
Chapter 3
A Spike-Timing Based Integrated Model
for Pattern Recognition

Abstract During the last few decades, remarkable progress has been made in solv-
ing pattern recognition problems using network of spiking neurons. However, the
issue of pattern recognition involving computational process from sensory encoding
to synaptic learning remains underexplored, as most existing models or algorithms
only target part of the computational process. Furthermore,many learning algorithms
proposed in literature neglect or pay little attention to sensory information encoding,
which makes them incompatible with neural-realistic sensory signals encoded from
real-world stimuli. By treating sensory coding and learning as a systematic process,
we attempt to build an integrated model based on spiking neural networks (SNNs),
which performs sensory neural encoding and supervised learning with precisely
timed sequences of spikes. With emerging evidence of precise spike-timing neural
activities, the view that information is represented by explicit firing times of action
potentials rather than mean firing rates has received increasing attention recently.
The external sensory stimulation is first converted into spatiotemporal patterns using
latency-phase encoding method and subsequently transmitted to the consecutive net-
work for learning. Spiking neurons are trained to reproduce target signals encoded
with precisely timed spikes. It is shown that using a supervised spike-timing based
learning, different spatiotemporal patterns are recognized by different spike patterns
with a high time precision in milliseconds.

3.1 Introduction

Everyday we recognize plenty of familiar and novel objects. However, we know little
about the underlying mechanism of the sophisticated computation involved in the
recognition process of human nervous system. Throughout our brain, neurons propa-
gate information by generating clusters of electrical impulses called action potentials
(APs) [1]. Analogue stimuli are encoded into spatiotemporal patterns and the neural
representation of external world is the basis for perception and reaction [2]. Different
encoding methods have been proposed by researchers, and among these approaches
rate-based encoding (rate codes) and spike-based encoding (temporal codes) are
the most widely studied coding schemes [3, 4]. Traditionally, it is believed that
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information is carried by the temporal average of spikes [5–7], and rate-based cod-
ing has been widely used in previous learning models such as performing stochastic
gradient learning [8] and solving recognition problem relying on variance of input
currents [9]. Although rate codes work well when the stimulus is constant or varying
slowly, which is not common in real-world stimulations. Unlike the rate coding, tem-
poral encoding schemes assume that information is carried by the precisely timed
spikes, which provides more information capacity than the mean firing rate of neu-
rons [10, 11]. It has been found that temporally varying sensory information such
as visual and auditory signals is processed and stored with high precision in brain
[12, 13], and precisely timed spikes are important for the integration process of corti-
cal neurons [14]. Therefore, temporal codes can describe neural signalmore precisely
which enable us to exploit time as a resource for communication and computation
in spiking neural networks.

Recent neurophysiological results show that the precision of temporal spikes may
be triggered by the rapid intensity transients [15] and even a single spike can carry
substantial information about visual stimuli [16]. The low response variability of
retinal ganglion cells shows that the most important information of a firing event
generated by visual neurons may be reserved by the time of the first spike and the
number of spikes [17]. Furthermore, experimental results show thatmost information
carried by spikes is the timing of the first spike after stimulus onset [16]. In human
retina, visual signal from 108 photoreceptor cells are projected to 106 retinal ganglion
cells (RGCs) in the form of spike trains [15]. Hence the information compression is
indispensable during the projection. In addition, action potentials have been shown to
be related to the phases of the intrinsic sub-thresholdmembrane potential oscillations
[18, 19]. The phase locking between action potential and gamma oscillation has also
been discovered in electric fish [20] and the entorhinal cortex [21]. Phase coding has
been successfully utilized to perform sequences learning and episodic memory in
hippocampus via phase precession in previousworks [22–24]. The phase information
of spikes is exploited within each receptive field. As each ganglion cell receives
information from the photoreceptor cells in its receptive field, phase coding is used
to reserve spatial information during compression as described in Sect. 2.2. Thus,
we believe that the combination of temporal and phase coding offers a new way to
implement the compression as well as to explain the compression process.

