and methods in landslide
studies. New insights into landslide research have been
obtained by determining and mitigating failures through
these techniques. Without RS and GIS, extensive field
work, which requires a considerable budget, is required to
identify landslide-prone locations (Van Westen et al. 2006,
2008).

LiDAR is an efficient remote sensing data acquisition
technique. Although the first airborne LiDAR system was
introduced at the end of the 1990s, its applications are
recently increasing, particularly in natural hazards (Lem-
mens 2011). The main uses of LiDAR in landslide appli-
cations are generating high-resolution digital elevation
models (DEMs) and investigating detailed geomorphic

features that control landslides. A high-resolution DEM can
be in raster grids, triangulated irregular networks (TINs), or
true 3D point clouds. An accurate DEM allows researchers
to derive numerous useful parameters, such as slope, flow
direction, curvature, and other terrain and hydrological
parameters. These parameters are widely used in landslide
investigations. The availability of high-resolution terrain
data obtained using LiDAR enables accurate landslide
mapping, which can be used in landslide susceptibility
mapping as well as in hazard and risk assessments. Recently,
the applications of LiDAR in landslide studies have signif-
icantly increased because of improved terrain data acquisi-
tion over large areas within a short period. Researchers have
also determined that LiDAR is more efficient than other
landslide mapping techniques because of the following
advantages:

• The capability of LiDAR signals to penetrate into vege-
tation foliage

• The independence of solar radiance, which can generate
accurate DEM in forested areas

• Mapping and classifying landslides in tropical regions

LiDAR produces high-resolution contours that allow
further extraction of geologic and geomorphic information.
Recent and advanced LiDAR data processing tools provide
new areas for automated and rapid landslide mapping.
Although several researchers claim that traditional landslide
mapping techniques, such as field mapping and photograph
interpretation, are more accurate than LiDAR-based meth-
ods, these techniques require expert knowledge and are
relatively time-consuming for large-scale applications
(Schulz 2004).

This chapter introduces the basic concepts of LiDAR and
its applications in landslide investigations. It presents laser
scanning techniques, including system components, mea-
surement theory, and the accuracy and resolution of LiDAR
data. Then, it provides information about basic LiDAR data
processing, such as filtering and geometric calibration.
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Subsequently, it discusses the main landslide conditioning
factors that can be derived from LiDAR. Afterward, several
landslide applications that require high-resolution DEM are
described. Finally, this chapter discusses the main implica-
tions of this review and summarizes the key points.

1.1.1 Laser Scanning Techniques

LiDAR technologies are well-known and efficient surveying
techniques. These technologies have been used in a wide
range of applications, and their advantages over pho-
togrammetry are well-documented. To fully present the
feasibility of LiDAR systems for landslide studies, this
section discusses LiDAR system components, measurement
theory, the accuracy and resolution of LiDAR measure-
ments, and the concept of direct georeferencing.

1.1.2 System Components

A laser is a tool that generates and releases a beam or a pulse
series of extremely collimated, comprehensible, directional,
and in-phase electromagnetic radiation. Laser systems can be
utilized to gather huge volumes of 3D information of a
terrain at an extremely quick recording rate. The develop-
ment of laser scanning occurs from two contexts, as guided
by the position of a sensor: a ground-based laser scanning
system, i.e., terrestrial (TLS) and mobile (MLS), and an
airborne-based laser scanning system (ALS). The elementary
notions and processing of ALS have been known since the
1990s.

An early application of ALS in Earth science was to
assess the topographical alterations of the Greenland ice
sheet (Krabill et al. 1995, 1999). This device was an
advancement of the electronic distance meter (EDM), which
was conceived during the late 1950s and the early 1960s,
and the total station, from which initial ALS developments
were based on (Dallaire 1974). ALS facilitates an extremely
precise measurement of distance. However, 1D measure-
ments are inadequate for gauging the 3D coordinates of
single points (X, Y, Z). Moreover, reflectors are frequently
required (Bromhead et al. 1988).

A typical LiDAR system consists of several components:
the platform; positioning hardware, e.g., global navigation
satellite system (GNSS) and inertial measurement unit
(IMU); 3D laser scanner(s); photographic/video recording
equipment; and computer and data storage (Williams et al.
2013). The platform collects and connects all the compo-
nents in a single system. Figure 1.1 shows the typical
components of ALS systems. The platform should be

precisely calibrated for the GNSS, IMU, scanner(s), and
video recording equipment to obtain accurate point clouds
and orthophotos. Meanwhile, positioning systems provide
the best possible position of an aircraft. In periods of poor
satellite coverage, the IMU manages the bulk of the posi-
tioning workload. In addition to augmenting the Global
Positioning System (GPS) in periods of poor satellite cov-
erage, the IMU must continually fill in the gaps between
subsequent GPS observations (Williams et al. 2013). Dif-
ferent types of laser scanners are available and suitable for
installation onboard an aircraft. A scanner records the point
clouds and terrain at certain point spacing. It also records the
intensity value, which is a measure of return signal strength
that can help distinguish objects of varying reflectivity. In
addition, the video recording equipment in LiDAR systems
provides colors to individual scan points in the point cloud
to represent real-world colors. This process is achieved by
mapping red, green, and blue values onto the georeferenced
point location.

LiDAR sensors can also be set up on terrestrial and
mobile platforms to provide extremely dense point clouds (at
present, TLS can capture one million points per second). The
components of MLS are similar to those of ALS and include
GPS, IMU, and laser scanner; in TLS, however, an IMU is
unnecessary (Fig. 1.2). The purpose of IMU in ALS and
MLS systems is to measure the accurate position, trajectory,
and orientation of a sensor to enable extensive data collec-
tion. The accuracy of point clouds collected using MLS and
ALS systems generally decreases in mountainous areas
because of laser footprint distortion or elongation. By con-
trast, TLS systems can capture highly accurate and dense
point clouds to provide a more appropriate view of steep
slopes, where most slope processes typically occur. Other
advantages of TLS systems over other systems include their
shorter ranges and static locations.

The high accuracy of TLS and MLS point clouds enables
simulation of single landslides at fine scales using physically
based models. These models typically simulate sliding
materials, source areas of landslides, and maximum runout
distances. In addition, they provide unique advantages to
rockfall modeling. Individual rocks can be modeled because
of their highly dense point clouds, and their behavior can be
simulated to support susceptibility, hazard, and risk assess-
ments. Furthermore, they provide practical solutions for
displacement detection. Active landslides can be effectively
monitored in areas where failing mass movements are highly
complex and the use of ALS systems is limited.

Although the high accuracy of TLS and MLS makes them
more efficient than ALS in many applications, including
local scale landslide modeling using physically based
approaches, ALS systems are highly effective in regional
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landslide risk assessments. The large coverage of point
clouds captured by ALS systems allows investigation of
regional landslides and efficiently manages land uses in a
focus area. The applications of ALS in landslides are fre-
quently concentrated on landslide inventory mapping, sus-
ceptibility mapping, as well as hazard and risk assessments.
By contrast, TLS and MLS are frequently used in
small-scale landslide modeling, displacement detection, and
to understand the geomorphological processes of landslides
in detail. These applications are further discussed and
illustrated in Sect. 1.4 of this chapter.

1.1.3 Measurement Theory

A laser scanner comprises a transmitter/receiver of the laser
beam and a scanning tool (Hanson 1999). The range can be
determined using two different approaches (Wehr and Lohr
1999): the pulse method and the phase method. The phase
method can determine the range more precisely than the

pulse method but is constrained because of its limited range
(Petrie and Toth 2008). The pulse method provides a better
range, and thus, is deployed in the majority of TLS and ALS
used in Earth surface observations, such as landslide-related
research (Baltsavias 1999; Wehr and Lohr 1999).

Ground-based and airborne-based sensors emit laser
pulses that are backscattered by different objects, such as
vegetation, ground surface, and man-made structures. In
addition, sensors log the returning signal. The flight time of a
laser pulse is used by pulsed laser scanners to calculate the
distance and mechanics, as well as the orientation, of the
laser beam in a well-outlined direction. Understanding this
line-of-sight direction and the stance (pitch, roll, and yaw) of
the instrument aids in ascertaining the position of a reflective
surface relative to the device. The range is gauged minus any
artificial reflector over a space that is equivalent to the spot
dimension (beam width projected on the topography) of the
laser, which increases as the distance is extended because of
laser beam divergence (Petrie and Toth 2008). The absolute
placement of an ALS sensor is outlined using GPS, and its

Fig. 1.1 Components of a typical airborne LiDAR system
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attitude is logged via an inertial mechanism. Finally, the
point cloud coordinates are projected with a precision of
approximately 15 cm through ground control points (Habib
2008).

1.1.4 Accuracy and Resolution

The usual precision of a laser instrument is ±1.5 cm within
maximum distances of approximately 800–1000 m (Manetti
and Steinmann 2007). However, instrumental precision is
typically subordinated in practical applications because of
adverse conditions, including parallel incident angles, poorly
reflecting or extremely uneven surfaces, poor climatic con-
ditions (rain, fog, and hot wind), exceedingly bright ambient
settings, and excessive range.

The resolution of a laser scanner is a factor that estab-
lishes the extent of the details that can be observed in a point
cloud. This resolution is divided into two: angular/spatial
and range (Lichti and Jamtsho 2006). Range resolution

refers to the capability of the rangefinder to address two
objects on the same line of sight. Angular resolution refers to
the capability of the rangefinder to address two objects on
adjacent lines of sight. This factor is ruled by the following
variables: sampling interval or user-defined point spacing
and laser beam width, which is contingent on the instrument
and the distance.

Apart from the position, the intensity of the reflected
signal is obtained. This aspect primarily relies on the type of
material (i.e., the roughness and color of the reflective sur-
face), beam wavelength, angle of incidence, and soil mois-
ture (Lichti 2007; Pesci et al. 2008).

The typical point density of ALS and TLS systems ranges
from 1 to 100 pts/m2, whereas that of TLS ranges from 50 to
10,000 pts/m2 (Jaboyedoff et al. 2012a). However, the point
density of laser scanning systems is controlled by several
factors, including beam wavelength, type of target materials,
soil moisture, and angle of incidence. Consequently, point
density can vary from one area to another for the same
system.

Fig. 1.2 Components of typical mobile and terrestrial LiDAR systems
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1.2 LiDAR Data Processing Methods

A LiDAR sensor can generate a huge volume of spatial data
with 3D coordinates within a few hours. LiDAR produces
irregularly distributed points based on system characteristics
and configurations. Raw LiDAR data are unorganized, and
thus, a GIS system is necessary to organize such huge
amounts of spatial data. After this process, data filtering can
be conducted to reconstruct bare-earth ground surfaces and
features, such as buildings and trees, and to visualize data.
This section describes the two most important LiDAR data
processing methods, namely filtering and geometric cali-
bration, to improve understanding of their concept and usage
in landslide applications.

1.2.1 LiDAR Digital Surface Model
(DSM) Filtering

LiDAR data filtering refers to the process of eliminating
non-ground points from LiDAR point clouds to obtain
ground points (Vosselman 2000). The concept of filtering is
based on the observation that a significant height difference
between two nearby points is unlikely to be caused by a
steep slope in the terrain. Instead, the higher point is possibly
not a ground point (Vosselman 2000). That is, the filtering
process is only performed to obtain a digital terrain model
(DTM) or a DEM from a DSM. In addition, LiDAR data
filtering is necessary to optimize data for analysis and to
decrease computational loads.

DSM point cloud filtering in landslide research is based
on the close-range photogrammetry technique and is not as
common as laser scanning data filtering (Zhan and Lai
2015). LiDAR-based DEM and DSM are widely used in
landslide investigations mainly because of their
high-resolution elevation data and rapid data acquisition
(Bui et al. 2016; Tien Bui et al. 2012; Dou et al. 2015).
However, a number of similarities exist between pho-
togrammetry and LiDAR point cloud data filtering methods.
A common filtering technique is iterative linear least squares
interpolation proposed by Kraus and Pfeifer (1998). This
algorithm removes tree measurements from airborne laser
scanning data and generates a DTM for a forest area. An
adaptive TIN method, which could handle surfaces with
discontinuities, was proposed by Axelsson (2000). Vossel-
man (2000) developed a slope-based filter whose concept
relied on the premise that the slope of a natural terrain would
be distinctly different from the slopes of non-terrain objects
(e.g., trees, buildings). This algorithm was enhanced by
Sithole and Vosselman (2001) by using a slope adaptive
filter. Lindenberger (1993) proposed a point cloud filtering
algorithm based on mathematical morphologic operators.
The limitation of this algorithm is its vulnerability to the size

of the structural element. Zhang et al. (2003) proposed a
method to remove objects using gradually increasing win-
dow sizes, which could effectively remove most non-ground
points. Recently, a new filtering algorithm based on artificial
neural networks (ANNs) was presented by Jahromi et al.
(2011) to extract bare-earth points from airborne laser
scanning data and efficiently generate a high-quality DTM
for an urban area. Zhan and Lai (2015) presented a novel
DSM filtering algorithm for landslide monitoring. This
algorithm, which was based on multi-constraints, was pro-
posed to solve the problems of vegetation interference and
noise points in DSM filtering for landslide monitoring.

1.2.2 Registration

The registration of point clouds is frequently a Euclidean
transformation process that combines translation and rotation
with respect to a reference point and a coordinate system.
Point clouds captured from different stations should be
properly registered before data analysis to ensure optimiza-
tion. The registration of LiDAR point clouds is typically
performed using three main methods: target-based,
feature-based, and point-to-point methods (Abellán et al.
2014). The first method uses a precise survey from differ-
ential GPS (DGPS) or a total station. This method is
time-consuming and tedious and requires additional equip-
ment, such as surveying instruments. Nevertheless,
researchers have tested this approach on landslide monitor-
ing and obtained satisfactory results (Abellán et al. 2014). In
the second method, features, such as power lines and
pipelines are usually recognized and used for registration.
These methods are frequently utilized in industrial applica-
tions and rarely in landslide studies mainly because complex
rock slopes seldom present distinctive geometric character-
istics. The point-to-point method is generally based on the
progressive minimization of the distance between corre-
sponding points in two overlapping point clouds. This
method is widely used in geoscience applications; however,
a high number of iterations may be required (Abellán et al.
2014). Efficient algorithms should be utilized in this method
to produce useful products that can be applied in landslide
investigations. Distortions in surface geometry may lead to
poor slope data.

1.2.3 Geometric and Radiometric Calibrations

The geometric calibration of LiDAR data aims to remove
systematic errors from point clouds. Such errors in LiDAR
data are primarily caused by biases in mounting parameters
related to system components (e.g., lever arm and boresight
angles) and biases in measured ranges and mirror angles
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(Zhang et al. 2013). The two main methods of systematic
error elimination are system driven (calibration) and data
driven (strip adjustment). Calibration methods are based on
the physical sensor model that relates the system parameters
to the ground coordinates of the LiDAR points. By contrast,
the data-driven approach mainly utilizes mathematical
models that relate LiDAR strips and the reference frame
(Zhang et al. 2015). The effects of systematic errors in
system parameters are typically modeled through an arbi-
trary transformation function between the laser strip and the
reference frame coordinate systems. In the study of Habib
et al. (2011), significant improvement in horizontal and
vertical accuracies was confirmed after removing the effect
of estimated biases in the system parameters.

The radiometric correction of the LiDAR data aims to
remove the effects of laser energy attenuation caused by
atmospheric effects and object surface backscattering (Yan
et al. 2012). Such correction can be performed using
empirical and physical approaches. An empirical approach
does not consider the physical properties of the laser
backscattering energy.

LiDAR intensity has been used to study the geomor-
phology and structure of volcanic surfaces and active land-
slide bodies (Fornaciai et al. 2010). Fornaciai et al. (2010)
reported that vegetation, air fall deposits, epiclastic sedi-
ments, and lava flow demonstrated distinctive LiDAR
intensity responses. Yan et al. (2012) indicated that the
radiometric correction of LiDAR intensity data could sig-
nificantly improve the accuracy of land cover classification.
Land cover data are highly necessary for landform classifi-
cation, which is an important GIS layer in landslide studies.
Wang et al. (2013) found that LiDAR intensity was extre-
mely useful in identifying landslide boundaries. From the
aforementioned literature review, radiometrically corrected
intensity data are expected to provide more accurate geo-
morphic features in landslide applications than raw intensity
data collected using LiDAR sensors.

1.3 Main LiDAR Data Products Used
for Landslide Modeling

The selection and mapping of an appropriate set of condi-
tioning factors associated with landslide events require a
priori knowledge of the main contributors to landslides. The
most common landslide conditioning factors that can be
derived from LiDAR-based DEM are altitude, slope, aspect,
profile curvature, plan curvature, topographic wetness index
(TWI), topographic roughness index (TRI), stream power
index (SPI), and sediment transport index (STI). The fol-
lowing subsections describe each of these conditioning
factors derived from LiDAR-based DEM.

1.3.1 Altitude

LiDAR is a technique used to extract very high-resolution
DEMs. The current accessibility of DEMs produced using
LiDAR sensors enables researchers to improve identification
and mapping of slope failures (Derron and Jaboyedoff 2010).
LiDAR has the significant advantage of being able to pen-
etrate vegetation canopies and produce valuable information
regarding topographic conditions (Slatton et al. 2007). This
capability makes LiDAR data distinct compared with other
sources, such as aerial photographs, in detecting slope failure
in forested regions. From the literature, LiDAR-derived
DEM is mostly used for the visual assessment of topo-
graphic surfaces (Haneberg et al. 2009) and the semiauto-
matic identification of landslide characteristics. Ardizzone
et al. (2007) reported an improvement in detecting landslide
locations using LiDAR-derived DEM compared with ana-
lyzing aerial photographs.

1.3.2 Slope

The slope is a measure of change in elevation. It is one of the
main landslide conditioning factors used in nearly every
landslide susceptibility research. The slope is an important
parameter in landslide studies because of its relationship
with the driving force of gravitation (Latif et al. 2012). In
general, slope angle has a positive linear relationship with
landslide occurrence. That is the vertical component of
gravity increases with slope degree. The slope can be cal-
culated from 3D grid data acquired using LiDAR or other
conventional methods. However, the slope can be accurately
estimated using certain mathematical algorithms because
LiDAR collects high-resolution elevation data that can be
represented in a grid format. Among popular methods, the
neighborhood algorithm is one of the techniques proposed to
calculate percent slope. This algorithm computes slope for
every cell in an elevation grid by analyzing each 3 � 3
neighborhood. Slope percentage can be converted into slope
degree afterward. The result is a grid of slope values that are
appropriate for various landslide applications. Figure 1.3
shows the main steps for slope calculation from LiDAR
point clouds (Tarboton 1997).

The single triangle shown in Fig. 1.3c is used to calculate
slope from an interpolated grid. Slope is represented by the
vector ðS1; S2Þ, where

S1 ¼ Z0 � Z1
d1

; ð1:1Þ

S2 ¼ Z1 � Z2
d2

; ð1:2Þ
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where Zi and di denote the elevations and distances between
pixels, as labeled in Fig. 1.3c. The magnitude and direction
of slope is then computed as follows:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22

q
; ð1:3Þ

r ¼ tan�1 S2
S1

; ð1:4Þ

where S is the magnitude of slope, r is the direction of slope,
and ðS1; S2Þ is a vector that represents the downward slope.

The effect of LiDAR post-spacing and DEM resolution
on mean slope estimation was analyzed by Chow and
Hodgson (2009). Their analysis indicated that the deviation
between mean slope and modeled mean slope decreased
with increasing fineness of posting density and DEM spatial
resolution. They found that the relationship of the mean
slope with varying cell sizes and post-spacing suggested a
linear and a logarithmic function, respectively, for all study
areas. Moreover, cell size had a more significant effect on the
mean slope than LiDAR posting density. In addition, their
study also suggested that interpolation methods and their
parameters significantly affected DEM generation, and sub-
sequently, other derivatives such as slope, aspect, and
curvature.

Chen et al. (2016) presented a study on the relationship
between slope angle and landslide size derived from limit
equilibrium simulations. Their results indicated that as slope
angle increased, sliding mass volume or potential slide size
decreased. Conversely, another study based on numerical
simulations conducted by Katz et al. (2014) suggested that
more material would disintegrate for a given material

strength in steeper slopes, and consequently, the produced
landslide would be larger. Such contradiction suggests that
numerous controls for slope angle influence the size of
landslides for a given material strength.

1.3.3 Aspect

Aspect (i.e., slope direction) identifies the downslope
direction of the maximum rate of change using eight
neighboring pixels (Toutin 2002). Aspect defines slope
direction, and subsequently, flow direction. It can affect the
physical and biotic features of a slope and can significantly
influence its microclimate. In some localities, patterns of soil
differences are related to variations in aspect. Slope aspect
controls the formation of landslides, such as lineaments,
rainfall, wind effects, and exposure to sunlight (Yalcin and
Bulut 2007; Pourghasemi et al. 2012). Consequently, aspect
indirectly influences landslide and has been used in numer-
ous landslide susceptibility mapping studies worldwide.
Aspect maps are generated based on the compass direction
that a surface faces at raster pixel locations. It is measured
clockwise from 0 (due north) to 360° (due north), thereby
coming full circle. Flat areas with no downslope direction
are given a value of −1. Figure 1.4b shows an example of an
aspect map derived from LiDAR-based DEM. In this
example, aspect values continue to increase, thereby indi-
cating that the compass direction calculated using the ESRI
algorithm (Burrough et al. 2015). In landslide studies,
however, an aspect map is generally classified into nine
classes: north, northeast, east, southeast, south, southwest,
west, northwest, and flat.

Fig. 1.3 Main steps for slope calculation from LiDAR point clouds. a An example of LiDAR point clouds, b interpolated grid, and c definition of
variables for calculating slope on a single facet
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Fig. 1.4 Examples of geomorphic parameters derived from LiDAR data. a Altitude, b slope aspect, c slope angle, and d curvature
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1.3.4 Curvature

In general, curvature, which is defined as the rate of change
in slope degree or aspect, has been reported to affect slope
stability. The characterization of slope morphology and flow
can be analyzed using a general curvature map (Nefeslioglu
et al. 2008). The plan curvature is described as the curvature
of a contour line formed by the intersection of a horizontal
plane with the surface. It influences the convergence and
divergence of flow across a surface. The profile curvature,
which is the vertical plane parallel to the slope direction,
affects the acceleration and deceleration of downslope flows,
and consequently, influences erosion and deposition (Kan-
nan et al. 2013; Kritikos and Davies 2015). In addition,
Fernandes et al. (2004) indicated that curvature could be
influenced by slope erosion processes, such as the conver-
gence or divergence of water during downhill flow. Fur-
thermore, curvature constitutes one of the landslide-related
factors that control landslide occurrence.

1.3.5 Hydrological Factors

In addition to terrain factors, landslides are controlled by
several hydrological factors, such as TWI, STI, and SPI.
TWI is defined as a steady state wetness index. It is com-
monly used to quantify topographic control on hydrological
processes and is a function of both slope and flow direction.
Moreover, TWI describes the effect of topography on the
location and size of saturated source areas of runoff gener-
ation and is another topographic factor within the runoff
model. TWI is expressed as follows:

TWI ¼ ln
As

b

� �
; ð1:5Þ

where As is the specific catchment area (m2/m), and b is a
sloped angle in degrees. In addition, TWI is an important
characteristic of DEM that indicates soil saturation.

STI, which reflects the erosive power of overland flow, is
derived by considering transport capacity limiting sediment
flux and catchment evolution erosion theories (Devkota et al.
2013; Pradhan and Kim 2014).

STI ¼ As

22:13

� �0:6 sin b
0:0896

� �1:3

ð1:6Þ

SPI, a measure of the erosion power of a stream, is also a
factor that contributes to stability within a study area (Conforti
et al. 2011; Regmi et al. 2014). SPI is expressed as follows:

SPI ¼ As � tan b: ð1:7Þ

1.4 LiDAR in Landslide Applications

High-resolution DEMs and DSMs derived from most
LiDAR systems provide several useful landslide applica-
tions. Common applications include landslide scarp identi-
fication (Ardizzone et al. 2007), landslide spatial prediction
(Ghuffar et al. 2013), landslide hazard and risk assessments,
detection of landslide movements, and simulation of debris
flow and rockfall (Lan et al. 2010). This section describes
the use of LiDAR in the aforementioned applications and
then discusses the advantages and disadvantages of LiDAR
systems over conventional photogrammetry.

An overview of landslide geometry is necessary to
understand the use of LiDAR in various landslide-related
applications. Figure 1.5 shows a block diagram of a
landslide (right) and a real landslide (left). The failed mass
starts from a depletion zone and is deposited in the accu-
mulation zone. The region adjacent to the highest part of
the failed materials is called the crown of the landslide.
The landslide scarp is the steep rupture surface between
the failed body and the terrain. The surface of rupture
identifies the interface at the base of the landslide where
the materials have slid. The landslide deposit ends with a
toe, which is the line (usually bent) between the accumu-
lated material and the untouched terrain. The tip is the
point of the landslide deposit that is farthest from the
crown.

LiDAR systems collect billions of points that can gen-
erate accurate 3D landslide models. These models open new
areas for landslide investigations. Accurate LiDAR data
facilitate accurate landslide conditioning factor mapping,
which allows automatic or semiautomatic detection, spatial
prediction, and detailed characterization of landslides. In
addition, landslide movements can be detected and analyzed
using multi-period LiDAR data. LiDAR data can also be
used effectively for debris flow and rockfall simulations. The
following subsections describe the use of LiDAR data in
various landslide applications.

1.4.1 Landslide Detection (Inventory Mapping)

Landslide inventories report the spatial distribution of
existing slope movements, including attribute information
about landslide typologies and their activity state (Canuti
et al. 2007). The most basic landslide detection method is
geomorphological field mapping (Yesilnacar and Topal
2005). This method requires expert knowledge and experi-
ence in landslides and the study area. Results can vary sig-
nificantly depending on the specialists who prepared the
map, knowledge of the study area, and the processes
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involved (van den Eeckhaut 2005). Other methods of land-
slide detection are mostly based on remote sensing tech-
niques. One of the common approaches for landslide
detection is the visual interpretation of aerial orthophotos.
Although this approach can produce accurate landslide
inventories, it requires expert knowledge and is
time-consuming (Pradhan 2013). In recent years, landslide
detection is frequently based on LiDAR technology
(Jaboyedoff et al. 2012a; Glenn et al. 2006). A DSM can be
created by removing vegetation and other objects from a
DTM (Schulz 2004). This feature, together with different
modifiable angles of shading, enables highly detailed map-
ping of landslides and other geomorphological features.

Several approaches are available for landslide detection
from LiDAR data and orthophotos. Figure 1.6 summarizes
the main steps used for different methods of landslide
detection. In general, landslide locations are identified from
LiDAR using three steps. First, LiDAR data are filtered and
interpolated to produce high-resolution DEM. Second, the
DEM is used to derive various geomorphological and
hydrological factors that are useful for landslide detection
and characterization. Finally, machine learning algorithms,
object-based image analysis, supervised classification
methods or any other feature extraction methods are used to
identify landslide locations from the derived factors. Land-
slide locations can also be identified from orthophotos. In
general, two types of approaches are used as follows: visual
interpretation and change analysis (Nichol and Wong 2005;
Lu et al. 2011).

Eeckhaut et al. (2007) investigated the use of LiDAR in
detecting old landslides in forested areas. A landslide
inventory map was created by applying the expert knowl-
edge of seven geomorphologists to LiDAR-derived

hillshade, slope, and contour line maps in a GIS environ-
ment. Their analysis showed that large-scale LiDAR-derived
maps could significantly improve field inventories of land-
slides with a subdued morphology in hilly regions. Schulz
(2004) detected landslides from LiDAR data. Landslide
deposits and scarps were mapped and classified based on the
certainty degree with which they were identified, which
depended on the continuity and strength of morphologic
features as expressed in LiDAR imagery. Moosavi et al.
(2014) evaluated pixel-based and object-oriented approaches
optimized using the Taguchi method for landslide inventory
mapping. Their study suggested that object-oriented meth-
ods outperformed the per-pixel-based methods.
Object-oriented approaches provide the shape and geometry
of the identified landslides. Recently, Pradhan et al. (2016)
proposed a fusion technique based on the wavelet transform
and Taguchi methods for automatic landslide detection from
LiDAR and very high-resolution satellite images. Wavelet
fusion was used to fuse LiDAR elevation data and Quick-
Bird images. Then, Taguchi optimization was applied to
select the optimal segmentation parameters of the
multi-resolution segmentation algorithm. The results indi-
cated that the proposed method was efficient in identifying
landslide locations in an urban environment in a tropical
region.

1.4.2 Landslide Susceptibility Modeling

Landslide susceptibility is defined as the proneness of a
terrain to generate slope failures (Yalcin 2008). It is typically
expressed cartographically and relies on a complex knowl-
edge of slope movements and their controlling factors

Fig. 1.5 Block diagram of a landslide (right) and a real shallow landslide (left). Photo credit www.uibk.ac.at
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(Ayalew et al. 2004). The main causes of slope failure are as
follows (de Blasio 2011):

• types of materials involved
• the geometry of materials
• distribution of weight along a slope
• soil moisture and precipitation
• external impulsive forces, such as earthquakes, waves,

and volcanic eruptions
• presence/absence of vegetation.

Landslide susceptibility is established by overlaying
landslide conditioning factors using the weight of each factor
determined via a regression model and landslide inventories
(Pourghasemi et al. 2013; Akgun and Erkan 2016). Terrain
factors (i.e., altitude, slope, aspect, curvature) and hydro-
logical factors (i.e., TWI, TRI, SPI, STI) are the main
landslide conditioning factors that can be derived from
LiDAR point clouds. LiDAR data also support the produc-
tion of accurate landslide inventories. The morphological
features of landslides (e.g., scarps, mobilized materials, foot)
are easy to delineate based on the hillshades of the produced
DEM. Furthermore, high-resolution DEMs and DSMs gen-
erated using LiDAR and orthophotos provide images of land
use, drainage networks, urban and rural roads, and vegeta-
tion structure and density.

Accurate and high-quality landslide susceptibility maps
can be produced using LiDAR data and sophisticated algo-
rithms. A high-resolution DEM of LiDAR allows research-
ers to derive high-resolution landslide conditioning factors,
and consequently, high-quality landslide susceptibility maps.
Figure 1.7 presents a comparison between LiDAR-based
(0.5 m) and ASTER-based (30 m) landslide susceptibility
maps produced using the same algorithm and landslide
conditioning factors. The LiDAR-based map shows fine
details of the landscape, which provide useful information
for efficient slope management. By contrast, no detail can be
observed in the susceptibility map produced using the
ASTER-based DEM. This result indicates the usefulness of
LiDAR data for landslide modeling at small catchments.

1.4.3 Detection and Characterization
of Landslides Movements

Several methods are available for measuring ground dis-
placements caused by landslide movements. Among the
basic methods are theodolite geodetic measurements (Bur-
ghaus et al. 2009), GPS (Zhang et al. 2008), and remote
sensing-based techniques. The first and second methods are
applicable to measuring and monitoring ground deformation
at the surface. However, with the recent availability of

Fig. 1.6 Overview flowchart of landslide detection methods using LiDAR data and orthophotos
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remote sensing techniques, such as LiDAR, performing
subsurface measurements has become an easy task, and
understanding of landslide behavior can be improved.

Investigation of active landslides can predict future
landslide behavior. Therefore, several studies have investi-
gated the movements of active landslides using
multi-temporal LiDAR data. A DSM produced from differ-
ent periods allows a change in detection of a landslide sur-
face. Several techniques can detect changes in geomorphic
surface. The commonly extracted parameters are landslide
scarp length and affected area. However, LiDAR data pro-
vide opportunities to extract the magnitude and direction of
complete 3D motion. An efficient algorithm, called range
flow, can yield fully automatic dense 3D motion vectors for
the entire time series of available LiDAR data (Ghuffar et al.
2013). In addition, adequate time series DSM data provide
deeper insight into the dynamics of a landslide.
High-resolution digital terrain data allow researchers to
derive dense 3D flow fields for tracking landslide

deformation. Furthermore, a 3D velocity field over a land-
slide surface can be simulated using multi-temporal LiDAR
data (Schwalbe and Maas 2009). Consequently, a
high-resolution DSM derived from dense point clouds pro-
vides a qualitative and quantitative method for measuring
surface change (geomorphic and anthropogenic changes).
These changes can then be directly associated with geo-
morphic processes and used to infer material dynamics and
effects of landslide movement.

One advantage of LiDAR over photogrammetry is that
vegetation can be eliminated via laser scanning and data
filtering for ground detection (Ghuffar et al. 2013). This
process allows producing accurate DTMs with high-quality
geometry, which is difficult to achieve using traditional
photogrammetry methods. The extraction of an accurate
DTM is important for precisely estimating the geomorpho-
logical parameters of active landslides. In addition,
full-waveform LiDAR can penetrate vegetation that covers
landslides, which can be limited in single-return LiDAR.

Fig. 1.7 Effects on the spatial resolution of DEM on landslide susceptibility maps
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Another advantage of LiDAR is its capability to set up air-
borne, mobile, and terrestrial platforms that can enhance
landslide investigations in flat urban and hilly/mountainous
areas. Terrestrial LiDAR is appropriate for steep cliffs and
rock faces because the scanner can be placed in front of it.
However, LiDAR may fail to detect shear processes in
fast-moving landslides. In such cases, other techniques, such
as time domain reflectometry, are suggested (Barendse and
Machan 2009).

1.4.4 Simulation of Debris Flow and Rockfall

Debris flows are extremely rapid, surging flows of unsorted,
saturated debris in predefined channels (Hungr et al. 2001).
Many debris flows form from a debris avalanche that starts
on a steep slope and enters a channel. The basic block dia-
gram of debris flow is shown in Fig. 1.8a.

The simulation of debris flow is a complex process
because of the variability of controlling factors and the
dynamic nature of this phenomenon (Takahashi 2014).
Detailed topography and channel materials are the main
critical factors. A LiDAR-based DEM provides major input
data to debris flow simulation models, including geomor-
phological parameters, such as slope, curvature, and aspect.
LiDAR data are also used to extract the potential source
areas of debris flow (Baumann et al. 2011). The identifica-
tion of debris flow source areas permits the susceptibility
analysis of debris flow, which can significantly reduce
negative effects on people and infrastructure.

A rock avalanche is the extremely rapid flow-like
movement of fragmented rocks from a large rock slide.
The initial acceleration is provided by cohesion loss and
joint surface roughness reduction. When a rock avalanche
mass overrides saturated the surficial soil, a rapid loading,

and material entrainment process occur to mobilize long
runout movement (Hungr and Evans 2004). The basic block
diagram of rockfall is provided in Fig. 1.8b.

1.5 Discussion and Conclusion

Laser scanning systems, including ALS, TLS, and MLS,
allow improvements in geological mapping and identification
of landslide scarps and displaced materials. They provide
automatic landslide detection, mapping, assessment, and
modeling. LiDAR products, such as very high-resolution
DEMs and slope angles, are extensively used to delineate the
geomorphological features of landslides, such as scraps,
mobilized materials, and foot. The accuracy of a DEM gen-
erated from LiDAR point clouds depends on various factors,
including system components, data processing techniques
(point clouds and interpolation methods), and signal–
target/surface interaction (i.e., backscatter signal strength,
laser incidence angle/geometry) (Al-Durgham et al. 2010). In
general, the accuracy of an airborne LiDAR-derived DEM is
comparable with DGPS-based contours, and an absolute
agreement of *6 cm has been reported in the literature
(Al-Durgham et al. 2010; McKean and Roering 2004). In
addition, LiDAR systems typically offer the advantage of
gathering data over a narrow vertical swath angle (less than
20 off nadir). They also do not suffer from topographic
shadowing. Moreover, LiDAR data are considerably easier to
process than synthetic aperture radar information. Mean-
while, TLS and MLS systems add finer details to landslide
investigations and allow modeling of individual landslides.
TLS is highly useful in modeling landslide mechanisms as
well as in delineating and estimating volume, whereas MLS
provides rapid corridor mapping, thereby allowing roadside
slope stability analysis and efficient rockfall simulations.

Fig. 1.8 Basic diagrams of debris flow and rockfall
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The applications of ALS in landslide mapping are
increasing with the advancement of these systems, particu-
larly their vertical and horizontal accuracies. Although the
main use of LiDAR point clouds is to generate a very
high-resolution DEM, several products can be derived from
terrain models, which greatly support landslide mapping and
modeling. ALS is highly useful in regional landslide map-
ping, but its use in rockfall simulations and small-scale
modeling is rare. Several studies have shown that LiDAR is
effective for landslide inventory mapping, and the process
can be automated, which reduces the time spent in the field
and the subjectivity of experts. Automatic methods have
been applied to produce landslide inventory maps using ALS
data. Common methods include unsupervised classification,
change detection, and object-based image analysis. The
results are generally satisfactory; however, the object-based
analysis is preferred over pixel-based methods mainly
because per-pixel methods generate outputs that present a
salt-and-pepper appearance and are mostly unverifiable on
the ground. In addition, object-based methods utilize addi-
tional features, such as landslide shape, geometry, and
contextual relationships between landslides and other
man-made features. Combining LiDAR-derived factors,
such as slope angle, slope aspect, drainage, curvature, and
geometric features improves landslide inventory mapping
and makes automatic landslide mapping possible. In addi-
tion, ALS point clouds are highly useful for identifying
debris flow sources and producing runout distance suscep-
tibility maps at regional and medium scales. Morphometric
features, such as slope, roughness, and curvature, derived
from very high-resolution DEMs are essential inputs in
debris flow studies. Moreover, a very high accuracy DEM
(0.5 m) from LiDAR with sophisticated analysis algorithms
and tools can model rockfall propagations. At the regional
scale, source areas are typically obtained by applying simple
thresholds for the slope angle parameter. Consequently, the
structural analysis performed on DEM can be used in
rockfall susceptibility and hazard assessments.

TLS and MLS systems are frequently utilized to inves-
tigate the detailed characteristics of small-scale landslide
modeling. TLS is effective for estimating volumes of
mobilized materials and for characterizing rock instabilities.
TLS is more efficient than ALS and MLS for such appli-
cation because rock instabilities are controlled by locally
planar structures. Highly dense point clouds captured by
TLS and MLS also allow researchers to obtain accurate
slope profiles and discontinuity set orientations. TLS enables
detailed mapping of channels and section profile evolution
for debris flows. In addition, a DEM with fine resolution
improves site-specific modeling and monitoring of active
landslides. Furthermore, mobile LiDAR is useful in pro-
ducing detailed 3D models for road corridors and road cuts.

It permits detailed structural analysis for rockfall simulation
and active area detection.

The usefulness of laser scanning systems increases with
their advancement. Improving modern surveying methods,
laser scanner accuracy, and hardware capabilities can
establish new landslide applications. The current limitations
of laser scanning systems should be overcome to improve
landslide studies. Handling huge amounts of data, improving
data collection methods at shadow areas caused by rugged
topography, enhancing data filtering, and optimizing LiDAR
data analysis are expected in the next decade. With these
improvements in laser scanning systems, landslide scarps
can be accurately delineated, a landslide can be monitored at
finer details, hazard and risk assessments can be performed
at few centimeter scales, and the modeling of debris flow and
rockfall can be improved.
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2A Supervised Object-Based Detection
of Landslides and Man-Made Slopes Using
Airborne Laser Scanning Data

Biswajeet Pradhan and Ali Alsaleh

2.1 Introduction

In recent years, airborne-derived products from light detec-
tion and ranging (LiDAR) measurements, such as
high-resolution digital elevation models (DEMs), slope,
curvature, shaded relief, and maps of landslides obtained
from beneath dense vegetation, are becoming increasingly
important for producing a detailed landslide inventory map
(Eeckhaut et al. 2007). LiDAR applications include the
construction of DEMs and shaded relief maps, detection of
historical landslides under forested area, creation of topo-
graphic contours, tracking of multitemporal digital terrain
model (DTM) of landslides, hydrological modeling, land-
form and/or soil classification, and understanding fine-scale
landslide patterns (McKean and Roering 2004). The rapid-
ness of LiDAR technology in landslide mapping of terrains
through quantitative or visual analysis provides several
advantages.

Landslide inventory maps provide baseline information
of landslide types, location, distribution, and boundaries in
landslide-prone areas. In addition, landslide inventory pro-
vides information on displacement and slope measurements
that affect a failure (Galli et al. 2008). Moreover, landslide
inventories are significantly useful for various purposes,
such as recording of landslide magnitude, implementing the
initial stage for landslide susceptibility, and hazard and risk
assessments.

Object-based image analysis (OBIA) is a well-known
technique resulting from the recent advances in computer
vision and machine intelligence, with the main purpose of

automatically extracting both man-made and natural objects
from remote sensing images (Akcay and Aksoy 2008).
OBIA, in which the information content of an object is used
to classify a landscape, is a step toward replicating human
interpretation process (Navulur 2006). In addition, OBIA
can detect landslides accurately and meaningfully by inte-
grating contextual information to image analysis (Martha
2011), which reduces the time and cost for producing a
decent landslide inventory map, especially in large areas.
Several techniques have been proposed for landslide map-
ping, such as field observation and aerial photointerpreta-
tion; however, these techniques have some limitations, such
as lack of proper resolution for aerial photographs required
for the mapping of small-scale landslides caused by mor-
phologic feature obscuration by thick vegetation cover,
time-consuming, and difficulties in field mapping (Gorum
et al. 2011). Remote sensing data and methods have been
proven efficient in landslide mapping because of their wide
area coverage, relatively cheap cost, and remarkably
high-resolution data for landslide mapping, in which even
minor landslides can be mapped easily. Landslide inventory
maps resulting from the application of OBIA techniques can
be easily converted to GIS data, which is considered as an
initial stage for a more advance analysis, such as suscepti-
bility, and hazard and risk analysis.

Landslides can be triggered by various factors. These
factors can be man-made (such as mineral mining, road
cutting, and urbanization) or natural (e.g., extreme rainfall
events and earthquakes (Zêzere et al. 1999). However, in
tropical areas, a rapid and accurate method for landslide
mapping is required because of the rapid growth of vege-
tation that covers the land surface characteristics in those
areas. Furthermore, several cut slopes are generally created
to mitigate the risk of land failure for areas that have high
probability to fail because of the frequent occurrence of
landslides. These requirements create new challenges for
landslide identification and mapping in these areas. Thus,
new methods should be developed for automatic landslide
detection to produce high-quality landslide inventory map.
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2.2 Study Area and Data

2.2.1 Location of Study Area

Taman Ringlet is the first town along the Cameron High-
lands stretched from Tapah, Cameron Highlands, Peninsular
Malaysia. This town is a small hill that is well known for tea
and strawberry farming. The town is located at an altitude of
1140 m above the sea level. Geographically, Taman Ringlet
is located at latitude 04° 24′ 45″N and longitude 101° 23′
30″E.

Three different subsets were selected for analysis, as
shown in Fig. 2.1. One of the subsets was used to develop
the methodology of landslide detection, whereas the other
two were used to test the proposed method in other areas.
The process of selecting subset locations was carefully
implemented, with each subset having the same land cover
classes but with different coverage percentage. Figure 2.1
shows that the training site and Testing Site 1 have more
urban coverage compared to subset Testing Site 2, where
thick vegetation covers almost the entire area.

2.2.2 LiDAR Data

Study and data collection was implemented over Ringlet and
nearby surrounding area, which covered a total area of
25 km2. The LiDAR data were recorded for the entire
25 km2 with a flight height of 1510 m. Data were obtained
on January 15, 2015. Data capturing performed well with
eight points per square m and gave a pulse rate frequency of
25,000 Hz. Furthermore, the captured data were within the
root-mean-square of 0.15 and 0.3 in the vertical and hori-
zontal axes, respectively; thus, the accuracy of the captured
data was reasonable. Along with LiDAR point clouds,
orthophotos were also collected by the same system, as
shown in Fig. 2.2.

2.2.3 Geological Characteristics
of the Study Area

Cameron Highlands District is located in the eastern part of
the main range, which is composed of granites (Bignel and

Fig. 2.1 Geographic location of the study area
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Snelling 1977). However, scattered outliers (roof pendants)
of metasediments can be seen clearly in Fig. 2.3. Bignel and
Snelling (1977) classified the granites of Cameron Highlands
District as megacrystic biotite granite. Cobbing et al. (1992)
mentioned that the associated microgranite and some of the
granites may be mineralized and may contain muscovite.
Furthermore, Chow et al. (2003) stated that metasediments
consist of phyllite, schist, limestone, and slate. They also
stated that minor intercalations of volcanic rocks and sand-
stones were found. Figure 2.3 shows the geological map of
the study area and its surrounding areas. Post-Triassic–
Mesozoic granites comprise most of the granite rocks,
whereas a few are patches of metamorphic rocks that are
mostly composed of Silurian–Ordovician schist, phyllite,
limestone, and sandstone. As for the soil type, steep land soil
covers the entire scene.

2.3 Methodology

Figure 2.4 shows the overall flowchart of the methodology
implemented in this study. High-resolution LiDAR data
with 1-m spatial resolution were used as a main data along
with aerial photographs covering the Ringlet and its sur-
rounding regions. For the ancillary data, a landslide
inventory map showing the location of historical landslides
was used. The overall methodology comprises three main
phases: The first phase is the pre-processing and prepara-
tion of data; the second phase is image segmentation and
object creation; and the final phase is image classification,
and the detection of landslides and man-made slopes. The
third step also includes result validation using a landslide
inventory map created from field investigations based on
site visits.

Fig. 2.2 Aerial photograph of the training site
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Fig. 2.3 Geological
characteristic maps of the entire
study area

Fig. 2.4 Overall methodology
flowchart
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2.3.1 Data Pre-processing and Preparation
of Landslide Factors

Calibrated raw LiDAR data are typically processed into
flight lines of 3D points and saved in LASer (LAS) format.
The first step of LiDAR data pre-processing is a visual
review of the flight lines to inspect the breaks or gaps
between or within flight lines (Chen et al. 2004). Afterward,
LiDAR data were validated with several control points.
These data were obtained from the field to ensure accurate
collection. Typically, these known features are in open areas
free of vegetation, such as airport runways, roads, and tar-
geted survey points. Some systematic errors can be corrected
by additional bore sighting and calibration; however, if the
digital data are inaccurate or corrupted, the mission may
have to be repeated (Chen et al. 2004). Basically, the two
former steps should be done before the acquisition team
leaves the field. If errors are discovered at this stage, the
system can be redeployed for another mission. After the
LiDAR data were reviewed and a few reference points were
validated, noise points were then filtered out; these noises
could be of an extremely high or low value with unrealistic
elevation values or with unexpected values in the project
area (Fang and Huang 2004). After noise removal, layer
extraction was done by attributing all the remaining points
into layers using the multiple return system (Hodgson et al.
2005).

Subsequently, landslide conditioning factors (i.e., digital
surface model (DSM), DTM, curvature, slope, hill shade,
and altitude) were prepared. This process starts with the
conversion of the LAS format to raster using ArcMap soft-
ware by applying the Triangular Irregular Network (TIN)-
based interpolation to create the DSM layer (Fig. 2.5a) with
a spatial resolution of 1 m. Next, DEM layer (Fig. 2.5b) was
generated by filtering out the point cloud into ground and
non-ground points using the former interpolation technique.
The 3D spatial analysis tool in ArcMap software was used to
extract slope, curvature, hill shade, and altitude layers
(Fig. 2.5c–f, respectively) from the DSM and DEM layers.
Evidently, slope is the principal factor affecting landslide
occurrences (Pradhan and Lee 2010). Slope is considered as
an important factor for land stability because of its direct
impact on landslide phenomenology (Martha et al. 2011).
That is, a steeper slope means higher risk of landslide caused
by gravity-induced high shear (Long 2008). The hill-shade
map shows a good image and movement of the terrain,
which supports landslide mapping (Olaya 2009). Curvature
layer defines the convex/concave character of the surface.
Curvature values are calculated as positive, negative, and
zero values, which refers to concavity, convexity, and flat-
tening ground surface, respectively (Pradhan and Lee 2010).
Plan curvature is considered important, because it reliably

indicates convergence and divergence of slope surfaces in
depletion (concave forms of the landslide crowns, tension
cracks and depressions, and zones of local water accumu-
lation) and accumulation zones (convex forms of the land-
slide foot and toe; (Ohlmacher 2007).

2.3.2 Image Segmentation

Before classifying a feature of interest, such as landslides,
delineating image objects that separately or aggregately
discriminate a specific feature (i.e., trees, buildings, and
parcels of land) is important. This process is called image
segmentation, which divides an image into objects or regions
based on the homogeneity of pixel values (Martha 2011).
The precision and quality of segmentation have a direct
impact on the accuracy of the generated classification map
(Laliberte et al. 2004).

This research analysis was conducted in eCognition
software. Several types of algorithms can be found for the
purpose of image segmentation, with multiresolution, quad
tree, and chessboard being the most efficient ones (Definiens
2007). These algorithms provide an effective application for
segmentation and perform good accuracy results.

Multiresolution algorithm, which belongs to the
region-based algorithm category, was utilized in this study
for segmentation (Möller et al. 2007). This algorithm per-
forms various steps, which is initiated with one pixel and
continues until all the criteria specified by the user are
covered (Benz et al. 2004). Multiresolution segmentation
algorithm uses three parameters: scale, shape, and com-
pactness. Selecting the value of these three parameters
should be carefully implemented to achieve meaningful
classification results (Gibril et al. 2016). In this study, a
trial-and-error approach was used to select the parameters,
and evaluation was based on visual interpretation.

2.3.3 Classification

Image segmentation was also examined visually. The soft-
ware calculated different parameters for each object,
including the mean of slope, curvature, DEM, brightness,
and density, as well as geometrical parameters, such as shape
index, texture, length/width, area, and compactness. Each of
these parameters was later used to classify an image object
into several classes using supervised object-based classifi-
cation approach.

2.3.3.1 Classifier
Classifier algorithm allows analysts to apply
machine-learning functions in a two-step process. First, a

2 A Supervised Object-Based Detection of Landslides … 27



classifier is trained using the classified domain objects as
training samples. The trained classifier was stored as a
string variable in the configuration settings. Second, the
trained classifier was applied to the domain, classifying the
image objects according to the trained parameters. Classi-
fication accuracy ensures the proper selection of the sam-
pling method (Chen et al. 2014). In this study, training
samples were selected randomly and distributed fairly over
the entire study area, in which 60% of the samples were

used for training purpose and 40% were used for testing
the result.

Generally, five different algorithms [i.e., Bayes, k-nearest
neighbor (k-NN), decision tree (DT), random forest (RF),
and support vector machine (SVM)] can be applied to the
classifier algorithm. Each of the aforementioned algorithms
is best suited for a specific purpose. In this study, these
algorithms were tested to identify the optimum algorithm for
landslide and cut slope detection.

Fig. 2.5 Landslide conditioning
factors: a DSM; b DEM; c slope;
d curvature; e altitude; and f hill
shade
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2.3.3.2 Bayes
Conditional independence assumption is a machine-learning
classification system derived from Bayes’ theorem, which
strongly supports the assumption of the independence
between features (Soria et al. 2011). One advantage of this
classifier is the simplicity of its construction, which does not
need any complicated estimation schemes of iterative

parameters (Wu et al. 2008). In addition, Naive Bayes
(NB) classifier is unaffected by noise or irrelevant attributes.
Numerous successful experiments and studies of this clas-
sifier have been conducted in the literature (Xie et al. 2005).

Given an observation consisting of k-attributes xi, i = 1,
2…, K (xi is a landslide conditioning factor), and yj,
j = landslide, man-made slopes are the output class. NB

Fig. 2.5 (continued)
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estimates the probability P(yj/xi) for all possible output class.
The class can be predicted depending on the largest posterior
probability using Eq. (2.1).

yNB ¼ arg maxP yj
� �

yi 2 ½landslide; non-landslide�
Yn
i¼1

Pðxi=yjÞ ð2:1Þ

The prior probability P(yj) can be estimated using the
proportion of the observations with output class yj in the

training dataset. Conditional probability is calculated using
Eq. (2.2).

p
xi
yj

� �
¼ 1ffiffiffiffiffiffi

2p
p

d
e�ðxi�lÞ

2=2d2 ; ð2:2Þ

where µ is mean, and d is standard deviation of xi.
The Bayes classifier has a simple design and assumptions

and was applied successfully in many practical situations.

Fig. 2.5 (continued)
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The basic assumption of this classifier (conditional inde-
pendence) is rarely true in real-world applications (Zhang
2004). Caruana and Niculescu-Mizil (2006) applied a com-
prehensive comparison with other classification methods,
which showed a better performance compared with other
approaches (e.g., boosted tree). Friedman et al. (1997) stated
that Bayes classifier requires only a small number of training
data to evaluate the necessary classification parameters,
which is considered an advantage.

2.3.3.3 k-NN
k-NN is one of the simplest algorithms (Mitchell 1997);
k-NN classifies pixel instance x containing xi coordinates
(including an n-dimensional input space x = (x1, x2, …, xn)|
x ε Rn, where dimensions represent the values of the con-
ditioning factors related to that particular pixel) by class
values cj of the k-closest neighboring pixels xr surrounding
x (cj is previously assigned in the training set by a practi-
tioner as fc(xr)). The nearest neighbors are defined in terms
of Euclidean distance d(x, xr). Thus, the classifier initially
calculates the distances to k-neighbors for each x instance in
the training set. Subsequently, a simple voting system
assigns cj class value (landslide class) to that particular pixel
by class, which predominates the neighboring instances
(Eq. 2.3), or alternatively assigns its mean value to the pixel
if the data are ordinal numerical [Eq. (2.4); Fig. 2.6].

f 0c  arg max
Xk
i¼1

f d x; xrð Þ; fc xrð Þð Þ;
8 x ^ xrð Þ 2 nominal data type

ð2:3Þ

f 0c  arg max

Pk
i¼1 fc xrð Þ
k

; 8 x ^ xrð Þ 2 ordinal data type

ð2:4Þ
Typically, k-NN does need conventional training/testing

procedures; f 0c is simply calculated based on the remaining
(testing) part of the dataset, which is similar with the training
mode (Varmuza and Filzmoser 2016). The number of
neighbors is necessarily an odd number (k = 1, 3, 5, 7…) to
avoid even votes. Closer neighbors tend to have a greater
impact; thus, it is further desirable to ponder the proximity of
each neighbor, thereby upgrading to weighted k-NN
(Mitchell 1997). Thus, the algorithm becomes global
(Sheppard’s method) but requires sorting and weighting of
distances per each pixel element (and each conditioning
factor is assigned to it) in the training set, resulting in a
hardware-demanding and time-consuming procedure.

Therefore, k-NN classifier can be biased if all, relevant
and irrelevant, conditioning factors are fed together to the
algorithm because it builds a weighted or regular k-NN
relation per each conditioning factor, thus misleading the
classification. In other words, k-NN is extremely sensitive to

Fig. 2.6 k-NN classification
principle. Unclassified instance
(?) is classified by the majority of
neighbors into landslide (circle)
or non-landslide (square)
instance. Note that for k = 3, the
instance is classified as landslide;
for k = 4, the instance remains
unclassified (2:2 even votes); and
for k = 5, the instance is classified
as non-landslide
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the relevance of the conditioning factor with landslide
occurrence; thus, a strict attribute selection should be per-
formed prior to the analysis. Alternatively, Euclidean dis-
tance axis can be stretched in the case of weighted k-NN, so
different conditioning factors will have different weights
according to their relevance. Nonetheless, this process does
not solve the computational demands of this algorithm,
especially when mixed data types are present, which
results in a double procedure because of varied distance
calculations.

Nevertheless, the distances are the classification criteria;
thus, k-NN algorithm is straightforward and does not require
a true black-box model. Furthermore, the algorithm can
originate from a remarkably sparse data that are randomly
sampled throughout the training set, which are sometimes
convenient but are of little relevance to the concept of
landslide assessment and prediction of the spatial landslide
distribution. k-NN classifier is also convenient for experi-
menting because it only needs one parameter, which is the
number of k-neighbors k, to be optimized.

2.3.3.4 SVM
Support vector machine (SVM) is a supervised learning
method that analyzes data and recognizes patterns. In other
words, given a labeled training data (supervised learning),
the algorithm outputs an optimal hyperplane that categorizes
new samples (Vapnik and Vapnik 1998). SVM classifies the
original entry space into a more detailed feature space using
training samples. Thereafter, the ideal hyperplane within this
feature space is assigned by doubling the class boundary
margins (Abe 2005). The nearest training samples to the
ideal hyperplane are called support vectors. After deter-
mining the decision surface, it will be used to classify new
data. Consider a training dataset of instance-labeled pairs (xi,
yi) with xi 2 Rn, yi 2 (1, −1), and i = 1… m. In this study of
landslide and man-made cut slope detection, x is a vector of
entry space, which includes slope, curvature, hill shade, soil
type, distance to road, and altitude.

The two classes (1, −1) stand for the pixels of landslide
and man-made slope, respectively. Finding the ideal hyper-
plane separation that discriminates the two classes from the
set of training data is the aim of SVM classification. In case
of linear data separation, a separating hyperplane can be
defined as follows:

yi w � xiþ bð Þ� 1� di; ð2:5Þ
where w is a coefficient vector that determines the orienta-
tion of the hyperplane in the feature space, b is the offset of

the hyperplane from the origin, and di is the positive slack
variables (Cortes and Vapnik 1995).

Determining an optimal hyperplane leads to solving the
following optimization problem using Lagrangian multipli-
ers (Samui 2008):

minimize
Xn
i¼1

ai � 1
2

Xn
i¼1

Xn
j¼1

aiajyiyj xixj
� � ð2:6Þ

subjected to
Xn
i¼1

aiyi ¼ 0; 0� aj�C; ð2:7Þ

where ai are Lagrange multipliers, C is the penalty, and the
slack variables di allow the violation of penalized constraint.

The decision function, which is used to classify new data,
can then be written as

g xð Þ ¼ sign
Xn
i¼1

yiaixiþ b

 !
: ð2:8Þ

In some cases, where determining the separating hyper-
plane is impossible through the linear kernel function, data
entry can be transferred to a high-dimensional feature space
using a few nonlinear kernel equations. The classification
decision equation is then written as

g xð Þ ¼ sign
Xn
i¼1

yiaikðxixjÞþ b

 !
; ð2:9Þ

where k xixj
� �

is the kernel function.

2.3.3.5 DT
Decision tree (DT) is a nonparametric supervised learning
method that is usually used for data mining. In this method, a
series of decisions are made to segment the data into
homogeneous subgroups. DT model is more likely to look
like a tree with several branches. In some cases, DT can be
remarkably complex with the involvement of a large number
of splits and nodes. DT aims to build a model that can
estimate the value of a target variable depending on several
input variables regarded as training samples. The tree model
can be learned by breaking the main set into subsets
depending on an attribute value test. Thereafter, this opera-
tion is repeated for each derived subset in a repetitive
manner called recursive partitioning (Last et al. 2002). Once
the subset of all nodes has the same value as the target
variable, or when the breaking operation does not add any
more value to the predictions, the recursion step is
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considered complete. The main objective of using a
tree-building algorithm is to determine a set of if-then logical
or split conditions.

Important DT Parameters
The minimum number of samples needed per node that are
defined by the parameter is called Min sample count. Finding
the optimum-sized tree can be challenging, because the pre-
diction of a tree with a few splits may be inaccurate. Con-
versely, a tree with a multitude splits will add unnecessary
complications to the analysis operation. Cross-validation can
be performed to address this issue by setting cross-validation
folds using eCognition parameters. In this process, comput-
ing for the classification tree is done by learning the samples
and then evaluating the prediction accuracy by testing these
samples. Cross-validation gives a poor indication in
cases where the test sample cost is more than the learning
sample cost and a good indication in instances with a
different-sized tree.

2.3.3.6 RF
Random forest (RF) is a machine-learning algorithm used
for the purpose of classification and regression, as proposed
by (Breiman 2001). This supervised method was success-
fully applied in several areas and domains. Remote sensing
field is one of the major domains and has been applied in
landslide detection (Chen et al. 2014), urban trees (Puissant
et al. 2014), agricultural soil mapping (Grimm et al. 2008),
and biomass estimation (Mutanga et al. 2012). RF is a
multiple DT classifier based on classification and regression
tree [CART; (Breiman et al. 1984)]. This method imple-
ments a bootstrap sampling for each DT, which enables the
estimate calculation of errors to be based on the remaining
instances, which is known as “out-of-bag” (OOB). RF
applies a different process to determine the best split
threshold, in comparison with CART. RF is considered as a
random subset of the original set of the feature, whereas
CART considers all variables at each node. Users can esti-
mate the variables per the number of node by using the
square root of the total variable number. Two mechanisms,
sampling and the use of random variables for each node,
generate significantly different uncorrelated trees. Further-
more, having a relatively large number of trees is necessary
to obtain the full variability of the training data, which gives
good classification performance with high accuracy. The
final step is assigning a feature into a class by considering
the votes of all the trees in the forest. The class will then be
assigned based on majority voting. The RF package (Liaw
and Wiener 2002) for the open-source statistical language R
(R Development Core Team 2013) was used for all experi-
ments in this study.

Random forest (RF) has several advantages. First, RF is a
nonparametric method; thus, the values of variables are not
required to follow a particular statistical distribution. Sec-
ond, it is insensitive to overfitting and noise. Furthermore,
RF is relatively fast compared with other techniques, such as
the boosted method (Breiman 2001). The calculation time
for training RF is defined by Eq. (2.10).

cT
ffiffiffiffiffiffiffiffi
MN
p

logN; ð2:10Þ
where c is a constant dependent of data complexity (i.e.,
small or large dataset), T is the number of tree, M is the
number of variables, and N is the number of instances
(Breiman 2003).

When RF and SVM, whose complexities vary between
N2 (when c is small) and N3 (when c is large), are compared
(Bottou and Lin 2007), RF will give a better adaption for
larger datasets. Also, RF requires less tuning (Rodriguez-
Galiano et al. 2012) and can implement the actual measures
of variables, which can be estimated by alternating the value
of variables on the OOB sample and calculating the differ-
ence in OOB errors before and after the alternation process.
Those measures are used to analyze and interpret the clas-
sification (Rodriguez-Galiano et al. 2012) and define the
type of sensor (Guo et al. 2011). Otherwise, defining the
scale of segmentation (Duro et al. 2012) is more suitable for
identifying a particular geographic object.

2.3.3.7 Landslide and Cut Slope Detection
The supervised landslide detection and cut slope detection
were done in two successive steps. The first step was training
the classifier with an adequate number of samples. The
samples were selected randomly based on landslide inven-
tory data. In this study, 60% of the samples were selected for
training the classifier for the classes: landslide, cut slope, and
non-landslide. These samples were examined based on the
aerial photographs, slope, and hill-shade layer of the study
area to ensure that each sample was selected accurately. The
classifiers were then trained using these samples. In the
second step, in each classifier method, several user-defined
parameters should be carefully selected. In this study, the
user-defined parameters were selected based on a
trial-and-error approach. Table 2.1 shows the classifiers with
their user-defined parameters that were selected for super-
vised landslide detection.

2.3.3.8 Validation
The efficiency and quality of the presented methodology for
each study and research must be properly examined and
tested, which can be achieved by a proper validation tech-
nique. In this study, the validation was done in three steps:
The first step is to examine the classification results visually;
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the second step is to transfer the methodology to a different
subset of the study area and examine the ability of the
method to detect landslides and cut slopes; and the final step
is field validation, which is a site visit to the field, and is
necessary to confirm the location and boundary of few
landslides detected by the methodology presented in this
study.

Visual Interpretation
In the first validation step, where the results of each classifier
are examined visually, some classifiers (e.g., Bayes) pro-
duced results with high level of uncertainty and misclassi-
fication, thereby making visual interpretation useful for the
rejection of the result of such classifier. In addition, a few
classifiers have numerous user-defined parameters (e.g., DT
and RF), which need to be fine-tuned; visual interpretation is
considerably useful for this purpose.

Transferring to Testing Subset
The efficiency and quality of the presented methodology
should be properly examined and tested. In this research, the
study area was divided into three different subsets, and the
same methodology was replicated on the testing sites to
examine its validity and accuracy. Dividing the study area
into three different subsets was implemented carefully. The

first subset (Fig. 2.7a) has the smallest land area (2 km2) and
was used to develop the method. The first subset was easy to
process and interpret because of its small size. Moreover, the
training subset has various types of land-use classes (e.g.,
landslides, cut slopes, vegetation, and urbanization) that are
fairly distributed over the entire study area, thereby making
it a challenging task during the development of the
methodology. The other two subsets, which have a larger
land area of 4 km2, were used to test the proposed method.
The first testing subset (Fig. 2.7b) is considerably similar to
the training subset but larger in size. Conversely, the second
subset (Fig. 2.7c) has different distribution of land-use
classes; the vegetation covers almost 85% of the entire area.

Field Validation
Multiple field visits were conducted using Global Position-
ing System (GPS) devices to examine the location and the
boundary of detected landslides. Documenting these land-
slides in the field was challenging, because most of the
landslides are in private farms, and other landslides are
within thick-vegetated forests. Only landslides parallel to the
road or in open areas were well documented through mul-
tiple field inspections. Most of the landslides were covered
by vegetation and became invisible because of the rapid
growth of vegetation in tropical areas, thereby posing a new

Table 2.1 Selected value of
each parameter for each
classification algorithm used

Classifier Parameter Selected value

Bayes NA NA

k-NN K 1

SVM Kernel type Linear

C 1

DT Depth 0

Min sample count 0

Use of surrogates Yes

Max categories 16

Cross-validation folds 3

Use of 1 standard error (SE) rule No

Truncate pruned tree Yes

RF Depth 0

Min sample count 0

Use of surrogates Yes

Max categories 16

Active variables 0

Max tree number 50

Forest accuracy 0.01

Termination criteria type Both
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challenge for documentation. Figure 2.8 shows some
examples of landslides from the study area of Ringlet.

Accuracy Assessment
Accuracy assessment is based on the comparison of super-
vised object-based classification result with an actual land-
slide inventory map. Actual landslide inventory data are
generally derived from ground truth data, ground reference
data, or other dependable datasets. Performing accuracy
assessment of the features detected through remote sensing
images is highly pertinent (Lillesand et al. 2004).

Ground truth information (or reference data source)
consists of gathered observation about features and phe-
nomena that are captured by data. In terms of validation,
ground truth information is used for the accuracy assessment
of landslide inventory map. Land cover maps from remotely
sensed data have minor practical value without accuracy
assessment. Accuracy assessment aims to evaluate the pat-
tern classification landslide location map. In addition, this
assessment reports the importance of classification schemes,
so other researchers can easily interpret and apply them.
Accuracy assessment involves two steps:

Fig. 2.7 Subsets of the study area
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1. Collection of ground truth data. Ground truth data are
independent from the training data that have been used in
the process of image classification. Based on the
methodology, ground truth data are collected in specific
locations to be found in remotely sensed data. Sources of

ground truth data consist of high-spatial resolution
remotely sensed data, such as aerial photography, a
high-resolution satellite imagery (including Ikonos,
Quick-bird, and Worldview2), or a field survey mea-
surement using GPS.

Fig. 2.8 Photographs taken during field validation

36 B. Pradhan and A. Alsaleh



2. Comparison. Ground truth data are compared with data
that are determined from different classes to classify the
imagery.

A confusion matrix is a cross-tabulation of the classified
and actual class labels for the study area (Foody 2004). This
matrix is a square array of dimension r � r, where r is the
number of categories. Confusion matrix represents the cor-
relation between two samples of measurement from the
classified region. The overall, user, and producer accuracies,
and the kappa coefficient can be measured using confusion
matrix. The overall accuracy is attained by dividing the
aggregate of the main diagonal entries of the confusion
matrix by the entire number of samples. The kappa coeffi-
cient (K) was measured using Eq. (2.11).

K ¼ h1� h2
1� h2

ð2:11Þ

2.4 Results

2.4.1 Landslide Detection Results

Several supervised classification methods were applied for
landslide detection, including Bayes, DT, RF, k-NN, and
SVM. The results of classification using k-NN, DT, and
Bayes algorithms showed poor accuracy results, because
most of the landslides were not detected correctly. Further-
more, landslides were misclassified as man-made cut slopes
and bare lands in some cases. SVM and RF algorithms
performed better compared with the previous three; many
landslides were correctly detected, positioned, and delin-
eated. Two testing sites were used to evaluate the consis-
tency of the used classifiers for landslide detection. This
section presents the results of landslide detection in the two
sites. The first testing site contained several landslides, while
few were detected in the second testing site.

2.4.2 Results of Landslide Detection
in the Training Site

2.4.2.1 RF
In this study, RF classifier was also used for landslide
detection. Results of RF landslide detection are shown in
Fig. 2.9. Initial observations for the map indicate that this
method performed better than k-NN, DT, and, Bayes

algorithms. Evidently, most of the landslide inventories were
detected accurately. Few cut slopes were misclassified as
landslides, as shown in the northeastern part of the study
area. RF detected 30 out of the 40 landslide inventories
found in the study area. However, some landslides were
undetected despite being visible in the middle part of the
study area. The challenge with RF algorithm is that it
requires the fine-tuning of several parameters. The current
study optimized the parameters by trial-and-error approach.
However, best results were not achieved. Using more robust
algorithms for fine-tuning the parameters of RF could
improve the landslide detection results.

2.4.2.2 SVM
Support vector machine (SVM) has been widely used for
landslide susceptibility mapping, and its advantages are well
established in several landslide studies. In this study, SVM
was used for landslide detection. Figure 2.10 shows the
results of SVM landslide detection. Results indicate that
SVM is the best among the other four methods; most of the
landslides were detected, few cut slopes were misclassified
as landslides, and few landslides were undetected. SVM
works on the concept of optimization and error reduction;
therefore, it performs well for landslide detection. Having
accurate landslide inventories is difficult; thus, a methodol-
ogy that can detect and reduce errors is significantly
important. SVM utilizes this concept; thus, it detected
landslides accurately, leaving only few undetected.

Figure 2.10c shows a landslide photograph taken during
the field visit. The capturing angle does not show the entire
boundary of the landslide; thus, proper documentation of the
landslide was challenging.

2.4.3 Results of Landslide Detection
in Testing Site 1

2.4.3.1 RF
The result of RF landslide detection for Testing Site 1 is
shown in Fig. 2.11. The first examination of the map shows
that several landslides were accurately detected, and few cut
slopes were misclassified. This shows the main difference
between the result of RF and those of other methods presented
previously. The RF algorithm tends to separate landslides
from cut slopes better than Bayes, DT, and k-NN techniques.
Although RF requires several user-defined parameters for
fine-tuning, its results are better than the other techniques,
using several combinations of the parameters.
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2.4.3.2 SVM
A landslide inventory map for Testing Site 1 was produced
by SVM method, as shown in Fig. 2.12. This method is
shown to be suitable for the training site. When the results
were examined, the algorithm produced a good landslide
inventory map; the landslides were accurately detected, and
few cut slopes were misclassified.

2.4.4 Results of Landslide Detection
in Testing Site 2

2.4.4.1 RF
Figure 2.13 shows the results of landslides detected using RF
for Testing Site 2. Results are far from excellent, as many

landslides were undetected. However, this method remains
better than Bayes, DT, and k-NN, because few cut slopes were
misclassified. This result shows that RF is a good classifier for
landslide detection in the presence of man-made slopes.

2.4.4.2 SVM
Figure 2.14 shows the result of SVM landside detection in
the presence of man-made slopes for Testing Site 2. SVM
produced an accurate landslide inventory map with few
undetected landslides. In addition, results show that SVM is
better than RF through visual examination. Several land-
slides in the upper left part of the study area were detected
by SVM but not by RF. However, both the SVM and RF
performed well in landslide detection when man-made
slopes are present in the study area.

Fig. 2.9 Detected landslides using RF classification algorithm

38 B. Pradhan and A. Alsaleh



2.4.5 Cut Slope and Landslide Detection Results

This section presents the results obtained from landslide and
cut slope mapping of the training site and two testing sites.
Figure 2.15 shows the detected landslides and cut slopes by
SVM and RF models. These two algorithms were considered
as the most effective among others because of their high
accuracy. The map shows the detected landslides in dark
blue, the cut slopes in light blue, and the other features in
pink. Both landslides and cut slopes are randomly distributed
in the study. However, the study area exhibited a clustered
pattern of landslides in the upper right corner, characterized
by having a high slope, concave curvature, and is mostly
barren.

Figures 2.16 and 2.17 show the landslides and man-made
slopes of the two testing sites. The landslides are shown in
dark blue, whereas man-made slopes are highlighted in light
blue. The landslides and cut slopes are randomly distributed
in the study area. The area has large and small landslides and
cut slopes. Landslides may also vary in types in this study
such as landslides and debris flows. Figure 2.17 illustrates
few landslides and cut slopes in Testing Site 2. Most of the
landslides and man-made slopes are located in the north part
of the area; the middle and south parts are mostly forested
area. Some landslides may have occurred in forest area,
which could not be detected because LiDAR point clouds
only have one return. Multiple LiDAR data returns are
important to detect landslides in forested areas. Overall, 123

Fig. 2.10 Detected landslides using SVM classification algorithm
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landslides and 205 cut slopes were detected in the first
testing site. Similarly, 18 landslides and 51 man-made slopes
were detected in the second testing site.

2.4.6 Results of Image Segmentation

Once the input layers were prepared, spectral and
LiDAR-based features were combined in one raster dataset
for segmentation. Then, a multiresolution segmentation
algorithm was utilized for segmentation. The parameters of
segmentation were set as scale (60), shape (0.1), and com-
pactness (0.5). These values were selected based on
trial-and-error experiments in eCognition software. Seg-
mentation result of the training site is shown in Fig. 2.18.

Landslide features are accurately delineated. Accurate seg-
mentation is important for efficient landslide detection by
various features. For example, in Fig. 2.18a, the segments
show that the landslide scarp is accurately defined, whereas
in Fig. 2.18b, the landslide scarp is only partially defined.
Moreover, in Fig. 2.18c, the landslide scarp is defined
inaccurately.

Some landslides are defined accurately because of fewer
variations in slope, curvature, and altitude values. Landslide
scarps are defined inaccurately, because the slope, curvature,
and height values vary significantly within the landslide
objects. Therefore, one landslide scarp may be segmented as
two or more landslide objects, thereby reducing the accuracy
of landslide detection as several spatial features can be
useless.

Fig. 2.11 Detected landslides using RF classification algorithm
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2.4.7 Results of Accuracy Assessment

Table 2.2 shows the overall accuracies and kappa indices of
landslide detection using several classifiers and datasets. For
the training site, the SVM method had the highest overall
accuracy (0.90) and kappa index (0.83), in contrast to the DT
algorithm that had the lowest overall accuracy and kappa
index of 0.61 and 0.37, respectively. In general, the accuracy
assessment shows that SVM and RF performed well in
landslide detection compared to other methods. For Testing
Site 1, the highest and lowest overall accuracies were 0.80

and 0.61 for SVM and Bayes methods, respectively. More-
over, the highest and lowest kappa indices were 0.74 and
0.33 for the same classifiers, respectively. Thus, RF is
considered as a good classifier for landslide detection.
Results confirmed that SVM and RF are the best methods for
landslide detection. For Testing Site 2, RF had the highest
overall accuracy of 0.91, followed by SVM with 0.90. The
lowest overall accuracy was achieved by Bayes algorithm
with 0.65. The kappa indices indicate that SVM is better
than RF and other methods. The kappa index of SVM and
RF is 0.85 and 0.80, respectively. Quantitative assessments

Fig. 2.12 Detected landslides using SVM classification algorithm

2 A Supervised Object-Based Detection of Landslides … 41



show that SVM and RF can be good classifiers for super-
vised landslide detection in LiDAR data and orthophotos.

The study aimed to detect landslides in the presence of
man-made slopes and produce an accurate inventory
map. Man-made or cut slopes create challenges in landslide
detection because their geometry and geomorphology are
relatively similar. This study attempted to separate these
classes. Table 2.3 shows the user and producer accuracies
obtained from various classifiers for cut slope and landslide
classes. Although Bayes method achieved the highest user
accuracy, evaluation of simultaneous user and producer
accuracies is important. This evaluation ensures that the
detected landslides are accurate and that only few landslides
will be undetected. The highest user and producer accuracies
for landslide class were achieved by Bayes and SVM

methods, whereas the highest user and producer accuracies
for cut slope were observed for Bayes (1) and RF methods
(0.90). However, SVM and RF achieved relatively high user
and producer accuracies simultaneously, indicating a good
classification of landsides and cut slopes. SVM performed
better than RF for landslide and cut slope classification.

For Testing Site 1, the highest user and producer accu-
racies for landslide class were achieved by RF and Bayes
algorithms, whereas the highest user and producer accuracies
for cut slope were found for SVM and RF algorithms. Kappa
indices showed that SVM and RF are best for landslide and
cut slope separation. The highest kappa index was achieved
by SVM (0.78, 0.78) and RF (0.67, 0.83) for landslide and
cut slope classes, respectively. In addition, the user and
producer accuracies and kappa indices for Testing Site 2

Fig. 2.13 Detected landslides using RF classification algorithm
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confirmed that SVM and RF classifiers are the best algo-
rithms for landslide detection. Overall assessment shows that
the separation between cut slopes and landslides using
LiDAR data and orthophotos through supervised classifica-
tion is possible and can be improved. The current study
achieved satisfactory results of landslide detection and sep-
aration between landslides and man-made slopes; however,
further research is needed to detect the type of and improve
the accuracy in cut slopes. The proposed supervised frame-
work provides a rapid and efficient guideline for landslide
mapping, which is valuable for landslide susceptibility
mapping, and hazard and risk assessments.

2.5 Discussion

Several methods of determining segmentation parameters,
such as supervised and Taguchi approaches (Gibril et al.
2016), were reviewed. In supervised approaches, segmenta-
tion is usually optimized based on multiple features found in
the image of the study area. Conversely, in Taguchi
approaches, segmentation parameters are optimized for a
single feature only. Because several types of landslides are
present in the study, optimizing the parameters for only one
feature without considering the type of landslide created a
huge challenge for the Taguchi approach. Supervised method

Fig. 2.14 Detected landslides using SVM classification algorithm
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is a good option after the Taguchi method. Although super-
vised approaches are user independent and require less time
than trial-and-error method, they also depend on the selected
subsegments that aimed to be merged into a target segment.

Preparing the input layers, selecting a classifier, and the
fine-tuning of user-defined parameters of the classifier are
important in supervised landslide detection (W. Chen et al.
2014). The current study analyzed several input layers
derived from LiDAR-based DEM and DSM for improved
landslide detection. Significant layers were selected based on
their importance for landslide detection using the training
site and analyzed through trial-and-error approach. Overall,

13 features, including spectral, LiDAR, spatial, and texture,
were used. Furthermore, several classifiers were analyzed by
measuring their accuracies for landslide detection. The
user-defined parameters of the classifiers were also
fine-tuned by trial-and-error method.

From LiDAR point clouds, six features were produced:
DEM, DSM, height, slope, curvature, and hill shade.
Training site elevation ranged from 997 to 1270 m. Con-
versely, the height feature showed that the height of objects
in the study areas varies from 0 m (flat objects) to 100 m
(hilly lands). In addition, slope of the study area includes flat
and hilly lands. The slope ranged from 0 to 87°. As in

Fig. 2.15 Landslide and cut
slope mapping (Training Site)
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segmentation results which is shown in Fig. 2.18, the study
area has flat, concave, and convex type of curvature surfaces.

Figure 2.19 shows that landslides and cut slopes are
difficult to separate using only LiDAR-derived parameters
because both landslides and cut slopes have relatively sim-
ilar characteristics. Therefore, investigating other parameters
and orthophotos is important.

Three spectral bands (R, G, and B) of the orthophotos
were used for landslide detection. Orthophotos are useful
information to separate landslides from other features,
such as grassland, buildings, and water bodies. Analysis of
typical values of spectral bands for landslide and
non-landslides is presented in Fig. 2.20. The chart pre-
sents the minimum, maximum, and mean values of RGB

Fig. 2.16 Landslide and cut
slope mapping (Testing Site 1)

Fig. 2.17 Landslide and cut
slope mapping (Testing Site 2)
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Table 2.2 Overall accuracies
and kappa indices of landslide
detection

Dataset Classifier Overall accuracy Kappa index

Training Site Bayes 0.75 0.46

k-NN 0.65 0.4

DT 0.61 0.37

RF 0.82 0.7

SVM 0.9 0.83

Testing Site 1 Bayes 0.61 0.33

k-NN 0.72 0.51

DT 0.72 0.53

RF 0.78 0.64

SVM 0.86 0.74

Testing Site 3 Bayes 0.65 0.37

k-NN 0.71 0.43

DT 0.78 0.56

RF 0.91 0.8

SVM 0.9 0.85

Fig. 2.18 Segmentation results
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Table 2.3 User and producer
accuracies obtained from various
classifiers for cut slope and
landslide classes

Dataset Classifier Class User Producer KIA

Training Site Bayes Landslide 1 0.5 0.44

Cut slope 1 0.26 0.22

Others 0.7 1 1

k-NN Landslide 0.37 0.45 0.27

Cut slope 0.54 0.65 0.53

Others 0.82 0.71 0.4

DT Landslide 0.58 0.35 0.25

Cut slope 0.42 0.75 0.59

Others 0.77 0.67 0.36

RF Landslide 0.92 0.6 0.53

Cut slope 0.69 0.9 0.86

Others 0.86 0.88 0.72

SVM Landslide 0.82 0.95 0.93

Cut slope 0.8 0.8 0.74

Others 0.98 0.92 0.83

Testing Site 1 Bayes Landslide 0.85 0.2 0.15

Cut slope 0.66 0.4 0.27

Others 0.58 0.96 0.84

k-NN Landslide 0.77 0.45 0.37

Cut slope 0.51 0.75 0.63

Others 0.82 0.8 0.55

DT Landslide 0.6 0.45 0.34

Cut slope 0.52 0.73 0.62

Others 0.86 0.82 0.62

RF Landslide 0.94 0.58 0.52

Cut slope 0.56 0.91 0.86

Others 0.91 0.8 0.6

SVM Landslide 0.79 0.76 0.71

Cut slope 0.69 0.71 0.65

Others 0.93 0.93 0.82

Testing Site 2 Bayes Landslide 1 0.33 0.26

Cut slope 1 0.33 0.26

Others 0.58 1 1

k-NN Landslide 0.4 0.66 0.54

Cut slope 0.75 0.5 0.44

Others 0.83 0.76 0.37

DT Landslide 0.66 0.57 0.5

Cut slope 0.8 0.44 0.36

Others 0.8 0.96 0.85

RF Landslide 1 0.71 0.67

Cut slope 0.85 0.85 0.83

Others 0.9 0.96 0.87

SVM Landslide 1 0.83 0.78

Cut slope 1 0.83 0.78

Others 0.83 1 1
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bands for landslide, cut slope, and other features in the study
area. The three classes have approximately similar average,
minimum, and maximum values of RGB bands. However,
slight differences in these bands can also separate the three
classes at some extent depending on the classifier used.
When these parameters are combined with other features,
they can work more significantly in landslide and cut slope
detection.

Spatial and texture features are also important for land-
slide detection. Area, length/width, compactness, shape
index, rectangular fit, and Gray-Level Co-Occurrence Matrix

(GLCM) mean are the spatial and texture features used in
this study. Figure 2.21 shows the extracted values of these
features for landslide and non-landslide features.

The chart of spatial parameters reveals that landslide and
cut slope can be well separated using these parameters than
other previously discussed parameters. The values of most of
the parameters for landslide, cut slope, and other features are
different. Minimum, maximum, and average values vary for
the three classes. Area, length/width, and texture are the
most important parameters for the separation of landslide
and cut slope features in the study area.

Fig. 2.19 Typical values of
LiDAR-based features for
landslide and non-landslide
features. Note (1) slope �10;
(2) hill shade, intensity, and DEM
�102

Fig. 2.20 Typical values of
spectral bands for landslide and
non-landslide features
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2.6 Conclusion

Landslides are one of the most destructive natural disasters
that mountainous areas, such as Malaysia, suffer from and
are known to threaten human lives and properties. Landslide
inventory maps are valuable sources of information and are
essential for various studies and investigations, such as
landslide susceptibility, and hazard and risk assessments, as
well as various decision-making processes and polices.
Providing an efficient method in detecting and distinguishing
landslides and man-made slopes is a challenging task; most
methods concentrate on landslide detection only, and these
methods require much time and are costly.