After sensory encoding, the neural system needs to learn neural signals that rep-
resent external sensory stimulation. Spike-based learning algorithms compute with
firing times and make use of the inter spike intervals so that they are compatible with
temporal codes. Hebbian synaptic plasticity has been viewed as the basic mechanism
for learning and memory [25, 26], in which the synaptic efficacy is increased if the
presynaptic neuron repeatedly contributes to the firing of postsynaptic neuron. As
precise spike timing [27] and relative timing between pre- and post-synaptic firing
[28] are discovered, learning with millisecond precision has received intensive inter-
ests. Spike-timing-dependent plasticity (STDP) is believed to play an important role
in learning, memory and the development of neural circuits [29]. However, many
existing learning models use rate codes as the neural representation of information,
and learning with temporal codes remains an open research topic. The objective
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of learning is to train output neurons to respond selectively to inputs and generate
desired output spike patterns by adjusting synaptic plasticity. Since the membrane
potential of postsynaptic neuron is determined by the spikes of afferent neurons,
the generation of postsynaptic spike is the result of the cooperative integration and
synchronization of presynaptic input spikes [30, 31]. When the input spikes arrive in
synchrony and a sufficiently large depolarization of postsynaptic membrane poten-
tial is achieved, a firing event will be triggered. Since we consider explicit desired
patterns for recognition task, supervised learning is preferred due to its efficiency
and accuracy. Moreover, growing evidences indicate that supervised learning is also
employed in cerebellum and cerebellar cortex [32, 33]. It has also been demonstrated
to be a successful form of learning to establish network with cognition functions [34,
35]. We adopt a spike-timing based supervised learning algorithm recently devel-
oped by [36], in which the error between the target spike train and the actural one
is used as the supervisory signal. In addition, the firing intervals between pre- and
postsynaptic spikes are recorded for synaptic plasticity modification, through which
the actual output patterns approximate the desired output patterns gradually.

The contribution of this work is to bridge the gap between sensory encoding and
synaptic information processing by proposing an integrated computational model
with spike-timing based encoding scheme and learning algorithm. This helps to
reveal the neural mechanisms starting from visual encoding to synaptic learning and
the computational process in central nervous system. Such an encoding and learning
algorithms in the proposed spike-based model are integrated in a consistent scheme:
temporal codes. The encoding method provides a possible mechanism for converting
visual information into neural signals. The spiking neurons are trained to classify
spatiotemporal patterns based on the temporal configuration of spikes rather than
firing rates of neurons.

This chapter is organized as follows: In Sect. 3.2, we introduce the general struc-
ture, encoding method and learning algorithm of the proposed integrated model. In
Sect. 3.3, the performance and properties of the integrated model are demonstrated
by numerical simulations. Section3.4 reviews the related works while Sect. 3.5
concludes and discusses the limitations and extensions of the integrated model
proposed in this work.

3.2 The Integrated Model

3.2.1 Neuron Model and General Structure

In our proposed integrated model, all neurons are modeled with the leaky integrate-
and-fire (LIF) model [37], which is defined as:

τ
dV

dt
= −(V − Vr ) + R(I0 + Iin + In) (3.1)
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Fig. 3.1 General structure and information process of the integrated model. The main components
of the model are the encoding part and the learning part. The spike-based model employs temporal
codes as the neural representation of external information. The latency-phase encoding as discussed
in Sect. 2.2 is used to convert the image into spatiotemporal patterns consisting of N spike trains.
After sensory encoding, each spike train is received by one input neuron of the spiking neural
network.With a predefined target pattern for each input pattern, the spiking neural network equipped
with a supervised spike-timing based learning as described in Sect. 2.3 is trained to recognize the
different spatiotemporal patterns

where τ = RC is the membrane time constant, C = 1nF is the membrane conduc-
tance, R = 10 MΩ is the membrane resistance, V is the membrane potential and
Vr = −60mV is the rest potential, I0 = 0.1nA is the constant inject current, Iin is the
summation of presynaptic input currents, and In is a background noise modeled as a
Gaussian process with zero mean and variance 1 nA. Once the membrane potential
reaches the threshold Vthr = −55mV, it will be reset to Vres = −65mV and held
there for the refractory period.

The spike-based model presented here consists of two components: the latency-
phase encoding and the supervised spike-timing based learning. Starting from envi-
ronmental stimuli, we first encode images into spatiotemporal patterns and then
transmit them to a spiking neural network for learning. The entire structure of the
model is illustrated in Fig. 3.1.

3.2.2 Latency-Phase Encoding

With a combination of temporal encoding and phase encoding, a feature-dependent
phase encoding algorithm has been proposed in [38]. Inspired by the information
processing in the retina, the visual information is encoded into the responses of
neurons using precisely timed action potentials. The intensity value of each pixel is
converted to a precisely timed spike via a latency encoding scheme. Various exper-
iments show that a strong stimulation leads to a short spike latency, and a weak
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stimulation results in a long reaction time [39–41]. Therefore, a monotone decreas-
ing function could be used for the conversion from sensory stimuli to spatiotemporal
patterns. Here, a logarithmic intensity transformation is adopted, which is similar to
that used in [42].

ti = f (si ) = tmax − ln(α · si + 1) (3.2)

where ti is the firing time of neuron i , tmax is the maximum time of encoding window,
α is a scaling factor, and si is the intensity of the analog stimulation. One advantage
of the logarithmic function is that the time differences of spike latencies are invariant
with different contrast level, e.g., it depends on the relative strength of the stimulation.