This study aims to provide a rapid and accurate method
that can create a landslide and man-made slope inventory
map semiautomatically. To achieve this goal, few steps were
applied: (1) the preparation and analysis of several spatial,
spectral, and texture features, and LiDAR-derived parame-
ters; and (2) the evaluation of five well-known classifiers to
determine the best algorithm for landslide and man-made
slope detection.

In general, five classifiers, i.e., Bayes, DT, k-NN, RF, and
SVM, were evaluated to propose a semiautomatic supervised
landslide and man-made slope detection approach using
airborne LiDAR data coupled with orthophotos.

The research findings provided an effective solution for
supervised and semiautomatic landslide and man-made
mapping in tropical areas. Analysis showed that RF and
SVM are the suitable classifiers for object classification
using LiDAR data. The accuracies of these models were
consistent in the three subsets of data that were used for
validations. Overall evaluations of the studied classifiers
showed that using supervised classification at object level,

separation between cut slopes and landslides using LiDAR
data and orthophotos is possible and can be improved.
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3Optimized Rule Sets for Automatic Landslide
Characteristic Detection in a Highly Vegetated
Forests

Biswajeet Pradhan and Mustafa Ridha Mezaal

3.1 Introduction

The rapid expansion of cities and the continuously increas-
ing population in urban areas lead to the establishment of
settlements in mountainous areas. This phenomenon has
increased the impact of natural disasters, particularly land-
slides, in these mountainous areas. Landslides result in
severe property losses, human casualties, and environmental
damage. (2) Data interpretation is frequently based on the
expert knowledge and experience of an analyst, as well as
his or her familiarity with the area (Chen et al. 2014;
Malamud et al. 2004). (3) Finally, additional errors can be
introduced while translating image interpretation results into
thematic maps (Malamud et al. 2004). High-resolution
LiDAR-derived DEMs can depict ground surfaces and pro-
vide valuable information on the topographic features of
possible landslide-affected areas that are covered by dense
vegetation (McKean and Roering 2004). In addition,
high-resolution DEMs can be utilized to identify landforms
with a scale of a meter to a few meters and provide useful
information about rocky and densely vegetated areas (Tarolli
2014; Van Westen et al. 2008). Minimal changes in terrain
information can be easily detected using LiDAR data (Chen
et al. 2015). In general, LiDAR data have a definite
advantage because of their capability to penetrate vegetation
canopies and provide valuable information on topographic
conditions. This advantage makes LiDAR data different
from other data sources, such as aerial photographs, in terms
of detecting slope failure under dense vegetation (Pradhan
et al. 2016). LiDAR data and their derivatives, such as
hillshade, surface roughness, slope, and contour maps, pro-
vide significant and valuable information about active geo-
logical processes, such as landslides, which reshape the
topography of an area. Overall, LiDAR data can serve as a
promising tool for enhancing landslide inventory maps

(Kasai et al. 2009). However, distinguishing different types
of landslides is important for studying the geomorphological
development of hillsides and the mitigation of landslide
hazards (Dou et al. 2015; Lin et al. 2013).

The remainder of this paper is organized as follows: The
study area and data set are described in Sect. 2. The research
methodology and the types of landslides, namely shallow
and deep-seated landslides, are explained in detail in Sect. 3.
The results are presented and discussed in Sect. 4. Finally, a
brief summary, including the main findings and future
directions, is presented in Sect. 5.

3.2 Types of Landslides

A landslide is the motion of the mass of debris, rocks, or a
portion of the earth down a slope under the impact of gravity
(Cruden and Varnes 1996; Guzzetti et al. 2012). Landslides
are classified as either shallow or deep-seated, depending on
the movement characteristics and landslide volume (Brunetti
et al. 2009; Guzzetti et al. 2012). Shallow and deep-seated
landsides differ in terms of size, volume, and damage
influence (Zêzere et al. 2005). However, landslide mass
volume is difficult to evaluate (Brunetti et al. 2009). Shallow
landslides are typically associated with short high-intensity
rainfall, whereas most large-scale deep-seated landslides
result from the interaction between long-term rainfall and
natural denudation processes (Zêzere et al. 2005). A land-
slide can demonstrate a sliding, flowing, falling, or toppling
movement, but numerous landslides also exhibit a combi-
nation of two or more types of these movements either at the
same time or during their lifetime (Cruden and Varnes
1996). A high-resolution DEM is necessary to study the
characteristics of different types of landslides (Dou et al.
2015). Several techniques with various image sources have
been utilized to distinguish landslide (Chang et al. 2012;
Chen et al. 2014; Cruden and Varnes 1996; Dou et al. 2015;
Korup 2006; Ma et al. 2016; Rau et al. 2012; Yu et al. 2015;
Zêzere et al. 2005). Figure 3.1 shows a simple diagram
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illustrating the different landslide types. Meanwhile, Fig. 3.2
shows the general sketch of shallow and deep-seated land-
slides which is overlaid on contour map.

3.2.1 Deep-Seated Landslide

Deep-seated landslides are characterized by slope move-
ments occurring on high-relief-energy hillsides; the span of
this landslide type is comparable with the entire slope, but
the displacements are relatively small compared with the
slope itself (Goudie 2004; Kellerer-Pirklbauer et al. 2010).
This type of landslides can be reactivated during intense
events, and they can evolve into destructive failures.
Deep-seated landslides are generally difficult to recognize in
the field, especially when they happen in densely forested
areas where quick revegetation occurs, such as in tropical
forests. Vegetation indices are particularly helpful in rec-
ognizing deep-seated landslides (Vohora and Donoghue
2004). In general, optical images are unsuitable for analyz-
ing this type of slope failures because they are usually
covered by vegetation. To identify and map deep-seated
landslides, the automation of recognition procedures and the
integration of optical sensors with other remote sensing
techniques have been proven to be highly effective (Delgado
et al. 2011; Moine et al. 2009), and LiDAR data have been
found useful (Agliardi et al. 2009). Automatic algorithms
have been applied to achieve this task, such as supervised
classification methods (Kasai et al. 2009) and standard signal
processing techniques. Chen et al. (2015) showed that
LiDAR data with 1-m resolution are sufficient for mapping

the geomorphology of forested areas and identifying deep-
seated landslides.

3.2.2 Shallow Landslide

A shallow landslide is the movement of a mixture of water,
soil, and debris; this landslide type starts on steep slopes
during periods of intense rainfall (Bugnion et al. 2009). Thus,
this landslide type is a threat to infrastructure, buildings,
roads, and railways. The use of remote sensing images for
shallow landslide detection is common; however, field data
are necessary for verification. This concern is primarily
ascribed to the swiftness and the spatial diffusion of these
slope failures. Optical sensors, which can extract geomorphic
features and cover a wide area, are suitable for studying
shallow landslides (Gao and Maro 2010). Visual interpreta-
tion has also been proven useful for mapping this landslide
type because the boundaries are frequently distinct after a
shallow landslide event. Furthermore, automatic and semi-
automatic classification algorithms have been tested in recent
years (Heleno et al. 2015; Ma et al. 2016; Stumpf et al. 2014;
Wiegand et al. 2013). The use of very-high-resolution
(VHR) satellite images (e.g., GeoEye and WorldView) can
provide high accuracy for detecting shallow landslides and
creating databases of susceptible areas (Zizioli et al. 2014).
The automated analysis of airborne laser scanning data has
been used for post-event analysis, such as for mapping
earthquake- or typhoon-triggered shallow landslides (Rau
et al. 2012) and rainfall-induced landslides (Bai et al. 2012).
Visual interpretations, such as shaded relief maps, slope

Fig. 3.1 Shallow landslide (red polygon) and deep-seated landslide (yellow polygon) in the study area

52 B. Pradhan and M.R. Mezaal



maps, and contour maps, derived from LiDAR-based DEMs
were used by (Đomlija et al. 2014) to create a catalog of
shallow landslides. In addition, rainfall-induced shallow
landslides have been predicted using empirical rainfall
thresholds or spatially distributed, physically based numeri-
cal models (Hong et al. 2015; Vennari et al. 2014). Attempts
have been made to forecast this type of landslide using
numerical models with both predisposing factors, e.g.,
landform curvature (van Asselen and Seijmonsbergen 2006)
and the main triggering factor, i.e., rainfall (Segoni et al.
2009).

3.3 Study Area

The Cameron Highlands in Malaysia is a tropical rain forest
area located in the latitude range 4°22′52″–4°25′48″ N and
the longitude range 101°22′30″–101°23′30″ E. The
Cameron Highlands is an active landslide site, and the
selected subset has an aerial coverage of approximately
24.38 km2. The average annual rainfall in the area is
2660 mm. Its average daytime temperature is moderate
(*24 °C), whereas its nighttime temperature is 14 °C.
A large portion of the area (80%) is forested, and the land
slopes range from 80° to flat areas (0) Fig. 3.3.

3.4 Material and Method

The multistep overall workflow of the current research is
presented in Fig. 3.4. First, remote sensing data and land-
slide inventories were preprocessed to remove the noise and
outliers from the data and prepare them for the subsequent
steps. Second, a high-resolution digital elevation model
(DEM) (0.5 m) was derived from the LiDAR point clouds
and used to generate other LiDAR-derived products and
landslide conditioning factors, such as slope, aspect, height
(nDSM), hillshade, and intensity. Third, the LiDAR-derived
products were combined by correcting their geometric dis-
tortions and incorporating them into a coordinate system.
Then, the combined products were prepared for feature
extraction using a geographic information system (GIS).
Fourth, a multiresolution algorithm was used to segment the
data and create image objects. In this step, the fuzzy logic
supervised approach proposed by Zhang et al. (2010) was
used to select the best combination of segmentation
parameters (i.e., scale, shape, and compactness). Fifth, rel-
evant attributes were selected using the correlation-based
feature selection method (CFS), which ranks the attributes
from the most important to the least important. Rule sets
were developed by applying a decision tree (DT) algorithm
using the training set of the landslide inventories and the

Deep-seated 
landslide  

Shallow 
landslide  

Fig. 3.2 General sketch of types
of landslide
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selected relevant attributes. Rule sets were developed for
extracting five land types that were enumerated as follows:
(1) bare soil, (2) cut slope, (3) building, (4) vegetation, and
(5) landslide. The validation of the rule sets was based on the
receiver operating characteristic curves and the area under

the curve (AUC) values. Finally, the results were exported
into GIS to detect the precise location and direction of the
landslides by overlaying the classified segments and the
hillshade on the slope and aspect data to visualize other
characteristics of landslide (i.e., runoff, volume, and width).

(a)

(b)

Fig. 3.3 Study area showing a analysis area; and b test area

54 B. Pradhan and M.R. Mezaal



3.4.1 LiDAR Data

The LiDAR point cloud was acquired over 25 km2 of the
ringlet and surrounding area in Cameron Highlands at a
flying height about 1510 m. The data were captured on
January 15, 2015. The point density is closely 8 points per
square meter with a 25,000 Hz pulse rate frequency. The
absolute accuracy of the LiDAR data should meet the
root-mean-square errors (RMSE) of 0.15 m in the vertical
axis and 0.3 in the horizontal axis. Orthophotos were also
acquired by the same system for the study area to support
landslide identification and characterization.

A digital elevation model at 0.5-m spatial resolution was
interpolated from LiDAR point clouds after removing the

non-ground points, with the spatial reference of
GDM2000_Peninsula_RSO. The derived DEM helps in
generating a number of derived layers that support land-
slide identification and characterization . In the current
study, hillside, intensity, height (nDSM), slope, and aspect
were derived from the LiDAR-based DEM Fig. 3.2,
(Fig. 3.5).

3.4.2 Object-Based Image Analysis (OBIA)

An object-based approach considers the spatial, spectral, and
texture attributes of the features in the classification process;
thus, it is different from other classification approaches such

Fig. 3.4 An overview of the
method adopted in the present
study
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as traditional pixel-based (Pradhan et al. 2016). The results
of an object-based approach are more accurate (Rau et al.
2014) than pixel-based classification (Tehrany et al. 2014).
As one of the most significant classification schemes, OBIA
can provide valuable information for landslide inventory

mapping (Guzzetti et al. 2012). It is considered suitable for
landslide inventory mapping because its image segmentation
and classification processes resemble human knowledge, and
existing knowledge can be transferred into a machine algo-
rithm in the form of rule sets, which have been implemented

Fig. 3.5 LiDAR-derived data used for identification the location and direction of landslide include a intensity; b hillshade; c DTM; d height;
e slope; and f aspect
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in landslide mapping (Barlow et al. 2003; Pradhan et al.
2016; Stumpf and Kerle 2011).

Image segmentation is the first step of OBIA (Pradhan
et al. 2016). In this step, homogeneous pixels are grouped
into non-overlapping regions based on spectral and geo-
metric characteristics (Pal and Pal 1993). Multiresolution
segmentation is a common algorithm that has been utilized
in various earth science studies (Blaschke 2010). Numerous
features of the objects can be used in multiresolution seg-
mentation. In the current study, three parameters, namely
scale, shape, and compactness, are selected for the analysis
(Pradhan et al. 2016). Determining these parameters using
the traditional trial-and-error method is a time-consuming
and work-intensive procedure (Pradhan et al. 2016). There-
fore, automatic and semiautomatic methods have been used
to identify the optimal parameters in various studies (Anders
et al. 2011; Belgiu and Drǎguţ 2014; Drǎguţ et al. 2010).
Among the advanced methods for automatically selecting
segmentation parameters are the Taguchi optimization
technique proposed by and the fuzzy logic supervised
approach presented by (Zhang et al. 2010). Therefore,
automatic methods that utilize optimization algorithms
(Pradhan et al. 2016) can best reduce the time required for
selecting the segmentation parameters.

The selection of a small (possibly the minimum) feature
set yields the best possible classification results, which is
desirable for practical reasons (Kursa and Rudnicki 2010).
Therefore, significant attributes should be selected to
enhance the results of landslide detection in a certain area
(Kursa and Rudnicki 2010). The selection of important (or
relevant) attributes can help differentiate between landslide
and non-landslide areas as well as better classify landslides
according to their types (Van Westen et al. 2008). Several
studies have used multiple attribute integration for landslide
detection (Borghuis et al. 2007; Danneels et al. 2007; Hervás
and Rosin 1996; Tapas R Martha, Kerle, Jetten, van Westen,
& Kumar, 2010; Tapas Ranjan Martha et al. 2011; Moine
et al. 2009; Stumpf and Kerle 2011). Chen et al. (2014) used
10 attributes for landslide identification; their results showed
that the selected relevant attributes provided valuable
information for landslide identification. The current study
primarily aims to optimize the parameters of segmentation
and the attributes for developing transferable rule sets for
landslide detection and their characteristics by using
high-resolution LiDAR data.

3.4.3 Image Segmentation

Image segmentation, which is a fundamental step of OBIA,
is realized using both spatial and spectral information
(Darwish et al. 2003). Segmenting the presented object by
delineating their boundaries directly affects the quality and

performance of the classification process. Various segmen-
tation algorithms have been previously elaborated and
applied to remote sensing data sets (Dey et al. 2010). The
purpose of these algorithms is to determine relatively
homogenous and powerful segments. In the current study,
the image segmentation process was implemented by first
identifying the three main parameters. These parameters
control the segmentation results and affect the classification
process (Möller et al. 2007; Tian and Chen 2007). A super-
vised fuzzy logic approach was used to select the optimal
parameters because the traditional method for identifying the
aforementioned parameters is time-consuming.

3.4.4 Correlation-Based Feature Selection

Selecting only the relevant attributes enhances the quality of
landslide identification and classification in a particular area
(Kursa and Rudnicki 2010). Working with a large number of
attributes generates several problems. First, the algorithms
are slowed down because numerous resources have to be
considered (Kursa and Rudnicki 2010). Second, a higher
number of attributes than the number of observations result
in low accuracy (Kohavi and John 1997). Third, irrelevant
input features may lead to overfitting (Chen et al. 2014).
Therefore, important attributes should be selected to improve
the accuracy of the feature extraction results. In the current
study, CFS was performed using Weka 3.7 software to select
the relevant attributes. The method established by (Li et al.
2016) was adopted in this study. The CFS algorithm was
applied to all the LiDAR-derived data and the additional
texture and geometric features. CFS was performed to
determine the feature subsets to be used for developing the
rules for landslide identification and characterization.
The CFS method has two basic steps: ranking the initial
attributes and eliminating the least important attributes
through an iterative process.

3.4.5 DT Classifiers

DT methods are data mining techniques that generate a
graphical illustration of the feature classification process
(Daniel 2014). In OBIA, the most important phase is the
construction of the image interpretationmodel (knowledge) for
the segmented objects. However, executing OBIA with other
classifiers that are considered “black boxes” may be difficult;
by contrast, DT classifiers are like “white boxes”; that is, users
can easily interpret the links between the variables of different
classes and the explanatory variables of remote sensing data
(Li et al. 2016). The model generated via a DT method can be
either a predictive or a descriptive model. Basically, estab-
lishing DT classifiers does not require the elaborate setting of
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the domain knowledge or attribute; consequently, it has
become popular for exploratory knowledge discovery. This
type of method can provide a rapid and powerful mode of
showing the structures of a data set and handle a
high-dimensional data set. In the current study, a DT algorithm
was used to generate the rule sets for landslide identification
and characterization using CFS-derived attributes.

3.4.6 Landslide Mapping

An object-based classification method using a DT algorithm
was used to produce a landslide inventory map for the study
area. In this method, training data were required. Landslide
training samples were collected from the orthophotos of the
locations where landslides were identified via visual inter-
pretation. The image objects were then classified using the
DT algorithm, and rule sets were generated for landslides,
non-landslide features, and the two types of landslides (i.e.,
shallow and deep-seated). The important features, namely
mean slope, area, mean intensity, and gray level
co-occurrence matrix (GLCM) homogeneity, were selected
using the CFS method in Weka 3.7 software. Furthermore,
classification was executed using the J48 algorithm in Weka
3.7. Consequently, rule sets were developed to differentiate
landslides from non-landslide features, such as vegetation,
building, bare soil, and man-made slopes. In addition, other
rule sets were developed to distinguish the two types of
landslides. The classification results were validated using the
ROC method and through field investigations.

3.5 Results

3.5.1 Segmentation Parameters Selected Using
a Fuzzy Logic Supervised Approach

The optimal segmentation parameters (i.e., scale, shape, and
compactness) were selected using the fuzzy logic supervised
approach developed by (Zhang et al. 2010). The best values
of the segmentation parameters were determined based on an
adequate number of training samples, which included shal-
low and deep-seated landslides. Table 3.1 shows the selec-
ted values for the three parameters. For example, the initial
segmentation parameter values inputted into the fuzzy-based

optimization tool were 20, 0.3, and 0.1 for scale, shape, and
compactness, respectively, as shown in (Fig. 3.6a). From
these initial values and after 100 iterations, the best values
for scale, shape, and compactness derived from the opti-
mization tool were 46.37, 0.37, and 0.401, respectively.

3.5.2 Attributes Selected Using the CFS
Approach

The use of a large number of attributes can decrease the
accuracy of landslide detection because of the presence of
irrelevant attributes. Therefore, significant attributes were
selected using the CFS method. Table 3.2 shows the 10
attributes selected out of the initial 35 attributes, including
spatial, texture, geometric, and LiDAR derivatives. As
shown in Table 3.2, the most important attribute is the mean
intensity of LiDAR data, followed by the mean digital ter-
rain model DTM or altitude. Texture attributes, such as the
gray level difference vector contrast, GLCM homogeneity,
and GLCM StdDev, were also significant in detecting
landslides and determining their types using LiDAR data. In
addition, area, height, and GLCM standard were the last
three important attributes.

3.5.3 Rule Sets Developed for Landslide
Detection and Characterization

Rules sets were developed using the DT algorithm, and the
optimized attributes were selected via CFS. In general, six
sets of rules were established for extracting various features
or land cover types, including vegetation, bare soil, cut
slope, building, and landslide. The rules developed for
landslide identification included mean slope, area, mean
intensity, and GLCM homogeneity. The thresholds for these
attributes are provided in Table 3.3. Figure 3.7 illustrated
the results of rule set based on analysis area. For example,
the selected threshold for the mean slope attribute is 28°.
This result indicates that most of the landslides in the study
area fall from a relatively highly sloped area, and the chance
of landslides occurring in flat terrain areas is minimal. The
rules developed for identifying cut slopes included attributes
such as mean height, GLCM StdDev, and area of objects. On
the basis of the rules developed for landslide and cut slope

Table 3.1 Segmentation
parameters

Initial parameters Iteration (optimal parameters)

No. Scale Shape Compactness Scale Shape Compactness

1 20 0.3 0.1 46.37 0.37 0.401

2 50 0.1 0.1 73.52 0.52 0.5

3 80 0.1 0.1 100.33 0.65 0.65
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detection, intensity and texture attributes (i.e., GLCM
StdDev and GLCM homogeneity) are the most important
attributes to differentiate the two land cover types.

The deep-seated landslides (10) in the study area are less
than the shallow landslides (29). The detection accuracy for
deep-seated landslides is higher than that for shallow land-
slides. (Lin et al. 2013) demonstrated that LiDAR data could
significantly aid in identifying deep-seated landslides, par-
ticularly for densely vegetated areas. This current study
showed that texture and LiDAR intensity attributes were

more significant for distinguishing between the two landslide
types than other attributes. Table 3.4 shows that GLCM
homogeneity and mean intensity attributes can effectively
differentiate shallow from deep-seated landslides.

3.5.4 Model Transferability

In hilly and densely vegetated terrains, such as the Cameron
Highlands, discriminating between landslides and man-made

Fig. 3.6 a Initial segmentation for training site; b optimal segmentation for training site; c initial segmentation for test site; and d optimal
segmentation for test site
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slopes and distinguishing between the two types of land-
slides are challenging. Consequently, the results of trans-
ferability of the developed rule sets form analysis area to the
entire area were tested as shown in Fig. 3.8. Two types of
landslides were differentiated, namely shallow and
deep-seated, by developed new rule set see Table 3.4. The
results are shown in Fig. 3.9. Stumpf et al. (2011) said that
the overall accuracy of landslide detection applied to other
areas even if the same method was used for model devel-
opment would frequently decrease. This decline in accuracy
is ascribed to various reasons, including differences in
landslide characteristics and environmental conditions. Dif-
ferences in the sensors used, spatial resolutions of images,
and illumination conditions are among the other challenges
mentioned in a recent study (Rau et al. 2014).

3.6 Discussion

The identification of landslides and their types in densely
vegetated areas, such as the Cameron Highlands, is chal-
lenging because of several reasons, including the presence of
man-made slopes, dense vegetation, and hilly areas. This
study presented a method for automatically detecting land-
slides and their types by using high-resolution LiDAR data.

The quantitative results of landslide identification demon-
strated the robustness of the method. In addition, this study
showed that optimizing the segmentation parameters,
namely scale, shape, and compactness, by using the fuzzy
logic supervised approach was satisfactory for differentiating
non-landslide (i.e., vegetation and cut slope) from landslide
features and between the two landslide types. Creating
accurate objects through the optimized segmentation process
allowed the use of spatial, texture, and geometric attributes
for feature identification. Accurate segmentation is necessary
to distinguish deep-seated from shallow landslides because
landslides can be classified according to their geometric and
texture attributes (Table 3.4).

The selection of the optimal attributes, which are relevant
to a landslide, mainly relies on the experience of the analysts.
Thus, establishing an attribute selection method is imperative
to detect landslides and their characteristics. The relevant
attributes selected using the CFS algorithm simplify the rule
sets used to detect landslides and their types. In addition, the
rules developed with less optimized attributes can be trans-
ferable to the entire study area. The optimized attributes for
detecting landslides and determining their types included
LiDAR-derived data (i.e., slope, height, and intensity), tex-
ture attributes (i.e., GLCM StdDev and GLCM homogene-
ity), and geometric attributes. Computation time and reliance

Table 3.2 Outcomes of the
attributes selection for landslide
detection

Attribute No. times Rank

Mean intensity 20 1

Mean DTM 20 2

GLDV contrast 20 3

GLCM homogeneity 20 4

GLCM StdDev 20 6

Mean slope 20 7

Area 20 8

Height 20 9

GLCM standard 20 10

Table 3.3 Rules defined for
landslide identification from
non-landslide

Features Rules define Attributes

Vegetation 5.1 < Mean slope > 1.3
Area > 2837

LiDAR derivatives
Spatial

Bare soil GLCM standard <= 26.6
Area <= 4905

Spatial
Spatial

Cut slope Mean height <= 113.8
GLCM StdDev > 30.3
Area <= 2837

LiDAR derivatives
Spatial
Spatial

Building Mean slope > 2.3
Mean height > 113.8

LiDAR derivatives
LiDAR derivatives

Landslide Mean slope > 28.0748
Area > 4905
Mean intensity <= 255.49
GLCM homogenous > = 0.0496

LiDAR derivatives
Spatial
LiDAR derivatives
Spatial
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Fig. 3.7 Analysis area for detecting the location of landslide

Table 3.4 Rules defined to
differentiate between types of
landslide

Feature types Rules define Attributes

Deep-seated GLCM homogenous <= 0.05
GLCM homogenous (Direction = 0°) > 0.038

Spatial
Spatial

Shallow GLCM homogenous > 0.05
Mean intensity <= 414.3
GLCM homogenous (Direction = 0°) <= 0.038

Spatial
LiDAR derivatives
Spatial
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Fig. 3.8 Test area showing the locations of landslide in whole study area after transferability
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Fig. 3.9 Location of the shallow and deep-seated landslides in the study area
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on the expert knowledge of the analyst were reduced to a
greater extent with the proposed rule sets than with existing
complex rule sets based on image classification.

Field investigation is challenging and tedious for map-
ping landslide inventories (Dou et al. 2015). Although the
visual interpretation of remote sensing data using this
method is reliable, this method is both costly and
time-consuming. A new landslide detection method, which
utilizes LiDAR-derived data, is effective for mapping geo-
morphic features and landslides, particularly in densely
vegetated areas. The natural features of the earth surface are
difficult to recognize using traditional methods (Chen et al.
2015). By contrast, a LiDAR-derived DEM provides addi-
tional terrain data, such as curvature, slope, and hillshade,
which can help better describe the landscape of an area and
identify landslides and their types. The current study used a
LiDAR-derived DEM, as well as texture and geometric
features, for landslide detection and characterization. The
results show that LiDAR data can be effectively used to
analyze and visualize terrains that are difficult to explore

because of the presence of dense vegetation. Furthermore,
the locations of landslides were identified using the proposed
method, and their directions were visualized by overlaying
the slope and aspect factors from the LiDAR-derived data.
The landslides were also rendered in 3D to visualize their
other characteristics, such as width, length, runoff distance,
and depth as shown in Fig. 3.10.

3.6.1 Accuracy Assessment

Various methods and accuracy metrics, such as kappa
indices, overall accuracy, user’s accuracy, and producer’s
accuracy, have been applied to estimate the accuracy of
remote sensing products (Dou et al. 2015). The concept of a
confusion matrix is frequently adopted to simplify the cal-
culation of these accuracy metrics (Radoux and Bogaert
2014). In recent studies, however, the use of kappa indices
has been criticized by several researchers (Pontius and
Millones 2011). Mondini et al. (2011) utilized ROC plots to

Fig. 3.10 3D perspective of detected landslides for the study area
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evaluate remote sensing outcomes by plotting the true pos-
itive value against the positive predictive value (PPV). ROC
plotting is one of the common methods used in engineering
and signal processing; therefore, the use of this method to
evaluate the quality of deterministic and probabilistic
detection and forecast systems is extremely helpful. In the
current study, the landslide detection results were assessed
using the ROC plotting method and further verified through
field investigations. The accuracy assessment is performed
as follows: The locations of the landslides were first col-
lected from the study area using a handheld Global Posi-
tioning System (GPS) device with an accuracy of 5 m.
Subsequently, the ROC curves for shallow and deep-seated
landslides were generated, and the AUCs were calculated.
Figure 3.10 shows the ROC curves for landslide detection
and their types as detected by the method proposed in the
current study. The estimated AUC of landslide detection was
0.82, and the accuracy rates after transferability for shallow
and deep-seated landslides were 0.80 and 0.83, respectively.

The estimated accuracy rates indicated the effectiveness of
the proposed approach for detecting landslides and distin-
guishing their types (Fig. 3.11).

3.6.2 Field Investigation

A field investigation was conducted as an additional assess-
ment method to examine the reliability of the proposed
method. A handheld GPS device (GeoExplorer 6000) was
used to identify the locations of the landslides, as shown in
Fig. 3.12. The information acquired from field measurements
allowed for the assessment of the precision and reliability of
the produced landslide inventory map. In addition, the field
investigation demonstrated that the landslides detected using
the proposed methodology were accurate. Thus, the current
methodology can identify landslide locations, distinguish
landslide types, and produce a reasonable acceptable land-
slide inventory map for the Cameron Highlands.
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Fig. 3.11 ROC curve for
a detected landslides and their
characteristics; b shallow
landslide; and c deep-seated
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3.7 Conclusion

Identifying landslides and their types (i.e., shallow and
deep-seated) in tropical regions is a difficult task. In this
study, an optimized object-oriented rule set was developed
to detect landslides in the Cameron Highlands and differ-
entiate between their types. The main data sources were
high-resolution airborne LiDAR point clouds. Optimized
segmentation was performed using an existing fuzzy logic
supervised approach, and the important attribute subset was
selected using the CFS algorithm. The overall accuracy of
landslide detection using the proposed method was 0.82, and
the prediction accuracy rates for shallow and deep-seated
landslide detection were 0.80 and 0.83, respectively. The
optimization of the segmentation parameters and attributes
improved the computational efficiency of the workflow and
enhanced the transferability of the rule sets into different
spatial subsets within the Cameron Highlands. LiDAR data
were effective and useful for identifying landslides and
distinguishing their types. In addition, the use of LiDAR
data allowed for the identification of other characteristics of
landslides, such as orientation and runoff distance, by

overlaying LiDAR-derived slope and aspect factors on
detected landslide scarps. The optimization of segmentation
parameters and the selection of attributes could also improve
the computational efficiency of the workflow and enhance
the transferability of the rule sets into different spatial sub-
sets within the Cameron Highlands in Malaysia. This study
suggests that developing rule sets based on optimized tech-
niques and using VHR airborne LiDAR-derived data and
spatial attributes are effective in identifying the locations of
landslides and distinguishing their types in tropical regions.
This proposed automatic landslide detection method can be
an important geospatial solution for managing landslide
hazards and conducting landslide risk assessments.
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4Integration of LiDAR and QuickBird Data
for Automatic Landslide Detection Using
Object-Based Analysis and Random Forests

Biswajeet Pradhan, Maher Ibrahim Seeni and Haleh Nampak

4.1 Introduction

Landslide inventories are indispensable in producing land-
slide susceptibility, hazard, and risk maps. Landslide
inventory maps are produced by detecting landslide loca-
tions or scarps. The greatest target of inventory map is to
supply the criterion information on the distribution and
movement triggered by one or multiple events and to eval-
uate parameters that affect the slope failure (Galli et al.
2008). The conventional methods used to create landslide
inventory include aerial photograph interpretation, field
observations, and historical records of landslides (Nandi and
Shakoor 2010). However, these conventional methods are
limited by inadequate aerial photograph resolution desired to
detect small landslides, morphologic structures covered by
vegetation, and laborious and time-consuming nature of
detailed field mapping in rough terrains.

Recently, high-resolution digital elevation models
(DEMs) and landslide maps obtained from airborne products
are becoming increasingly popular for generating accurate
landslide inventories (Eeckhaut et al. 2007). Light detection
and ranging (LiDAR), high-resolution satellite images (i.e.,
IKONOS, QuickBird, and SPOT), and interferometric syn-
thetic aperture radar (InSAR) are salient examples of using
advanced technologies (Calabro et al. 2010; Murillo-García
et al. 2015; Singh et al. 2005; Zhang and Gruen 2006).
Several advantages of the techniques are in their rapid
cost-effective data acquisition over large geographic areas;
fusion of various spatial, spectral, and multitemporal data
products that generate topographic information and analyti-
cal interpretation; and enhanced viewing capabilities beneath
dense vegetation. Based on the comparison of traditional and
advanced techniques for landslide recognition conducted by
(Guzzetti et al. 2012), they found that the accuracy of
landslide maps can be enhanced with modern techniques.

Furthermore, they can positively affect all derived outcomes
and investigations, such as landslide modeling, susceptibil-
ity, and risk assessments.

As mentioned, the use of very high-resolution DEMs is
one of the common methods in analyzing surface morphol-
ogy. The high-resolution DEM derived by LiDAR sensors
provides opportunities for researchers to identify and map
slope failures (Derron and Jaboyedoff 2010). Optical satellite
images have several advantages over aerial photographs,
panchromatic images, and LiDAR data as they record mul-
tispectral information of the terrain in specific portions. The
main privilege of using LiDAR data is its capability to
penetrate vegetated locations and to attain valuable and
useful information on topographic features (Slatton et al.
2007). The superiority of LiDAR data makes it preferable
compared with other data sources such as aerial photographs
for landslide detection in forested areas (Brardinoni et al.
2003).

However, very high-resolution sensors have caused more
challenges considering the lower spectral bands and higher
sensitivity to co-registration errors. Hence, object-based
image analysis (OBIA) has become a widely used technique
in various geoscience fields to extract geometric and con-
textual information of multisource data (Blaschke 2010).
The OBIA techniques are used in natural disaster monitoring
and assessment, as well as in other environmental studies
(Blaschke 2010; Castillejo-González et al. 2009; Van Den
Eeckhaut and Hervás 2012). In these techniques, the image
is segmented into homogeneous regions composed of similar
pixels and then, objects are classified into sets of features
related to spectral, spatial, and contextual properties.

Feature selection in high-dimensional datasets is also an
important element to increase the accuracy of the algorithm
for classification. Several feature selection methods are used
in conjunction with OBIA (Laliberte et al. 2007). The most
widely used examples are artificial neural networks (Van
Coillie et al. 2011), support vector machines, genetic pro-
gramming (Van Coillie et al. 2007), RF (Pal 2005), K-
nearest neighbor algorithm, kernel-based feature extraction
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(Arenas-Garcia and Camps-Valls 2008), and cellular auto-
mata (Wang et al. 2011).

An accurate landslide inventory map can be constructed
using a set of criteria and a detailed analysis. Therefore, the
availability of very high-resolution satellite images in con-
junction with OBIA techniques can improve the feature
extraction and effectively integrate data from multiple
sources. Currently, the integration of QuickBird imagery
with a LiDAR-derived DEM was conducted to map the
landslide locations in the study area. Moreover, advanced
methods, such as Taguchi technique, RF method, and
rule-based classification, were used instead of traditional
classification techniques for segmentation, feature selection,
and object classification.

4.2 Study Area

Bukit Ma’okil, Malaysia, was selected as the study area to
implement landslide detection considering its proneness to
landslides. This area is located at the zone of 3°11N–3°12N
latitude and 101°45E–101°46E longitude. Area coverage is
24 km2, covering a small part of Johor Bahru state
(Fig. 4.1). From April to June, the highest temperature is
between 29 and 32 °C. Annual rainfall is very high aver-
aging between 2500 and 3000 mm annually. The two pro-
nounced wet seasons are from September to December and
February to May. The rainfall peaks are between November
and December and March to May. The geomorphology of
the area consists of undulating plateau and hilly terrain. The
geology of the areas consists of quaternary and Devonian
granite (Yusof et al. 2015). In recent years, several landslides
were recorded along highways, main roads, and stream
scouring the sides of the streams.

4.3 Data Used

Two data sources, namely LiDAR-derived DEM and
QuickBird imagery, were utilized to create the landslide
inventory. Airborne LiDAR is a popular remote sensing
method used for the digital presentation of the topographic
surface of regions with small to large coverage (Rau et al.
2014). This method uses a laser sensor positioned on an air-
plane to record the distance from the sensor to various points
on earth. A total of 100 points are recorded in each square
based on a number of conditions such as elevation, speed, and
type of sensor (Saeidi et al. 2014).Moreover, terrain condition
is an important factor. LiDAR vector point data were gathered
over −24 km2 of Ma’okil on August 3, 2013. The data were
recorded approximately 112,732,461 data points. QuickBird

imagery using high-resolution satellites has become popular
for mapping. The satellite contains panchromatic (61–72 cm
spatial resolution) and multispectral sensors (2.44–2.88 m
spatial resolution) captured on February 8, 2014. The sensor
covered 16.5–19 km in the across-track direction. The sig-
nificant advantage of these data over conventional aerial
photography is the provision of multitemporal landslide maps
with a revisiting rate of one day (Cheng et al. 2004).

4.4 Methodology

The overall workflow of the automatic landslide detection
proposed in the current study is presented in Fig. 4.2. The
process consists of three main stages. First is the data pre-
processing and preparation. Second is the Taguchi opti-
mization used to select the best combination of segmentation
parameters. Once the input data was segmented, RF algo-
rithm was adopted to select relevant spectral, spatial, and
texture features for landslide detection. In addition, relevant
features were used to develop the rulesets for the landslide
detection using knowledge-based approach. Afterward, the
developed rulesets were applied on the identified processed
data and landslide prone areas. Finally, the proposed work-
flow was validated using landslide inventory data collected
by various methods, such as interpretation of aerial pho-
tographs, field survey, and previous studies.

4.4.1 Data Preprocessing and Preparation

The original LiDAR data was in LAS format. First, the LAS
data was converted into raster format in GIS with (1 m)
spatial resolution using a TIN-based interpolation (Fig. 4.3a)
creating the DSM. Afterward, the point clouds were filtered
into ground and non-ground points to generate DEM using
the same interpolation technique (Fig. 4.3b). Two new DEM
and DSM datasets were derived from these processes used
for landslide detection. The slope map was also generated
from LiDAR derived from DEM with a resolution of 1 m
using 3D spatial analysis tool of ArcGIS (Fig. 4.3c). In
addition, slope is one of the most significant factors causing
slope instability given that the shear stress in soil or in other
unconsolidated material increases with progressive inclina-
tion. Normalized difference vegetation index (NDVI) is one
of the most important data layers for landslide detection.
This index represents the greenness of the vegetated earth
surface, and it is an essential parameter for class separation
of vegetation and non-vegetation in case of landslide. Cur-
rently, this layer was generated from the NIR and red bands
of QuickBird image using Eq. 4.1 as follows:
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Fig. 4.1 Location of the study area used in the current research to test a developed methodology for detecting landslides from integrated data

Fig. 4.2 Overall method used to
identify landslide prone areas
from LiDAR and QuickBird data

4 Integration of LiDAR and QuickBird Data for Automatic Landslide … 71



NDVI ¼ RED� NIR
REDþNIR

1\NDVI[ � 1 ð4:1Þ

4.4.2 Segmentation Using Taguchi Method

Image segmentation is an essential step for the object-based
automatic feature extraction process; it is a spatial clustering
technique that completely subdivides the image into
non-overlapping areas or segments (Chen et al. 2009). The
two main segmentation categories are edge-based and
region-based methods. In the edge-based method, image
edges are distinguished by thresholding the image gradient
attained from a differentiation filter, whereas in the
region-based method, a group of pixels is distinguished
either by growing a “seed” pixel until the homogeneity
criteria (scale) is fulfilled or by splitting the entire image
initially and then merging the homogeneous regions (Möller
et al. 2007). These methods require several user-defined
parameters to guide the segmentation process. The Taguchi

tables facilitate easy, stable experiment designs (Moosavi
et al. 2014). Therefore, only 25 experiments were selected
for assessment by the Taguchi method in terms of the three
segmentation parameters (i.e., scale, shape, and compact-
ness). Moreover, the plateau objective function (POF) was
measured for each test to evaluate segmentation accuracy in
each of the 25 experiments. POF is a combination of a
spatial autocorrelation index and a variance indicator.

The following general steps were performed to apply the
Taguchi method: (a) The process objective was determined in
the beginning, and the possible values of a particular
parameter for the process were defined. (b) The parameters
(scale, compactness, and shape) that can influence the pro-
cess were then defined, and the variable values that can affect
the performance were presented; thus, the level was defined
by the user depending on the effect of the parameter. For
instance, a shape value can vary from 0 to 1.0. When the level
increases, the number of experiments conducted increases as
well. (c) An orthogonal array was created to design the
condition and to determine the number of experiments.

Fig. 4.3 Input parameters used in the object—based analysis for landslide prone area identification: a LiDAR-derived DSM; b LiDAR-derived
DEM; c LiDAR intensity; d slope; and e QuickBird image
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Selecting the orthogonal array depends on the number of
levels and parameters. (d) The experiments were then applied
once the appropriate array was selected. The effect of each
parameter on the performance was then measured.

The loss function can be calculated as follows (Borghuis
et al. 2007):

l yð Þ ¼ kcðy� TÞ2 ð4:2Þ
where T is target value of y, and the measured value, y, as a
loss function. kc is the constant in the loss function that can
be calculated by considering the acceptable interval as
follows:

kc ¼ C

D2 ð4:3Þ

where C is loss associated with sp limit and Δ is deviation of
specification from target value. When the three parameters
that affect the segmentation process were defined, the level
of each parameter should also be defined. The level refers to
the probable value of each parameter in terms of maximum,
minimum, and current values. In case of a large gap between
the minimum and maximum values of a specific parameter,
more levels were added to the parameter. The proper array
was selected after the number of parameters and levels were
defined. A constant array was found for the Taguchi method.
Each array is selected depending on the parameters and
levels. In the case of three parameters and two levels, L25
array was selected (Table 4.1). The array assumes that the
number of levels equals each parameter. Otherwise, the
assumption is based on the highest value.

Furthermore, the POF was measured for each test to
examine segmentation quality using each testing combina-
tion and to determine the optimum segmentation parameters.
POF is the combination of a spatial autocorrelation index
and a variance indicator. Signal-to-noise (S/N) ratio was
measured to assess the testing segmentation outcomes.
A higher S/N ratio represents higher segmentation accuracy.
The S/N ratio is calculated as follows:

SNR ¼ �10Log10
1
n

X 1

y2i

� �
ð4:4Þ

where n is the number of repetitions under similar test sit-
uations (n = 1 in this study) and y are the POF values
obtained from each segmentation test. The S/N ratio table
was then achieved, and the optimum condition was
determined.

4.4.3 Feature Selection Using RF Method

Random forest is a classification algorithm that directly
provides measures of variable importance (Genuer et al.
2015). These outstanding features render it appropriate to
classify remote sensing data, such as multispectral (Pal
2005) or multisource data (Gislason et al. 2006). Variable
importance measure was implemented based on the esti-
mation of permutation importance, which was regarded as a
reliable indicator (Strobl et al. 2007). When the training set
for a particular tree was drawn by sampling with replace-
ment, nearly one-third of the cases were excluded. The
out-of-bag (OOB) data can be used to estimate the test
accuracy and the permutation importance measure.

The importance of variable m can be estimated by ran-
domly permuting all the values of the m^th variable in the
OOB samples for each tree. The common measure for
variable importance (Breiman 2001) is prediction accuracy
(i.e., the number of observations classified correctly) before
and after permuting variable m averaged over all trees. The
high decrease in prediction accuracy indicated the impor-
tance of the variable. Therefore, to select the most relevant
features, RFs were iteratively fit to the data. A fraction of the
features (the least important ones) was eliminated at each
iteration, and a new forest was built. The fraction was fixed
at 0.2 by default. This allows a relatively rapid operation and
increases the resolution as the number of chosen features
decreases. After fitting all forests, the selected set of features
was the OOB error rate, falling within the u = 1 standard
error of the minimum error rate of all forests.

4.4.4 Rule Definition for Classification

Rule-based classification considers the spectral, spatial,
textural, and contextual characteristics of each segment.
Once objects were detected and segmented using the mul-
tiresolution algorithm optimized by the Taguchi method,
eCognition calculates various parameters such as size,
compactness, and shape of each object. These parameters are
applied as class discriminators in the object-oriented classi-
fication. These object attributes are called object features. In
this research, a procedure proposed by (Díaz-Uriarte and De
Andres 2006) was adopted, and the numbers of the first and
second RFs were set as 2000 and 500, respectively, to
specify the feature subsets used in building the final RF
classifiers. An initial feature rank was constructed using the

Table 4.1 Factors and their
levels used for image
segmentation optimization

Factor Description Level 1 Level 2 Level 3 Level 4 Level 5

A Scale 5 10 20 30 40

B Shape 0.1 0.3 0.5 0.8 1

C Compactness 0.2 0.3 0.4 0.5 0.8
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first RF, and then the least significant at 20% of features
were excluded using the second RF by an iterative process.
All landslide pixels and an equal number of non-landslide
pixels were chosen randomly as the sets for feature selection.
Therefore, setting the rules was the final step in classifying
the image. The rules were created based on the importance
of feature subsets and their values, as well as the general
knowledge of the author on landslide mechanisms and
characteristics.

4.4.5 Validation

The quality of a landslide inventory map depends on its
accuracy and on the type and certainty of the information
represented in the map. The accuracy of the generated map is
described according to the completeness of the map and the
thematic precision of the information on the map (Galli et al.
2008). The confusion matrix was used to examine the effi-
ciency of the classification map and the detected landslide
locations. The confusion matrix is a cross-tabulation of the
classified and actual class labels for the study area (Foody
and Mathur 2004). This matrix is a square array of dimen-
sion r � r, where r is the number of categories. The con-
fusion matrix represents the correlation among two samples
of measurements taken from the classified region. Overall
accuracy, recall, and precision are the common indicators in
measuring the accuracy of extracted landslides. The overall
accuracy is determined by dividing the aggregate of the main
diagonal entries of the confusion matrix by the entire number
of samples. However, the recall or true positive rate (TP) is
the proportion of correctly identified positive cases, and
precision (P) is the proportion of the corrected predicted
positive cases.

4.5 Results

For the application of the Taguchi method, the choices for the
three parameters, namely scale, compactness, and shape, were
defined and listed in five levels (Table 4.1). Thus, 243 com-
binations can be created for segmentation, and the analysis of
these combinations requires a significant amount of time.
However, the use of the Taguchi optimizationmethod reduced
the number of combinations to 25 experiments. Every 25
segmentation prototypes were also tested based on the Tagu-
chi orthogonal array, and the estimated POF and SNR of each
available combination were computed (Table 4.2).

The segmentation quality and the optimum combination
parameters were selected based on the S/N ratio and the
mean effect plot for POF (Table 4.3 and Fig. 4.4). The
boldface figure refers to the maximum value of the S/N
ratios of a certain factor which represents the optimum

conditions for segmentation. The precision of this segmen-
tation was assessed visually as the boundaries of most
objects were detected accurately (Fig. 4.5).

Another stage in classifying the image segments is
selecting the most significant variables through the appli-
cation of the RF method. The RF method procedure involves
the creation of new RFs iteratively ignored the least
important 20% of the variables in each iteration. This pro-
cedure is repeated until only the most significant subset of
variables are left. For each RF, the OOB error is computed
as a criterion to choose the model with the smallest OOB
error. This variable selection simplifies the model, thereby
helping enhance the classification accuracy. Table 4.4 rep-
resents the importance of various features based on their
potential to distinguish landslide and non-landslide ele-
ments. Table 4.5 shows that the values derived from mean
DEM, mean DSM, and standard deviation DSM dominated
the variable importance ranking.

Figure 4.6 shows the created rules and their categories for
the data used in this research. For instance, the mean of
DEM and the standard deviation (stdev) of DSM values
were used as important indices in differentiating landslide
and non-landslide locations. The gray level co-occurrence
matrix (GLCM) and mean NIR were also considered as other
significant indices to determine the classified landslide
inventory map. Various rules were examined to obtain the
best results by applying the final rules shown in Fig. 4.6.
The application of the created rules classified the image
segments and detected the homogeneous groups. The entire
image was then classified based on the defined rules, and
the classification map was produced. Figure 4.7 shows the
classified map with the detected landslide location in the
study area. Table 4.5 shows the results of the accuracy
assessment based on the confusion matrix for landslide
inventory analysis. The achieved accuracy for the classifi-
cation of both landslide and non-landslide locations was
90% (overall). This result revealed that the locations were
accurately detected as inventory. In addition, the location of
the identified landslides was also plotted in 3D to better
understand their potential effects on the highway in the study
area (Fig. 4.8). Some statistics were also calculated to
clearly interpret the results.

Furthermore, the detected landslides were further validated
by a field visit to the study area to quantitatively assess the
landslide identification. The landslide inventory used in the
accuracy assessment was collected from various sources, thus
the field visit was important to validate the proposed method.
Figure 4.9 presents parts from the study area showing one of
the detected landslides. The landslide location is highly sus-
ceptible for landslide considering the hilly terrain as steep
slopes (Fig. 4.9a). Identifying landslides can prevent more
landslides in the future by implementing small and low-cost
projects. The identification of landslide prone areas and the
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implementation of supported projects can reduce potential
risks to the community and near highways (Fig. 4.9b).

4.6 Discussions

The detection of landslides using knowledge-based methods
without training data is difficult because various types of
landslides, data sources, and landslides are hard to separate

from slope bare soil and man-made cut slopes. Currently, the
integration of RF and object-based analysis simplified the
process by selecting only relevant features with a certain
degree of importance for landslide detection. Therefore,
knowledge-based rules are easily defined, and these rules are
most probably transferable to other study areas. Features
unique for landslide identification were used in the
rule-based classification to accurately detect and separate
landslides from other features with slightly similar

Table 4.2 L25 orthogonal array,
Moran’s Index, intra-segment
variance, and POF values

Scale Shape Compactness Moran’s index (I) Intra-segment variance Normalized POF

1 1 1 0.1194 82.19 1.343

1 2 2 −0.0202 82.33 1.417

1 3 3 −0.0970 121.39 1.446

1 4 4 0.4592 247.25 1.114

1 5 5 −0.2178 3428.21 0.522

2 1 2 −0.1300 194.72 1.441

2 2 3 −0.2255 196.58 1.492

2 3 4 −0.3378 309.06 1.517

2 4 5 −0.3591 583.53 1.447

2 5 1 −0.4321 602.26 1.480

3 1 3 −0.6605 442.43 1.649

3 2 4 −0.9714 497.08 1.797

3 3 5 −1.0910 503.68 1.858

3 4 1 −1.0245 534.71 1.814

3 5 2 −0.8979 542.88 1.744

4 1 4 −0.3476 321.45 1.519

4 2 5 −0.4498 402.31 1.549

4 3 1 −1.0251 502.65 1.824

4 4 2 −0.9704 468.11 1.805

4 5 3 −0.3762 511.23 1.477

5 1 5 −1.0680 488.97 1.851

5 2 1 −0.8767 435.60 1.765

5 3 2 −1.1204 545.87 1.861

5 4 3 −0.2669 477.89 1.429

5 5 4 0.7665 509.66 0.872

The bold text represents the important/significant values.

Table 4.3 Signal-to-Noise
Ratios (Larger is better)

Level A B C

1 0.8167 3.8117 4.259

2 3.3766 4.0659 4.3112

3 4.964 4.5639 3.5023

4 4.234 3.51 2.418

5 3.5178 0.9575 2.4186

Delta 4.1473 3.6064 1.8932

Rank 1 2 3

The bold text represents the important/significant values.
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characteristics such as cut slopes. The separation of land-
slides from cut slopes and slope bare soil can only be
achieved by integrating spectral, spatial, and texture rules.
However, using these attributes to accurately detect land-
slides and separate them from other features requires the
identification of the accurate boundary of the landslide
objects. This issue was considered in the current research by
using an optimized segmentation process. The Taguchi
method permitted the selection of optimal combination of

segmentation parameters. Thus, accurate landslide objects
were defined to help precisely identify landslide prone areas
using the spatial and texture information of the objects. If the
landslide objects were not defined well, then the use of
spatial and texture information is not useful given that the
unique characteristics of landslides are undefined. Therefore,
the accurate segmentation of landslide objects created using
Taguchi and multiresolution algorithms was an essential step
for landslide detection.

Even though the quantitative accuracy assessment
showed the robustness of the proposed method, adding
contextual-based rules to the rulesets proposed can improve
the accuracy of the landslide detection. This was beyond the
scope of this study considering the difficultly in addressing
the conjunction of the current proposed workflow. An
in-depth understanding of landslide features and their cor-
relation with other features are necessary to construct such
contextual-based rules for object-based analysis. Therefore,
this limitation should be improved in future research.
Other possible spaces for improvement include considering
the type of landslides in the classification process and the
selection of segmentation parameters not only based on the
accuracy of created objects, but also based on the transfer-
ability to other study areas.

This study improved landslide detection by integrating
LiDAR-derived DEM and very high-resolution satellite
imagery. The study revealed that this integration is
important as the feature selection analysis by RF showed
the importance of NIR band in landslide identification. In
addition, the selection of LiDAR-derived DSM as an
important feature for landslide identification confirmed
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Fig. 4.4 Graph shows the SNR
values calculated by Taguchi used
to determine best combination of
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Fig. 4.5 Results of image segmentation using the optimum selected
parameters
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Table 4.4 Importance scores of
spatial/spectral features selected
by random forest algorithm

Variable Standard score Relative score Graphical score

Mean DEM 0.02724 100 ||||||||||||||||||||||||||||||||||||||||||||||||

Mean DSM 0.01968 72.25505 ||||||||||||||||||||||||||||||||||

Std DSM 0.01777 65.25907 |||||||||||||||||||||||||||||||

Mean red 0.01353 49.68443 |||||||||||||||||||||||

Mean blue 0.01174 43.09243 ||||||||||||||||||||

GLCM contrast 0.01017 37.32635 |||||||||||||||||

GLCM homogeneity 0.00899 33.02039 |||||||||||||||

NDVI 0.00825 30.30717 ||||||||||||||

GLCM dissimilarity 0.00771 28.31526 |||||||||||||

Mean green 0.00641 23.55235 |||||||||||

Max. difference 0.00611 22.41656 ||||||||||

Std green 0.00585 21.46415 ||||||||||

Std intensity 0.00548 20.13314 |||||||||

Std slope 0.00476 17.48251 ||||||||

Std NIR 0.00423 15.51774 |||||||

GLCM StdDe 0.00377 13.84709 ||||||

Skewness DSM 0.00289 10.59902 |||||

Mean NIR 0.00278 10.19153 ||||

Mean Slope 0.00234 8.60536 ||||

GLCM correlation 0.00131 4.79398 ||

Brightness 0.00115 4.20923 ||

Length/width 0.00112 4.09631 |

GLCM entropy 0.00107 3.93436 |

Std blue 0.0007 2.57535 |

Asymmetry 0 0

Compactness 0 0

GLCM Angular_2 0 0

GLCM mean 0 0

MEAN intensity 0 0

Shape index 0 0

Skewness blue 0 0

Skewness DEM 0 0

Skewness green 0 0

Skewness intensity 0 0

Skewness NIR 0 0

Skewness red 0 0

Skewness slope 0 0

Std red 0 0

Std DEM 0 0

Table 4.5 Detailed accuracy by
class

Predicted

Landslide Non-landslide

Actual Landslide 4 1

Non-landslide 0 5

Overall accuracy = 90%
Recall (landslide) = 0.80
Recall (non-landslide) = 1
Precision (landslide) = 1
Precision (non-landslide) = 0.83

4 Integration of LiDAR and QuickBird Data for Automatic Landslide … 77



that the integration was critical for landslide detection.
The rapid growth of vegetation in tropics, a major prob-
lem in landslide detection, was addressed by using NIR
band in the rule-based classification. The use of NIR

permits differentiation bare soils from newly growth
vegetation. The methodology of detecting landslides in
tropics with only the use of LiDAR data should be
improved possibly through the use of contextual

Fig. 4.6 Rules developed for landslide identification using in object-based analysis

Fig. 4.7 Results of landslide detection using object-based method. Results overlapped on landslide inventory show that 4 landslides are correctly
identified (upper left figure), and only one landslide was not detected accurately (lower left figure)
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information from the scene as stated earlier or by incor-
porating additional information on roads, landuse, and
streams in the classification process.

4.7 Conclusion

The current research mainly aimed to automatically produce
landslide inventory map with the integration of efficient
methods for object-oriented image classification, such as the
Taguchi technique for optimization of image segmentation,
RF method for selection of most relative feature, and
rule-based technique for differentiating between landslide

and non-landslide features. Two sets of data sources,
including LiDAR and very high-resolution QuickBird ima-
gery were used to extract the required information for
landslide mapping. The classification performance was
considerably enhanced and simplified using detailed infor-
mation and efficient techniques. Application of object-based
classification methods compared with the pixel-based tech-
niques required more time. However, they dominated the
shortcomings of pixel-based techniques. The spatial, spec-
tral, and textural features of each object were considered in
the object-based classification procedure. Rule-based
object-oriented classification was chosen to discriminate
between classes. The first stage of object-oriented

Fig. 4.8 Location of the identified landslides in 3D view perceptive showing its potential risk on highway

Fig. 4.9 Field verifications of detected landslide
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classification was segmentation performed through mul-
tiresolution technique. Optimized object segmentation and
selection of the most relevant features are required to create
rules for an accurate and rapid object-based classification of
landslide locations.

The optimum combination of the segmentation of
parameter was determined through the Taguchi method
which has been proven as an efficient method for such
applications. The orthogonal arrays generated from the
Taguchi method simplified the ideal combination for seg-
mentation by employing fewer examinations. A feature
section method based on the RF method was also used to
estimate the useful features in the image. A total of 23
features were selected as the members of the feature subset,
and some of those features had the highest relative scores,
such as mean DEM, mean DSM, std DSM, mean Red, mean
Blue, GLCM Contrast, GLCM Homogeneity, GLCM Dis-
similarity, and mean Green. The outcomes obtained from the
feature selection confirmed that the proposed features can
deliver operative information for landslide detection.
Therefore, the applicable rules were defined and applied to
the image to generate the classified landslide map. In addi-
tion, the validation was also performed using the confusion
matrix method. The overall accuracy of the classification
map showed that it can be used as a valid inventory map,
which is highly valuable in planning and disaster
management.
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5Debris Flow Source Identification in Tropical
Dense Forest Using Airborne Laser Scanning
Data and Flow-R Model

Biswajeet Pradhan and Suzana Binti Abu Bakar

5.1 Introduction

Debris flow and related landslide processes can cause signifi-
cant hazard to human kind and economic loss annually. Debris
flow is a type ofmassmovement or landslide (Kuriakose 2006;
U.S Geological Survey 2004). Varnes (1978) defined debris
flow as a sudden mass movement, in which a combination of
loose soil, rock, organic matter and water moves as a flowing
slurry. In an earlier paper, Hutchinson (1988) defined debris
flow as a mixture of sand, silt, clay and coarse materials, such
as gravel, cobbles and boulders, with variable amounts of
water that travels down under the influence of gravity in high
density. Youssef and Pradhan (2013) specified that moving
downward the slope causes debris flows when poorly sorted
sediments or loose overburden materials are saturated with
water. Several terms related to mass movement include debris
floods, lahars, debris torrents or debris slides (Varnes 1978;
Johnson 1984; Pierson and Costa 1987; Pradhan and Lee
2009, 2010a; Youssef and Pradhan 2013).

Debris flow can initiate from shallow landslides (Gabet
and Mudd 2006; Park et al. 2016). According to Rahman
(2014), the most common types of landslides in Malaysia are
shallow slides where the slide surface is usually less than 4 m
deep; this type occurs during or immediately after an intense
rainfall. Shallow landslide commonly occurs in mountainous
terrain and is triggered by earthquakes or intense rainfall.
Pimiento (2010a, b) studied shallow landslide, which is also
known as slope failure where movement involves earth or
debris from superficial deposits that are mainly soil and
colluvium. Cruden and Varnes (1996) described landslide
classification based on the material (rock, debris and earth)
and movement (fall, topple, slide, spread and flow).

Monitoring debris flow is considerably complex because
it occurs in rugged and inaccessible terrain where field work
can be challenging, dangerous and time-consuming

(Elkadiri et al. 2014). In a recent study by Rickenmann
(2016), the mechanical description of debris flow depends on
the material composition and solid–fluid mixture. Three
main factors, namely slope gradient, sediment availability
and water input, are identified as critical conditions for
debris flows to occur (Takahashi 2007).

New sensors and techniques, such as airborne laser scanning
(ALS) by light detection and ranging (LiDAR) and terrestrial
laser scanning (TLS), provide high-resolution topographic data
contributing to improved representation of land surface
(Martinaszabova and Stanislavhroncek 2015). Availability of
high-resolution digital elevation models (DEM) fromALS and
TLS facilitates detailed hazard mapping related to mass
movement and flood in mountainous areas (Jaboyedoff et al.
2012).Many landslide-related researches have been conducted
in Malaysia. Most of these published works are related to
landslide susceptibility, hazard and risk assessment. Most
recently, LiDARdatawere used in landslide-related research in
Malaysia. Abdulwahid and Pradhan (2016) used a high-
resolution airborne LiDAR data to obtain landslide condition-
ing factors for spatial prediction of landslide hazard areas. Jebur
et al. (2014) used high-resolution ALS data to optimise land-
slide conditioning factors in a tropical forest area of Malaysia.
Yusof et al. (2015) used high-resolution airborne LiDAR data
for spatial landslide hazard assessment along the Jelapang
Corridor of the North–South Expressway in Malaysia.

Huat and Ali (2012) mentioned that ALS coupled with
ortho-rectified photographs can be remarkably useful for
detailed geomorphological mapping, especially in tropical
forests. LiDAR data can also be significant for identifying
potential debris flow areas because of the ability of laser
pulse to penetrate forest canopy, thereby revealing hidden
features, such as scarp areas. However, research concerning
debris flow in Malaysia has not been fully developed and is
limited. The present study mainly aims to identify an opti-
mum DEM resolution for identification of debris flow areas
in a tropical environment where thick vegetation hinders the
identification process.
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5.2 Formation of Debris Flow

Nettleton et al. (2005) characterised debris flow based on
topographic and geological characteristics of locations.
Debris flow can be formed into two types, namely hill slope
(open-slope) and channelled debris flows (Evans 1982; Chen
et al. 2012). Figure 5.1 shows the illustration of hill slope
and channelled debris flows.

5.2.1 Hill Slope (Open-Slope) Debris Flow

Cruden and Varnes (1996) stated that hill slope debris flow
forms its own path down the valley slopes as a track before it
flows down into the deposition area. This type of flow often
initiates during rainfall with a slide-detached materials, such
as rock and upland debris slide. Materials accumulate on a
lower area, that is, the deposition area, where the slope
gradient is low. Channels and levees can also be found in a
deposition area (Chen et al. 2012).

5.2.2 Channelled Debris Flow

Nettleton et al. (2005) defined this type of debris flow
formed in an existing channel, such as valleys, gullies,
depressions or hollows; in these areas, the materials consist
of 80% of solid weight, and the flow presents high density as
that of wet concrete. Channel bed failure is the main cause of
channelled debris flow (Chen et al. (2012).

5.3 Previous Study and Flow-R Software

Flow-R (flow path assessment of gravitational hazards at a
regional scale) is developed under MATLAB specifically to
identify potential source areas and propagation extent of
debris flow (Horton et al. 2013). Flow-R has been used in
many countries for identification debris flow source area and
production of susceptibility maps. Such studies include those
of Canton de Vaud (Horton et al. 2008) and Val de Bagnes
(Jaboyedoff et al. 2012) in Switzerland. In addition, local
institutions, universities and government agencies have ben-
efited from this software because it is freely downloadable
from www.flow-r.org (Blais-Stevens and Behnia 2016).
Numerous studies on debris flow sources and propagation
areas using Flow-R software have been found in the literature.
Research done by Fischer et al. (2012) in Norway considered
using DEM of varying resolutions, i.e. 5, 10 and 25 m, to
evaluate the effect of DEM on source area identification using
Flow-R software. They used lithology map, plan curvature,
slope angle and flow accumulation as parameters. The results
revealed that the modelling result of source area presents a
good correlation with field observations. Blais-Stevens and
Behnia (2016) investigated the sources of debris flow by using
qualitative heuristic method and Flow-R along the Yukon
Alaska Highway Corridor, Canada. They used several
parameters, such as geology, curvature, proximity to drainage,
slope aspect, slope angle and flow accumulation, which were
obtained from 10-m DEM resolution. Their results revealed
that 80–90% of debris flow source is identified using the
heuristic method and Flow-R. They also identified the

Fig. 5.1 Formation of debris flow: a hill slope and b channelled debris flows (modified after Nettleton et al. (2005)
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potential debris flow areas. Realino et al. (2015) identified
debris flow sources using interferometric synthetic aperture
radar from a 5-mDTM resolution. Their research identified six
potential source areas, which were also verified in the field.
Elkadiri et al. (2014) assessed a remote sensing-based
approach for debris flow susceptibility assessment using
artificial neural network (ANN) and logistic regression
(LR) modelling. The parameters used for source detection are
slope, aspect, topographic position index, flow accumulation,
normalised difference vegetation index, stream power index,
topographic wetness index and distance-to-drainage line.
Their results revealed that ANN and LR produce 96.1 and
96.3% prediction accuracies, respectively. Kasim et al. (2016)
and Jamaludin et al. (2014) studied the triggeringmechanisms
and characteristic of debris flow at eight debris flow locations
in Peninsular Malaysia. They revealed that triggering mech-
anisms depend on hydrological, morphometric, geological
and geotechnical factors, as well as the duration and intensity
of rainfall.

This paper demonstrates the identification of potential
source areas using Flow-R model at Ringlet, Cameron
Highlands, Malaysia. The algorithms and models and the
details of their utilisation were explained. Data from a
high-resolution ALS (LiDAR) were used to derive terrain
information and debris flow-related parameters, such as
altitude, slope angle, flow accumulation and plan curvature.
Subsequently, high and low resolutions of DEM (1, 2, 5 and
10 m) were extracted from LiDAR data. The specific
objectives of this study are as follows: (1) to identify the
effect of DEM resolutions on the detection of debris flow
sources using ALS (LiDAR) data and (2) produce debris
flow source map within the study area.

5.4 Study Area and Data

5.4.1 Study Area

This study was conducted in Ringlet, Cameron Highlands,
Malaysia. The area is commonly prone to landslide activities
(such as translational, rock falls, rotational and debris flows)
and gully erosions due to running water. According to the
local newspaper reports (The Star, 2015) dated 9 November,
debris flow that occurred along the road causes a traffic
standstill for about 6 h when trees, soil and rocks fell on the
road. Ringlet is located between longitude 101° 22′ 59.99″E
and latitude 4° 24′ 59.99″N with an altitude of 1200 m
above mean sea level (Fig. 5.2). The area is situated on the
main range known as Banjaran Titiwangsa. The geological
setting of Ringlet is mainly composed of granite. Never-
theless, scattered outliers (roof pendants) of metasediments
are also present. The metasediments consist of schist,

phyllite, slate and limestone (Chow et al. 2003). The geol-
ogy map of the study area is Post-Triassic–Mesozoic granite
comprising granite rocks and a few patches of metamorphic
rocks comprising Silurian–Ordovician schist, phyllite,
limestone and sandstone (Pradhan and Lee 2010). The
average annual rainfall in Ringlet area is around 2660 mm,
and rainfall intensity is a triggering mechanism that affects
the hill slope and causes gully erosion (Abdulwahid and
Pradhan 2016).

5.4.2 Data Used

Airborne Laser Scanning data (LiDAR) data were used.
These data were acquired on 15 January 2015 using an
aircraft flying at an altitude of approximately 1500 m above
mean sea level and resulted in nearly eight points per square
metre with a 25,000-Hz pulse rate frequency. The LiDAR
vector point data were recorded over 25 km2 of the Ringlet
area. The absolute accuracy of the LiDAR data satisfied the
root-mean-square errors of 0.15 m in the vertical axis and
0.3 m in the horizontal axis. Acquiring a reliable inventory
map is a crucial task in landslide susceptibility assessment
(Jebur et al. 2014). In the present study, the landslide
inventory map was prepared by multiple field campaigns.
The existing landslide inventory for the past 15 years was
used as a reference; in this inventory, historical records of
landslides were obtained using remote sensing methods,
such as archived 1:10,000–1:50,000 aerial photograph,
SPOT 5 panchromatic satellite image, IKONOS and
QuickBird satellite images, for visual detection of landslide
occurrences in Ringlet area. The locations of the landslide
event were drawn on 1:25,000 maps; they were also plotted
closely based on site description, aerial photo-interpretation
and archived database and verified using field observations
(Pradhan and Lee 2010). A total of 29 landslides were
identified in the study area (Fig. 5.4). The orthophoto was
acquired during the LiDAR data acquisition campaign with
0.09 m spatial resolution and georeferenced to Geocentric
Datum of Malaysia (GDM2000). Visual interpretation was
performed by using high-resolution orthophoto, in which
analyst could detect the fresh landslide scars or geomor-
phological features, such as initiation zone, debris deposit
zone and flow track. The lithology map was prepared from a
1:63,300-scale geological map and collected from the
Department of Geology and Mineral Sciences, Malaysia. In
this study area, different types of lithology, such as granite
and schist, phyllite and slate, were present (Fig. 5.3). The
drainage networks and contours of 10 m were generated
from the Global Mapper Software. The land use/land cover
map of Ringlet area for 2015 was obtained from the Jabatan
Perancangan Bandar dan Desa Pahang (Figs. 5.4, 5.5).
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Fig. 5.2 Digital elevation model (DEM) map of Ringlet, Cameron Highlands, Malaysia

Fig. 5.3 Landslide inventory map shown on the orthophoto
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5.5 Methodology

Figure 5.6 illustrates the data processing workflow adopted
in this research. The process started with LiDAR data pro-
cessing, followed by DEM generation, parameters of source
area, validation and finally results and discussion.

5.5.1 LiDAR Data Processing

Data processing was performed using Global Mapper 17,
ArcGIS 10.2 and Flow-R software. Figure 5.6 shows the
data processing workflow for source area assessment using
Flow-R software. The DTM 0.5 grid derived from the x, y
and z point clouds was processed using the Global Mapper
17 software. The DTM consisted of 17 tiles with 36 million
point clouds covering the entire Ringlet, Cameron High-
lands. To avoid complex computation, the area was then
subset to a small area of interest that consists of four tiles
with 9 million point clouds only. The DTM represented the
bare ground surface without any objects. Afterwards, the
DEM was generated from DTM using binning (average
value) grid method because it is efficient for large point
datasets and suitable for complex mapping. The DEM was
then resampled to 1-, 2-, 5- and 10-m spatial resolutions.
Various resolutions should be created to identify the source

Fig. 5.4 Lithology map

Fig. 5.5 Land use/land cover map
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areas of debris flow because different resolutions produce
difference results, depending on the DEM quality and
accuracy (Horton et al. 2013). When the DEM resolution is
low, some information on significant areas might be lacking
due to the roughness of the DEM. When the DEM resolution
is considerably high, the extent of the debris flow sources
might be enlarged and time-consuming.

5.5.2 Source Area Delineation

The primary dataset in this research was grid-based DEM,
which was fed into Flow-R software. Blais-Stevens and
Behnia (2016) revealed that result accuracy is based on the
quality of the DEM. In the present study, 0.5-m DTM was
used to generate DEM resolutions of 10, 5, 2 and 1 m to
illustrate the effect of data resolution on the assessment of
debris flow source area. In Flow-R software, the index-based
approach is used; in this approach, the grid cells of input
data are classified based on favourable option, subsequently
excluded and ignored by the software (Horton et al. 2013).
Their work revealed that the favourable option is activated
when the user specifies the criteria of initiation of debris flow
on the Flow-R software. The software later excludes the data
when the initiation is unlikely to happen and ignores them
when no decision can be made on the parameter. All the
input data are combined in ASCII format generated from
ArcGIS software before loading into Flow-R software
according to their specific rule, and the results are

subsequently generated. Figure 5.7 illustrates the main
frame of Flow-R software.

5.5.3 Source Parameters

Three important parameters are required to identify possi-
ble locations of debris flow. Takahashi (1981) and Rick-
enmann and Zimmermann (1993) demonstrated that debris
flow initiation is based on slope angle, plan curvature and
flow accumulation parameters. Delmonaco et al. (2003)
pointed out that sediment availability, water input and
slope gradient are the three main factors affecting the
possible initiation of debris flow directly or indirectly.
DEM can be used to obtain the morphological data using
GIS-based approach, where water input, slope gradient and
curvature can be generated directly from DEM (Horton
et al. 2011).

5.5.3.1 Slope Angle
Slope angle plays a vital role in the initiation of debris flow.
According to Takahashi (1981), the slope angle is the main
criterion for debris flow susceptibility. The slope angle is
different for initiation, transportation and deposition zones.
Most debris flow occurs when the slope angle is higher than
15° (Rickenmann and Zimmermann 1993; Takahashi 1981).
Ortigao and Kanji (2004) specified that debris flow starts
when the slope angle is above 20°–25°. In the present
research, we considered the low slope angle as the initiation

Fig. 5.6 Data processing
workflow for source area
assessment
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of debris flow. Therefore, the selection of slope angle with
less than 15° threshold in the Flow-R software was excluded
from the analysis. Figure 5.8a, b, c and d show the slope
with 1-, 2-, 5- and 10-m resolutions, respectively. Blais-
Stevens and Behnia (2016) specified that the number of
debris flow sources increases with increasing slope angle.
However, their research stated that at an angle range
of 34°–37°, debris flow is unlikely to occur due to the
existence of rock scarps. At a slope angle higher than 40°,
the slope comprises weathered rock, which made the rock
hard and strong. Consequently, this situation is unlikely to
initiate debris flow (Dai and Lee 2001).

5.5.3.2 Flow Accumulation (Water Input)
Water input can be obtained from DEM information. This
flow accumulation, also known as upslope contributing
area, is widely used in distributed hydrological models
(Erskine et al. 2006). Flow accumulation presents infor-
mation regarding the amount of watershed flowing through
the cell. Flow accumulation aims to identify any active
stream, drainage network, gully or hidden flow in the study
area. The presence of the active stream causes the chan-
nelled debris flow with the surface water run-off (trans-
portation zone) (Nettleton et al. 2005). According to
Elkadiri et al. (2014), flow accumulation indicates the
process of water flow, convergence and infiltration of fluid
into pores or solids. Horton et al. (2013) developed the
following empirical formula of debris flow initiation zone

threshold between slope angle and contributing area based
on the studies of Rickenmann and Zimmermann (1993) and
Heinimann (1998).

Equation 5.1 shows the threshold for rare event as
follows:

tan b thres ¼ 0:32 Suca�0:2; if Suca\2:5 km2

tan b thres ¼ 0:26; if Suca� 2:5 km2
ð5:1Þ

Equation 5.2 shows the threshold for extreme event as
follows:

tan bthres ¼ 0:31 Suca�0:15; if Suca\2:5 km2

tan bthres ¼ 0:26; if Suca� 2:5 km2
ð5:2Þ

where tan bthres is the slope gradient, and Suca is the sur-
face of the upslope contributing area. Horton et al. (2013)
specified that the criterion of flow accumulation in Flow-R
software is 1-ha threshold with the slope relationship of
extreme event. Extreme event was used in this research to
avoid any lacking or possibility of source areas. Horton et al.
(2008) mentioned that when the user uses rare event, the
sources might be limited, and a small area can still contribute
to the initiation of debris flow. Flow direction was generated
firstly in ArcGIS, and the obtained product was used to
generate flow accumulation. Figure 5.9a, b, c and d show the
products of flow accumulation for 1-, 2-, 5- and 10-m res-
olutions, respectively.

Fig. 5.7 Flow-R software user interface
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Fig. 5.8 Slope angle sourced at different DEM resolutions: a 1 m, b 2 m, c 5 m and d 10 m
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Fig. 5.9 Flow accumulation obtained from different DEM resolutions; a 1 m; b 2 m; c 5 m; and d 10 m
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5.5.3.3 Plan Curvature (Sediment Availability)
Plan curvature is the third main parameter used to identify
the sources of debris flow. Plan curvature consists of three
types, namely flat, convex and concave. According to Del-
monaco et al. (2003), debris flow tends to occur when the
curvature is concave. Blais-Stevens and Behnia (2016) also
pointed out that debris flow occurs in gullies where the plan
curvature is concave. No standard threshold values exist for
plan curvature. Horton et al. (2013) revealed that curvature
threshold values may vary with location. In a study con-
ducted in Norway by Fischer et al. (2012), they used the
value −1.5/100 m−1 for mapping debris flow susceptibility
map. In Korea, plan curvature values ranging from −2/100 to
−1/100 m−1 were used (Park et al. 2013). Another study by
Horton et al. (2013) in Switzerland used the curvature value
of −2/100 m−1. These studies confirmed that threshold val-
ues vary with location. In the present study, the values tested
were between −1/100 and −2/100 m−1. Our plan curvature
of −2/100 m−1 provided an improved representation of
gullies for the source areas of debris flow. According to the
results, the plan curvature of −2/100 m−1 was used in 1-, 2-,
5- and 1-m resolutions in Flow-R software. The plan cur-
vature results generated in ArcGIS are shown in Fig. 5.10a,
b, c and d, where positive value indicates convex, negative
value indicates concave, and zero value indicates flat
curvature.

5.5.4 Landslide Inventory and Other Datasets

In this research, hillshade, orthophoto and landslide inven-
tory map consisting of 29 landslide locations were used to
validate the source areas of debris flow. Drainage network
was generated directly from Global Mapper 17 software, and
postprocessing was subsequently performed. Lithology map
was used to obtain knowledge regarding the geological
setting of the area. However, the lithology map was not
included in Flow-R software because it was only charac-
terised by two types: (a) granite and (b) metasediment.
According to the research conducted by Kasim et al. (2016)
and Jamaludin et al. (2014) on debris flow in Peninsular
Malaysia, these two types of lithology are prone to debris
flow, and no mapped geology type can be excluded as debris
flow source areas.

5.5.5 Modelling of Source Areas Using Flow-R

Index-based approach was used to identify the possible
source areas of debris flow. This approach considered three
topographic characteristics, namely slope angle, plan cur-
vature and flow accumulation, for the initiation of debris
flow. These parameters were extracted from DEM using

GIS-based approach. When the parameters’ threshold satis-
fied the criteria, Flow-R calculated the start cells of the
source areas. On the basis of thorough literature and
trial-and-error technique, the criteria selected for the
parameters were as follows:

• Slope angle: above 15°
• Flow accumulation: 1 ha with slope relationship extreme

event,
• Plan curvature: −2/100 m−1.

For the run-out and spread modelling, the following cri-
teria were generally used:

• Direction algorithm for propagation: Modified Holm-
gren’s with an exponent of 4 and

• Energy calculation: the friction loss function with a travel
angle of 11° and velocity threshold of 15 mps.

The modelling of source areas based on the probabilistic
and energetic algorithms was performed on the basis of the
defined source areas and DEM (Fischer et al. 2012). Starting
from the start cells of the source areas, the probability of the
debris flow path was calculated (Fig. 5.11).

5.6 Results and Discussion

This section presents the results of debris flow source area
identification.

5.6.1 Effect of DEM Resolution on Source
Detection

Figure 5.11a, b, c and d illustrate the effect of resolutions by
using modified Holmgren’s algorithm on DEM resolutions
(1, 2, 5 and 10 m) produced by Flow-R software. The
obtained result indicated the source areas of debris flow.
Figure 5.12a, b, c and d show the inset map (of Fig. 5.11)
displaying an enlargement of the calculated source areas of
different DEM resolutions produced in Flow-R software.
Figure 5.13 shows the combination of different DEM reso-
lutions (1, 2, 5 and 10 m) of the sources at the same area.

Figures 5.11, 5.12 and 5.13 show that the effect of DEM
resolutions varies among 1-, 2-, 5- and 10-m resolutions.
Results obtained from DEM resolutions of 5 and 10 m
(Fig. 5.14) lacked a large number of observed source areas
due to the roughness of the DEM. The DEM 2-m resolution
produced a significantly improved result on the detection of
the major source areas compared with DEM 5- and 10-m
resolutions. However, the DEM of 1 m enlarged the cover-
age of the source area compared with those of other DEM
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Fig. 5.10 Plan curvature values obtained from different DEM resolutions; a 1 m; b 2 m; c 5 m; and d 10 m
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resolutions. In general, the results obtained from DEM 1 m
showed a good match between the modelled source areas
and cross-sectional profile. Furthermore, the curvature was
concave, which showed the presence of gullies at the top
detected by DEM 1 m. The result was consistent with that of
previous studies conducted by Zhang and Montgomery
(1994) who revealed that the low resolution of DEM shows
no significant information due to lacking information. Quinn
et al. (1995) pointed out that the resolution and data volume

should be increased to simulate the hydrological and geo-
morphological processes. Such increase is due to that high
resolution can detect the presence of gullies and torrents
better than fine DEM resolution, as shown in DEM 1-m
resolution. Results showed that 1-m resolution produced a
significant result to capture the maximum topographic
variability of the natural gullies and channels existing in that
area compared with that of DEM 2 m. By contrast, DEM 5
and 10 m presented insignificant effect.

Fig. 5.11 Effect of different DEM resolutions; a 1 m; b 2 m; c 5 m; and d 10 m
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Fig. 5.12 Inset map displaying an enlarged calculated source areas by different DEM resolutions; a 1 m; b 2 m; c 5 m; and d 10 m
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Fig. 5.12 (continued)
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5.6.2 Density of Cell Directed from Different
DEM Resolutions

The density of cells detected from 1-, 2-, 5- and 10-m res-
olutions varied. Table 5.1 shows the statistics calculated for
each subset of DEMs. For DEM 1 m, the density of cells
was 331 with an area of 618 m2, where the mean and
standard deviations were 1.867 and 1.610, respectively.
For DEM 2 m, the total number of cells detected for the
sources was 78, with an area of 450 m2. The mean and
standard deviations calculated were 5.769 and 4.157,
respectively. The DEM of 5 and 10 m detected only a small
amount at 4 and 2 cells, respectively. The mean and standard
deviations calculated for DEM 5 and 10 m were 37.5 and
12.5 and 100 and 0, respectively.

5.6.3 Cross Section and Longitudinal Sections

To understand the characteristics of debris flow process,
three main concepts, namely initiation, transition and
deposition zones, were used. The main focus of this research
was the source of debris flow. Thus, initiation zone was
primarily studied. Debris flow commonly occurs when the

Fig. 5.13 Combination of DEM resolution sources of the same area

Fig. 5.14 Subset area 1; a longitudinal section; and b cross section
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plan curvature is concave. Consequently, at the initiation
zone, such flow usually contains steep slope failure in the
headwall or side slope of a gully or stream channel. At the
initiation zone, the source areas form a V or U shape. In this
zone, the vegetation is sparse and contains the landslide
scarps from previous landslide occurrences. Harris (2008)

specified that the plan curvature for debris flow sources can
be either linear or hyperbolic concave or a combination of
the two, thereby increasing the velocity of debris flow when
moving downward. The information that can be extracted
from the longitudinal section was the deposition area whose
curvature was convex. Hence, the cross and longitudinal

Fig. 5.14 (continued)
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sections provided user with an understanding of the source
area and allowed its differentiation from the deposition area.

5.6.3.1 Subset Area 1
Plan curvature is the third main parameter used to identify
the sources of debris flow. Plan curvature consists of three
types, namely flat, convex and concave. According to Del-
monaco et al. (2003), debris flow tends to occur when the
curvature is concave. Blais-Stevens and Behnia (2016) also
pointed out that debris flow occurrences. Figure 5.14a, b
illustrate the cross and longitudinal sections of the subset
area 1. Visual interpretation on orthophoto and hillshade
images showed the presence of semicircular or crown-
shaped shallow landslide scarp hidden in the thick forest at
the initiation zone (orange colour), where the DEM 1 m
detected the source area. Figure 5.14b shows that DEM 1 m
detected the presence of flow paths/channels or gullies at the
steep angle with a V shape below the scarp. DEM 2 m
detected the source area at low angle. Both 1- and 2-m
resolutions detected the presence of gullies and channels.
Nevertheless, 2-m resolution lacked the natural topography
on two other places highlighted by 1 m (Fig. 5.14b).
Moreover, the cross section showed the presence of
gullies/channels that will transport the sediment. DEM 5-
and 10-m resolutions provided no significant information
regarding the source area flowing from the steep terrain, but
they indicated the deposition area of the debris flow
(Fig. 5.14a, longitudinal section) where the curvature is flat.
Therefore, the results from DEM 5 and 10 m are negligible.

5.6.3.2 Subset Area 2
Figure 5.15 shows the subset of the second area where the
white colour points indicate the location of landslide from
the inventory. Landslides were located along the road.
Debris flow can be initiated from previous landslide occur-
rence. The cross section in Fig. 5.15b illustrated that DEM
resolution of 1 m can detect natural topography of the pre-
sent channels or gullies, whereas DEM 2 m can only detect
extent of the low area. The cells detected on both DEM of 5

and 10 m indicated the deposition area (Fig. 5.15a, longi-
tudinal section) where the curvature is flat.