Ganglion cells have been observed to be firing in synchrony in several species [43–
45], which illustrates the involvement of oscillations in the retina. We assume that
the phases of oscillations are related to action potentials and contribute to the infor-
mation compression from photoreceptor cells to ganglion cells. To take advantage
of the phase information, spikes are assigned with phases related to their respective
oscillations. Since each ganglion cell receives spikes from a group of photoreceptor
cells, which is defined as the receptive field of this ganglion cell, we assign different
initial phases to their subthreshold membrane oscillations. The periodic oscillation
is described as cosine function for simplicity,

iosc = A cos(ωt + φi ) (3.3)

where A is the magnitude of the subthreshold membrane oscillations, ω is the phase
angular velocity of the oscillation, and φi is the phase shift of the i th neuron in the
receptive field.

In order to distinguish photoreceptor cells in the same receptive field, we set a
constant phase gradient among photoreceptor neurons. The phase of subthreshold
membrane oscillation for the i th photoreceptor neuron φi is defined as:

φi = φ0 + (i − 1) · Δφ (3.4)

where φ0 is the reference initial phase, and Δφ is the constant phase difference
between nearby photoreceptor cells (Δφ < 2π

NRF
, NRF is the number of photoreceptor

cells in each receptive field).
The spikes generated by the photoreceptor cells in each receptive field are com-

pressed into one spike train by the ganglion cell. In order to utilize the phase infor-
mation of spikes to reconstruct the original visual stimuli, the alignment operation
is required to link each spike in the spike train with the corresponding photorecep-
tor cell in the receptive field. The alignment procedure is implemented by forcing
photoreceptor cells to fire only when the subthreshold membrane potentials reach
their nearest peaks as illustrated in Fig. 3.2b, c. After compression as shown in
Fig. 3.2c, d, each spike in the compressed spike train is linked to one particular
photoreceptor cell in the receptive field according to the phase of the subthreshold
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oscillations. Consequently, the phase information and the alignment together build
an one-to-one relationship between the photoreceptor cells and spikes generated by
the corresponding ganglion cell. With the latency-phase coding scheme, external
stimulation is encoded into precisely timed spikes and then compressed into spike
trains. The intensity information is encoded into firing times while the spatial infor-
mation is reserved by the phases of spikes. When the spike trains are transmitted to
coupled networks with respect to the encoding area, latency-phase encoded spikes
generated by photoreceptor cells can be reconstructed from the compressed spike
trains with a same phase reference as shown in Fig. 3.2d, e. The visual stimulus can
then be reconstructed via a simple latency decoding process as shown in Fig. 3.2e, f.
The complete latency-phase scheme is illustrated in Fig. 3.2.
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Fig. 3.2 Flowchart of the latency-phase encoding scheme. (a) Original stimuli. Stimulations with
different intensities are the inputs to the photoreceptor cells. (b) The latency-encoded pattern. The
visual information carried by the intensities is converted into the latencies of spikes. The spikes
are assigned with phase information according to their corresponding oscillations. (c) Encoded
spikes after latency encoding and alignment operation. The spikes are forced to be generated at
peaks of the sub-threshold oscillations. (d) Compressed spike train. The spikes generated by the
photoreceptor cells from the same receptive field are compressed into a spike train. (e) Reconstructed
latency-encoded spikes. Spatial information within the receptive field could be retrieved from the
compressed spike train via a phase reconstruction. (f) Decoded stimuli. By an inverse latency
transformation, the original stimuli are reconstructed from the reconstructed spikes [38]
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3.2.3 Supervised Spike-Timing Based Learning

It is known that learning from instructions is an important way for our brain to obtain
new knowledge. As proposed in [36], the remote-supervised-method (ReSuMe) is
compatible with temporal codes and is capable of performing spike-timing based
learning precisely with millisecond timescale. The learning algorithm is based on
a STDP-like process and synaptic modification during training depends on the pre-
and postsynaptic firing times. After the training is successful, responses of output
neurons will converge to the target patterns with a high time precision.