5.6.3.3 Subset Area 3
Figure 5.16 illustrates the subset of the third area of debris
flow sources that could not be detected by the landslide
inventory location. The cross section (Fig. 5.16a) showed
that DEM 1 m detected the sources at the steep terrain below
the scarp. The source areas of DEM 1 m formed a dendritic
shape moving downward along the drainage network. The
cross section also illustrated that DEM 1 m can considerably
detect the channels than that of DEM 2 m, where some
information was lacking. DEM 5-m source cells were
detected along the channel moving downward to the depo-
sition area, whereas DEM 10 m could not detect the source
at the area. The orthophoto showed the area of the location.
The vegetation around the surrounding was sparse, and the
landslide scar was hidden in the thick forest.

5.6.3.4 Subset Area 4
According to the landslide inventory, seven locations of
debris flow were identified. Figure 5.17 shows the debris
flow location mapped in the inventory (white colour points),
where the sources can only be detected by DEM 1 and 2 m.
The cross section (Fig. 5.17a) illustrated that DEM 1 m can
provide a better extent of the source areas compared with
that of DEM 2 m. The presence of scarp in the thick forest
and multiple channels indicated that DEM 1 m produced a
significant result for source area detection. The orthophoto
showed the area of the location below.

5.6.4 Visual Interpretation from Orthophoto
and Hillshade (Potential Areas)

Figure 5.18a, b, c, d, e and f illustrate the visual observation
from the orthophotos and hillshade images whose locations
can be described as new potential source areas for debris
flow. The landslide inventory map showed that these loca-
tions have not been mapped or located. The visual inter-
pretation from orthophotos and hillshade images illustrated
the semicircular or crown shape of shallow landslide scarp,
where the scarp/scar was active or fresh. The results obtained
from DEM 1 m showed that the shallow failure scars were
the initiation points of the sources of debris flow (Fig. 5.18).
The scarp commonly exists on steep slope where the source
of debris flow is initiated. The shallow failure of the scarps
in the lithology map was identified as granite and schist,
phyllite and slate. Figure 5.18 shows the presence of flow
paths or gullies where the curvature is concave to transport
the sediments from the source areas moving downward into
the channels. The deposition area usually presented convex

Table 5.1 Statistical results for DEM at 1-m resolution

Statistics DEM
1 m

DEM
2 m

DEM
5 m

DEM
10 m

Cell count 331 78 4 2

Minimum 1 0 25 100

Maximum 14 28 50 100

Sum (area m2) 618 450 150 200

Mean 1.610 5.769 37.5 100

Standard
deviation

1.867 4.157 12.5 0
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Fig. 5.15 Subset area 2; a longitudinal section; and b cross section
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Fig. 5.16 Subset area 3; a cross section; and b 3D view from global mapper
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Fig. 5.17 Subset area 4; a cross section; and b 3D view from global mapper
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or flat curvature. These new potential areas were located in a
thick forest with steep terrain, where the scarp was hidden.
Fortunately, the high-resolution of orthophoto images and
airborne LiDAR data presents potential to address these
inadequacies. The landslide scarps are shown in orange line
in the image.

5.6.5 Slope Coverage

According to the results produced from different DEM res-
olutions, the slope gradient for the source areas detected by
DEM 1 m started from the slope angle range of 50°–70°
within an altitude of 1259 m and above mean sea level. This

Fig. 5.18 Visual observation of fresh scar/scarp (orange line) from orthophoto and hillshade images
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result was consistent with that of previous study by Puglisi
et al. (2011) who clarified that the slope is a high-angle
phenomena, and the soil is moderately thick. For DEM 2 m,
the slope angle started at 40°–50° for source areas at 1178 m

altitude. The slope angle for the source areas detected by
DEM 5 m varied from 30° to 40° at 1134-m altitude. The
slope angles varying between 25° and 55° were described as
low-angle phenomena, where the soil lied on the smooth

Fig. 5.18 (continued)
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slopes (Puglisi et al. 2011). The source areas detected by
DEM 10 m started at an altitude of 1117 m and slope angles
within 20°–30°. Furthermore, according to Horton et al.
(2013), some of the areas are detected at the minimum slope
of 5°–10°, and debris flow deposit starts with the slope at 5°.

The source areas followed dendritic drainage networks, as
shown by DEM resolutions 1 and 2 m and some in 5 m.
DEM 10 m lacked significant information. In addition, the
slope gradient indicated a debris flow deposit. The source
areas detected from DEMs 1, 2 and 5 m exhibited a concave

Fig. 5.18 (continued)
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Fig. 5.19 Slope coverage for a 1 m; b 2 m; c 5 m; and d 10 m
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curvature, where gullies are present for the possibility of
sediment transportation along the channel. However, DEM
1 m provided an extended coverage of the source areas. In
these areas, the scarps were found on high-steep slopes,
where the debris flow was initiated. Figure 5.20a, b, c and d
show the slope coverage for DEM resolutions of 1, 2, 5 and
10 m (Fig. 5.19).

5.6.6 Geological Setting up the Study Area

According to the geological map provided by the Depart-
ment of Geology and Mineral Sciences, Malaysia, and
depicted in Fig. 5.2, the geological setting of Ringlet is
mainly composed of granite. Kasim et al. (2016) studied the
triggering mechanism and characteristic of debris flow in
Peninsular Malaysia and revealed that the occurrence of
debris flow is mostly located in the main range of granite. In
addition, Jamaludin et al. (2014) pointed out that areas
covered by granite, volcanic, metamorphic and sedimentary
rocks also initiate the debris flow in Peninsular Malaysia,

where the slope angle ranges from 50° to 70°. Hence, these
two types of lithology existing in Ringlets and comprising
granite rocks and a few patches of metamorphic rocks
(schist, phyllite and slate) are prone to debris flow initiation.
Most of these types are formed in upstream and downstream
areas.

5.6.7 Validation

To validate the accuracy of the results produced by Flow-R
software, the probability of the source extent produced by
Flow-R and past event recorded from the landslides inven-
tory map were obtained by using buffering and intersection
methods of 20 and 50 m. Horton et al. (2011) and
Blais-Stevens and Behnia (2016) pointed out that these
methods are necessary to rate the zone based on its prox-
imity (recorded events) to the source areas. Moreover, the
buffer and intersection methods were performed to observe

Table 5.2 Probability method according to the landslide inventory location

Methods DEM 1 m (%) DEM 2 m (%) DEM 5 m (%) DEM 10 m (%)

Buffering and intersection, 20 m 72 45 17 3

Buffering and intersection, 50 m 93 79 31 3

Fig. 5.20 Map of the source areas of debris flow

Fig. 5.21 Map of the source areas of debris flow with the debris flow
probability value
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the worst scenario of the distance from the debris flow
source areas detected by Flow-R software to the landslide
inventory locations. Table 5.2 shows the validation results
of the probability detection method from source areas by
Flow-R software and the landslide inventory map. DEM 1-m
resolution achieved the highest accuracies with 72 and 93%
of buffering and intersection from 20 and 50 m from the
sources and landslide inventory data, respectively. DEM 2-m
resolution achieved 45 and 79% of buffering and intersection
from 20 and 50 m, respectively. DEM 5-m resolution
achieved the accuracies of 17 and 31%. Finally, the lowest
accuracies were produced by DEM 10-m resolution at 3%
for both 20 and 50 m from buffering and intersection
methods.

The DEM validation results also revealed that DEM 1 m
from 20-m buffering and intersection from source area can
detect 21 out of 29 from landslide inventory data, and 5 out
of 7 were detected from recorded debris flow. DEM 2 m
detected 13 out of 29 from landslide inventory and 2 out of 7
from recorded debris flow. DEM 5 m only detected 5 out of
29, and DEM 10 m detected 1 out of 29. Both DEM reso-
lutions 5 and 10 m could not detect the recorded debris flow
event from the inventory. However, from the 50-m buffering
and intersection of source areas, DEM 1 m achieved the
highest detection performance with 27 out of 29 and DEM
2 m with 23 out of 29; both of these resolutions also
detected 7 out of 7 of past debris flow event from the
inventory. DEM 5 m detected 9 out of 29, and DEM 10 m
detected only 1 out of 29 with zero detection of past debris
flow event.

5.6.8 Map of the Source Areas of Debris Flow
at Ringlet

Figure 5.20 illustrates the final map of the source areas of
debris flow at Ringlet, Cameron Highlands, Malaysia. The
map was generated from Flow-R software, and DEM 1-m
resolution was chosen according to the validation result
produced. Data indicated a slightly better extent of source
area detection of DEM 1 compared with those of other
DEMs. Figure 5.21 shows the map of the source areas with
debris flow probability path indicating the source area (red
colour) and deposition area (yellow colour).

5.7 Conclusion

The quantitative method using Flow- R software was used to
assess the source areas of debris flow in Ringlet, Cameron
Highlands, Malaysia. Results showed that the steep channels
are possible zones of the initiation of debris flow, with the
presence of flow paths or gullies to transport the sediment.

Validation was carried out on the basis of the landslide
inventory locations for the past 15 years and the source area
generated by Flow-R. Trial-and-error technique was per-
formed to establish the threshold value for plan curvature. In
this case, the suitable threshold of −2/100 m−1 was used
after the threshold value of −1/100 m−1 failed to detect
gullies and hidden flows. High DEM quality and resolution
can be used to remove inaccurate source area. However,
using high resolution will result in complex computation. In
this case, DEM resolutions 1, 2, 5 and 10 m were generated
within 8, 2, 1 h and less than 30 min, respectively. Cautions
should also be observed for high-resolution data because
improper threshold can be misleading. Moreover, the
knowledge of the study area is needed. Jaboyedoff et al.
(2012) revealed that the identified areas are often larger than
the observed events on the field. Their result indicated that
the map should always represent the worst-case scenario,
and field observation should be performed. Flow-R software
was specifically developed by Horton et al. (2013) to detect
debris flow source area. This software yields useful results
with minimum dataset. The use of modified algorithm of
Holmgren’s in this research was consistent with the obser-
vation made by Horton et al. (2013) who pointed out that the
modified version improves the source extent and makes it
less sensitive to small features and less dependent on DEM
resolution. The approach also presented some limitations.
Some of the source areas were in thick forest, and no his-
torical landslide inventory was mapped on such area (along
the road). Data require further verification. Nevertheless, all
the landslide inventory locations mapped along the road
produced significant result regarding the source areas gen-
erated in Flow-R. In addition, potential areas were identified,
despite that the landslide inventory map cannot detect
(sources generated from Flow-R) and verify with visual
interpretation from high-resolution orthophoto. Further
research should be carried out on the field to improve the
result and remove inaccurate data.
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6Landslide Susceptibility Modeling:
Optimization and Factor Effect Analysis

Biswajeet Pradhan and Maher Ibrahim Sameen

6.1 Introduction

Landslides are considered devastating natural geohazards
worldwide; they pose significant threats to human life and
result in socioeconomic losses in many countries (Maha-
lingam et al. 2016). A literature search shows that consider-
able efforts have been exerted to develop new ideas and tools
that can improve the mitigation of landslide effects. One field
that is attracting the attention of an increasing number of
researchers worldwide is landslide susceptibility modeling
(LSM). LSM is the basic information required for hazard and
risk assessments; it is also a critical component in disaster
management and mitigation (Pradhan and Lee 2009; Bui
et al. 2015; Gaprindashvili and vanWesten 2016). Significant
studies on landslide susceptibility mapping were conducted
in the last decades, thereby creating new ideas and research
directions for future studies. The optimization of landslide
conditioning factors (Jebur et al. 2014), the study of the
effects of landslide sampling procedures (Hussin et al. 2016),
the development of novel and hybrid models (Moosavi and
Niazi 2015), and the analysis of the effects of landslide fac-
tors (Guo and Hamada 2013) are among recent and signifi-
cant research directions in landslide susceptibility studies.

Landslides are triggered by several factors that create
challenges for researchers in analyzing and predicting dif-
ferent types of landslides. In general, geomorphological,
topographical, geological, and hydrological factors are
among the factors that are widely studied and considered in
LSM (Pradhan 2013; Pereira et al. 2013). However, land-
slide conditioning factors, such as slope, aspect, land use,
distance to road, and vegetation density are not consistent
among studies. In addition, the quality and quantity of data
can also vary, thereby affect the accuracy of LSM. There-
fore, a detailed analysis and comprehensive investigation of
the input data before LSM is performed are important to

increase the accuracy of landslide susceptibility models. In
addition, recent advances in light detection and ranging
(LiDAR) technology enable landslide researchers to collect
high-quality data (Kasai et al. 2009). Nevertheless, chal-
lenges remain because of the variability in topography and
other conditions of different study areas.

Several studies have attempted to provide insights into
landslide conditioning factors and have investigated these
factors for LSM. Mahalingam et al. (2016) evaluated land-
slide susceptibility mapping techniques using
LiDAR-derived factors in Oregon City. The results of their
study showed that only a few factors were necessary to
produce satisfactory maps with a high predictive capability
(area under the curve >0.7). Qin et al. (2013) investigated
uncertainties caused by digital elevation map (DEM) error in
LSM. The uncertainty assessment showed that modeling
techniques could have varying sensitivities to DEM errors.
Mahalingam and Olsen (2015) assessed the influences of the
source and spatial resolution of DEMs on derivative prod-
ucts used in landslide mapping. Their study showed that a
fine resolution would not necessarily guarantee high pre-
dictive accuracy in landslide mapping, and the source of the
datasets would be an important consideration in LSM. The
effects of landslide conditioning factor combinations on the
accuracy of LSM were explored by Meten et al. (2015). In
their study, the accuracy of LSM was improved by removing
certain landslide conditioning factors based on their corre-
lations with other factors. Kayastha (2015) conducted a
study on factor effect analysis using the frequency ratio
(FR) model in Nepal. The results indicated that using all nine
causative factors produced the best success rate accuracy of
over 80%. However, in the study of Vasu and Lee (2016), an
LSM with 13 relevant factors selected from the initial 23
factors presented a success rate of 85% and a prediction rate
of 89.45%. Hussin et al. (2016) evaluated the effects of
different landslide sampling procedures on a statistical sus-
ceptibility model. The study demonstrated that the highest
success rates were obtained when sampling shallow
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landslides as 50 m grid points and debris flow scarps as
polygons. The highest prediction rates were achieved when
the entire scarp polygon method was used for both landslide
types. The sample size test using the landslide centroids
showed that a sample of 104 debris flow scarps was suffi-
cient to predict the remaining 941 debris flows, whereas 161
shallow landslides were the minimum number required to
predict the remaining 1451 scarps.

The current study used 15 landslide conditioning factors
and an adequate number of landslide inventories to investi-
gate the optimization of landslide conditioning factors and
conduct a factor effect analysis for developing landslide
susceptibility models in the Cameron Highlands, western
Malaysia. After multicollinearity and factor effect analyses
were performed, Ant colony optimization (ACO) was uti-
lized to select significant landslide conditioning factors
among the initial 14 factors for further analysis. Data mining
techniques, including support vector machine (SVM) and
random forest (RF), were used to analyze the effects of the
selected landslide conditioning factors on the prediction rate
accuracy of the susceptibility models. Details and discus-
sions on the obtained results are presented in the remainder
of this chapter.

6.2 Study Area and Landslide Inventory
Data

The Cameron Highlands is a tropical rain forest district
located in western Malaysia at the northwestern tip of
Pahang. It is approximately 200 km from Kuala Lumpur.
Previous studies have reported several landslides in this
region, which have caused significant damages to properties
(Khan 2010). The lithology of the Cameron Highlands
mainly consists of Quaternary and Devonian granite and
schist (Pradhan and Lee 2010). The granite in the Cameron
Highlands is classified as megacrysts biotite granite (Prad-
han and Lee 2010). A subset that occupies a surface area of
approximately 25 km2 was selected for the current study
because of the frequent occurrence of landslides in this area
(Fig. 6.1). The lowest and highest altitudes are 889.61 and
1539.49 m, respectively.

Multisource remote sensing images and geographic
information system (GIS) data were used to collect and
prepare a landslide inventory database for LSM. Remote
sensing data, including archived 1: 10,000–1: 50,000 aerial
photographs, SPOT 5 panchromatic satellite images, and
high-resolution LiDAR-based orthophotos, were used to

Fig. 6.1 Geographic location of the study area and the landslide inventory map created by using multisource remote sensing data
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visually detect landslide occurrences in the study area. In
addition, all historical landslide reports, newspaper records,
and archived data for the period under examination were
collected. The locations of the individual landslides were
drawn on 1:25,000 maps based on the site description,
archived database, and aerial photograph interpretation.
Field observations were performed to confirm fresh landslide
scarps. In the aerial photographs and SPOT 5 satellite ima-
ges, historical landslides could be observed as breaks in the
forest canopy, bare soil, or geomorphological features, such
as head and side scarps, flow tracks, and soil and debris
deposits below a scarp. These landslides were then classified
and sorted based on their modes of occurrence. Most of the
landslides are shallow rotational, whereas a few are trans-
lational. A few landslides that occurred in flat areas were not
considered, and thus eliminated from the analysis. To create
a database for assessing the surface area and number of
landslides in the study area, landslides were mapped within
an area of 25 km2. The landslide inventory map is shown in
Fig. 6.1.

6.2.1 Preparation of Landslide Conditioning
Factors

A geospatial database that contained 15 landslide condi-
tioning factors was prepared for susceptibility analysis in
GIS. Some factors were derived from a LiDAR-based DEM
and Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) images, whereas others were
digitized from GIS layers collected from government
agencies. First, a DEM at 0.5 m spatial resolution was
created from LiDAR point clouds using a multiscale cur-
vature algorithm and inverse distance weighted (IDW) in-
terpolation techniques implemented in ArcGIS 10.3.
Subsequently, slope, aspect, profile, and plan curvature
were derived from the generated DEM at 0.5 m spatial
resolution using the spatial analysis tools of GIS. In the case
of curvature, negative curvatures represent concave sur-
faces, zero curvatures represent flat surfaces, and positive
curvatures represent convex surfaces. In addition, four
hydrological factors, namely the topographic wetness index
(TWI), the topographic roughness index (TRI), the stream
power index (SPI), and the sediment transport index (STI),
were derived from the slope and flow accumulation layers.
The land cover map was prepared from SPOT 5 satellite
images (10 m spatial resolution) using a supervised classi-
fication method. The map was verified via field survey.
Then, 10 classes of land cover types were identified,
including water bodies, transportation, agriculture, residen-
tial, and bare land. The normalized difference vegetation
index (NDVI) map was generated from SPOT 5 satellite
images (10 m spatial resolution). The NDVI value was

calculated using the formula NDVI = (IR − R)/(IR + R),
where IR and R denote the energy reflected in the infrared
and red portions, respectively, of the electromagnetic
spectrum. Finally, distance to road, distance to river, and
distance to lineament were calculated based on the Eucli-
dean distance method using the GIS layers.

Several studies have explained the contributing factors of
a landslide. The significance of a particular factor depends
on site-specific conditions. In the current study, soil and
lithology were not used because the study area consists of
only one type of soil and lithology. However, 15 factors
were used, namely altitude, slope, aspect, profile curvature,
plan curvature, land use, TWI, TRI, SPI, STI, NDVI, veg-
etation density, distance to road, distance to river, and dis-
tance to the fault. The succeeding paragraphs briefly
describe these factors.

Altitude is controlled by several geological and geo-
morphological processes. Landslides typically occur at
intermediate elevations because slopes tend to be covered by
a layer of thin colluvium, which is prone to landslides. In
this study, the lowest and highest altitudes were 889.61 and
1539.49 m, respectively. The altitude layer was reclassified
into six classes using the quantile classification method, as
shown in Fig. 6.2d.

The slope is a measure of the rate of change in elevation
in the direction of the steepest descent and is considered the
main cause of landslides. The slope gradient map of the
study area was divided into six slope angle classes. The
study area has flat regions. The highest slope was observed
at 80° (Fig. 6.2e).

Aspect is defined as the slope direction measured (in
degrees) from the north in a clockwise direction. It ranges from
0° to 360°. Parameters, such as exposure to sunlight, rainfall,
and dry winds control the concentration of soil moisture,
which in turn, determines landslide occurrence (Fig. 6.2f).

Plan curvature is described as the curvature of a contour
line formed by the intersection of a horizontal plane with the
surface. It influences the convergence and divergence of flow
across a surface. Profile curvature, in which the vertical
plane is parallel to the slope direction, affects the accelera-
tion and deceleration of downslope flows and, consequently,
influences erosion and deposition. Plan and profile curvature
maps were reclassified into three classes, namely convex,
flat, and concave lands, with negative, zero, and positive
values, respectively (Figs. 6.2g and h).

In addition to the topographical factors, land use, NDVI,
and vegetation density are key conditioning factors that
contribute to the occurrence of landslides. Sparsely vege-
tated areas are more prone to erosion and increased insta-
bility than forests. Vegetation strengthens the soil through an
interlocking network of roots that forms erosion-resistant
mats that stabilize slopes. Evapotranspiration controls the
wetness of slopes. NDVI is frequently considered a
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Fig. 6.2 Landslide conditioning factor used in the current study
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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controlling factor in landslide susceptibility mapping. In
general, when the value of NDVI is high, the area covered
by vegetation is large. Furthermore, a relatively low vege-
tation coverage can easily lead to a landslide incident. In this
study, a land use layer that consisted of 10 classes was used
for LSM. Vegetation density was reclassified into four
classes, namely non-vegetation, low vegetation, moderate
vegetation, and dense vegetation (Fig. 6.2a). NDVI was
reclassified into six classes starting from the lowest value of
−0.521 to 0.96 (Fig. 6.2b).

Four hydrological factors were also used for LSM in the
current study. TWI describes the effects of topography on
the location and size of saturated source areas of runoff
generation. This index is calculated using Ln[AS/tan(b)],
where AS is the specific catchment area of each cell, and b
represents the slope gradient (in degrees) of the topo-
graphic heights. SPI, which is a measure of the erosion
power of a stream, is also considered a factor that con-
tributes to the stability of the study area. This index is
expressed as SPI = AS � tan(b), where AS is the area of a
specific catchment, and b is the local slope gradient mea-
sured in degrees. STI, which reflects the erosive power of
overland flow, is derived by considering transport capacity
limiting sediment flux and catchment evolution erosion
theories. TRI is another important factor that affects land-
slide susceptibility. These hydrological factors were
reclassified into six classes using the quantile method and
then applied in LSM.

Anthropogenic factors, such as distance to roads, distance
to rivers, and distance to faults, have been considered
important factors that influence landslides. Extensive exca-
vations, application of external loads, and vegetation
removal are some of the most common actions that occur
along road network slopes during their construction. The
intermittent flow regime of a hydrological network and
gullies encompasses erosive and saturation processes,
thereby increasing pore water pressure and leading to land-
slides in areas adjacent to drainage channels. In addition,
geological faults are important triggering factors of land-
slides. The fracturing and shearing degree plays an important
role in determining slope instability. Proximity (buffers) to
these structures increases the likelihood of landslides given
that selective erosion and the movement of water along fault
planes promote these phenomena. The aforementioned lay-
ers were reclassified into six classes using the quantile
method.

6.3 Methodology

6.3.1 Overall Research Flow

This study encompasses four methodological steps. The first
step is the multicollinearity and factor effect analyses. In the
second step, relevant factors among the initial 15 landslide
conditioning factors are selected using ACO. The third step
involves the application of the susceptibility models using
several experiments that aim to analyze the effects of rele-
vant factors. In the last step, susceptibility models are vali-
dated using receiver operator characteristic (ROC) curves.
The overall workflow of this study is shown in Fig. 6.3.

6.3.2 Selection of Relevant Factors Using ACO

ACO is a metaheuristic optimization technique whose
applications have developed significantly. The advantages of
ACO include a probabilistic decision in terms of artificial
pheromone trails and local heuristic information. These
advantages enable the exploration of a larger number of
solutions compared with that of greedy heuristics (Gottlieb
et al. 2003). The overall workflow of the ACO-based land-
slide factor selection is presented in Fig. 6.4. First, ants were
generated and then placed randomly on a graph, i.e., each ant
starts with one random landslide factor. The number of ants
placed on the graph may be set to be equal to the number of
factors of the data; each ant initiates a path construction at a
different factor. The ants traverse nodes probabilistically
from their initial positions until a traversal stopping criterion
is satisfied. The resulting subsets are gathered and evaluated.
When an optimal subset has been found or when the algo-
rithm has been executed a certain number of times, the
process stops and the best encountered factor subset is out-
putted. If none of these conditions hold, then the pheromone
is updated, a new set of ants are created, and the process is
reiterated.

6.3.3 Susceptibility Models

In this study, susceptibility maps were produced using two
data mining approaches: SVM and RF. These algorithms
were used to determine whether the results were consistent
or the performance of the susceptibility models with
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Fig. 6.3 Overall research activities used to optimize landslide conditioning factors, conduct factor effect analysis, and develop improved
susceptibility models

Fig. 6.4 Overall workflow of factor subset selection by ACO method
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significant factors varied from one model to another. The
subsequent sections briefly describe the basic concept of the
algorithms.

6.3.3.1 SVM
SVM was originally developed by Vladimir and Vapnik
(1995) as a more recent machine learning method than
artificial neural networks. SVM uses the training data to
convert the original input space implicitly into
high-dimensional feature space based on kernel functions
(Brenning 2005). Subsequently, the optimal hyperplane in
the feature space is determined by maximizing the margins
of class boundaries (Abe 2005). Therefore, SVM training is
modeled by constraining the duality optimal solution. In
general, kernel types include linear, polynomial, and radial
basis function (RBF) or Gaussian kernels. The RBF kernel
was applied in this study because it was proven to be the
most powerful kernel for addressing nonlinear cases (Yao
et al. 2008).

6.3.3.2 RF
RF is an ensemble machine learning method that generates
numerous classification trees that are combined to compute a
classification (Breiman et al. 1984; Breiman 2001). Hansen
and Salamon (1990) indicated that a necessary and sufficient
condition for an ensemble of classification trees to be more
accurate than any of its individual member was that the
members of the ensemble must perform better than random
members and should be diverse. RF increases diversity
among classification trees by resampling the data with
replacement and randomly changing the predictive variable
sets over different tree induction processes. The RF algo-
rithm involves two main user-defined parameters that require
appropriate specifications: the number of trees (k) and the
number of predictive variables. A predictive variable may be
numerical or categorical, and translation into the design
variables is unnecessary. An unbiased estimate of the gen-
eralization error is obtained during the construction of an
RF. The proportion of misclassifications (%) overall
out-of-bag (OOB) elements is called the OOB error.
The OOB error is an unbiased estimate of the generalization
error. Breiman (2001) proved that RF produces a limiting
value of the generalization error. As the number of trees
increases, the generalization error always converges. The
value of k must be set sufficiently high to allow this con-
vergence. The RF algorithm estimates the importance of a
predictive variable by examining the OOB errors. An
increase in the OOB error is relative to predictive variable
importance.

The advantages of RF include resistance to overtraining
and the capability to grow a large number of RF trees
without creating a risk of overfitting. RF algorithm data do
not need to be rescaled, transformed, or modified; they are
also resistant to outliers in predictors. In this study, the
number of trees in an RF was fixed at 500 for RF modeling
after a primary analysis, and m sampled at each node was set
at 3 to analyze the combined contributions of subsets of
features while maintaining fast convergence during itera-
tions. No calibration set is required to regulate the parame-
ters (Micheletti et al. 2014). The importance and
standardized rank of each landslide variable were calculated.
The ranks were then used to overlay landslide factors and
generate the susceptibility maps.

6.4 Results

6.4.1 Multicollinearity Analysis

Multicollinearity analysis is an important step in LSM. The
existence of a near-linear relationship among factors can
create a division-by-zero problem during regression calcu-
lations. This problem can cause the calculations to be
aborted and the relationship to be inexact; division by an
extremely small quantity still distorts the results. Therefore,
analyzing landslide conditioning factors before LSM is
important. In multicollinearity analysis, collinear (depen-
dent) factors are identified by examining a correlation matrix
constructed by calculating R2. Various quantitative methods
for detecting multicollinearities, such as pairwise scatter
plots, estimation of the variance inflation factor (VIF), and
investigation of eigenvalues in a correlation matrix, are
available. In this study, multicollinearity was detected by
calculating the VIF values of each landslide conditioning
factor. In addition, communalities similar to R2 were cal-
culated for each factor (Costello 2009). Communality shows
how well a variable is predicted by the retained factors.
Table 6.1 presents the estimated communalities and VIF
values for each landslide conditioning factor. The second
column of Table 6.1 indicates that some factors, such as land
use, distance to road, distance to river, slope, STI, TWI, and
TRI, exhibit strong linear relationships with other factors.
These factors may negatively affect the regression analysis.
However, VIF values are quantitative measures that are
typically used to conclude whether a factor has a problem. In
some studies, a VIF greater than two was considered prob-
lematic, whereas in other studies, a VIF greater than 10 was
considered problematic (Garrosa et al. 2010). To solve the
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multicollinearity problem, factors can be excluded from
further analysis or other sampling techniques should be
examined. In this study, factors with VIF values greater than
10 (e.g., TRI) were removed from further analysis.

6.4.2 Factor Analysis

The previous section shows that multicollinearity analysis
identifies landslide factors that exhibit the problem of having
a strong correlation with other remaining factors. To deter-
mine underlying factors that are responsible for correlations
in data, factor analysis was conducted in the current study.
Factor analysis is an investigative method that is applied to a

set of observed variables; it aims to identify underlying
factors from which observed variables are generated (Roscoe
et al. 1982). Factor analysis using the principal component
extraction method was applied in this study to determine the
factors that underlay the data. Figure 6.5 shows the graph of
the underlying factors versus the eigenvalues calculated
based on the correlation matrix. The graph provides infor-
mation about the factors. It was used to determine how well
the selected number of components fit the data. The graph
indicated that the first eight factors accounted for the
majority of the total variability in the data (given by the
eigenvalues). The remaining factors accounted for a mini-
mum amount of the variability (nearly zero) and were likely
insignificant.

Table 6.1 Calculated
communalities and VIF values for
each landslide conditioning factor

Factors Communality VIF

Aspect 0.053 1.14

Land use 0.566 3.15

Vegetation density 0.044 2.9

NDVI 0.069 2.93

Distance to lineament 0.001 1.25

Distance to road 0.576 3.74

Distance to river 0.626 4.15

Altitude 0.35 2.47

Slope 0.608 9.02

Profile curvature 0.015 1.11

Plan curvature 0.1 1.25

SPI 0.311 1.57

STI 0.684 2.77

TWI 0.638 2.46

TRI 0.589 39.79
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Fig. 6.5 Graph of factors versus
the corresponding eigenvalues
calculated based on the
correlation matrix
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Table 6.2 presents the sorted unrotated factor loadings
and communalities resulting from the factor analysis.
Communalities describe the proportion of variability of each
variable that is explained by the factors. When a commu-
nality is closer to 1, the variable is better explained by the
factors. Variance demonstrates the variability in the data
explained by each factor (i.e., the variance is equal to the
eigenvalue). Meanwhile, %Var shows the proportion of
variability in the data explained by each factor.

In the factor analysis, 8 factors were extracted from the 15
variables. All the variables were well-represented by the 8
selected factors given that the corresponding communalities
were generally high. For example, 0.974 or 97.4% of the
variability in aspect and profile curvature was explained by
the 8 factors. In addition, the 8 selected factors explained
most of the total data variation (0.881 or 88.1%, Table 6.2).
Furthermore, Table 6.2 shows the variable loading on each
factor. For example, distance to river (−0.823), distance to
road (−0.796), land use (0.795), slope (0.779), TRI (0.77),
altitude (−0.656), TWI (−0.322), and NDVI (0.324) have
large absolute loadings on factor 1. This result indicates that
this subset of variables can be reduced into fewer variables.
By contrast, STI (0.84), TWI (0.782), SPI (0.718), and plan
curvature (−0.402) have large absolute loadings on factor 2.
This finding suggests that these factors can be combined and
reduced into fewer theoretical factors. In addition, land use,
NDVI, and vegetation density have large absolute loadings
on factor 3, thereby suggesting that a theoretical factor can
combine these three interrelated factors. Furthermore, sev-
eral factors, including slope, aspect, and profile curvature,
have large loadings on factor 4. LiDAR-derived factors and
distance to the road have large absolute loadings on factor 5.
SPI, distance to lineament, and both curvature layers have a
few underlying factors. Aspect and profile curvature have
large positive loadings on factor 7. Plan and profile curva-
tures have large absolute loadings on factors 5, 6, and 8. This
finding indicates that these two variables can be combined
into one variable. This resulting variable can be the total
curvature, which has not been used in the current study.

6.4.3 ACO-Based Factor Selection

Table 6.3 shows the landslide conditioning factors and their
corresponding codes used in the subsequent tables. This
section describes the six experiments conducted in this study
to analyze the effects of landslide conditioning factors on
LSM.

The six experiments were classified into two main
groups. The first group included all the 14 factors
(Table 6.4), whereas the second group contained only the
LiDAR-derived factors. In the first group, the three experi-
ments included 5 factors, 10 factors, and the produced

susceptibility models that used all the 14 factors. In the
second group, the three experiments involved 3 LiDAR
factors, 6 LiDAR factors, and 8 LiDAR factors, which were
the total number of LiDAR factors derived from the DEM.
These subsets were evaluated using the SVM and RF
models. The selected factors and the prediction accuracy rate
of both models are presented in Table 6.4. The results
showed that using all the conditioning factors did not nec-
essarily guarantee the highest accuracy. In the case of the
first group, the highest accuracy was achieved with either 10
or 14 factors when the RF model was used. In the case of the
SVM model, using all the 14 factors produced the highest
accuracy. In the three experiments in the first group, the RF
model performed better than the SVM model. However, no
significant difference was found between using all the 14
factors and using only 10 factors in the susceptibility anal-
ysis for both the SVM and RF models. In the experiments in
the second group, accuracy decreased by approximately 0.16
on average. This result indicated that some factors, such as
land use, vegetation density, and NDVI, were important for
predicting landslides in the study area. The highest accuracy
was achieved using the RF model with 8 LiDAR factors.
The RF model with only 3 factors selected via ACO per-
formed better than the SVM model with 8 LiDAR factors. In
the SVM model, the findings indicated that using only 3
LiDAR factors yielded better results than using 6 factors
mainly because the selected individual factors in the subset
with 3 factors were more important than those selected in the
subset with 6 factors. Consequently, including additional
factors to LiDAR-derived factors was necessary for accurate
LSM in the study area. The RF model performed better than
the SVM model even with fewer factors. The second subset
of the first group, which had 10 factors that included
LiDAR-derived and non-LiDAR-derived factors, was rec-
ommended to produce landslide susceptibility maps in the
study area for land use planning.

6.4.4 Landslide Susceptibility Models

In the current study, four landslide susceptibility maps were
produced for the study area (Fig. 6.6). These maps were
generated using the SVM and RF models with the best
subsets of the two groups as described in the previous sec-
tion. The first examination of the maps showed no spatial
agreement among the susceptibility classes of the four
models. For example, the maps produced using a combina-
tion of LiDAR and non-LiDAR factors were different from
those produced using only LiDAR factors. In addition, the
two maps produced using the SVM and RF models with the
significant factors selected among the 14 factors were dif-
ferent. The apparent difference was mainly observed in the
middle part of the study area. The map produced using the
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RF model exhibited nearly moderate and very high suscep-
tibility in the middle part of the study area, whereas the map
produced using the SVM model exhibited high and very
high susceptibility in the same area. The southeastern part of
the study area had very low and low susceptibility based on
the RF model, whereas its susceptibility was moderate and
high based on the SVM model. Consequently, no exact
spatial agreement was found on the susceptibility classes in
most parts of the study area based on the two models. The
susceptibility maps produced using only LiDAR-derived
factors are different from those produced using the signifi-
cant factors selected among the 14 factors. However, spatial
agreements were found among the susceptible zones in the
northern, middle, and southern parts of the study area when
the RF- and SVM-generated maps were compared.

6.4.5 Validation

The ROC curve is a graph with a false positive rate plotted
on the x-axis and a true positive rate plotted on the y-axis. It
uses a visual comparison of the performance of the methods.
The area under the ROC curve (AUC) shows the global
accuracy statistics for each model. If the AUC (which varies
from 0.5 to 1) increases, then the prediction performance of
the method increases (Erener and Düzgün 2010). Figure 6.7
shows the plotted ROC curves and the estimated AUC
values for the four susceptibility maps described in previous
section. On the one hand, the highest accuracy was achieved
using the RF model with 10 factors selected among the 14
initial factors. On the other hand, the lowest accuracy was
achieved using the SVM model with only LiDAR-derived
factors.

6.5 Discussion and Conclusion

In this study, we optimized landslide conditioning factors
and conducted a factor effect analysis to provide useful
information about landslide susceptibility analysis in the
Cameron Highlands, Malaysia. This study first identified
problematic factors by calculating VIF values during mul-
ticollinearity analysis. As mentioned earlier, problematic
factors can disrupt or distort the regression results.

Therefore, removing these factors is an essential step in
LSM. The communality of each variable was calculated
from the correlation matrix. The communalities indicated
that land use (0.566), distance to road (0.576), distance to
river (0.626), altitude (0.35), slope (0.608), SPI (0.311), STI
(0.684), TWI (0.638), and TRI (0.589) demonstrated rela-
tively strong correlations with other factors. However, only
TRI was problematic (given by the VIF) based on the
selected threshold (VIF > 10 was considered problematic),
and thus, it was excluded from LSM. In addition, slope had a
relatively high VIF of approximately 10. However, slope is
the most important factor for LSM, and thus, it has been
retained. In future studies, this problem could be solved by
using different sampling procedures, such as landslide
polygons instead of the centroid of landslides, which was
adopted in the current study. The use of different sampling
procedures or the removal of inaccurate landslide inventories
may solve the problem of collinear factors.

Factor analysis was conducted to identify underlying
factors. The eigenvalues showed that the first 8 factors
accounted for the majority of the total variability in the data.
The remaining factors accounted for a minimal amount of
the variability (approximately 0) and were likely insignifi-
cant. Therefore, 8 factors were extracted from the 15 land-
slide conditioning factors. The corresponding communalities
were generally high, and thus, the landslide-related variables
were well-represented by the 8 factors. The highest per-
centage of over 97% of the variability in aspect and profile
curvature was explained through these 8 extracted factors. In
general, the factor effect analysis suggested reducing the
number of landslide conditioning factors by combining some
of the factors into fewer theoretical factors. For example,
plan and profile curvature were highly recommended to be
combined (Table 6.2). To achieve such combination, a
comprehensive analysis of landslide conditioning factors is
required. In addition, distance to river (−0.823), distance to
road (−0.796), land use (0.795), slope (0.779), TRI (0.77),
altitude (−0.656), TWI (−0.322), and NDVI (0.324) were
found to have large absolute loadings on factor 1. This result
indicated that this subset of variables could be reduced into
fewer theoretical factors.

Thereafter, ACO was used to select significant variable
subsets from the available variables. The SVM and RF
classification models were adopted to evaluate the selected

Table 6.3 Assigned code of
each landslide conditioning factor

Factor Code

Aspect 1 Distance to Road 6 Plan curvature 11

Land use 2 Distance to river 7 SPI 12

Vegetation density 3 Altitude 8 STI 13

NDVI 4 Slope 9 TWI 14

Distance to lineament 5 Profile curvature 10
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subsets. A total of six experiments were conducted in the
study to analyze the effects of landslide conditioning factors
on LSM. These experiments were as follows: 5 factors, 10
factors, all the 14 factors, 3 LiDAR factors, 6 LiDAR

factors, and 8 LiDAR factors. The evaluation of the six
experiments showed that the RF model with 10 landslide
factors selected from among the 14 factors produced the best
result (AUC = 0.95). In addition, a significant decrease in

Fig. 6.6 Landslide susceptibility maps
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accuracy was observed when only the LiDAR-derived fac-
tors were used. Factors, such as land use, vegetation density,
and NDVI were found to be important for predicting land-
slides in the study area.

In this study, 4 landslide susceptibility maps were pro-
duced for the study area. The susceptibility maps produced
using only LiDAR-derived factors were different from those
produced using significant factors selected from all the 14
factors. This study showed that spatial agreement on sus-
ceptibility zones decreased by adding non-LiDAR factors in
the analysis. A visual interpretation of the susceptibility
maps indicated spatial agreements on susceptible zones in
the northern, middle, and southern parts of the study area
when LiDAR-based factors were used. Therefore, statistical
validation methods, such as ROC curves and spatial agree-
ment analysis should be considered to decide whether a map
can be used for land use planning. In addition, Fig. 6.8
shows the percentages of landslides in each susceptibility
class. The graph shows that most of the landslides are
located in high and very high susceptibility zones.

In general, the RF model performed better than the SVM
algorithm regardless of the combination of factors used for
modeling. Although the parameters of the SVM algorithm
were fine-tuned in the current study, concluding that RF
should be used for LSM in the Cameron Highlands would be
difficult. This study suggests that significant attention should
be directed toward analyzing input landslide factors. More-
over, problematic factors and observations should be
removed. Several factors are typically derived from a
LiDAR DEM, and thus, collinearity can be found among
these factors. Therefore, additional factors, including
non-LiDAR factors, should always be used in LSM.
Sometimes, factors such as distance to the road have a strong
correlation with land use. The careful design of classification
schemes when producing land use maps is recommended.

Table 6.4 Results of factor
subset selection of ACO-based
experiments

Dataset Experiment Total number of
factors

Selected factors AUC

SVM RF

All data 5-Factors 14 [7 8 6 5 9] 0.83 0.89

10-Factors 14 [2 10 4 8 3 1 12 6 14 7] 0.89 0.95

14-Factors 14 [9 10 4 3 5 12 11 1 7 8 2 6 14
13]

0.91 0.95

Only
LiDAR

3-Factors 8 [3 4 2] 0.72 0.77

6-Factors 8 [6 1 5 4 8 7] 0.69 0.70

8-Factors 8 [4 5 2 8 7 6 3 1] 0.75 0.81

Fig. 6.7 ROC curves of the produced susceptibility map

Fig. 6.8 Percentages of landslide inventories in each susceptibility
zone
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For example, roads can be classified into different classes
based on road type or width. Such classification can reduce
the correlation among landslide factors, and thus improve
LSM.

This study examined the optimization of landslide con-
ditioning factors and conducted a factor effect analysis to
improve understanding of susceptibility models. However,
several issues should be considered in future studies. First,
the effects of landslide sampling procedures and the spatial
resolution of DEMs should be investigated in detail.
Attention should also be directed toward developing new
theoretical factors in future studies. LiDAR-derived factors
can be reduced into fewer factors, which can decrease
collinearity among factors. Quantitative accuracy indicators,
such as AUC, may be insufficient when deciding which
algorithm or LSM approach should be used. Therefore, new
indicators that consider spatial agreements on susceptible
classes should be developed. In summary, comprehensive
analysis on landslide conditioning factors should be con-
ducted to improve understanding of LSM in the future.
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7Effects of the Spatial Resolution of Digital
Elevation Models and Their Products
on Landslide Susceptibility Mapping

Biswajeet Pradhan and Maher Ibrahim Sameen

7.1 Introduction

Landslides are among the destructive natural disasters that
cause significant damage to human life and properties
worldwide. Numerous researchers have attempted to provide
an understanding of landslide causes and related problems.
An important and simple analysis method that has been used
in landslide studies is landslide susceptibility mapping
/modeling (LSM). LSM is fundamental to hazard and risk
assessments, and it is widely used by governments for
planning land use and strategic projects. LSM requires
landslide conditioning factors and landslide inventories,
which can be acquired using remote sensing and field sur-
veying techniques. The output of LSM is a map that shows
the degree of landslide susceptibility of an area.

Digital elevation models (DEMs) are the main data
commonly used in LSM. Various types of landslide condi-
tioning factors can be derived from DEMs, including slope,
aspect, curvature, topographic wetness index (TWI), topo-
graphic roughness index (TRI), stream power index (SPI),
and sediment transport index (STI). The spatial resolution of
a DEM and its derivatives directly affect the accuracy and
quality of landslide susceptibility maps. Few studies have
investigated the effects of the spatial resolution and source of
a DEM on LSM (Lee et al. 2004; Chang et al. 2016).

The recent literature indicates that a number of efforts have
been made to develop an understanding of landslide condi-
tioning factors and their effects on LSM (Althuwaynee et al.
2016). Various landslide conditioning factors have been used
in LSM, including those derived from DEMs and at different
spatial resolutions depending on the sources of DEMs. The
most common DEM-derived factors used are slope, aspect,
curvature, TWI, TRI, STI, and SPI (Chalkias et al. 2014;
Huang et al. 2015; Pradhan 2010; Pradhan and Kim
2016; Pradhan et al. 2016). However, many researchers have

also used other conditioning factors, such as stream sinuosity,
local relief, and slope angle (Raman and Punia 2012; Quinn
2014). Various factor-selection techniques to optimize these
factors have been explored in many studies. Park (2015)
conducted a factor contribution analysis for LSM using
maximum entropy modeling. The analysis indicated that the
distances from lineaments and slope layers were the most
influential factors. Guri and Patel (2015) analyzed 15 landslide
conditioning factors using 2 different landslide inventory
datasets. The results showed that 76.5% of all the landslides
were predicted in 24% of the total landslide-susceptible area
using the best combination of 8 parameters. Meinhardt et al.
(2015) optimized landslide conditioning factors using a new
method called “omit error”. This statistical method involves
omitting a parameter to obtain the weightings, which describe
how strong each parameter improves or reduces the objective
function. After this optimization, the 9 remaining input
parameters were weighted using the omit error method to
produce the best susceptibility map with a success rate of
92.9% and a prediction rate of 92.3%, which were 4.4 and
4.2% higher than the success rate and prediction rate obtained
using the basic statistical index method with 13 input param-
eters, respectively.

By contrast, few studies have explored the effects of the
spatial resolution of landslide conditioning factors on LSM.
Oh et al. (2012) extracted landslide conditioning factors
from a DEM based on the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) and exam-
ined their applications in LSM. The validation results for the
landslide susceptibility map produced using these factors
showed 84.78% frequency ratio and 84.20% logistic
regression (LR) prediction accuracy. Mahalingam et al.
(2016) analyzed the influence of the spatial resolution and
source of a DEM on LSM using ASTER, National Elevation
Dataset (NED), and LiDAR data. The results showed that
the 10 m spatial-resolution DEM derived from LiDAR data
yielded higher predictive accuracy in several modeling
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approaches for producing landslide susceptibility maps.
However, at a resolution of 10 m, the output maps based on
NED and ASTER had higher misclassification rates than the
LiDAR-based output. Moreover, the 30 m LiDAR output
exhibited improved results over the 10 m NED and 10 m
ASTER outputs, thereby indicating that a finer resolution
does not necessarily result in a higher predictive accuracy in
LSM. Overall, the study suggested that DEM source is an
important consideration, and it can significantly influence
the accuracy of a landslide susceptibility analysis. Qin et al.
(2013) simulated DEM error fields at a 25 m resolution with
different magnitudes and spatial autocorrelation levels. The
study indicated that the overall uncertainty in LSM could be
sensitive to the spatial resolution and quality of DEMs.

The research on the effects of the spatial resolution of
DEMs on the resultant landslide susceptibility maps is lim-
ited, and thus, this paper presents a detailed analysis and
discussion of this topic. First, a geodatabase consisting of 13
landslide conditioning factors was constructed, and a 0.5 m
LiDAR-based DEM was resampled to various spatial reso-
lutions (1, 2, 3, 5, 10, 20, and 30 m). In this study, 30 m
LiDAR-based and ASTER-based DEMs were compared to
analyze the effects of resampling and DEM source. In
addition, the effects of DEM spatial resolution on multi-
collinearity and factor optimization were also investigated
and discussed. LR was used as the LSM technique. Evalu-
ations were conducted using several accuracy metrics, such
as the area under the curve of a receiver operating charac-
teristic (AUC of ROC), overall accuracy, the kappa coeffi-
cient, and spatial agreement.

7.2 Study Area

The study area is the Cameron Highlands, which is located
in the west of Malaysia. It is a tropical rain forest situated at
the northwestern tip of Pahang. The Cameron Highlands is
approximately 200 km from Kuala Lumpur, the capital of
Malaysia. Many landslides were reported and documented
in the study area in previous studies, which indicated that
most of the landslides caused significant damage to prop-
erties. The lithology in the Cameron Highlands mainly
consists of Quaternary and Devonian granite and schist
(Pradhan and Lee 2010). The granite in the Cameron
Highlands is classified as megacrystic biotite granite
(Pradhan and Lee 2010). A subset, which occupies a surface
area of *25 km2, was selected for the current study
because landslides frequently occur in this area (Figs. 7.1
and 7.2). The lowest and highest elevations are 1153 and
1765 m, respectively.

7.3 Data

Data from various remote sensing and field sources were
acquired and used. Landslide inventories were collected
from aerial photographs, satellite images, and high-
resolution orthophotos. Landslide conditioning factors
were derived from LiDAR point clouds, an ASTER DEM,
and geospatial databases of the Cameron Highlands.

7.3.1 Landslide Inventory

Adequate landslide inventories are required for LSM. Thus,
remote sensing data and geographic information system
(GIS) functions were used to collect and prepare landslide
inventories. The remote sensing data, including archived 1:
10,000–1: 50,000 aerial photographs, SPOT 5 panchromatic
satellite images, and high-resolution orthophotos, were used
to visually recognize landslide scarps in the study area. In
addition, historical landslide reports, newspaper records, and
archived data were collected during the study period. Field
observations were used to confirm the landslide scarps. In
the aerial photographs and SPOT 5 satellite images, histor-
ical landslides could be observed as breaks in the forest
canopy, bare soil, or geomorphological features, such as
head and side scarps, flow tracks, and soil and debris
deposits below a scarp. A geodatabase was constructed to
assess the surface area and number of landslides in the study
area. A total of 192 landslides were mapped in an area of
25 km2.

7.3.2 Landslide Conditioning Factors

A total of 13 landslide conditioning factors, namely slope,
aspect, altitude, TWI, TRI, normalized difference vegetation
index (NDVI), vegetation density, land use, distance to road,
distance to river, distance to fault, plan curvature, and profile
curvature, were analyzed.

A DEM for the study area was generated from LiDAR
point clouds at a scale of 0.5 m and then resampled into
other spatial resolutions for analysis. In addition, another
DEM was generated from the ASTER Global DEM (http://
gdem.ersdac.jspacesystems.or.jp/) at a scale of 30 m for
comparison. The landslide conditioning factors were
extracted using these DEMs and ArcGIS 10.3.

The altitude in the study area ranges from 1152 to
1765 m (Fig. 7.3a). The slope of the study area extends from
0° to 82.41° (Fig. 7.3b). Slope angle is an important factor in
landslide development because of its relationship to the
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driving force of gravitation. In general, and under certain
favorable conditions, the likelihood of a landslide increases
as slope angle increases. The constructed aspect map
(Fig. 7.3c) had nine classes: flat (−1°), north (337.5°–360°,
0°–22.5°), northeast (22.5°–67.5°), east (67.5°–112.5°),
southeast (112.5°–157.5°), south (157.5°–202.5°), southwest
(202.5°–247.5°), west (247.5°–292.5°), and northwest
(292.5°–337.5°). Aspect can affect the physical and biotic
features of a slope and significantly influence its microcli-
mate. In some localities, the variation in soil patterns is
related to differences in aspect. Therefore, slope aspect
indirectly affects landslide occurrence, and it has been
applied in many studies on landslide susceptibility
assessment.

TWI is defined as a steady state wetness index. It is
commonly used to quantify topographic control on hydro-
logical processes. This index is a function of both slope and
flow direction. The formula for TWI is as follows:

TWI ¼ ln
As

b

� �
; ð7:1Þ

where As is the specific catchment area (m2/m) and b is the
slope angle in degrees. The TWI in this study ranges from

Fig. 7.1 Study area map showing the landslide locations

Fig. 7.2 Lithological and structural map of study area
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−5 to 20 (Fig. 7.3g). In addition, TRI is an important
characteristic of DEM because this factor indicates soil
saturation. It is used in hydrological simulation and in esti-
mating runoff, soil moisture, and groundwater depth
(Mukherjee et al. 2013). In this study, the TRI ranges from 0
to 221 (Fig. 7.3f).

NDVI is a spectral index used to analyze remote sensing
measurements, typically but not necessarily from a space
platform, and to assess whether the target being observed
contains live green vegetation. The NDVI ranges from
−0.818 to 0.96 (Fig. 7.3l) in this study.

NDVI is calculated using the following common formula:

NDVI ¼ NIR� R

NIRþR
; ð7:2Þ

where NIR and R denote the near-infrared and red bands,
respectively. Thus, the NDVI varies between −1.0 and +1.0.
Vegetation density is another important factor in landslide
susceptibility assessment. In this study, vegetation density
was classified into non-vegetation, low-density vegetation,
moderate-density vegetation, and high-density vegetation
(Fig. 7.3m).

Fig. 7.3 Landslide conditioning factors used in the current study, a altitude, b slope, c aspect, d plane curvature, e profile curvature, f TRI, g TWI,
h distance to fault, i distance to road, j distance to river, k land use, l NDVI, and m vegetation density
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Land use, which reflects human activities, also has a
major effect on natural resources, soil, and plants. The
land use map was produced using 2.5 m pan-sharpened
SPOT 5 satellite images, and 10 land use classes were
identified (Fig. 7.3k). Furthermore, road and river net-
works were extracted from the topographic map at a scale
of 1: 20,000 and used to construct the distance-to-road
maps (Fig. 7.3i) and the distance-to-river maps (Fig. 7.3j),
respectively. The fault lines were extracted from the
geological map at a scale of 1:63,300 and used to con-
struct the distance-to-fault map, with values ranging from
0 to 476 m (Fig. 7.3h).

7.4 Methods

7.4.1 LSM Via LR

LR is a statistical approach used to establish a univariate
regression model by creating a nonlinear relationship
between a dependent variable and several independent
variables (Eker et al. 2015). The relationship between
landslide occurrence and landslide conditioning factors can
be quantitatively defined as follows:

P ¼ 1

1þ e� b0 þb1X1 þ b2X2...bnXnð Þ ; ð7:3Þ

Fig. 7.3 (continued)
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where P is the estimated probability of occurrence, b0 is the
intercept of the model, bi ði ¼ 0; 1; 2; . . .; nÞ are the slope
coefficients of the LR model, and Xi ði ¼ 0; 1; 2; . . .; nÞ are
the landslide conditioning factors.

7.4.2 Multicollinearity Analysis

Multicollinearity analysis was performed to detect the exis-
tence of any collinear (dependent) variables in the dataset. In
such analysis, tolerance is the percentage of the variance in a
given landslide conditioning factor; this variance cannot be
explained using other factors (Norusis 2006). When

tolerance is approximate to 0, the multicollinearity is high,
and the standard error of the regression coefficients will be
inflated. A variance inflation factor (VIF) greater than *4 is
generally considered problematic (Norusis 2006). The mul-
ticollinearity analysis was conducted by excluding the
redundant landslide conditioning factors to reduce
collinearity. The remaining dependent and independent
variables would subsequently form the multiple regression
models, which could be used to produce the landslide sus-
ceptibility maps. The redundant landslide conditioning fac-
tors can affect the precision of the model and lead to
unreliable predicted values as a result of the multicollinearity
phenomenon (Alin 2010). Consequently, a multicollinearity

Fig. 7.3 (continued)
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analysis is essential to show the relationship among inde-
pendent variables.

7.4.3 Validation of Landslide Susceptibility
Models

The validation of landslide susceptibility models is an
essential step to compare the different models and determine
the reliability of the modeling process. It also provides a
meaningful interpretation of results (Pourghasemi et al.
2013). Success rate and prediction rate are frequently used in
landslide susceptibility analyses. The success rate indicates
how well the resultant maps classify the areas of existing
landslides, and the prediction rate shows how well the
models and causal factors predict future landslides by using
a validation dataset (typically 30% of the original dataset is
selected randomly). In this study, the AUC of ROC, the
kappa coefficient, overall accuracy, spatial agreement, and
landslide density graphs were used to validate the landslide
susceptibility models.

7.4.3.1 ROC Method
The ROC method works by creating specific rate curves (i.e.,
success rate and prediction rate curves), which explain the
percentage of known landslides that fall under each defined
level of susceptibility and are represented in a cumulative
frequency diagram (Chung and Fabbri 2003; Intarawichian
and Dasananda 2011). In this method, the success rate curve
is derived by comparing the susceptibility map with the
landslides used in modeling (i.e., the training set), and the

prediction rate curve can be created by validating the land-
slide inventory (Pradhan and Kim 2014). In the rate curve,
the y-axis normally represents the cumulative percentage of
the observed landslide occurrences in different susceptibility
classes, whereas the x-axis corresponds to the cumulative
percentage of the area of the susceptibility classes. The total
area under the rate curve can be used to qualitatively
determine the prediction accuracy of the susceptibility map;
a larger area indicates that higher accuracy is achieved (Lee
2005; Mathew et al. 2009; Intarawichian and Dasananda
2011; Pourghasemi et al. 2013).

7.4.3.2 Kappa Coefficient and Overall Accuracy
A confusion matrix can be constructed by establishing a cross
tabulation of the true positive and true negative values. Sen-
sitivity can be defined as the probability that a test result will be
positive when the event is present, whereas specificity is the
probability that a test result will be negative when the event is
absent. A higher sensitivity indicates that the model can better
identify unstable zones from the inventory, whereas a higher
specificity suggests that the model can better identify stable
zones from the inventory (Guzzetti et al. 2006). In addition, the
kappa coefficient is a quantitative statistical value of agree-
ment on the presence or absence of specific events. This
coefficient is a measure of the difference between the observed
agreement and the expected agreement standardized to a scale
of −1 to 1. A value of 1 represents perfect agreement, 0 rep-
resents an agreement by chance, and negative values signify
disagreement.

7.4.3.3 Landslide Density Graphs
A landslide density graph can be constructed by plotting
landslide density, which is the ratio of pixels with landslide
occurrence to the ratio of pixels without landslide occurrence
per classified susceptible zone in a diagram. This graph
provides information about the landslide distributions in
different susceptible classes in an output of LSM.

7.4.3.4 Evaluation of Spatial Agreement Between
Susceptibility Maps

Statistical accuracy metrics, such as the AUC of ROC and
the kappa coefficient, do not provide information about the
susceptibility classes in which the susceptibility maps spa-
tially agree or disagree. Therefore, the maps were further
evaluated via empirical information entropy (EIE), and the
average susceptibility of the produced susceptibility maps
were calculated using DEMs with different spatial resolu-
tions. This analysis enabled the production of a map that
could be used to determine the similarities and dissimilarities
among the assigned susceptibility ranks. EIE is expressed as
follows:
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H ¼ �
Xn
i¼1

P ið Þ log P ið Þð Þ; ð7:4Þ

where PðiÞ is the likelihood of the occurrence of suscepti-
bility rank (class) i, which ranges from 1 to 4 in this study
(with 1 being the lowest susceptibility class), and n is the
number of susceptibility classes, such that P(i) becomes the
probability of the occurrence of class i when the ranks
(classes) of different susceptibility maps are given in a grid.
H is at its minimum when all the maps agree on the same
susceptibility rank, whereas H is at its maximum when the
spatial agreement among the susceptibility maps is minimal.

In addition, another map is produced by calculating the
average values of the susceptibility classes in all the maps
produced in this study to show the spatial agreements and
disagreements among the produced maps.

7.5 Results

7.5.1 Effects of the Spatial Resolution of DEM
on LSM

The average point spacing of the LiDAR point clouds
is *0.7 m. Therefore, the first DEM was produced at a
spatial resolution of 0.5 m. In addition, seven DEMs with
various spatial resolutions were produced by resampling the
0.5 m DEM. Figure 7.4 shows the first DEM derived from
the LiDAR point clouds and the resampled DEMs with
different spatial resolutions. Figure 7.4 shows the extremely

small subset of the study area; thus, the differences among
the DEMs could be easily detected. Figure 7.4 shows a
considerable difference between the first DEM (0.5 m) and
the 30 m DEM. The 0.5 m DEM presents a smooth
boundary of lands with different elevations, whereas the
30 m DEM is nearly pixelated and exhibits detail loss.

Figure 7.5 shows the difference between the
LiDAR-derived DEM and the ASTER DEM both at a spatial
resolution of 30 m. Although the two DEMs have the same
spatial resolution, the LiDAR-derived DEM contains more
details, particularly at the boundaries of features. Quantita-
tively, the difference between the lowest altitudes of these
DEMs is 5 m, whereas the difference between their highest
altitudes is 75 m. The reasons for the differences are attributed
to the data acquisition from the sensors and to the interpolation
techniques used for resampling. The LiDAR data were pri-
marily acquired at a spatial resolution of 0.7 m and further
resampled into 30 m. The potential information stored in
every cell of a 0.7 m grid is diluted when it is resampled into
30 m. Overall, however, both DEMs exhibit a similar Earth
surface topography. High altitudes are located in the middle
part of the study area, whereas low altitudes aremostly located
in the southern part of the study area.

Figure 7.6 shows a graph that compares the estimated
altitudes from the LiDAR-derived DEM and the
ASTER DEM for some landslide locations in the study area.
The graph shows that both datasets generally agree in terms
of the altitude of landslide locations. For certain landslide
locations, such as 4, 16, and 19, the altitudes differ
by *15 m on average.

Fig. 7.4 DEMs derived from
LiDAR point clouds and
iteratively resampled from the
0.5 m DEM
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7.5.2 Results of the Multicollinearity Analysis

Prior to the application of LR modeling, a multicollinearity
analysis was conducted to exclude the highly correlated
landslide conditioning factors from further analysis. Fig-
ure 7.7 shows the calculated respective VIFs of the landslide
conditioning factors for every DEM product. Table 7.1
shows the detailed calculations from the multicollinearity
analysis of the landslide conditioning factors. The VIF, R2
with the remaining factors, and tolerance are also shown for
each factor. Reducing the spatial resolution of the DEM
layer directly affects multicollinearity among landslide
conditioning factors. Slope and TRI are the most affected
factors. Their VIFs decrease from 4.2 to *2 by reducing
DEM spatial resolution from 0.5 to 30 m. Distance to lin-
eament, STI, SPI, aspect, and altitude are the factors whose
VIFs are least affected by the reduction in DEM spatial

resolution. The VIFs of the remaining factors are also
affected by the change in DEM spatial resolution. Overall,
no marked VIF variation pattern was detected during the
analysis. The VIFs of TWI, plan curvature, profile curvature,
and distance to river increase with decreasing DEM spatial
resolution. By contrast, the VIFs of vegetation density,
NDVI, distance to road, TRI, land use, and slope decrease
with decreasing DEM spatial resolution. Furthermore, the
VIFs of the remaining factors change without any apparent
pattern.

7.5.3 Results of the Sensitivity Analysis

A sensitivity analysis is typically conducted to determine the
contribution of each landslide conditioning factor. In this
study, a chi-square method was applied to evaluate the
contributions of landslide conditioning factors. In this
method, the p-values of each factor were calculated to
determine its importance in predicting landslides in the study
area. The analysis showed that the importance of a landslide
conditioning factor depends on the spatial resolution and
source of the DEM. For example, Table 7.2 indicates that
the p-value of the factor slope is 0.15 (insignificant at the
95% confidence level) when the spatial resolution of the
DEM is 0.5 m. By contrast, slope is statistically significant
at the 95% confidence level at DEM spatial resolutions of 1,
2, 3, 5, 10, 20, and 30 m. In addition, the analysis showed
that slope is insignificant at the 95% confidence level when
the ASTER DEM is used as the data source. Thus, DEM
source should be considered in LSM. The importance of
landslide conditioning factors is sensitive to DEM spatial

Fig. 7.5 Comparison between
ASTER DEM and LiDAR-based
DEM, a LiDAR DEM (30 m),
b ASTER DEM (30 m)

Fig. 7.6 Estimated altitudes from ASTER and LiDAR-based DEMs of
randomly selected samples
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resolution, and thus, no factor has been removed in the
analysis to achieve an objective comparison among the
landslide susceptibility models (Fig. 7.8).

7.5.4 Results of the Landslide Susceptibility
Mapping

Overall, nine landslide susceptibility maps were produced
for the study area using the DEMs with different spatial
resolutions (Fig. 7.9). The maps were created using the LR
modeling approach and reclassified using the natural break
method in GIS. The susceptibility classes are low, moderate,
high, and very high. The very high and high susceptibility
classes are mostly distributed in the northern and western
parts of the study area. The percentages of the very high and
high susceptibility classes in the landslide susceptibility map
derived from the 0.5 m DEM are lower compared with those
in the map derived from DEMs with higher spatial resolu-
tions. The high susceptibility class significantly increased in
the map produced using the 3 m DEM. The difference
among the landslide susceptibility maps produced using the
ASTER DEM and the 30 m LiDAR-derived DEM is the
slight increase in the very high susceptibility class in the
ASTER-derived map.

7.5.5 Validation of the Landslide Susceptibility
Models

The landslide susceptibility models were validated using
several methods. Table 7.3 shows the validation of LSM
via AUC of ROC, the kappa coefficient, and overall
accuracy. The validation shows that the highest success rate
(0.969) and prediction rate (0.968) were obtained by the
3 m DEM. By contrast, the lowest success rate (0.890) and
prediction rate (0.879) were obtained by the ASTER DEM.
In addition, no significant difference was apparent among
the success rates and prediction rates for the spatial reso-
lutions less than 10 m. However, the success rates and
prediction rates significantly decreased for the spatial res-
olutions greater than 10 m. The highest kappa coefficient
was 0.88 for the LSM produced using the 2 m DEM,
whereas the lowest kappa coefficient was 0.645 for the
LSM derived from the ASTER DEM. Furthermore, the
lowest (82.29%) and highest (94.02%) overall accuracies
were obtained by the LSM produced from the
ASTER DEM and the 2 m LiDAR-derived DEM,
respectively.

In addition, the success rates and prediction rates of the
LSMs produced using the ASTER DEM and the 30 m
LiDAR-derived DEM have no significant difference.

Fig. 7.7 Estimated VIF of each landslide conditioning factor
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However, the kappa coefficients and overall accuracies of
these LSMs considerably differ. These results indicate that
the LSM produced using the LiDAR dataset is more capable
of predicting future landslides probably because the
LiDAR DEM contains more information given that it has
been resampled from the 0.5 m DEM.

The spatial agreement evaluation was performed for
every grid via EIE and based on the average susceptibility
values of all the models. This analysis allowed for the
production of two maps, which were used to assess the
spatial agreements among the produced models (Fig. 7.10).
The entropy map showed that the models produced in this
study generally presented high spatial similarities because
the lowest two entropy values (� 0.33) covered nearly
71% of the study area. The maximum similarities were
apparent in most parts of the study area (Fig. 7.10a).
Although rarely observed, the highest dissimilarities gen-
erally occurred in the southwestern and northwestern parts
of the study area. In addition, dissimilarities generally
occurred in high-slope areas. This outcome could be
attributed to the differences in the elevations estimated
from the DEMs.

7.6 Discussion

7.6.1 Effects of DEM Spatial Resolution on LSM

The capability of the datasets to delineate triggering zones
and deposits is illustrated in Fig. 7.9. The fine spatial reso-
lution of LiDAR has helped extract details such as landslide
probability in hilly and flat areas (Fig. 7.9a). However, these
details are compromised in Figs. 7.8f–i, in which the spatial
resolutions are � 10 m. The difference between the LiDAR
and ASTER datasets is demonstrated by the difference in the
hilly areas, where the details are delineated by the LiDAR
sensor. By contrast, the details have been compromised in
the ASTER dataset.

In fine-resolution maps, susceptibility zones can be
accurately extracted at the parcel level to allow for efficient
land use planning and slope management. However, this task
becomes challenging in low-spatial-resolution maps because
details and susceptibility zones are difficult to identify.
Landslides can be delineated from 10 m spatial-resolution
susceptibility maps; however, a finer spatial resolution is
more suitable for LSM. In addition, identification of land-
slide scarps and flanks also requires a finer spatial resolution.
Thus, the spatial resolution should be selected based on the
information source.

Statistically, finer spatial resolutions do not always
guarantee higher prediction rates. This study shows that a
3 m spatial resolution has a higher predictive accuracy
rate than a 0.5 m spatial resolution. However, based onTa
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other statistical metrics, such as the kappa coefficient and
overall accuracy, 2 m spatial resolution is the most
powerful for LSM. Compared with the information from
the ASTER sensor, the information that was stored using
the LiDAR sensor at a fine resolution allows for the
production of relatively satisfactory landslide susceptibil-
ity maps. Therefore, storing valuable ground information
for LSM is imperative. The ASTER data compromise the
ground information, thereby introducing challenges in

delineating detailed information about the landslides in
the study area.

7.6.2 Relationship Between Landslide Density
and Susceptibility Zones

The estimated landslide density in each susceptibility zone
indicates how well the established LR model predicts future

Fig. 7.8 Estimated p-values of each landslide conditioning factor

Table 7.3 Accuracy assessment
of landslide susceptibility models
produced at different spatial
resolutions

DEM resolution ROC area PRC area Kappa Overall accuracy

0.5 m 0.961 0.967 0.854 92.70

1 m 0.962 0.953 0.859 92.96

2 m 0.957 0.963 0.88 94.02

3 m 0.969 0.968 0.838 91.92

5 m 0.953 0.945 0.828 91.40

10 m 0.944 0.932 0.817 90.88

20 m 0.907 0.890 0.682 84.11

30 m 0.909 0.889 0.713 85.67

ASTER (30 m) 0.890 0.879 0.645 82.29
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landslides in the study area. Therefore, zonal statistical
functions were used to calculate the number of landslides in
each susceptibility zone, and the results were plotted on a bar
chart (Fig. 7.11). The analysis showed that the average
number of landslides in the very high and high susceptibility

zones were 160 and 25 landslides, respectively, thereby
indicating that the established LR model is capable of pre-
dicting landslide-susceptible areas.

In addition, the estimated number of landslides in each
susceptibility zone shows that prediction accuracy for

Fig. 7.9 Landslide susceptibility maps using various spatial resolution a 0.5 m DEM, b 1 m DEM, c 2 m DEM, d 3 m DEM, e 5 m DEM, f 10 m
DEM, g 20 m DEM, h 30 m DEM, and i ASTER DEM
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future landslides is sensitive to the spatial resolution of
landslide conditioning factors. As shown in Fig. 7.11, the
estimated number of landslides decreased with decreasing
DEM spatial resolution in the very high susceptibility zone.
By contrast, in the high susceptibility zone, the estimated
number of landslides increased with decreasing DEM
spatial resolution.

Furthermore, the analysis indicated that the ASTER DEM
and the 30 m LiDAR DEM differed in terms of the estimated
number of landslides in the very high susceptibility zone.
The number of landslides in the very high susceptibility zone
in the landslide susceptibility map produced using the
ASTER dataset was 135, whereas that obtained using the
30 m LiDAR dataset was 143. This difference suggests that
the DEM source also affects the accuracy and quality of
landslide susceptibility maps.

Fig. 7.9 (continued)

Fig. 7.9 (continued)
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7.7 Conclusion

The main objective of this study was to assess the effects
of DEM spatial resolution on LSM in tropical areas. Two
datasets were used, namely, LiDAR point clouds with an
average point spacing of 0.7 m and an ASTER DEM with
30 m spatial resolution. Consequently, thirteen landslide
conditioning factors were derived, and the 0.5 m
LiDAR DEM was resampled into various spatial resolu-
tions (1, 2, 3, 5, 10, 20, and 30 m). For each dataset of a
different spatial resolution, a landslide susceptibility index
was developed using the LR model and evaluated with
various accuracy metrics. The AUC of ROC, the kappa
coefficient, overall accuracy, and spatial agreement by
EIE were used to validate the landslide susceptibility
models.

The main finding of this study is that the multicollinearity
and importance of a landslide conditioning factor are sen-
sitive to the spatial resolution of the DEM. In addition, the
analysis indicated that a finer spatial resolution does not
always guarantee a higher prediction rate. The optimal
spatial resolution is 2 m based on the accuracy metrics.
However, DEM spatial resolution has a weaker effect on the
spatial distribution of landslide-prone areas in LSM. The
entropy analysis showed that the models spatially agreed in
71% of the study area in terms of landslide susceptibility
class. Furthermore, the comparison of the LiDAR sensor
with the ASTER sensor showed that the collection of
detailed ground information using the LiDAR sensor pro-
vided better LSM.

Several limitations were observed in the current study.
First, the resampling/interpolation methods were not evalu-
ated, although these methods might have an effect on LSM.
Therefore, this concern should be addressed in future stud-
ies. In addition, the landslide sampling procedure and the
number of landslide inventories might also affect LSM; thus,
both factors should be carefully studied to improve landslide
susceptibility assessment.
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8Spatial Prediction of Landslide-Prone Areas
Through k-Nearest Neighbor Algorithm
and Logistic Regression Model Using High
Resolution Airborne Laser Scanning Data

Biswajeet Pradhan and Mustafa Neamah Jebur

8.1 Introduction

Rapid urban growth and climate change in recent years have
resulted in many environmental problems and increased
risks due to natural disasters. Landslides, floods, earth-
quakes, and tsunamis are natural hazards that must concern
governments worldwide because of the incalculable and
irrecoverable damages they can cause. Landslides are one of
the most destructive natural hazards in the world; they exert
numerous negative effects on many lives and properties
(Antronico et al. 2015; Dehnavi et al. 2015; Fiorucci et al.
2015; Jebur et al. 2014a; Vranken et al. 2013). Landslides
are expected to continue to occur because of the significant
expansion of urban areas, deforestation actions, etc. (Jebur
et al. 2014b; Rahman et al. 2014; Runyan and D’odorico
2014; Ueno et al. 2015). Hence, areas that are susceptible to
landslides must be identified and mapped to assist planners
in establishing safe urbanizations. Landslide susceptibility
maps can be used in other researches such as hazards, risks,
and vulnerability studies. Decision makers and planners
need to identify landslide-prone locations to plan subsequent
actions in consideration of the damage induced by land-
slides. Landslide susceptibility mapping relies on the meth-
ods used and the quality and scale of conditioning factors.
Thus, a spatial landslide database must be established before
implementing an analysis. Various types of datasets have
been utilized in different studies. Selection of factors may be
accomplished based on the information extracted from field
investigations and related literature (Nandi and Shakoor
2010). The accuracy of landslide susceptibility maps relies
on the quality of the selected landslide occurrence distribu-
tion, the conditioning factors and the adopted methodology.
Therefore, data quality is one of the factors that control the
quality of landslide susceptibility maps. Selecting the most
suitable method is vital; hence, various methods have been

developed and examined by many researchers (Akgun 2012;
Ayalew and Yamagishi 2005; Saito et al. 2009; Tien Bui
et al. 2012a).

The emergence of remote sensing (RS) and geographical
information systems (GISs) has facilitated the application
and extension of various algorithms and methods in land-
slide studies (Xu et al. 2012). New insights into landslide
research have been obtained by determining and mitigating
failures through these techniques. Without RS and GIS,
extensive fieldwork, which requires considerable budget, is
required to identify landslide-prone locations.

Landslide susceptibility mapping methods can be gener-
ally divided into two categories, namely qualitative and
quantitative (Guzzetti et al. 1999). Most qualitative methods
rely on previous landslide occurrences to determine loca-
tions that are prone to such a disaster in the future. Two of
the popular qualitative approaches are weighted linear
combination and analytic hierarchy process (AHP) (Ayalew
and Yamagishi 2005; Ayalew et al. 2004; Yalcin et al.
2011). Ayalew and Yamagishi (2005) observed that these
methods are appropriate for regional studies because differ-
ent outputs are affected by the changing views of experts.
Different conditions may be involved in the decision of an
expert and may thus positively or negatively affect the pre-
diction. However, the opinions of experts may vary. Chen
et al. (2011) noted that a high value of subjectivity is
involved in qualitative methods and could lead to ques-
tionable outcomes. Several researchers, such as Chen et al.
2011, stated that the disadvantage of AHP is that it requires
the opinion of various experts from different regions.
Moreover, human errors, which increase the possibility of
uncertainty, are involved.

Statistical methods, which are considered quantitative
approaches, are favored over qualitative approaches (Van
Beek and Van Asch 2004). The reason for such preference is
that expert knowledge is always involved in qualitative
approaches and thus causes uncertainty in the results.
Therefore, statistical methods have become popular. These
methods rely on numerical expressions of the relationship
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between conditioning factors and landslide occurrence.
Various statistical techniques, including frequency ratio
(FR) and logistic regression (LR), exist and have been
employed in landslide modeling. Most statistical approaches
require the establishment of strict assumptions prior to the
study. LR as a multivariate statistical analysis (MSA) can
overcome this difficulty by offering an efficient method of
statistical analysis and also allowing for the incorporation of
bivariate statistical analysis (BSA). Many researchers have
employed LR in landslide susceptibility mapping (Akgun
2012; Felicísimo et al. 2013; Jebur et al. 2014c). In LR
analysis, the correlation between landslide occurrence and
conditioning factors is considered (Kavzoglu et al. 2014).
FR can also be performed with BSA, in which the weight of
each class of each factor is assigned by calculating its effect
on landslide occurrence. The determination of each weight
can be accomplished by analyzing the correlation between
landslide conditioning factors and landslide inventory. The
assigned weight is correlated to the landslide density in each
class. The FR approach considers the impact of the classes of
each factor on landslide occurrence. However, this approach
disregards the relation between landslide occurrence and
conditioning factors.

Machine learning methods are popular in natural hazard
studies which can handle data from different measurement
scales. For instance, artificial neural network (ANN), which
is one of the machine learning methods, has been widely
utilized in landslide susceptibility mapping in various case
studies (Choi et al. 2010; Pradhan et al. 2010). The draw-
back of ANN is that it requires a large amount of data for
processing (Pradhan and Lee 2010a). Furthermore, weak
prediction results can be obtained when the testing data have
values beyond the range of training data. Yilmaz (2009)
indicated that the main disadvantage of ANN is that the
input and output analyses and training operations are
time-consuming. Moreover, ANN requires the data to be
converted into another format, such as ASCII, to be utilized
in the process. Such procedure may be difficult because a
large amount of data is involved. Other machine learning
techniques, such as support vector machine (SVM) (Tien
Bui et al. 2012a) and decision tree (DT) (Saito et al. 2009),
are examples of machine learning algorithms. Machine
learning methods are efficient approaches for landslide
modeling because of their capability to process large
amounts of data with reasonably higher precision than sta-
tistical methods (Nefeslioglu et al. 2010; Pradhan 2013b).
Moonjun (2007) established the distinction among SVM,
DT, LR, and AHP in landslide modeling and found that
although these approaches are all acceptable, SVM outper-
forms the other algorithms in most areas.

The disadvantage of machine learning algorithms is that
their analysis requires a large amount of time to some extent
(Moonjun 2007). Considering that each method has

disadvantages, researchers have developed advanced
ensemble methods to address the drawbacks of individual
ones. Jang (1993) employed the Takagi–Sugeno rule format
to introduce the adaptive network-based fuzzy inference
system (ANFIS), which is widely utilized in complicated
system modeling (Tien Bui et al. 2012b). ANFIS is a com-
bination of ANN and the fuzzy interface system (FIS) and
results in high performance and minimum input. Pradhan
(2013b) compared the performance of SVM, ANFIS, and
DT in mapping landslide susceptibility in Malaysia and
found that ANFIS provides results that are more accurate
than those of DT and SVM; however, ANFIS is
time-consuming, which limits its application (Chau et al.
2005). Tien Bui et al. (2012b) demonstrated that ANFIS
requires more factors than the LR model in landslide
mapping.

As demonstrated by previous studies, several algorithms
have limitations in landslide modeling. Hence, the objective
of the current research is to obtain accurate results through
the use of ensemble methods. These methods have been
proven effective in the related literature and can increase the
accuracy and overcome the disadvantages of stand-alone
algorithms (Wan et al. 2012). For example, ANFIS, which is
an ensemble of ANN and FIS, has been proven to be more
accurate than stand-alone ANN and FIS. Another example of
model combination is the hybrid integration of ANN with
the genetic algorithm (ANN–GA). ANN–GA utilizes the
advantages of both models. Chau et al. (2005) evaluated the
strength and validity of ANN–GA, ANFIS, and LR by
comparing their performance. LR has the highest uncertainty
among the three; ANN–GA and ANFIS perform better than
LR because of their nonlinear nature.

According to the aforementioned studies, the information
in the spatial database, its quality and appropriateness, the
type and performance of each model affect the prediction
capability of landslide susceptibility maps. k-nearest neigh-
bor (kNN) is the most widely utilized algorithm in
non-parametric density estimation (Brahim-Belhouari et al.
2005). Despite its simplicity, the approach performs very
well. The non-parametric kNN algorithm performs landslide
inventory prediction, where all conditioning factors are
acquired simultaneously using similar implied field data
(Ohmann and Gregory 2002). Marjanović et al. (2009) used
SVM and kNN algorithms, to map the landslide susceptible
areas in Fruška Gora Mountain, in vicinity of Novi Sad, NW
Serbia. Another study was done by de Souza and Ebecken
(2012) which utilized kNN method to perform landslide
analysis in Rio de Janeiro city. Cheng et al. (2013) used
kNN classifier to classify the sub-images into landslide areas
and non-landslide areas based on the object distribution.
kNN is an important standard algorithm. This study exam-
ined the efficiency of the kNN algorithm in landslide sus-
ceptibility mapping. Although machine learning approaches
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have some advantages over statistical approaches, the
required processing time in machine learning methods limits
the applicability of such methods in natural hazard studies,
particularly when various types of data, such as nominal,
scale, and ordinal, are employed in the analysis. The goal of
this study is to determine if the required time can be reduced
with the kNN algorithm. In order to determine the efficiency
of kNN, LR method was used to be compared with kNN.
Therefore, another aim of this study is to compare prediction
rates from both kNN and LR applications and their useful-
ness in landslide susceptibility mapping. kNN and LR
(MSA) were applied to estimate the correlation between
conditioning factors and landslide occurrence.

8.2 Study Area and Data

The case study is a landslide-prone area in Ulu Klang, Bukit
Antarabangsa. The location was selected with different
spatial datasets. The approximate area boundary is at a
longitude range of 101° 44′ 21.657′′E–101° 47′ 11.058′′E
and latitude of 3° 9′ 57.492′′N to 3° 14′ 5.062′′N. The area of
coverage is 26 km2 (Fig. 8.1). The study area has a tropical
climate similar to that of the entire Malaysia, and the average
monthly temperature is between 29 and 32 °C. Monthly
rainfall ranges from 85 to 240 mm. The lack of appropriate
planning and design for hillside expansion has exposed
Bukit Antarabangsa to landslide risks. Five lives were lost in
the extensive landslide that occurred in Bukit Antarabangsa
at 3:30 am on December 6, 2008. This disaster caused
thousands of people to leave their homes. This area was
selected because of the frequent catastrophic landslides that
have occurred in recent years. The dominant land uses
include urban and vegetation. Loam and clay are the pre-
dominant types of soil; these types are known to have very
weak structures (Althuwaynee et al. 2012). The geologic
structure of the study area is reasonably homogeneous and
contains three rock types: vein quartz, acid intrusives, and
schist. The landslides that occurred in the area were gener-
ally triggered by heavy monsoon rainfall.

8.2.1 Landslide Inventory Map

One of the most important factors in predicting landslides is
the inventory map, which can represent single or numerous
occurrences of landslides in a specific area (Tien Bui et al.
2012a). Various resources are utilized to establish an
inventory map, and historical landslide data, such as aerial
photos, field surveys, QuickBird satellite imagery, and
government agency records, are collected (Althuwaynee
et al. 2012; Hassaballa et al. 2013). In this study, a landslide
inventory map of the area was prepared with reports, satellite

and aerial photos, and GPS surveying. A total of 31 land-
slide incidents were employed in the analysis (Fig. 8.1). To
produce a susceptibility map, the landslide occurrences were
divided into two classes, namely testing and training. Vari-
ous researchers have recommended that roughly 70% of
landslide incidents can be utilized for training and the
remaining 30% for validation (Tehrany et al. 2013; Xu et al.
2013). Using the above-mentioned method, 22 cases of
landslide occurrences (70%) were randomly selected and
utilized for the training of the algorithms (kNN and LR). The
remaining nine incidents (30%) were employed for valida-
tion (Fig. 8.1). The dependent layer, which represents
landslide, was constructed with landslide cases with a value
of 1. Similarly, an equal number of cases were assigned to
the areas with no possibility of landslide occurrence (i.e., flat
areas) with a value of 0.

Various factors, such as unsaturated hydraulic conduc-
tivity, water pressure, and soil moisture condition, contribute
to the increase in trapped water and pore water pressure. One
out of three slip surfaces results in a shallow landslide, as in
the case of most landslides in Bukit Antarabangsa. The
locations of landslides are represented by demarcated marks
at the middle of the head scarps. The presented points cannot
represent the entire area covered by a particular landslide
event. However, the above-mentioned limitation does not
have an effect on the result because 85% of the landslides in
the analyzed area (Bukit Antarabangsa) have a width of less
than 30 m.

8.2.2 Landslide Conditioning Factors

The other main step in susceptibility analysis is to establish
the conditioning factors that have a relationship with land-
slide occurrence. Prior to constructing a suitable set of
conditioning factors that have a correlation with landslide
occurrence, the primary contributor to landslides must be
initially determined (Guzzetti et al. 1999). Conditioning
factors contain topological information, such as altitude,
slope, aspect, and curvature, and hydrological parameters,
such as stream power index (SPI) and topographic wetness
index (TWI). Other conditioning factors, such as soil,
geology, land use/land cover (LULC), distance from rivers,
and distance from roads, were also considered in this study
(Yalcin 2008). In various regions, topographical factors are
considered significant elements. However, in other areas,
other environmental or geological parameters are deemed
substantial. The availability of thematic layers varies com-
prehensively and relies on the method, scale, and type of
collected data. Therefore, the conditioning factors utilized in
this study were selected depending on the parameters most
widely used by researchers. In other words, the selected
parameters are those utilized by many other researchers;
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these parameters have a significant impact on the potential of
the terrain.

Related conditioning factors that have a spatial correla-
tion with landslide occurrence were prepared to construct the
probabilistic model. The data were resampled to 20 m.
Topographic factors were acquired from a local Malaysian
(Kertau-RSO) coordinate system with a grid size of 20 m.
Altitude, slope, curvature, SPI, TWI, distance from rivers,
and distance from roads were defined as scalar data. Geol-
ogy, soil, and LULC were defined as nominal data. All
conditioning factors are with a grid size of 20 m. Two of the
important factors that play significant roles in landslide
occurrence are altitude and slope degree. These factors are
widely utilized in landslide susceptibility analysis (Moonjun

2007; Pradhan and Lee 2010a). Thus, slope and altitude
maps constructed from a digital elevation model were
included in the analysis (Figs. 8.2a and 8.2b). One of the
other main conditioning factors is aspect, which has been
employed in various studies (Fig. 8.2c) (23-IEEE). The
impact of curvature on the process of landslide occurrence
during downhill flow is the divergence or convergence of
water (33-IEEE). Therefore, this parameter is related to
landslide occurrence (Fig. 8.2d). Hydrology-related param-
eters, such as SPI and TWI, were calculated with Eqs. 8.1
and 8.2 as follows:

SPI ¼ A tan b=b; ð8:1Þ

Fig. 8.1 Training and testing
landslide events mapped on Bukit
Antarabangsa, Ulu Klang,
Malaysia hill-shaded map
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Fig. 8.2 Input thematic layers: a altitude, b slope, c aspect, d curvature, e SPI, f TWI, g Soil, h geology, i LULC, j distance from river, and
k distance from road
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Fig. 8.2 (continued)
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Fig. 8.2 (continued)
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TWI ¼ loge A=b tan bð Þ; ð8:2Þ
where b (m) is the width of the cell through which the water
flows, A (m2) is the flow accumulation, and b (radian) is the
slope (Regmi et al. 2010). In a particular catchment area, SPI
is considered the amount of erosive power of flowing water
depending on the presumption that discharge is proportional
to the catchment. Net erosion can be calculated with SPI in
the profile region and tangential convexity area (flow
acceleration and convergence zones); net deposition can be
calculated in the areas with profile concavity (zones of
decreasing flow velocity) (Fig. 8.2e). TWI is the degree of
accumulated water in a particular region (Fig. 8.2f).

8.3 Methodology

The types of soil employed in the analysis include disturbed
land (DLD), local alluvium colluvium association
(LAA-COL), rengam (RGM), and steep land (STP)
(Fig. 8.2g). One of the important factors in various studies

on landslide apportionment is geology. The current study
area contains three types of lithology, namely vein quartz,
acid intrusives, and schist (Fig. 8.2h). The main LULC types
include urbanized areas followed by agricultural areas
(particularly for oil palm, rubber, and paddies). A significant
change has occurred in the urban areas because of defor-
estation. The distances from rivers and roads were calculated
with the Euclidean distance tool in ArcGIS. The results were
employed in the subsequent analysis (Figs. 8.2j, k and 8.3).

8.3.1 kNN

Landslide applications mostly require appropriate factors for
all landslide variables (Brahim-Belhouari et al. 2005). Tra-
ditional landslide modeling algorithms have their drawbacks
and limitations in this aspect. The non-parametric kNN
algorithm performs landslide inventory prediction, where all
conditioning factors are acquired simultaneously using
similar implied field data (Ohmann and Gregory 2002).
Through such technique, the weight of a conditioning factor

Fig. 8.3 Overall flowchart used in this study
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is estimated as the sum of each factor over landslide events.
In the kNN algorithm, prediction mp for particular area P for
scale factor M is determined as

mp ¼
Xk

i¼1

wi;p mi; ð8:3Þ

where mi is the M variable value in reference plot i. The
variables wi,p, which represent the pixel weights, are esti-
mated as

Wi;p ¼
d�t
pi;p

=
P

j 2 i1 pð Þ;...;jk pð Þf g d
�t
pj;p

; if and only if i2 i1 pð Þ; . . .; ik pð Þf g;
0

�

ð8:4Þ
where the representation of the field plot and target set pixel
is i and p, respectively. The corresponding area with the
landslide spots is pj, and {i1(p),…, ik(p)} is the set of k pixels
that are nearest to area p. Katila and Tomppo (2001) and
Franco-Lopez et al. (2001) demonstrated the impact of
various t-values on prediction errors. In the current study, the
nearest metric (shown in Eq. 8.4) was employed for the
nominal factor (i.e., soil or geology); however, the following
equation was utilized to predict the impact of the scale factor
(i.e., altitude or slope).

d2pjp ¼
Xnf

l¼1

x2
l;f ðfl;pj � fl;pÞ2 ð8:5Þ

In the case of categorical (nominal) factors, instead of
using the weighted average as in the case of the scale factor,
the prediction median classes for the nearest neighbors can
be utilized. The predicted landslide location has the highest
sum value of weights wi and p. Theoretically, when the
weights are utilized, equal sums are rarely obtained. The
probability is null if a neighbor is considered. If a similarity
exists in the sum of two or more classes, then the selection of
one class will be randomly processed through those with the
highest value. The categorical factors included in this study
are soil, geology, and LULC, which were predicted through
this approach.

8.3.2 LR

One of the popular MSA algorithms is LR, which considers
several parameters that have a possible influence on land-
slide occurrence. In LR method, data distribution does not
necessarily need to be normal. Data distribution can be
nominal, continuous, or a combination of both (Lee and
Pradhan 2007). With LR technique, analyzing the correla-
tion between continuous or nominal data (i.e., conditioning

factors) and the binary dependent variable is possible
(Shirzadi et al. 2012). In this study, the landslide events were
utilized as dependent and binary variables. The absence and
presence of landslides were assigned values of 0 and 1,
respectively. The weight of each conditioning factor was
extracted through LR and was then employed in GIS to
establish the final susceptibility map. Multivariate analysis,
where the coefficient values were calculated, was performed
with SPSS software. In the LR algorithm, the impact of each
conditioning factor can be deduced from the coefficient
value (Ayalew and Yamagishi 2005). The landslide sus-
ceptibility map was produced with the following formula.

P ¼ 1
1þ e�z

; ð8:6Þ

where P represents the probability of landslides on an
s-shaped curve ranging between 0 and 1. Furthermore,
z represents the linear assembly, where LR involves fitting
an equation of the following form to the data.

z ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ bnxn; ð8:7Þ
where b0 is the constant value of the algorithm, bi (i = 0, 1,
2,.…, n) is the coefficients of the LR algorithm, and xi (i = 0,
1, 2, …, n) shows the conditioning factors (Lee and Pradhan
2007). Finally, the probability map was divided into various
categories to produce the susceptibility map (Ohlmacher and
Davis 2003). Different categorization methods, such as equal
interval (Kavzoglu et al. 2014), standard deviation (Günther
et al. 2013), natural break (Ayalew et al. 2004), and quantile
(Ayalew et al. 2004), can be used in the GIS environment for
classification. In this research, ideal optimization was
achieved with the quantile technique. Quantile method clas-
sifies the landslide susceptibility index into classes with equal
area. When other methods were employed, the
landslide-prone areas were exaggerated, and most of the
areas in Bukit Antarabangsa were classified as highly sus-
ceptible. Tehrany et al. (2014b) mentioned that although the
quantile technique classifies highly different discrete into the
same class, the outcome is reasonably acceptable and good
landslide susceptibility mapping can be achieved. Various
researchers have utilized the quantile technique, and its effi-
ciency in susceptibility mapping has been proven (Ayalew
and Yamagishi 2005; Tehrany et al. 2013).

8.4 Results

8.4.1 kNN

The conditioning factors with the training layer were utilized
for analysis to measure the probability map of landslides. By
using Eqs. 8.4 and 8.5 for the conditioning factors, the
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probability map was produced and ranged from 0 to 1. In the
processing of landslide susceptibility, 11 of both categorical
and continuous parameters were used to produce two prob-
ability maps with values from 0 to 1. An area is considered
likely to be prone to landslides when the value is close to 1.
The scale outcome is the probability index, and further
analysis was conducted to produce the final susceptibility
map. No framework or rule exists to classify the probability
index, which makes the task difficult (Ayalew et al. 2004).
The problem of reformatting the probability map into vari-
ous classes brings uncertainty in landslide susceptibility
modeling. This phenomenon is due to human error given
that susceptible zones are usually defined based on expert
knowledge and opinion. A few classification methods exist.
Four of the most popular classification methods, namely
quantile, natural break, standard deviation, and equal inter-
val methods, were tested in this study (Tehrany et al. 2014a).
Each method has its own procedure of classifying values;
thus, each method may produce different results. For
example, standard deviation recognizes the mean of input
data and consequently partitions the data into classes using
the standard deviation of the mean. The number of cate-
gories in this algorithm is constant, which is inappropriate
for susceptibility research because a target number of classes
is required. Equal interval method is unsuitable because it
emphasizes one categorical susceptible class. Natural break
method defines the boundary of each category depending on
the inherent nature of the input data whenever a significant
change in value occurs. In this study, a probability histogram
was derived and examined; no significant change in value
was detected. Thus, the natural break scheme is inappro-
priate for the current study. When the quantile method was
employed, the derived classes resulted in an equal area
format, where each category has a similar amount of pixels.
Hence, the quantile algorithm was used because it is the best
fit for the current research.

8.4.2 LR

The LR algorithm, a popular algorithm in various landslides
studies, was applied to determine the relationship between
landslide occurrence and landslide influence parameters
(Kavzoglu et al. 2014; Regmi et al. 2014). The coefficients
calculated with LR are listed in Table 8.1. A positive coef-
ficient value for a particular factor means that the influence
of this factor in the selected catchment increases the possi-
bility of landslide occurrence. By contrast, a negative coef-
ficient value means that the existence of a particular factor
decreases the probability of landslide occurrence (Chauhan
et al. 2010).

Significant probability (Sig) was computed through LR
processing. The significant influence on landslides can be
determined with the Sig factor (Papadopoulou-Vrynioti et al.
2013). A conditioning factor considered statistically has a
significant effect on landslides if its Sig value is <0.05. The
results show that slope, aspect, SPI, TWI, and distance from
roads are the most important independent parameters with
values of (0.02), (0.03), (0.03), (0.03), and (0.04), respec-
tively. Other independent parameters, such as altitude, soil,
geology, curvature, LULC, and distance from rivers, with
Sig values higher than 0.05 are not as effective as the others.
To obtain the landslide probability index, the regression
coefficients for each factor were defined with Eq. 8.4.

Z ¼ 0:92Slopeð Þ � 0:079Altitudeð Þþ 0:038Aspectð Þ
þ 0:202Curvatureð Þþ 25:318SPIð Þ � 20:513TWIð Þ
þ SoilþGeologyþLULC � 0:073Riverð Þ
� 0:085Roadð Þ � 255:931

ð8:8Þ
Next, the probability map was measured with Eq. 8.8.

The values of the probability map range from 0 to 1. The

Table 8.1 Multicollinearity diagnostics of the conditioning factors

Layer Altitude Slope Aspect Curvature SPI TWI Soil Geology LULC River Road

VIF

Altitude 1 1.295 1.027 1.093 2.149 2.400 1.245 1.099 1.352 1.071 1.291

Slope 2.415 1 1.029 1.097 2.080 2.247 1.263 1.098 1.503 1.088 1.791

Aspect 2.420 1.300 1 1.097 2.279 2.647 1.265 1.100 1.478 1.089 1.792

Curvature 2.416 1.300 1.029 1 2.232 2.636 1.266 1.101 1.502 1.088 1.791

SPI 2.286 1.186 1.029 1.074 1 1.298 1.253 1.089 1.494 1.089 1.780

TWI 2.198 1.103 1.029 1.092 1.118 1 1.254 1.093 1.498 1.084 1.772

Soil 2.384 1.296 1.028 1.097 2.255 2.622 1 1.080 1.493 1.048 1.783

Geology 2.420 1.295 1.029 1.097 2.254 2.268 1.242 1 1.502 1.087 1.778

LULC 2.181 1.299 1.012 1.096 2.265 2.639 1.258 1.100 1 1.087 1.777

River 2.384 1.298 1.029 1.096 2.280 2.634 1.219 1.099 1.500 1 1.769

Road 1.746 1.299 1.029 1.096 2.263 2.618 1.260 1.092 1.490 1.075 1
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probability map represents the prediction of landslides for
each pixel obtained from the used independent variables.
Finally, quantile method was implemented; the landslide
susceptibility map was acquired and divided into five classes
of landslide susceptibility as shown in Fig. 8.4.

8.5 Discussions

As mentioned previously, the landslide probability maps for
both algorithms (kNN and LR) were divided into five clas-
ses, namely high, very high, moderate, low, and very low
(Fig. 8.4) (Ayalew and Yamagishi 2005; Pradhan 2013a;
Pradhan and Lee 2010b). The resulting maps show the
probability of landslide occurrence in Bukit Antarabangsa,
Ulu Klang, Malaysia. Huabin et al. (2005) reported that two
factors need to be considered to obtain an effective landslide
susceptibility map. The first factor is the overlapping of the
conditioning factors in the inventory map to identify
landslide-prone areas. The second factor is that the coverage
area of landslide-prone areas should be small. The suscep-
tible maps generated with the two algorithms are shown in
Fig. 8.4.

The result obtained from kNN is visually different from
the one derived from LR. kNN detected specific zones as
highest susceptible areas, while LR distributed these regions.
In both classified maps, the highest landslide-prone areas are
located in the urban areas. On the other hand, vegetation
areas are classified as less susceptible regions. It is due to the
impact of vegetation on controlling the soil movement. To
determine the most precise method of determining
landslide-prone regions, the obtained results must be com-
pared. Through the area under curve (AUC) technique, the
success and prediction rates of the two susceptibility maps
were calculated based on data on previous landslide events.
AUC is considered as one of the most popular methods to
assess the efficiency of the generated landslide maps which
produces both success and prediction rates. Prediction and
success rates should be evaluated as an essential outcome of
every program. The validation process is implemented by
comparing the existing landslide events with the acquired
landslide probability map. As it has been mentioned in data
used section, landslide events should be divided into two
datasets of training and testing. If the AUC is calculated
using training dataset, it produces success rate; if AUC is
calculated using testing dataset, it gives perdition rate.

Fig.8.4 Landslide susceptibility maps derived from a kNN and b LR
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Success rate shows how well the model worked with training
dataset, and the prediction rate shows how well the model
can predict the landslide-prone areas. The representation of
AUC for LR and kNN is shown in Fig. 8.5.

The success rate should be analyzed to identify the
algorithm that is suitable for a selected study. Success rate
shows the efficiency of the algorithms in handling the case
study. A low success rate indicates that the method utilized
is unsuitable for a particular study. In the current study, both
LR and kNN exhibited reasonable and acceptable success
rates of 75.65 and 86.28%, respectively. These results
indicate that the kNN algorithm is useful and can be utilized
in the subsequent analysis. The actual efficiency of the
obtained result is expressed by the prediction rate. The
prediction rates obtained for LR and kNN were 72.18 and
82.64%, respectively. In terms of prediction rates, the kNN
algorithm exhibited higher efficiency and reasonable results.

As discussed in a previous study, a difference of
approximately 14% in the prediction accuracy of two algo-
rithms means that several of the utilized conditioning factors
generated some noise in the analysis (Chang et al. 2007).
Therefore, multicollinearity could exist (Zhu and Huang
2006). When perfect correlation exists among the input
factors, the prediction of the regression model would be
imperfect. In other words, collinearity means that two
parameters have a linear relation. Multicollinearity is appli-
cable to situations where more than two parameters are

involved. Regression models, such as LR, are very sensitive
to collinearity (Ozdemir 2011). Therefore, the use of
parameters that are not significant in the regression analysis
will reduce the prediction accuracy of the model. Hence, a
multicollinearity analysis was performed. The variance
inflation factor (VIF) is shown in Table 8.1. A VIF value
greater than 10 denotes the existence of multicollinearity
(Ozdemir 2011). No VIF value greater than 10 was obtained.
Therefore, no actual multicollinearity exists among the input
parameters.

In both algorithms, the highly prone areas have sharp
slopes and high altitudes. Altitude and slope thus have sig-
nificant effects on landslide occurrence. Areas with weak
rock types, such as vein quartz, are considered susceptible.
As speculated, low areas with sharp slopes and close dis-
tance to a river have low landslide susceptibility. Another
investigation was performed to determine the significance of
each particular conditioning factor. Each factor was exclu-
ded, and the model was implemented to calculate AUC. This
technique was applied to both kNN and LR algorithms, and
the result is shown in Table 8.2.

In the case of LR, a significant reduction was observed
when the slope factor was eliminated from the analysis.
This phenomenon shows that the slope layer has a large
impact on the performance of LR. In the case of kNN, the
most significant parameter was the altitude layer. The
measured accuracy was reduced when altitude layer was

Fig. 8.5 Graphic representation of the cumulative frequency diagram presenting the cumulative landslide occurrence (%; y-axis) in landslide
probability index rank (%; x-axis): a success rate and b prediction rate
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eliminated from the analysis. Meanwhile, removing other
factors produced a slight difference in the accuracy of the
algorithm.

8.6 Conclusion

Various algorithms and methods have been applied in
the literature to construct landslide susceptibility maps.
Several of these techniques have disadvantages, including
difficulties in data management or time-consuming analysis.
A few well-defined algorithms have not been utilized in
landslide modeling and need to be tested. The use of a new
algorithm involves different aspects, such as time and
accuracy. This research assessed the potential application of
a kNN algorithm in landslide susceptibility mapping for
Bukit Antarabangsa, Ulu Klang, Malaysia. LR, which is a
well-established technique in landslide research, was also
employed. Its efficiency was compared with that of the kNN
model.

Landslide occurrence is correlated with different condi-
tioning factors. Eleven landslide conditioning factors,
namely altitude, slope, aspect, curvature, SPI, TWI, soil,
geology, LULC, distance from rivers, and distance from
roads were acquired from various sources and used in this
study. Similar conditioning factors were used in both kNN
and LR to examine the effectiveness of the kNN method in
landslide mapping. The probability of landslide occurrence
for LR and kNN was derived, and the impact of each factor
on landslide occurrence was assessed. kNN was imple-
mented, and its result was compared with the output of LR
method. AUC charts were utilized to validate each method
by calculating both success and prediction rates. kNN and

LR acquired prediction values of 82.64 and 72.18%,
respectively. The kNN model has better prediction capability
than the LR method. However, one disadvantage of kNN is
that extensive analysis is required to estimate the suscepti-
bility output because all the training data need to be stored.
The proposed model has the potential to perform better than
other popular methods and slightly increased the precision of
the processing for the study area. The obtained probability
maps for each method were classified through quantile
technique. Two landslide susceptibility outputs were map-
ped. The obtained susceptibility maps provide prediction
information on the spatial component of landslides without
knowing “when” and “how frequent” the next landslide
would occur. The validation results indicated that the land-
slide susceptibility maps produced in this study are of good
quality. Therefore, the findings of this research may help
governments and researchers predict and manage future
landslides. In addition, the proposed algorithm can be uti-
lized because it is simple, scalable, and has an acceptable
and reasonable prediction capability. The proposed method
can be useful for complicated problems (i.e., landslides
analysis), although it requires large amounts of analysis
compared with other algorithms. This study can be enhanced
in the future by considering more conditioning factors.
However, adding other parameters may increase the amount
of analysis time required by the algorithm. Research should
be performed on other case studies to examine the kNN
algorithm. Testing other unused or unexamined algorithms is
also recommended to help determine the most suitable
technique for landslide susceptibility mapping. The results
of this study verify the superiority of the kNN algorithm
over other methods and can be used as a reference for future
studies.

Table 8.2 The relative
important of landslide
conditioning factors for the two
models

Layer AUC (prediction)

LR kNN

Without altitude 66.93 70.09

Without slope 62.65 77.45

Without aspect 67.77 80.03

Without curvature 66.74 76.72

Without SPI 66.27 74.91

Without TWI 67.03 73.82

Without soil 67.26 75.61

Without geology 69.12 76.69

Without LULC 67.05 79.2

Without river 66.05 78.3

Without road 67.17 78.83
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9Spatial Prediction of Landslides Along Jalan
Kota in Bandar Seri Begawan (Brunei) Using
Airborne LiDAR Data and Support Vector
Machine

Biswajeet Pradhan, Mustafa Neamah Jebur and Saleh Abdullahi

9.1 Introduction

A landslide is one of the most dangerous natural hazards that
can cause considerable damage to human life and properties
(Yin et al. 2009; Pradhan and Lee 2010; Jebur et al. 2014).
The effective mapping of landslide-prone areas can help
reduce and even avoid the tragic loss of lives and economic
devastation. Recently, rapid urban growth in rural environ-
ments, particularly in environmentally sensitive areas, has
generated considerable interest in landslide assessment
studies and, subsequently, has increased the number of
researchers in this field (Gokceoglu and Sezer 2009). In
addition, the availability of spatial data in costly and
time-effective digital format has enabled users to apply
sophisticated data-driven approaches in landslide-related
analysis (Marjanović et al. 2011). Landslide susceptibility
mapping (LSM) is one of these analyses; it identifies
landslide-prone areas, thereby providing valuable informa-
tion about the spatial probability of landslide occurrence.
This information can assist planners and decision makers in
land management and infrastructure planning (Xu et al.
2012; Regmi et al. 2014). The process of LSM has been
presented using various techniques based on site specifica-
tion and the strength of approaches in different studies
(Bonham-Carter 1994; Chacón et al. 2006). The perfor-
mance of these techniques is based on running different
aggregation models to investigate the interaction of several
site-specific triggering parameters that cause landslides.
Addressing these parameters individually and considering
their mathematical relationships are essential. However,
understanding these relationships to predict landslide sus-
ceptibility is difficult (Cui et al. 2010). One of the main
objectives of LSM is to investigate these relationships
according to background knowledge and then to identify
areas prone to future mass movements. This objective can be

attained by evaluating the spatial distribution of previous
landslides with respect to the physical properties (e.g.,
geological and geomorphological properties and land use
categories) of a site to create a susceptibility map (Ballabio
and Sterlacchini 2012). In recent decades, numerous studies
have been conducted to develop geographic information
system (GIS)-based LSM by focusing on conditioning fac-
tors (Lee and Pradhan 2007; Pradhan and Lee 2010; Pradhan
2011; Bui et al. 2013; Pourghasemi et al. 2013). These
studies report the inefficiencies of physical models resulting
from the complexity, nonlinearity, and ambiguity of the
relations between the involved factors and landslide occur-
rence; these inefficiencies have encouraged the current
researchers to apply more sophisticated statistical approa-
ches (Micheletti et al. 2011). In general, the most common
approaches for LSM are the deterministic approach (Westen
and Terlien 1996), the heuristic approach (Barredo et al.
2000; van Westen 2000), the statistical approach (Ramani
et al. 2011; Youssef et al. 2015), the support vector machine
(SVM) (Wan and Lei 2009; Pourghasemi et al. 2013), the
neuro-fuzzy-based method (Oh and Pradhan 2011; Akgun
et al. 2012), fuzzy logic (Pradhan 2011), and artificial neural
networks (ANNs) (Chi et al. 2002; Wang et al. 2015). To
develop stronger and applicable LSM, these methods should
be integrated into remote sensing (RS) and GIS technolo-
gies. Several benefits that can be gained from RS and GIS
technologies include high data quality with regular updating
and a wide coverage, a variety of data sources, and rapid and
accurate analysis. Numerous RS- and GIS-integrated
approaches have been proposed to evaluate landslide-prone
areas (Sarkar et al. 2008; Konadu and Fosu 2009; Pradhan
and Lee 2010).

Although the aforementioned approaches have certain
capabilities to extract susceptible areas and create landslide
susceptibility maps, these approaches have their respective
advantages and disadvantages; the latter reduces the effi-
ciency of the predictive models. For example, the depen-
dency of the analytic hierarchy process (AHP) on expert
knowledge is the main source of its uncertainty; this method
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is mainly suitable for regional studies (Subramanian and
Ramanathan 2012). The lack of spatial relationship among
variables is the main drawback of the frequency ratio
(FR) technique. Logistic regression (LR), as a multivariate
statistical analysis, overcomes this problem. Although LR
has long been used in natural hazard assessment, it cannot
evaluate the classes of each contributing factor (Tehrany
et al. 2014). An ANN works like a “black box”; thus, the
esoteric performance of this method and the relationship
among its variables are difficult to understand (Pradhan and
Buchroithner 2010). In addition, an ANN is not a
time-effective model for a large number of variables (Ghal-
khani et al. 2013). By contrast, the structure of fuzzy logic is
more understandable than that of an ANN. However, similar
to AHP, fuzzy logic also results in uncertainty because it is
an expert knowledge-based process (Tilmant et al. 2002).
Despite the successful application of the aforementioned
approaches, machine learning models have recently received
more attention in LSM applications. Concepts and details
about machine learning and its application in geospatial data
processing are presented by Pozdnoukhov (2009).

Recent works include comparative studies of various
approaches to evaluate their advantages and disadvantages.
Pradhan (2013) compared the performance of the decision
tree (DT) algorithm, SVM, and an adaptive neuro-fuzzy
inference system for the LSM of Penang Hill, Malaysia. The
analysis reported the difficulty in defining the rule for DT
and in selecting parameters for SVM modeling. In addition,
all the three approaches require advanced computer systems
to run an analysis (Chau et al. 2005). Marjanović et al.
(2011) compared three machine learning algorithms (SVM,
DT, and LR) and then compared the selected algorithm with
AHP. From the aforementioned comparisons, SVM outper-
formed the other approaches in all the evaluation metrics.
Ballabio and Sterlacchini (2012) applied and tested all the
procedural steps for LSM using SVM modeling. An SVM
susceptibility map was compared with LR, linear discrimi-
nant analysis, and naïve Bayes classifier. The results
demonstrated the feasibility and capability of SVM to out-
perform other models in terms of accuracy and generaliza-
tion capacity. Other researchers, including Brenning (2005),
Lifeng and Youshui (2006), and Yilmaz (2009), have
compared SVM with other models for LSM. All these
studies strongly agree that the performance of SVM is better
than those of the other approaches. This finding may be
attributed to the training phase of SVM modeling, with
associated input and target output values (Xu et al. 2012).
Micheletti et al. (2011) applied SVM to map landslide sus-
ceptibility in the Canton of Vaud (Switzerland) by using
efficient feature selection methods, which enhanced model
interpretability. Xu et al. (2012) evaluated the mapping
power of SVM modeling in earthquake-triggered LSM using
GIS software. They applied three groups of positive and

negative training samples with four different kernel func-
tions: radial basis function (RBF), polynomial (PL), sigmoid
(SIG), and linear (LN). Among the 12 results, SIG was the
least skillful when used with the centroid data of all the
studied landslides as positive training samples. Pourghasemi
et al. (2013) implemented more kernel classifiers (i.e., LN,
PL degree of 2, PL degree of 3, PL degree of 4, RBF, and
SIG) for LSM in Golestan Province, Iran. Among these
classifiers, RBF provided better results based on the evalu-
ation of all six output maps using success and prediction rate
methods. Yao et al. (2008) first reviewed one-class and
two-class SVM methods and then presented their applica-
tions to LSM. The results of both methods were compared
with the LR model, and the two-class SVM performed better
than LR and one-class SVM in terms of prediction accuracy.
The current study introduces SVM modeling approaches for
the LSM of a landslide-prone area in Jalan Kota, Brunei.
Four kernel types of SVM (RBF, PL, SIG, and LN) are
included in the process to evaluate their performance in the
entire modeling procedure, classification, and output maps.

9.2 Data and Methodology

9.2.1 Landslide Inventory Map

The proposed model was applied to a landslide-prone area in
Jalan Kota, which is located in the northeast of Brunei
(Bandar Seri Begawan) and spreads over approximately
26.84 km2 of a hilly landscape (Fig. 9.1). Most landslides in
Jalan Kota occur in unstable ground with a high degree of
slope angle. In addition, heavy rainfall, along with less dense
and less compact soil properties, increases the probability of
landslide occurrence. In general, landslide susceptibility
maps are produced based on various inventory maps. Such
maps can be used to assess and mitigate landslide hazard or
risk on a regional level. Furthermore, these inventory maps
can have significant effects on investigating the relationship
between the spatial distribution of landslide occurrence and
landslide triggering factors. Extensive site surveys and
observations were performed to create landslide inventory
maps of the study area. Approximately 90 landslide loca-
tions were identified in Jalan Kota using aerial photos
(spatial resolution: 0.61 m) taken by the QuickBird satellite
on April 1, 2011. From the total number of 90 landslides in
the inventory map, 70% were randomly selected for the
training data set, and 30% were selected for the testing data
set. Subsequently, the dependent layer was created using the
training data set. This layer comprised three classes: 1, −1,
and 0. The value of 1 was assigned to areas with landslide
occurrence. The value of −1, which was equal in number to
the training locations, was assigned to areas where landslide
did not occur. The value of 0 was assigned to areas that
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should be predicted. The remaining landslide events were
used as testing data. The methodology flowchart of the
research is provided in Fig. 9.2.

9.2.2 Landslide Conditioning Factors

As explained earlier, landslide occurrence is caused by
several factors, which should be considered and evaluated in
susceptibility mapping (Liu and de Smedt 2005). Through
knowledge from the literature and field observation, several
factors (in nominal, ordinal, or scale format) were selected to
train the model and predict the potential distribution of
landslides (Park et al. 2013). Altitude, slope angle, aspect,
curvature, stream power index (SPI), topographic wetness
index (TWI), topographic roughness index (TRI), geology,
soil, land use/land cover (LULC), rainfall, and distance from
rivers, roads, and faults were used as the conditioning factors
to prepare the susceptibility maps (Table 9.1). Each factor
was resized to fit a 5 m � 5 m grid. The grid of the study
area was constructed with 1889 columns and 2168 rows
(1,073,753 pixels; 26.84 km2).

Altitude is one of the significant parameters because it is
controlled by various geological and geomorphological
processes (Gritzner et al. 2001; Dai and Lee 2002; Ayalew
and Yamagishi 2005). Slope variation and instability depend

on elevation, which directly affects landslide occurrence. In
high slope angle degree, the level of gravity-induced shear
stress increases, thereby increasing the probability of land-
slide occurrence. The slope angle of the study area was
produced from the altitude map. Slope aspect is also con-
sidered important because of site characteristics, such as
exposure to sunlight and dry wind (Baeza and Corominas
2001). These characteristics control soil moisture concen-
tration, which directly affects landslide occurrence (Magliulo
et al. 2008). Therefore, an aspect map was divided into 10
classes (flat, north, northeast, east, southeast, south, south-
west, west, northwest, and north) as shown in Fig. 9.3c.
Continuous variables (such as slope angle and elevation),
which were represented by real number vectors, were
entered as scale input for the modeling (Pourghasemi et al.
2012). Curvature was divided into three classes (convex, flat,
and concave).

The spatial distribution of landslides is correlated with
distance to existing faults. In general, landslide occurrence is
high along faults and is decreased as distance from faults
increases (Xu et al. 2012). The Euclidean distance analysis
for existing faults of the study area is presented in Fig. 9.3j.
Proximity to rivers also affects landslide occurrence because
of the reduced slope stability of eroded riverbanks (Xu et al.
2012; Umar et al. 2014). Similarly, roadsides or slopes
affected by roads have high landslide probability occurrence

Fig. 9.1 Landslides location map with hill-shaded map of Jalan Kota, Brunei
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(Pourghasemi et al. 2013). Therefore, the Euclidean distance
process was run for river and road layers to create proximity
maps of these linear features (Figs. 9.3h, n).

Rainfall data were collected from meteorological stations
around the study area. However, the application of geostatis-
tical interpolation to calculate rainfall value for unknown
points was required. Among various geostatistical interpola-
tion approaches, inverse distance weighting (IDW) was uti-
lized via line density operation in ArcGIS 10. The main logic
behind this technique is that the value of an unsampled point is
the weighted average of the known value points of the sur-
rounding. Therefore, this computation was used to extract the

unknown value of rainfall from adjacent known samples
(Chen and Liu 2012). Other water-related factors, such as SPI
and TWI, were computed using the following equations:

TWI ¼ ln
As

tan B
� �

; ð9:1Þ

SPI ¼ AS tan B; ð9:2Þ
where As is the specific catchment area (m2 m−1), and B
(radian) is the slope gradient (in degrees) (Regmi et al.
2010). TWI is the measure of moisture content at the site,
and SPI is the measure of the erosive power of flowing

Fig. 9.2 Overall methodology
flowchart

Table 9.1 Controlling factors
and their classes

Controlling factors No. of classes Classes

Altitude Scale

Slope Scale

Aspect 10 Flat, N, NE, E, SE, S, SW, W, NW, N

Curvature 3 Flat, concave, convex

SPI Scale

TWI Scale

TRI Scale

Geology 3 Belait, Pleistocene, Recent

Soil 5 ME, NY, PD, RG, TA

LULC 5 Barren area, building, road, vegetation, water bodies

Rainfall Scale

Distance from river Scale

Distance from road Scale

Distance from fault Scale
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water. SPI is based on the assumption that discharge is
proportional to a specific catchment (Pourghasemi et al.
2013).

The study area is covered with five categories of soil
types as shown in Fig. 9.3k. In general, the fine grain size of
soil particles increases water absorption and subsequently
landslide occurrence probability. The soil data of the study
area were collected from the digitized drainage layer

geomorphological map of Jalan Kota. Three different types
of geology classes were identified in the study area as shown
in Fig. 9.3i. This map and field observations showed that the
study area was composed mainly of Belait, Pleistocene, and
recent formations. However, the majority of the area is
covered with Belait formations, whereas the southern, east-
ern, and northern borders of the area are covered with recent
formations. The relationship between landslide occurrence

Fig. 9.3 Input thematic layers:
a Altitude; b Slope; c Aspect;
d Curvature; e SPI; f TWI; g TRI;
h Distance from river; i Geology;
j Distance from fault; k Soil;
l LULC; m Rainfall; and
n Distance from road
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and land use type can be investigated by studying LULC in
the study area. The land use map (Fig. 9.3 and Table 9.1) of
Jalan Kota was produced using a topographic map. This area
is mainly covered with vegetation, water bodies, built-up
regions, roads, and few barren lands.

9.2.3 SVM Modeling

SVM is a popular learning machine based on the structural
risk minimization principle (Yao et al. 2008; Wan and Lei
2009). Although this model is a supervised binary classifier,

Fig. 9.3 (continued)
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it can be easily transformed into several class problems
(Belousov et al. 2002). The basis of this model is separating
the hyperplane formation from the training data set, which is
generated in the original space of n coordinates (xi param-
eters in vector x) between the points of two distinct classes
(Marjanović et al. 2011). SVM extracts the maximum mar-
gin of separation between classes and builds a classification
hyperplane in the center of the maximum margin (Pradhan
2013; Tehrany et al. 2014). If the point is located over the
hyperplane, then it will be classified as +1; otherwise, it will
be classified as −1. The training points closest to the optimal
hyperplane are called support vectors. Once the decision
surface is acquired, the classification of new data can be
performed (Tien Bui et al. 2012).

For clarity, consider a training data set as pairs of (xi, yi)
in which xi ε Rn, yi ε [1, −1], and i = 1, 2, …, m. The
objective of SVM is to identify the n-dimensional hyper-
plane that discriminates the two classes based on landslide
occurrence and non-occurrence {1, −1} from the training
data set. In case of linear separable data, a separating
hyperplane can be defined as:

yi w � xiþ bð Þ� 1� ni; ð9:3Þ
where w is a coefficient vector that defines the orientation of
the hyperplane in feature space, b is the offset of the
hyperplane from the origin, and ni is the positive slack
variables (Cortes and Vapnik 1995). Then, the solution for
the coefficient vector (w) of SVM can be calculated using the
Lagrange multiplier method (Samui 2008).

Minimize
Xn
i¼1

ai yi � 1
2

Xn
i¼1

Xn
j¼1

aiajyiyjðxixjÞ; ð9:4Þ

Subjected to
Pn
i¼1

aiyj¼0

0� ai �C
;

8<
: ð9:5Þ

where ai denotes the Lagrange multipliers, C is the penalty,
and the slack variables ni allow for penalized constraint
violation. Therefore, the classification function can be
defined as:

g xð Þ ¼ sign
Xn
i¼1

yiaixi þ b

 !
: ð9:6Þ

In cases where the hyperplane cannot be separated using
LN, a nonlinear function is applied as follows:

g xð Þ ¼ sign
Xn
i¼1

yiaiKðxi; xjÞþ b

 !
ð9:7Þ

where Kðxi;xjÞ is the kernel function.
A successful SVM modeling with accurate results

depends on the selection of kernel types and its parameters
(Damaševičius 2010). Several types of kernel are most
commonly used in SVM modeling, namely, LN, PL, RBF,
and SIG (Pradhan 2013). PL and RBF (typically known as
Gaussian kernels) are the most commonly used kernels in
the literature (Marjanović et al. 2011). RBF, as an example
of mapping function, exhibits good capability in general-
ization properties and in producing efficient interpolation.
Compared with RBF, PL demonstrates better extrapolation
capabilities at low-order degrees but requires high-order
degrees to achieve good interpolation (Zhu et al. 2011). In
general, LN is assumed as a specific case of RBF, whereas
the performance SIG is similar to that of RBF in the case of
parameters (Song et al. 2011). LN is applicable to linear
separable circumstances; however, real-world problems are
not linearly separable (Ali and Smith 2003). From these
discussions, each kernel type has its own advantages and
disadvantages with respect to applied analysis. Thus, the
current study attempts to apply all four kernel types to assess
the performance of each type in LSM. Different parameters
should be considered for each kernel, as shown in Table 9.2.

Fig. 9.3 (continued)
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In SVM modeling, the trade-off between errors and
margin, which helps avoid overfitting of the model, is typ-
ically achieved using regularization parameters (C) (Mar-
janović et al. 2011). Low C values increase training errors.
By contrast, the accuracy of the results increases substan-
tially with high C values, thereby generating a small margin.
The appropriate value should be defined for all kernel types.
Kernel width or gamma (c) value, which controls the degree
of nonlinearity, should also be considered in the model (Tien
Bui et al. 2012). In addition, parameter “d” is the polynomial
degree in the kernel function for PL, and “r” is the bias term
in the kernel function for PL and SIG.

To select the optimal kernel parameters, cross-validation
was performed using SPSS Modeler (Zhuang and Dai 2006;
Pradhan 2013). From this process, n validation accuracies
were achieved, and an average value was applied for the
final landslide susceptibility model for each kernel type (Yao
et al. 2008). As the first step, the standard ranges for all the
parameters were defined. Each set of parameters was divided
into n folds: one for the validation process and the remaining
n – 1 for training purposes. In the next level, the data set was
divided into five sample groups with the same number of
samples. For the first iteration, the first fold was used in the
validation process, whereas the rest of the four folds were
applied in the training process. A similar procedure was used
for other four models.

Finally, the area under curve (AUC) method was applied
to evaluate the performance of each combination and
eventually to select the best parameterization of SVM (Mu
and Nandi 2007). AUC is a unitless summary metric that
synthesizes the relationships between the reference Boolean
feature and several diagnoses by the index. This technique is
one of the most common validation techniques for evaluat-
ing the efficiency of model outputs with a success rate and
prediction rate curve (Pradhan 2010). The rate curve illus-
trates the fitness of the probability maps with the actual
landslide inventory map. In this manner, the process deter-
mines how well the method and the parameters produce the
landslide susceptibility maps. This validation technique can
range from 0 to 1, in which higher AUC values indicate a
stronger positive correlation. To calculate AUC, the ordered
pixel values based on the probability map were classified
into 100 classes. These values were set on the vertical axis
(y) with accumulated 1% intervals on the horizontal axis (x).

The existence of landslide location training and testing in
each interval was evaluated, and the resultant success and
prediction rates were calculated. If the total area is one, then
perfect matching and accuracy are achieved.

9.3 Results and Discussion

In this section, the effects of conditioning factors on the
landslide probability map and the performance of each SVM
kernel type are assessed in terms of predictive capability and
mapping of future landslide occurrence. Cross-validation
was performed on four kernel types based on the parameters
given in Table 9.2. These parameters were used to run the
final modeling for these kernels. The outputs of each model
were converted into GIS format, and then, the probability
index for each kernel type was computed. Figure 9.4 pre-
sents the maps derived for each kernel type. The efficiency
and accuracy of these maps were evaluated using AUC.

The output-derived maps can be classified using various
classification techniques, such as equal interval, quantile,
standard deviation, and natural break, depending on research
specifications. All the aforementioned techniques were
applied, and the output maps were examined. Most of the
results assigned a large part of the area with a high probability
of landslide occurrence except for quantile classification,
which presented an appropriate appearance of hazard loca-
tions. Finally, the probability maps were classified into five
classes in terms of susceptibility to landslide occurrence: very
low, low, moderate, high, and very high (Pradhan 2010).

As shown in Fig. 9.4, the probability map derived from
the SIG kernel appears different from the other maps. This
result indicates that this kernel type is less efficient in
accurately identifying landslide occurrence sites. In addition,
the SIG kernel is highly sensitive to input data. The differ-
ence among the other three maps (LN, PL, and RBF) is
evident in the severity of a hazard; however, the extent and
direction of a hazard location are nearly similar. The
PL-derived map assigns a very high probability of landslide
occurrence to a larger area than the other maps. By contrast,
SIG designates the smallest area as a hazard location com-
pared with the other kernel types. However, the southern
part of the study area is a common susceptible zone in all the
four derived maps.

Table 9.2 Equation and
parameters of applied kernel for
LSM

Kernel type Equation Kernel parameters

LN K xi; xj
� � ¼ xTi xj _

PL K xi; xj
� � ¼ ð�cxTi xþ 1Þd c, d

RBF K xi; xj
� � ¼ expð�cxi � x2j Þ c

SIG K xi; xj
� � ¼ Tanh ð�cxTi xþ 1Þd c
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The comparison of Figs. 9.3 (conditioning factors) and
9.4 (landslide probability maps) indicates that the relation-
ship between conditioning factors and landslide occurrence
can be observed. In case of altitude, landslides mainly occur
at an elevation higher than 150–190 m. The probability of
landslide occurrence is evidently very low in low-elevation
areas. Areas with a higher slope degree of nearly 80° are
more susceptible to landslides than flat areas. Similarly, the
flat areas in aspect and curvature maps (Figs. 9.3c, d) have
minimum susceptibility to landslide occurrence. Convex
areas are regarded as susceptible zones because of the con-
centration of loose debris on the inclined surface, which may
slide during heavy rainfall. High SPI and TRI increase the
probability of landslide occurrence, whereas high TWI
decreases it. For geological type, landslides mainly occur in
areas covered with Belait formations. Similarly, for soil type,
most landslides occur in second class (NY), whereas land-
slide probability occurrence is minimal for other soil types.

Rainfall did not exert a significant effect on probability
maps; however, the southern part of the study area with the
highest amount of rainfall has the maximum probability of
landslide occurrence. The LULC map indicates that most
landslides occur in vegetation areas, but a direct correlation
cannot be observed in the case of road networks. Similarly,
distance to fault appears to be correlated with landslide
occurrence, although an insignificant effect can be observed
in proximity to fault zones.

Despite these discussions, visual interpretation is not an
appropriate means to evaluate the performance of kernel
types. Hence, the probability maps were assessed using the
AUC validation technique by measuring both success rate
and prediction rate curves (Table 9.3). The rate curve illus-
trates the fitness of the probability maps produced from
different kernel types with the actual landslide inventory
map. Figure 9.5 and Table 9.3 show the success rate and
prediction rate of all the probability maps derived from the

Fig. 9.4 Landslide susceptibility
maps derived from SVM model
using a RBF; b Polynomial;
c Sigmoid; and d Linear

Table 9.3 Results of AUC for
each kernel type

Kernel type c gamma C d Success rate (%) Prediction rate (%)

RBF 0.1 10 0.1 88.21 82.90

PL 1 10 0.1 82.66 78.33

SIG 1 10 0.1 47.93 49.10

LN 10 0.1 82.63 84.93
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four kernel types. AUC ranges from 0.5 to 1.0. The value of
0.5 indicates random fit of the model. As shown in Table 9.3
and Fig. 9.5, RBF achieves the highest success rate value
(88.21%) and the second highest prediction rate value
(82.90%). As expected, SIG yields the lowest success rate
and prediction rate values (47.93 and 49.10%, respectively).
The LN and PL kernels also obtain reasonable results in both
rating assessments with respect to the RBF model. These
evaluations show that the selection of kernel type for SVM
modeling can affect the output probability maps of landslide
occurrence with similar input data. Therefore, RBF and LN
exhibit better results in LSM. The higher accuracy of RBF
may be attributed to the nature of performance of this
function. In landslide susceptibility evaluation, the approx-
imation capacity of RBF is higher than the other kernel
functions. Landslide susceptibility assessment is a nonlinear
process; therefore, nonlinear approaches perform better than
linear approaches.

9.4 Conclusion

As a disaster management strategy, LSM is one of the main
interests of planning authorities, particularly for
landslide-prone areas in Brunei. The geographical condition
in Jalan Kota is developed by mountains where landslide can
easily occur after a heavy rainfall. Given the aforementioned
reasons, numerous landslides have occurred in recent years
and caused considerable human casualties, property losses,
and environmental degradation. Therefore, the local gov-
ernment is investigating appropriate and rapid solutions for
identifying areas prone to landslide occurrence. In recent

years, RS and GIS have been proven to be useful tools for
addressing geospatial issues, particularly natural hazard
problems. However, sophisticated statistical and machine
learning-based approaches are required to address serious
natural hazards, such as landslides. Although several
approaches are available in this field, the successful appli-
cation and performance of SVM have made this method
more common than other approaches. Moreover, various
kernel types for SVM modeling provide a challenging area
in evaluating the most effective kernel types for LSM. The
main objective of this study is to evaluate the four main
kernel types (RBF, PL, SIG, and LN) for SVM to select the
most optimal kernel for LSM. Through a comprehensive
field observation and literature review, the most effective
landslide conditioning factors, such as altitude, slope, aspect,
curvature, geological properties, soil type, and rainfall, were
selected. The analysis showed the effects and relationship of
each conditioning factor on landslide probability occurrence.
The probability maps derived from each kernel type were
compared with the actual landslide map to assess the effi-
ciency and accuracy of their performance. The AUC tech-
nique was used to run the success rate and prediction rate
processes. The comparison showed that the RBF kernel type
exhibited better performance in terms of success and pre-
diction rates. By contrast, the SIG kernel exhibited the
weakest results because of its origin from neural networks.
This study provides valuable information for identifying
effective conditioning factors and their effects on landslide
occurrence and the performance of different kernel types
with respect to these factors. In addition, the output maps
can assist government officials and planners in mitigating
and even preventing losses in life and properties caused by

Fig. 9.5 Graphic representation
of the cumulative frequency
diagram presenting the
cumulative landslide occurrence
(%; y-axis) in landslide
probability index rank (%; x-
axis): a success rate; and
b prediction rate
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landslide disasters by relocating new developments in this
area.
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10Ensemble Disagreement Active Learning
for Spatial Prediction of Shallow Landslide

Biswajeet Pradhan, Maher Ibrahim Sameen and Bahareh Kalantar

10.1 Introduction

In Malaysia, landslides are considered as the most frequent
and devastating natural disaster that cause human life and
property losses. The spatial prediction of landslides is the
basic step required for hazard and risk assessments. Spatial
prediction methods of landslides are established and docu-
mented in the literature. However, several research direc-
tions on this topic need to be developed and explored in
depth. The current improvement in computer technology and
laser scanning systems provide improved data processing
capabilities and topographic datasets, as well as new trends
in landslide modeling and methods that can deal with such
advanced technologies and datasets.

Several techniques have been developed for landslide
susceptibility modeling (or spatial prediction). Support
vector machine (SVM) (Bui et al. 2012; Tien et al. 2012; Xu
et al. 2012a, b; Peng et al. 2014; Pourghasemi et al. 2013;
Yang et al. 2014), logistic regression (LR) (Akgun 2012;
Ayalew and Yamagishi 2005), and frequency ratio
(FR) (Pradhan 2010; Latif et al. 2012; Ozdemir and Altural
2013; Lee and Sambath 2006; Tazik et al. 2014) are among
the common techniques used as benchmarks in several
studies. Marjanović et al. (2011) compared SVM, LR, and
decision tree models for landslide prediction. Results
revealed that the SVM model outperformed the other mod-
els, as well as the knowledge-driven [i.e., analytical hierar-
chy process (AHP)] methods. Xu et al. (2012a, b) evaluated
the efficiency of SVM model for landslide susceptibility
mapping in their study, which achieved best results with a
success rate of 79.20% and predictive accuracy of 79.13%
using the radial basis function (RBF). Ballabio and Ster-
lacchin (2012) investigated landslide susceptibility mapping
using the SVM model. The SVM procedure outperformed
other techniques (i.e., LR, linear discriminant analysis, and

naive Bayes) in terms of accuracy and generalization
capacity. Moreover, Hong et al. (2016) used SVM model to
assess landslide susceptibility in China. The results indicated
that the prediction rates for the four SVM models are 81.0%
(radial basis function), 71.0% (polynomial), 40.0% (sig-
moid), and 63.0% (linear). Thus, the RBF-SVM model has
the highest overall performance. Colkesen et al. (2016)
assessed landslide susceptibility using the SVM and LR
models. Results showed that the SVM models outperformed
the traditional LR model by 18%.

However, landslide susceptibility modeling requires an
adequate number of landslide inventories, and their qualities
are verified before placing them into the models to ensure
the quality and reliability of the outputs. Landslide inven-
tories are collected from various sources such as field
investigations and examinations of remote sensing images
and orthophotographs, generating uncertainties in landslide
historical data (Guzzetti et al. 2012). Owing to the uncer-
tainty in landslide inventories, verifying the training data is
needed before conducting any regression analysis to achieve
accurate spatial prediction of landslides (Guzzetti et al.
2012). To verify landslide inventories, extensive manual
works on remote sensing images or orthophotographs are
necessary. However, this work is costly and
time-consuming. One of the solutions to this is active
learning, which is a subfield of machine learning that aims to
select the most informative training samples among the
available ones (Demir and Bruzzone 2015). In this manner,
the active learner aims to achieve high accuracy using a
fewer landslide inventories, thereby minimizing the cost of
obtaining high-quality training data. The main concept of
active learning is measuring the classification uncertainty of
unlabeled samples. Active learning can be used with most
machine learning algorithms such as SVM and multivariate
statistical methods such as LR to improve the quality of
training dataset before the learning process. Liao et al.
(2005) presented an active learning method to improve the
generalization ability of the LR model. Pasollie et al. (2014)
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proposed a new active learning approach for SVM classifi-
cation in urban areas. The experimental results showed the
effectiveness of regularization in the spatial domain for
active learning purpose. Di and Crawford (2012) investi-
gated the principles and capabilities of several approaches
for the view generation on hyperspectral data classification
based on the multiview adaptive maximum disagreement
active learning method. Results indicated that the proposed
method outperforms the random sampling and the
state-of-the-art SVM margin sampling techniques. Active
learning showed efficient remote sensing applications (i.e.,
image classification, and feature extraction). However, the
literature search shows that no previous works are used for
active learning to train landslide susceptibility models.

Therefore, this study proposes a framework for predicting
shallow landslides in a tropical region using the ensemble
disagreement active learning strategy. This strategy by
selecting informative training samples and employing mul-
tiple classifiers improves the accuracy of landslide prediction
results.

The rest of this chapter is organized as follows. First,
ensemble disagreement active learning is briefly explained.
Second, the study area and the main datasets are described.
Third, the proposed framework is presented and discussed in
detail. Fourth, the results are presented, and the main find-
ings are discussed. Finally, a brief conclusion is presented,
including the main findings, limitations of the current study,
and future directions.

10.2 Ensemble Disagreement Active
Learning: A Preview

Active learning is a new strategy in machine learning algo-
rithms, which aims to improve the prediction accuracy of
regression models (Demir and Bruzzone 2015; Tuia et al.
2009). The main concept of active learning is a feedback loop
between an expert (sample annotator) and machine (com-
puter program) that eventually tunes the machine model. The
model starts with a set of labeled data to judge received data.
Experts label a sample of the machine’s output, and their
work is turned over into the model. Experts continue to label
the data until the model achieves unexceptional accuracy.

Ensemble disagreement is a common strategy in active
learning (Körner and Wrobel 2006), and it originates in the
query-by-committee method by Seung et al. (1992). The use
of multiple classifiers in improving the accuracy of the
results is fundamental to this strategy. Hence, it allows it to
learn from examples where the results of various methods
disagree. For example, a landslide-type classifier may label a
small landslide as shallow landslides; however, data from a
second method might show that the small size landslide is
actually a translational landslide; this helps the first classifier

correctly judge whether the landslide is a shallow landslide.
Ensemble disagreement is an iterative procedure that adds
the queried training samples along with this label to the
training dataset. The iteration continues until desired pre-
diction accuracy is reached.

10.3 Study Area and Data

In this research, a part of Cameron Highlands, a tropical
rainforest area in the Peninsular Malaysia at the northwestern
tip of Pahang at approximately 200 km from Kuala Lumpur,
was selected as the case study considering the frequent
occurrences of landslides here. Reports from government
agencies and previous studies indicate that several landslides
occurred in Cameron Highlands and caused major damages to
properties (Lateh et al. 2010). Quaternary, Devonian granite,
and schist are the main lithology types in this region (Pradhan
and Lee 2010). A 25-km2 area is selected within the Cameron
Highlands to perform the analysis and test the active learning
model in the current work (Fig. 10.1). The lowest and highest
altitudes are 1200 and 1800 m, respectively.

However, landslide inventories are collected and prepared
using remote sensing data and geographic information sys-
tem (GIS). Remote sensing data included archived
1:10,000–1: 50,000 aerial photographs, high-resolution
satellite images such as SPOT, and high-resolution
LiDAR-based orthophotographs were used for the visual
identification of landslide occurrences in the study area. In
addition, several landslide locations were digitized from
historical landslide records and previous studies (Pradhan
et al. 2010). Moreover, field observations were used to
collect fresh landslide scars and to confirm the landslides
collected from remote sensing data. Several landslides are
shallow rotational and a few translational in type, which are
not shallow in type, were removed from the analysis. In
assembling a database to assess the surface area and a
number of landslides in the study area, a total of 192 land-
slides were mapped in an area of 25 km2 (Fig. 10.1).

10.3.1 Landslide Conditioning Factors

The LiDAR point clouds were collected on January 26,
2015, over a part of Cameron Highlands. The fight height of
the airborne platform was 1510 m, the point density was 8
per m2, and the frequency rate of laser sensor was
25,000 Hz. In addition, the absolute accuracy (measured by
root mean square error [RMSE]) of the acquired data are
0.15 and 0.3 m in vertical and horizontal dimensions,
respectively.

For the spatial prediction of shallow landslides, nine
landslide conditioning factors were derived from LiDAR
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point clouds. These factors are altitude, slope, aspect, plan
curvature, profile curvature, topographic wetness index
(TWI), topographic roughness index (TRI), sediment trans-
port index (STI), and stream power index (SPI). These fac-
tors were reclassified by the quantile classification method in
the ArcGIS software.

Altitude is controlled by several geologic and geomor-
phological processes. Generally, landslides occur at inter-
mediate elevations as slopes tend to be covered by a layer of
thin colluvium that is prone to landslides. The lowest and
highest altitudes were observed at 1200 and 1800 m,
respectively. The slope is another landslide conditioning
factor, which measures the elevation change rate in the
direction of steepest descent. The slope map of the study
area was divided into five slope angle classes. In this study,
the highest slope was observed at 82.4°. In addition, aspect
is the slope direction measured in degrees from north in a
clockwise direction, ranging from 0° to 360°. Parameters

such as exposure to sunlight, rainfall, and drying winds
control the soil moisture concentration, which in turn is
determined landslide occurrence. Furthermore, plan curva-
ture is described as the curvature of a contour line formed by
the intersection of a horizontal plane with the surface. This
influences the flow convergence and divergence across a
surface. The profile curvature affects the acceleration and
deceleration of downslope flows because of the erosion and
deposition influences. Plan and profile curvature maps were
reclassified into three classes: convex, flat, and concave
lands from negative, zero, and positive values, respectively.

Moreover, four hydrological factors generated from the
LiDAR data were used in the current study for landslide
susceptibility mapping. The TWI describes the effect of
topography on the location and size of saturated source areas
of runoff generation (Beven and Kirkby 1979; Moore et al.
1991). Topographic wetness index (TWI) is calculated as
follows:

Fig. 10.1 Geographic location of the study area
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TWI ¼ ln
As

tan bð Þ ð10:1Þ

where As is the specific catchment area of each cell and b is
the slope gradient (in degrees) of the topographic heights.
SPI, a measure of the erosion power of the stream, is also
considered as a factor contributing toward the stability
within the study area. The SPI is expressed as follows:

SPI ¼ As � tan bð Þ ð10:2Þ
where As is the specific catchment area and b is the local
slope gradient measured in degrees. However, STI, which
reflects the erosive power of the overland flow, was derived
by considering the transport capacity limiting sediment flux
and catchment evolution erosion theories. STI is calculated
using the following expression (Mohammady et al. 2012):

STI ¼ As

22:13

� �0:6 sin b
0:0896

� �1:2

ð10:3Þ

where As is the specific catchment area and b is the local
slope gradient measured in degrees.

TRI is another important hydrological factor affecting
landslide susceptibility. These hydrological factors were
reclassified into five classes based on the quantile method
and used for landslide susceptibility modeling. TRI is cal-
culated using Eq. 10.4 (Jebur et al. 2014) (Fig. 10.2):

TRI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Abs(max2 �min2)

q
ð10:4Þ

10.4 Methods

10.4.1 Active Learning Landslide Susceptibility
Mapping

The proposed framework of active learning for prediction
shallow landslides is presented in Fig. 10.3. First, data
processing starts by importing LiDAR point clouds and
landslide inventory map into a GIS software with appro-
priate data storage format. Second, a very high-resolution
digital elevation model is derived from the LiDAR point
clouds at 0.5 m spatial resolution. In this step, the
non-ground points were filtered by the multi-scale curvature
algorithm (Evans and Hudak 2007). From the generated
DEM, nine landslide conditioning factors were derived at the
same resolution. These factors were then prepared in a GIS
geodatabase along with the landslide inventory data. Third,
the landslide inventory data was divided into two groups.
The first group is composed of 34 landslides and saved as
“Training T1,” whereas the remaining landslides were saved
as “Training T2” in the same geodatabase.

In the first group, landslides were confirmed by visual
interpretation to remove the uncertain samples. However, the
landslides in the second group were used in an iteration
process to add only the correct samples to the first
group. Furthermore, two models were built using the SVM
and LR algorithms from the Training T1 data and the nine
landslide conditioning factors. These models were then used
to classify the subsets of landslides in the second group
(Training T2). The 10 subsets are currently used as the total
number of landslides is not large (192). However, a large
number of landslide inventory data necessitates increased
subsets. Afterward, the accuracy of the landslide prediction
was measured by the success and prediction rates.
A threshold was created to test the agreement or disagree-
ment in the results of the two models. This threshold (T) is
the absolute difference between the success rates of both
models. Currently, T was selected as 0.1. This will allow
samples with relatively small disagreement between the
models to be relabeled, thereby improving the quality of the
final training dataset. Furthermore, the subsets, where both
models agree (T � 0.1) were added to the Training T1 data,
whereas the subsets where the models failed to agree were
relabeled by human interpretation and eventually added to
the Training T1 data.

Therefore, once the high-quality training data (Tu) was
generated, the models were rebuilt using the same landslide
conditioning factors and their accuracies were measured and
compared with the original models. The landslide suscepti-
bility maps were generated from the models that were
trained by the high-quality training dataset created by active
learning.

10.4.2 Landslide Susceptibility Modeling

10.4.2.1 Support Vector Machine
Vapnik (1995) developed SVM, a nonlinear classification
model, derived from machine learning techniques. SVM
aims to determine an optimal separating hyper plane (max-
imizing the margin width) between two classes in a feature
space. The training points near the hyperplane are called
support vectors, and they are utilized for classification once
the decision surface is obtained. The separating hyper plane
is found as follows:

yi w� xi þ bð Þ� 1� ni ð10:5Þ
where w is the coefficient vector that defines the hyper plane
orientation in the feature space; b is the offset of the hyper
plane from the origin; and ni is the positive slack variables
(Cortes and Vapnik 1995). The optimal hyper plane is found
by solving the following optimization problem (Jebur et al.
2014):
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Fig. 10.2 Landslide conditioning factors derived from high-resolution airborne LiDAR, a altitude, b slope, c aspect, d plan curvature, e profile
curvature, f topographic wetness index (TWI), g sediment transport index (STI), and h topographicroughness index (TRI), i stream power index
(SPI).
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Fig. 10.3 Flowchart of the proposed spatial prediction method of shallow landslides by active learning
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Minimize
Xn
i¼1

ai � 1
2

Xn
i¼1

Xn
j¼1

aiajyiyj xixj
� �

subject to
Xn
i¼1

aiyj ¼ 0; 0� ai �C

ð10:6Þ

where ai is the Lagrange multiplier and C is the penalty. For
data classification, the following decision function is applied
as follows:

g xð Þ ¼ sign
Xn
i¼1

yiaixi þ b

 !
ð10:7Þ

In case of nonlinearly separating samples, the decision
function (Eq. 10.8) is rewritten as follows:

g xð Þ ¼ sign
Xn
i¼1

yiaiKðxi; xjÞþ b

 !
ð10:8Þ

In this process, the original data are transformed into a
higher dimensional space using a nonlinear kernel function
(K). The common K functions used with SVM in landslide
studies are linear, sigmoid, radial basis function, and poly-
nomial (Bui et al. 2012). However, several studies showed
that radial basis function is more suitable for landslide sus-
ceptibility application than other kernel functions (Pour-
ghasemi et al. 2013; Xu et al. 2012a, b).

10.4.2.2 Logistic Regression
The logistic regression model is a widely used multivariate
statistical technique to establish the relationship between
explanatory factors and various types of targets such as
landslide prediction (Bai et al. 2010; Das et al. 2010;
Hyun-Joo et al. 2010). The predicted values which ranged
from 0 to 1 are defined by the following expressions
(Ozdemir 2016):

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxn ð10:9Þ

y ¼ loge
p

1� p

� �
ð10:10Þ

p ¼ ey

1þ ey
; ð10:11Þ

where y is the linear logistic model, b0 is the model intercept,
n is the number of landslide conditioning factors (5), b is the
weight of each factor, x is the landslide conditioning factor,
and P is the probability of landslide occurrence (landslide
susceptibility index). The function y is represented as logit
(P), i.e., the log (to base e) of the odds or likelihood ratio
that the dependent variable is 1.

10.4.3 Accuracy Assessment

Results of the landslide susceptibility models are validated
by estimating the area under the ROC curve (AUC), success,
and prediction rates. These accuracy measures explain the
percentage of detected landslides that fall into each defined
susceptibility level and display as the cumulative frequency
graph (Chung and Fabbri 2003; Intarawichian and Dasa-
nanda 2011). In conducting the ROC accuracy assessment,
the results of landslide susceptibility models are compared
with the training landslides created from various sources
(i.e., aerial photograph, high-resolution satellite images, and
previous records) (Pradhan and Kim 2014). In rate curve, the
y-axis is normally considered as the cumulative percentage
of observed landslide occurrences in various susceptibility
classes, whereas the x-axis corresponds to the cumulative
percentage of the area of the susceptibility classes. The total
AUC is used to qualitatively determine the prediction
accuracy of the susceptibility map in which a larger area
refers to a higher accuracy achieved (Pourghasemi et al.
2013; Intarawichian and Dasananda 2011; Mathew et al.
2009).

10.5 Results and Discussion

This section presents the results of the analysis. The SVM
penalty parameter is fine-tuned, and the landslide prediction
models by the traditional and active learning approaches, the
landslide susceptibility models, and the effects of active
learning on multicollinearity statistics are presented and
discussed.

10.5.1 Results of Fine-Tuning the Penalty
Parameter of the SVM Model

The SVM model includes several user-defined parameters
that require fine-tuning to achieve the highest possible
accuracy (Yao et al. 2008). The kernel-type function and the
penalty parameter or C-value are the most significant
parameters that affect the accuracy of the model. Among
landslide studies, the best kernel function was found to be
the radial basis function, and this result is obtained in several
studies (Pourghasemi et al. 2013; Zare et al. 2013; Xu et al.
2012a, b; Bui et al. 2012). According to Zhu et al. (2011),
RBF is primarily advantageous because of its good inter-
polation abilities.

However, there is no specific conclusion on the best C-
value for landslide studies. Therefore, C-value was
fine-tuned by examining its sensitivity on the accuracy of
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landslide classification (Fig. 10.4). The graph suggests that
the best C-value is 5 or greater and that it should be
examined until 100. As a result, a C-value of 100 was
selected in the current study, and it was used to build the
subsequent SVM models.

10.5.2 Results of Spatial Prediction of Shallow
Landslides by Active Learning

Table 10.1 shows the results of the landslide prediction
accuracy of various iterations (i) in active learning. Overall,
nine i were processed in this study, and this number is
increased with the increasing landslide inventories in the
training dataset. Success and prediction rates achieved by the
SVM and LR models are presented. The lowest and highest
success rates are 0.3 and 1, respectively. However, the
lowest and highest prediction rates are 0.41 and 1, respec-
tively. On the basis of these results, the difference between
the success rates of the two methods was compared and
judged to select the samples for the query. On the basis of

selected threshold (T � 0.1), the samples that meet the
condition was directly added to the Training T1 data,
whereas the samples that fail to meet the condition were
manually checked, relabeled, and added to the Training T1
data. This allowed the generation of high-quality Tu to be
used in training the SVM and LR models to create landslide
susceptibility maps. Results show that the i (i = 1, 3, 6, 9)
were directly added to the Training T1 data. However, the
remaining i (i = 2, 4, 5, 7, 8, 10) were relabeled through
visual checking on high-resolution orthophotographs and
then added to the Training T1 data.

In addition, Table 10.2 shows the results of the landslide
susceptibility models trained by the Training T1 and updated
T1 data. Results indicate that the active learning can improve
the accuracy of the shallow landslide prediction from 0.75 to
0.93 in the case of LR model and from 0.84 to 0.89 in the
case of SVM model. This result suggests that active learning
is sufficient for landslide susceptibility modeling when the
SVM and LR models are used.

10.5.3 Landslide Susceptibility Maps

Four landslide susceptibility maps were generated
(Fig. 10.5). The first map was generated with the SVM
model trained using all training datasets (T1). The second
map was generated with the LR model trained by all training
datasets. However, the third and fourth maps were generated
by the SVM and LR models trained by the updated training
dataset (the case of active learning), respectively. The sus-
ceptibility maps were reclassified into five classes: very low,
low, moderate, high, and very high. The classification was
performed using the quantile method (Jebur et al. 2014).

Landslide susceptibility maps show that most of the north
and southeast areas are highly and very highly susceptible to
shallow landslides, respectively. In contrast, the middle and

Fig. 10.4 Effects of C parameter on the accuracy of landslide
prediction

Table 10.1 Accuracy of
landslide prediction of different
iterations in active learning

Training landslides (Ti) Accuracy of landslide prediction T Status

SVM Logistic regression

Succ. rate Pred. rate Succ. rate Pred. rate

Iteration 1 0.8 0.74 0.65 0.57 0.15 Added to T1

Iteration 2 0.85 0.81 0.87 0.82 0.02 Relabeled

Iteration 3 0.7 0.64 0.57 0.6 0.13 Added to T1

Iteration 4 0.9 0.83 1 1 0.1 Relabeled

Iteration 5 0.4 0.46 0.48 0.49 0.08 Relabeled

Iteration 6 0.6 0.55 0.74 0.66 0.14 Added to T1

Iteration 7 0.9 0.83 0.88 0.84 0.02 Relabeled

Iteration 8 0.85 0.78 0.91 0.85 0.06 Relabeled

Iteration 9 0.4 0.46 0.52 0.53 0.12 Added to T1

Iteration 10 0.3 0.44 0.3 0.41 0 Relabeled
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the west parts of the study area are classified as low and very
low classes. The estimated weights for the landslide condi-
tioning factors by the SVM and LR models indicated that the
high and very high susceptibility are contributed to the
corresponding steep slope and high TRI. Figure 10.6 shows
the calculated number of landslides in the susceptibility
classes for both models. A slight difference between the
SVM and LR models was observed in terms of the number
of landslides in the very low, low, and moderate classes.
Therefore, a significant difference between the two models
existed in terms of the number of landslides in the high and

very high classes. The calculated numbers of landslides in
the very high classes of the SVM and LR models are 109
and 67, respectively.

10.5.4 Effects on Multicollinearity Statistics

The collinearity among landslide conditioning factors can
influence model performance (Ballabio and Sterlacchini
2012). The landslide factor was checked for collinearity
using variance inflation factors (VIF) (Fox and Monette

Table 10.2 Accuracy of
landslide prediction of the
traditional learning and active
learning methods

Training data Accuracy of landslide prediction T

SVM Logistic regression

Succ. rate Pred. rate Succ. rate Pred. rate

T1 0.81 0.75 0.84 0.84 0.03

Updated T1 0.88 0.93 0.87 0.89 0.01

Fig. 10.5 Landslide
susceptibility maps, a SVM with
all the training dataset, b LR with
all the training dataset, c SVM
with active learning, and d LR
with active learning
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1992). Generally, a VIF value of 10 or more is derived to
prove high collinearity. Table 10.3 shows the results of the
multicollinearity analysis for traditional and active learning.
Results show the high collinearity (>10) of the two param-
eters SPI and STI. Given the result, these parameters were
discarded from further analysis and excluded in the final
models.

In addition, the Mann–Whitney test was used to evaluate
the effects of active learning on the multicollinearity statis-
tics (Table 10.4). This test the absence of a significant dif-
ference between the estimated VIF values for the model
generated by the Training and updated T1 data. The fol-
lowing hypotheses were tested as follows:

H0:DS ¼ 0
Ha:DS 6¼ 0

�
ð10:12Þ

where DS is the difference of location between the samples.
As the computed p-value is greater than the significance
level alpha = 0.05, one cannot reject the null hypothesis H0.
The risk to reject the null hypothesis H0 while it is true is
85.98%.

10.6 Discussion

The spatial prediction of landslides is a challenging task for
several reasons including the spatial variations of landslide
factors, the high-quality landslide inventories for model
training, and the complex mechanisms of various types of
landslides. Several landslide susceptibility modeling
approaches have been proposed to handle a number of rel-
evant aspects. The current study proposed an active
learning-based landslide susceptibility mapping technique to
semi-automatically evaluate the quality of landslide inven-
tory prior to its use in developing regression models.
The SVM and LR models were used for the evaluation of
landslide samples-based disagreeing results. The landslide
inventory dataset was evaluated by an iterative procedure,
and a new landslide training subset was subsequently pro-
duced in which uncertain samples (i.e., landslides that SVM
and LR failed to agree) were removed. The main advantages

Fig. 10.6 A number of landslides in each susceptibility class for the
SVM and LR models

Table 10.3 A number of
landslides in each susceptibility
class for the SVM and LR models

Landslide factor VIF-T1 VIF-updated T1 Difference

Profile curvature 1.149 1.115 0.034

Slope 6.902 6.917 −0.015

SPI 14.010 14.230 −0.220

STI 16.890 17.190 −0.300

TRI 7.155 7.060 0.095

TWI 1.343 1.215 0.128

Aspect 1.008 1.007 0.001

DEM 1.129 1.081 0.048

Plan curvature 1.208 1.162 0.046

Table 10.4 Mann–Whitney
test/two-tailed test

Parameter Calculated value

U 43

Expected value 40.5

Variance (U) 128.25

p-value (Two-tailed) 0.859

Alpha 0.05

*An approximation has been used to compute the p-value
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of this method are its effectiveness when the landslide
inventory data are collected from various sources and when
the data quality is unknown. In addition, the method
enhances the inherent statistical properties of the training
dataset. For example, the results (Sect. 3.4) showed reduced
multicollinearity effects after removing the uncertain land-
slides from the training dataset. The other advantages of the
proposed method include the improved success and predic-
tion rates of SVM and LR models, as well as the updated
landslide inventory datasets for further works.

Generally, there is a nonlinear relationship between
landslide problems and their triggering factors (Yesilnacar
and Topal 2005). LR and SVM provide the potential to
overcome the limitations of statistical methods, which are
distribution-based and inability to handle multisource data
that are commonly collected from the field. SVM and LR
satisfy more rigorous landslide susceptibility mapping
requirements (Yesilnacar and Topal 2005). However, these
models require high-quality training data to achieve accurate
results. High-quality landslide inventory should include
well-distributed landslides with an adequate number of
landslides in the studied region. Therefore, selecting only
high-quality landslide training data can improve the accu-
racy of landslide prediction by the SVM and LR methods.
The accuracy assessment showed that the prediction rates
increased by 0.18 and 0.5 in the SVM and LR models,
respectively. Thus, the SVM method has more generaliza-
tion ability than the LR model given that the former is based
on risk minimization. Therefore, SVM attempts to maximize
the margin between the closest support vectors, whereas LR
maximizes the posterior class probability. This means that
LR is more dependent on class probability than that of SVM,
which makes it sensitive to the size, distribution, and the
quality of landslide training data. In addition, LR converges
to any decision boundary that can divide the training land-
slides into positive and negative targets, whereas the
objective of SVM causes the decision boundary to lie geo-
metrically between the support vectors. Furthermore, the
literature shows that the accuracy of SVM and LR are
comparable in landslide predictions, and the model selection
for landslide studies remains data-dependent, such that,
various models should be tried. The selection of model is
based on a certain accuracy measure (i.e., AUC, overall
accuracy).

Compared with the LR model, SVM requires several
user-defined parameters such as penalty parameter (c),
kernel-type function, and gamma parameter of the kernel
functions. The accuracy of produced landslide susceptibil-
ity maps using SVM significantly depends on these
parameters. To improve the accuracy of landslide suscep-
tibility outputs, a frequent practice is the fine-tuning of
SVM parameters. The current study showed that the best
C-value is 100, whereas RBF function was selected as the

kernel-type function. This selection was based on sugges-
tions in recent literature. Several studies showed that RBF
is sufficient for landslide studies with no specific reason.
The selection of SVM kernel function is automated using
the cross-validation approach. However, this is tricky as it
is easy to over-fit the SVM model and to end up with a
worse model compared to random selection and to other
types of kernel functions.

The analysis of factor importance by estimated SVM
coefficients and the original landslide inventory showed that
slope (90.63), TRI (2.56), and altitude (−0.65) are the most
three important factors for landslide prediction in the study
area. However, LR showed that slope (1.26), altitude (1.29),
and TWI (1.260) are the most influential factors on landslide
occurrence in the study area. Using the updated landslide
training dataset, the estimated coefficients by SVM and LR
were changed and the aspect (−1.5 by SVM and 1.3 by LR)
was found to be more significant than altitude (0.47 by SVM
and 1.04 by LR). The variations in estimating factor coef-
ficient by the SVM and LR models produced landslide
susceptibility maps in which susceptibility classes spatially
vary within the study area. In addition, SVM was less
affected through the reduced training samples than LR
(Fig. 10.6). Therefore, the landslide susceptibility map
generated by the SVM model and the active learning-based
selected landslide training data were suggested for land-use
planning and other risk mitigation analyses (Fig. 10.7).

Fig. 10.7 Suggested landslide susceptibility map for land-use plan-
ning in Cameron Highlands
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10.7 Conclusion

This study proposed and discussed a framework based on
ensemble disagreement active learning, which aims to select
the most informative landslide inventories for use in model
training. This allowed building models with enhanced per-
formance and generalization capacity. Experimental results
showed that the active learning can improve the success and
prediction accuracy of the SVM and LR models. The success
rates of the SVM model with active learning and without
active learning are 0.81 and 0.88, respectively. However, the
success rates achieved by the LR model are 0.84 and 0.87
for the active learning and without active learning method,
respectively. The prediction accuracy of the SVM with
active learning was observed at 0.93, which was signifi-
cantly improved compared with the SVM model trained
through the traditional method. In addition, the prediction
rates achieved by the LR model are 0.48 and 0.89 for the
original training data and the updated training data, respec-
tively. Results of the current study suggest that the combi-
nation of active learning and common landslide
susceptibility modeling methods can increase accuracies. In
addition, active learning allowed the removal of
non-informative samples from the training data to achieve
models with better performances. The use of active learning
also reduced the effects of collinearity among the landslide
conditioning factors. This finding was tested by the Mann–
Whitney test (p-value two-tailed = 0.859).

However, the current study included certain limitations,
which require further investigations in the future works.
First, other active learning strategies need to be examined
and their effectiveness for landslide susceptibility assessment
should be studied. Second, the combination of ensemble
disagreement active learning with other landslide suscepti-
bility modeling approaches also needs to be explored.
Finally, the same analysis should be repeated in various
regions with different landslide conditioning factors,
including LiDAR-based and other factors.
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11Performance Evaluation and Sensitivity
Analysis of Expert-Based, Statistical, Machine
Learning, and Hybrid Models for Producing
Landslide Susceptibility Maps

Biswajeet Pradhan, Maher Ibrahim Seeni and Bahareh Kalantar

11.1 Introduction

Landslides are active natural hazards in many areas of the
world. Landslides damage and destroy man-made structures
and landforms, causing many deaths and injuries every year.
In general, landslides cause higher losses annually than other
types of natural disasters, such as floods, earthquakes, and
windstorms (García-Rodríguez et al. 2008). Climate change,
geologic conditions, and high tectonic events are the most
important causes of landslides, consequently causing mil-
lions of financial and life losses worldwide. Rainfall-induced
landslides are common in Malaysia, especially during the
rainy seasons. Landslides are often triggered because of a
single heavy thunderstorm or rains that last for days (Prad-
han and Lee 2010). Malaysia has experienced many land-
slides in recent years. A major landslide occurred for over
four days in Cameron Highlands, from December 4 to 7,
1994 (Shaluf and Ahmadun 2006). This landslide occurred
due to farming activities, which involved indiscriminate
clearing of land coupled with continuous downpours.
Another landslide occurred on June 30, 1995 in Genting
Highlands Resorts. Part of the hill came crashing down as
flood waters washed tons of earth and fallen trees down the
slope. Many vehicles, including cars, buses, and vans, on
their way to Genting Highlands, were swept down (Shaluf
and Ahmadun 2006).

The assessment of landslide-susceptible areas is essential
to effective landuse management; these assessments can
identify the best management strategies, such as reducing the
effects of landuse activities in vulnerable slope areas (Gor-
sevski et al. 2006a, b). A landslide susceptibility assessment
can reveal the areas that may experience future landslides
based on historical records and several conditional factors.
The methods for landslide susceptibility assessment can be
divided into four groups: (1) statistical, (2) expert,

(3) machine learning, and (4) hybrid methods (Wu et al.
2013). The statistical methods are further classified into
bivariate and multivariate methods; the bivariate techniques
analyze each landslide factor separately, whereas the multi-
variate methods analyze them simultaneously (Ghosh et al.
2011).

In this chapter, several landslide susceptibility models are
developed and evaluated using different approaches: bivari-
ate-, multivariate-, expert-, data mining-, and hybrid-based
approaches. The main objective of this chapter is to compare
the landslide susceptibility maps generated by the aforemen-
tioned methods. To achieve this purpose, frequency ratio
(FR), statistical index (SI), weights-of-evidence (WoE),
logistic regression (LR), partial least squares (PLS), discrim-
inant analysis (DA), analytic hierarchy process (AHP), fuzzy
AHP, support vector machine (SVM), random forest (RF),
decision tree (DT), and hybrid models, including FR–SVM,
LR–RF, and SI–LR, were developed. Overall, 37 landslide
inventories and 10 landslides conditioning factors were pre-
pared in the geographic information system (GIS) using very
high-resolution light detection and ranging (LiDAR) point
clouds and other relevant topographical databases.

11.2 Previous Work

Many studies have been conducted on landslide suscepti-
bility assessment. These studies have used various methods,
such as expert, statistical (bivariate and multivariate),
machine learning, and hybrid techniques. The following
sections review recent findings on these methods.

11.2.1 Expert-Based Methods

These methods attempt to describe the phenomenon by
considering experts’ knowledge about the landslide hazard
(Sezer et al. 2017). The main advantages of these methods
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are that the landslide inventory data are not necessary and
that its generalization ability can be higher than that of
data-driven methods (Sezer et al. 2017). However, these
methods also have limitations, such as the determination of a
number of factors to be included in the model and their
sensitivity to expert opinions. Among the common
expert-based methods used for landslide susceptibility
mapping are the AHP (Ercanoglu et al. 2008; Althuwaynee
et al. 2014a, b; Hasekioğulları and Ercanoglu 2012) and
fuzzy AHP (Zhu et al. 2014). Hasekiogullari and Ercanoglu
(2012) applied the AHP model and analyzed the effect of the
conditioning factors on landslide susceptibility assessment in
Turkey. Seven landslide susceptibility maps were produced
based on the effect of different numbers of conditioning
factors. The results showed an area under the curve
(AUC) value of 0.797 using the AHP method with nine
conditioning factors, whereas the other maps were less
accurate. Zhu et al. (2014) showed that the knowledge-based
model under the fuzzy concept can predict future landslides
with a high accuracy and extrapolate to other study areas. In
addition, Pourghasemi et al. (2012a, b, c) compared fuzzy
logic and AHP models for landslide susceptibility mapping.
They found that the fuzzy logic model (89.7%) performed
better than the AHP method (81.1%). More recently, Sezer
et al. (2017) developed a landslide susceptibility model
based on the modified AHP (M–AHP) and compared it with
a fuzzy-based method. They found the M–AHP to be more
accurate (AUC = 0.82) than the fuzzy-based method (0.66).
In addition, the results showed that the M–AHP was sig-
nificantly faster than the fuzzy-based method. Other studies
by Magliulo et al. (2009) and Bourenane et al. (2015)
showed that the expert-based method provides a landslide
susceptibility map that does not completely fit the surveyed
spatial distribution of the landslides. Other expert-based
methods include the spatial multicriteria evaluation model
(SMCE) (Pourghasemi et al. 2012a, b, c) and weighted linear
combination (Ahmed 2015a, b).

11.2.2 Statistical Methods

Bivariate and multivariate analyses are the most significant
techniques among several statistical methods for landslide
susceptibility mapping. The two succeeding sections review
important studies on these methods.

11.2.3 Bivariate Methods

In bivariate statistical methods, each landslide factor map is
combined with the landslide inventory map, and the
weighting values based on landslide densities are calculated
for each parameter class (Süzen and Doyuran 2004a, b). The

bivariate analysis is easy to conduct, and the contribution of
each factor can be directly computed (Kavzoglu et al. 2015a,
b). On the other hand, the limitations of these methods are
the restriction of input data to categorical/reclassified data
and its high sensitivity to the accuracy of the thematic maps.
Bivariate statistical methods include FR (Demir et al. 2015;
Youssef et al. 2014, 2015; Pradhan et al. 2010), SI, and
WoE. Raman and Punia (2012) used bivariate statistical
modeling for landslide susceptibility mapping. The results
were consistent with the inventory data; the method could
predict 72% of the active landslides in the very high and
high susceptibility zones. Pradhan et al. (2010) used the FR
model for landslide susceptibility assessment in Cameron
Highlands, Selangor, and Penang areas in Malaysia. The
analysis showed reasonable results with an overall accuracy
of 83 and 70% for Cameron and Selangor, respectively.
Intarawichian and Dasananda (2011) applied the FR model
for landslide susceptibility assessment in Thailand. They
used 10 conditioning factors and a landslide inventory to
produce a landslide susceptibility map. The results were
evaluated using the area under the ROC curve method where
80.06 and 84.82% were achieved for the success and pre-
diction rate, respectively. In addition, bivariate and
GIS-based methods based on the area density concept for
landslide hazard mapping were proposed by Kelarestaghi
and Ahmadi (2009). Bijukchhen et al. (2013) compared the
heuristic and bivariate statistical modeling methods for
landslide susceptibility mapping. Their results showed that
both heuristic and bivariate statistical methods could achieve
success rates of over 80%. More recently, Youssef et al.
(2016a, b) compared different probabilistic and bivariate
models for landslide susceptibility assessment in Saudi
Arabia. Their study showed that the AUC for success rates
are 0.813, 0.815, 0.800, and 0.777, while the prediction rates
are 0.95, 0.952, 0.946, and 0.934 for FR, WoE, index of
entropy (IoE), and Dempster–Shafer (DS) models, respec-
tively. Comparing the bivariate methods with expert-based
methods, Bourenane et al. (2015) showed that the bivariate
statistics-based method provided better results and appeared
to be more accurate than the expert-based methods. In
another comparative study, Shahabi et al. (2013) showed
that bivariate methods (information value and density area)
outperformed the multivariate methods (linear regression
and DA).

11.2.4 Multivariate Methods

In multivariate analysis, all factor maps and
landslide-occurred lands are simultaneously analyzed to
determine the landslide susceptibility values. Unlike the
bivariate model, the multivariate model evaluates the relative
contribution of each factor by emphasizing the factors
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known to contribute to landslide occurrence (Nandi and
Shakoor 2010). The most popularly used multivariate
methods are LR (Pham et al. 2016a, b; Erener et al. 2016;
Demir et al. 2015; Pradhan and Lee 2010; Umar et al. 2014;
Youssef et al. 2015; Budimir et al. 2015; Pradhan 2010a, b)
and DA (Baeza et al. 2010a, b; Santacana et al. 2003).
Mousavi et al. (2011) applied the LR model for landslide
susceptibility assessment in Iran. They used 95 landslide
locations and five conditioning factors (elevation, slope,
curvature, rainfall, and distance to the fault). Their results
indicated that the LR method was 85.3% accurate. In a
recent paper, Budimir et al. (2015) reviewed several studies
that used the LR analysis for landslide susceptibility
assessment. They concluded that although most studies used
LR for landslide susceptibility assessment, more precision
and consistency were needed in selecting covariates for the
LR analysis. Kavzoglu et al. (2015a, b) compared LR with
DT and SVM methods as well as several bivariate models
(FR, WoE, and SI). Their results indicated that the multi-
variate method (i.e., SVM, LR, and DT) outperformed the
bivariate methods (i.e., FR, SI, and WOE) by approximately
13%. Within the multivariate methods, the SVM model
performed with the highest accuracy, while the FR method
was the most effective and accurate bivariate method. Huang
et al. (2015) showed that the LR model (84.05%) predicts
more accurately than the FR model (76.64%) for the study
area. In addition, Pradhan (2010a, b) compared the FR, FL,
and LR models for landslide susceptibility mapping. The
results showed that the FR model (89%) is better in pre-
diction than the FL (accuracy is 84%) and LR (accuracy is
85%) models. Results showed that among the fuzzy opera-
tors, the gamma operator (k = 0.9) showed the best accuracy
(84%). Murillo-García et al. (2015) compared the DA, LR,
and neural network (NN) models. The best result (AUC =
0.821) was achieved by combining all the models together.
On the other hand, other multivariate methods, such as the
partial least squares (PLS) method, were applied for various
applications. For instance, Conforti et al. (2014a, b) applied
PLS to predict soil organic matter (SOM) from the reflec-
tance spectra.

11.2.5 Machine Learning Methods

Pradhan (2013) compared the SVM, DT, and neuro-fuzzy
models for landslide susceptibility assessment. The results
showed that the DT model has higher prediction perfor-
mance (83.07%) on testing data, whereas the success rate
showed that neuro-fuzzy model has better prediction
(94.21%) capability on training data among all models. In
addition, Hong et al. (2016) compared four kernel functions
used in the SVM model for landslide susceptibility assess-
ment. Their results revealed that the radial basis function

achieved the best results with an accuracy of 0.738 (AUC of
validation dataset). Similar results were also achieved by
Chen et al. (2016) and Pourghasemi et al. (2013a, b, c). Xu
et al. (2016)’s SVM model performed better than an NN
model for earthquake-triggered landslide susceptibility
mapping. Moreover, the SVM was also found to perform
better than the NN model in terms of accuracy and gener-
alization capacity.

Park et al. (2014) applied the DT model, which is a type
of data mining method for landslide susceptibility assess-
ment in the GIS environment. 3994 landslide inventories on
18 landslides conditioning factors were used to assess the
susceptible area. Three algorithms were used to create DT,
namely Chi-squared (v2), automatic interaction detector
(CHAID), and the quick, unbiased, and efficient statistical
tree (QUEST) algorithms. FR and DT were used to identify
and measure the correlations between the conditioning fac-
tors and detected landslide locations. The AUC analysis was
used to evaluate the landslide susceptibility assessment. The
results show accuracies of 81.56 and 80.91% for the CHAID
and QUEST algorithms, respectively. In general, the DT
models using the CHAID and QUEST algorithms can be
suitable for landslide susceptibility assessment. Sue et al.
(2015) applied the SVM method for landslide susceptibility
assessment in China. Seven conditioning factors and 354
landslide inventories were used for landslide susceptibility
assessment. AUC analysis was used to evaluate the SVM
model. The results showed that the SVM model performs
well and is stable with an accuracy of 96%.

11.2.6 Hybrid Models

Bui et al. (2016) developed a hybrid integration method of
least square SVM and differential evolution optimization for
landslide susceptibility mapping. Their proposed model
performed well (82% of AUC) on both training and vali-
dating datasets. In addition, the comparative study showed
that the model outperformed the SVM, NN, and DT models.
In addition, Pham et al. (2016a, b) proposed a novel
ensemble model of rotation forest and naïve Bayer for
landslide susceptibility assessment. The proposed model had
a high prediction capability (AUC = 0.846) and a relatively
high accuracy (ACC = 78.77%). The study also showed that
the model outperformed the AdaBoost, Bagging, Multi-
Boost, and random forest. In another paper, Althuwaynee
et al. (2016) proposed a novel CHAID and AHP hybrid
model for landslide susceptibility modeling. Their results
showed that the novel model (AUC = 0.80) outperformed
the AHP model (0.76) and was more reliable. On the other
hand, Sangchini et al. (2016) applied a hybrid method using
bivariate and AHP models and compared their proposed
method with the LR model. The results showed that the
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hybrid method performed better in comparison with the LR
model, with an AUC of 0.914 and 0.865, respectively.
Furthermore, Lee et al. (2015) applied a hybrid method
using FR and an adaptive neuro-fuzzy inference system
(ANFIS) for landslide susceptibility assessment in the GIS
environment. Seventeen conditioning factors and landslide
occurrence areas can assess landslide susceptibility. The
results showed that the hybrid method (ANFIS) can effec-
tively assess landslide susceptibility. Moosavi and Niazi
(2016) developed the hybrid wavelet packet–statistical
models (WP–SM) for landslide susceptibility mapping.
Results showed that the transformed wavelet packet can be
effectively used to produce precise landslide susceptibility
maps; the best accuracy was achieved with the SVM model.

11.3 Pilot Test Site

In this chapter, the study area was selected in Cameron
Highlands located in the near northern central part of
Peninsular Malaysia. The area is located between 101° 24′
00″E and 101° 25′ 10″E latitudes and 4° 30′ 00″N and 4° 30′
55″N longitudes (Fig. 11.1). This area is prone to landslides
and debris flows for several reasons. First, the area is
undergoing developments and land clearing for housing and
other infrastructures. Second, the annual rainfall of the
tropical hilly regions, including the Cameron Highlands, is
high, averaging between 2500 and 3000 mm per annum.
Intense rainfalls often overflow the rivers and streams in
Cameron Highlands, flooding the area, subsequently pro-
ducing landslides with debris flowing along the river valleys.
In addition, intense rainfalls affect the stability of the slope,
causing gully erosions.

The area’s topography is hilly mountainous with a slope
angle ranging from 0° to 78°; a small part of the area is flat.
On the other hand, the geology of Cameron Highlands
comprises granite, which is classified as megacrystic biotite
granite (Pradhan 2010a, b). In addition, the metasediments
comprise schist, phyllite, slate, and limestone (Pradhan
2010a, b). Recently, many landslide events that have dam-
aged housing and other properties have been reported.
Therefore, this area was selected for studying the perfor-
mance of different landslide susceptibility models. The goal
was to determine the model that could most accurately
predict the spatial distribution of landslide events in the area.

11.4 Datasets

11.4.1 Landslide Conditioning Factors

Several remotely sensed datasets were acquired to prepare the
landslide conditioning factors for landslide susceptibility

mapping. The LiDAR data of the study area were acquired to
construct a high digital elevation model (DEM) of the 25 km2

area. The average flight height of the LiDAR system during
data acquisition was 1510 mm. The data were captured on
January 26, 2015. The LiDAR data collection showed nearly
eight-point clouds per square meter with a 25,000-Hz pulse
rate frequency. In addition, the absolute accuracy of the
LiDAR data met the root mean square errors of 0.15 m in the
vertical axis and 0.3 m in the horizontal axis.

The DEM was constructed from the last return LiDAR
point clouds at a 0.5-m spatial resolution. The last return was
used because the last pulses reach the vegetated areas.
The DEM was derived using the ESRIs ArcGIS 10.3 algo-
rithm, which is based on the multiscale curvature method
proposed by Evans and Hudak (2007). This method is based
on a curvature filtering technique (Haugerud and Harding
2001) and iteratively classifies the LiDAR point clouds into
ground and non-ground points at multiple scales. An inverse
distance weighting interpolation technique was utilized to
convert the point clouds classified as ground points into a
raster format.

Once the DEM was derived, several topographical, geo-
morphological, and hydrological factors were obtained
(Fig. 11.2). The factors derived from the LiDAR DEM were
altitude, slope, aspect, curvature, topographic roughness
index (TRI), and distance to stream. Altitude, slope, aspect,
and curvature were derived using the spatial analysis tools,
whereas TRI was derived by applying the following equa-
tion in the algebra map:

TRI ¼ Abs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max
2 �min

2
q !

ð11:1Þ

where max and min are the biggest and smallest values of
the cells in the nine rectangular neighborhoods in the altitude
raster.

On the other hand, the distance to the stream was derived
in two steps. First, the streams were delineated using flow
accumulation and converted into a vector format. In the
second step, a Euclidean distance analysis was conducted to
produce the distance to the stream factor. In addition, the
distance to the road and the distance to the lineament factors
were derived using the same distance analysis and existing
topographic maps of the study area.

In addition, the normalized difference vegetation index
(NDVI) was derived from a high-resolution SPOT 5 image
(10 m) by applying the band ratio:

NDVI ¼ NIR� RED
NIRþRED

ð11:2Þ

where the NIR and RED are the reflectance values of the
near infrared and red bands of the SPOT image. The output
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NDVI raster often ranges from −1 to 1, where the negative
values indicate non-vegetated areas and the high positive
values indicate healthy green vegetation. Furthermore, to
produce the vegetation density factor, the NDVI raster was
reclassified into four classes [−1 to −0.5 (non-vegetation),
−0.51 to 0 (low density), 0.1 to 0.5 (moderate density), and
0.51 to 1 (high density)] using the manual classification
method. Moreover, the land cover map of the study area was
produced by using the SPOT 5 image (10 m spatial reso-
lution) acquired on July 8, 2004 was classified to map the
different land cover classes (Pradhan and Lee 2010). A su-
pervised classification method including the GIS-based
refinements and field verifications was used to classify the
SPOT 5 image into 11 classes.

The detail classes of landslide conditioning factors are
shown in Fig. 11.2. The reclassification process was done by
the quantile classification method in the ArcGIS software.
The altitude of the area ranged from 1500 to 1800 m, where
the northwest part of the area had the highest altitudes
(Fig. 11.2a). The slope map was classified into five classes:
0–12, 13–24, 25–35, 36–47, and 48–78. The slope angles of
the terrain ranged from flat lands to 78°. The aspect map was
classified into nine classes, i.e., flat, northeast, east, south-
east, south, southwest, west, northwest, and north. On the
other hand, the curvature of the area was classified into two
classes where the negative values were assigned as convex
classes and the positive values were assigned as concave

classes. As the study area is a rainforest area, high NDVI
values (>0.18) were dominant. The highest NDVI values
were found in the northern part of the area where mixed
agriculture and forest were found. In addition, the vegetation
density produced based on the NDVI values classified the
area into four classes: non-vegetation, low density, moderate
density, and high-density vegetation. The land cover map
shows that the area is almost covered by agricultural lands
and forests. In addition, the area included water bodies,
industrial, infrastructure, facilities, as well as mixed, com-
mercial, transportation, agriculture, residential, and vacant
lands. Furthermore, the TRI map was classified into five
classes: 0–24, 25–38, 39–50, 51–59, and 60–150. The TRI
map shows that the agricultural areas have small TRI values;
on the other hand, high TRI values were found in the forest
areas. Distance to the lineament, distance to the road, and
distance to the stream were classified into five classes; their
details are shown in Fig. 11.2.

11.4.2 Landslide Inventory Dataset

The landslide inventory map of Cameron Highlands was
produced by mapping the landslide area by visual interpre-
tation of aerial photographs and SPOT 5 images; addition-
ally, available previous reports were analyzed (Pradhan and
Lee 2010; Pradhan et al. 2010; Pradhan 2011). Typically

Fig. 11.1 Geographic location of the study area (Cameron Highlands)
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speaking, a comprehensive landslide inventory database
should contain information about the date when the landslide
occurred, the type of landslides, and the damages and inju-
ries incurred because of the landslide event. However, such
detail and complete landslide inventory maps are unavailable
in Malaysia, and extracting landslide information from pre-
vious satellite images or orthophotographs alone is difficult.

Therefore, this work used the best available landslide
inventory for the study area. The landslide locations were
extracted from archived aerial photographs, high-resolution
satellite images, and previous records. A total of 37 land-
slides were identified in the study area. In addition, land-
slides were verified based on visual interpretation and field
investigations.

Fig. 11.2 Landslide conditioning factors
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11.5 Theory of Models

11.5.1 Expert-Based Methods

11.5.1.1 Analytic Hierarchy Process
The AHP model was proposed by Saaty in 1980. It is an
expert-based modeling method that mainly depends on

expert opinions. The AHP is a multicriteria decision-making
support approach that provides the user a scale of prefer-
ences drawn from a set of alternatives. In the last decades,
AHP has gained much attention in many applications
including site selection, suitability analysis, and landslide
susceptibility mapping (Pourghasemi et al. 2012a, b, c;
Kayastha et al. 2013). The first stage of AHP is breaking a

Fig. 11.2 (continued)
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complex problem into its component factors. Then these
factors are arranged in a hierarchal order. After that,
numerical values are assigned to subjective judgments on the
relative importance of each factor; the judgments are syn-
thesized to determine the priorities to be assigned to these
factors (Saaty and Vargas 2001).

Next, the priorities are imported into the AHP matrixes.
A pairwise comparison matrix is created by making dual
comparisons made in this context. The weights are calcu-
lated from the pairwise comparison matrix undertaking
eigenvalue and eigenvector calculations. The eigenvector
corresponding to the largest eigenvalue of the matrix pro-
vides the relative priorities of the factors, i.e., if one factor
has a preference, its eigenvector component is larger than
that of the others. Thus, a vector of weights is obtained. This
vector reflects the relative importance of the various factors
from the matrix of paired comparisons.

In AHP, an index of consistency, known as the consis-
tency ratio (CR), is used to indicate the probability that the
matrix judgments were randomly generated (Saaty 1977).

CR ¼ CI
RI

ð11:3Þ

where RIRI is the average of the resulting consistency index
depending on the order of the matrix given by Saaty (1977);
CI is the consistency index and can be expressed as

CI ¼ kmax � nð Þ
n� 1

ð11:4Þ

where kmax is the largest or principal eigenvalue of the
matrix that can be easily calculated from the matrix, and n is
the order of the matrix. If CRCR values are >0.1, the models
are automatically discarded.

11.5.1.2 Fuzzy Analytic Hierarchy Process
Fuzzy AHP embeds the fuzzy theory to the basic AHP,
which was developed by Saaty (1977). AHP takes the
pairwise comparisons of different alternatives with respect to
various criteria and provides a decision support tool for
multicriteria decision problems. In a general AHP model, the
objective is in the first level, and the criteria and subcriteria
are in the second and third levels, respectively. Finally, the
alternatives are found in the fourth level (Kilincci and Onal
2011). The AHP model cannot reflect human thinking. On
the other hand, in the fuzzy AHP model, qualitative judg-
ment can be qualified to compare more intuitionistic and
reduce assessment bias in the pairwise comparison process
(Roodposhti et al. 2014). Another advantage of including the
fuzzy concepts in the AHP model is the capability of rep-
resenting vague data. Further details of fuzzy AHP and its
applications for landslide susceptibility modeling can be
found in Roodposhti et al. (2014).

11.5.2 Bivariate Methods

11.5.2.1 Weights-of-Evidence
Weights-of-Evidence (WoE) is a nonlinear statistical tech-
nique based on the log-linear form of the Bayesian proba-
bility model (Bonham-Carter 1994). An early application of
WoE in landslide susceptibility modeling was reported by
Lee et al. (2002). The detailed mathematical formulations of
this method are described in Bonham-Carter (1994). WoE
calculates the weight of each landslide conditioning factor in
the model based on the absence and presence of landslides in
a given area. The calculations are done using the following
equations (Bonham-Carter 1994):

W þ
i ¼ ln

P BjLf g
P BjLf g ð11:5Þ

W�
i ¼ ln

P �BjLf g
P �Bj�Lf g ð11:6Þ

where P indicates the probability, ln is the normal log, B is
the presence of a potential landslide factor, �B is the absence
of a potential landslide factor, L is the presence of landslide,
and �L is the absence of landslide. In addition, W þ

i is the
positive weight, which indicates the presence of a landslide
factor at the landslide locations; and W�

i is the negative
weight, which indicates that the absence of a landslide factor
is the landslide location. As a result, Wf ¼ W þ

i þW�
i is the

weight contrast reflecting the overall spatial association
between landslide factors and landslide locations.

11.5.2.2 Statistical Index
The SI method is based on the statistical correlations that are
often revealed by crossing the landslide inventory map with
attributes of a different map factors (Bui et al. 2011). In the
first stage, the density of landslides per parameter class is
calculated from the map-crossing results (Yalcin 2008).
Then, these densities are standardized by relating them to the
overall density in the entire area (Oztekin and Topal 2005).
The following equation was suggested by van Westen
(1997) to calculate the landslide susceptibility index (LSI):

SI ¼ Ln
Npix Sið Þ
Npix Nið Þ =

SNpix Sið Þ
SNpix Nið Þ

� �
ð11:7Þ

where Npix Sið Þ is the number of pixels contained in a
landslide in a certain parameter class, Npix Nið Þ is the total
number of pixels in a certain parameter class, SNpix Sið Þ is
the number of pixels in all landslides, and SNpix Nið Þ is the
total number of all pixels. Then, the SI value of each land-
slide conditioning factor is calculated. Finally, all layers are
overlaid, and a resulting susceptibility map is obtained.
Further details can be found in Van Westen (1997).
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11.5.2.3 Frequency Ratio
The FR model depends on the observed relationship between
the landslide inventory map and each landslide conditioning
factor (Bonham-Carter 1994). The goal of these models is to
establish relationships between the landslide locations and
the conditioning factors in the study area (Lee and Pradhan
2007). The advantages of the FR model are that it is easy to
calculate and run, and the landslide susceptibility maps that
are produced by the FR models often spatially match the
landslide inventories. In addition, many researchers have
proposed this method (Yilmaz 2009; Intarawichian and
Dasananda 2011; Schleier et al. 2014).

Frequency is calculated from the analysis of the rela-
tionship between landslides and the attributed factors.
Therefore, the frequency ratios of each factor’s type or range
were calculated from their relationship with landslide events.
The frequency ratio was calculated for the subcriteria of the
parameter, and the frequency ratios were summed to calcu-
late the LSI (Lee and Talib 2005).

LSI ¼ Fr1 þ Fr2 þ � � � þ Frn ð11:8Þ
where Fr is the rating of each factor’s type or range. Further
details on FR can be found in Bonham-Carter (1994) and
Yalcin et al. (2011).

11.5.3 Multivariate Methods

11.5.3.1 Logistic Regression
The LR is a multivariate statistical technique that works
under the probability concepts and is widely used for land-
slide susceptibility assessment throughout the world (Aya-
lew et al. 2005; Schicker and Moon 2012; Devkota et al.
2013). In LR, the landslide conditioning factors were first
transformed into a logit variable. Then, the maximum like-
lihoods were computed from the logit variables (Bai et al.
2010). The main advantage of the LR model is that through
the addition of a suitable link function to the usual linear
regression model, the variables may be either continuous,
discrete, or of any composition of both types; the variables
do not necessarily have normal distributions (Pradhan 2011).

The LR model is widely accepted in landslide suscepti-
bility assessments and is computed using the following
equations:

Y ¼ Logit pð Þ ¼ Ln
p

p� 1

� �
ð11:9Þ

Y ¼ C0 þC1X1 þC2X2 þ � � � þCnXn ð11:10Þ
where p is the probability that has a dependent variable;
Y ¼ 1 ; p=ð1� pÞ is the so-called odd or frequency ratio; C0

is the intercept; and C1;C2; . . .;Cn are the coefficients, which

measure the contribution of the independent factors
(X1;X2; . . .;Xn) to the variations in Y (Lee 2005). Further
information about LR can be found in Lee and Pradhan
(2007), Yalcin et al. (2011), Pradhan and Lee (2010),
Pradhan (2010a, b), and Althuwaynee et al. (2014).

11.5.3.2 Discriminant Analysis
Discriminant Analysis (DA) predicts membership in a group
or category based on observed values of several continuous
variables. Specifically, DA predicts a classification (X) vari-
able (nominal or ordinal) based on known continuous
responses (Y). The data for DA comprise a sample of
observations with known group membership together with
their values on the continuous variables.

These are twoof the univariate statistical techniques that are
used to build a predictive model based on groups that consider
the observed explanatory variables (McLachlan 2004). They
are used to classify each mapping as either landslide or
non-landslide. In DA, the estimated values (i.e., L) are deter-
mined by a linear combination of a set of explanatory vari-
ables, such asL ¼ bXþ c ðc ¼ constantconstantÞ;which best
differentiates the group of a case by finding the b coefficients.
In QDA, the task is to determine a quadratic surface that best
separates the group of a case. Unlike LDA, QDA finds a group
membership comprising a square n� nmatrix (n = number of
explanatory variables) and a linear combination of these
variables such that ¼ xTAxþ bTxþ c, where A is the n� n
coefficientmatrix, b is the linear combination coefficient, and c
is a constant.

11.5.3.3 Partial Least Squares
Partial Least Squares (PLS) regression is a technique that
generalizes and combines features of a principal component
analysis and multiple regressions (Abdi 2003). It breaks
down predictors into a smaller set of uncorrelated compo-
nents and then performs least-squares regression on these
components rather than on the original data. PLS regression
is especially useful when predictors are highly collinear or
when more predictors exist than observations, in which
ordinary least-squares regression either produces coefficients
with high standard errors or fails completely. Detailed
mathematical formulations and discussions on PLS can be
found in Geladi and Kowalski (1986).

11.5.4 Machine Learning Methods

11.5.4.1 Support Vector Machine
Vapnik (1995) developed SVM, a nonlinear classification
model derived from machine learning techniques. SVM aims
to determine an optimal separating hyper plane (maximizing
the margin width) between two classes in a feature space
(Pham et al. 2016a, b). The training points near the hyper plane
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are called support vectors and are utilized for classification
once the decision surface is obtained (Pourghasemi et al.
2013a, b, c). The separating hyper plane is found as follows:

yi w� xi þ bð Þ� 1� ni ð11:11Þ
where w is the coefficient vector that defines the hyper plane
orientation in the feature space; b is the offset of the hyper
plane from the origin; and ni is the positive slack variables
(Cortes and Vapnik 1995). The optimal hyper plane is found
by solving the following optimization problem (Jebur et al.
2014):

Minimize
Xn
i¼1

ai � 1
2

Xn
i¼1

Xn
j¼1

aiajyiyj xixj
� �

subject to
Xn
i¼1

aiyj ¼ 0; 0� ai �C

ð11:12Þ

where ai is the Lagrange multiplier, and C is the penalty for
data classification. The following decision function is
applied as follows:

g xð Þ ¼ sign
Xn
i¼1

yiaixi þ b

 !
ð11:13Þ

In the case of nonlinearly separating samples, the decision
function (Eq. 11.13) is rewritten as follows:

g xð Þ ¼ sign
Xn
i¼1

yiaiKðxi; xjÞþ b

 !
ð11:14Þ

In this process, the original data are transformed into a
higher dimensional space using a nonlinear kernel function
(K). The common K functions used with SVM in landslide
studies are linear, sigmoid, radial basis, and polynomial (Bui
et al. 2012). However, several studies showed that the radial
basis function is more suitable for landslide susceptibility
application than the other kernel functions (Pourghasemi
et al. 2013a, b, c; Xu et al. 2012). A thorough discussion on
the SVM method for landslide susceptibility assessment is
presented in Marjanović et al. (2011).

11.5.4.2 Random Forest
Random Forest (RF) is a model building strategy that pro-
vides estimators of the Bayes classifier. Unlike other models,
the RF model has several measures of variable importance.
One of the most dependable measures is based on the
decrease in classification accuracy when values of a variable
in a node of a tree are permuted randomly (Breiman 2001).
For landslide susceptibility mapping, RF models take
advantage of the high variance among individual trees,
allowing each tree to vote for the class membership and
assigning respective classes according to the majority of the

votes. Such ensembles demonstrate robust and accurate
performance on complex datasets with little need for
fine-tuning. Complex datasets include the presence of many
noisy variables, such as factors that could possibly, but not
plausibly, affect the dependent variable Stumpf and Kerle
(2011). Moreover, in this study, an OOB (out-of-bag) sam-
ple is used considering that the observations are not used for
building the current tree and the two types of errors in which
mean decreases in accuracy and mean decreases in Gini are
calculated (Breiman 2001; Calle and Urrea 2010). Such
types of errors can be used to rank and select variables (Liaw
and Wiener 2002; Biau et al. 2008).

11.5.4.3 Decision Tree
Decision Tree (DTs) are a class of predictive data mining
tools that predict either a categorical or continuous response
variable. A DT comprises nodes and splits in the data. The
tree starts with all the training data residing in the first node.
An initial split is made using a predictor variable, which
segments the data into two or more child nodes. Splits can
then be made from the child nodes, and no more splits are
made from a terminal node. Predictions are made based on
the composition of terminal nodes. DTs offer many advan-
tages. One important advantage is the ease of interpretation
of a DT and its ability to model complex relationships
between variables (Bui et al. 2012). In addition, making
model predictions with DTs does not involve mathematical
calculations as in general linear models. However, these
methods have disadvantages, such as their susceptibility to
noisy data and that multiple output attributes are not
allowed. An in-depth discussion and the mathematical
equations used in DT modeling can be found in Bui et al.
(2012).

11.6 Methods

11.6.1 Factor Analysis

Given several issues such as multicollinearity, outliers, and
spatial variations of landslide inventories and the condi-
tioning factors, factor analysis is an important step required
in susceptibility assessments (Pradhan and Lee 2010; Jebur
et al. 2014). The aim of this analysis is to detect and remove
the problematic factors, which can mislead the coefficient
estimations and eventually reduce the performance of
regression models (Mancini et al. 2010). In addition, inclu-
sion of problematic factors in the analysis can lead to a poor
model design, which subsequently limits the use of the
models in producing landslide susceptibility maps for the
target area. Multicollinearity refers to landslide conditioning
factors that are correlated with other factors in the model.
Severe multicollinearity can increase the variance of the
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coefficients estimates. It also makes the model sensitive to
small changes, thereby making it difficult to interpret. Mul-
ticollinearity is often detected through cross-correlation
matrix construction among landslide conditioning factors.
The use of advanced methods to detect multicollinearity
among predictors enables the estimation of the
variance-inflated factor (VIF), which can be calculated using
the following expression:

VIF ¼ 1
1� R02 ð11:15Þ

where R0 is the multiple correlation coefficient between a
factor and the remaining factors in the model.

Furthermore, researchers have recently suggested several
solutions to address multicollinearity (Van Den Eeckhaut
et al. 2010; Verachtert et al. 2011; Jebur et al. 2014).
Common practices include removing the highly correlated
factors, linearly combining the highly correlated factors, and
running more advanced models that account for multi-
collinearity, such as a ride regression. In the present study,
highly correlated factors (VIF => 4.00) are removed.

11.6.2 Factor Optimization

With the increase in the number of landslide conditioning
factors, the required training sample size also grows; opti-
mizing landslide conditioning factors in landslide suscepti-
bility mapping has become important. In addition, increasing
the number of landslide conditioning factors increases the
computational costs, and having a number of input landslide
factors may not necessarily improve the prediction accuracy
of landslide occurrences. Furthermore, increasing the num-
ber of landslide factors can mislead the estimated regression
coefficients and then reduce the generalizability of the sus-
ceptibility models into different subsets within the study area
or within different sites. In this study, two methods of factor
optimization, the Chi-square statistic and Gini importance,
are used to remove nonsignificant factors at a 95% confi-
dence level.

11.6.2.1 Factor Optimization Using
the Chi-Square Statistic

The significant landslide factors can be identified using the
Chi-square statistic (Sarkar and Kanungo 2004). This
approach aims to test the significance of the relationship
between categorical variables. It is based on the computation
of the expected and observed frequencies. The Chi-square
value and its significance level depend on the overall number
of landslide events and the conditioning factors. The
hypothesis test is defined as follows:

H0 The landslide factor (e.g., slope) and landslide occur-
rence are independent

H1 The landslide factor (e.g., slope) and landslide occur-
rence are independent

v2 ¼
Xn
i¼1

Oi � Eið Þ2
Ei

; ð11:16Þ

where Oi is the observed frequency count at level i for
landslide factor, and Ei is the expected frequency count at
level i for landslide factor.

Once the Chi-square value and the p-value for each
landslide conditioning factor are computed, the p-value is
evaluated against the significance level of (0.05), which
allows us to determine the significance of the relationship
between the landslide factor and the landslide occurrence.
A higher Chi-square value implies that the factor more ably
detects landslide probabilities.

11.6.2.2 Factor Optimization Using
the Information Value (IV) Method

The information value (IV) is a statistical indicator of the
overall predictive power of the characteristics. It is calcu-
lated using the following expression:

IV ¼
Xk
i¼1

gi � bið Þ : ln gi
bi

� �" #
: 100 ð11:17Þ

where k is the number of classes in a landslide conditioning
factor, gi is the column-wise percentage distribution of the
total “good” cases in the ith bin, and bi is column-wise per-
centage distribution of the total “bad” cases in the ith bin. The
optimum landslide conditioning factors are selected using the
IV calculated by the above formula (Eq. 11.2). In addition,
the Gini coefficient and the Gramer’s V statistic are computed
for each factor. The Gini coefficient is a summary statistic of
the Lorenz curve and a measure of inequality in a population.
The Gini coefficient ranges from a minimum value of zero,
given that all individuals are equal, to a theoretical maximum
of one in an infinite population in which every individual
except for one has a size of zero. On the other hand, the
Cramer’s V measures the correlation of landslide factors. It
ranges from 0 (no correlation exists) to 1 (ideal correlation)
and can be calculated using the following formula:

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2

n:min w� 1; k � 1ð Þ

s
ð11:18Þ

where v2 is the Chi-square statistic, n is the number of cases
available in the dataset, w is the number of categories in the
dependent variable (=2 “Landslide,” “Non-landslide”), and k
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is the number of categories in the independent variables
(landslide conditioning factors).

11.6.3 Landslide Susceptibility Modeling

Multiple regression analysis can be applied to spatially
predict landslide occurrences in an area. In this method,
several independent variables (i.e., landslide conditioning
factors) and a dependent variable (i.e., the presence/absence
of landslides) are used to establish a linear equation via the
estimation of coefficients for the independent variables. The

literature contains several techniques for various perfor-
mances. The performance of a regression model depends on
a number of issues, including the quality and quantity of
training data, the spatial distribution of a dependent variable,
the topographic and geomorphology of the study area, and
the model concept and its assumptions. In the present study,
14 models are developed and evaluated for landslide sus-
ceptibility mapping in the study area. The models are
grouped into five categories: bivariate, multivariate,
expert-based, data manning, and hybrid (Fig. 11.3). The
details of these models are explained in Sect. 11.2 and are
listed in Table 11.1.

Fig. 11.3 Landslide and
non-landslide samples used for
susceptibility modeling

Table 11.1 Landslide
susceptibility models and their
abbreviations used in the current
study

Category Model Code

Bivariate Weight of evidence WoE

Statistical index SI

Frequency ratio FR

Multivariate Logistic regression LR

Discriminant analysis DA

Partial least squares PLS

Expert-based Analytic hierarchy process AHP

Fuzzy analytic hierarchy process FAHP

Data mining Support vector machine SVM

Random forest RF

Decision tree DT

Hybrid Frequency ratio–logistic regression FR–LR

Frequency ratio–support vector machine FR–SVM

Weight of evidence–random forest WoE–RF
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11.6.4 Accuracy Assessment

11.6.4.1 Success and Prediction Rates
The success and prediction rate curves explain the percentage
of known landslides that fall into susceptibility level ranks
and show the cumulative frequency graph (Chung and Fabbri
2003; Intarawichian and Dasananda 2011). The developed
landslide susceptibility maps are compared with the spatial
distribution of the landslide inventory. The success rate curve
is created from the landslides used for training, whereas the
prediction rate curve is created from the landslides used for
validation (Pradhan and Kim 2014). Constructing the success
and prediction rate curves, the cumulative percentage of
observed landslide occurrences in different landslide sus-
ceptibility classes and the cumulative percentage of the area
of the susceptibility classes are plotted in the y- and x-axis,
respectively. In addition, the total AUC can be used to
qualitatively determine the prediction accuracy of the sus-
ceptibility map, in which a larger area implies a higher
accuracy (Lee 2005; Mathew et al. 2009; Intarawichian and
Dasananda 2011; Pourghasemi et al. 2013a, b, c).

11.6.4.2 Spatial Agreement
A Spearman correlation analysis is used to evaluate the
spatial agreements between landslide-susceptible maps
(Hühnerbach and Masson 2004). The Spearman correlation
between two landslide susceptibility maps assesses the
monotonic relationships (linear and nonlinear). A perfect
Spearman correlation of +1 or −1 occurs when each of the
landslide conditioning factors is a perfect monotone function
of the other (Setchi and Anuar 2016). The Spearman cor-
relation is appropriate for continuous and discrete variables.
In the present study, it is applied to discrete landslide sus-
ceptibility maps to assess the spatial agreements of each
landslide susceptibility class in two different models. The
Spearman correlation measures the strength and the direction
of the relationship between two variables. In this study, the
Spearman correlation measures the strength and the direction
of the relationship between the two landslide susceptibility
maps. The Spearman correlation is calculated using the
following formula (MacFarland and Yates 2016):

q ¼ 1� 6
P

d2i
n n2 � 1ð Þ ð11:19Þ

where q is the Spearman rank correlation, di is the difference
between the ranks of corresponding values xi and yi, and n is
the number of values in each dataset.

The Spearman rank correlation matrix was generated using
all pixels in the study area. For each landslide susceptibility
map, the pixel values were extracted and stored in a table, and
the pair landslide susceptibility maps were assessed using the
Spearman rank correlation estimated using the Eq. (11.19).

11.6.4.3 Landslide Density Graphs
A landslide density graph is often produced to investigate the
predicted landslide densities in each landslide susceptibility
class (Galli et al. 2008). This graph is constructed by plotting
the ratio of occurred landslides pixels over the ratio of
non-occurred landslide pixels for each classified susceptible
zone in a diagram. This graph is an important aspect of an
accuracy assessment of landslide susceptibility models, as it
provides information on the distribution of landslide events
in the study area and in each landslide susceptibility class.

11.7 Results

11.7.1 Results of Factor Analysis

Tables 11.2 and 11.4 show the results of factor analysis. The
estimated correlation coefficients of landslide conditioning
factors indicate that the NDVI and vegetation density as well
as the slope and TRI have the two highest correlation
coefficients of 0.92 and 0.84, respectively. Examining only
the correlation coefficients is insufficient to detect multi-
collinearity because the pairwise correlations may be small
while linear correlations among three or more landslide
conditioning factors may exist. Therefore, calculating the
VIF is essential to detecting the multicollinearity in the
dataset. Table 11.3 shows the estimated VIF values of all
landslide conditioning factors. The VIF values indicate that
the NDVI (VIF = 4.45) and vegetation density (VIF = 4.16)
are the two factors that suffer multicollinearity in the dataset.
On the other hand, the calculated VIF of TRI factor is 2.30,
indicating low linear dependence with other factors. The VIF
explains how much the estimated regression coefficients are
inflated by the correlations among the landslide conditioning
factors in the model. Therefore, keeping the factors that
suffer from multicollinearity will inflate the regression
coefficients, producing an unreliable model. A common
practice in removing the multicollinear factors in a model is
investigating factors with a VIF greater than 4.00. In the
present study, the NDVI factor is removed because its cor-
relation coefficient than that of the vegetation density. As a
result, only 10 factors are used in the landslide susceptibility
models developed in the present study.

11.7.2 Results of Factor Optimization

Factor optimization is an important step in regression anal-
ysis, as it reduces the redundant information contained in
multiple factors. Table 11.5 shows the results of the factor
analysis in the present study using Chi-square and Gini
importance methods. The first method indicated that the
three most important factors for predicting landslides in the
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study area are landuse (Chi-square value = 34.172), distance
to road (Chi-square value = 22.581), and altitude
(Chi-square value = 20.554). On the other hand, the Gini
method showed that the landuse (information value = 1.766),
altitude (information value = 1.445), and slope (information
value = 0.963) are the three most important factors for
predicting the areas which are most susceptible to landslides.
Although the two methods disagree on the three most
important factors in predicting landslides in the Cameron
Highlands, they agree on the two most irrelevant factors,
NDVI and vegetation density. The estimated Chi-square
values of NDVI and the vegetation density are 3.906 and
0.949, respectively.

We found in the multicollinearity analysis that NDVI and
the vegetation density are highly correlated (R2 = 0.92); we
thus removed the NDVI from further analysis. The aim of

factor optimization is to analyze the importance of each
landslide conditioning factor regardless of its correlation
with the remaining factors. Therefore, none of the factors
were removed based on their importance value estimated
either by the Chi-square method or by the Gini method.

Human activities and changes in environmental condi-
tions affect the landuse and can thus affect landslide activity.
Deforestation, forest logging, road construction, and culti-
vation on steep slopes are the main activities that have sig-
nificant effects on landslide activity in the focused area.
However, in most of the landslide studies as well as the
present study, landuse is often viewed as a static factor
extracted from a single date satellite image. In addition,
landslides may occur on the road and on the side of the
slopes that are affected by the road. A road that is con-
structed beside steep slopes causes a decrease in the load

Table 11.2 Correlation matrix between landslide conditioning factors

Factor Slope Curvature Aspect Distance to
lineament

Distance
to road

Distance to
stream

NDVI Vegetation
density

Landuse Altitude TRI

Slope 1.00 −0.08 0.00 −0.04 0.10 0.01 0.29 0.25 0.12 0.23 0.84

Curvature −0.08 1.00 −0.12 −0.01 −0.03 0.14 −0.15 −0.22 0.10 0.31 0.00

Aspect 0.00 −0.12 1.00 −0.07 0.09 −0.10 0.29 0.24 −0.20 −0.07 0.02

Distance to
lineament

−0.04 −0.01 −0.07 1.00 0.27 0.13 −0.22 −0.22 −0.24 0.24 −0.15

Distance to
road

0.10 −0.03 0.09 0.27 1.00 −0.01 0.11 0.03 −0.48 0.47 0.07

Distance to
stream

0.01 0.14 −0.10 0.13 −0.01 1.00 −0.04 −0.05 0.31 0.43 0.04

NDVI 0.29 −0.15 0.29 −0.22 0.11 −0.04 1.00 0.92 0.07 0.04 0.35

Vegetation
density

0.25 −0.22 0.24 −0.22 0.03 −0.05 0.92 1.00 0.07 −0.04 0.27

Landuse 0.12 0.10 −0.20 −0.24 −0.48 0.31 0.07 0.07 1.00 0.02 0.20

Altitude 0.23 0.31 −0.07 0.24 0.47 0.43 0.04 −0.04 0.02 1.00 0.20

TRI 0.84 0.00 0.02 −0.15 0.07 0.04 0.35 0.27 0.20 0.20 1.00

Table 11.3 Estimated VIF for
each landslide conditioning factor

Variable Summary statistics and multicollinearity

Means Std. Devs Multiple VIF

Slope 32.16 14.96 0.74 2.20

Curvature −1.05 19.61 0.23 1.05

Aspect 180.18 107.93 0.16 1.03

Distance to lineament 108.43 75.37 0.21 1.05

Distance to road 74.19 80.28 0.51 1.36

Distance to stream 37.92 27.73 0.32 1.11

NDVI 0.37 0.10 0.88 4.45

Vegetation density 3.20 0.83 0.87 4.16

Landuse 4.92 2.32 0.43 1.23

Altitude 1581.65 76.86 0.54 1.42

TRI 49.53 14.64 0.75 2.30
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both on the topography and on the heel of the slope. This
phenomenon increases the stress on the back of the slope
because of the changes in topography. In previous studies,
the distance to the road was found to be an unimportant
factor (Yalcin 2008). This is mainly because the design of
roads plays a significant role in determining whether the road
is a contributing factor. A drop-down road section may
behave like a wall, a net source, a net sink, or a corridor for
water flow (Yalcin 2008). Furthermore, altitude is found to
positively affect landslide proneness (Pachauri and Pant
1992). Resistant lithological units and rainfall often underlie
higher altitudes.

On the other hand, vegetation density effects on landslide
occurrence may be classified as hydrological or mechanical
in nature. The hydrological factors include the loss of pre-
cipitation by interception, the removal of soil moisture by
evapotranspiration, and the effects of hydraulic conductivity

(Ercanoglu et al. 2004). The mechanical factors comprise
soil reinforcement by roots, surcharge, wind-loading, and
surface protection (Ercanoglu et al. 2004). However, in the
present study, the vegetation density was found to be non-
significant, as the training landslides are mostly located in
other landuse classes. Furthermore, the study area is mostly
covered by dense vegetation in which the non-landslide
samples are generated randomly.

11.7.3 Results of Bivariate Statistical Models

Three bivariate statistical landslide susceptibility models
were developed, FR, SI, and WoE. In bivariate statistical
models, a landslide conditioning factor was compared to the
landslide inventory map to determine the influence of the
factors. Table 11.6 contains the estimated coefficients for

Table 11.4 Factor loadings
shows the first three factors
calculated by the Varimax
normalized method

Variable Factor loadings (varimax normalized)

Factor 1 Factor 2 Factor 3

Slope 0.86 0.00 −0.08

Curvature 0.02 0.01 0.20

Aspect −0.01 0.05 −0.30

Distance to lineament −0.11 0.32 0.18

Distance to road 0.10 0.96 −0.15

Distance to stream 0.05 0.00 0.07

NDVI 0.27 −0.06 −0.93

Vegetation density 0.19 −0.13 −0.93

Landuse 0.19 −0.51 0.03

Altitude 0.23 0.46 0.01

TRI 0.98 −0.04 −0.09

Expl. Var 1.91 1.53 1.93

Prp. Totl 0.17 0.14 0.18

Table 11.5 Estimated factor
importance and ranking using the
Chi-square and Gini methods

Factor Chi-square method Gini method

Chi-square p-value Gini index Information value Cramer’s V

Landuse 34.172 0.000 0.317 1.766 0.606

Distance to road 22.581 0.001 0.383 0.180 0.483

Altitude 20.554 0.004 0.353 1.445 0.543

Aspect 18.596 0.010 0.433 0.568 0.365

Distance to lineament 16.431 0.021 0.270 0.665 0.678

Slope 15.800 0.045 0.414 0.963 0.414

TRI 14.810 0.096 0.414 0.778 0.414

Distance to stream 13.541 0.060 0.380 0.518 0.490

Curvature 6.148 0.292 0.375 0.918 0.500

NDVI 3.906 0.918 0.430 0.128 0.374

Vegetation density 0.949 0.814 0.494 0.052 0.113
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each landslide conditioning factor and its sub-level classes.
A high coefficient value does not indicate the importance of
the factor given that units are different. For example, the
degree or radian measures the slope, whereas meters mea-
sure the altitude. However, the coefficients can be used to
explain the contribution of the factors to the landslides
occurrence in the study area. The positive and the negative
signs (variables in the equation) in Table 11.6 indicate the
positive and negative relationships of a specific factor and
the landslide occurrence. In addition, the bivariate analysis
showed that most of the landslides occurred at an altitude
ranging from 1527 to 1639 m. In the record, 22 (60%)
landslides occurred in areas with slopes greater than 36
degrees. In addition, the southeast section contained almost
27% of the slope failure records. Meanwhile, the curvature
has three faces: flat, convex, and concave. The analysis
showed that 18 landslides occurred in convex curvature and
that four landslides occurred in concave areas; no landslide
occurred in flat areas. For the other factors, the large number
of landslides occurred in areas with a TRI greater than 51.
Moreover, the mixed landuse, high vegetation density, dis-
tance to the road from 40 to 100 m, distance to lineament
from 55 to 110 m, and distance to stream from 36 to 56 m
are some of the other factors. The slopes above 36° tend to
be more unstable than the less steep ones, although the
analysis showed that landslides (7) occurred in areas with a
slope of less than 13 degrees.

Landslide susceptibility maps were generated using the
developed bivariate statistical models, as shown in Fig. 11.4.
The landslide susceptibility maps were reclassified into five
classes using the ArcGIS quantile classification method. The
classes are very low, low, moderate, high, and very high.
The ROC accuracy assessment showed that the highest
accuracy could be achieved with FR considering both the
success and the prediction rates (Fig. 11.5). The FR model
could achieve success and prediction rates of 0.70 and 0.69,
respectively. The success rate of the SI and WoE models was
similar (0.68), whereas the prediction rate of SI (0.68) was
higher than the WoE model by 2% of ROC.

11.7.4 Results of Multivariate Statistical Models

Three multivariate statistical models, PLS, LR, and DA,
were used to produce landslide susceptibility maps of the
study area using the 37 landslide inventories. PLS and DA
were implemented in Minitab 17 using the leave one out
cross-validation approach and the 10 landslide conditioning
factors. Furthermore, a binary logistic regression (BLR) us-
ing a logit function as a link function was used to establish
the nonlinear relationship between the 10 landslide condi-
tioning factors and landslide occurrence. Table 11.7 shows
the estimated coefficients. The coefficients were interpreted

as the influence weight of the specific factor on landslide
occurrence. The weights of the specific factors were used in
the process of the sum of weights in GIS to produce the
landslide susceptibility maps. Afterward, the produced maps
were reclassified into five classes using the quantile classifier
method (Fig. 11.6).

The estimated coefficients from the PLS method showed
that the slope aspect, distance to lineament, and distance to
the road had a negative relationship with landslide occur-
rence. According to the standardized coefficients, landuse
was found to have the highest positive influence on landslide
occurrence, whereas the distance to the road was found to
have the highest negative influence on slope failure occur-
rence. In the DA model, factors with the largest coefficients
were the ones that contributed most to the prediction of
landslide occurrence (Table 11.8). On the other hand, in the
LR model, the influence of a specific landslide conditioning
factor could be quantified by observing the odds ratios. If
p is the proportion of observations with an outcome of 1
(landslide presence), then 1 − p is the probability of an
outcome of 0 (landslide absent). Then, the ratio p/(1 − p) is
called the odds of it ranging from 0 to positive infinity. In
addition, the confidence interval indicates the level of
uncertainty around the measure of effect, which in this case
is expressed as an odds ratio. The odds ratios in Table 11.9
show that the distance to stream (odds ratio = 1.0229),
landuse (odds ratio = 1.0608), altitude (odds ratio = 1.0145),
and TRI (odds ratio = 1.1921) have the highest effects on
increasing the probability of landslide occurrence in the
study area.

The AOCs calculated from the ROC curves indicate that
BLR has higher success (0.81) and prediction (0.77) rates
than the PLS and DA models (Fig. 11.7). In addition, the
accuracies also show that the PLS model can more accu-
rately predict the landslides in the test dataset, with a success
and prediction rate of 0.71 and 0.65, respectively. The DA
model has a low success (0.42) and prediction (0.33) rate.
Pourghasemi et al. (2013a, b, c), Lombardo et al. (2015), and
Patriche et al. (2016) reported high success and prediction
rates of the BLR model.

11.7.5 Results of Machine Learning Models

Data mining models, such as SVM, RF, and DT, have
become popular in many geoscience applications for their
high prediction capability. In the present study, three models
are built using the SVM, RF, and DT algorithms with 37
landslide inventories and 10 landslide conditioning factors.
Table 11.10 shows the estimated coefficients. The SVM
model shows that factors such as slope aspect, distance to
lineament, and distance to the road had a negative relation-
ship with landslide occurrence, whereas the remaining
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Table 11.6 Results of bivariate statistical modeling

Data layers Classes Pixels in classes Landslide pixels FR SI W+ W− Wf

Altitude 1451–1526 2,804,061 5 0.591 −0.526 −0.526 0.114 −0.640

1527–1582 3,441,544 12 1.149 0.145 0.145 −0.063 0.208

1583–1639 3,640,730 15 1.273 0.311 0.312 −0.167 0.479

1640–1718 1,628,053 5 0.906 0.018 0.018 −0.003 0.021

1719–1839 747,338 0 0.000 0.000 0.000 0.000 0.000

Slope 0–12 2,729,980 1 0.121 2.109 −2.108 0.225 −2.333

13–24 2,682,317 6 0.577 0.299 −0.299 0.070 −0.369

25–35 3,125,291 8 0.619 0.165 −0.164 0.051 −0.215

36–47 2,676,565 17 1.368 0.744 0.745 −0.370 1.114

48–78 1,051,347 5 0.918 0.455 0.455 −0.056 0.511

Aspect Flat 359 0 0.000 0.000 0.000 −0.084 0.084

North–East 2,100,307 3 0.331 −0.748 −0.748 0.011 −0.759

East 2,142,655 6 0.565 −0.075 −0.074 −0.123 0.049

South–East 1,846,774 10 0.939 0.585 0.585 0.049 0.536

South 1,354,505 4 0.493 −0.022 −0.021 0.093 0.072

South–West 1,129,248 7 1.833 0.720 0.720 0.070 0.651

West 987,710 1 0.268 −1.092 −1.092 0.029 −1.120

North–West 1,098,257 2 0.737 −0.505 −0.505 −0.020 −0.484

North 1,605,685 4 1.046 −0.192 −0.191 0.000 −0.191

Curvature Convex 6,117,114 18 1.290 −0.025 −0.025 0.024 −0.049

Flat 0 0 0.000 0.000 0.000 0.000 0.000

Concave 6,148,386 19 1.406 0.024 0.024 −0.025 0.049

TRI 0–24 1,657,409 0 0.000 0.000 0.000 0.000 0.000

25–38 2,297,400 2 0.251 −1.243 −1.243 0.090 −1.333

39–50 3,160,497 8 0.993 −0.176 −0.175 −0.037 −0.139

51–59 3,566,593 13 1.139 0.189 0.189 −0.135 0.324

60–150 1,593,877 14 1.981 1.068 1.069 −0.132 1.201

Landuse Water 39,631 0 0.000 0.000 0.000 0.000 0.000

Forest 6,161,626 4 0.184 −1.536 −1.536 −0.111 −1.425

Industrial 202,633 1 0.724 0.492 0.492 0.670 −0.178

Infrastructure 347,197 6 2.442 1.745 1.746 −0.160 1.906

Facilities 3,716,563 0 0.000 0.000 0.000 0.000 0.000

Mixed 60,137 25 19.397 4.926 4.926 −1.097 6.023

Commercial 1,101,967 0 0.000 0.000 0.000 0.000 0.000

Transportation 2438 0 0.000 0.000 0.000 0.000 0.000

Agriculture 177,062 0 0.000 0.000 0.000 0.000 0.000

Residential 384,818 0 0.000 0.000 0.000 0.000 0.000

Vacant 74,678 1 4.467 1.490 1.490 0.334 1.157

Vegetation Density Non 731,850 1 0.649 −0.792 −0.792 0.034 −0.826

Low 1,339,275 4 1.642 −0.010 −0.010 0.001 −0.011

Moderate 6,450,950 15 1.321 −0.261 −0.260 0.226 −0.487

High 3,746,675 17 1.895 0.408 0.408 −0.251 0.659

(continued)
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factors had positive effects on landslide occurrence in the
study area. In addition, the highest positive coefficient of
1.796 was found for the landuse factor, and then, the TRI
and altitude factors were found to have high coefficients
compared with the remaining factors. The estimated coeffi-
cients of the SVM model for TRI and altitude were 1.606
and 0.822, respectively. Among the factors that show neg-
ative effects, the distance to the road had the lowest coeffi-
cient value (−1.881), as estimated by the SVM method.

Figure 11.8 presents the OOB predictions of the RF
model, and Table 11.10 indicates the estimated coefficients.
In general, the OOB predictions indicate that when the
resulting model is applied to new observations (i.e., test
data), the answer will obtain an error of 20% of the time. On
the other hand, the error on the training dataset is *10% of
the time. The RF model computes the importance of the
factors and is represented in values ranging from 0 to 100.
The results show that the most important factor is landuse
(importance value = 100) and that the least important factor
is the vegetation density (importance value = 0.184).

A DT is a knowledge-based modeling approach that can
be used to establish relationships between a set of inde-
pendent variables (i.e., landslide conditioning factors) and a
dependent variable (i.e., landslide occurrence) in terms of
crisp rules. In the present study, the DT model is developed
using the same data in the SVM and RF models explained
earlier. Analyzing the estimated coefficients by the DT
method shows that the landuse is the most important factor;
its coefficient is equal to 1. The DT model is consistent with
the RF model on the less important factor; the estimated
coefficient of the vegetation density from the DT model is
0.033 (Fig. 11.9).

The calculated ROC-based accuracies, which are repre-
sented in success and prediction rates, indicated that the
SVM model has the highest prediction capability on both the
training and testing datasets (Fig. 11.10). The success and
the prediction rates of the SVM model are 0.83 and 0.77,
respectively. The success and the prediction rates of the DT
and RF models show that the DT model outperforms the RF
model. The estimated success rates of the DT and RF models
are 0.76 and 0.72, respectively. The prediction rates of the
two models are 0.73 and 0.71, respectively. The dataset of
the present study shows that the RF has more generalization
capability than the DT and SVM model.

11.7.6 Results of Expert-Based Models

Expert-based models such as AHP and fuzzy AHP were also
applied to produce the landslide susceptibility maps for the
study area. The same 10 landslide conditioning factors were
used in the modeling. However, the landslide inventory data
were not used, considering that these techniques were not
required because they depended on expert opinions. For
each factor, a specific weight was given by a number of
experts. Then, the geometric mean was applied to calculate
the final weights of the factors. In the present study, the
weights were gathered from the previous studies applied in
areas that have similar characteristics. Table 11.11 shows the
pairwise comparison matrix for the landslide conditioning
factors. The information is obtained from various researches
on AHP modeling for landslide susceptibility. The main
references are (Yalcin et al. 2011; Hasekioğulları and
Ercanoglu 2012; Pourghasemi et al. 2013a, b, c; Kayastha

Table 11.6 (continued)

Data layers Classes Pixels in classes Landslide pixels FR SI W+ W− Wf

Distance to Road 0–45 5,299,275 23 1.439 0.363 0.364 −0.406 0.770

46–100 3,504,632 11 0.862 0.039 0.040 −0.016 0.056

101–180 2,021,571 3 0.405 −0.710 −0.709 0.095 −0.805

181–280 882,963 0 0.000 0.000 0.000 0.000 0.000

281–480 557,059 0 0.000 0.000 0.000 0.000 0.000

Distance to lineament 0–54 3,195,812 12 1.245 0.219 0.219 −0.090 0.309

55–110 3,440,293 16 1.611 0.433 0.433 −0.237 0.670

111–160 2,857,921 6 0.717 −0.363 −0.362 0.088 −0.450

161–230 2,011,560 3 0.500 −0.705 −0.704 0.094 −0.799

231–360 759,914 0 0.000 0.000 0.000 0.000 0.000

Distance to Stream 0–17 3,748,358 8 0.708 −0.346 −0.346 0.121 −0.467

18–35 3,265,472 8 0.564 −0.208 −0.208 0.066 −0.274

36–56 2,619,826 9 0.488 0.130 0.130 −0.039 0.169

57–80 1,818,382 8 0.313 0.377 0.377 −0.083 0.461

81–140 813,462 4 0.108 0.488 0.489 −0.046 0.535
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et al. 2013; Park et al. 2013). The pairwise comparison
matrix is then used to calculate the weights of the factors and
to ensure the reliability of the model in which the incon-
sistency ratio is calculated. Table 11.12 shows the estimated

weights for the landslide conditioning factors, where the
inconsistency ratio is 9.7%. In addition, the fuzzy AHP
method is applied to evaluate the necessity of fuzzy inte-
gration on expert-based landslide susceptibility models.

(a)

(c)

(b)

Fig. 11.4 Landslide susceptibility maps produced by the bivariate methods: a WoE, b SI, and c FR
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Table 11.12 shows the estimated weights of fuzzy AHP
method, and the ranks are calculated based on the weights.

The AHP method showed that the most important factor
is the TRI (weight = 0.25, rank = 1), which the fuzzy AHP
also determined to be the most influential factor. In addition,
both models agreed that the slope and landuse were the
second and the third important factors contributing to the
landslide occurrence in the Cameron Highlands. The linear
regression analysis between the estimated weights of the
AHP and fuzzy AHP showed that the two models have a
correlation of 0.96 (Fig. 11.11). The difference between the
AHP and fuzzy AHP was found in the calculation of ranks
of altitude, slope aspect, and distance to stream. Further-
more, both models agreed that the least important factor is
the distance to the road, whose estimated weights were 0.024
and 0.027, respectively (Fig. 11.12)

Figure 11.13 shows the calculated success and the pre-
diction rates from the ROC curves for the AHP and fuzzy
AHP models. The results showed that the incorporation of

fuzzy concept in the expert-based modeling of landslide
susceptibility does not significantly increase the success rate.
In addition, the prediction rate of the traditional AHP was
found to be higher than the fuzzy AHP method. The esti-
mated prediction rates of the AHP and fuzzy AHP were 0.71
and 0.67, respectively.

11.7.7 Result of Hybrid Models

To improve the prediction rate of the landslide susceptibility
models, recent studies have suggested combining two or
more models in an integrated or hybrid model (Gorsevski
and Jankowski 2010; Althuwaynee et al. 2016; Aghdam
et al. 2016). Three hybrid models are developed and eval-
uated in the present study. The models are FR–SVM, FR–
LR, and WoE–RF. Table 11.13 shows the estimated weights
of the landslide conditioning factors obtained by the hybrid
models. The three models disagreed on the influence of the
factors related to landslide occurrence in Cameron High-
lands. For example, the factors with negative relationships
with landslide occurrence in the FR–SVM model are slope,
distance to road, and distance to lineament. On the other
hand, these factors were found to have positive effects on
landslide occurrence by the FR–LR and WoE–RF models.
In addition, the FR–SVM showed that landuse has the
highest positive effect on landslide occurrence, whereas the
distance to road and altitude were found to have the highest
coefficient values in the FR–LR and WoE–RF models,
respectively (Fig. 11.14).

The ROC accuracies of the hybrid models are shown in
Fig. 11.15. The highest success and prediction rates were
achieved by FR–LR model. Similarly, the FR–SVM model
outperformed the WoE–RF model both in success and in
prediction rates. The success rates of the FR–LR, FR–SVM,
and WoE–RF were 0.84, 0.76, and 0.68, respectively. On the
other hand, the prediction rates of the three models were
0.83, 0.75, and 0.65, respectively. Differences in the success
and prediction rates of the FR–LR and FR–SVM models
indicated that these models could more ably generalize
findings than the WoE–RF model; however, this finding
requires further study. In addition, the OOB predictions of
the WoE–RF model showed that when the resulting model is
applied to new observations, an error occurs 23% of the time
(Fig. 11.16).

11.7.8 Landslide Density Graphs

Landslide density graphs, which are useful for assessing the
validity of landslide susceptibility maps with the existing
slope instability conditions, show the landslide percentage
that occurred in landslide susceptibility classes. For the

Fig. 11.5 Success and prediction rates of bivariate methods

Table 11.7 Estimated coefficients of landslide conditioning factors by
the PLS method

Factor Coefficients Standardized coefficients

Slope 0.0053 0.1587

Curvature 0.0020 0.0768

Aspect −0.0006 −0.1225

Distance to lineament −0.0011 −0.1611

Distance to road −0.0015 −0.2446

Distance to stream 0.0023 0.1269

Vegetation density 0.0260 0.0428

Landuse 0.0568 0.2620

Altitude 0.0001 0.0217

TRI 0.0076 0.2211
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bivariate models, the WoE model showed that *75% of the
landslides occur at a very high susceptibility class, whereas
the FR and SI models showed lower percentages of 63 and
70%, respectively (Fig. 11.17). The percentage of landslide

occurrence in the very high susceptibility zone is remarkably
higher than other zones in all bivariate models, indicating the
validity of the produced susceptibility maps with the existing
landslide inventory map.

Fig. 11.6 Landslide susceptibility maps produced by the multivariate methods: a PLS, b DA, and c LR
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In addition, Fig. 11.18 shows that the landslide density
values of very high susceptibility zone in maps produced by
multivariate statistical approaches vary from one model to
another. In the LR model, the percentage value of the very
high susceptibility class was *62%, whereas the percentage
value in the PLS and DA models were 77 and 28%,
respectively. These values indicate that LR and PLS models
are much more valid than the DA model with the existing

landslide inventory map. This also suggests the use of LR
and PLS models for producing landslide susceptibility maps
for landuse planning.

In landslide susceptibility maps produced by data mining
models, the landslide percentages in the very high suscep-
tibility zone were 77, 50, and 71% for the SVM, RF, and DT
models, respectively (Fig. 11.19). In addition, the SVM, RF,
and DT models had significantly higher landslide percent-
ages in the high susceptibility zone than the other zones,
corresponding to 14, 27, and 20%, respectively. As a result,
the SVM model can produce a better landslide susceptibility
map for the landuse planning because of the validity of the
map relative to existing field conditions.

The analysis of landslide susceptibility maps produced by
expert-based models demonstrated that landslide percentage
in the very high susceptibility zone in the AHP (68%) was
higher than that of the fuzzy AHP (63%) (Fig. 11.20).
Similarly, the landslide percentage of the AHP model in the
high susceptibility zone was 23%, which was slightly higher
than that of fuzzy AHP model.

Figure 11.21 shows the landslide percentages in the
landslide susceptibility zones in maps produced by hybrid
models. The graph shows that the FR–SVM and FR–LR
models are more valid than the WoE–RF model with the

Table 11.8 Estimated
discriminant function for
landslide and non-landslide
samples by the DA method

Factor Discriminant function for groups

Landslides Non-landslides

Slope −0.91 −0.94

Curvature −0.55 −0.54

Aspect 0.01 0

Distance to lineament −0.02 −0.03

Distance to road −0.28 −0.31

Distance to stream −0.47 −0.45

Vegetation density 4.46 4.55

Landuse −0.93 −0.79

Altitude 0.55 0.55

TRI 0.73 0.87

Table 11.9 Estimated regression
coefficients and odds ratios for
landslide conditioning factors by
the LR method

Factor Coefficients Standardized coefficients Odds ratio 95% CI

Slope −0.0524 0.0573 0.9489 (0.8482,1.0616)

Curvature −0.0252 0.0295 0.9751 (0.9204,1.0332)

Aspect −0.0069 0.0050 0.9931 (0.9833,1.0029)

Distance to lineament −0.0145 0.0080 0.9855 (0.9701,1.0012)

Distance to road −0.0546 0.0178 0.9469 (0.9144,0.9805)

Distance to stream 0.0226 0.0174 1.0229 (0.9886,1.0583)

Vegetation density −0.002 0.626 0.9979 (0.2924,3.4060)

Landuse 0.059 0.23 1.0608 (0.6761,1.6645)

Altitude 0.0144 0.0085 1.0145 (0.9977,1.0316)

TRI 0.1757 0.0672 1.1921 (1.0451,1.3598)

Fig. 11.7 Success and prediction rates of the multivariate methods
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existing landslide inventory map. This result occurred
because the landslide percentages in the very high suscep-
tibility zone were 79, 76, and 47% for the FR–SVM, FR–
LR, and WoE–RF models, respectively. In addition, the
landslide percentage in the high susceptibility zone using the
WoE–RF model was 35%, which was almost twice that of
the other two models.

11.7.9 Sensitivity of the Models

High-quality data are not always available, and their acqui-
sition is expensive for small-scale projects. Therefore,
evaluating model sensitivities with respect to the number of
landslide conditioning factors is important. Four sets of data
were evaluated; the first set included three factors: altitude,
slope, and curvature. The second dataset included 50% of
the available data (i.e., altitude, slope, curvature, TRI, and

aspect). The third dataset included all factors except vege-
tation density, whereas the fourth dataset comprised of all
the factors. The datasets were evaluated based on the success
and prediction rates estimated from the ROC curves.

Table 11.14 shows the results of the model sensitivity
evaluation using the success rate metric. When only three
factors (i.e., altitude, slope, curvature) were included in the
models, the best success rate was achieved by the FR model
(0.88), which belongs to the bivariate category. In addition,
success rates of 0.85 and 0.72 were achieved by the WoE
and SI models, respectively, which were higher than the
values achieved by other models in other categories. In the
multivariate category, all models performed similarly; the
highest success rate of 0.62 was achieved by the PLS
method. The AHP model outperformed the fuzzy AHP
model by 2%. In the data mining category, the best model
was the RF model, which had a success rate of 0.63. Fur-
thermore, the evaluation of hybrid models showed that the
combination of the FR and LR models can result in a higher
success rate than other combinations. The success rate of the
FR–LR model was 0.64, whereas the success rates of the
FR–SVM and WoE–RF models were 0.57 and 0.58,
respectively.

When 50% of the landslides were used as training data
for the models, the accuracy evaluation showed a different
result compared to when only three factors were used. The
best model according to the success rate (0.81) was the WoE
model. In addition, the FR and SI models, with success rates
of 0.79 and 0.74, respectively, achieved higher success rates
than other models in other categories. Among the multi-
variate models, the best model was the PLS model, with a
success rate of 0.68. In addition, the LR model performed
slightly better than the DA model. Among the expert-based
methods, the fuzzy AHP achieved a success rate of 0.67,
which was higher than AHP by 1%. On the other hand, the
best model among data mining approaches was found to be
the RF model, with a success rate of 0.70. The success rates
of the SVM and DT models were 0.61 and 0.56,

Table 11.10 Estimated
coefficients of landslide
conditioning factors by the SVM,
RF, and DT method

Factor Coefficients

SVM RF DT

Slope 0.624 0.571 0.467

Curvature 0.548 0.407 0.152

Aspect −0.672 0.632 0.363

Distance to lineament −0.867 0.415 0.389

Distance to road −1.881 0.760 0.636

Distance to stream 0.811 0.612 0.377

Vegetation density 0.263 0.184 0.033

Landuse 1.796 1.000 1.000

Altitude 0.822 0.668 0.423

TRI 1.606 0.702 0.467

Fig. 11.8 OOB predictions of the RF model
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respectively. The assessment of the hybrid models showed
that the best model was the WoE–RF model, which had a
success rate of 0.69. The success rates of the FR–SVM and
FR–LR models were 0.58 and 0.67, respectively.

The same set of models was also evaluated using eight
landslide conditioning factors where the vegetation density

factor was excluded. The sensitivity evaluation showed that
the best model based on success rate was the WoE model
(0.89). The FR and SI models also achieved success rates
higher than *0.80. The multivariate models, including LR,
DA, and PLS, achieved success rates of 0.75, 0.64, and 0.71,
respectively, indicating that the LR model could outperform

Fig. 11.9 Landslide susceptibility maps produced by the data mining methods: a SVM, b RF, and c DT
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Fig. 11.10 Success and prediction rates of the data mining methods

Table 11.11 Pairwise comparison matrix using in the AHP method

Altitude Slope Aspect Curvature Vegetation
density

Distance to
lineament

Distance
to road

Distance
to stream

TRI Landuse

Altitude 1

Slope 4.00 1

Aspect 0.25 0.25 1

Curvature 1.00 0.25 0.25 1

Vegetation
density

0.50 0.11 0.25 2.00 1

Distance to
lineament

0.25 0.25 0.33 0.25 0.25 1

Distance to
road

0.25 0.17 0.20 0.33 0.33 1.00 1

Distance to
stream

2.00 0.33 1.00 4.00 3.00 3.00 2.00 1

TRI 4.00 1.00 4.00 9.00 9.00 4.00 6.00 3.00 1

Landuse 2.00 0.33 4.00 3.00 3.00 5.00 4.00 2.00 0.33 1

Inconsistency ratio = 9.7%

Table 11.12 Estimated
coefficients for the landslide
conditioning factors by the AHP
and fuzzy AHP methods

Factor AHP priority AHP rank FAHP priority FAHP rank

Altitude 0.085 5 0.107 4

Slope 0.231 2 0.189 2

Aspect 0.079 6 0.093 5

Curvature 0.044 7 0.061 7

Vegetation density 0.044 8 0.056 8

Distance to lineament 0.026 9 0.029 9

Distance to road 0.024 10 0.027 10

Distance to stream 0.088 4 0.091 6

TRI 0.250 1 0.228 1

Landuse 0.128 3 0.114 3

Fig. 11.11 Linear regression between the estimated coefficients by the
AHP and fuzzy AHP methods
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the DA and PLS models. Among the expert-based models,
the AHP and fuzzy AHP models performed equally, with a
success rate of 0.72. Furthermore, the success rates of data
mining methods indicated that the RF outperformed the
SVM and DT methods. The SVM and DT models performed
almost similarly, with a success rate of *0.76. Among the
hybrid models, the best model was the WoE–RF model,

which achieved a success rate of 0.77. The FR–LR model
considerably outperformed the FR–SVM model by a 0.06
difference in success rate.

When vegetation density was included with other factors
in the modeling, the performance of the models changed
remarkably. The best model was the FR–LR hybrid model,
with a success rate of 0.83. Bivariate models performed
almost equally, with success rates of 0.66, 0.69, and 0.68
corresponding to the WoE, FR, and SI models, respectively.
Among the multivariate models, the LR model significantly
outperformed the DA and PLS models. The success rate of
the LR model was 0.77, whereas the DA and PLS models
had success rates of 0.33 and 0.65, respectively. The tradi-
tional AHP achieved a better success rate than the fuzzy
AHP; the difference in their success rates was 0.04. In
addition, the success rates of the SVM, RF, and DT models
were 0.77, 0.70, and 0.73, respectively, indicating that the
SVM model achieved a better success rate than the two other
data mining methods. A comparison of the hybrid models
showed that the FR–SVM model significantly (by 10% of
success rate) outperformed the WoE–RF model, while FR–
LR achieved the best success rate, as previously mentioned.

The sensitivity analysis based on success rates showed
that the bivariate models were strongly influenced by veg-
etation density. The average success rate of the three models
decreased by 11% when comparing the models developed
using only three factors with the models developed by

Fig. 11.12 Landslide susceptibility maps produced by the AHP a and fuzzy AHP b methods

Fig. 11.13 Success and prediction rates of the expert-based methods
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including all of the available factors. With respect to mul-
tivariate models, the success rate of LR model increased as
the number of included landslide conditioning factors
increased. The success rate of the LR model with three
factors was 0.54, and a success rate of 0.81 was achieved
when all factors were included. The DA and PLS models
showed an increase in performance by increasing the number
of factors from three to eight. In contrast, their performance
decreased when vegetation density was added as an addi-
tional independent variable. Among expert-based models, a
slight increment in performance was observed with respect
to different numbers of landslide conditioning factors used.
In general, the performance of both the AHP and fuzzy AHP
models were improved by adding additional factors when
the vegetation density was incorporated in the modeling. The
success rates of the SVM and DT models were increased by
increasing the number of landslide conditioning factors.
Consequently, their success rates improved by *20% when
the number of factors increased from three to 10. Meanwhile,
the RF model was affected by adding the vegetation density
to the model. In general, the success rate of hybrid models
improved as the number of factors increased. The success
rates of the FR–SVM and FR–LR models significantly
increased when 10 factors were used instead of three.
Although the success rate of the RF model improved by 20%
when the landslide factors increased from three to eight, the
success rate of the model decreased by 13% when vegetation
density was included in the model.

Table 11.15 shows the sensitivity of the models to
landslide factors based on the prediction rate metric. Using
three landslide factors (altitude, slope, and curvature), the
best model was the WoE model (0.78). Furthermore, among
the bivariate models, the FR model outperformed the SI
model by 13%. Among the multivariate models, the PLS
method, which achieved a prediction rate of 0.63, outper-
formed the LR and DA methods. Moreover, the LR model
performed better than the DA model, as observed through
their prediction rates of 0.57 and 0.44, respectively.

Expert-based models, including the AHP and fuzzy AHP
models, performed almost equally, with an average predic-
tion rate of 0.58. In the data mining category, the RF model
achieved the best prediction rate (0.67), while the SVM and
DT models achieved a prediction rate of 0.46 and 0.52,
respectively. Furthermore, among the hybrid models, the
best model was found to be FR–LR model with a prediction
rate of 0.63. The FR–SVM and WoE–RF models achieved
prediction rates of 0.52 and 0.57, respectively.

Furthermore, using 50% of the landslide factors showed a
different performance compared to using only three. Among
the bivariate models, the FR and SImethods performed almost
equally (*0.67), whereas the WoE model achieved the best
prediction rate (0.77). On the other hand, the PLS model
achieved a better performance than the other two multivariate
methods. The prediction rates of the PLS, LR, and DA
methods were 0.70, 0.62, and 0.55, respectively. The fuzzy
AHP model, as an expert-based method, outperformed the
traditional AHP technique by a 0.05 prediction rate. Further-
more, the RF (0.69) and SVM (0.56) data mining methods
achieved higher prediction rates than the DT approach (0.53).
Moreover, hybrid models performed differently, and the best
model was found to be theWoE–RFmode, which a prediction
rate of 0.70. The prediction rates of the FR–SVM and FR–LR
methods were 0.53 and 0.67, respectively.

When 80% of the factors were used to develop the
landslide susceptibility models, the WoE method achieved
the best prediction rate, 0.82. Within the bivariate category,
the SI model performed better than the FR model. On the
other hand, the LR achieved a better prediction rate than the
PLS and DA multivariate methods. The prediction rates of
the LR, PLS, and DA methods were 0.73, 0.67, and 0.57,
respectively. Moreover, the fuzzy AHP outperformed the
traditional AHP by 3%, observing a similar result with that
when 50% of the factors were used. In the data mining
category, the best model was the RF model, which achieved
a prediction rate of 0.80; the prediction rates of the SVM and
DT models were 0.71 and 0.73, respectively.

Table 11.13 Estimated factor
coefficients by the hybrid models

Factor Coefficients

FR-SVM FR-LR WoE-RF

Slope 0.625 0.052 0.576

Curvature 0.548 0.025 0.167

Aspect −0.673 0.007 0.426

Distance to lineament −0.868 0.014 0.407

Distance to road −1.881 0.054 0.714

Distance to Stream 0.812 −0.022 0.513

Vegetation density 0.264 0.002 0.279

Landuse 1.796 −0.059 0.795

Altitude 0.822 −0.014 1

TRI 1.606 −0.175 0.703
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Fig. 11.14 Landslide susceptibility maps produced by the hybrid methods
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Including all available landslide conditioning factors in
the models, the accuracy assessment showed that the best
model was the FR–LR hybrid model, with a prediction rate
of 0.83. The prediction capability of bivariate models was
reduced by *9% after incorporating vegetation density in
the models. Among the multivariate methods, the highest
prediction rate (0.77) was achieved by the LR model.
The DA method achieved the lowest prediction rate (0.33)
among all other models. Furthermore, including vegetation
density into the expert-based models yielded an improved
performance of the traditional AHP method but reduced the
prediction rate of the fuzzy AHP model by 6%. The SVM
model, which achieved a prediction rate of 0.77, performed
better than the RF and DT models. The RF and DT methods
performed almost equally, and their average prediction rate

was 0.72. As with the hybrid models, the FR–SVM and FR–
LR models achieved higher prediction rates than the WoE–
RF method.

The sensitivity analysis based on the number of landslide
factors and prediction rate showed that bivariate models
were significantly affected when all factors were included in
the models. The WoE model was strongly affected by the
incorporation of vegetation density, whereas the FR method
was less affected, such that its prediction rate was reduced by
only 1%. Increasing the number of factors included in the
model improved the prediction rate of the LR model,
whereas the best prediction rate of PLS method was found to
be 0.70 when 50% of the factors were included in the model.
The highest prediction rate of the DA (0.57) was achieved
when 80% of the landslide conditioning factors were
included in the model. Expert-based models were less
affected by increasing the number of factors. The perfor-
mance of the AHP model increased due to the increase in the
number of factors and the incorporation of vegetation den-
sity, whereas the prediction capability of the fuzzy AHP
decreased by 6%. The prediction rates of the data mining
methods were improved by increasing the number of land-
slide factors; however, the RF model was affected by
including the vegetation density factor into the model.
Similarly, the hybrid models showed an increase in their
prediction capability when the number of landslide factors
increased. The WoE–RF model was affected by a more than
10% prediction rate when the vegetation density was
considered.

11.7.10 Spatial Agreements of the Models

Despite using the same landslide susceptibility model with
an identical prediction rate, the spatial agreement of the
produced classification maps was often inconsistent, and
their spatial patterns were considerably different. Therefore,
analyzing the spatial agreements between the developed
models in a specific category and between categories is
important. Spatial agreements were analyzed by using the
Spearman correlations where nonlinear relationships were
examined. Table 11.16 shows the Spearman correlations
calculated for the developed models that included all factors.
Perfect spatial agreements (1.00) are highlighted in white
color, high agreements (>0.80) in blue color, and red and
yellow colors indicate the moderate (0.50–0.79) and low
(<0.50) spatial agreements, respectively, between the
models.

The Spearman correlations show near perfect spatial
agreement between the SVM and FR–SVM models. Spatial
agreements between the maps produced by the bivariate
models showed high agreements, and the lowest Spearman
correlation of 0.74 was found between the FR and SI

Fig. 11.15 Success and prediction rates of the hybrid models

Fig. 11.16 OOB predictions of the RF WoE-RF model
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models. On the other hand, among multivariate models, a
negative correlation (i.e., disagreement) of −0.27 was found
between the LR and PLS models. In addition, a low spatial
agreement of 0.24 was observed between the LR and DA
models. Among maps produced by expert-based methods, a
very high spatial agreement (0.97) was found between the
AHP and fuzzy AHP models. The spatial patterns in land-
slide susceptibility maps produced by the data mining
approaches varied from one model to another. In general, a
high agreement was found between the DT and RF models
(0.93); however, the SVM model showed a low agreement

between the DT and the RF models (0.37 and 0.27,
respectively). Furthermore, hybrid models showed high
spatial agreements between the FR–LR and FR–SVM
models (0.77), whereas the agreement between the WoE–RF
and other models was all less than 0.50.

The spatial agreements between the bivariate models and
other categories showed moderate agreement (*0.60). The
agreements of the WoE and SI models were higher than the
agreements between the FR model and other models. The
highest correlations were found between the bivariate and
hybrid models. In addition, correlations between bivariate

Fig. 11.17 Landslide density
graph of the bivariate methods

Fig. 11.18 Landslide density
graph of the multivariate methods
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and the SVM models were moderate (0.42–0.64); however,
lower correlations (0.11–0.42) were observed when they
were compared with RF and DT models.

On the other hand, Spearman correlations showed that the
spatial agreements between the multivariate methods and the
bivariate techniques ranged from low to moderate. The
lowest agreement (−0.06) was found between the DA and FR
models, whereas the highest agreement was observed
between the PLS and SI methods (0.63). Furthermore, low
correlations were found between multivariate and
expert-based models, which indicated low spatial agreements
and patterns in landslide susceptibility maps produced by
these methods. In general, low spatial agreements were found

between multivariate and data mining models, except for
those of the PLS and SVM models, whose correlation value
was 0.96. Furthermore, low to very high spatial agreements
were observed between the multivariate and hybrid tech-
niques. The lowest agreement (−0.01) was found between the
DA and WoE–RF models, whereas the highest agreement
(0.96) belonged to the PLS and FR–SVM models.

Furthermore, the expert-based models had high to very
high spatial agreements with the RF and DT data mining
approaches. However, they showed lower agreement when
compared with the SVM model. In addition, the AHP and
fuzzy AHP models showed good spatial agreements with
the hybrid models; the highest correlation was found to be

Fig. 11.19 Landslide density
graph of the data mining methods

Fig. 11.20 Landslide density
graph of the AHP and fuzzy AHP
methods
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0.86 for the fuzzy AHP and WoE–RF models. Moreover,
the Spearman correlations showed low to very high spatial
agreements between the data mining methods, which
included the SVM, DT and RF, and hybrid models.
The DT and RF models had a correlation of 0.89 and
0.94, respectively, with the WoE–RF model. The SVM

and WoE–RF models had a low correlation (0.26), indi-
cating fewer agreements on spatial patterns of landslide
susceptibility zones. In contrast, the spatial agreements
between the SVM and FR–LR and FR-SVM models were
0.77 and 1.00, respectively. Other details are listed in
Table 11.16.

Fig. 11.21 Landslide density
graph of the hybrid methods

Table 11.14 Success rates of various models using different subsets of landslide conditioning factors

Category Method Percent of factors

30% 50% 80% 100%

Altitude
slope
curvature

Altitude
slope
curvature
TRI aspect

Altitude slope curvature aspect
distance to road distance to stream
distance to lineament landuse

Altitude slope curvature aspect distance to
road distance to stream distance to
lineament landuse vegetation density

Bivariate WoE 0.85 0.81 0.89 0.68

FR 0.88 0.79 0.80 0.70

SI 0.72 0.74 0.83 0.68

Multivariate LR 0.54 0.63 0.75 0.81

DA 0.57 0.61 0.64 0.42

PLS 0.62 0.68 0.71 0.71

Expert-based AHP 0.63 0.66 0.72 0.70

FAHP 0.61 0.67 0.72 0.69

Data mining SVM 0.49 0.61 0.76 0.83

RF 0.63 0.70 0.8 0.72

DT 0.54 0.56 0.77 0.76

Hybrid FR–
SVM

0.57 0.58 0.65 0.76

FR–LR 0.64 0.67 0.71 0.84

WoE–
RF

0.58 0.69 0.77 0.68

Success rates
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11.7.11 Discussion and Model Comparison

The complex nature of landslide mechanisms and the diffi-
culty of forecasting triggering factors make landslide pre-
diction and risk assessment challenging. Several factors
affecting the spatial distribution of landslides include human
activities, material properties, and geological and geomor-
phological conditions. Several attempts were made to
improve our understanding of how machine learning-based
approaches can predict spatial distribution of landslides in an
area; however, no agreements have been made on which
algorithm should be used. Therefore, the main objective of
the current work was to evaluate the performance and the
sensitivity of several commonly used landslide susceptibility
models. The models were grouped into five categories,
including bivariate and multivariate statistical, expert-based,
data mining, and hybrid methods. The models were run on 37
landslide inventories and 10 landslide conditioning factors.
The models were evaluated based on a dataset collected over
the Cameron Highlands, which is located in the northern part
of Peninsular Malaysia and is highly prone to landslides.

Factor analysis showed that the NDVI and vegetation
density are highly correlated with the remaining factors. After
analyzing the VIF values of these factors, the NDVI factor
was removed from further analysis because it had a VIF that
exceeded the selected threshold (4.00). On the other hand,
results of factor optimization indicated that landuse, altitude,

slope, and distance to the road were the most important
factors, whereas NDVI and vegetation density were found to
be statistically nonsignificant. The logical explanations of
these findings are as follows. Human activities and changes
in environmental conditions affect the landuse and, as a
result, can affect landslide activity. Deforestation, forest
logging, road construction, and cultivation on steep slopes
are the main activities that affect landslide activity in the
focused area. However, in most landslide studies as well as
the current study, landuse is used as a static factor extracted
from a single date satellite image. In addition, landslides may
occur on the road and on the side of slopes affected by the
road. Roads constructed beside steep slopes decrease the load
on both the topography and the heel of the slope. The changes
in topography increase the stress on the back of the slope. In
several works, the distance to the road is considered as an
unimportant factor (Yalcin 2008). This consideration results
from the design of roads determining whether the road will be
a contributing factor. A drop-down road section may behave
like a wall, a net source, a net sink, or a corridor for water
flow (Yalcin 2008). Furthermore, the altitude was found to
have a positive effect on landslide proneness (Pachauri and
Pant 1992). Higher altitudes are often underlain by resistant
lithological units and rainfall.

On the other hand, the effects of vegetation density on
landslide occurrence may be classified as hydrological or
mechanical. The hydrological factors include the loss of

Table 11.15 Prediction rates of various models developed by different landslide factor subsets

Category Method Percent of factors

30% 50% 80% 100%

Altitude
slope
curvature

Altitude
slope
curvature
TRI aspect

Altitude slope curvature aspect
distance to road distance to stream
distance to lineament landuse

Altitude slope curvature aspect distance to
road distance to stream distance to
lineament landuse vegetation density

Bivariate WoE 0.78 0.77 0.82 0.66

FR 0.71 0.68 0.70 0.69

SI 0.58 0.67 0.77 0.68

Multivariate LR 0.57 0.62 0.73 0.77

DA 0.44 0.55 0.57 0.33

PLS 0.63 0.70 0.67 0.65

Expert-based AHP 0.59 0.61 0.70 0.71

FAHP 0.58 0.66 0.73 0.67

Data mining SVM 0.46 0.56 0.71 0.77

RF 0.67 0.69 0.80 0.71

DT 0.52 0.53 0.73 0.73

Hybrid FR–
SVM

0.52 0.53 0.59 0.75

FR–LR 0.63 0.67 0.71 0.83

WoE–
RF

0.57 0.70 0.78 0.65
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precipitation by interception, the removal of soil moisture by
evapotranspiration, and the effects of hydraulic conductivity
(Ercanoglu et al. 2004). The mechanical factors comprise the
reinforcement of soil by roots, surcharge, wind-loading, and
surface protection (Ercanoglu et al. 2004). However, the
vegetation density was found to be nonsignificant in the
current study. This result occurred because the training
landslides were mostly located in other landuse classes.
Moreover, the study area was mostly covered by dense
vegetation where non-landslide samples were generated
randomly. Therefore, selecting non-landslide samples should
be done meticulously to improve the factor optimization in
landslide susceptibility assessments. We suggest that
non-landslide samples be selected by distributing spatially
balanced points using landuse layers in the random process.

The accuracy of the bivariate models was almost similar
both in terms of success and prediction rates. This result
occurred because they work under the same concept of
statistically comparing the landslide conditioning factors
with the landslide inventory map. These methods are sen-
sitive to the reclassification of landslide conditioning factors
and the spatial distribution of landslide inventories in the
study area. However, little difference was observed between
their success and prediction rates, indicating a good gener-
alization ability of the models. Models with good

generalization ability are essential to producing susceptibil-
ity maps that are appropriate for the landslide inventory map
and the field conditions. In addition, bivariate models agreed
strongly on the spatial distribution of landslide susceptibility
classes. On the other hand, their sensitivity analysis showed
that the accuracy of the FR model is less affected by
selecting different subsets of landslide factors. The predic-
tion capability of these models was found to be affected by
reducing the number of landslide conditioning factors, and
they performed best when 80% of the factors were included
in the model (Table 11.17). Including less important factors
such as vegetation density into the bivariate models reduced
their success and prediction rates. Thus, factor optimization
is an important step to improving the accuracy of bivariate
models.

In contrast, multivariate models were found to have dif-
ferent success and prediction rates, and the best model was
the LR model. Increasing the number of landslide factors
improved the accuracy of these models; however, including
the vegetation density as an additional factor in the model
reduced their performance. They had low spatial agreements
with many other models, but a very high agreement was
found between the PLS and WoE–RF models. On the other
hand, expert-based models showed a good performance even
with fewer landslide conditioning factors. In addition, a

Table 11.16 Calculated Spearman correlations among developed models

WoE–RF SVM DA DT FAHP FR–LR FR–SVM FR PLS LR SI AHP RF 

WoE 0.39 0.63 −0.01 0.39 0.58 0.62 0.63 0.63 0.96 0.62 0.39 

WoE–RF 1.00 0.26 −0.01 0.89 0.86 0.43 0.26 0.20 0.42 0.82 0.94 

SVM 0.26 1.00 −0.29 0.37 0.36 0.77 1.00 0.96 0.64 0.41 0.27 

DA −0.01 1.00 0.03 −0.11 −0.29 0.02 

DT 0.89 0.37 −0.21 1.00 0.77 0.48 0.37 0.32 0.43 0.75 0.93 

FAHP 0.86 0.36 0.03 0.77 1.00 0.57 0.36 0.34 0.58 0.97 0.85 

FR–LR 0.43 0.77 −0.11 0.48 0.57 1.00 0.77 0.75 0.62 0.61 0.42 

FR–SVM 0.26 1.00 −0.29 0.37 0.36 0.77 1.00 0.96 0.64 0.41 0.27 

FR 0.15 0.42 0.11 0.11 0.40 0.47 0.42 0.44 0.74 0.44 0.15 

PLS 0.20 0.96 −0.27 0.32 0.34 0.75 0.96 1.00 0.63 0.40 0.22 

LR 0.45 0.57 0.24 0.52 0.49 0.51 0.57 0.57 0.53 0.50 0.47 

SI 0.42 0.64 −0.06 0.43 0.58 0.62 0.64 0.63 1.00 0.62 0.42 

AHP 0.82 0.41 0.02 0.75 0.97 0.61 0.41 0.40 0.62 1.00 0.81 

RF 0.94 0.27 −0.10 0.93 0.85 0.42 0.27 0.22 0.42 0.81 1.00 

−0.29 −0.21 

0.77 

0.15 

0.42 

0.11 

0.11 

0.47 

0.42 

1.00 

0.44 

0.34 

0.74

0.44

0.15

0.40 

−0.27 −0.06 

0.52 

0.45 

0.57 

0.24 

0.52

0.49 

0.51 

0.57 

0.34 

0.57 

1.00 

0.53 

0.50 

0.47 

−0.10 
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small difference was observed between their success and
prediction rates in increasing the usability of these models
for producing a landslide susceptibility map that is effective
for landuse planning in environments with scarce landuse
inventories. Moreover, they had a high spatial agreement
among each other as well as with the models from the data
mining and hybrid approaches.

Among data mining approaches, the SVM model out-
performed both the DT and RF models in terms of success
and prediction rates. The accuracy of the RF model showed
that the SVM and DT methods had a lower generalization
ability than the RF model. Data mining models also had a
high spatial agreement with other models in different cate-
gories. On the other hand, the sensitivity analysis of these
models revealed that using a higher number of landslide
conditioning factors can improve accuracy even when the
vegetation density factor is included. Furthermore, hybrid
models, especially the FR–LR model, showed high success
and prediction rates. Their sensitivity analysis indicated that
increasing the number of landslide factors could improve
their success and prediction rates. In general, they showed a
high spatial agreement with the other models evaluated in
the current study.

While each regression model has its own advantages and
disadvantages, our findings demonstrated the different pre-
diction capabilities of the developed models as well as dif-
ferent sensitivities to input data. However, having a
guideline in selecting models for rapid landslide suscepti-
bility assessments is important for emergency cases where
models cannot be selective based on thorough evaluations.
The most important factor for model selection is the validity
of the model with the existing inventory map and field
conditions. This procedure makes the use of landslide sus-
ceptibility maps effective for decision making and landuse
planners. Other factors that need to be considered are the

prediction rate and sensitivity of the model. Accounting for
these factors, the best model among the ones developed in
the current study is the FR–LR hybrid model. This model
could produce a landslide susceptibility map in more than
75% of the landslide inventories located in the very high
susceptible class (Fig. 11.22). In addition, it achieved the
best prediction rate of 0.83 when all factors were included,
and it achieved a prediction rate of 0.63 when only altitude,
slope, and curvature were considered. Moreover, the FR–LR
model had a systematic sensitivity to the number of landslide
factors, where its prediction rate increased by increasing the
number of factors. Several studies have likewise found that
the hybrid models can achieve better accuracy than single
models. Sangchini et al. (2016) reported that the hybrid
bivariate AHP models achieved better accuracy than the LR
model. Wang et al. (2016) showed that the LR model could
achieve more accurate results than bivariate models and
artificial neural networks. Meng et al. (2015) indicated that
hybrid models produce subjectivity and more accurate
results than single models. Furthermore, Youssef et al.
(2015) reported a similar prediction rate of the FR–LR
model (0.83), and their comparison indicated the superior
effectiveness of the hybrid FR–LR model over single
bivariate models. Thus, the results of the present study and
most of the published studies suggest paying more attention
to hybrid models to compensate for the shortcomings of
single models.

11.8 Conclusion

Landslide susceptibility assessment methods have pro-
gressed significantly in the last decade; however, the per-
formance and sensitivity of these models are not well
understood, thereby making the model selection a challenge.

Table 11.17 Average success
and prediction rates of the
bivariate, multivariate,
expert-based, data mining, and
hybrid models with different
landslide factor subsets

Accuracy Category Percent of factors

30% 50% 80% 100%

Success rate Bivariate 0.82 0.78 0.84 0.69

Multivariate 0.58 0.64 0.70 0.65

Expert-based 0.62 0.67 0.72 0.70

Data mining 0.55 0.62 0.78 0.77

Hybrid 0.60 0.65 0.71 0.76

Prediction rate Bivariate 0.69 0.71 0.76 0.68

Multivariate 0.55 0.62 0.66 0.58

Expert-based 0.59 0.64 0.72 0.69

Data mining 0.55 0.59 0.75 0.74

Hybrid 0.57 0.63 0.69 0.74
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This study contributed comprehensive assessments of the
accuracy and sensitivity of 14 landslide susceptibility mod-
els with the aim of selecting a model that (1) can accurately
predict the spatial distribution of landslide inventories, (2) is
valid with the existing inventory map, and (3) is not
excessively sensitive to input data. The analysis showed that
the best model corresponds to the hybrid FR–LR model,
which had a prediction accuracy of 0.83 when using 10
factors and 0.63 when using only three factors. Landslide
density graphs showed the robustness of this model in pre-
dicting landslide inventories in the very high susceptible
class. It could predict *77% of the landslides in the very
high susceptible class of the landslide susceptibility
map. Other advantages of this model are its ease of use, high
spatial agreements with several other models, and its logical
representation of the spatial distribution of landslides. This
study suggests that future works should pay more attention
to hybrid models, study their sensitivity and reusability in
more detail, and aim to optimize such models for better
spatial predictions of landslides.
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12Slope Vulnerability and Risk Assessment Using
High-Resolution Airborne Laser Scanning Data

Biswajeet Pradhan and Norbazlan Mohd Yusof

12.1 Introduction

Natural hazards, such as landslides, earthquakes, and floods,
result in considerable losses of lives and properties (Calil
et al. 2015; Tierney et al. 2001). Natural disasters are in fact
the main cause of irrecoverable damages worldwide
(Varoonchotikul 2003). In different regions worldwide,
landslides pose a threat to infrastructure especially in the
transportation sector. Many studies have agreed that the
transportation sector is probably the most affected sector
during and after landslides because it loses billions of dollars
annually as a result of such natural disaster (Jaiswal et al.
2010, 2011).

Consequently, numerous tools have been developed over
the years to address the effects of natural hazards. Geo-
graphic information systems (GIS) are known as a powerful
set of tools that facilitate the gathering, storing, retrieval,
analysis, and exhibition of spatial information (Opolot
2013). Remote sensing (RS) is commonly described as a
technique for obtaining information about the earth’s surface
without physical interaction (Joshi et al. 2004). The effi-
ciency of RS and GIS has revolutionized natural hazard
management by fulfilling all the requirements at each stage
(Dou et al. 2015). Currently, light detection and ranging
(LiDAR) data are used by researchers in most landslide
hazard and risk mapping studies (Kobal et al. 2015). The
accessibility of very high-resolution digital elevation models
(DEMs), obtained by high-resolution LiDAR sensors, makes
it possible for researchers to recognize and map slope fail-
ures. Moreover, various conditioning factors can be extrac-
ted from high-resolution DEMs for susceptibility and hazard
mapping. The use of accurate and optimized conditioning
factors has a direct effect on the final maps. A significant
advantage of LiDAR lies in its capability to penetrate

vegetation areas and acquire valuable information on topo-
graphic conditions.

Regarding the disadvantages of LiDAR, the cost of
LiDAR data acquisition and data processing is extremely
high. Another disadvantage of LiDAR data is its poor
morphological quality; sharp linear features such as building
boundaries cannot be captured. The consequence is that it is
hard to get high-accuracy building models only from LiDAR
data if its point density is not high. Moreover, algorithms for
segmentation of LiDAR data are application-dependent.
Meaning that there is no fixed algorithm that can be pre-set
to apply to all kinds of LiDAR data under any circum-
stances. Large non-ground objects are common in LiDAR
sets so that a large window size is needed in order to cor-
rectly eliminate non-ground objects. Simultaneously, a lar-
ger window will create a smoother result. Usually, this will
eliminate fine objects and change the topography dramati-
cally. This will make it very complex and difficult, even
impossible, to recover the topography (Ma 2004).

Landslide management typically comprises several of
stages: prediction, prevention, and damage assessment (Dai
et al. 2002). The spatial prediction of landslides is important
for urban planning because its results assist the public and
emergency departments in making early preparations for the
occurrence of landslides. Landslide-prone areas can be iden-
tified through a susceptibility analysis; in this way, early
warning and emergency response can be performed to facili-
tate early preparations and decrease disaster effects (Kia et al.
2012). Landslide susceptibility mapping, using digital spatial
information, has been studied extensively since the early
1980s (Van Westen et al. 2008). Most susceptibility mapping
techniques in landslide studies are based on the statement,
“The past is key to the future,”which indicates the potential of
using previous landslide records in predicting future land-
slides with consideration of certain conditioning factors.

A hazard map can be used as a main guide for infras-
tructure development and urban management at a specific
time and location (Crozier and Glade 2006). Spatial and
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temporal probabilities are the two main components of
landslide hazard assessment. A landslide hazard is com-
monly defined as “the probability of occurrence within a
specified period of time and within a given area of a
potentially damaging phenomenon” (Althuwaynee et al.
2014a, b). This definition usually answers the question on
location, “where a landslide will occur,” and that on time,
“when and how frequent a landslide will occur.” In most
cases, researchers consider susceptibility maps as the only
component of hazard maps because of data scarcity (Chau
et al. 2004). Some researchers directly multiply the three
components of hazard probability (i.e., spatial, temporal, and
magnitude) because they presume an independent relation-
ship among these variables.

Vulnerability is one of the most significant concepts that
have been broadly studied in hazard risk management.
Landslide vulnerability has been defined in several ways by
several studies (Fuchs et al. 2007; Muthukumar 2013;
Uzielli et al. 2008), but it is commonly used to describe
physical, social, economic, and environmental circumstances
that can make particular inhabitants highly susceptible to the
effects of landslide hazards. Risk is defined as the uncertain
product of a hazard and the probable extent of damage.
Moreover, risk refers to the expected damage to lives,
belongings, and economy caused by a specific hazard in a
particular region and reference period (Opolot 2013). Risk
includes the concepts of the danger to lives, challenge in
evacuating residents and their properties during a landslide,
possible damages to buildings, social interruption, loss of
production, and damage to public property (Dang et al.
2011).

12.2 Landslide Hazard, Vulnerability,
and Risk Assessment: A Preview

Landslide susceptibility mapping methods are generally
categorized as qualitative or quantitative in nature (Guzzetti
et al. 1999). Statistical methods are preferred over qualitative
methods because the latter involves expert knowledge,
which may cause uncertainty in the outcomes (Ayalew and
Yamagishi 2005; Feizizadeh and Blaschke 2013). Thus,
quantitative methods have become very popular in recent
years (Yilmaz 2009). Various statistical methods are avail-
able, and those used in landslide susceptibility mapping
mainly include logistic regression (LR) (Demir et al. 2015;
Yalcin et al. 2011), frequency ratio (Pradhan and Lee 2010),
artificial neural network (ANN) (Park et al. 2013; Conforti
2014), decision tree (Saito et al. 2009), and support vector
machine (Moonjun 2007).

Current research utilizes the popular LR method for
landslide susceptibility mapping because its efficiency and
proficiency in landslide mapping have been proven by

numerous studies (Althuwaynee et al. 2014a, b; Devkota
et al. 2013; Pradhan 2010, 2011). A landslide probability
index represents the predicted probabilities of a landslide for
each pixel in the presence of a given set of conditioning
factors. A susceptibility map can be prepared through the
popular method adopted in the literature by dividing the
probability map into a specific number of classes (Ayalew
and Yamagishi 2005). Probabilistic analysis considers the
statistical relationships between historical landslide locations
and conditioning factors. The probability index ranges from
0 to 0.99, and producing a susceptibility map requires the
division of a probability map into different categories
(Ohlmacher and Davis 2003). Different categorization
methods have been examined in the GIS environment;
examples of such methods include standard deviation, nat-
ural break, equal interval, and quantile.

Several methods for landslide hazard mapping are avail-
able; they include heuristic algorithms (judgmental method)
(Bulut et al. 2000), empirical probability (Crovelli 2000),
magnitude–frequency relations (Stoffel 2010), rational
methods (geomechanical approach) (Alonso and Pinyol
2010), and indirect approaches (Corominas et al. 2014). The
heuristic approach is used when a judgment is based on the
opinion obtained from a group of experts or specialists
(Akgun 2012). In rational methods, the probability varies
according to the results of the stability analyses and math-
ematical modeling (Romeo et al. 2013). Among all the listed
approaches, the GIS platform proves to be useful tools in
obtaining an output that shows the potential zonation of
landslides (Haneberg 2004). Empirical probabilistic models
are employed on the basis of past records of an event using
the annual probability of occurrence and hydrological anal-
yses. The magnitude of other contributing factors, such as
earthquakes and rainfall, is integrated in analyses using
indirect approaches. In this process, the critical values of
rainfall or earthquake events are determined to define the
return period for landslides (Umar et al. 2014). In this cor-
relation analysis, the areas with high probability of landslide
occurrence are recognized without any requirement for
information on the size or type of failure. The quantitative
prediction of landslide hazards is aimed at detecting the
relationship between magnitude and frequency (Guzzetti
et al. 2008).

The most common approach for hazard analysis starts
with the creation of a landslide susceptibility map using
conditioning factors such as distance from drainages, roads,
and land cover, which are not expected to change within the
specific prediction periods. Other factors, such as distance
from drainages and roads and land cover, are impervious to
significant changes after a few years. The next stage involves
the preparation of the temporal triggering factors. The sus-
ceptibility map is then multiplied with the prepared temporal
rainfall or earthquake. Althuwaynee et al. (2014a, b)
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performed a hazard analysis using the susceptibility map
developed for Kuala Lumpur, Malaysia, on the basis of the
evidential belief function model (Althuwaynee et al. 2012).
They multiplied the rainfall factor with the derived suscep-
tibility map and acquired a hazard map. Subsequently, they
classified the hazard index into four geometrical interval
hazardous groups: high, medium, low, and very low hazard
regions. The drawback of their research is related to the lack
of information about classification of the slope material
failure and updated land use/land cover maps. Moreover, in
Malaysia, landslides are recorded only when they are
noticeable in terms of infrastructure damage or human
fatality. Hence, many small landslides that covered an
approximate area of 100 m2 were not included. Guzzetti
et al. (1999) summarized several landslide hazard evaluation
studies.

Vulnerability is defined as the total damage caused by a
particular natural hazard to a specific object or element at
risk at a specific scale. Vulnerability is measured in a con-
tinuous scale ranging from 0 to 1, where 0 represents no loss
and 1 represents total destruction (Galli and Guzzetti 2007).
A full understanding of the interaction between elements at
risk and slope failure is an essential step in assessing vul-
nerability. Four parameters are considered in vulnerability
assessment: (1) sliding volume and its velocity, (2) distance
of run out, (3) risk on people (their distance from the land-
slide; the construction elements where they are, such as
roads or buildings; and their locations in roads or buildings),
and (4) risk on structures and buildings (this involves the
design and the distance from the failure) (Dai et al. 2002).

Vulnerability changes into a different form when used to
deal with lives and properties. For example, a certain house
can have a high vulnerability to both a slow-moving land-
slide and a rapid landslide. As for the people actually
residing in this house, they may exhibit extremely high
vulnerability to a rapid landslide and moderate vulnerability
to a slow-moving landslide (Sattenpalli and Parkash 2013).
Historic records serve as basis for the assessment of vul-
nerability. The vulnerability of a house varies according to
the location of a given landslide. For instance, the vulnera-
bility level may be high for a house at the base of a steep
slope. By contrast, a house at a landslide deposition area
exhibits low vulnerability. Expert judgment can be used to
assess vulnerability levels and the probable depth of debris
for specific facility types (Winter et al. 2014). Another
method involves the use of statistical data comprising his-
torical landslide records as basis for the analysis of the
vulnerability of certain properties and people (Dai et al.
2002). For example, some cities (e.g., Hong Kong) maintain
a record of landslides, including their size, type, and effects.
Vulnerability can also be assessed by using the matrix
algorithm proposed by Leone et al. (1996). This algorithm is

applicable to many scenarios because of its flexibility.
Moreover, this algorithm features minimal subjectivity rel-
ative to other methods. Two factors are involved in the use
of a matrix algorithm: (1) the types and characteristics of
landslides involved in the analysis and (2) the design of the
buildings and other elements at risk, such as nature, age, and
type (Dai et al. 2002). Muthukumar (2013) analyzed the
vulnerability of landslide zonation mapping for Nilgiri
Mountains, Western Ghats, South India, using the landslide
per unit area method. As far as the geosystem parameters
were concerned, five vital parameters (lithology, lineament,
geomorphology, slope, and land use/land cover) were used
for such vulnerability mapping.

The term element at risk covers all parameters, such as
the environment, properties, and population that are affected
by the occurrence of any phenomena such as a landslide
(Corominas et al. 2014). The amount of risk varies according
to the elements in the area affected by a hazard such as a
landslide (Kappes 2012). Data on elements at risk should be
collected for certain basic spatial units, which may be grid
cells, administrative units, or homogeneous units with sim-
ilar characteristics in terms of type and density of elements at
risk. Other features, such as transportation lines and partic-
ular locations (e.g., dam site), can also be considered in
relevant analyses (Corominas et al. 2014).

Landslide risk is defined as the product of landslide
hazards and landslide vulnerability (Van Westen et al. 2008).
A high landslide hazard and vulnerability value equate to a
high landslide risk. Landslide risk assessment can be carried
out on different scales using different methods for suscepti-
bility and hazard assessment. It can also be qualitative or
quantitative in nature. Various risks, such as distributed
landslide risk, site-specific landslide risk, and global land-
slide risk, should be addressed in landslide risk assessment
(Corominas et al. 2014).

Landslide risk assessment aims to create a thematic map
that shows the level of risk in terms of lives and economic loss
in a specific area either in a quantitative or in a qualitative
manner (Cui et al. 2009). The spatial information for risk level
can be obtained bymultiplying the landslide probability index,
LULC, properties, and population within the affected zone.
These calculations may be easily obtained in the GIS envi-
ronment. Risk assessment involves generating the risk level of
a potential hazard (i.e., landslide) for the element at risk
(people and property) in a particular area (Kanungo et al.
2008). This method can be used to determine whether the risk
degree is dangerous on the basis of cost–benefit analyses.
Quantitative risk assessment features a high degree of refine-
ment for specific sites. Global risk assessment is aimed at
calculating the total risk for lives and properties per year. Its
results are helpful in managing the resources in landslide-
prone areas in terms of allocation and policymaking.
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Selecting the appropriate assessment method completely
depends on the availability of spatial data. A specific data
layer is needed to continue each analysis, and the absence of
one parameter renders an analysis method useless. Risk
analysis is a valid technique if and only if it fulfills a series
of appropriate criteria. Bell and Glade (2004), Calvo and
Savi (2009), Huang and Lyamin (2013), and other
researchers have implemented several analysis techniques in
landslide risk assessment. For instance, Pradhan and Lee
(2009) performed a study on landslide hazard and risk
assessment using an ANN algorithm in a GIS environment
in Penang Island. Van Westen et al. (2008) stated that the
risk and hazard assessment for any phenomena is limited by
the availability of spatial information. Akgun (2012) studied
Izmir City (west Turkey) and performed a landslide risk
assessment. First, the LR method was applied to derive a
susceptibility map. Earthquake and rainfall factors were used
as triggering factors to derive a hazard map. Afterward, the
settlement areas were derived from remote sensing data and
considered as the elements at risk in order to derive a vul-
nerability map. Finally, a risk thematic map for Izmir City
was derived by combining the hazard and vulnerability
layers.

A comprehensive understanding of the landslide hazard
phenomenon and its probable effects on society are vital for
defining landslide control polices, risk mitigation projects,
and other landslide management strategies. Numerous
landslides have occurred in Malaysia in recent years. Most
of these landslides threatened the lives and properties of the
country’s residents. Moreover, landslides often occurred
near highways or in cut slopes in mountainous areas. The
current study aims to perform landslide susceptibility, haz-
ard, vulnerability, and risk modeling in the Gua Tempurung
area, Malaysia, particularly along a selected stretch of the
North–South Expressway. Given the significant reputation
of the LR method in hazard studies, it is used to perform
landslide susceptibility mapping in this study. The produced
landslide susceptibility map will be used as basis for hazard,
vulnerability, and risk assessment in the future.

12.3 Study Area

The Gua Tempurung Corridor of the North–South
Expressway was chosen for the landslide hazard, vulnera-
bility, and risk analysis because of the importance of this
highway and the frequent occurrences of landslides in this
region (Fig. 12.1). Many major cities are linked by this
expressway in Western Peninsular Malaysia. Therefore, this
highway represents the backbone of the west coast of
Peninsular Malaysia. With a total length of 772 km, this
expressway passes through seven states, namely Kedah,
Perak, Negeri Sembilan, Johor, Penang, Selangor, and

Malacca. This area is approximately located at 4°23′
34.387″ N to 4°26′39.153″ N latitude and 101°11′18.607″ E
to 100°13′33.626″ E longitude. The study area experiences
frequent mass movements that cause erosion and landslides.
The average annual rainfall ranges from 1170 to 1950 mm
per year. Wet seasons in this area start from February to May
and from September to December. Maximum rainfall occurs
from March to May and from November to December.
Undulating plateaus and hilly terrains are the pronounced
geomorphologic characteristics of the Gua Tempurung area.
Gunung Tempurung is the largest surface limestone mass
(Kinta Limestone) of the Kinta Valley. Gua Tempurung is
located in the middle part of Gunung Tempurung
(Muhammad 2010). Sungai Tempurung which is a tributary
of the Sungai Kampar flows westward from the granitic hill
of the Main Range and carves its way through Gua Tem-
purung to the east. Limestone hills are characteristically
steep-sided, with subvertical to overhanging cliffs. The base
of limestone hills also often exhibits deep horizontal notches
or undercuts due to dissolution by streams, groundwater, or
swamp water. Though they might appear massive when
viewed from the side, most limestone hills are actually
“riddled” with numerous caverns and cave systems. The
geology of the area mostly consists of Devonian granite and
Quaternary. The limestone bedrock in this area rises above
the alluvial plains to form limestone hills with steep to
vertical slopes (mogote or tower karst). In recent years,
many landslides have occurred along PLUS highways,
roads, and streams, the sides of which have thus suffered
from scouring.

12.4 Data

12.4.1 Landslide Inventory

Landslide inventory maps are the basis and first requirement
of most landslide susceptibility mapping methods (Pradhan
et al. 2014). Inventory maps are crucial for assessing the
correlation between landslide occurrences and conditioning
factors. Several field measurements were conducted in the
study area to create an inventory map. The data were cap-
tured from the PLUS maintenance division, which holds
field maintenance data. All the landslides were similar and
they were shallow type. Moreover, they have occurred for
the first time. A total of 17 landslides were identified in the
Gua Tempurung area, and their related data were subse-
quently divided into two data sets for training and testing.
Following the literature, 60% of the data on landslide
occurrences were employed for modeling; the rest of the data
were utilized for validation (Fig. 12.1). Training slope fail-
ure locations were used to create a dependent layer. The
produced layer consisted of two values, namely 0 and 1,
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where 1 denotes the presence of a landslide and 0 indicates
the absence of landslide. The remaining slope failure loca-
tions were utilized to test the outcomes. Both layers were
created in ArcGIS and then rasterized.

12.4.2 Landslide Conditioning Factors

The LiDAR data used in this study were collected on March
12, 2013, by Riegl LMS Q5600 and Camera Hassleblad
39Mp. The device has a spatial resolution of 13 cm, laser
scanning angle of 60°, and camera angle −45°. In addition,
the posting density of the LiDAR data was 3–4 pts/m2.

Susceptibility maps are defined by qualitatively and
quantitatively studying the conditioning factors in affected
areas (Jebur et al. 2014). Choosing the appropriate data set
that comprises conditioning factors is a challenging task; no
defined precept can be adopted when choosing the number
of conditioning factors sufficient for a specific susceptibility
analysis (Wang 2013). These factors are essentially picked
up on the basis of literature and expert knowledge. In the
current study, conditioning factors were chosen with
knowledge derived from the literature. The sole use
high-resolution LiDAR data were proven to be sufficient
(Jebur et al. 2014). Therefore, only airborne laser scanning

data were used as the main data source. The LiDAR data
were received as point cloud (LAS file) which was subse-
quently converted to LAS dataset in ArcGIS software. LAS
dataset to raster tool was used to create DEM, and triangu-
lation method was used for interpolation (Kovač and Žalik
2010). The conditioning factor data set included altitude,
slope, aspect, curvature, SPI, TWI, TRI, and river factors
(Fig. 12.2). All the factors were resampled to a 1 m grid
(based on the point density of LiDAR data), and the grid of
the Gua Tempurung region was built with 4181 columns and
5665 rows (15,263,455 pixels; 15.26 km2).

The altitude, slope, aspect, curvature, SPI, TWI, and TRI
maps were derived from a DEM, as shown in Fig. 12.2a–g.
At an altitude of 0–1339.24 m, the elevation layer was
established. Slope is an influential conditioning factor in
landslide occurrence. This factor directly affects slope failure
occurrence and is typically considered in landslide suscep-
tibility analysis (Alimohammadlou et al. 2013). As a slope
becomes steep, the vertical component of gravity rises
(Tournadour et al. 2015). The slope in the study area ranges
from 0° to 89.38° (Fig. 12.2b). This layer was also used in
the analysis as a continuous layer, where each cell represents
the actual calculated slope. Slope aspect is an important
conditioning factor (Budimir et al. 2015). Aspect can effect
on the extent of rainfall and sunlight that influence the

Fig. 12.1 Landslide locations map with a hill-shaded map of Gua Tempurung, Malaysia
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Fig. 12.2 Input conditioning factors: a altitude, b slope, c aspect, d curvature, e SPI, f TWI, g TRI, and h distance from river
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Fig. 12.2 (continued)
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occurrence of slope failure. Moreover, it influences weath-
ering and thus indirectly affects the sheer power of object
mass. Although the relationship between landslide occur-
rence and slope has been proven, no exact rule exists with
regard to the effect of this factor on slope failure (Pedrazzini
et al. 2015). The aspect map utilized to recognize the asso-
ciation between aspect and slope failure occurrence is dis-
played in Fig. 12.2c. Nine classes were developed for the
aspect map (flat, north, northeast, east, southeast, south,
southwest, west, northwest, and north). The effect of cur-
vature on slope failure reflects the convergence or diver-
gence of water during downhill movement (Dou et al. 2014).
Thus, this factor is another conditioning factor involved in
landslide occurrence. In this study, curvature was derived
from a DEM using spatial tool in ArcGIS and subsequently
categorized into three classes: concave, convex, and flat.

Hydrological factors, such as SPI and TWI, were calcu-
lated using Eqs. (12.1) and (12.2). Some researchers con-
sider these two factors as secondary topographic
characteristics in landslide susceptibility mapping (Dragi-
ćević et al. 2015). Additional information on SPI and TWI
can be found in the work of Yusof et al. (2015). SPI rep-
resents the power of water flow in terms of erosion (Yesil-
nacar and Topal 2005). A topographic wetness index
(TWI) has been used to know the effect of topography on the
location and size of saturated source areas of run-off gen-
eration (Yilmaz 2009). The water-related factors SPI and
TWI were calculated using the following equations:

TWI ¼ lnðAs= tan bÞ ð12:1Þ

SPI ¼ As tan b ð12:2Þ

where As is the specific catchment area (m2 m−1) and b
(radian) is the slope gradient (in degrees). Another influential
factor is TRI which is generally used in mass movement
studies. In the current work, this factor is calculated using
Eq. (12.3):

TRI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max2 �min2
p

ð12:3Þ
where max and min are the highest and minimum values of
the cells in the nine rectangular neighborhoods of altitude,
respectively. For the distance from river factor, only the
undercutting of the side slopes of rivers might cause slope
failure initiation.

12.5 Methodology

The methodology applied in this study is shown in
Fig. 12.3. Since this research is done through a collabora-
tive project funded by PLUS BERHAD, they have given
the full permission as the owner and concessionary of the
North–South Expressways to collect the required data at
the Gua Tempurung Corridor of the North–South
Expressway. As can be seen in Fig. 12.3, landslide
inventory is divided into two classes of training and testing.
Training dataset was used for performing the LR method,
and testing dataset was kept to be used in validation stage.
Conditioning factors and training dataset were used as an
input for LR analysis. The correlation among the landslide
occurrence and each condition factor was assessed. Land-
slide probability index was produced, and susceptibility
map was created by classifying the probability index using

Fig. 12.3 Method applied in the
current research
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quantile method. In the next stage, hazard analysis was
done and rainfall factor was used as triggering factor.
Elements at risk factors were used to perform vulnerability
analysis. Finally, risk map was produced using hazard and
vulnerability maps. Finally, the cut slopes along the high-
way were classified based on their risk to the future
landslide occurrence. Each stage will be described in more
detail in relevant subsection.

12.5.1 Susceptibility Analysis

LR was applied to calculate the probability of landslide
occurrence in the Gua Tempurung area using Eqs. (12.4)
and (12.5) and the conditioning factors. The first requirement
of this algorithm is a dependent layer (landslide inventory)
that consists of two values, namely 1 and 0, which indicate
the presence and absence of a landslide, respectively. Each
conditioning factor (Fig. 12.2) was converted from raster
into ASCII format. The SPSS software was utilized to
implement a multivariate statistical analysis. The regression
coefficients were subsequently calculated, as shown in
Table 12.1. When the LR coefficient is high, its probable
influence on landslide occurrence is large. Using the mea-
sured LR coefficients, the landslide probability index was
calculated with Eq. (12.4):

P ¼ 1=ð1þ e�zÞ ð12:4Þ
where p denotes the landslide probability ranging from 0 to 1
in an S-shaped curve and z denotes the lean combination,
which can be calculated using Eq. (12.5):

Z ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ bnxn ð12:5Þ
where b0 is the intercept of the model which derives by LR
as a constant value. bi (i = 0, 1, 2, …, n) represents the
coefficients of the LR model which also measured by LR

calculations, and xi (i = 0, 1, 2, …, n) denotes the condi-
tioning factors such as slope, altitude, and rainfall (Demir
et al. 2015).

12.5.2 Validation

An efficiency validation method should be employed to
verify the used algorithm or validate its prediction capabil-
ities (Xu et al. 2012). In this study, the resulting landslide
probability map was assessed by comparing it with the
landslide inventory data using the area under the curve
(AUC) method (Jebur et al. 2014). The reliability of the
results can be assessed using AUC because this method
defines prediction and success rates (Kritikos and Davies
2014). The success rate in this study was calculated using
the same landslide inventory data used to train the model;
these data made up 60% of the total available data. However,
these training data cannot be used to evaluate the prediction
efficiency of the model. Hence, the remaining 40% of the
data was used to measure the prediction rate. Additional
information about AUC and its equations can be found in
(Tehrany et al. 2014). AUC shows the percentage of testing
points that fall within the highest probability range. The
measured probability index was sorted in descending order
to compute the relative ranks for each prediction pattern.
Consequently, the cell values were partitioned into 100
classes and were set on the vertical axis (y), along with
accumulated 1% intervals on the horizontal axis (x). The
existence of landslide locations (training and testing) in each
interval was assessed, and the resultant success and predic-
tion rates were measured.

12.5.3 Hazard Analysis

In hazard analysis, two factors should be considered: land-
slide susceptibility map and landslide triggering factor
(Althuwaynee et al. 2014a, b). Triggering factors such as
rainfall (Glade et al. 2000), earthquakes (Xu et al. 2014;
Yuan et al. 2015), and snowfall (Moreiras 2015) can trigger
a landslide. The landslide hazard in Malaysia is mainly
triggered by heavy rainfall (Althuwaynee et al. 2014a, b; Lee
et al. 2014). Figure 12.4 shows the rainfall factor considered
as a triggering factor in the current research. Many extreme
events, such as flooding and overflowing, are caused by the
heavy precipitation in the Gua Tempurung area. Thus, the
annual long-term average precipitation values for the year
2014 were analyzed in this work. Various rain gauge stations
(15 in total) were considered in the rainfall to derive the
density rainfall map.

Equation (12.6) Xu et al. 2014) was calculated to create
the final hazard map:

Table 12.1 The coefficient values obtained from LR model

Landslide conditioning
parameter

Logistic coefficient of Gua
Tempurung

Altitude 0.255213

Slope 1.339465

Aspect 0.035935

Curvature 0.007980

SPI 1.904285

TWI 1.676523

TRI 5.143918

Distance from river 0.012420

Constant 56.172860

12 Slope Vulnerability and Risk Assessment Using … 243



H ¼ PS � PT ð12:6Þ
where H represents the hazard probability, PS represents the
probability acquired from the LR analysis, and PT represents
the rainfall density layer. Before overlaying the layers, they
must be reformatted to a unique dimension scale because of
their different ranges. The same scales for the layers were
achieved with Eq. (12.7).

Xij ¼ Xj � Xij=Xmax�j � Xmin�j ð12:7Þ
where Xij is the standardized score for the ith alternative and
jth attribute, Xij is the raw score, and Xmax−j and Xmin−j are
the maximum and minimum scores for the jth attribute,
respectively. In the new format, 0 and 1 represent the min-
imum and maximum values for each layer. Consequently,
the resulting layer from the overlaying process must also be
scaled from 0 to 1, where 0 represents very low hazard and 1
represents very high hazard.

The hazard map was then reclassified into five classes,
namely very low, low, moderate, high, and very high. Each
cut slope was analyzed separately. The maximum area

analysis was carried out and slopes categorized according to
the maximum area class (Sarkar et al. 2008).

12.5.4 Vulnerability Assessment

Vulnerability to a certain phenomenon should be assessed in
performing risk analysis (Papathoma Köhle et al. 2015).
Vulnerability is equivalent to the complete loss of assets or
the total destruction of elements at risk (Murillo-García et al.
2015). Given the lack of data, vulnerability was simplified in
this study to facilitate the computation. Landslide vulnera-
bility (VL) is defined mathematically as follows (He et al.
2014):

VL ¼ P DL � 0jL½ �; 0�DL � 1ð Þ ð12:8Þ
where DL is the element at risk for a given phenomenon
(landslide, L) that is expected to or will definitely be dam-
aged and VL is the degree of loss given to a landslide for a
particular element or the percentage of damage to such
element. The probability of vulnerability can be defined as a
scale ranging from 0 to 5, where 5 represents complete
damage and 0 represents no damage (Pan et al. 2014).

Economic and heuristic approaches are used to represent
the factors that trigger a landslide (Shaharom et al. 2014). In
a heuristic (qualitative and descriptive) scale analysis, the
expected damage of a particular element at risk is assessed.
In this work, a vulnerability analysis for the Gua Tempurung
area was carried out using the following criteria for each cut
slope:

(a) Risk to Road User

Possibility of inflicting injury or damage to property and
road users

(b) Relative Risk of Failure

Possibility of an existing failure that can grow and affect
other parts of the slope or its stability

(c) Likely Effect on Traffic

Possibility of failure encroaching onto the expressway;
existence of an alternative route to bypass that particular
location

(d) Likely Repair Costs

Relates to the possible volume of earthwork, sufficient space
for access/construction, and complexity of earthwork. Each
criterion carries its own weightage against the level of

Fig. 12.4 Annual average precipitation map for the Gua Tempurung
area
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severity and other vulnerability factors, as shown in
Fig. 12.5.

12.5.5 Risk Analysis

In this research, risk analysis was conducted to calculate the
expected amount of loss caused by landslides in the Gua
Tempurung area and the effect of each cut slope. Risk is
determined with the formula for hazard and vulnerability, as
shown in Eq. (12.9), where R is the expected risk, H is the
estimated hazard, and V is the assessed vulnerability
(Althuwaynee et al. 2014a, b).

R ¼ H � V ð12:9Þ
Quantitative (probabilistic) and qualitative (heuristic)

approaches are two popular methods for estimating landslide
risk (Althuwaynee et al. 2014a, b). The quantitative
approach is used to estimate the probability of expected
damage or loss of life (Jakob et al. 2012). In this analysis, an
index for the type of landslide and the related consequences
are required (Kavzoglu et al. 2014). In the present study, a
qualitative approach was used by combining the hazard and
vulnerability results for each cut slope using Eq. (12.9). To
ensure effective visual interpretation, the output risk map
was categorized into five classes (very low, low, moderate,
high, and very high) using an equal interval algorithm that is
designed for such kind of application in an equal range of
values given to each class.

12.6 Results and Discussion

The SPSS software was used to perform LR in order to
evaluate the correlation between the conditioning factors
with landslide occurrence. All the parameters used showed
an acceptable significant probability (sig) value of below
0.05. The use of the sig factor indicates the significance of a
parameter in landslide occurrence (Das et al. 2010). When
the sig value is below 0.05, the conditioning factor has a
significant mathematical effect on slope failure. Equa-
tion (12.10) was calculated to obtain the landslide proba-
bility index as follows:

Z ¼ ð0:035935 � ‘‘ aspect;;Þ � ð1:676523 � ‘‘TWI
00 Þ

� ð1:339465 � ‘‘ slope
‘‘Þþ ð1:904285 � ‘‘ SPI

00 Þ
þ ð5:143918 � ‘‘ TRI

00 Þ � ð0:007980 � ‘‘ curvature
00 Þ

�ð0:255213 � ‘‘ DEM
00 Þ þ ð0:012420 � ‘‘ river

00 Þ
� 56:172860

ð12:10Þ
where −56.172860 is the intercept of the model. This value
was derived from LR analysis representing as a constant
value. Numbers multiplied by conditioning factors represent
the coefficients of the LR model. The positive LR coefficient
shows the positive correlation between the factor and flood
occurrence. However, negative LR coefficient weights
delineate that the conditioning factor has negative relation-
ship with landslide occurrence. For instance, the acquired
LR coefficient for TWI is −1.676523, which shows that as
TWI increases, the probability of landslide occurrence will
be decreased.

The probability map was then resampled using
Eq. (12.4). The correlation between the conditioning factors
and the landslide can be observed in the acquired results.
The landslide probability index was acquired and catego-
rized using a quantile classification method. Each pixel in
the probability map showed the predicted value of existing
landslides that is correlated with the used conditioning
factor.

Probability index has the range from 0 to 0.99, and to
produce a susceptibility map, the probability map needs to
be divided into different categories (Regmi et al. 2014).
Different classification algorithms can be found in the liter-
ature, and each algorithm is appropriate for a particular
application. The most popular ones include natural breaks
(Kritikos and Davies 2014), equal interval (Nandi and
Shakoor 2010), and quantile (Jebur et al. 2015; Tehrany
et al. 2013). Usually, the method for classification is selected
by the objective of the research and the nature of the data
(Zare et al. 2013). For instance, natural break is suitable for
the case that there is a sudden change in the data values.
Standard deviation is mostly used for categorizing the pop-
ulation density that produces the fixed number of classes not
based on the users’ desire. In most of the studies, the best
results are achieved through the quantile method
(Papathoma-Köhle et al. 2015). The quantile algorithm was
chosen for this study because it is widely used in probability
classification. The mathematical process of this algorithm
includes dividing the chosen classes, where each class has an
equal number of pixels (Martha et al. 2013; Xu et al. 2012;
Yusof et al. 2015). The outcome of this method is more
suitable than that of other methods when comparing the
produced susceptibility map and the landslide distribution.
The susceptibility map was created and divided into five
classes, as shown in Fig. 12.6.

<Criteria in Consideration>
5 = 
4 = 
3 = 
2 = 
1 = 

In increasing level of 
severity, with level 5 
being most severe 

Fig. 12.5 Level of each criterion in landslide vulnerability analysis
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As can be seen in Fig. 12.6, the eastern part of the study
area is highly susceptible to landslides because the charac-
teristics of the area are prone to such hazard. Some parts near
the highway are also highly susceptible, especially in the
southern and center parts. Planners can use this information
and avoid more landslide occurrences in those locations.
AUC was utilized to calculate the success and prediction
rates of the algorithm used in this study (Fig. 12.7). The
generated success and prediction rates for LR were 84.91
and 83.00%, respectively. LR achieved an acceptable
accuracy according to the acquired results.

After producing the landslide susceptibility map using
topographic and geomorphologic factors, the same year
rainfall (2014) was used to generate the hazard map. In
Malaysia, the only recorded slope failures are the visible
ones in terms of infrastructure damage or human casualty.
Therefore, Eq. (12.6) was applied to generate the hazard

map as shown in Fig. 12.8. Although the eastern part of the
study area is clearly susceptible to landslides, the hazard was
moderate. This finding is attributed to the fact that the
rainfall in that year was less than the average. By contrast,
the southern part featured high susceptibility and hazard
values. The hazard was very low in the middle of the
highway because of the low rainfall average in that area in
2014 relative to the other parts of the study area. The sig-
nificant difference between hazard and susceptibility can be
attributed to the amount of rainfall in 2014.

A vulnerability map was derived according to the fol-
lowing criteria: risk to road user, relative risk of failure,
likely effect on traffic, and likely repair costs. These criteria
were applied only on the cut slopes of the highway because
this study aims to calculate the risk of these slopes. As
shown in Fig. 12.5, each slope was assigned with a number
(1–5) associated with the condition of the slope under par-
ticular criteria. Subsequently, the outcome was resampled
using Eq. (12.6) to normalize the vulnerability with a range
between 0 and 1. The vulnerability map was generated as
shown in Fig. 12.9. Most of the cut slopes have a vulnera-
bility of more than 0.5, with the exception of the seven
slopes with low degree of vulnerability. The highest vul-
nerability concentrated in the center of the study area. The
northern part showed moderately high vulnerability slopes.

Fig. 12.6 Landslide susceptibility map derived from LR

Fig. 12.7 AUC a success rate and b prediction rate
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Fig. 12.8 Hazard map for the Gua Tempurung area

Fig. 12.9 Vulnerability map associated with each cut slope

Fig. 12.10 Generated risk map for Gua Tempurung for each cut slope

Using Eq. (12.10), the hazard map for each slope was
generated and categorized into five groups using an equal
interval algorithm, as shown in Fig. 12.10. Some of the
slopes that showed high vulnerability were categorized as
moderate risk because of the conditions of the resulting
hazard, as shown in the southern part of the study area.
Meanwhile, some cut slopes were estimated as high risk
although they reflected moderate vulnerability, as shown in
the middle part of the area. Finally, some cut slopes were
categorized as very high risk because the hazard and vul-
nerability of these slopes were very high.

12.7 Conclusion

This study sought to provide a comprehensive analysis of
landslide vulnerability and risk mapping. The specific
objective was to detect the most risky slope cuts along the
PLUS highway, specifically in the Gua Tempurung area.
Once cut slopes with a high degree of risk are recognized,
safety and maintenance actions can be implemented to
increase the security of the expressway. The selected study
area is highly susceptible to landslides, as evidenced by the
large number of landslides reported for this region each year.
In this work, the LR method was utilized to map
landslide-susceptible areas. The conditioning factor data set
consisted of altitude, slope, aspect, curvature, SPI, TWI, TRI,

12 Slope Vulnerability and Risk Assessment Using … 247



and distance from river. A DEM was generated using air-
borne LiDAR images measuring 1 m � 1 m pixels and was
then used as the basis in deriving an altitude map. All the
conditioning factors featured a pixel size of 1 m � 1 m. LR
was applied, and the landslide-prone regions were recog-
nized. The probability index was classified into the follow-
ing five classes with the quantile method: very high, high,
moderate, low, and very low susceptibility. Hazardous areas
were then detected by multiplying the probability map with
the rainfall factor. A risk map was produced by combining
the landslide hazard and vulnerability maps. On the basis of
the defined criteria (elements at risk), five vulnerability
levels were assigned to each cut slope. To implement risk
analysis, each cut slope must belong to one class of vul-
nerability and one class of hazard. The maximum area was
considered in the case where one cut slope contained various
hazard weights. That is, the cut slope belonged to the hazard
class that covered most of its area. Finally, AUC was used to
assess the susceptibility map. The success and prediction
rates were 84.91 and 83.00%, respectively. On the basis of
the acquired accuracies, we can conclude that the LR method
is an efficient statistical method that can be used in hazard
studies because of its simple structure and robust
performance.

The advantages of this research, focusing on a specific
area and particular cut slopes, can lead to more efficient
outcomes than that produced when the focus is on a vast
area. Highway authorities can use the proposed method to
avoid future damages to highways and save the lives of road
users and residents. Current highway studies focus more on
vulnerability than on an accurate risk assessment. This study
can improve accuracy when data of the temporal rainfall for
a specific landslide is available. In this analysis, the vul-
nerability of the infrastructure around the highway was not
considered. Hence, detailed information can be used in
future studies to achieve a highly comprehensive assess-
ment. Temporal risk assessment can also be conducted when
temporal hazard maps are produced. The produced maps
may be helpful for planners, decision makers, and local
governments in landslide management and planning in the
study area. Moreover, the produced risk map can be used for
the future maintenance of the PLUS highway.
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13Landslide Risk Assessment Using Multi-hazard
Scenario Produced by Logistic Regression
and LiDAR-Based DEM

Biswajeet Pradhan and Waleed M. Abdulwahid

13.1 Introduction

The rapid urban development and population growths
worldwide push threats to the people because of landslides
and other mass movements. Landslide is one of the natural
disasters causing significant damages to lives and properties.
Approximately 820,000 km2 inhabited with a population
of * 66 million are relatively classified as high-risk areas
(Dilley 2005). Landslide management programs start by
predicting the future potential landslides, designing strate-
gies for preventing or at least reducing the risk of potential
landslides and estimating the risks at elements as well as the
damages caused by the materials moved from high slopes to
lower slopes. Each component of landslide management
programs has been extensively studied in literature with
various techniques. Recently, Light Detection and Ranging
(LiDAR) remote sensing has been proven to be an effective
solution for landslide prediction and risk assessments. This
is due to the advantages of these systems that include the
capability of penetrating through the vegetation canopies and
producing high to very high-resolution digital elevation
models (DEM). Subsequently, detailed topographic and
geomorphologic information can be extracted, and potential
correlations with landslide occurrence could be established.
On the other hand, various statistical and machine learning
methods have been developed and proposed for landslide
modeling and risk assessments. Overall, high-quality data
and efficient modeling and data analysis methods are the
basic requirements to improve the landslide management
programs.

The first step in landslide risk assessment is the prepara-
tion of landslide inventory data. These data can be collected
from various sources such as aerial orthophotos, satellite
images, previous records and newspapers, and LiDAR data.
The database of a landslide inventory often contains the

spatial information (where) the landslides occurred, the type
of mass movements, and the date (when) of the events. Once
the landslide inventory map is produced, a landslide sus-
ceptibility assessment is often the next step. A landslide
susceptibility mapping is a process of predicting future
landslides from the use of previous landslide records with
consideration of certain conditioning factors. Landslide sus-
ceptibility mapping is essential for land use planning and risk
assessments. On the other hand, risk assessment requires the
hazard and vulnerability analysis. Landslide hazard is defined
as the probability of occurrences of a potential landslide in a
specified period of time considering the landslide suscepti-
bility (spatial probability) and triggering factors (temporal
probability) (Althuwaynee et al. 2014a, b). In addition, vul-
nerability is another concept used in landslide risk assess-
ments. It is one of the important concepts that have been
extensively explored in landslide risk management. It
describes the physical, social, economic, and environmental
factors that can make particular inhabitants highly susceptible
to the effects of landslide hazards. As a result of the men-
tioned concepts, landslide risk is defined as the product of
landslide hazards and landslide vulnerability (van Westen
et al. 2008). The output of risk analysis is thematic maps
representing the uncertain product of a hazard and the
probable extent of different types of damages. In other words,
landslide risk refers to the expected damages to lives, econ-
omy, and assets caused by a specific hazard in a given area
(Opolot 2013). Risk assessment involves generating the risk
level of a potential hazard (i.e., landslide) for the element at
risk (people and property) in a particular area (Kanungo et al.
2008; Althuwaynee and Pradhan 2016).

13.2 Previous Work

Extensive works have been done on landslide susceptibility
and risk assessments. For the purpose of finding the
research problem, only important and recent studies were
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reviewed and discussed in this section. Early works in
landslide susceptibility mapping have come a long way as
the GIS software and hardware become more available in
1970s. In addition, in the beginning, the methods were
simple that included heuristic and simple statistical-based
models. However, later many statistical and machine
learning methods have been developed and improved the
landslide susceptibility assessment techniques. The
advancement of remote sensing systems was also another
reason for improving the landslide susceptibility assessment
techniques. Data become more available and accessible;
recently, LiDAR has been widely used to prepare
high-quality landslide inventory maps. Among the popular
techniques and widely accepted methods for landslide
susceptibility mapping are support vector machine
(SVM) and logistic regression (LR). SVM belongs to the
machine learning methods, and it has been used by many
authors for landslide susceptibility modeling showed
promising success and prediction rates (Yao and Dai 2006;
Yao et al. 2008).

On the other hand, LR has been demonstrated to be
successful in various case studies from different geographic
regions (Bai et al. 2010; Falaschi et al. 2009; Pradhan and
Youssef 2010). LR is a multivariate statistical model that
employs the maximum likelihood estimation method. It is
used to establish a relationship between a number of land-
slide predictors and the landslide occurrence
(absence/absent). Pourghasemi et al. (2013) applied SVM
model in landslide susceptibility mapping at the Golestan
Province, Iran. Results of prediction rates indicated that
radial basis function (RBF) (85%) models performed better
than other types of kernel. Kavzoglu et al. (2014) compared
GIS-based multi-criteria decision making, SVM and LR
models for landslide susceptibility mapping. The results
showed that the GIS-based multi-criteria and SVM outper-
formed the LR model in terms of success and prediction
rates. Pradhan (2013) compared the predictive ability of the
decision tree (DT), SVM, and neuro-fuzzy models. SVM
was found to have the best performance (area under the
curve = 0.95) compared to DT and neuro-fuzzy models. Wu
et al. (2014) compared SVM and DT models for landslide
susceptibility assessment in Three Gorges of China. The
results showed that the object-based SVM model had the
highest correct rate of 89.36 compared with other models. In
Italy, Ballabio and Sterlacchini (2012) evaluated the SVM
model for landslide susceptibility mapping. They found that
SVM model can outperform other techniques in terms of
accuracy and generalization capacity. In a recent paper,
Hong et al. (2016) evaluated the SVM model with four
kernel types for landslide susceptibility mapping in China.
Their results showed that the RBF function is the most
suitable kernel type for landslide susceptibility mapping in
the study area.

On the other hand, Devkota et al. (2013) compared LR
with other techniques such as certainty factor, index of
entropy for landslide susceptibility assessment in Nepal
Himalaya. Their results suggested that LR can produce
accuracy more than 80%; however, other methods also
performed well and comparable to LR in terms of accuracy.
On the other hand, Akgun (2012) produced a landslide
susceptibility map at İzmir, Turkey, with LR and compared
the result with models such as multi-criteria decision making
and likelihood ratio methods. According to the results of the
study, LR was found to be the best model with an accuracy
of 0.810 (AUC). On the contrary, Ozdemir and Altural
(2013) found that frequency ratio and weights-of-evidence
outperformed the LR model in Sultan Mountains, SW Tur-
key. However, the accuracy of LR (0.937) was acceptable
for producing landslide susceptibility maps for land use
planning. In addition, an analysis by Xu et al. (2013) over an
area in China suggested that LR can also achieve accurate
results with incomplete landslide inventory. Costanzo et al.
(2014) developed a forward LR model for earth-flow land-
slide susceptibility mapping in Platani river basin (southern
Sicily, Italy). Their results indicated the efficiency of LR for
landslide susceptibility assessment with an accuracy over
0.80 (AUC). Furthermore, Solaimani et al. (2013) compared
frequency ratio and LR models for landslide susceptibility
assessment. They found that frequency ratio (79.48%) is
more accurate than LR (77.4%) model. In a case study area
in the USA, Regmi et al. (2014) showed that LR can produce
high-quality landslide susceptibility maps with various sce-
narios. The accuracy of LR was above 80% using different
sampling techniques and different mass movements (land-
slides, debris flows). In more recent works such as Zhang
et al. (2016), Bui et al. (2016), Erener et al. (2016), Bor-
naetxea et al. (2016), LR was found to be suitable for
landslide susceptibility assessment and it has stable
accuracy.

In addition, according to several studies, spatial and
temporal probabilities are the two main components of
landslide hazard assessment (Althuwaynee et al. 2014b;
Guzzetti et al. 2006). On the other hand, some other
researchers used three components instead including the
magnitude of the landslide events (Erener and Düzgün
2013). Landslide hazard is commonly defined as “the
probability of occurrence within a specified period of time
and within a given area of a potentially damaging phe-
nomenon” (Varnes 1984). For landslide hazard mapping,
several methods have been used, which include heuristic
algorithms (judgmental method), empirical probability,
magnitude–frequency relations, rational methods (geome-
chanical approach), and indirect approaches (Corominas
et al. 2014). The heuristic methods of landslide hazard
assessment are based on opinions obtained from a group of
experts (Akgun 2012). In empirical methods, the probability
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is analyzed based on the results of stability analysis and
mathematical modeling. Empirical probabilistic models are
employed on the basis of historical records of a landslide
event using the annual probability of occurrence and
hydrological analysis. The magnitude of other contributing
factors, such as earthquakes and rainfall, is integrated into
the analyses using indirect approaches. In this process, the
critical values of rainfall or earthquake events are determined
to define the return period for landslides (Umar et al. 2014).
In this correlation analysis, areas with high probability of
landslide occurrence are recognized without information on
the size or type of failure. The quantitative prediction of
landslide hazards is aimed at detecting the relationship
between magnitude and frequency (Fausto Guzzetti et al.
2008). Overall, GIS-based methods show the potential
zonation of landslide hazards (Haneberg 2004).

Furthermore, in terms of landslide vulnerability and risk
assessment, several studies have developed various approa-
ches. The expert decision could be used to assess vulnera-
bility levels and the probable depth of landslides for specific
facility types. Muthukumar (2013) analyzed the vulnerability
of landslide susceptibility mapping for Nilgiri Mountains in
the Western Ghats, South India, using the landslide per unit
area method. Lithology, lineament, geomorphology, slope,
and land use/land cover were used for vulnerability map-
ping. On the other hand, Althuwaynee and Pradhan (2016)
developed a semi-quantitative landslide risk analysis using
GIS-based exposure analysis in Kuala Lumpur city,
Malaysia. With their approach, the number of elements
affected by landslides and the population density under
landslide risk could be quantified. Akgun et al. (2012) used
GIS and remote sensing data for landslide risk assessment in
Izmir city (west Turkey). Several landslide conditioning
factors were modeled by LR method, and hazard map was
then produced by considering earthquakes and precipitation
as main triggering factors in the study area. Then, an accu-
rate land use map produced at 94% of accuracy was used to
assess the landslide risks in the area. Their results suggested
that the methods applied could be useful for land use planner
and local government authorities. In another paper, Vranken
et al. (2015) showed a case study of a landslide risk
assessment in a densely populated hilly area. Their method
could quantify the affected areas by landslides and showed
that the annual risk values vary depending on the spatial
probability of landslides produced by different methods.
Several other authors developed methods of landslide risk
assessments using spatial data such as Calvo and Savi
(2009), Huang et al. (2013), and Pradhan and Lee (2009).

The main objective of this chapter is to develop landslide
risk maps for the Ringlet area located in Cameron Highlands
using logistic regression and multi-hazard scenarios con-
structed by analyzing 15-year rainfall data. With regard to
the advantages of this study, focusing on a specific area can

lead to more efficient outcomes than when the focus is on a
vast area. Planning authorities can use the proposed method
to prevent future damage to land parcels and to protect the
lives of residents. This study can improve its accuracy when
data on the return periods and landslide intensity for a
specific landslide occurrence are available. Such maps may
be used as a reference by planners, decision makers, and
local governments in landslide management and planning in
the study area.

13.3 Methodology

13.3.1 Study Area

The study area is the Ringlet area, a township in Cameron
Highlands, Malaysia. The area is home to many farmers
cultivating various types of crops such as strawberry, veg-
etables, and flowers. Due to roadside cut and modified
slopes, the area has experienced many landslide events
where significant risks threatened to the farmers and other
communities in the area. The area is bounded by the fol-
lowing coordinates: 101° 21′ 54″ to 101° 24′ 51″ longitude
and 4° 22′ 52″ to 4° 25′ 48″ latitude (Fig. 13.1). The average
altitude of the area is 1,200 m above mean sea level, and the
total land area is 24.38 km2.

The Ringlet district is located on the eastern flank of the
main range and is mainly composed of granite. However,
scattered outliers (roof pendants) of meta-sediments are also
present. The granite in the Ringlet area is classified as
megacrystic biotite granite (Pradhan and Lee 2010). The
meta-sediments consist of schist, phyllite, slate, and lime-
stone (Pradhan and Lee 2010. Post-Triassic–Mesozoic
granite comprises most of the granite rocks. However,
there are few patches of metamorphic rocks, mostly com-
prised of Silurian–Ordovician Schist, phyllite, limestone,
and sandstone.

The average daytime temperature is 24 °C and average
nighttime temperature is 14 °C. The average annual rainfall
is 2660 mm. The intensity of the rain is one factor that
affects the fill slopes, causing severe sheet, rill, and gully
erosion. The climate is conducive to a wide range of sub-
tropical crops. However, the land is steeply sloping with
66% of the slopes having gradients of more than 20°.
Approximately 80% of the area is forested.

13.4 Spatial Database

13.4.1 Landslide Inventory Map

The most important step in landslide susceptibility mapping
is the preparation of landslide inventory maps (Pradhan et al.
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2014). Inventory maps are vital for evaluating the spatial
relationship between landslide events and conditioning fac-
tors. Several measurements were conducted in the study area
to create an inventory map. Remote sensing methods were
used to obtain historical records of the landslides over the
past 11 years. Archived 1:10,000–1: 50,000 aerial pho-
tographs and SPOT 5 panchromatic satellite images were
used for the visual detection of landslide occurrences in the
study area. The source material varies in quality with respect
to describing the precise location of the landslide event.
Based on aerial photo interpretation, the locations of the
individual landslides were drawn on 1: 25,000 maps and the
location plotted as closely as possible. Field observations
were done using GPS to detect the exact location of the
landslide and to confirm the fresh landslide scars. In the
aerial photographs and high-resolution satellite images,
historical landslides could be observed as breaks in the forest
canopy, bare soil, or geomorphologic features like head and
side scarps, flow tracks, and soil and debris deposits below a
scar. A total of 164 landslides were identified in the study
area (Fig. 13.2); these landslides were characterized as
shallow rotational landslides with an area of 39,243 m2 for
the largest landslide and 14.6 m2 for the smallest landslide.

Then, the landslides were divided into two sets. According
to the literature, 70% of the data on landslide occurrences
were used for modeling, and the remaining landslide data
were used for validation. Training landslide locations were
used to create a dependent layer. The produced layer con-
sisted of two values, namely 0 and 1, where 1 denotes the
presence of a landslide and 0 indicates the absence of a
landslide. The remaining landslide locations were used to
test the outcomes. Both layers were created in ArcGIS and
then rasterized.

13.4.2 Landslide Conditioning Factors

Susceptibility maps are defined by qualitatively and quan-
titatively studying the conditioning factors in affected areas
(Jebur et al. 2014). Choosing the appropriate data set that
comprises conditioning factors is a challenging task; no
standard rules can be adopted when selecting the number of
conditioning factors that are sufficient for a specific sus-
ceptibility analysis (Wang et al. 2013). These factors are
essentially chosen on the basis of the literature and expert
knowledge. In the current study, conditioning factors were

Fig. 13.1 The DEM map of the study area (Ringlet area, Cameron Highlands)
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chosen with knowledge derived from the literature. The sole
use of high-resolution LIDAR data was proven to be suffi-
cient (Jebur et al. 2014). The conditioning factor data set
included altitude, slope, aspect, curvature, stream power
index (SPI), topographic wetness index (TWI), terrain
roughness index (TRI), distance from a river, distance from
roads, distance from lineament, sediment transport index,
and geology (Fig. 13.3). All the factors were resampled to a
2 m grid, and the grid of the Ringlet area was built with
2484 columns and 2499 rows (6,207,516 pixels; 24.38 km2).

The LiDAR data were used in constructing the altitude.
The LiDAR vector point data were recorded over 25 km2 of
the Ringlet area and nearby area with flight height around
1510 mm on January 15, 2015, and resulted in nearly eight
points per square meter with a 25,000 Hz pulse rate fre-
quency. The absolute accuracy of the LiDAR data should

meet the root-mean-square errors of 0.15 m in the vertical
axis and 0.3 m in the horizontal axis.

The altitude, slope, aspect, curvature, SPI, TWI, and TRI
maps were derived from a DEM, as shown in Fig. 13.3.
Scale data can be defined as a scale to evaluate the influence
of a layer on slope failure occurrence (Althuwaynee et al.
2014a, b). The slope is an influential conditioning factor in
landslide occurrence. This factor directly affects landslide
occurrence and is typically considered in landslide suscep-
tibility analysis (Alimohammadlou et al. 2013). As the slope
becomes steep, the vertical component of gravity increases
(Tournadour et al. 2015). The slope in the study area ranges
from 0° to 87.18° (Fig. 13.3b). This layer was also used in
the analysis as a continuous layer, where each cell represents
the calculated slope. Slope aspect is an important condi-
tioning factor (Budimir et al. 2015). The morphological state

Fig. 13.2 Landslide inventory
map of the study area
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Fig. 13.3 Input conditioning factors: a altitude, b slope, c aspect, d curvature, e SPI, f TWI, g TRI, h STI, i distance from rivers, j distance from
roads, k distance from lineament, and l geology
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Fig. 13.3 (continued)
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Fig. 13.3 (continued)
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of the study range and the degree of precipitation and day-
light are the meteorological circumstances that influence the
event of landslide occurrence. Aspect influences weathering
and, by implication, the sheer force of the object. Although
the relationship between landslide occurrence and slope has
been demonstrated, no accurate rule exists with respect to
the effect of this element on slope failure (Pedrazzini et al.
2015). The aspect map was employed to draw the relation-
ship and is shown in Fig. 13.3c. Ten classes were produced
for the aspect map (flat, north, northeast, east, southeast,
south, southwest, west, northwest, and north). The effect of
curvature on slope failure reflects the convergence or
divergence of water during downhill movement (Dou et al.
2014). Thus, this factor is another conditioning factor
involved in landslide occurrence. In this study, curvature
was derived from a DEM and subsequently categorized into
three classes: concave, convex, and flat (Fig. 13.3d).

Hydrological factors, such as SPI and TWI, were calcu-
lated using Eqs. 13.1 and 13.2. Many scientists consider
these two components as auxiliary geographic attributes in
landslide susceptibility mapping (Dragićević et al. 2015).
Additional information on SPI and TWI can be found in the
work of Yusof et al. (2015). The water-related factors SPI
and TWI were calculated using the following equations:

TWI ¼ lnðAs= tan bÞ; ð13:1Þ

SPI ¼ As tan b; ð13:2Þ
where As is the specific catchment area (m2 m−1) and b
(radian) is the slope gradient (in degree) (Regmi et al. 2010).
Another influential factor is TRI, which is generally used in
mass movement studies. In the current study, this factor is
calculated with Eq. 13.3:

TRI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max2 �min2
p

; ð13:3Þ
where max and min are the highest and minimum values of
the cells in the nine rectangular neighborhoods of altitude,
respectively. TRI was also categorized into 10 classes using
the quantile technique. STI defines the procedure of the
slope failure and deposition (Fig. 13.3h) and is computed by
using Eq. 13.4 as follows:

STI ¼ AS

22:13

� �0:6 sin b
0:0896

� �1:3

; ð13:4Þ

where b is the slope at each pixel and AS is the upstream
area. For the distance from the river factor, only the under-
cutting of the side slopes of rivers might cause slope failure
initiation (Yang et al. 2014). The distance from road
(Fig. 13.3j) is considered as an important factor because
constructing roads in hilly areas weakens the stability of the
slope structure and therefore increases the area’s

susceptibility to landslides. The distance from roads was
calculated using the Euclidean distance in the spatial analyst
tool.

Topographic structures (lineaments) are tectonic breaks
that usually decrease rock strength. These structures com-
prise faults, overlays, and shear areas. They are responsible
for triggering a large number of landslides in the study area.
Lineaments were acquired from the topographic map and
DEM of the territory. In this way, the distance from the
lineaments was computed (Fig. 13.3k).

Geology influences the shear strength of rock mass,
penetrance, and accordingly, the probability of an increase in
neutral pressure in the subsoil. Geological data were gen-
erated by digitizing geological boundaries, fieldwork, and
interpretation of aerial photos rasterized and resampled to a
2 m grid. In several studies, geology is one of the most
significant conditioning factors in the distribution of land-
slides. In the present study, two geological types are given:
acid intrusive and schist (Fig. 13.3l).

For the factors: altitude, slope, aspect, distance from a
river, distance from roads, distance from lineament, sedi-
ment transport index, SPI, TWI, and TRI, all categorized
into 10 classes using the quantile technique (Youssef et al.
2015).

13.5 Landslide Susceptibility and Hazard
Assessments

13.5.1 LR Model

LR model is used to produce the landslide susceptibility
map. The LR was used to determine the landslide probability
in the Ringlet area. The landslide susceptibility index was
calculated using the following Eqs. (13.5) and (13.6) of LR
multivariate statistical modeling method:

P ¼ 1
1þ e�z

ð13:5Þ

where P denotes the landslide, probability ranging from 0 to
1 in an S-shaped curve, and z denotes the lean combination,
which can be calculated using Eq. (13.6) as follows:

Z ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ bnxn; ð13:6Þ
where b0 is the intercept, bi (i = 0,1,2, …, n) represents the
LR coefficients, and xi (i = 0, 1, 2, …, n) represents the
conditioning layers (Demir et al. 2015).

The LR was implemented in SPSS statistical software.
The steps included: converting the landslide conditioning
factors into ASCII files that had a similar coordinate system
and geographic extents. Then, the dependent variable was
prepared by giving a value of 1 to the pixels where the
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Fig. 13.4 Rainfall intensity for
15 years’ period: a average
intensity (any day in year),
b abnormal value intensity
recorded, c average rainfall
intensity for 5-year return period,
d average rainfall intensity for
10-year return period, and
e average rainfall intensity for
15-year return period
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landslide inventory data are, and a value of 0 to the
remaining pixels. After that, the LR model was run and the
coefficients of the landslide conditioning factors were cal-
culated. These coefficients were used in GIS software to
produce the landslide susceptibility map for the study area.

13.5.2 Validation of Landslide Susceptibility
Map

Landslide susceptibility models often validated by ROC
curves and by calculating the area under the curve
(AUC) using the training and testing landslide inventory
data. To create the ROC curves, the produced landslide
susceptibility map was compared with the landslide inven-
tory data (Chung and Fabbri 2003). The AUC validation
method defines the prediction and success rates (Kritikos and
Davies 2014). The success rate was calculated using the
landslide inventory data used to train the LR model, the data
accounted for 70% of the whole landslide inventory data. On
the other hand, the prediction rate was calculated using the
remaining 30% of landslide inventory data, the data that the
LR model did not see before, and thus, the prediction rate
can show the prediction efficiency of the model. Additional
information on AUC and its equations can be found in the
work of Tehrany et al. (2014). AUC shows the percentage of
testing points that fall within the highest probability range.
Practically, the first step of creating ROC curves was that the
landslide susceptibility index was sorted in the downward
arrangement. Then, the cell values were divided into 100
intervals (classes) to the horizontal axis (x), and the y-axis
represented the cumulative landslides.

13.5.3 Landslide Hazard Assessment

Landslide hazard refers to the temporal probability of
occurrence of a landslide event with a given intensity. In
addition, hazards also have a spatial component related to
the initiation of the hazard and the spreading of the land-
slides (Van Westen et al. 2008). In the hazard analysis, two
factors were considered: landslide susceptibility map and
landslide rainfall triggering factor (Althuwaynee et al.
2014a, b). Factors such as rainfall (Glade et al. 2000),
earthquakes (Xu et al. 2014; Yang et al. 2015), and
snowfall (Moreiras and Sepúlveda 2015) trigger a land-
slide. Landslides in Malaysia are mainly triggered by heavy
rainfall (Althuwaynee et al. 2014a, b; Lee et al. 2014).
Figure 13.4 shows the rainfall factors considered as trig-
gering factors in the current study. Many extreme events,
such as flooding and overflowing, are caused by heavy
precipitation in the study area. Thus, the average (any day
in the year) and abnormal intensity recorded in any day for

15 years, as well as three return periods (15, 10, and
5 years for average intensity per day), were analyzed in
this study. A total of eight rain gauge stations were con-
sidered to derive the rainfall density maps by implementing
the inverse distance weighting (IDW) for interpolation, and
this method is fit for the type of a scattered points (rain
gauge stations).

The final hazard maps were produced in GIS after cal-
culating the hazard using the following expression
(Eq. 13.7) (Xu et al. 2014):

H ¼ PS � PT ; ð13:7Þ
where H represents the hazard probability, PS represents the
probability acquired from the LR modeling, and PT repre-
sents the rainfall density layer.

13.5.4 Landslide Vulnerability Assessment

The vulnerability is an important step in landslide risk
assessment. According to Fell et al. (2008), the vulnerability
is defined as the level of loss to a given component in the
area affected by the landslide. The authors demonstrated the
vulnerability levels from 0 (no misfortune) to 1 (absolute
misfortune). For property, the damage is estimated as the
damage with respect to the estimation of the property; for
people, the probability of loss is estimated for a given person
affected by the landslide. In addition, vulnerability is also
defined in terms of susceptibility, exposure, and coping
capacity which is mathematically expressed in Eq. 13.8:

Vulnerability ¼ Susceptibility� Exposere
Coping Capacity

ð13:8Þ

The exposure-based landslide vulnerability analysis
defines the proportion of elements at risk expected to be
influenced by the landslide event (Lee and Jones 2004).
Exposure has sometimes used a component of vulnerability
(Li et al. 2010) and sometimes used a separate component
in the risk equation (Fell et al. 2005). The exposure-based
vulnerability analysis was categorized under the
quantitative-based approaches (Lee and Jones 2004). Ghosh
et al. (2012) used 12 landslides hazard scenarios to cal-
culate the number of the element at risk or those that are
likely to be affected per mapping unit. In addition, Burns
et al. (2013) performed the exposure analysis through a
series of spatial and tabular queries between hazard zones,
to find and quantify the community buildings that exposed
to landslide hazard in prone areas. In general, the
exposure-based approach is capable of identifying the
number of buildings, population density, and road networks
at risk for the preparation of risk maps despite a data-scarce
environment.
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In the current study, the landslide vulnerability is defined
as the following expression:

VL ¼ P DL � 0jL½ �; 0�DL � 1ð Þ; ð13:9Þ
where DL is the element of risk for a given phenomenon
(landslide, L) that is expected to or will definitely be dam-
aged, and VL is the probability of loss given to a landslide for
a particular element or the percentage of damage to such
element. The probability of vulnerability can be defined as a
scale ranging from 0 to 5, where 5 represents complete
damage and 0 represents no damage.

The following criteria for each type of LULC
(Table 13.1) are:

• The cost of each type of LULC by square meter.
• The cost value was obtained from the literature

(Table 13.2).
• The time required for reconstruction.
• The time required as indicated by relevant agencies in the

literature for each type of LULC (Table 13.2).
• The relative risk of the landslide (surrounding area).
• The possibility of existing damage to any property affects

neighboring properties.
• The risk to the population.
• The possibility of inflicting damage to properties and

people in certain locations of a landslide.
• General effect of certain damage (overall area)

Table 13.1 The vulnerability
value assessment for each type of
LULC

LULC type Cost
(%)

Time to
repair (%)

Relative
risk (%)

Risk to
population
(%)

General effect
of risk (%)

Vulnerability
(%)

Building of
worship areas

1.00 1.00 0.20 1.00 0.00 0.60

Dam areas 1.00 1.00 1.00 1.00 1.00 1.00

Industrial
building areas

1.00 0.80 1.00 1.00 0.50 0.90

Forest areas 0.00 0.00 0.00 0.00 0.00 0.00

Grass areas 0.00 0.20 0.00 0.50 0.00 0.20

Mixed
perennial crop
areas

0.00 0.80 0.00 0.50 0.50 0.50

Open land
areas

0.00 0.00 0.00 0.00 0.00 0.00

Pond areas 0.00 0.20 0.00 0.50 0.00 0.20

Power line
areas

1.00 1.00 1.00 0.50 1.00 0.90

Residential
building areas

1.00 1.00 1.00 1.00 0.50 0.90

Roads 1.00 1.00 1.00 1.00 1.00 1.00

River 0.00 0.20 0.00 0.00 0.50 0.20

Table 13.2 The cost value and
time to repair

LULC type Cost (RM per m2) Time to repair (per day)

Building of worship areas 396.00 60.00

Dam areas 237.00 90.00

Industrial building areas 300.00 30.00

Forest areas 11.00 0.00

Grass areas 0.10 2.00

Mixed perennial crop areas 0.20 10.00

Open land areas 0.00 0.00

Pond areas 12.00 2.00

Power line areas 300.00 10.00

Residential building areas 300.00 30.00

Roads 250.00 10.00

River 12.00 2.00
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13.5.5 Landslide Risk Assessment

Landslide risk is the amount of the negative impact to
well-being, property, or the environment. Risk assessments
include three stages, determination of risks in a certain
environment, risk evaluation, and risk management which
involve the final decision and the product of the combination
of the two previous stages in producing the best possible
solution (Bell and Glade 2004). (Xu et al. 2012) defined the
risk as the probability of harm caused by a particular hazard
to a specific element. In the present study, risk analysis was
conducted to calculate the expected amount of loss caused
by landslides in the study area. The risk is determined on the
basis of the formula for hazard and vulnerability, as shown
in Eq. 13.10, where R is the expected risk, H is the estimated
hazard, and V is the assessed vulnerability (Varnes 1984).

R ¼ H � V : ð13:10Þ
In the present study, a semi-quantitative approach was

used by combining the hazard and vulnerability results using
Eq. 13.8. To ensure effective visual interpretation, and also,
by exposure spatial overlay of hazard map (for given return
periods) and elements at risk to estimating loss and annu-
alized risk. In addition, the loss analysis has to be conducted
for each combination of hazard maps and an element at risk
map. Then, the annualized risk was calculated using the
following equation:

Risk ¼ 1
P1

� S1þ 1
P2

� 1
P1

� �

� S1þ S2
2

þ 1
P3

� 1
P2

� �

� S2þ S3
2

ð13:11Þ
where P1 and P2 are the return period used, and S1 and S2
are the losses.

13.6 Results

This section presents the results of landslide susceptibility,
hazard, vulnerability, and risk assessments. It also briefly
highlights the findings, whereas the discussion is given in a
separate section.

13.6.1 Results of Landslide Susceptibility

The landslide susceptibility map for the study area was
produced by the LR model. The LR model established a
relationship between the landslide conditioning factors and

the landslide occurrence (absence/presence) as shown in
Eq. (13.6). In this study, the landslide susceptibility index
(LSI) was reclassified into five susceptibility classes
according to the quantile classification method of ArcGIS
10.2, very low, low, moderate, high, and very high classes
(Fig. 13.5). The quantile classification method was utilized
because of its popularity (Jebur et al. 2015; Tehrany et al.
2013); however, other methods (i.e., natural breaks, equal
intervals) could also be used depending on the application
types and the case study being investigated (Kritikos and
Davies 2014; Nandi and Shakoor 2010).

LSI ¼ 0:010� ‘‘Altitude’’ð Þþ 0:053� ‘‘Slope’’ð Þ
þ 0:286� ‘‘Aspect’’ð Þ
þ 0:030� ‘‘Curvature’’ð Þ � 0:51� ‘‘SPI’’ð Þ
� 0:022� ‘‘TWI’’ð Þþ 0:021� ‘‘TRI’’ð Þ
þ 0:076� ‘‘STI’’ð Þ � 0:017� ‘‘Lineament’’ð Þ
þ 0:184� ‘‘Geology’’ð Þþ 0:149ð
� ‘‘river’’Þþ 0:004� ‘‘road’’ð Þ � 0:816

ð13:12Þ
The generated map (Fig. 13.5) reflects the potential of

landsliding in Ringlet area, Malaysia. The AUC-based val-
idation of this map showed that the success and prediction
rates of the LR model were 86.22% and 84.87%, respec-
tively. LR achieved an acceptable accuracy according to the
ROC curves as shown in Fig. 13.6.

13.6.2 Results of Landslide Hazard Mapping

After the landslide susceptibility map was produced based
on the topographic and geomorphologic factors, the values
of rainfall for 15 years were used to generate the hazard
maps. The hazard maps were categorized using a quantile
classification method. The hazard maps were divided into
five classes, namely very low, low, medium, high, and very
high as shown in Fig. 13.7. The available rainfall informa-
tion (2000–2015) has made the production of hazard maps.

Several scenarios of hazards were evaluated based on the
results of landslide susceptibility and rainfall triggering
factor. For different hazard types, determining if the hazard
types are dependent or not is important, which means finding
out whether or not the hazard types are related to the same
triggering event. In this study, all of the hazards are related
to the same trigger that is rainfall. This fact is important in
estimating risk, where we take the maximum loss per LULC
type of the hazards. Therefore, we would not add the losses
for different hazards but would take the maximum losses for
each hazard.
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Although most parts of the study area were generally
susceptible to landslides, the hazard was high and very high.
By contrast, the significant difference between hazards of
return periods, average, abnormal can be attributed to the
amount of rainfall intensity.

13.6.3 Results of Vulnerability Assessment

A vulnerability map was derived according to the LULC
criteria because of the lack of information on landslide

intensity: cost, the time required for reconstruction, the
relative risk of landslide, the risk to the population, and
general effect on certain damage. The LULC map of the
study area was produced by a supervised classification of
high-resolution SPOT image (10 m spatial resolution)
supplemented by very high-resolution aerial orthophotos
and manual editing. Overall, 12 classes were identified
and mapped as shown in Fig. 13.8. Forest area is con-
sidered as the main LULC type in the study area.
Each LULC type was assigned a number (1–5) associated
with the condition of the LULC type under particular

Fig. 13.5 Landslide
susceptibility map of the study
area produced by LR model
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criteria. Subsequently, the outcome was resampled using
Eq. 13.13.

Xij ¼ Xj � Xij=Xmax�j � Xmin�j; ð13:13Þ
where Xij is the standardized score for the ith alternative and
jth attribute, Xij is the raw score, and Xmax−j and Xmin−j are
the maximum and minimum scores for the jth attribute,
respectively. To normalize vulnerability with a range
between 0 and 1, the vulnerability map was generated and
divided into five classes, namely very low, low, medium,
high, and very high. Most of the LULC types have a vul-
nerability of more than 0.5. The highest vulnerability was
concentrated in certain parts of the study area (Fig. 13.9).

The results show that some of the LULC types that
showed high vulnerability were categorized as low risk
because of the conditions of the resulting hazard, as shown
in the northern part of the study area. Meanwhile, some
roads and power lines were categorized as high risk because
the hazard and vulnerability of these facilities were very
high. Lastly, the dam area was categorized as low risk when
it shows high vulnerability because of a hazard condition.

13.6.4 Results of Risk Assessment

Thereafter, risk analysis was conducted. The LULC map is
cross-matched with the results of return-period hazard maps
with respect to vulnerability index (Fig. 13.10) to show the
risk maps, while the losses were calculated for the three
return periods by implementing just the area of each type of
LULC crossed with high and very high hazard, and then, the
losses are computed depending on the cost of each type of
LULC in meter and the vulnerability index. The losses are
aggregated for the LULC in the type of monetary loss.

Figure 13.11 shows the generated risk maps produced
with two different hazard scenarios. The first scenario
included any day in the year (average rainfall values),
whereas the second scenario analyzed the rain values with
abnormal intensity.

Table 13.3 shows the total risk computed over the Ringlet
area for three different return periods in the absence of
mitigation measures. It is worth noting that, due to the
nonlinear increase in hazard with time, the increase in
expected losses with time is not linear.

Annual risk ¼ 0:06� 35;922;250þ 0:1� 0:06ð Þ
� 35;922;250þ 29;147;100ð Þ=2
þ 0:2� 0:1ð Þ � 29;147;100þ 21;346;050ð Þ=2
¼ 5;981;379:00 MYR:

The area under risk is calculated and defined as annual
risk (Fig. 13.12). The annual risk is used in the cost–benefit
analysis, where the difference in annual risk before and after
the implementation of risk reduction measures (benefit) is
compared with the cost of implementation.

13.7 Discussion and Conclusion

The results of this study showed that the average annual
economic risk of landslides is 5,981,379.00 MYR in the
study area. The uncertainty in the calculated losses related
to a number of factors including the quality and the
availability of data, the accuracy of landslide susceptibility
and hazard maps, and the definition of multi-hazard sce-
narios. The quantity and the spatial distributions of

Fig. 13.6 AUC a success rate curve and b prediction rate curve
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Fig. 13.7 Hazard maps for the
study area: a hazard map when
average intensity of rain (in any
day), b hazard map when
abnormal intensity of rain
recorded (in day), c hazard map
for 5-year return period with
average intensity of rainfall per
day, d hazard map for 10-year
return period, and e hazard map
for 15-year return period
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Fig. 13.8 LULC map of the
study area
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Fig. 13.9 Landslide
vulnerability map
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historical landslides, as well as the missing information
such as date of landslide events and their magnitudes,
affected on the accuracy of the calculated losses. In addi-
tion, the prediction accuracy of LR model (84.87%) can be
considered as acceptable for landslide susceptibility
assessment, but still there were uncertainties in the esti-
mated losses due to the error rate of the LR model. Fur-
thermore, during extreme rainfall events, multiple hazards
(landslides, flash floods) may affect the same locations. To

reduce the uncertainties due to this problem, only maxi-
mum losses were considered. However, this cannot solve
the problem completely, and further investigations and
modeling with high-quality data are required. Another
uncertainty is due to the quality of vulnerability curves
which mostly based on expert opinion and previous works.
To improve the landslide risk modeling, spatial libraries
that contain building types, the number of people in each
building, and hazard intensities will be necessary.

Fig. 13.10 Generated risk maps for the study area for different scenarios: (left) risk map for any day in the year, (right) risk map when the rain
value record abnormal intensity
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Fig. 13.11 Generated risk maps for the study area for different return periods: a risk map for 15 years, b risk map for 10 years, and c risk map for
5 years
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There are many challenges to accurately model
multi-hazard landslide risks which are important to be fur-
ther investigated in future works. Building comprehensive
landslide inventory databases is the most important research
problem as it creates uncertainties in all the subsequent
analysis, establishing relationships between hazards inten-
sities and historical building damages and losses in other
properties. Finally, validation methods of landslide risk
assessment are at early stages. The traditional method is to
compare the calculated losses with those of similar events
that have occurred in the past. However, to improve the
landslide risk modeling approaches, validation methods
should be improved so that better comparison can be done
with the available models.
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14Debris Flow Susceptibility Assessment Using
Airborne Laser Scanning Data
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and Bui Tien Dieu

14.1 Introduction

Debris flows and related landslide failure phenomena occur
in many mountainous areas worldwide and pose significant
hazards to settlements, human lives, and transportation cor-
ridors (Jaedicke et al. 2008, 2009). Debris flows occur on
different terrains where sufficient debris materials are avail-
able and the angle of slope is steep enough. Flow behavior is
of different types, namely confined, unconfined, and transi-
tion (Fannin andWise 2001). Flow behavior can be identified
according to the specifications of the source and evidence
area (Lorente et al. 2007). Given the heavy precipitation in
upper catchments, debris flows become frequent in highly
susceptible areas. However, a susceptibility map does not
directly represent the temporal probability occurrence
because temporal data are not used in debris flow modeling.
Debris flow susceptibility mapping is generally implemented
to delineate potential danger areas with minimum data
requirements (Glade 2005; Jakob 2005; van Westen et al.
2006). Susceptibility analyses can identify the most vulner-
able and potentially unstable areas, especially in down-slope
regions, that could be affected by debris flow. Susceptibility
analysis is the main assessment tool to identify potential
impact zones because it determines where further studies
need to be conducted in detail (van Westen et al. 2006).

Debris flow processes are controlled by many factors,
such as geological setting, relief, substratum type, and
availability of debris, and strongly influenced by triggering
factors, such as rainfall and heavy snowmelt events (Fischer
et al. 2012). In recent years, the use of high-resolution air-
borne laser scanning data from light detection and ranging

(LiDAR) has become extremely popular in debris flow
modeling. LiDAR-derived data can be used as main inputs in
debris flow source identification and susceptibility assess-
ment to produce highly accurate and useful results.
LiDAR-derived parameters can aid in the accurate modeling
of depths and velocities and representation of field condi-
tions. Accurate and reliable debris flow susceptibility maps
can be produced with physical modeling methods. Physical
models incorporate hydrological models and infinite slope
stability in their analysis (Frattini et al. 2010). These models
describe the geometry evolution of a finite mass of granular
materials and the velocity distributions as the mass slides
down an inclined plane. These models also simulate maxi-
mum flow height, momentum, and pressure, which are useful
in assessing potential risks in an area (Christen et al. 2012).

This paper presents debris flow susceptibility mapping
with a physical modeling approach implemented in Flow-R
and rapid mass movement simulation (RAMMS) environ-
ments. Several topographical parameters (e.g., slope, aspect,
and curvature) and thematic layers (e.g., land use and
lithology) were examined. These parameters and thematic
layers were then used to identify debris flow sources in the
study area. Afterward, a susceptibility map of debris flow
was produced with Flow-R and RAMMS models. The
affected areas were evaluated by overlaying the produced
susceptibility map and land use.

14.2 Previous Studies

In mountain environments, debris flows are the most dan-
gerous natural hazards that threaten human lives. Designing
debris flow barriers is necessary to mitigate the potential
hazard and impact force of debris flows. Currently, devel-
oping theoretical and mechanistic models are insufficient
(Proske et al. 2008; Hübl et al. 2009). Therefore, debris flow
impact models for engineering purposes are based on
empirical and rational models. Examples of such case
studies were performed by Egli (2005) and Wendeler (2008).
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Estimation of impact force can be performed under
real-world conditions or in laboratories through experimental
studies. Measurements of impact forces under real-world
conditions were performed by Zhang (1993) and Hu et al.
(2011) in China, König (2006) in Austria, and Wendeler
et al. (2007) in Switzerland. An advantage of observing real
debris flows is that scaling consideration is unnecessary
(Scheidl et al. 2013). However, measuring additional indi-
cators, such as flow height, speed, and density, is complex.
Moreover, predicting the time of debris flow is difficult.
Therefore, laboratory experiments, which involve
small-scale measurements, were developed. However,
physical modeling presents possible scale effects (Armanini
and Scotton 1992; Ishikawa et al. 2008; Hübl and Holzinger
2003; Monney et al. 2007; Wendeler 2008). Given that a
scale-dependent interaction exists between solid and fluid
phases in debris flow behavior (Iverson and Denlinger 2001;
Iverson et al. 2011), the hydrodynamic method was devel-
oped to extrapolate from the experimental scale to the field
scale (Hübl and Holzinger 2003). This approach considers
both geometric and simple kinematic similarities. A dimen-
sionless number called the Froude number is used to char-
acterize kinematic similarity and reveal the performance of a
model in relation to a real system (Scheidl et al. 2013).
Therefore, the values of the Froude number and natural
debris flow events should be similar.

Hübl et al. (2009) investigated the relationship between
the impact force of debris flow and the Froude number for
both field data and data from miniaturized laboratory tests.
They reported that the Froude number of the miniaturized
tests ranged from 1.2 to 2.0; however, the range of 0–2 was
used in the field measurement. They concluded that the
model presents a systematic error when the ranges of input
and field data do not agree. Therefore, hydrodynamic models
do not perform well with low velocities and low Froude
numbers. According to this literature review, the approaches
for the prediction of run-out distance of landslide debris can
be categorized into analytical, numerical, and empirical
models (Dai and Lee 2002). Analytical models define the
dynamic behavior of debris movement and depend on
lumped mass methods in which the debris mass is assumed
to be a single point (e.g., the sled model) (Sassa 1989).
Numerical models define the dynamic motion of debris, and
rheological models describe the material behavior of debris
(Dai and Lee 2002). From a mathematical point of view,
numerical models, such as RAMMS (Christen et al. 2010),
are utilized to investigate the variation in debris flow. These
models are pivotal tools for risk assessment and designing
measures related to mitigation processes (Deubelbeiss and
Graf 2013). However, models that use a numerical analysis
consist of friction parameters that need to be adjusted
through different means, such as matching past events’
run-out distances, flow paths, flow heights, and velocities.

Significant challenges, including a large variety of debris,
different flow types, and different material compositions, are
encountered when the calibration process is utilized; these
challenges considerably influence the choice of friction
factors (Naef et al. 2006; Rickenmann et al. 2006). To deal
with this issue, the software platform RAMMS is used.
RAMMS has a user-friendly graphical interface and flexible
configurations, which make the software simple to under-
stand (Christen et al. 2012). RAMMS can deal with debris
flow but overlooks current erosion and entrainment (Berger
et al. 2011; Schürch et al. 2011). However, “bulking”
techniques are currently under development. Many applica-
tions that show the good performance of RAMMS in debris
flow are found in Scheuner et al. (2011) and Berger et al.
(2012).

Empirical methods for landslide run-out computation
have been established based on several parameters, such as
run-out distance, damage corridor width, velocity, depth of
the moving mass, and depth of deposits (Dai and Lee
2002). Empirical approaches are simple and user friendly;
therefore, they are normally used for assessment in land-
slide run-out modeling. Debris flow empirical models, such
as Flow-R, have been designed to process geographic
information system (GIS)-based regions in susceptibility
assessments (for in-depth information on Flow-R, readers
can refer to Carrara et al. 1995; Chung and Fabbri 1999;
Hofmeister and Miller 2003; Melelli and Taramelli 2004;
and Guinau et al. 2007). This technique demonstrates
superior performance in the identification of potential
source areas and equivalent propagation extent. Further-
more, Flow-R is free of charge for different operating
systems, such as Windows and Linux, available at www.
flow-r.org. It is used in many geographical areas to produce
regional debris flow susceptibility maps with high effi-
ciency levels. Initially, it was used in Switzerland for the
Canton de Vaud (Horton et al. 2008) and the Val de
Bagnes (Jaboyedoff et al. 2012). Subsequently, it was uti-
lized by academic centers, universities, and local geological
services in France (Kappes et al. 2011), Italy (Blahut et al.
2010; Lari et al. 2010, 2011), Norway (Fischer et al. 2012),
Argentina (Baumann et al. 2011), and Pakistan (Horton
et al. 2011). Previous studies have shown that insufficient
work has been performed on debris flow modeling in
tropical areas because of the thick vegetation and compli-
cated environments in these areas.

14.3 Overall Methodological Flow

The main goal of this study is to assess the areas affected by
potential debris flows in Cameron Highlands by integrating
Flow-R and RAMMS models. The detailed methodological
flowchart is presented in Fig. 14.1. First, data were
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preprocessed, prepared, and assembled in a geodatabase.
Second, the sources of debris flows were identified by using
LiDAR data and other thematic layers, such as land use and
lithology. The results of this step were validated with
existing debris flow inventories. Third, the Flow-R model
was used to produce a debris flow susceptibility map of the
study area. Fourth, run-out distances were modeled with the
physical RAMMS model. Finally, the areas affected by
potential debris flows were assessed by using the generated
debris flow susceptibility and land use data.

14.4 Study Area

In this research, a part of Cameron Highlands was selected
as the case study because of its frequent occurrences of
landslides and debris flow. This location is a tropical rain-
forest area in Peninsular Malaysia at the northwestern tip of
Pahang approximately 200 km from Kuala Lumpur. Reports

from government agencies and previous studies indicate that
several landslides have occurred in Cameron Highlands and
caused major damage to properties. Quaternary, Devonian
granite, and schist are the main lithology types in this region
(Pradhan and Lee 2010). A 25-km2 area was selected within
Cameron Highlands for the analysis and testing of the
Flow-R and RAMMS models in the current work.

14.5 Data Preprocessing

Airborne LiDAR-derived data and other thematic layers,
such as land use, lithology, and debris flow inventory data,
were acquired. LiDAR point clouds were collected on Jan-
uary 26, 2015, over the study area. The flight height of the
airborne platform was 1510 m, the point density was 8/m2,
and the frequency rate of the laser sensor was 25,000 Hz.
The absolute accuracy (measured by the root mean-square
error) of the acquired data was 0.15 and 0.3 m in vertical and

Fig. 14.1 Flowchart of the methodology
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horizontal dimensions, respectively. Along with LiDAR
point clouds, orthophotos were captured with a Nikon D800
camera. The lithology map of the study area was obtained
from the Department of Geology and Mineral Sciences,
Malaysia. The lithology of the area consists of two main
types: schist and phyllite (Fig. 14.3h). The land use map was
derived from a SPOT 5 satellite image with a supervised
classification technique and then manually refined and
labeled in GIS (Fig. 14.3g). This procedure resulted in an
accurate and detailed land use map that helps in the study of
areas affected by potential debris flows. An inventory of
debris flow was obtained through various means, such as
interpretation of multi-temporal aerial photographs and
satellite imageries, previous studies, and multiple field visits
to the site (Fig. 14.2).

To prepare the data for modeling and further analysis,
first, LiDAR point clouds were filtered to produce an
accurate digital elevation model using the ArcGIS 10.3
LiDAR filtering algorithm (Fig. 14.3a). A digital elevation
model (DEM) was produced at 2 m spatial resolution using
the last return points. Second, four terrain factors, namely

slope (Fig. 14.3d), aspect (Fig. 14.3b), plan curvature
(Fig. 14.3e), and profile curvature (Fig. 14.3f), as well as a
hydrological factor [i.e., flow accumulation (Fig. 14.3c)]
were derived from the DEM model at the same resolution by
spatial analysis tools available in the ArcGIS 10.3 software.
Third, the LiDAR factors, debris flow inventory, and the-
matic layers (i.e., lithology and land use) were geometrically
corrected and assembled in a geodatabase. Lastly, the pre-
pared data were used for the identification of debris flow
source areas, debris flow susceptibility assessment, run-out
modeling, and estimation of areas affected by potential
debris flow.

14.6 Identification of Debris Flow Source
Areas

A good-quality debris flow inventory map is required for
detailed and accurate debris flow modeling and run-out
distance estimation. Given that the debris flow inventories
for the study area were incomplete and not up to date, the

Fig. 14.2 Debris flow inventory map
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source areas were delineated using an indexed approach
(Fischer et al. 2012). In this approach, LiDAR-derived fac-
tors, such as altitude, slope, aspect, and curvature, as well as
thematic maps, such as land use and lithology, were applied
(Fischer et al. 2012). The approach is a knowledge-based
method, in which the input factors are reclassified into two

classes based on a specified threshold for each factor (Fis-
cher et al. 2012). In this step, the resulting raster data have
two classes: potential areas for debris flow and non-debris
flow areas. Threshold selection is challenging because the
factors spatially vary from one geographical area to another.
However, literature (Guinau et al. 2007; Kappes et al. 2011)

Fig. 14.3 Factors used in defining the source areas: a altitude, b aspect, c flow accumulation, d slope, e plan curvature, f profile curvature, g land
use/cover, and h lithology
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indicates that several thresholds can be used with slight
modifications for optimization for a local study area. In the
current study, modification of factor thresholds was per-
formed by interpreting the orthophotos and associated clas-
sification raster (Hürlimann et al. 2006). Thresholds were
specified for both confined and unconfined debris flows,
given that both are common in Malaysia. The threshold

value used in debris flow studies was −2/100 m−1 for cur-
vature (Horton et al. 2008; Blahut et al. 2010). The slope
angles for grassland were 25° to 41° (mean at 37°) and 25°
to 47° (mean at 39°) for forest areas. In addition, given that
the study area is mainly granitic bedrock where major debris
flows occur, granitic bedrock areas were used as a potential
area for debris flow. Geological setting is the main factor

Fig. 14.3 (continued)
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that affects the variability of debris flows in the study area.
Bedrock type mainly defines weathering type and intensity,
thus influencing loose sediment availability, type, and grain
sizes, which in turn control the disposition of debris flows.
After reclassifying all the available factors with their corre-
sponding selected thresholds, the debris flow source areas in
the study area were identified a. Good agreement was
observed between the results of the modeled source areas
and the debris flow tracks mapped in the inventory map.

14.7 Modeling Debris Flow Susceptibility
(Flow-R Model)

Flow-R is an empirical model developed in MATLAB for
debris flow susceptibility assessment. This model is used by
different countries to produce debris flow susceptibility maps
with acceptable accuracy. Initially, Flow-R was used by
Switzerland for the Canton de Vaud (Horton et al. 2008) and
the Val de Bagnes (Jaboyed-off et al. 2012) regions. The
model regards DEM as input data and processes it in two
steps. In the first step, the source areas of debris flow are
identified by utilizing morphological and other user-defined
criteria. The next step includes propagating the debris flow
from the initial sources identified in the first step on the basis
of frictional laws and flow direction algorithms. The Flow-R
tool is supported by a user graphical interface to simplify the
identification of source areas of debris flow and to evaluate
the model parameters. Selection of model parameters in
Flow-R is an empirical process, which means that the user
should determine suitable parameters based on hazard types
(Horton et al. 2013).

14.8 Run-Out Modeling with RAMMS

RAMMS is a modified model based on the Navier–Stokes
equation and Voellmy–Salm (VS) frictional relationship
(Christen et al. 2012). Debris flow is described as a
hydraulic-based depth-averaged continuum model (Christen
et al. 2010). The environment is described in three dimensions
using the RAMMS model. The direction of the flow down a
surface is shown by x and y, and the elevation perpendicular to
the profile is provided by z(x, y) (Fig. 14.4). A gravitational
acceleration vector and a time factor are defined for each
direction. The main parameters of non-uniform motion are
flow height (H) and mean velocity (U).

The RAMMS model requires several input data, starting
conditions, and model friction parameters (Christen et al.
2012). DEM is the main input data because it characterizes

natural terrains. The starting conditions are often defined as a
release area extracted from the identified debris flow sources.
The results of the model are sensitive to the definition of the
initial conditions (Bartelt et al. 2012). The maximum flow
height, velocities, pressure, and momentum can be predicted
with the VS model. The geophysical mass movement of
debris flow is calculated with the RAMMS model.

A minimum travel angle, which defines the slope between
the start and end points of debris flow, is used to characterize
the maximum run-out distance. The minimum travel angle is
often set to 10° based on Huggel et al. (2003). In this study, to
determine the susceptibility of debris flow, three run-out
scenarios were analyzed (high-, medium-, and low-frequency
scenarios). Travel angle has a negative relationship with
debris volume. In other words, a high angle value indicates a
low volume of debris and a short run-out distance. Finally,
the susceptibility map was produced with three classes by
considering the three scenarios with travel angles of 10° for
the high-frequency scenario, 15° for the medium-frequency
scenario, and 30° for the low-frequency scenario.

14.9 Mapping of LULC Areas Affected
by Potential Debris Flows

Another aspect of the use of run-out models is the possibility
to estimate the LULC areas affected by debris flows. To
prepare maps, the land use layer is usually overlaid with
debris flow deposition depths. With additional field data,
such as number of causalities and cost per square meter,
transfer functions can be developed. These transfer functions
generally translate the affected areas into losses. In this
study, affected LULC areas were mapped to show the spatial

Fig. 14.4 Three dimensions of environment using RAMMS model
(modified after Christen et al. 2010)
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or geographical distribution of expected losses from debris
flow in the study area (Fig. 14.11). However, because of the
limitations in field data, quantitative assessment of these
losses was not achieved in this study. With such field data,
performing a complete risk assessment by using the loss
index to define the vulnerability of each element at risk (cost
per m2) is possible.

14.10 Results

14.10.1 Debris Flow Source Area Map

The debris flow sources were mapped with the Flow-R
model, which combines a set of thematic layers with
user-defined thresholds. Five thematic layers were used
(altitude, slope, plan curvature, land use, and geology).
However, because the authors wanted to use the inventory
data available for the study area, these inventory data were
added as an additional layer to improve the accuracy of the
source areas. In addition, the spatial variations in the con-
trolling factor (i.e., slope) make the delineation of the source
areas with the thresholds recommended by previous studies
a challenge and may not be valid with the field conditions in
other areas. For example, Fischer et al. (2012) used a slope
angle of 25° to 45° as a slope threshold in Norway; however,
in the current study, inventory statistics showed that 8 out of
34 debris flows occurred in areas with slopes beyond this
range. Therefore, the use of debris flow inventory data in
Flow-R modeling is an important step. Figure 14.5a shows
the debris flow source map produced with the Flow-R
model. The overall accuracy of source identification is 82%.
Figure 14.5c shows an example of a correctly identified
source, and Fig. 14.5b shows an example of misidentified
sources. Accuracy was estimated by overlaying the produced
source area map from the Flow-R model and the available
inventory map at the pixel level. Overall, six sources in the
inventory map were not identified for the following reason.
After resampling DEM to 2 m spatial resolution as sug-
gested by other researchers, the geomorphological parame-
ters of small debris flows (<100 m2) were affected by the
neighborhood pixels. In small debris flows, the details of
geomorphological features can only be accurately detected at
fine DEM resolutions, and resampling leads to averaging the
pixel values. This resampling most probably changed the
actual values of several samples in the study. Meanwhile,
using a DEM spatial resolution of 2 m reduces the effects of
surface roughness on propagation extent and channelization.
In addition, although several researchers have recommended

the use of 10 m DEM, the use of large spatial resolutions in
the current study led to artifact propagation and difficulty in
the interpretation of run-out distance susceptibility because
the susceptibility map of small debris flows were pixelated.

The Flow-R model identified approximately 0.05 km2 out
of 3 km2 of potentially unstable slopes. The percentage of
pixels identified as debris flow sources were located in land
use and lithology classes, as shown in Table 14.1. Most of
the debris flows were identified in vacant areas (98.9%) and
in areas with granite-type lithology (99.1%). The identified
debris flow sources were distributed in other land use types
as follows: forest (0.6%), industrial areas (0.02%), trans-
portation (0.21%), and agriculture (0.24%). Meanwhile, only
0.9% of the pixels were found in areas that are of schist-,
phyllite-, and slate-type lithology.

Land use is considered an important conditioning factor
for various natural hazards, including debris flows. Land
uses, such as built-up and outcropping bedrocks, control the
availability of materials. Vegetation and dense forests reduce
the initiation potentials because they reduce surface runoff.
Another advantage of using land use in the identification of
debris flow initiations is the removal of some uncertain
individual or small group pixels, in which the conditions of
the thresholds of geomorphological parameters set by the
user are met. Meanwhile, the lithology layer contributes to
sediment availability.

14.10.2 Results of Run-Out Modeling

The identified debris flow initiations were used to model the
run-out distances using the method proposed by Horton et al.
(2013) that is mainly based on simple frictional laws. The
model consecutively processed the active cells in the dataset.
The path and spreading of the debris flows were modeled
with a spreading algorithm, whereas run-out distances were
determined with the friction law algorithm. The model
produced two main outputs: maximum probability of sus-
ceptibility and maximum kinetic energy. Maximum proba-
bility of susceptibility ranged from 0 to 1, as shown in
Fig. 14.6a. In the figure, a surface with a red color has a
higher probability to be reached by a debris flow than a blue
one. This high probability of run-out propagation is related
to drainage channels. This relation is more obvious in the 3D
view (Fig. 14.6b), which shows the probability of debris
flow paths increases (yellow to red) in the drainage channels.

The probability of the run-out distance of debris flow
paths is used to reproduce debris flow events. The quality of
such simulations depends largely on model parameterization
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Fig. 14.5 Identified debris flow source areas. a Source area of the study area shows the correctly identified and miss-identified sources based on
the available inventory map, b an example on the miss-identified sources, and c an example on the correctly identified source area
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and identification of initiations (Table 14.2). Extensive field
measurements are necessary to calibrate models for accurate
simulations of run-out distances (Graf and McArdell 2009).
The model parameters directly affect the simulation results,
and the location and size of debris flow sources affect the
length and extent of the simulated run-out distances (Iovine
et al. 2003). Therefore, to improve the quality of the simu-
lation of the run-out distance of debris flow paths, accurate
field measurements and robust debris flow source area
identification algorithms are needed.

Although the accuracy assessment and inventory debris
flow data revealed the effectiveness of the source area
identification approach (i.e., overall accuracy of 82%), the
uncertainty in the run-out distance simulations is caused by
model parameterization. The quality of DEM also plays a
significant role in identifying the source areas and simulating
the run-out distances of debris flows. A spatial resolution of
2 m was used in this study because the simulations were
carried out in a relatively small area (*3 km2) that con-
tained urban and dense forest locations. This resolution
produced reasonable results; however, fine resolutions were
not tried because they result in surface roughness and
channelization of propagation extent.

Figure 14.7a shows the debris flow run-out distance
susceptibility map produced with Flow-R and several
examples of the calculated distances in GIS for the simulated
debris flow paths. The distances were measured from the
source area to the farthest point of the propagation extent.
The calculated run-out distances for the 24 debris flows
simulated in Flow-R showed minimum and maximum val-
ues of 92 and 6692 m, respectively. Five of the debris flows,
including the one with the longest simulated run-out dis-
tance, could exert significant potential damage to urban and
the surrounding areas (Fig. 14.7b). The three most highly
susceptible debris flows are highlighted in red circles; the
two other debris flows mostly affect agricultural lands
(Fig. 14.7b). The run-out simulations did not show the

quantitative values for debris flow effects on urban or other
vulnerable features. The details of the debris flow effects on
different land use types will be discussed later based on the
disposition of the debris.

The maximum velocity threshold of 15 ms−1 was selected
for the run-out distance simulations according to previous
studies (Fischer et al. 2012), given that no velocity measure-
ments exist for debris flow events in the study area. Fig-
ure 14.8 shows the angle of reach and run-out distance profile
of the debris flow event with the longest run-out distance
(692 m). The elevation of the source area ranged from 1100 to
1160 m, and the elevation of the farthest deposit reached by
the debrisflow is 1030 m. The calculated angle of reach is 11°.
Several studies implemented the travel angle of 11° for
spreading; these studies includeHaeberli (1983), Rickenmann
and Zimmermann (1993), and Bathurst et al. (1997). Selection
of the angle of reach threshold is important because it supports
the important role of event volume in run-out distance.
Meanwhile, the run-out distance profile shows that the peak
probability (0.9) is located just at the end of the source area.
Therefore, the probability generally decreased with several
fluctuations because of the difference in the morphological
characteristics of the terrain and surface roughness.

Figure 14.9 shows the reclassified run-out distance sus-
ceptibility modeled in Flow-R. The map was reclassified into
four classes of low, moderate, high, and very high based on
the travel angles calculated in GIS. The remaining areas
were considered non-susceptible. The percentages of the
classes are as follows: 23.5% for low, 21.80% for moderate,
36.5% for high, and 18.20% for very high. The simulated
debris flow susceptibility is important for land use planning
and for estimating the potential damages during any debris
flow event in the study area. However, in this map, temporal
probability is assumed to be constant over the entire hazard
initiation probability class. Therefore, the produced suscep-
tibility map can serve as a preliminary tool in the mitigation
of debris flow risks in the study area.

Table 14.1 Percent of the pixels
identified as debris flow sources
in each land use and lithology
types

Class Percent of pixels identified as debris flow sources

Land use Forest 0.60

Industrial areas 0.02

Transportation 0.21

Agriculture 0.24

Vacant land 98.9

Lithology Schist, phyllite, slate 0.90

Granite 99.10
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Fig. 14.6 Maximum probability of debris flow occurrence a shows the probability distribution in the study area and b shows a 3D view of the
maximum probability for specific debris flows highlighting their details
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14.10.3 Results of Geophysical Parameter
Simulation with RAMMS

Five geophysical parameters for each debris flow source
area were simulated with the RAMMS model. However,
only the two most important ones are discussed. The
velocity of the debris flow varied across the area; the
minimum velocity was close to 0 ms−1, and the maximum
velocity was 15 ms−1 (Fig. 14.10a). Velocity increased in
the steep terrains and contributed to the downward move-
ment of debris flow. The velocity of debris flow also
increased because of the volume of materials entrained as
the debris moved and the basal friction component of the
flow at various points. Furthermore, velocity increased at
the confluence of flows in the channel because of the
narrowing of the channel. Meanwhile, velocity was low in
the source areas at the top of catchments mainly because
debris materials have not gained enough energy to flow
because of the inertial force that tends to restrict the flow of
movement. However, flow depth remained fairly constant
but increased at the mouth of the debris flow fan where all
the debris flow materials tend to accumulate, thus forming
a debris dam. The simulated dispositions ranged from 0 m
to 0.75 m.

Figure 14.11 shows the areas of LULC affected by debris
flow deposition depth. Exact prediction of building vulner-
ability to debris flow impact is challenging because debris
flow velocities and flow depths at the point of impact can be
estimated with uncertainties for different debris flow sce-
narios (Jakob et al. 2012). In addition, land use information
is too general, which limits the simulation of the exact
elastic, plastic, or rigid behavior of buildings. Therefore, in
this study, only qualitative assessment was performed for the

land use effects of debris flow simulated with the Flow-R
and RAMMS models. The results showed that highways,
residential areas, and agricultural lands are at risk. The
average deposition depth predicted for highways is 0.5 m.
The predicted velocities at these points reach 8 m/s, which
can pose significant risks for passing vehicles and pedestri-
ans. For agricultural lands, although the depth is less than
0.5 m, the potential debris flow could exert significant
effects on crops, especially during harvest time. The middle
area of the south part shows that several residential buildings
are at risk of debris flow with different magnitudes
depending on the type of materials and structural behavior of
the buildings. Velocity and flow depths also play a role in
the extent of the effect of debris flow on buildings. However,
to estimate the accurate effect of debris flow on residential
areas and transportation infrastructures, accurate input data
are necessary.

This preliminary investigation of the potential effects of
debris flow on different infrastructures can help local gov-
ernment agencies and the national government create land
use plans and engineered structures.

14.11 Conclusion

This study conducted preliminary debris flow modeling and
run-out susceptibility assessment by using Flow-R and
RAMMS models. A 2 m DEM was prepared from LiDAR
point clouds, and other parameters were used for the mod-
eling and susceptibility assessment. The Flow-R model was
used to produce debris flow initiations and a susceptibility
map, and the RAMMS model was utilized to simulate the
geophysical parameters of the identified debris flow sources.

Table 14.2 Model parameterization for the debris flow source identification and susceptibility analysis

Source Run out

Parameter Values chosen Parameter Values chosen

Planar curvature
threshold

<−2/100 m−1 Flow direction algorithm Modified Holmgren
(1994)

Slope angle >18° Inertial algorithm Weights

Altitude >1100 m Holmgren exponent 1

Land use/cover Forest, bare land, agriculture
included.

Angle of reach (=constant friction loss
angle)

7°

Lithology Schist excluded

Inventory data Converted into probability (>0.8)
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Fig. 14.7 a Run-out distance susceptibility map and b the calculated run-out distances based on the debris flow susceptibility map
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Fig. 14.8 Profile of the debris
flow with the longest run-out
distance (692 m) identified in the
study area. A line for the
identification of the angle of reach
was positioned between the
source area and the furthest point
of the run-out

Fig. 14.9 Reclassified debris
flow susceptibility map
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Fig. 14.10 RAMMS derived
geophysical parameters
a velocity, b deposition
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The overall accuracy of source identification was 82%.
The 2 m DEM was suitable for modeling debris flow events
in the study area. The Flow-R model identified approxi-
mately 0.05 km2 out of 3 km2 of potentially unstable slopes.
The percentage of pixels identified as debris flow sources
were mostly located in vacant areas (98.9%). The run-out
simulations showed that the 24 debris flows had minimum
and maximum values of 92 and 6692 m, respectively. Five
of the debris flows, including the one with the longest
simulated run-out distance, showed a significant potential
damage to urban and the surrounding areas. Furthermore, the
geophysical parameter simulations indicated that the maxi-
mum velocity is 15 ms−1, and the deposition depth could
reach 0.75 m. Future work should focus on detailed sensi-
tivity analyses of physical models to improve the accuracy of
the estimated parameters for potential debris flows. These
analyses will allow for an accurate quantitative assessment
of debris flow effects on land use features, and improved risk
management strategies can be established.
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15Rockfall Hazard Assessment: An Overview

Biswajeet Pradhan and Ali Mutar Fanos

15.1 Introduction

Rockfalls are landslides that exhibit mass movements and
highly varied volume and that involve rock masses ranging
from several cubic centimeters to thousands of cubic meters.
Rockfalls happen when rock masses are detached from a cliff
face and freely fall under the effect of gravity (Blahut et al. 2013;
Youssef et al. 2015; Varnes 1984). Even small-magnitude
events can be extremely destructive because of their high
velocities reaching up to tens of meters per second; they can
potentially damage roads and cause fatalities. After a landslide
occurs, rockfalls are among the natural hazards that mostly
affect roads with steep roadside cuttings through brittle rock
masses (Kharel and Dhakal 2013). Therefore, a rockfall is a
serious natural disaster in mountainous regions and poses a
major threat to infrastructure, transportation networks, and
people.

Rockfalls are composed of detached rocks from a cliff
face, with subsequent free-falling (flying), bouncing, sliding,
and rolling motions along a slope surface with high velocity
(Arbanas et al. 2012; Ferrari et al. 2013; Leine et al. 2014).
Rock detachment is basically attributed to discontinuities, as
well as to relevant weathering and deterioration, along sur-
faces. Major triggering factors of rockfalls include satura-
tion, erosion, freezing temperatures, weakening caused by
water runoff, earthquakes, wildfires, the presence of vege-
tation roots, frequent freeze–thaw cycles, thermal expan-
sion–contraction, and high rainfalls (Asteriou et al. 2012;
Wyllie 2014; Sabatakakis et al. 2015).

Traditional surveying techniques restrict the gathering of
spatial datasets to generate digital elevation models (DEMs)
required for rockfall modeling (Salvini et al. 2013). In the last
decade, new remote sensing technologies and powerful geo-
graphical information systems (GIS) have increased

topographic information, thereby providing a basis for
developing new methodologies to analyze Earth surfaces;
moreover, new techniques, such as light detection and rang-
ing (LiDAR), have risen rapidly in the fields of geohazard
assessment and modeling. At present, both airborne and
ground-based LiDAR surveys are essential for analyzing
detailed topographies (Fanos et al. 2016; Youssef et al.
2015; Barbarella et al. 2013; Pradhan et al. 2005; Tonini and
Abellan 2014; Stephenne et al. 2014; Fanos and Pradhan
2016).

15.2 Slope Failure Problem

Rockfalls pose considerable threats to public transportation
networks and properties located in hilly regions and rock
cuttings. However, rockfalls are not as economically dan-
gerous as large-scale failures that can block vital roads for
days. Rockfall fatalities tend to be of the same order as those
in other types of rock slope instabilities. Martin (1988)
reported that rockfalls, small rockslides, and ravelings are
the most frequent problems on road transportation networks
in the mountainous regions of North America. Hungr and
Evans (1988) reported 13 rockfall fatalities in the last
87 years in the mountain motorways of British Columbia,
Canada. Over the last decades, increasing incidents of slope
failure has been observed in Malaysia. Most of these inci-
dents have occurred on cut slopes or embankments alongside
roads and highways in mountainous areas (Pradhan et al.
2010). Shu and Lai (1980) recorded a major rockfall event in
Gunung Cheroh, Ipoh, Malaysia. This event involved the
collapse of the entire face of a cliff as a single plate weighing
approximately 23,000 tons and measuring 33 m in length. It
resulted in 40 fatalities, and numerous cattle were also killed.
Among the most recent disastrous slope failures occurred on
August 7, 2011, in Kampung Sungai Ruil, the Cameron
Highlands. Another incident occurred on May 21, 2011, in
Hulu Langat. Moreover, a rockfall buried the back portion of
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an illegal factory located at the foothills of a limestone hill in
Bercham, Ipoh, Perak, western Malaysia in December 2004.
This incident caused two deaths. Some rockfall incidents
have not resulted in fatalities but have caused major incon-
veniences. Examples include the Athenaeum Condominium
in Ulu Kelang in May 1999 and the rocky slope failure in
Bukit Lanjan on the New Klang Valley Expressway in 2003.
Both events resulted in traffic disruptions that lasted for six
months.

15.3 Rockfall

A “rockfall” is a slope process that involves rock fragment
detachment and their subsequent falling, bouncing, rolling,
sliding, and deposition (Varnes 1978). In certain cases,
rockfalls are quantitatively measured by describing the
insignificant phenomenon of falling blocks of rocks of a few
cubic meters up to 10,000 m3. Meanwhile, “rockslides” are
characterized by falling blocks of over 100,000 m3, whereas
“rock avalanches” may extend to a few million cubic meters
(Dussauge-Peisser et al. 2002). Rockfalls occur regularly
when one or multiple blocks fall, bounce, slide, or roll down
a slope. In a scree slope, a falling block may move beyond
the slope edge and stop at a certain distance from the base of
the slope. Falling blocks pose the largest hazard to the sur-
rounding areas of a slope, and their uncertain behavior is a
major challenge in assessing rockfall hazards (Evans and
Hungr 1993).

15.4 Rockfall Definitions

“Rockfalls” or “rockfalls” refer to rock quantities that fall
freely from a cliff face. Rockfalls are rock fragments (blocks)
that detached by sliding, falling, or toppling, and then fall off
a steep cliff face (vertically or a sub-vertically), moving
downslope by flying, bouncing over ballistic trajectories, or
rolling over talus or debris slopes (Varnes 1978). Chen et al.
(1994) defined a “rockfall” as a sudden independent block
movement or a complex of continuous rock detachments
from a steep slope. Lee and Elliot (1998) defined “rockfall”
as “the downslope boulders movement (from natural slopes)
or blocks (from cut faces) which, when not correctly
restrained, have the potential to damage or destroy structures
along their trajectory or creating an impediment to the public
transportation networks.”

Richards (1988) provided a summary of commonly
accepted properties of rockfalls as follows:

• A rockfall event comprises one block or a set of blocks
that detached from a cliff face.

• Each falling rock behaves independently of other rocks.

• A temporary loss of earth contact and high downhill
acceleration occur.

• Blocks gain significant kinetic energy during their
descent.

Rockfall failures vary from slipping failures that form on
the slipping surface of rocky slopes. Rockfalls, which
include small individual rock blocks, should be differenti-
ated from rock avalanches, which is characterized by a huge
amount of mass motion and a portion of the entire slope
(which can include the bed rock and the slope face) col-
lapsing suddenly.

15.5 Methods of Data Collection for Rockfall
Hazard Analysis

The essential variables of rockfall hazard analysis are shown
in Fig. 15.1. Susceptibility, magnitude, rockfall run-out, and
exposure are frequently assessed using well-set mapping and
measurement methods or directly defined by in situ spe-
cialists using a heuristic approach. Current developments in
digital data collection platforms and widely available com-
puting resources have allowed digital and indirect assess-
ments of rock mass stability. Such remote sensing
techniques involve LiDAR and photogrammetry.

15.5.1 Heuristic or Experience-Based
Approaches

The heuristic or experience-based approach is frequently
used for rock mass assessment when rock assessment experts
are available, and failure modes and geological settings are
well understood by the experts. Mining environments
depend heavily on heuristic assessment because in situ
experts are regularly exposed to geological, structural, and
failure models. Nevertheless, in spatially different circum-
stances, such as transportation corridors where complicated
and varying geologies and failure modes can be estimated,
heuristic approaches are only utilized at the primary level to
identify rock masses that require further assessment and
possible mitigation techniques (Ruff and Czurda 2008).

Rockfall
Susceptibility

Rockfall
Magnitude

Rockfall
Run-out Exposure

Rockfall Hazard

Fig. 15.1 Rockfall hazard evaluation framework
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15.5.2 Mapping and Measurement Techniques

Mapping and measurement methods include the immediate
physical exposure of the assessing engineer to a possibly
unstable rock mass. The engineer typically measures visibly
accessible structural characteristics, such as discontinuities
involving joints, beds, and faults. The engineer will also
assess positional parameters, such as physical setting
(height, slope length, and face angle), and how a rock mass
interacts with a highway in man-made/natural obstacles
(e.g., barriers) and the presence of shoulders and ditches.
These measurements and geologic mapping results form the
bases for a rockfall hazard evaluation system (Crosta and
Agliardi 2004).

15.5.3 Photogrammetric Analysis

Photogrammetry methods for the rock mass assessment of
potentially unstable slopes include the alignment and 3D
projection of two stereo photographs. The output 3D stereo
photographs enable the assessment of rock mass geometry
and structure. Discontinuity orientation is measured, faults
are detected, and kinematic instability is computed. Pho-
togrammetry methods for rock mass assessment are widely
published and adopted in the geological community. Com-
prehensive examples of processing and data collection
techniques are provided in Kemeny and Post (2003) and
Haneberg (2007).

15.5.4 Light Detection and Ranging (LiDAR)

LiDAR is a range-based imagery technique that can create
an accurate 3D model of the Earth surface within a short
period. LiDAR data are basically gathered via mobile aerial
surveying (e.g., using helicopters and airplanes) or static
terrestrial (using a tripod) methods. The resulting datasets
include millions to billions of points in a space coordinate
(XYZ) that can be converted into geographical coordinates,
such as the Universal Transverse Mercator (UTM). Every
point information group typically includes a “color” value
associated with the measured intensity of a returning beam
as detected by a scanner or associated with the true colors
derived from a combination of photographic techniques
(Höfle and Rutzinger 2011).

Remote geomechanical assessment of structural discon-
tinuity has conventionally involved the use of photogram-
metry techniques. In recent years, technological

advancements have led to the assessment and use of
LiDAR-based techniques in remote geomechanical analyses.
Discontinuity mapping accuracy using LiDAR data should
be assessed and compared with conventional compass-based
methods prior to implementing LiDAR in engineering
workflows (James et al. 2007).

15.6 Rockfall Research Background

Initial research on rockfall behavior was conducted by
Ritchie (1963). He stated the necessity for a prediction
method for the material stability of rock cut surfaces.
Moreover, he developed standards for designing ditches and
cut slopes (Fig. 15.2) by performing hundreds of full-scale
rockfall tests. These tests are still extensively used in rockfall
protection design at present. Ritchie (1963) investigated the
movements and trajectory of rocks and attempted to for-
mulate an analytical solution for rockfall based on move-
ment laws.

Subsequent to Ritchie’s work, substantial progress has
been achieved in rockfall behavior analysis. Most of these
studies are relevant to the highway projects. Rockfall
research has been conducted by empirical investigations,
physical simulation, and computer simulation (Dorren
2003). Initial research was typically accomplished via
empirical approaches, whereas computer modeling has been
widely used in the past two decades.

Fig. 15.2 A typical rockfall process and the rockfall design standards
based on Ritchie’s (1963) work
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15.7 Rockfall Mechanics

Ritchie (1963) provided design criteria for describing rela-
tionships among the variables of cliffs, namely slope angle,
ditch depth, and fallout area width. Rockfall mechanics for
cliffs and slopes have been considered to propose different
solutions, including fences or barriers and ditches to
accommodate rockfalls. With regard to problematic slope
gradients, Ritchie (1963) noted that a large rock had a long
run-out distance from the origin. He observed that a falling
rock would spend more time in the air and would stop when
the slope became sufficiently flat and slope irregularity
became sufficiently high to reduce rock velocity. Ritchie also
proposed a mechanical approach to describe rockfall tra-
jectory. He explained rock path as a sequence of parabolic
trajectories affected by the impact angle that determined the
velocity along and perpendicular to the effect plane. Ritchie
also suggested that the shape and size of a rock have mini-
mal effect on its falling or rolling characteristics. He inferred
that a falling rock must follow particular laws of energy,
mass, restitution, velocity, and impact, although it would be
affected by friction, time, and gravity. The mechanical
considerations of Ritchie are associated with a single rock
and its movement is unaffected by neighboring rock frag-
ments involved in a rockfall. Potential energy due to gravity
is transformed into kinetic energy in rockfalls. The line that
connects the rockfall origin and the final deposition of the
rockfall is known as the “energy line,” and the gradient is
known as the “energy line angle” (Salvini et al. 2013).

15.8 Rockfall-Triggering Factors

Rockfalls begin with the detachment of rocks from a cliff
face in a rockfall source region (Youssef et al. 2015). Rocky
slopes are subjected to varying weathering degrees that can
cause joint opening and cracking, thereby promoting rock-
fall. Rockfall promotion degree relies on the elements of the
environment that cause weathering, i.e., chemical and
physical, and on bedrock type (Day 1997). The triggering
mechanism determines the occurrence of a rockfall regard-
less of the weathering rate. The triggering factors of rockfall
conditions and mechanisms have been widely characterized
in the literature. Rockfall-triggering mechanisms can be
classified into rockfall motivators and movement causes.
Nevertheless, differentiating between movement causes and
rockfall motivators is complicated because a particular pro-
cess, such as frost shattering, typically motivates weathering
that leads to rockfall. Moreover, slope morphology and the

direct neighborhood of probable falling rocks are significant
elements for determining whether rocks will fall.

Gardner (1983) observed rockfalls in a mountainous
region and concluded that such phenomena occurred par-
ticularly on glaciers over steep rocky slopes that were
alternately subjected to thawing and freezing. Such rockfalls
occur frequently, have small magnitudes, and are common in
steep regions (Jomelli and Francou 2000). Similarly, Dou-
glas (1980) examined frequent and small-magnitude rockfall
events and proved that such events were caused by frost.
Nevertheless, he declared that the geotechnical characteris-
tics of the bedrock play a significant role. These findings
corroborated the opinion of Luckman (1976), who demon-
strated that the geological and morphological natures of
cliffs and the variations in temperature of rock surfaces
controlled rockfalls. Vidrih et al. (2001) characterized dif-
ferent rockfall causes and explored the correlation between
earthquake activities and rockfalls. They inferred that
earthquakes would trigger rockfalls. Wieczorek et al. (2000)
reported that rockfalls could be triggered by various causes,
such as seismic activities, water freezing–thawing cycles in
joints, rapid snow thawing, rainstorms, root wedging and
permeation, and stress relief deglaciation. In most studies on
slope movements, factors that triggered the movements were
either unnoticed or unreported. Reported rockfall events
have indicated that the rapid melting of snow, earthquakes,
and extensive winter rainstorms have caused more move-
ments than human activities and freezing–thawing condi-
tions. Human activities that reduce slope stability in hard
rocks remain the main element compared with geological
elements, but may vary significantly, such as in the under-
cutting of slopes through excavations or quarrying for
infrastructure. Moreover, animals can also cause rockfalls,
such as goats climbing on steep rock faces.

The overall view demonstrates that diverse elements have
been recorded as rockfall-triggering parameters. In most
cases, however, geological, topographical, and climatic
factors combined with time determine whether a rockfall will
occur. A dynamic analysis by Salvini et al. (2013) concluded
that water saturation and the implemented acceleration of
earthquakes could affect the stability of nearly all blocks.
A gradual decrease in the stability of steep rocky slopes is
one of the potential effects of warming in high mountain
areas. Lately, the possible direct role of warm temperatures
in triggering rockfalls has been studied (Allen and Huggel
2013). Rockfalls in Malaysia are mainly triggered by tropi-
cal rainfall and flash floods that cause failure of the rock
surface along fractures, joints, and cleavage planes (Pradhan
2010; Pradhan and Lee 2010).
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15.9 Motion Modes of Falling Rocks

After a rock detaches and proceeds downslope, it descends
the slope in various motion types. The type of movement
highly depends on the mean of the slope incline (Fig. 15.3).
The most significant motion modes are free-falling or flying
through the air, bouncing over the surface of a slope, and
sliding or rolling on the slope surface.

15.9.1 Free-Falling of Rocks

The free-falling of rocks occurs when slopes are extremely
steep. Ritchie (1963) stated that the free-falling of rocks
would occur if the gradient of the slope was greater than 76°.
However, this value varies in different field conditions.
Figure 15.1 illustrates that rock movements of approxi-
mately 70° transform gradually from bounce to fall.

Azzoni et al. (1995) mentioned that two types of move-
ments could occur during the free-falling of rocks. The first
movement is the translation of the rock center, whereas the
second is the rotation of the block around the center. Rota-
tion and translation are significant because falling blocks are
never round in shape. After a rock rotates in the air, it can
bounce in various directions following impact compared
with its previous direction. The velocity of a free-falling rock
is affected by air friction. Nevertheless, Bozzolo and Pamini
(1986) noted that air friction would not affect rock move-
ment. Azzoni et al. (1995) reported that a rock colliding with
other falling rocks also influenced free-falling rocks and

their trajectories. However, this effect is difficult to analyze
during rockfall events or field surveys.

15.9.2 Bouncing, Rolling, and Sliding of Rocks

Rock movement occurs on or close to the surface of a slope
when the mean incline of the slope is reduced in the
downslope section. After free-falling, a rock collides with
the surface of the slope; this movement is defined as rock
bouncing. Rocks, particularly weak ones, tend to break
down into fragments at first bounce (Bozzolo and Pamini
1986). Evans and Hungr (1993) stated that 75–85% of the
energy from the first fall was lost during the first collision
regardless of whether a rock broke or not. When the mean
gradient of the slope is lower than approximately 45°, rock
movement transforms gradually from bouncing to rolling
because of the rotational momentum collected by the rock.
Moreover, a rolling rock is nearly permanently in touch with
the surface of a slope (Hungr and Evans 1988). During the
transition from bouncing to rolling, a rock revolves rapidly
and only the edges with a high radius come in contact with
the slope surface. Thus, the center of gravity moves along a
nearly direct path, which is an effective movement mode
with regard to energy loss. Erismann (1986) stated that the
combination of bouncing and rolling was among the major
mechanisms of displacement. Sliding is another type of
movement on a slope surface. However, sliding typically
occurs only during the first and final phases of a rockfall
event. As a sliding rock begins to fall, it bounces or rolls as
the mean incline of a slope increases. A rock normally stops
because of energy loss due to friction if the mean gradient of
a slope does not change during sliding (Bozzolo and Pamini
1986). Basson (2012) reported that a falling rock could
exhibit four types of movement along its track: free-falling,
rolling, bouncing, and sliding. Typically, a rockfall incident
experiences more than one of these movements. During
free-falling, no interaction occurs between the slope and the
falling body; however, an interaction occurs for the other
types of motion, during which the rock can be fractured into
smaller portions.

15.10 Lateness of Moving Rocks

A moving rock stops after experiencing various modes of
motion. The velocity and stopping of a falling rock rely
primarily on the mean incline of a slope because a falling
rock normally decelerates on a flat slope and accelerates on a
steep slope. In addition to the mean incline of the slope,
velocity depends on the material that covers the slope, such

Fig. 15.3 Motion modes of rock during their fall on slopes based on
the mean gradients of slope (Ritchie 1963)
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as soil, vegetation, and scree. Small rocks are easier to stop
than large ones because their kinetic energy that aggregates
during a rockfall is less than that of the large rocks. Small
rocks can be easily stopped by huge obstacles, such as trees.
Moreover, they can be easily impeded in the depressions
among larger boulders on a slope surface. These reasons are
the major sorting effects on falling rocks over a slope (Sta-
tham and Francis 1986). In general, the sorting effect should
only be considered for the upper portion of scree slopes
because rocks with varying sizes in avalanches are mainly
deposited at the base (Jomelli and Francou 2000). The
stopping of falling rocks is a gradual process rather than a
sudden one. Rocks stop because of energy loss from colli-
sion forces and friction along the surface of the slope. The
frictional force of moving rocks does not only depend on
their shape, but also on the characteristics of the slope sur-
face (Statham and Francis 1986). These characteristics can
vary considerably within short distances. Thus, the frictional
force between the slope surface and a rock can be described
using the dynamic angle of friction. The dynamic angle of
friction is associated with surface roughness, which has been
defined by Pfeiffer and Bowen (1989) as the height variation
perpendicular to the slope within a particular distance of the
slope. The dynamic angle of friction of falling rocks is
described by Kirkby and Statham (1975) as shown in
Eq. (15.1):

tan/ud ¼ tan/0 þ c � dð2 � rÞ ð15:1Þ
where /ud is the friction dynamic angle (°); /0 is the internal
friction angle (°), which ranges from 20.3° to 33.7°; c is a
constant ranging from 0.16 to 0.25; d is the mean scree
diameter on the surface of the slope (m); and r is the rock
radius (m).

Forest cover also affects the transportation of scree or
large rocks. Zinggeler et al. (1991) studied the significance
of trees in stopping falling boulders and inferred that the
topography of a slope surface was equally significant;
moreover, the collision of falling rocks with tree trunks led
to energy loss, thereby ultimately causing rocks to stop in
flat regions of a slope surface. Hétu and Gray (2000) noted
the influence of a forest on scree movement on a slope
surface. They observed that the concentration of rocks over
forest edges on scree slopes increased with increasing forest
density. Moreover, they mentioned the permanent struggle
between forest settlement and active scree slope develop-
ment. The front area of an active scree slope moves down-
slope when a forest is disrupted by fire or a large-scale mass
movement. Their research elucidated the incapability of
forests to stop large-scale destruction from rockfall inci-
dents; however, forests provide efficient protection for
small-scale and high-frequency rockfall events.

15.11 Rockfall Modeling and Analysis

Several models can calculate run-out areas of rockfall inci-
dents and their characteristics in terms of trajectory, fre-
quency, velocity, bouncing height, and kinetic energy
(Volkwein et al. 2011). All existing rockfall models can be
divided into three major types: (1) process-based, (2) em-
pirical, and (3) GIS-based rockfall models.

15.11.1 Process-Based Rockfall Models

Process-based models simulate or explain rockfall move-
ment modes over slope surfaces. Gigli et al. (2014) used 2D
and 3D rockfall simulation models to calculate bounce
height, rock velocity, and kinetic energy based on rock
position along the profiles or on the slope. A 3D rockfall
model was utilized to simulate the effect of slope morphol-
ogy on rockfall trajectories at the regional scale, whereas a
2D rockfall model enabled implementation of a larger
number of simulations along the slope profiles specified by
the 3D modeling. The lumped mass approach was applied in
the two models. Each rock was symbolized by a simple point
with its mass settled at the center, and rockfall trajectories
were simulated by considering the physical laws that con-
trolled the sequence of various rockfall motion modes
(free-falling or flying, bouncing, rolling, and sliding). As an
effective and rational technique for protection measures and
performance-based design, a 3D rockfall simulation tech-
nique assists in depicting rockfall motion on a slope and in
probabilistically considering vegetation impact.

Masuya et al. (2009) elaborated a typical evaluation
technique and analyzed the manner in which a rockfall
combined with vegetation interference and other elements.
As an application, a real slope where a rockfall occurred
because of an earthquake activity was examined. The
advantages and validity of the proposed technique were used
as bases for the measurement planning and hazard mapping
of a rockfall. Ma et al. (2011) simulated actual rockfall via
discontinuous deformation analysis. In the simulation,
rockfall energy losses were classified into three types: fric-
tion loss, collision loss, and loss by vegetation. The result of
the in situ experiments illustrated that energy loss resulting
from collision was among the most significant elements.
Rockfall impact force is defined by its movement velocity
and behavior, which are conditioned by slope incline, rock
shape, height, and surface roughness of the rockfall
trajectory.

Undulating and rough slopes tend to cause changes in
rockfall trajectories. An irregular slope easily changes the
behavior of a rockfall movement from sliding or rolling to
bouncing. Moreover, a large slope incline increases bounc-
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ing movement behavior, whereas a small slope incline easily
initiates sliding and rolling. Furthermore, slope surface
undulation immediately influences rock collision angle, and
rockfall behavior easily changes from sliding or rolling
modes to bouncing mode (Wang and Lee 2012).

15.11.2 Empirical Rockfall Models

Empirical rockfall models are typically based on the corre-
lation between the topographical factors and trajectory
length of rockfall incidents. Such models are occasionally
defined as statistical models (Keylock and Domaas 1999).
Leine et al. (2013) developed a complete 3D simulation
method for rockfall dynamics. The simulation of a rockfall
was performed using hard contact laws based on the
non-smooth contact dynamic technique. The rock was
modeled similar to that of an arbitrarily convex polyhedron,
and the terrain was modeled using a high-resolution DEM.
Leine et al. (2013) proposed a specialized law of friction for
rockfall that provided scarring behavior description (i.e., a
falling rock tended to slide before bouncing on a slope
surface). The geometry of rock effect on rockfall dynamic
has been examined using two numerical simulations. Topal
et al. (2007) devised a 2D rockfall assessment that was
performed over several slope profiles. Rockfall characteris-
tics in terms of run-out distance, bouncing height, kinetic
energy, and rock velocity over each profile were evaluated
using the 2D rockfall model. The outcomes of the simulation
were utilized to outline the regions at risk. Mikoš et al.
(2006) used a 2D rockfall simulation program to analyze
rockfall in two longitudinal profiles. First, the program was
calibrated in a previous rockfall event in two longitudinal
profiles using different numbers of blocks. The initial values
of the associated model parameters were obtained from the
literature, and various combinations were tested.

Rockfall run-out has been largely determined based on
terrain roughness and surface characteristics. The number of
released blocks affects run-out distance. In particular, when
the roughness of a slope surface is high, a relatively large
number of released blocks should be used. Large blocks
have a larger bounce height and higher total kinetic energy
but lower run-out distance than small blocks. A forest may
virtually stop blocks that are less than 0.2 m, but has no
effect on 6 m blocks. The calibrated model has been applied
to another rockfall event in two longitudinal profiles without
and with a gallery for rockfalls. The results of the simulation
(bounce height, total kinetic energy) confirmed the appro-
priateness of the gallery location. They concluded that silent
witnesses, such as released blocks and tree damages, should
be used in the case of an active rockfall; otherwise, more
than one profile should be simulated. They also mentioned
that the upper scar on the rock face should be considered in

the calculation. In the case of active rockfalls, rock face
color indicates the release points. Silent witnesses may help
to a certain extent. Therefore, a rockfall model should be
calibrated with another rockfall event under same the field
conditions before it can be used.

Ahmad et al. (2013) studied various numerical simula-
tions using rockfall characteristics in terms of maximum
rebound height, translational velocity, and total kinetic
energy. They also performed a comparative assessment by
increasing the rock mass and slope height. Their analysis
result showed that varying angles of slope geometry pro-
duced more problems than the rock mass in the rockfall
scenario. Moreover, these researchers stated that nearly all of
the rockfalls occurred because of the orientation and nature
of discontinuities in the blocks. In the case of varying slope
geometry, bounce height is more variable than the other
parameters. However, as rock mass increases, bounce height
increases with the same trajectory. Bounce heights exhibit
complicated behavior as height increases. Consequently, the
geometry of a slope is a more crucial parameter for rockfall
compared with the mass of rockfall blocks.

15.11.3 Rockfall Analysis Using GIS-Based
Models

Conventional information management related to rockfalls
has typically been presented in report form, and photographs
are generally organized into file folders and kept in filing
cabinets. Data are arranged using indexing techniques to
facilitate information search. At present, non-digitized
methods cannot match our applications, and thus, introduc-
ing new techniques for information management is neces-
sary; these techniques should consider information
technology that comprises storage, acquisition, analysis, and
distribution of information through a variety of electronic
software and equipment products (Antoniou 2013). Infor-
mation technology involves more than replacing file folders
with electronic media; it completely changes the manner in
which information is viewed and used. In geotechnical
engineering, GIS application has focused on areas where
data are defined spatially (Antoniou et al. 2008). GIS tech-
nologies and databases have been adapted for information
storage associated with major geotechnical issues and their
management (Fish and Lane 2002). At present, modern
solutions for information technologies used in geotechnical
engineering are not limited to stand-alone applications that
have been developed in the past decades. However, inte-
grating other sophisticated technologies, such as Web-based
applications using the GIS environment and electronic data
gathering, has produced modern techniques for the method,
in which information is viewed and used in programming
interfaces and applications to create maps and reports.
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In the past decades, GIS has become a common technique
utilized in managing and calculating natural hazards,
including rockfalls (Pradhan 2010). GIS analysis has been
widely proposed for generating rockfall hazard maps
(Antoniou 2013). Rockfall models based on GIS are either
raster-based modeling, for which input information are
supplied via GIS analysis, or run within a GIS environment.
Such rockfall modeling consists of three steps: identifying
the rockfall source region in the zone of interest, determining
the rockfall trajectory, and computing the length of run-out
distance (Hegg and Kienholz 1995).

Lan et al. (2007, 2010) utilized a 3D extension for GIS to
determine rockfall characteristics in terms of run-out dis-
tance, energy, and velocity. Inventory data were utilized to
calibrate the mechanical parameters of the rockfall process.
They proposed comprehensive methods for rockfall hazard
assessment that considered the characteristics of rockfall
source regions, the rockfall physical process, and the spatial
attribution of rockfall energy and frequency. To evaluate the
potential effect of rockfalls on railway operations, rockfall
hazard distribution was investigated using rockfall frequency
and energy-simulated distribution. They concluded that 3D
rockfall modeling provides a fast framework for rockfall
hazard assessment and for understanding the rockfall geo-
morphic process because it deals with 3D rockfall physical
processes and the interaction of rockfall with slope topog-
raphy. Moreover, it elucidates rockfall processes in terms of
trajectory and dissipation as well as predicts their energy and
frequency spatial distribution. To assess potential rockfall
trajectories, Salvini et al. (2013) used the ArcHydro module
of ArcMap and assumed that a rockfall would follow the
direction of the steepest gradient. The morphological profile
of rockfall trajectories was derived by interpolating 3D
points obtained using a method developed in ArcInfo
Workstation combined with the ArcMap Easy Profiler tool.

Jaboyedoff and Labiouse (2011) demonstrated that
rockfall distribution regions could be specified by using a
geometric rule known as the energy line or shadow angle
technique based on a simple model of Coulomb friction
performed in CONEFALL software. Run-out zones are
evaluated from a DEM and a grid or cell file that represents
probable rockfall source regions. Moreover, CONEFALL
enables evaluation of maximum and mean rock energies and
velocities in the rockfall distribution region. The identifica-
tion of probable rockfall source areas is among the major
difficulties in rockfall hazard assessment at a regional scale.
Loye et al. (2009) studied probable rockfall source regions
based on the distribution of the slope angle derived from a
high-resolution DEM combined with other data obtained
from topographic maps and geological GIS formats. The
results showed that the predicted probable rockfall source
areas match in situ observations conducted on test areas and
derived from orthophotograph analysis.

Jaboyedoff et al. (2012a) used CONEFALL, which could
simply implement a GIS environment, to assess run-out
zones from potential source areas. Blahut et al. (2013) used
both CONEFALL and RockFall Analyst (RA) codes in
quantitative rockfall hazard and risk analysis to identify
rockfall hazard regions. They concluded that RA could map
rockfall hazard more realistically than CONEFALL in a
variety of natural conditions, particularly within the studied
region and provide realistic input data for risk assessment.
The difference is attributed to the complex input information
used in RA, which represents the local slope and energy loss
coefficients of falling boulders. Moreover, CONEFALL
calculations simplify the modeled rockfall by considering
the sliding of rock blocks rather than their falling and
bouncing.

15.12 Rockfall Trajectory Modeling
Approaches

Rockfall trajectory codes can be categorized into 2D, 2.5D,
and 3D rockfall trajectories models and adopt one of the
simulation approaches. The analysis using the selected
model can be performed probabilistically or
deterministically.

15.12.1 2D Rockfall Trajectories Models

A 2D trajectory model simulates rockfall trajectory in a
spatial domain determined by two axes. Such models can
compute along the slope profile with user input based on
distance axes (x, y) and an elevation axis (z) (Azzoni et al.
1995). Such profiles frequently follow the steepest descent
line (Basson 2012). Another type of 2D model is rockfall
trajectory, which is computed in a spatial framework deter-
mined through two distance axes (x, y), such as the contour
lines of a map or the elevation values of a raster. This model
typically computes the rockfall path using the run-out dis-
tance and velocity with sliding block and topographic–hy-
drologic methods. Gigli et al. (2014) used a 2D model to
implement numerous rockfall simulations over the most
crucial slope profiles specified through 3D modeling.
Youssef et al. (2015) used 2D rockfall simulation software to
elucidate the simulation of rockfall and define the main
effect of falling rocks on neighboring regions. Antoniou and
Lekkas (2010) used a 2D model under seismic and static
loading circumstances in run-out distance analysis. More-
over, the selection of the 2D slope profile is critical to derive
practical analysis outcomes using 2D rockfall models. Such
models only produce a spatial representation of rockfall
trajectory distribution because they require selecting critical
2D cross sections. In addition, such models are unable to
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determine 3D rockfall process characteristics (Lan et al.
2007, 2010).

15.12.1.1 2.5D Rockfall Trajectory Models
A 2.5D model, also known as a quasi-3D model, is the
second type of trajectory model and is basically a
GIS-supported 2D model used to obtain pre-specified falling
trajectories. This model separates the rockfall path direction
in the (x, y) domain from the kinematics of falling rocks and
rock trajectory along the vertical plane. To calculate the
horizontal direction of falling in the (x, y) domain, this model
divides the kinematics of rockfall calculation, bouncing
heights, and positions. This condition indicates that this
model performs two different 2D computations: defining the
slope profile location in the (x, y) domain and simulating
rockfall over the slope profile in 2D. An example of this
model is one that calculates rockfall kinematics over a slope
profile that follows the steepest gradient specified using
digital surface information, such as the Rocky3 rockfall
model (Dorren and Seijmonsbergen 2003).

15.12.2 3D Rockfall Trajectory Models

A 3D rockfall model is defined as a trajectory model that
calculates rockfall path along a 3D plane (x, y, z) in each part
of the calculation. Moreover, an interrelationship exists
among rockfall trajectory direction in the (x, y) domain, the
kinematics of a falling rock, its rebound height and position,
and, if included, the influence of trees. The main advantages
of 3D models include the converging and diverging effects of
terrain and extraordinary or unexpected trajectories. How-
ever, 3D models require spatially evident parameter maps of
the site, which are more time-consuming to prepare than the
definition of parameter values for simulating rockfall trajec-
tories based on slope profile (Volkwein et al. 2011). Exam-
ples of 3D models include rapid mass movements used by
Leine et al. (2013) for rockfall dynamics, RA, a 3D rockfall
process model integrated into GIS that enables effective
handling of numerous geospatial information related to
rockfall behavior used by Lan et al. (2007, 2010), Macciotta
et al. (2011), Blahut et al. (2013), and Samodra et al. (2013,
2014) to assess rockfall characteristics in terms of run-out
distance, energy, and velocity. Gigli et al. (2014) used RA to
assess the effects of slope morphology on rock trajectory at a
regional scale. Lopez-Saez et al. (2016) used a 3D rockfall
trajectory model for four various dates to assess the effects of
land use and land cover changes on rockfall propagation. The
simulation permitted determination of return periods and
rockfall kinetic energy, and consequently, the definition of
associated hazards at the urban front for each time step.

15.13 Simulation Approaches

Rockfall simulation methods can be classified into three
approaches: (i) lumped mass, (ii) rigid body (Hungr and
Evans 1988), and (iii) the hybrid approach (Frattini et al.
2008). The following subsections discuss each approach.

15.13.1 Lumped Mass Approach

The lumped mass approach, which is the most widely used
rockfall simulation method, considers falling rocks as point
masses. Lumped mass models disregard the size and shape
of a falling rock; moreover, the mass of the falling rock does
not influence its trajectory but is used only to calculate
energy. Lumped mass models simulate rockfall with differ-
ent motion modes (flying, bouncing, sliding, rolling, and
final deposition). They require two input parameters: the
coefficients of normal and tangential restitutions (Rn and Rt)
to compensate for the lack of physics applied in simplified
models. The two coefficients of restitution parameters
depend on several factors, such as the friction characteristics
of falling rocks, incident angle, slope friction, and collision
point in a falling rock with a non-spherical shape (Basson
2012).

15.13.2 Rigid Body Approach

Rigid body or rigorous models consider the volume and
shape of a falling rock. However, considering the size and
shape of individual rocks results in exaggerated computa-
tional demands that complicate the evaluation of a rockfall
hazard at a regional scale (Guzzetti et al. 2002). The two
input parameters in rockfall simulation based on a rigid body
approach are dynamic friction (l) and the normal restitution
coefficient (Rn). Dynamic friction is the tangent line of the
frictional angle that can be derived from empirical data. Chai
et al. (2013) demonstrated that the empirical parameter Rt
could be derived via rigid body impact mechanics using only
the material parameters Rn and l. They also introduced the
influences of rock size and shape, as well as their interac-
tions with the slope, to compute rockfall trajectory and
derive Rt.

15.13.3 Hybrid Approach

The hybrid approach combines with the other two approa-
ches such as using rigid body approach in order to simulate
rolling, impact and bounce and lumped mass approach in
order to simulate free fall (Frattini et al. 2008).
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15.14 Parameters for Rockfall Analysis

The parameters required to simulate rockfalls can be divided
into two groups: geometric parameters (seed point identifi-
cation, topography, outcropping material limit, location of
points of interest, or elements at risk) and mechanical
parameters (coefficient of restitution (COR), roughness, and
friction angle) (Gigli et al. 2014). The most significant
parameter is COR. Geometric properties are derived from
field elevation observations, whereas mechanical–physical
characteristics can be obtained from in situ and laboratory
tests or from the implementation of back analysis (Firpo
et al. 2011). The trajectories of rockfall, bouncing height,
and impact energy rely on slope surface roughness, slope
geometry, and rockfall block characteristics (Arbanas et al.
2012). The mass of a rock considerably influences impact
energy, such as the kinetic energy of a block, which consists
of a smaller rotational component and a translational com-
ponent. Therefore, rigorously and accurately characterizing a
potentially unstable rocks mass or size in a particular field is
important (Spadari et al. 2013). Moreover, rock slope
geometry significantly affects the post-impact behavior of
falling rocks. Slope geometry is vital in any rockfall analy-
sis. Its effect adds a dimension to the final impact distance
variation (Vijayakumar et al. 2011). The identification of
probable rockfall source regions is a difficult task in rockfall
prediction. Source zones are frequently obtained from
apparent evidence, such as the deposition of a talus slope
below a cliff face, field measurements, and historical register
information. Rocky outcrops, and consequently, unstable
rockfall source areas are mostly found on steep slopes
(Jaboyedoff et al. 2012a).

15.14.1 COR

COR describes the kinematic behavior of a falling rock as it
hits the slope surface. Every time a rock hits a slope surface,
its movement characteristics are changed. Hoek (2007)
described COR as the mathematical expression of the
retarding capacity of a surface material when dealing with
falling rocks. Each slope has unique properties that vary
among regions along the slope. Each falling rock also has
unique properties. Therefore, characterizing COR is difficult
because each case has a unique set of properties. To simplify
this process, COR is generalized to fit the behavior of similar
falling rocks downslope with known parameters. Rn is a
classic parameter. It denotes material characteristics, which
are determined by contacting slope rigidity. Meanwhile, Rt
is an experimental parameter that is measured using slope
material and vegetation. The range of the proposed Rt value

is relatively larger than the range of the proposed Rn value.
For example, the proposed Rn values of firm soil and talus
slope range from 0.1 to 0.2, whereas their proposed Rt
values range from 0.5 to 1.0 (Chai et al. 2013). In another
paper, Vijayakumar et al. (2012) used a simple mechanical
model to demonstrate that the computed Rn had a value
greater than 1.0; this trend, which is evident in certain
rockfall field data, is caused by the eccentricity of rock shape
and its rotational energy. Their group also demonstrated that
the computed coefficient can become negative in some cases.
Although such cases seem to break the law of energy con-
servation, the appropriate description is found in the defi-
nition of COR itself. In most situations, the rock body is a
point mass; thus, Rn must be based on the incoming and
outgoing velocities of the center of mass. Otherwise, the
rotating energy is unaccounted for in the point mass model.

The values of COR may vary considerably, depending on
the site conditions. Therefore, the two components of COR
(normal and tangential) have to be determined separately for
each field. The in situ test or back analysis of falling rocks
can be used to derive COR. The most critical input param-
eters for simulating rockfall phenomena are CORs, which
control the bouncing of rocks (Asteriou et al. 2012). Chau
et al. (2002) presented the results of an experimental study
on COR for spherical blocks that affected a rock slope.
A plaster modeling material was used to cast both the slopes
and the blocks. A positive correlation was noted between
slope angle and Rn. However, no apparent relation was
detected between slope angle and Rt. When the resultant
velocity ratio and kinetic energy ratio before and after
impact were utilized to define COR, COR evidently
increased with slope angle.

The physical or mechanical parameters (COR and friction
angle) are particularly significant inputs for rockfall simu-
lation; these factors control block bouncing, velocity mag-
nitude, and rockfall trajectory analysis (Asteriou et al. 2012;
Lato et al. 2012). In addition, the loss of rock boulder energy
upon impact is controlled by COR (Keskin 2013; Samodra
et al. 2014; Sabatakakis et al. 2015). In principle, hard
materials exhibit higher CORs than soft materials. More-
over, Rt increases with Rn. Slight changes in COR values
cause entirely different trajectories.

COR is one of the most significant and most difficult
parameters for assessment in rockfall analysis (Papathanas-
siou et al. 2013). However, these values may vary dramat-
ically, depending on the circumstances of each site (Topal
et al. 2007). These values also differ for diverse materials
and various types of vegetation covering the slope; in
addition, the values are dissimilar within the same environ-
ment (Macciotta et al. 2014). To avoid obtaining irrelevant
values, coefficient distribution can be truncated between the
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important minimum and maximum values (Frattini et al.
2013). Attempts to model rock-ground effects using a single
COR do not sufficiently capture rockfall variability (Glover
et al. 2015). Moreover, the slope friction angle cannot be
derived via field testing (Ku 2012).

The most commonly used definitions of COR compo-
nents (normal and tangential) are

Rt ¼ Vtr=Vti; Rn ¼ Vnr=Vni ð15:2Þ
where Vnr and Vni are the quantities of the rebounding and
incoming velocities of the normal component, respectively;
and Vtr and Vti are the quantities of the rebounding and
incoming velocities of the tangential component, respec-
tively (Fig. 15.4).

Chiessi et al. (2010) performed rockfall hazard assess-
ment using two individual approaches. The analyzed rockfall
trajectories is strongly affected by the input parameters,
particularly the COR values. Asteriou et al. (2012) per-
formed in situ and laboratory tests to determine the param-
eters that affected rockfall trajectories. CORs are the most
critical parameters in rockfall modeling. Wyllie (2014)
documented rockfalls in five locations, including the effects
on rock, talus, colluvium, asphalt, and concrete. The values
of Rn and Rt were calculated for these locations. The field
results showed that Rn was related to the impact angle. The
Rn values are essentially independent of the slope material.
The Rt values ranged from 0.3 to 0.8. This coefficient is
related to the friction coefficient at the impact point. Its value
is independent of the velocity and normal force. The cal-
culated field values for CORs are consistent with the prin-
ciples of impact mechanics.

15.15 Possible Measures for Mitigation
of Rockfall Hazard

15.15.1 Potential Rockfall Problem
Identification

The identification of all probable rockfall hazards using
common techniques for rockfall hazard assessment is neither
practical nor possible. For example, when studying the
blocks on the highest slope portion, rockfall hazard is
apparent. Nevertheless, the most hazardous types of rockfall
occur when a rock is suddenly detached from a cliff face
through comparatively small deformations in neighboring
rocks. This event may happen when a force affects discon-
tinuity across planes, thereby separating a rock from its
surrounding. A change in discontinuity is attributed to water
pressure or the reduced shear strength of planes because of
long-term damage after weathering. This phenomenon can
sometimes trigger rockfalls of considerable sizes or, in
excessive cases, large-scale slope failures. Rock faces should
be accurately examined for probable rockfall problems.
However, not all rockfall hazards will be revealed through
this examination.

15.15.2 Decrease in Energy Level Related
to Excavation

Conventional excavation techniques for rocky slopes include
blasting. Even with controlled and planned explosions,
high-intensity forces affect rock masses for a short period.
Wedges and blocks may be triggered by such strong forces.
Therefore, to reduce rockfall hazard caused after excavation
by explosion, another method should be used; for example,
ripping requires concentrated vibrations or short-period
forces on rock masses. Manual and mechanical excavation
techniques can also be utilized. When an enormous amount
of rocks need to be destroyed, chemical expansion may be
used.

15.15.3 Physical Restraint of Rockfalls

Rockfalls vary spatially and temporarily; thus, detecting all
rockfall hazards is impossible. Techniques for reducing the
effects of these rockfalls hazard must be considered. These
techniques are elucidated in Fig. 15.5.

A berm is a relatively efficient method for catching
rockfalls; this structure is commonly utilized on a permanent
slope. Nevertheless, berms may be excavated from the top
down. During construction, the use of berms is limited in

Fig. 15.4 Components of translational velocities before and after
impact (Asteriou et al. 2012)
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minimizing rockfall hazards. Avalanche shelters or rock-
sheds are frequently utilized over a steep slope above a
narrow roadway or railway. A steep slope roof coverage
with a comparatively narrow extent is required for efficient
shelter. For a wide multi-lane expressway, designing a
rockshed structure with an adequate capability to resist large
rockfalls may be impossible. In general, a fill of soil or
gravel is recommended at the top of a rockshed to function
as a rockfall deflector and retarder. Rock traps can effec-
tively catch rockfalls by providing an adequate room at the
slope toe to accommodate such trap. In the case of a rela-
tively narrow highway at a steep slope toe, adequate room
for rock trap accommodation is difficult to find. Frequently
utilized barriers or catch fences are estimated to have an
energy absorption capacity of 100 kN/m2. This value is
equal to a 250 kg rock mass falling with a velocity of
approximately 20 m/s. However, a robust barrier fence can
have an energy absorption capacity of up to 2500 kN/m2,
which can stop a 6200 kg rock moving at a velocity of
approximately 20 m/s. The use of a mesh draped over a rock
face is another restraint technique that deserves further
consideration. Meshes extend along a rock face and are
attached at several positions over the slope surface. A mesh
is not used to stop rockfalls but is intended to trap the falling
blocks between the rock face and the mesh, thereby reducing
rock velocity that causes rocks to bounce out onto the
highway. The construction of a catch ditch at a slope toe is
probably the most efficient permanent rockfall protection
technique for most expressways. To increase the efficiency
of ditches, a ditch base is normally covered with a gravel
layer for the energy absorption of falling boulders; a robust
barrier fence is placed between the highway and the ditch.
The location of a barrier fence can be assessed based on
rockfall analysis, such as rockfall trajectories and their
characteristics.

15.16 DEM

A DEM is a 3D representation of a topographical terrain.
Current geomorphometry focuses on the parameters
obtained for a terrain surface (slope, slope aspect, and cur-
vature) and the spatial features or land surface objects (cir-
que, watershed boundary, and drainage network) from DEM.
This characterization depends on the general and specific
geomorphometric analysis modes. Specific modes describe
discrete surface objects, such as landforms, whereas general
modes describe a continuous terrain surface. The most typ-
ical data format is the DEM square grid, where the gridding
sets of points in Cartesian spaces are assigned with elevation
values that characterize the terrain surface (Wilson 2012).

A DEM provides basic information about topographic
relief. The resolution of this model significantly affects
modeling outcomes, thereby indicating that its selection is a
critical step in the numerical modeling of rockfalls (Salvini
et al. 2013; Bühler et al. 2014). This finding is attributed to
the reliable prediction of such events, which is highly rele-
vant to the 3D characteristic of real slope geometry (Ku
2012). In particular, LiDAR techniques may be applied in
rockfall hazard assessment because of their capacity to
produce precise and accurate ground surface DEMs (Ray-
burg et al. 2009; Barbarella et al. 2013). Bühler et al. (2014)
used high-resolution LiDAR (50 cm) to sample the land
morphology of an extremely active rockfall region. Their
group resampled the obtained DEM into various resolutions.
Rockfall simulation was conducted while the terrain effect
parameters of the model were kept fixed. In addition, the
release orientation was varied to mimic the naturally
stochastic initial circumstances of boulder fall detachment,
whereas potential energy was kept fixed. The various results
of rockfall simulation were compared to assess the effect of
DEM resolution on completely 3D rockfall simulation. DEM
resolution significantly affects the results of rockfall simu-
lation, thereby demonstrating that DEM selection is a crucial
part of numerical rockfall simulation.

15.16.1 DEM Data Acquisition

DEM production integrates three correlated functions:
(i) terrain surface sampling, such as the collection of alti-
tudes; (ii) surface model generation from the sampled alti-
tudes; and (iii) error correction in the generated DEM (Hengl
et al. 2010). Data sources and processing techniques for
creating DEMs have developed rapidly from a topographic
map and land survey transformation to passive remote
sensing techniques and more recently to active remote
sensing techniques using radar and LiDAR (Wilson 2012).
DEM can be derived from different sources with various
spatial resolutions ranging from a few centimeters to 90 m.

Fig. 15.5 Possible techniques to reduce the damage due to rockfall,
after Spang and Rautenstrauch (1988)
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DEM spatial resolution that symbolizes surface topography
can considerably influence the results of rockfall simulation.
In particular, the terrain roughness of a boulder field or a
scree slope is included when the spatial resolution of DEM
(centimeters to meters) is fine (Bühler et al. 2014). Nelson
et al. (2009) classified DEM data into three general classes
based on collection methods: (i) land survey methods
involving theodolite, electronic distance measurement
(EDM), total stations, and global navigation satellite system
(GNSS) instruments; (ii) existing topographic maps, which
are in hardcopy form, including the elements of contour
lines, lakes, rivers, and spot heights; and (iii) remote sensing
techniques, including airborne and satellite photogrammetric
techniques, airborne and terrestrial laser scanning, and air-
borne and satellite radar.

15.16.2 Pre-Processing of Data
and DEM Construction

The preparation of elevation data for geomorphometric
analyses is a complex process because elevation itself is
generally not the attribute of concern. The actual geomor-
phological accuracy may be evaluated using terrain param-
eters and feature measurement, including landforms or
in-site drainage lines and the comparison of their locations,
distributions, and shapes with data derived from geomor-
phometric analyses (Wilson et al. 2008). Reuter et al. (2009)
proposed that the actual application of DEMs in geomor-
phometric analyses could be evaluated by answering the
following questions. (i) What is the terrain roughness rep-
resentation accuracy? (ii) What is the accuracy of repre-
sentation of the ground surface shape (i.e., convex and
concave shapes, water divergence or convergence, deposi-
tion, and erosion)? (iii) What is the accuracy of detection of
streamlines and world ridgelines? (iv) How regularly is
elevation measured over the entire concern area? The
responses to these questions and other comparable queries
are interconnected. Errors will be mostly present in the
preferred or accessible DEM despite the responses to these
significant queries. Error magnitude and frequency depend
on the methods and techniques utilized for data gathering,
the implemented algorithms in pre-processing, and ground
surface characteristics.

Elevation data resolution (horizontal and vertical) was
utilized to describe ground topography. These data definitely
have a major effect on the information level and the accurate
description of terrain objects, as well as on the values of the
terrain surface parameters, which are calculated from a DEM
(Bühler et al. 2014). Grid spacing also influences the accu-
racy and values of landform objects and the parameters of
land surface (Raaflaub and Collins 2006). The rapid devel-
opment of mass-produced sources and remote sensing

DEMs over the last two decades requires new techniques for
DEM pre-processing. Webster and Dias (2006) and Reuter
et al. (2009) described varied approaches and possibilities
for orthorectifying DEMs, reducing local noise and outliers,
filtrating water surface, filtrating clear noise, filtrating forests
in DEM, filling sinks and voids, mosaic neighboring DEM,
and filtrating LiDAR DEM.

Before producing the triangulated mesh required to gen-
erate a DEM of the cliff surface from the obtained point
cloud, a pre-processing step has to be performed, including
two major functions: (1) eliminating vegetation cover and
(2) differentiating rock outcrops from the construct sur-
roundings and the detritus at the slope toe within the point
clouds. The decimation and segmentation stages are imple-
mented using manual and automated methods; point cloud
filtering based on the various intensity of the pulse return is
reflected from the scanned features (Fanti et al. 2013). This
tedious pre-processing of point clouds is justified by the
eventual objective, i.e., the generation of a dependable DEM
that is appropriate for rock mass discontinuity characteriza-
tion. In general, non-geological and vegetation points, as
well as registration error, can contribute to noise in point
clouds and influence the procedure of automatic meshing
(Buckley et al. 2008). After point extraction on a rock mass
out-crop, the resultant points can be resampled to obtain a
uniform and regular spatial distribution. To create continu-
ous surfaces from discrete information, the sampled point
clouds can be eventually triangulated by considering the fill
holes to produce homogeneous surfaces.

15.16.3 Computation of Terrain Parameters

In the regular workflow of digital modeling, the focus will be
on obtaining spatial features (land surface objects) and the
values of terrain parameters after an appropriate DEM is
produced. The parameters of a terrain surface are directly
obtained without further input from the DEM. To characterize
these parameters, various terms are utilized in the literature.
Olaya (2009) defined these parameters as “basic” parameters
of terrain surfaces; these parameters could be computed from a
DEM without additional comprehension of the explained
region. Florinsky (1998) differentiated local elementary
attributes that were computed as a function of their neigh-
boring and regional elementary attributes, which required a
wide regional ground surface area analysis from a computing
approach. Wilson and Burrough (1999) demonstrated the
differences between the regional and local surface character-
istics of the presence of local interactions between
“action-at-a-distance” forces and surrounding points. The
parameters of the local land surface included aspect, slope, and
curvatures; the parameters of regional ground surface included
the extent of flow trajectory, downslope contribution area,
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dispersion area, and the proximity to the closest ridgeline.
Most local parameters are calculated through a (3 � 3) win-
dow approach moving over a grid and computing the param-
eters of the land surface for the concerned cell, i.e., the centric
cell of the (3 � 3) window (Fig. 15.6). Specific principles are
available on how to deal with this approach; the edges create a
new raster for each parameter, which has the same size as the
DEM. Various formulas have been presented for calculating
aspect and slope as the first extraction and curvatures as the
second extraction (Florinsky 1998; Shary et al. 2002).

The computation and interpretation of the aspect and
slope grids are reasonably uncomplicated. The vertical cur-
vature or profile and the horizontal curvature or tangential
are frequently utilized to differentiate locally concave and
convex shapes. In geosciences, the curvature sign is written
by convention as negative and positive for concave and
convex shapes, respectively (Olaya 2009). That is, concave
and convex tangential curvatures represent the convergence
and divergence of flow paths, respectively. The concave
profile curvature represents slope flattening, and thus, a
decrease in potential energies. By contrast, the convex pro-
file curvature represents flow acceleration, and consequently,
a local increment in potential energies. Finally, the scale
issues with the framework of the land surface parameters
should be addressed. Local land shapes frequently exhibit a
constant difference in altitude values from point to point over
land surface; these shapes significantly influence regional
and local ground surface characteristics. However, this role
is affected by data and processing factors. Florinsky (1998)
reported that local attributes, such as aspect, slope incline,
and curvature, were mathematical variables instead of actual
values. This assertion can be expanded to all local ground

surface characteristics because of two reasons. First, the
shape of the local ground surface can depends on various
mathematical descriptions; thus, computed local attributes
depend on the selection of the algorithm. Second, the terrain
shape represented by DEM is a scale function, which is
combined with terrain complexity, spatial scale, and reso-
lution or scale of data from which the land surface is
observed.

15.16.4 Error Calculation in DEM

Errors in DEM are variable, depending on the sensor
selection or particular application (distribution technique);
thus, a DEM will be deduced from another to present ele-
vation difference for evaluating deposition, erosion, and
change (Burns et al. 2010). The other group of difficulties is
related to altitude error propagation in terrain parameters,
and considerable effort is frequently required for error
identification. Nevertheless, errors associated with the data
source are mostly difficult to remove; any individual con-
cerned with utilizing terrain surface parameters derived from
DEM should be aware of these errors and how these errors
may influence workflow and interpretation, and conse-
quently, the results. Several methods have been presented to
evaluate the accuracy of DEM altitude values (Temme et al.
2009).

Several researchers have compared a series of altitudes
obtained from a DEM and the actual altitude values derived
from the most precise sources of topographic information;
the root-mean-square error (RMSE) of altitude, which rep-
resents the variation between true and derived values, has
also been calculated (Wise 2000). The only issue with this
method is that it disregards the spatial distribution pattern
and the existence of systematic bias of errors, which are
crucial to these terrain surface parameters (Hutchinson and
Gallant 2000). The aforementioned parameters are signifi-
cantly affected by the shape of the terrain surface. Carara
et al. (1997) proposed multi-criteria with broader signifi-
cance to assess the quality of a DEM created from contour
lines. The values of the DEM and contour lines should be
similar and close to the contours. The values of the DEM
should be within the range specified throughout an interval
of contours. The values of the DEM should nearly linearly
differ with the values of the contour line interval. Artifacts
have to be restricted to within a small portion of the data set,
and DEM patterns should reflect the actual shape in flat
areas. Hutchinson and Gallant (2000) measured the quality
of a DEM, which was created from surface contour lines;
point elevation and streamlines data suggested a wide and
more varied list of simple metrics that included some of the
same schemes. Abellán et al. (2009, 2010) applied a nearest
neighbor (NN) averaging technique to minimize the error in

Fig. 15.6 Terrain parameters are typically computed by moving a
3 � 3 grid across a DEM (Olaya 2009)
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RAW data obtained using the LiDAR technique. The NN
method is composed of three steps: (1) interpolation of data
to a square grid or cell, (2) search for the n neighboring
points, and (3) the NN average value calculation for each
point, except for the edges. The selection of the DEM
interpolation technique can strongly influence DEM surface
properties (Wise 2011; Gallay et al. 2013). Bater and Coops
(2009) examined seven interpolation procedures using air-
borne laser scanning (ALS) data. These data were catego-
rized from random subsets into a verification data set and a
prediction dataset. A series of DEMs was generated through
the natural neighbor, linear, regularized spline, quintic,
spline with tension, inverse distance weighted, and finite
difference approach interpolation algorithms. These
researchers concluded that the natural neighbor interpolation
algorithm provided the best outcomes at minimal effort
among all the algorithms.

15.16.5 Remote Sensing Techniques
for Capturing DEM

The topography of complex landscapes is challenging to
obtain in remote regions; moreover, ground-based survey
techniques can be difficult, time-consuming, and
less/insignificant landscape features. DEM can be generated
from various data sources, but this diversity can result in
different precision and accuracy degrees. Remote sensing
and GIS have revolutionized hazard studies because of their
efficient data collection, analysis, and validation processes
(Pradhan et al. 2011). During the last two decades, the rapid
development of data sources for produced DEMs, such as
photogrammetry, shuttle radar topographic mission (SRTM),
radar interferometry (InSAR), and LiDAR surveying, has
considerably improved DEM resolution because of the
highly accurate and precise data that they can provide.

15.16.5.1 Photogrammetric-Based DEM
Generation

Photogrammetry provides 3D point coordinates with
expected accuracy from stereo- or multi-photographs, such
as from photographs taken for the same scene from various
viewpoints. The accuracy of the coordinates relies on the
number of elements that should be considered in designing
the steps for any photogrammetric surveying: the calibration
of the camera, the orientation of photographs, and the
restitution of objects. Object-based photograph construct and
matching from the movement, extraction, and matching of
tie points can be automatically performed; thus, the orien-
tation of a photograph can be derived without any manual
measures. The parameters of orientation can also be speci-
fied immediately through the fixation of a GNSS device,
incorporated with an inertial measurement unit (IMU) and a

camera. This combination allows processing without
requiring ground control points (GCPs). The restitution of an
object can be performed automatically or manually by a
technician. Photogrammetry has a long history among
remote sensing technologies for DEM production. Pho-
togrammetry techniques have confirmed their efficiency for
an extensive range of mapping applications, including the
production of DEMs, cartographic maps, and orthopho-
tographs. Photogrammetry is commonly utilized as a mul-
tipurpose spatial data-capturing technique given the rapid
development in the utilization and maturation of GIS. Fig-
ure 15.7 illustrates a 1 arc-second (30 m) photogrammetric
DEM. DEM generation based on photogrammetry principles
has two operating phases: the initial measuring phase and the
second phase for DEM derivation. The primary data sources
are from aerial photographs (film-based or digital). Digital
image-processing techniques are applied by interacting
(user-based) measured techniques or an automatic technique.
The DEM points identified by the interpolation process from
the aerial photographs (stereo pairs) are based on object
matching (Chang et al. 2004).

Photogrammetry based on repeated aerial photography is
considered an adequate remote sensing technique for
long-term monitoring of small deformation rates along large
regions (Strozzi et al. 2010). Terrestrial photogrammetry is
another type of photogrammetry; this method is beneficial
for performing elaborate surveys of geometric–structural
environments, even in unreachable areas. Firpo et al. (2011)
used various terrestrial photogrammetric techniques for
rockfall simulation. Their result demonstrated that the
quantity and accuracy of geometric and geological infor-
mation acquired from a photogrammetric survey permitted
the numerical assessment of the correlation between rock
factors as a function of their load conditions and mechanical
or physical properties. In addition, potential shadow can be
removed by varying the focal length and shooting position.
Nevertheless, this survey technique has drawbacks, such as
in extremely high slopes, where a full photogrammetric
survey of the highest regions of a rocky wall is impossible to
perform.

15.16.5.2 SRTM DEM Generation
The 3 arc-second SRTM DEM, which has been developed
based on satellite data gathered during a nine-day window in
2000, includes a considerable portion of the world (58°S to
60°N). This dataset is recognized as one of the most pro-
portionate, perfect, and common environment datasets
worldwide (Zandbergen 2008; Nelson et al. 2009). The
spacing of 3 arc-second grids (*90 m) is preferable com-
pared with the worldwide GTOPO30 DEM spacing of 1 km.
An accuracy evaluation using kinematic GNSS data
demonstrated elevation accuracy, where 90% of the errors
were less than 5 m (Rodriguez et al. 2006). Recent studies
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have demonstrated a positive correlation between elevation
error and canopy height (Hofton et al. 2006; Berry et al.
2007). The relatively new technique of Advanced Space-
borne Thermal Emission and Reflectance Radiometer
Global DEM (ASTER GDEM) was released in 2009.
The ASTER GDEM technique provides greater spatial
covering (83°N to 83°S vs. 60°N to 58°S) and higher res-
olution (1 arc-second vs. 3 arc-seconds) as well as com-
parison of the horizontal and vertical accuracies for SRTM
(Nelson et al. 2009; Slater et al. 2009). Furthermore, the
issues of missing data due to cloud are considerably easier to
fill. Nevertheless, a 30-m resolution is still inadequate for
supporting vegetation, soil mapping, and related phenomena
in most terrain.

15.16.5.3 InSAR DEM Generation
Synthetic aperture radar (SAR) is defined as a side-looking
active radar range technique. SAR utilizes the microwave
part of the electromagnetic spectrum, including frequencies
ranging from 0.3 to 300 GHz or from 1 mm to 1 m in the
wavelength range. InSAR requires two SAR photographs for
the same location. Those photographs can be obtained sep-
arately at the time of revisiting the same location with a
single antenna, such as in a typical spaceborne radar system
or while simultaneously utilizing two antennas hanging on a
platform, such as several satellite and typical airborne sys-
tems. Both photographs are then registered accurately with
each other to calculate the phase variance between the pixels

in the two photographs. This interferogram or phase variance
can be utilized to obtain the DEM of the captured region.
Figure 15.8 illustrates an InSAR DEM obtained from the
images of the European remote sensing satellite (ERS)-2 and
ERS-1 captured during the “tandem” mission (Chang et al.
2004). ERS SAR works with an incidence angle h = 23°
from the vertical direction at the center of the swath, which
is 100 km wide, and at the wavelength k = 5.65 cm. SAR
revisits a particular location every 35 days.

Fig. 15.7 A 1 arc-second
photogrammetric DEM (Chang
et al. 2004)

Fig. 15.8 InSAR tandem DEM
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15.16.5.4 Unmanned Aerial System (UAS)
A UAS is known by various terms and names, such as aerial
robot, drone, or unmanned aerial vehicle (UAV); the most
popular acronym is UAV. A UAS is composed of three basic
components, which are frequently defined as the unmanned
aerial vehicle, the communication and data link, and the
ground control station. Furthermore, other components of
UAS are considered crucial, such as navigation sensors,
autopilots, mechanical servos, imaging sensors, and a wire-
less system. DEMs and orthophotographs are two major
UAS products. At present, a UAV can be utilized to accel-
erate the external direction phase and minimize operational
cost. The main usefulness of UAV-based remote sensing
applications for dangerous environments such as rockfalls,
landslides, or mudslides is their capability to obtain data in
hazardous regions of concern. Direct measurements in such
areas are frequently impossible. The flying motion of a UAV
is autonomously based on a programmed plan of flight that
utilizes compound dynamic automated systems and
GNSS/INS to guide external directions. The processing of a
DEM creation basically relies on several elements, such as
flight height, overlapping, and camera resolution. The dif-
ferences in these factors influence the final accuracy of the
obtained results. The standard algorithms for DEM creation
suffer from normal errors caused by GNSS/INS instruments,
particularly in location measurement related to each obtained
photograph. The difference between real locations and these
measurements is approximately a few meters. The complete
flowchart of DEM generation algorithms is depicted in
Fig. 15.9 (Ruiz et al. 2013).

The regular products of UAVs are dense DEMs of
approximately 50 points per square meter, 2 cm seamless
orthophotographs, and 3D vector maps with a 2 cm point
precision in XY and 4 cm in altitude (Haarbrink and
Eisenbeiss 2008). Hand-launched and simple UAVs that
operate autonomously by utilizing its GPS-driven autopilot
and, typically, an IMU sensor, are the most affordable

systems. Nevertheless, most of these systems are signifi-
cantly influenced by cold and wind, and thus, they are rarely
utilized or difficult to utilize in mountainous topography
(Niethammer et al. 2012). The most stable systems, gener-
ally those with a gasoline engine, have greater payloads and
allow a more professional camera onboard or even conduct
surveys using LiDAR instruments. Fritz et al. (2013) com-
pared LiDAR point clouds and UAS-based point clouds by
utilizing a frame camera for tree trunk reconstruction. The
resulting points with reconstruction were less dense and less
accurate than with LiDAR. In addition to the frame camera,
the LiDAR technique plays a major role in point cloud
creation. However, the use of LiDAR techniques in UAS
platforms for DEM generation remains infrequent.
Niethammer et al. (2010) used a UAV for high-resolution
acquisitions of landslides. Digital surface models (DSMs)
have been generated from the airborne photographs of a
landslide using a modern features-based surface recon-
struction technique that does not require any GCP
information.

Giordan et al. (2014) used a micro-UAV in an emergency
scenario related to rockfall phenomenon. The 3D pho-
tographs derived were utilized to create the first-order DSM,
which provides quantitative information about the orienta-
tion and the dimension of the main discontinuity identified in
the rock mass. The LiDAR technique was used to acquire a
high-resolution DEM of the study area to improve and val-
idate the results derived from micro-drone surveying.

15.17 Detection and Characterization
of Rock Mass Movement

ALS and terrestrial laser scanning (TLS) technologies are
responsible for the outstanding development in the charac-
terization of rock slopes, primarily because rock instability
are mainly dominated by a structure that is at least locally

Fig. 15.9 DEM generation
algorithms (Ruiz et al. 2013)
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plane surfaces. The applications of TLS in rock mass char-
acterization are countless (Oppikofer et al. 2009;
Sturzenegger and Stead 2009; Lato et al. 2009a, b; Armesto
et al. 2009). By contrast, the applications of ALS in gener-
ating DEMs are still uncommon.

15.17.1 Using ALS

Large-scale feature analyses are required to derive DEMs by
utilizing ALS based on the COLTOP principle (Jaboyedoff
et al. 2009b), which permits assigning a distinctive color to
each topographical direction. This technique also enables
rapid feature characterization of inaccessible areas (Brideau
et al. 2009) and the reinterpretation of previous rockfalls
(Froese et al. 2009). Oppikofer (2009) investigated a fiord
valley at the regional scale to characterize the instability of
former and present rock slopes, i.e., their mechanisms and
volume.

15.17.2 Using TLS

The TLS characterization of a rock slope is one of the first
applications that utilize TLS for slopemassmovement,mostly
to acquire accurate discontinuous orientations and slope pro-
file (Bornaz et al. 2002; Slob et al. 2002). The variousmethods
for characterizing discontinuity sets can be divided into three
parts. The first part involves the use of the appropriate plane
(Abellan et al. 2006; Sturzenegger and Stead 2009). The
second part utilizes the triangular irregular network
(TIN) surface as an indicator of plane orientation (Feng et al.
2001; Slob et al. 2002). Kemeny and Post (2003) provided a
description of thismethodology for rockmass characterization
using Split-FX software. Lato et al. (2009a, b) demonstrated
the optimum point number for point clouds to obtain a realistic
result based on the precision level of the instrument. Fur-
thermore, a high-density TIN is influenced by data noises.
Finally, the other methods enable the automatic delineation of
a set of neighborhood points, which are characterized by the
same normal vector. Consequently, the computation of the
orientation of plane discontinuities is acquired.

The COLTOP method allows visualization of each dis-
continuity orientation set by using a distinctive color that
makes the method similar to in situ data capturing
(Jaboyedoff et al. 2009b). The obtained data allow the
analysis of rock instability mechanisms (Oppikofer et al.
2009; Janeras et al. 2004). Lato et al. (2009a, b) and
Sturzenegger and Stead (2009) noted two types of bias in the
definition of discontinuity orientation: (a) a scale bias is
observed when spatial resolution (point spacing) is larger
than the discontinuity sets and (b) an orientation bias is
observed when the spatial resolution is influenced by the

incidence angle of a given data set. Roughness determination
is another aspect of the application that is integrated into
rock slope characteristics. Haneberg (2007) and Tatone and
Grassel-li (2009) attempted to improve the quantification of
popular techniques for rock mass rating systems. However,
certain limitations are associated with the achievement of
this goal, such as the inherent instrumental accuracy and the
resolution of various scanner locations on the eventual out-
comes (Sturzenegger et al. 2007).

15.18 Rockfall Monitoring

The monitoring of surface displacements in a rocky slope is
easier than in soil slopes because the displacement can be
regarded as rigid body transformation (Monserrat and Cro-
setto 2008; Oppikofer et al. 2009; Abellan et al. 2009). Thus,
the movements are considered a combination of translation
and rotation in various slope portions. Detailed movement
analyses that utilize the rigid body transformation method
combined with comprehensive structural analyses enable the
determination of potential rockfall mechanisms (Oppikofer
et al. 2009). The possibility linkage of temporal and spatial
rockfall predictions represents a considerable challenge in
the monitoring of rockfalls. Recently, two various prelimi-
nary indicators were investigated: (a) the increase in rockfall
activities prior to final collapses (Rosser et al. 2007) for a
hard rock cliff and (b) preliminary displacement detection
was investigated for a large rockfall (Oppikofer et al. 2008)
and fragmental rockfalls as Abellan et al. (2009, 2010)
illustrated that few centimeters displacement prior rockfall
with few to hundred cubic meters. Although the magnitude
of preliminary displacement can be same as that of instru-
ment errors in some cases, several researchers have noted
that these errors can be considerably reduced by considering
the information from the adjacent points, such as in cases of
filtering noise reduction or averaging (Monserrat and Cro-
setto 2008; Abellan et al. 2009). Abellan et al. (2009)
demonstrated the possibility of millimetric terrain displace-
ments detection in outdoor experiments, even with a single
point, which had the highest standard deviation.

15.19 Rockfall Analysis

Traditional surveying techniques present significant restric-
tions in acquiring spatial datasets required for rockfall
assessment. The use of modern technologies, such as
LiDAR, has rapidly improved in the field of geohazard
evaluation. ALS and TLS surveys are currently considered
essential tools for accurate and dense information collection
to assist detailed topographical analysis. From a determin-
istic perspective, rockfall trajectory depends on (1) the
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location point at which the rock detaches, (2) the rock that is
detached, (3) the slope properties, and (4) how the rock
behaves over slope surface (Salvini et al. 2013). The first
elements correlate with the source position (i.e., plane
coordinates and altitude) (Li and Lan 2015).

DEM resolution significantly influences detection of
rockfall sources: a rough DEM tends to smooth the values of
the slope angle (Michoud et al. 2012). Loye et al. (2009)
reported that the higher the DEM resolution, the smaller the
probable source regions. Moreover, the rougher the DEM,
the lower the evident slope angle. For example, for a 10 m
DEM, the apparent vertical cliff slope angle is 55°, whereas
it is 83° for a 2 m DEM. The accessibility of a high-
resolution DEM at a regional scale facilitates detailed terrain
analysis. Thus, a DEM-based geomorphometric approach
accurately detects probable rockfall sources; such regions are
defined depending on the distribution of the slope angle
derived from crossing very high-resolution DEM with other
information obtained from topographic maps and land cover
in GIS format. Nevertheless, a major challenge encountered
at a regional scale rockfall hazard mapping is the identifi-
cation of these regions (Loye et al. 2009). Novel remote
sensing techniques, such as high-resolution photography and
laser scanners, will quantitatively characterize rockfall
source regions safely and efficiently (Stock et al. 2011).

15.19.1 Using ALS

Rockfall hazard assessment at a regional scale from source
areas to rockfall distribution using ALS–DEM is not regu-
larly implemented. The first challenge is determining rock-
fall source regions. This step is typically conducted by
utilizing the slope angle threshold (Frattini et al. 2008).
However, Loye et al. (2009) showed that further details
could probably be obtained from slope angle distribution.
The threshold depends on the type of bedrock, the DEM
resolution, and the absence or presence of a land cover (Loye
et al. 2009). This technique allows effectively distinction
between a real cliff and one drawn on the topographic
map. As proposed by Günther (2003), a structural analysis
performed on a DEM acquired via ALS could be the foun-
dation for kinetic tests. Janeras et al. (2004) showed that the
result accuracy was significantly enhanced by utilizing a
high-resolution DEM.

Rockfall hazard assessment requires frequently executing
trajectory modeling for delineating rockfall distribution
areas. Rockfall model has been significantly enhanced by
using a DEM obtained via ALS (Lan et al. 2007) by offering
further dispersal in propagation as indicated by Agliardi and
Crosta (2003). Moreover, the profile of kinetic energy is
significantly modified with increasing DEM resolution.
These parameters are essential for rockfall hazard mapping

and for eliminating measurements. Airborne LiDAR was
utilized with rockfall spatial modeling by Lan et al. (2010)
for a rockfall assessment strategy along a section of a rail-
way. Their group concluded that utilizing LiDAR could
explain the usefulness of rockfall hazard assessment along a
portion of the railway. ALS allowed them to achieve accu-
rate modeling of terrain geomorphology and to acquire the
geometry of significant infrastructure. The simulation results
from the high-resolution ALS–DEM present better corre-
spondence with the historic rockfall than the results from
coarse DEM. The simulation offers logical rockfall fre-
quency distribution over the railway corridor and the accu-
rate positions of the high possibility of rockfall compared
with the historical observations. Topographical analyses
utilizing the ALS dataset can also determine possible rock-
fall source areas based on the slope angle and topographic
contrast.

15.19.2 Using TLS

High-resolution DEM is required to implement rockfall
simulations and kinematic analyses. In particular, LiDAR
techniques are interesting in rockfall hazard assessment
because of their capability to produce highly precise and
accurate DEMs of the Earth’s surface (Barbarella et al.
2013). TLS can provide spatial resolution, high accuracy,
and rapid information gathering, and thus, it is becoming
increasingly utilized in rockfall research for small areas
(Fanti et al. 2013; Gigli et al. 2012; Lato et al. 2012). Gigli
et al. (2014) used the TLS technique to provide all the
geometric parameters required for implementing rockfall
simulations (DEM, main source areas, and the outcropping
material limits). Tonini and Abellan (2014) presented a
method for extracting features from terrestrial LiDAR point
clouds that focused on the recognition of a single rockfall
event. The spatial distribution of these events has been
analyzed, thereby demonstrating that detected rockfalls are
clustered within a well-defined distance ranging from
1 to 3.5 m.

Salvini et al. (2013) and Lato et al. (2013) integrated data
from various sources (topographical observations, pho-
togrammetry, and laser scanning) to obtain a DEM of a slope
surface, define possible run-out trajectories, and characterize
rock mass. They showed that digital terrestrial photogram-
metry and TLS provided a powerful analytical tool and
model for studying rockfall hazard and the stability of rocky
slopes. Gigli et al. (2014) applied TLS in combination with
geomechanical surveys at three different areas to cover a
wide range of features and examine a proposed approach.
TLS was used to structure 3D surface model of the entire
slopes to be investigated for kinetic analyses and rockfall
modeling and to rebuild the geomechanical characteristics of
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the block masses and ultimately identify major rockfall
source regions. Each slope was observed from various
acquisition points to mitigate the shadow areas as much as
possible given slope roughness and scan location limits.

Abellán et al. (2006) used TLS for a comprehensive
rockfall research in a test site. High-resolution DEM and the
reconstruction of joint geometry were consequently
obtained. The DEM was utilized for rockfall inventory and
for the accurate simulation of rockfall trajectories and
velocities. By contrast, joint geometry enabled modeling of
the volume and geometry of the source region in a current
rockfall. Their group reported that the TLS technique could
be used as a reference tool in rockfall studies in the near
future. Janke (2013) compared DEM derivatives (aspect,
slope, elevation, curvature, and hillshade) obtained from
LiDAR and the US Geological Survey (USGS) DEMs for
evaluating rock glaciers. He concluded that the USGS DEMs
might suitable for analysis to characterize landform topo-
graphical setting at a regional scale. At a fine scale, however,
rock glacier topography was illustrated more clearly on the
LiDAR DEM, thereby making it a perfect tool for feature
acquisition.

15.20 Conclusion

The following conclusions can be drawn from this chapter:

1. Rockfall modeling is frequently implemented via 2D or
3D rockfall model.

2. The selection of a 2D slope profile is crucial to derive
practical results of rockfall analysis using 2D models.
Such models are restricted in their capability to provide
rockfall trajectories spatial distribution, as well as flying
or bouncing height and kinetic energy.

3. Several stand-alone 3D rockfall models are accessible for
3D rockfall simulation. These models normally utilize
topographic information that are transformed from other
information sources, such as geospatial information in
regular GRID or TIN, which are typical information
constructs in most GIS programs. This information
transformation is usually tedious and time-consuming,
particularly for a large study area.

4. The accuracy of a DEM is crucial for rockfall assess-
ment. Remote sensing techniques, particularly LiDAR
techniques, offer the most accurate DEM among the
various techniques for DEM generation.

5. The LiDAR techniques of ALS and TLS are responsible
for considerable developments in rock slope characteri-
zation. The applications of TLS to characterize rock mass
are countless, whereas those of ALS–DEM are still
infrequent.

6. Rockfall modeling has two approaches: lumped mass and
rigid body. The most popular approach is lumped mass
because of its capability to model rockfalls in various
motion modes, including flying or free-falling, impacting
and rebounding, and rolling or sliding. In addition, the
use of rigid body can produce immoderate computational
demands that make evaluating rockfall hazard difficult at
a regional scale.

7. The identification of rockfall source areas is a challeng-
ing task in rockfall simulation.

8. Mechanical parameters significantly affect rockfall tra-
jectories and their characteristics.

9. Numerous studies have been conducted in rockfall haz-
ard assessment. However, most of these studies used
specific mechanical parameters but disregarded the
uncertainty of these parameters.
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16Application of LiDAR in Rockfall Hazard
Assessment in Tropical Region

Biswajeet Pradhan and Ali Mutar Fanos

16.1 Introduction

Rockfall is one of the catastrophes which threaten the
human’s life and properties in mountainous and hilly regions
such as Malaysia with steep and high-elevation topography.
Prediction and mitigation of such phenomenon can be car-
ried out via the identification of rockfall source areas (seeder
points) and modelling of rockfall trajectories and their
characteristics. Therefore, a proper rockfall analysis method
is required in order to map and thus to understand the
characteristics of rockfall catastrophe. This research adopted
various methods to investigate, analyse and assess rockfall in
terms of identification of rockfall source areas, modelling of
rockfall trajectories and their characteristics and conse-
quently rockfall hazard map. Geographic information system
(GIS) and light detection and ranging (LiDAR) techniques
can support comprehensive rockfall management as they can
provide rapid data gathering and analysis for hazard
research. Therefore, current research is divided into two
general aspects. The first aspect that basically employed RS
technique is to gather data of the study area using light
detection and ranging (LiDAR) airborne laser scanner.
Traditional survey techniques show significant restriction for
gathering spatial information needed for the modelling of
rockfall. The utilizing of recently developed techniques such
as LiDAR has quickly increased in the field of geohazard
evaluation. The two LiDAR surveys techniques (airborne
and ground-based) are presently considered as the essential
tools for accurate and dense information capturing to sim-
plify comprehensive topographical analysis. A portion of
North-South Expressways at Jelapang, Malaysia, was used
as a study area for rockfall hazard assessment.

16.2 Methodology

In this study, multi-criteria method was used to identify
rockfall source areas (seeder points) based on DEM deriva-
tives (slope, aspect and curvature) in addition to topographic
contrast and terrain type or land use/cover (LULC). DEM
was obtained from high-resolution airborne laser scanning
data (LiDAR). Terrain type or LULC was extracted from the
high-resolution aerial photograph. Kinematical modelling of
rockfall process was carried out through discrete time steps
which allow the modelling of free falling or flying, impacting
and bouncing, and rolling or sliding motions in a 3D frame.
Mechanical parameters (coefficients of restitution (Rn and
Rt) and friction angle) were considered the crucial parameters
for rockfall analysis. Multi-rockfall scenarios were conducted
based on a range of mechanical parameters. Many raster
surfaces are generated utilizing raster modelling to represent
the spatial distribution of the rockfall characteristics con-
taining spatial frequency, flying or bouncing height and
kinematical energy. These are crucial for the final prediction
of rockfall hazard map. Eventually, a raster surface predicting
rockfall hazard was produced utilizing a spatial modelling
that takes into consideration all raster data of the rockfall
characteristics. Expert’s opinion was included in this step,
and geometric mean was applied and then AHP to give
appropriate weight for each rockfall characteristics (fre-
quency, bouncing height and energy). In order to mitigate
rockfall hazard, a barrier location was suggested based on the
rockfall characteristics (height and energy), and the assess-
ment was performed again with a barrier to show the effi-
ciency of barrier eliminating rockfall hazard. Figure 16.1
shows the overall methodology applied in this study.

16.3 Study Area

The Jelapang corridor of the NSE is also known as the PLUS
Expressway in Malaysia (Fig. 16.2) and has been chosen for
rockfall analysis because of the common happening of mass
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movements in this area. The highway connects numerous
significant towns and cities in the west coast of Peninsular
Malaysia; this path also serves as the backbone of this coast.
Moreover, this highway is the longest in Malaysia at around
772 km and crosses seven major states in the Peninsula,
namely Kedah, Penang, Perak, Selangor, Negeri Sembilan,
Malacca and Johor. This area of study is roughly located in
the zone of 4° 41′ 14″N to 4° 41′ 41″N latitude and 101° 0′
14″E to 101° 1′ 8″E longitude near the NSE Tunnel (Jela-
pang). This area experiences frequent mass movements that
cause rockfall; furthermore, the level of annual precipitation
is high in this area, ranging from 2500 to 3000 mm. This
area experiences two noticeable rainy seasons from February
to May and from September to December; precipitation is
maximized between March to May and November to
December. The geomorphology of the region is composed of
a hilly terrain and an undulating plateau. The geology of the
area mainly consists of Devonian and Quaternary granite
(Yusof et al. 2015). Nonetheless, many rockfall events have
occurred recently along the PLUS highway. According to
the inventory data, three rockfall events have occurred in

different regions within the study area. In addition, the slope
of the study area is cut slope and categorized as a high risk
area.

16.4 Data Used

16.4.1 LiDAR

Airborne light detection and ranging (LiDAR) is a popular
remote sensing method is utilized to attain digital presenta-
tion of the topographic surface for regions with small to very
large coverage. This method uses a laser sensor which is
positioned on an airplane to record the distance from the
device and various points on the earth. In each square, 100
points can be recorded based on some conditions such as
elevation, speed and type of the sensor. Moreover, the
condition of the terrain is also an important factor. In this
research, LiDAR vector point data were gathered over
*6 km2 of Jelapang corridor and the region around it on 8
March 2013 using airborne laser scanning (Table 16.1).

Fig. 16.1 Overall methodology
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Fig. 16.2 Location of study area
in Jelapang, Malaysia
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The data were recorded with approximately 10,343,246 data
points. The LiDAR data have been provided by PLUS
Highway Berhad in Malaysia.

16.4.2 Aerial Photograph

The use of high-resolution aerial photograph has become a
famous choice for ground feature mapping. In this research,
high-resolution aerial photograph (Table 16.2) was used for
two purposes: first, to extract the terrain type or land
use/cover (LULC) of the study area; and second, for the
identification of rockfall source areas (seeder points).

16.4.3 Mechanical Parameters

In the present study, the mechanical parameters (coefficients
of restitution and friction angle) are considered crucial for
rockfall simulation. The rockfall simulation was conducted
with the maximum and minimum range values of the resti-
tution coefficient (Rn and Rt) and the friction angle for dif-
ferent terrain types (Table 16.3). These values were obtained
from the most common values reported in the literature
related to the study area properties (geological setting and

terrain type) (Ma et al. 2011; Azzoni et al. 1995; Topal et al.
2007; Rammer et al. 2010; Asteriou et al. 2012; Ansari et al.
2014; Ku 2012; Ahmad et al. 2013; Akin et al. 2013; Chen
et al. 2013; Keskin 2013; Singh et al. 2013; Wang et al. 2014;
Samodra et al. 2014; Sabatakakis et al. 2015) and assigned to
the terrain-type layers for each scenario. Consequently, five
scenarios of rockfall have been prepared based on these
values (minimum to maximum) with an interval of 0.05 for
coefficients of restitution (bare earth and vegetated area), but
for road the interval is 0.04 and 5° for friction angle. For
instance, in first scenario, the values of the coefficient of
restitution (Rn and Rt) are 0.35 and 0.70 for bare earth, 0.30
and 0.65 for vegetated area, and 0.36 and 0.86 for road, and
the friction angle is 20°. Whereas in the fifth scenario, the
values of coefficients of restitution (Rn and Rt) are 0.55 and
0.90 for bare earth, 0.50 and 0.85 for vegetated area, and 0.44
and 0.94 for road, and 40˚ for friction angle. The others
scenarios are between these two scenarios.

16.5 DEM Extraction

ALS is used in this study to obtain a high-density point
cloud; on 8 March 2013, LiDAR vector point data were
gathered from over *6 km2 of the Jelapang corridor and the
surrounding region using this technique. The data were
recorded with approximately 10,343,246 data points. In
almost all applications of LiDAR, the filtering process is
essential to separate the LiDAR (pulse) returns derived from
non-ground features (DSM) and those from the ground
surface (DEM). Distinguishing non-ground features from
ground features can be significantly challenging in areas
with significant terrain variation; however, accurate DEM
can be achieved if non-ground surface points are extracted
before interpolation to a DEM raster. The ALS point cloud
was filtered based on wave return to obtain bare earth from
the ground (DEM) and to eliminate undesirable features.
A number of various interpolation algorithms have been
developed to interpolate ground surface LiDAR data. In the
current study, the natural neighbour interpolation algorithm
is implemented with a filtered ALS point cloud to fill cells
that lack adequate data points (Kenner et al. 2014). Subse-
quently, the DEM was constructed. To enhance the DEM,

Table 16.1 LiDAR Information

Scanner type Riegl LM Q5600

Incident angle 60°

Height of flight 1000 m

Point density 3–4 pts./m2

Wavelength 1550 nm

Pulse repetition rate 200 kHz

Scan frequency 111.1 Hz

Table 16.2 Aerial photograph information

Camera type Hassleblad 39Mp

Camera angle 45°

Spatial resolution 13 cm

Table 16.3 Values of coefficient
of restitution (Rn and Rt) and
friction angle

Scenario Bare earth Vegetated area Road Friction angle (Degree)

Rn Rt Rn Rt Rn Rt

1 0.35 0.70 0.30 0.65 0.36 0.86 20

2 0.40 0.75 0.35 0.70 0.38 0.88 25

3 0.45 0.80 0.40 0.75 0.40 0.90 30

4 0.50 0.85 0.45 0.80 0.42 0.92 35

5 0.55 0.90 0.50 0.85 0.44 0.94 40
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fill process through GIS is applied to avoid unrealistic results
that resulted from unconscionable cells, such as in the case
of a sink. Then, a high-resolution DEM (0.5 m) was derived.
Then the DEM derivatives (slope, aspect, curvature and
topographic contrast) have been obtained using 3D Analyst
in ArcMap.

16.6 Rockfall Sources Identification

In the present research, the rockfall source (seeder points) is
identified by applying the popular approach involving slope
threshold angles (Heckmann and Schwanghart 2013; Loye
et al. 2009; Chai et al. 2015) and by setting a slope angle
greater than 45° in addition to another criterion (Fig. 16.3),
such as obtaining detailed topographic information of ALS
and high-resolution (13 cm) aerial photograph. Information
process was done via GIS, and raster was derived for the
DEM and its derivatives (slope angle, curvature and topo-
graphic contrast) and terrain type. A sharp topographic
contrast is associated with unexpected changing in the slope
angle that assists in determining the existence of steep slopes
with probable block detach. Topographic contrast can be
accessed through the cooperation of the DEM (original
DEM) with a smoothed DEM through a mean filter.
Smoothed DEM is subtracted from the original one, and
positive value denotes the higher segment of steep slopes
(Lan et al. 2010; Macciotta et al. 2014).

16.7 Rockfall 3D Modelling in GIS

The performing of rockfall modelling processes consists of
two main sections: first, the simulation of 3D rockfall tra-
jectories; and second, the raster modelling of rockfall spatial
distribution. The most popular approach for rockfall simu-
lation models, a ‘‘lumped mass’’ or point mass technique is
utilized in the rockfall model to assess the trajectories of
rockfall. Nevertheless, due to the spatial auto relation of
elements impacting rockfall such as, slope geometry, vege-
tation, geology, etc., control the spatial relation of rockfall
incidents in terms of their run-out span, energy distribution
and velocity, the raster modelling based on spatial geo-
statistics is utilized in dealing with the rockfall spatial dis-
tribution in terms of frequency, height and energy, and the
uncertainty associated with them. Since the rockfall model is
incorporated into the environment of GIS, all the geostatis-
tical functions available in the GIS can be used. This allows
an easy use for exploring the spatial information relevant to
rockfall such as rockfall frequency, height and energy that
can be discretized in cell format and assess their spatial
autocorrelation and directional difference. All of these three

elements must be taken into consideration together to achieve
a realistic assessment of the rockfall hazard spatial distribu-
tion (Jaboyedoff et al. 2005). Realistic estimation of surfaces
which depict the rockfall spatial distribution in terms of fre-
quency, height and energy can be generated through different
geostatistical techniques. Eventually, the assessment of
rockfall hazard is implemented by considering all of this
raster of rockfall characteristics in addition to AHP approach.

16.7.1 3D Rockfall Trajectories Simulation

Once the probable rockfall sources (seeder points) have been
determined; rockfall physical process was implemented
through the rockfall 3D model by taking into account terrain
topographic and range of physical parameters (Table 3.3), to
provide multi-scenario of rockfall simulation. In the analy-
sis, 10 blocks have been thrown at each seeder point
(Table 16.4). The mass of a falling rock was set to be
250 kg, which is based on field observations. In addition, a
normal barrier has an energy absorption capacity of 100 kJ
equivalent to a 250-kg rock moving at about 20 m/s. Default
initial orientation of boulders is the cell raster dip orientation
in which the source points are situated. Several boulders are
thrown in every rock source point with different beginning
orientations to simulate the uncertainty of rockfall sources.
A number of initial orientations have been allocated for
every rockfall source point that result in about 2400 simu-
lated rockfall events. Since the DEM has been generated
from the ALS information and the terrain topography spatial
characteristics allocated, potential rockfall has been simu-
lated from every potential source regions. It includes rock
separation and fall or fly, bouncing, sliding, rolling and final
stopping subsequently.

Rockfall kinematical modelling process is carried out
using discrete time phases that automatically determined
using both particle velocity and cell size. The used algo-
rithms enable rockfall simulation in different motion modes
including flying or free falling, bouncing, and sliding or
rolling movements in a 3D frame (Fig. 16.4). The 3D vector
operation is one of most significant elements in rockfall
simulation. 3D vector indicates the rock physical quantities
that are directional in 3D space. It can also be utilized for
representing the boulder location, acceleration, force, dis-
placement, momentum and velocity. It can also be utilized
for predicting the boulder behaviour upon the impact.

Generally, vector can describe rockfall behaviour as in
Eq. (16.1)

v ¼ xrþ ysþ zt; ð16:1Þ
where r, s and t are the unit vectors in the x-, y- and z-
directions, respectively.
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Fig. 16.3 a DEM, b slope angle, c aerial photograph, d topographic contrast, e curvature and f terrain type

328 B. Pradhan and A.M. Fanos



The falling rock motion in the lumped-mass approach is
composed essentially of the projectile, bouncing and sliding
algorithms, respectively (Ku 2012).

16.7.1.1 The Projectile Algorithm
The projectile algorithm computes the rockfall trajectory in
space. The calculation result relies on whether the falling
boulder has an initial velocity or not. When it has no initial
velocity, a falling boulder falls on a straight path because of
the gravity; whereas if it has initial velocity, a falling boulder
falls on a parabolic curve. The rockfall trajectory in a 3D
space can normally be represented as in Eq. (16.2)
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Equation (16.2) can be rewritten as
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in which ðx0; y0; z0Þ is a rock starting location, t is the time,
g is the gravitational acceleration and ðVx0;Vy0;Vz0Þ is the
starting velocity components for a mass particle in directions
of x, y and z, respectively.

The velocity can be represented as
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Determining of impact point at the end of a rock flying is the
significant challenge in utilizing of the projectile algorithm.
The point of impact is the intersection point of the grid cell
surface and the flight path parabola. The plane surface can be
determined for each cell as the Eq. (16.5)

CxþDyþEzþF ¼ 0 ð16:5Þ
In which C, D and E are the plane normal vector coefficients,
and F is the distance from the origin.

The normal vector is vector orthogonal to the plane
surface and utilized for constructing of the cell plane 3D
geometry (Fig. 16.5). Normally, the plane normal is deter-
mined through the cross-products of two vectors character-
izing the two plane edges. The calculation of aspect and
slope grid from DEM is one of the ordinary functions in
GIS, aspect angle u and slope angle h are used to structure
each of cell plane normal vectors. The unit normal vector
can be defined in the global Cartesian system as in
Eq. (16.6)

un ¼ sin h sinu; sin h cosu; cos hð Þ ð16:6Þ

16.7.1.2 The Bouncing Algorithm
After the intersection or impact point is determined, the
bouncing vector is determined through bouncing algorithm.
Since the bouncing algorithm is computed on the slope
surface, it requires a local coordinate system for computa-
tion. This, in turn, requires a coordinate transformation in
this study. The transformation between a local coordinate (X
′, Y′, Z′) to a global coordinate (X, Y, Z) in a
three-dimensional space can be achieved by rotating the
coordinate system horizontally and vertically. After rotating
an angle u horizontally from the global coordinate to the
coordinate ðXp; Yp; ZpÞ, the transformation equation can be
expressed as in Eq. (16.7)
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Similarly, after rotating an angle h vertically from the
global coordinate to the coordinate ðXv; Yv; ZvÞ, the trans-
formation equation can be expressed as in Eq. (16.8)
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Upon rotating both u and h from the global coordinate to
the coordinate (X′, Y′, Z′), the transformation equation can be
expressed as
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Equation (16.9) can be rewritten as

Table 16.4 Seeder points properties

Mass of seeder 250 kg

Horizontal velocity ðVxyÞ 3 m/s

Vertical velocity ðVzÞ 0 m/s

Offset height from surface 3 m

Seeder number at one location 10

Angle interval 3°
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Since the collision of a falling rock with the slope surface

occurs in the bouncing algorithm, the corresponding velocity
vector must be transformed into the local coordinate using
Eq. (16.11)
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Next, consider the energy dissipation during the collision.
The coefficient of restitution is defined as the after-collision

Fig. 16.4 Kinematics algorithm
of rockfall trajectory creation
adopted from Lan et al. (2007)
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velocity components ðVout
x ;Vout
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z Þ along slope normal

and tangential directions divided by the before-collision
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tangential directions. The vector of the coefficient of resti-
tution is expressed as:
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where Rn and Rt are the coefficients of restitution in the
normal and tangential directions, respectively. After
re-bouncing from the slope, Eq. (16.13) transforms the
velocity from local to global coordinates.

VxðtÞ
VyðtÞ
VzðtÞ

2
4

3
5 ¼

cosu cos h sinu cosu sin h
� sinu cos h cosu � sinu sin h

� sin h 0 cos h

2
4

3
5

Vout
x

Vout
y

Vout
z

2
4

3
5

ð16:13Þ
The projectile or bouncing algorithm is continued and

repeated along the rock movement in space until the velocity
of moving rock reaches a particular velocity, such as 0.5 m/s
(Lan et al. 2007) after the rock particle impacts the slope
plane. The rock motion then transfers to the sliding
algorithm.

16.7.1.3 Sliding/Rolling Algorithm
The segment of rolling/sliding in each cell plane is com-
posed of a single 3D line. The length of this line is defined

essentially through friction angle / and slope angle h. In
each cell, the falling boulder starts rolling/sliding at one cell
border and ends at another cell border over the sliding tra-
jectory. The starting velocity of the moving rock in the next
cell is the same magnitude as the end velocity of the sliding
rock in the first cell. When the friction is the same as the
angle the slope angle, the moving rock will slide on a 3D
plane and its velocity stay fixed until it moves to another 3D
plane. When the starting sliding velocity accesses zero, the
boulder stops falling. When the friction angle is smaller than
the slope angle, the boulder will continue sliding on a 3D
plane with increasing of sliding velocity. The increasing
velocity can be computed using Eq. (16.14).
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where k ¼ � sinðhÞ � cosðhÞ tanð/Þ. The positive sign
refers to the initial velocity of a falling rock moving on the
upward slope, whereas the negative sign refers to the initial
velocity of a falling rock moving on the downward slope.
ðVx0;Vy0;Vz0Þ are the initial velocities for a rock mass point
in the x-, y- and z-directions. ɡ is the gravitational acceler-
ation, h is the slope gradient angle, / is the friction angle
with slope, sx and sy are the moving distance for a falling
rock mass on a local coordinate system based on its pro-
jection on x-axis and y-axis, respectively.

Rock sliding or rolling calculation equations include both
upslope and downslope motion. The rolling or sliding
movement (upslope or downslope) is specified through the
interaction between the normal vector of cell plane and the
rock velocity vector. When the rock moves downslope, it

Fig. 16.5 Definition of cell
plane and coordinate system cell
plane is defined using cell centre
(P0), slope angle h and aspect
angle u
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follows the steepest slope path. The falling rock slides with
increasing velocity when the acceleration is greater than
zero, whereas the falling rock slides with the same velocity
as the incoming velocity, when the acceleration is equal to
zero. In both cases, the exiting velocity is calculated at the
end of steepest trajectory segment. The length of the steepest
segment will equal the sliding distance in this cell. Eventu-
ally, the falling rock slides with decreasing velocity, when
the acceleration is smaller than zero. A zero exit velocity is
used to compute the stopping distance. When the stopping
distance is smaller than the steepest segment length, the
simulation will stop and the exiting velocity will be zero.
When the stopping distance is greater than the steepest path
length, the exit velocity will be recomputed at the segment
end. For flat cell or upslope sliding or rolling, first the
stopping distance of rock is computed. When the stopping
distance is more than the segment length, the sliding will
continue to the next cell and the exit velocity is computed.
When the stopping distance is smaller than the segment
length, the simulation will stop and the exit velocity is zero.

When the angle between Normal 1 and Normal 2 vectors
Fig. 16.6 is more than a crucial angle such as 45° and the
falling velocity is more than a crucial value, for example
5 m/s (Lan et al. 2007), the moving mode will be converted
from sliding/rolling into a flying. The results of all algo-
rithms are 3D rockfalls trajectories and velocity associated
with them that describe the whole processes of rockfall
behaviour. These also will use as essential inputs for the next
step of rockfall raster modelling.

16.7.2 Raster Modelling for Spatial Distribution
of Rockfalls

Raster distribution modelling technique was performed in
five scenarios to represent the spatial distribution of rockfall
frequency, flying or bouncing height and kinetic energy for
each scenario based on the result of 3D rockfall trajectory
modelling. Figure 16.7 shows the workflow to create the
raster of rockfall spatial frequency. It consists of four steps:

1. First, a raster with 0.0 cell value is generated. This raster
is basically similar to the original input DEM raster in
terms of cell size, extent and georeference system.

2 Second, topological analyses are conducted by deter-
mining the spatial relationship between each DEM cell
and the 3D rockfall trajectories. A sample value is allo-
cated to each cell as a rock falling down passing the slope
in this step. For instance, this value remains 0.0 if no

Fig. 16.6 Schematics for determining if movement of rock would
transform from rolling to flying

Fig. 16.7 Workflow involving four steps of a rockfall spatial
frequency raster creation adopted from Lan et al. (2007)
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rockfall trajectory surpasses its value. If one rockfall
trajectory exceeds this value, then the cell is assigned a
value of 1.0; when two rockfall trajectories surpass a
certain value, a value of 2.0 is allocated to the cells.

3. After Step (2), a number of cells retain a value of 0.0.
Nevertheless, this outcome does not indicate that these
cells escape the rockfall effect; for instance, the cells near
the closest cells with 2.0 cell value are certainly at risk. In
this step, spatial statistical interpolation is performed to
estimate cell value when the risk is unknown. Several
spatial interpolation techniques are available for GIS
including Kriging, global or local polynomial and inverse
distance-weighted (IDW). The kriging technique relies
on statistical and mathematical models associated with a
probability. Kriging has an advantage in exploring the
spatial relation, directional and structural variations, and
performing error analysis of the rockfall-related spatial
data. Kriging technique was used in the generation of
rockfall characteristics raster. A new raster is generated
in this step.

4. A focal analysis of the neighbourhood is conducted on
the raster obtained in Step 3 to derive a continuous sur-
face of estimated frequency of rockfall. The cell value
identifies the spatial potential of facing a rockfall. The
dark-coloured cells indicate high rockfall frequency, and
light-coloured cells stay safe.

The same procedure was utilized to create a kinematic
energy raster and a flying or bouncing height raster, with the
only difference occurring in Step 2. The kinematic energy
raster is created based on rockfall velocity and mass. The
maximum energy of the rock is assigned to each cell. For a
flying or bouncing height raster that indicates potential
energy to the ground, the maximum height of trajectory is
assigned to the cells in which the flight or bounce occurs.
From this point, the procedure is identical to that of creating
a spatial frequency raster. In order to calculate the proba-
bility of rockfall velocity, height and energy, a raster has
been classified into different classes with an equal interval.
Then, the raster elements have been calculated for each class
and compared with a total number of raster elements.

16.7.3 Rockfall Hazard Map Generation

Eventually, rockfall hazard maps are generated through a
spatial modelling that considers all aspects of the rockfall
characteristics raster in five scenarios. Figure 16.8 shows the
needed procedure to generate the rockfall hazard map. First,
input the rockfall characteristics raster including kinematic
energy, frequency and flying or bouncing height; and sec-
ond, reclassify those characteristics raster by the same
classification criterion. Different reclassification techniques

are provided in GIS, such as natural breaks and equal
interval. As a result, a new raster with changed grid values is
generated which indicate the rockfall physical characteristics
level. For example, when the kinematic energy raster is
reclassified into five classes, a value of 5 represents the
maximum kinematic energy and a value of 1 represents the
minimum kinematic energy. Third, a spatial modelling is
implemented through assigning various weights, which are
obtained from the performing of AHP approach to the
reclassified raster of rockfall characteristics. As a result,
rockfall hazard maps are created. Finally, reclassify the
rockfall hazard map to indicate various levels of hazard
along the expressway. The area along the expressway was
divided into different stations based on the kilometre of the
expressway. The hazard percentage has been calculated
along the expressway for each area between two stations.

16.7.3.1 The Weight of Rockfall Characteristics
Rockfall characteristics (Frequency, height and energy) were
considered in the implementation of spatial modelling to
derive rockfall hazard map. However, each element has a
different effect in rockfall hazard. Therefore, expert’s opin-
ion was included in order to obtain an appropriate weight for
each rockfall characteristic raster. Analytic hierarchy process
(AHP) is a useful tool to supply a simple decision-making
technique for complex decision-making issues with multi-
plied targets, multiple standards, and no structural charac-
teristic by mathematizing the decision maker’s decision-
making by processes utilizing minimum quantitative data
(Vaidya and Kumar 2006; Siqiao et al. 2010). AHP was
applied in current research in order to obtain an appropriate
weight for each rockfall characteristics. First, a questionnaire
was prepared including the main goal (rockfall hazard
assessment) and the criteria (energy, frequency and height).
Since the hierarchy has been structured, the decision factors

Rockfall 
Frequency

Rockfall Height Rockfall Energy

Raster Reclassification

  Spatial Modeling   AHP

  Raster Reclassification

   Rockfall Hazard Map

Fig. 16.8 Workflow for rockfall hazard map generation
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are differentiated by pairwise comparison in terms of their
significance with respect to their dominate criteria. In par-
ticular, the decision makers are requested to answer pairwise
comparisons in which two factors at a time are in contrast
with regard to their contributions to rockfall hazard assess-
ment. The comparative significance values are specified on a
nine-point scale known as ‘‘Saaty’s Fundamental Scale’’
(Saaty 1980). The questionnaire was sent to some of the
experts in the field of geological engineering. The opinion of
six experts was taken into account and geometric mean was
applied to derive appropriate intensity of importance for
rockfall characteristics. The geometric mean is a kind of
average or mean that specifies the typical value or central
tendency of a set of numbers through utilizing of their values
product against the arithmetic mean that utilizes their sum.
The geometric mean is known as the nth root of the product
of n numbers. Using a geometric mean “normalizes” the
range being averaged so that no range controls the weight,
and change of a given percentage in any of the character-
istics has a similar influence on the geometric mean. Geo-
metric mean can be defined as in Eq. 16.15:

wgeom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

wi
n

s
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w1 � w2 � . . . � wn
n
p ð16:15Þ

where wi is the weightage for i number, and n is the number
of opinion (Table 16.5).

The weights computing steps in AHP were as follows
(Table 16.6):

First, by normalizing each line of vector in judgment
matrix, we get

w0
ij ¼ aij=

Xn
i¼1

aij ð16:16Þ

Second, by summing the rows of w0
ij, it can be obtained

that

w0
i ¼

Xn
i¼1

w0
ij ð16:17Þ

Third, normalizing w0
i;wi ¼ w0

i=n the obtained

w ¼ ðw1;w2; . . .;wnÞT ð16:18Þ
is the approximate eigenvector.

Fourth, by calculating k as the approximate value of the
maximum latent root, we get

k ¼ 1
n

Xn
i¼1

ðAwÞi
wi

ð16:19Þ

In this formula kmax was the maximum latent root of the
consistent matrix and n was the number of the paired com-
parison factors.

The consistency index is calculated as in Eq. (16.20)

CI ¼ k� n

n� 1
ð16:20Þ

Finally, a consistency check was made on the obtained
weight vector, as shown below:

CR ¼ CI=RI ð16:21Þ
where RI is the average of the resultant consistency index
depending on the order of the matrix provided (for 3 � 3
matrix is 0.58), and CI is the consistency index.

16.8 Eliminating of Rockfall Hazard

Some mitigation measures have been taken previously in the
study area, such as berms in order to reduce rockfall velocity
thus reduce rockfall energy and nets to catch small rocks
(Fig. 16.9). However, these measures do not eliminate the
rock fall hazard. In the design of protective measures against
rockfalls, such as barriers, fences and sheds, information on
impact energy must be collected to determine the strength of
the structure in addition to data on trajectories to identify
location and size (Wyllie 2014). Mitigation techniques have
been used extensively to reduce rockfall hazards, and the
design of these methods is based on the trajectory estima-
tion, bouncing heights and kinetic energies of unstable

Table 16.6 Intensity of importance definition (Saaty, 1980)

Intensity of importance Definition

1 Equal importance

2 Equal-to-moderate importance

3 Moderate importance

4 Moderate-to-strong importance

5 Strong importance

6 Strong-to-very strong importance

7 Very strong importance

8 Very strong-to-extremely strong
importance

9 Extremely importance

Table 16.5 Sample of pairwise comparisons among objectives/
alternatives

No. Criteria Energy Frequency Height

1 Energy 1

2 Frequency 1

3 Height 1

334 B. Pradhan and A.M. Fanos



blocks. These parameters can be obtained through kinematic
simulations, which are among the most popular approaches
to assess rockfall hazards at present (Ferrari et al. 2013). To
mitigate the rockfall phenomenon and for designing mitigate
measures, simulation programs are frequently utilized based
on probabilistic lumped-mass assessment models (Asteriou
et al. 2012). Therefore, the optimal barrier location
(Fig. 16.10) is determined in this study based on limited
energy and bouncing height to reduce rockfall hazards.
The simulation procedures described above are repeated
with a (5 m) height barrier to highlight its efficiency at the
chosen location.

16.9 Results and Discussion

16.9.1 Digital Elevation Model (DEM)

There are many techniques to derive DEM. However, each
technique has different accuracy and limitation. On the other
hand, remote sensing techniques such as LiDAR provide
very accurate and detailed DEM over traditional techniques
(Stephenne et al. 2014). In addition, the selection of the
DEM interpolation technique can have a remarkable influ-
ence on the DEM surface properties. In this research,
high-resolution DEM (0.5 m) was derived (Fig. 16.11) from

Fig. 16.9 Mitigation measures
that have been taken in the study
area
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high-density LiDAR point cloud (up to 20 cm) using natural
neighbour interpolation algorithm. One of the most common
methods to measure DEM quality/accuracy is the

root-mean-square error (RMSE). The RMSE of LiDAR data
was (0.19 m). Since the DEM accuracy or resolution
strongly affects the rockfall modelling results, the obtained

Fig. 16.10 Suggested barrier
location

Fig. 16.11 High-resolution
LiDAR DEM (0.5 m)
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DEM can assist a lot in rockfall simulation providing very
detailed terrain morphology. Consequently, very accurate
DEM derivatives (aspect, slope and curvature) were derived,
which are essential in rockfall modelling.

16.9.2 Rockfall Source Areas (Seeder Points)

The determination/identification of rockfall source areas is
the main problem in the characterization of a region
affected by rockfall. Various positions of the rockfall
source areas along a cliff lead to various possibilities of
propagation and a variety of interaction with passive
countermeasures existing in the area (Assali et al. 2014).
Rockfall source areas have been defined based on
multi-criteria as shown in Fig. 16.3, and the seeder point
locations have been assigned where steepest areas, highest
elevation, positive topographic contrast and where terrain
type is bare earth or less vegetation. Figure 16.12 illus-
trates the locations of rockfall source areas. It shows also
the density of seeder points is different from area to
another, and the seeder points are distributed along the cliff
face, that corresponds to the field observation as shown in
Fig. 16.13, which illustrates the weakness of rocks and the
discontinuity along the cliff face.

16.9.3 Rockfall Trajectories

Seeder points yielded approximately 2400 trajectories for
each scenario of the five scenarios which are differentiated
based on the values of mechanical parameters in each sce-
nario; some of these trajectories stopped on the slope sur-
face, another on the road and the remainder crossed the road
(Fig. 16.14a). The end of the trajectories varies for each
scenario due to the differences in the mechanical parameters
(coefficients of restitution [Rn and Rt] and friction angle).
Rockfall simulation is extremely challenging because when
the rock moves downslope, various potential motion modes
are induced: free fall (flying), bouncing, rolling and sliding
(Leine et al., 2013). The restitution coefficients and the
friction angle are considered to be crucial parameters in the
modelling of rockfall. As shown in Fig. 16.13a, the char-
acteristics of rockfall trajectory are strongly affected by the
mechanical parameters (Rn, Rt and friction angle), especially
run-out distance and bouncing height.

The finding suggests that these two variables increase
with the values of the mechanical parameters. Therefore,
some rockfall trajectories were stopped on the slope surface,
another on the road and a few crossed the road in the first
scenario. This occurrence is attributed to the minimum val-
ues of the mechanical parameters. By contrast, most of the

Fig. 16.12 Locations of seeder
points
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Fig. 16.13 Field observation of
rockfall source areas (a–c)
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Fig. 16.14 Rockfall trajectories in five scenarios; a without barrier; and b with barrier
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rockfall trajectories crossed the road in the fifth scenario due
to the maximum values of these parameters. The highest
density of rockfall trajectories in all scenarios was from
station (kilometre of the expressway) 258.15 to 258.18 and
from 258.30 to 258.40. However, this density varies from
scenario to another due to the difference in mechanical
parameters that affect the rockfall trajectory stopping dis-
tance. Therefore, the lowest density was in scenario (1), and
the highest density was in scenario (5). The simulation
results of rockfall trajectory with the suggested barrier
(Fig. 16.10), showed that the suggested barrier location can
eliminate the rockfall effect (Fig. 16.14b). Nonetheless, a
few trajectories crossed the barrier, and barrier efficiency
varies for each scenario due to the differences in the char-
acteristics of the rockfall trajectories in each scenario; the
outcome indicates that an increase in the values of the
mechanical parameters corresponded to a decrease in barrier
efficiency. This is because due to various characteristics of

rockfall trajectories in terms of height, velocity and energy.
With an increase in mechanical parameters, the behaviour of
rockfall trajectories becomes more complicated especially
the bouncing height and energy which affect barrier
efficiency.

Table 16.7 illustrates the barrier efficiency in each sce-
nario based on the percentage of the trajectories that either
arrived or crossed the road to the number of trajectories that

Fig. 16.14 (continued)

Table 16.7 Efficiency percentage of barrier

Scenario Efficiency percentage (%)

1 94.86

2 93.75

3 92.73

4 89.63

5 84.88
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stopped by the barrier. It also shows that the barrier effi-
ciency in scenarios 1, 2 and 3 was almost same but it
decreased in scenarios 4 and 5. This indicates that the barrier
efficiency is decreased with an increase in the values of
mechanical parameters (Rn, Rt and friction angle). However,
the barrier efficiency is still acceptable (since the lowest

efficiency percentage is 84.86%), and the barrier can aid to
eliminate rockfall hazard.

Figure 16.15 demonstrates the rockfall profiles of one
trajectory and the same trajectory in each scenario without
and with a barrier. The location of start or release point of
the profile is 101° 0′ 53.238″E 4° 41′ 33.796″N. These

Fig. 16.15 Profiles of a rockfall trajectory and velocity in each scenario a without; and b with barrier
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profiles include rockfall trajectory, slope surface and
velocity. They indicate the difference in rockfall character-
istics with respect to run-out distance and bouncing height.
These two variables increase when the values of Rn, Rt and
the friction angle are increased; thus, the stopping distances
(final deposition) in the first and fifth scenarios are approx-
imately 90 and 200 m, respectively. The change in rockfall
behaviour from flying/bouncing to sliding/rolling and vice
versa in the same trajectory is clarified as well. This occur-
rence is attributed to a change in acceleration and slope
surface. The velocity also changes based on the motion
mode. This factor was increased in the flying/bouncing mode
and decreased in the sliding/rolling mode, especially at the
impact point (intersection point between flight path and
slope plane). It also shows that the rock was stopped on
slope surface in the first and second scenarios but in the third
it stopped on the expressway, whereas the rock was crossed
the expressway in the fourth and fifth scenarios. The velocity
reflects the efficiency with which the barrier stops the tra-
jectory. The barrier stopped the rockfall trajectory in the first,
second, third and fourth scenarios. The barrier has

effectively reduced the velocity of the trajectory after the
collision, and as a result the rock stopped within a distance
of around 90 m instead of 200 m in the fifth scenario. In the
fifth scenario, the barrier did not stop the rockfall trajectory
because the bouncing height was more than the barrier
height. It is clear that the bouncing or the flying height is
increased in each scenario due to the increasing in the values
of mechanical parameters.

16.9.4 Rockfall Spatial Distribution

16.9.4.1 Rockfall Frequency
Figure 16.16 illustrates the spatial frequency of the simulated
rockfall for the entire study area. Raster of rockfall frequency
is extracted for each scenario without andwith a barrier. There
are many classification schemes available for raster classifi-
cation, such as natural breaks, equal intervals, quantiles and
standard deviations. However, natural breaks are recom-
mended for map classification (Evans 1977; Maceachren
1994; Ayalew and Yamagishi 2005; Pradhan et al. 2014).

Fig. 16.15 (continued)
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Therefore, the frequency raster is classified into five classes
(ranging from very low to very high) based on natural breaks
classification algorithm. Frequency basically relies on the path
of rockfall trajectories and varies for each scenario due to the

difference in these trajectories. Therefore, the number of areas
at risk is increased with the mechanical parameters.

The maximum frequency in each scenario was observed
at stations 258.15 and 258.35 (ranging from high to very

Fig. 16.16 Rockfall frequency in five scenarios; a without; and b with barrier
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high) in the first scenario. In the second scenario, the max-
imum frequency was at station 258.15, 258.35 and 258.40
(ranging from high to very high). In the third and fourth
scenarios, the maximum frequency was from station 258.15
to 258.18 and from 258.33 to 258.40. In the fifth scenario,
the maximum frequency was from station 258.15 to 258.20
and from 258.30 to 258.42 (ranging from high to very high).
Furthermore, the effect of the suggested barrier location
eliminates the rockfall hazard and illustrates how the barrier
modifies the frequency levels. For instance, the barrier
reduced the frequency from very high to very low in the first
scenario and from very high to low in the second scenario at
station 258.15 and from high to low at station 258.35 in the
first and second scenarios. In the third and fourth scenarios,
the frequency deteriorated from very high and high to low.

In the fifth scenario, the frequency was reduced but not the
same amount as in the first, second, third and fourth sce-
narios. However, the barrier still shows an acceptable effi-
ciency eliminating the rockfall frequency (since it is
effectively decreased the frequency rate).

16.9.4.2 Rockfall Height
Figure 16.17 demonstrates the rockfall height in each sce-
nario without and with the barrier. The height raster was
classified into five classes ranging from very low to very
high based on natural breaks classification algorithm. The
rockfall height varies from scenario to another due to various
mechanical parameters. The highest rockfall height was with
the highest values of mechanical parameters (fifth scenario).
In general, the highest bouncing height was observed over

Fig. 16.16 (continued)
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Fig. 16.17 Rockfall height in each scenario; a without; and b with barrier
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the expressway and within a distance before arriving at the
expressway over the slope surface. However, this distance is
different from scenario to another. The barrier efficiency
eliminating rockfall hazard is clear in this figure. The barrier
assists stopping most of the rockfall trajectories that have the
highest height which support the suggested location of bar-
rier in this research. This is because these trajectories had the
lowest height before the barrier and the highest height after
the barrier (over the expressway and within a distance before
arriving at the expressway).

Figure 16.18 demonstrates the probability of rockfall
height in five scenarios. Rockfall height is varied from
scenario to another due to the difference in mechanical
parameters. The maximum height was observed in fifth

scenario (45 m) where the highest values of mechanical
parameters are. However, most of the rockfall trajectories
heights were less than 5 m in all scenarios that support the
suggested barrier height in the current study.

16.9.4.3 Rockfall Velocity
Figure 16.19 illustrates rockfall velocity associated with
rockfall trajectory without and with the barrier. Velocity
raster was also classified into five classes ranging from very
low to very high based on natural breaks classification
algorithm. The highest velocity in all scenarios was observed
over the expressway and within a distance before the
expressway. The areas where the rockfall trajectories have
the highest velocity were almost same in all scenarios.

Fig. 16.17 (continued)
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The maximum velocity values over the expressway were
recorded from station 258.15 to 258.18 and from 258.30 to
258.40. The figure also illustrates the barrier efficiency
eliminating rockfall hazard because of the barrier that stop-
ped the rockfall trajectories that have the highest velocity.

Figure 16.20 shows the probability of rockfall velocity in
five scenarios. The rockfall velocity was ranging from 0 to
40 m/s in the first and second scenarios, from 0 to 45 m/s in
third and fourth scenario, and from 0 to 50 in the fifth sce-
nario. However, the highest probability was recorded with a
velocity range of 5–10 m/s in first, second, third and fourth
scenarios and with a velocity range of 10–15 m/s in the fifth
scenario.

16.9.4.4 Rockfall Energy
Figure 16.21 shows the rockfall energy in five scenarios
without and with the barrier. The rockfall energy raster was
also classified into five classes ranging from very low to very
high based on natural breaks classification algorithm. The
rockfall energy relies on rock velocity and mass. Because the
rock mass is constant, rockfall energy is varied based on the
difference in rockfall velocity. Therefore, the areas where the
rockfall trajectories have the highest energy are almost same
the areas where the rockfall trajectories have the highest
velocity. Consequently, the highest rockfall energy was
observed over the expressway from station 258.15 to 258.18
and from 258.30 to 258.40.

Figure 16.22 demonstrates the probability of rockfall
kinetic energy in each scenario. The probability varies in
each scenario due to the difference in the values of
mechanical parameters. The highest kinetic energy is
observed in the fifth scenario, whereas the lowest kinetic
energy is recorded in the first scenario. The highest value in
the first and second scenarios is 200 kj and in the third and
fourth scenarios is 250 kj, whereas in the fifth scenario is
300 kj. However, in the first, second, third and fourth sce-
narios the highest probability of kinetic energy is between 0
and 10 kj, whereas in the fifth scenario it is between 10 and
50 kj.

16.9.5 Spatial Modelling-Based Rockfall
Hazard Map

16.9.5.1 AHP
Rockfall characteristics (energy, frequency and height) are
considered in the implementation of AHP. The values of
intensity of importance are varied for the same criteria based
on the difference in expert’s opinion. Therefore, geometric

Fig. 16.18 Rockfall height probability in five scenarios
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Fig. 16.19 Rockfall velocity a without; and b with barrier
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mean was applied to obtain the appropriate value of
importance intensity for each criterion. After rounding the
result to an integer, a judgment or pairwise comparisons
matrix was obtained as shown in Table 16.8.

The principal eigenvalue and the corresponding normal-
ized right eigenvector of the comparison matrix give relative
importance of various criteria being compared. After nor-
malizing process, the result matrix was as shown in
Table 16.9.

After the matrix was normalized, the weight for each
rockfall characteristics was derived as shown in Table 16.10,
and the other values of AHP implementation were as shown
in Table 16.11.

16.9.5.2 Rockfall Hazard Map
After the weights of rockfall characteristics were derived,
spatial modelling was conducted based on rockfall energy,
frequency and height. The result of the implementation of

Fig. 16.19 (continued)
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spatial modelling was rockfall hazard map of the study area
in different scenarios. Figure 3.23 shows the rockfall hazard
in multi-scenario without and with the barrier. The map was
also classified into five classes ranging from very low to very
high based on natural breaks classification algorithm. The
rockfall hazard varied over the study area and also varied in
each scenario for the same area. This is because of the dif-
ference in mechanical parameters (Rn, Rt and friction angle)
from one scenario to another. The highest rockfall hazard
was observed from station 258.15 to 258.18 and from
258.30 to 258.40 in the first, second, third and fourth sce-
narios and from 258.15 to 258.20 and 258.30 to 258.40 in
the fifth scenario. Barrier efficiency eliminating rockfall
hazard is also clear in Fig. 16.23. However, this efficiency
was varied from one scenario to another due to the difference
in mechanical parameters that affect rockfall behaviour in
each scenario. In the first scenario, the barrier allowed to
reduce the hazard rate from very high to low at station
258.15 and station 258.35. It also permitted to the area
between stations 258.05 and 258.15 to be completely safe
from the rockfall hazard after it was having a percentage of
rockfall hazard. In the second scenario, the barrier allowed
the area between stations 258.15 and 258.25 to be almost
safe from rockfall hazard. It also assisted to reduce the
rockfall hazard rate from very high to low for the area
between stations 258.30 and 258.35. In the third scenario,
the barrier aided the area between stations 257.95 and
258.05 to be completely safe and the area between stations
258.05 and 258.25 to be almost safe from the rockfall haz-
ard. It also assisted to reduce the rate of rockfall hazard from
very high to low at the area between stations 258.30 and
258.35. In the fourth scenario, the barrier effectively pro-
tected the area between stations 257.95 and 258.05. It also
assisted to reduce the rockfall hazard from very high to low
at station 258.15 and between stations 258.30 and 258.40. In
the fifth scenario, the barrier effectively saved the area
between stations 257.95 and 258.05. It also assisted to
reduce the rate of the rockfall hazard from very high to low
in the areas from stations 258.15 to 258.20 and from 258.30
to 258.42.

Figure 16.24 demonstrates rockfall hazard percentage
along the expressway without and with the barrier. The
highest hazard percentage was recorded between stations
258.35 and 258.45 and then from 258.35 to 258.25 and
258.25 to 258.15, respectively, in all scenarios. However,
the rockfall hazard was varied from one scenario to
another. For instance, the area between station 257.95 and
258.05 was free of hazard in the first scenario, whereas itFig. 16.20 Rockfall velocity probability in five scenarios
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Fig. 16.21 Rockfall energy in five scenarios a without; and b with barrier
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was having a percentage of hazard in the others scenarios.
Also, the area between stations 258.55 and 258.65 was free
of hazard in first, second, third and fourth scenarios while
it was having a percentage of hazard in the fifth scenario.
The barrier efficiency remedial rockfall hazard is also clear
in this figure. The barrier efficiency was varied from one
scenario to another, and the lowest efficiency was recorded
in the fifth scenario due to the highest values of mechanical
parameters. However, the barrier efficiency eliminating
rockfall hazard is still acceptable. For example, in the first
scenario, the area between station 258.05 and 258.15 was
having a percentage of hazard, whereas in the simulation
with suggested barrier it was free of rockfall hazard. In the
first scenario, the barrier reduced the rockfall hazard

percentage from 36.88 to 6.80% over the area between
stations 258.35 and 258.45 and from 28.26 to 3.11% over
the area between stations 258.25 and 258.35 and from
25.01 to 0.84% over the area between stations 258.15 and
258.25. In the second scenario, the barrier assisted to safe
the areas between stations 257.95–258.05 and 258.05–
258.15, from the rockfall hazard. It also reduced the
rockfall hazard percentage from 37.26 to 5.83% over the
area between stations 258.35 and 258.45 and from 28.98 to
3.43% over the area between stations 258.25 and 258.35
and from 24.64 to 1.32% over the areas between stations
258.15 and 258.25. In the third scenario, the barrier
assisted to protect the area between stations 257.95 and
258.05 from the rockfall hazard. It also reduced the rockfall

Fig. 16.21 (continued)
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hazard percentage from 38.69 to 7.01% over the area
between stations 258.35 and 258.45 and from 28.53 to
4.73% over the area between stations 258.25 and 258.35
and from 20.58 to 2.05% over the area between stations
258.15 and 258.25. In the fourth scenario, the barrier
assisted to minimize the percentage of rockfall hazard from
32.66 to 7.35% over the area between stations 258.35 and
258.45 and from 26.35 to 6.14% over the area between
stations 258.25 and 258.35 and from 24.00 to 4.01% over
the area between stations 258.15 and 258.25. In the fifth
scenario, the barrier assisted to safe the area between sta-
tions 258.55 and 258.65. It also aided to minimize the
rockfall hazard percentage from 35.21 to 7.81% over the
area between stations 258.35 and 258.45 and from 23.08 to
5.58% over the area between stations 258.25 and 258.35
and from 22.64 to 4.40% over the area between stations
258.15 and 258.25.Fig. 16.22 Probability of rockfall kinetic energy in five scenarios

Table 16.10 Rockfall characteristics weight

Rockfall characteristic Weight

Energy 0.6333

Frequency 0.2605

Height 0.1062

Table 16.11 Other values of AHP implementation

Consistency Ratio (CR) 0.03

Consistency Index (CI) 0.019357

Randomness Index (RI) 0.58

Table 16.8 Pairwise comparisons matrix among
objectives/alternatives

Criteria/factors Energy Frequency Height

Energy 1.00 3.00 5.00

Frequency 0.33 1.00 3.00

Height 0.20 0.33 1.00

Summation 1.53 4.33 9.00

Table 16.9 Normalized matrix

Criteria/factors Energy Frequency Height

Energy 0.6522 0.6923 0.5556

Frequency 0.2174 0.2308 0.3333

Height 0.1304 0.0769 0.1111

Summation 1.0000 1.0000 1.0000
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Fig. 16.23 Rockfall hazard map in five scenarios a without; and b with barrier
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16.9.6 Validation

Historical data have been used in order to validate the final
result of rockfall hazard along the expressway. The obtained
results of rockfall hazard correspond to the historical records
of rockfall incidents (Fig. 16.25), with only exception in one
area. The areas where high hazard is observed are the same
areas that recorded in historical data which are at station
258.15 and the area between stations 258.35 and 258.45. In
the assessment, no high hazard observed in the area between
stations 258.55 and 258.65, just small hazard percentage in
the fifth scenario. This is because some mitigation measures
have been taken in this area (Fig. 16.26).

16.10 Conclusion

1. The identification of rockfall source areas is one of the
most significant elements in rockfall modelling. Rockfall
source areas (seeder points) were identified based on
multi-criteria method. After the DEM was generated,
DEM derivates (slope, curvature and topographic con-
trast) were extracted. In addition to these criteria, the
terrain type or LULC and the aerial photograph were
considered in the implementation of multi-criteria
method, and then the rockfall source areas were

Fig. 16.23 (continued)
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identified along the study area. The result shows that the
density of seeder points is different from area to another
and the seeder points are distributed along the cliff face.
Topographic analyses performed with LiDAR informa-
tion can identify probable rockfall source regions based
on slope angle and topographic contrast.

2. Modelling findings rely strongly on the DEM accuracy
that affects the rockfall trajectories and the spatial dis-
tribution of rockfall frequency, height and energy, and
thus risk and hazard assessment, in particular. The use of
LiDAR illustrates the advantage of this process in the
evaluation of rockfall hazards over the area of investi-
gation and facilitates the accurate modelling of surface
geomorphology as well as the capture of the geometry of
significant infrastructures. In addition, the utilization of
such information permits effective large-scale rockfall
assessment. An airborne laser scanner (ALS) was used to
gather high-density points cloud (3–4 pts./m2) over the
study area then high-resolution DEM (0.5 m) was gen-
erated. The high-resolution DEM provides very detailed
slope topography that gives a fully understanding of
terrain morphology. Thus, allow for more accurate and
realistic rockfall modelling. The ArcGIS-based rockfall
model provides powerful and unique tools for the mod-
elling and analysis of 3D rockfall processes and hazard
evaluation. The powerful functionality of GIS in data
management, visualization and spatial modelling advan-
ces the capability of rockfall analysis. The rockfall
modelling in terms of rockfall trajectories and their
characteristics spatial distribution and then rockfall haz-
ard map was done using a 3D rockfall model integrated
into GIS environment. A kinematic algorithm based on
lumped-mass approach was applied to derive rockfall
trajectories and the velocity associated with them. The
algorithm permits to simulate the rockfall motion in
different modes (flying/bouncing, sliding/rolling and final
deposition. The rockfall trajectories were derived in
multi-scenario based on a range of mechanical parame-
ters values (coefficients of restitution (Rn and Rt) and
friction angle) related to geological setting and terrain
type of the study area. The result shows that the final
deposition or stopping distance of rockfall trajectories
was various from scenario to another for the same
rockfall source areas. This is due to the difference in the
mechanical parameters in each scenario. The longest
stopping distance was recorded in the fifth scenario due
to the highest values of the mechanical parameters. After
rockfall trajectories and velocity associated were
obtained, raster modelling was implemented to derive
rockfall characteristics spatial distribution in terms of
rockfall frequency, height and energy. Since rockfall
characteristics are related to rockfall trajectories, rockfall
characteristics also varied for each scenario. The highest

Fig. 16.24 Rockfall hazard percentage in five scenarios without and
with barrier
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values of rockfall characteristics along the expressway
were illustrated in the result.

3. Spatial modelling was performed to derive rockfall haz-
ard maps in multi-scenario. Expert’s opinion was

included in this step to obtain the proper weight of
rockfall characteristics raster (energy, frequency and
height) which were considered in deriving rockfall haz-
ard map. After expert’s opinion was collected, analytic

Fig. 16.25 Historical rockfall
events along the study area

Fig. 16.26 Mitigation measures
in the area between 258.55 and
258.65

16 Application of LiDAR in Rockfall Hazard Assessment … 357



hierarchy process (AHP) was applied to derive appro-
priate weight for each characteristics raster. The weights
were 0.6333, 0.2605 and 0.1062 for rockfall energy,
frequency and height, respectively, which means the
rockfall energy affects the rockfall hazard more than
frequency and height. After the weights were derived, the
spatial modelling was implemented considering rockfall
energy, frequency and height and rockfall hazard map in
multi-scenario was extracted. The percentage of rockfall
hazard along the expressway was observed and demon-
strated in five scenarios. The highest hazard percentage
along the expressway was in the areas between stations
258.35 and 258.45, 258.25 and 258.35, and 258.15 and
258.25 descending. The result also shows the barrier
efficiency remedial rockfall hazard along the expressway.
The barrier efficiency was also varied from one scenario
to another. However, the overall efficiency in all sce-
narios was acceptable, and the barrier eliminated the
rockfall hazard effectively along the expressway.

4. A barrier location was suggested in order to mitigate
rockfall hazard based on the result of rockfall charac-
teristics. The barrier was suggested based on the lowest
values of rockfall height and energy. The barrier was
effectively stopping most of the rockfall trajectories. The
barrier efficiency stopping the rockfall trajectories was
94.86, 93.75, 92.74, 89.63 and 84.86% in first, second,
third, fourth and fifth scenarios, respectively, that sup-
ports the suggestion of barrier location in this study.

5. The result of this study suggests that the most crucial
input parameters in rockfall modelling are the coefficients
of restitution (Rn and Rt) and the friction angle. These
parameters control the bouncing height of the falling
block and the energy. The outcome of rockfall simulation
demonstrates that when the values of the mechanical
parameters (Rn, Rt and friction angle) are increased, the
characteristics of rockfall trajectories (run-out distance,
bouncing height, and energy) increase as well. Therefore,
rockfall frequency, height, energy and, subsequently, the
number of regions at risk are increased. The simulation of
rockfall with a range of restitution coefficient and friction
angle values is illustrated; this process comprehensively
clarifies rockfall hazard and facilitates the identification
of poor rockfall conditions. The procedure then supports
the barrier design process and the barrier location to
eliminate the rockfall hazard effect.

6. This research can aid in defining rockfall source areas
and generates an extensive result related to rockfall
hazard especially when the exact values of mechanical
parameters are unknown. In addition, these findings can
assist a barrier designer in developing barriers based on
the worst rockfall hazard condition.
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