It is common that error signal between the target and the actual output is used
in supervised learning. Similar to Widrow-Hoff rule applied in rate-based neuron
models [46], the modification of synaptic efficacy in ReSuMe is triggered by either
the target output (Sd(t)) or the actual output (So(t)). At the same time, the sign of
error signal (Sd(t) − So(t)) decides the direction of the modification. To take the
spike-timing into consideration, a STDP-like term is incorporated in the kernel adi :

adi (−s) = A · exp( s
τ

), if s < 0 (3.5)

where A is the maximal magnitude of the STDP window, and s is the delay between
the pre- and postsynaptic firing. Similar to the STDP process, if a presynaptic spike
precedes a postsynaptic spike within a time interval, the synapse is strengthened.
When the phase relation is reversed, the synapse is weaken. The magnitude of mod-
ification is determined by the lag s between pre- and postsynaptic spikes and is
calculated by the convolution adi (t) ∗ Si (t). The complete learning rule is described
as in Ponulak and Kasinski [36],

d

dt
woi (t) = [Sd(t) − So(t)][ad +

∫ ∞

0
adi (s)Si (t − s)ds] (3.6)

where woi is the synaptic weight from the presynaptic neuron i to the postsynaptic
neuron o. Sd(t), So(t) and Si (t) are the desired output, actual output and input spike
train, respectively. ad is a constant that helps speed up the learning process. From
Eq. (3.6), we can see that the synaptic weights are updated when Sd(t) �= So(t), and
the direction of modification is determined by the sign of the error signal Sd(t) −
So(t). Nomodification is induced when the actual output pattern is in agreement with
the desired output pattern (Sd(t) = So(t)), which is used as the stopping criterion.
The magnitude of modification is determined by the convolution term adi (t) ∗ Si (t).
Thus, Si (t), Sd(t) and So(t) together are responsible for the synaptic modification.
The learning rule is illustrated in Fig. 3.3.

The supervised signal is generated by the remote supervision scheme. Therefore,
the target spike train is not directly delivered to the postsynaptic learning neuron
and it determines the change of the synaptic efficacy from the presynaptic neuron
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Fig. 3.3 Learning rule of ReSuMe. (a) The presynaptic input spikes, (b) The eligibility trace,
(c) The desired output and actual output spikes, (d) The synaptic weight. The eligibility trace in
(b) records the status of neuron according to the presynaptic spikes in (a). The desired output
(positive direction) and the actual output (negative direction) in (c) together determine the sign of
the supervisory signal. There is no other modification when the actual output spikes are generated
at the desired times. The synaptic weight is updated when either a actual spike is generated or a
desired spike should be induced. Meanwhile, the amount of synaptic weight change depends on the
lag between pre- and postsynaptic spikes and the eligibility trace in (b) [36]

to postsynaptic neuron. It should be noted that both the excitatory synapses and
inhibitory synapses exist in the model. During the learning, the synaptic weight is
modifiedwhen either a target spike is needed or the postsynaptic learning neuron fires
at the wrong time. When the modification occurs, the sign of error signal (Sd(t) −
So(t)) decides the direction of change and the kernel ad + ∫ ∞

0 adi (s)Si (t − s)ds
decides the amount of weight change. The synapses contributing to the firing of
desired spikes are excitatory and adjusted to bring forward or hold off the firing
times. On the other hand, the inhibitory synapses are used to suppress the firings at
undesired times. The learning process stops as soon as the actual output patterns are
identical to the target patterns.

3.3 Numerical Simulations

Real-world visual stimuli are often complex and contain a large amount of informa-
tion. In this section, three 256 × 256 grayscale images are used to demonstrate the
classification capability and the robustness of the integrated model. Images from the
Urban and Natural Scene Categories of the LabelMe data set [47] are used here to
explore the influence of parameter variations and the memory capacity of the system.
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3.3.1 Network Architecture and Encoding of Grayscale
Images

The receptive field (RF) of a sensory neuron is defined as a spatial region where the
presence of stimulus affects the firing of that neuron. During the encoding phase,
visual information from photoreceptor cells in the same RF is projected to retinal
ganglion cells. Each ganglion cell then compresses the received spikes into a spike
train. Therefore, the number of spikes in each spike train is determined by the number
of pixels in each input image and the number of RFs.

Nspike = n

NRF
(3.7)

where Nspike is the number of spikes in each spike train (number of pixels in each sub-
field assigned with an RF), n is the number of photoreceptor cells (number of pixels
of each image), and NRF is the number of retinal ganglion cells (i.e., the number
of RFs). Since each ganglion cell connects to one input neuron of the consecutive
spiking neural network, the number of input neurons N is equal to NRF . The number
of output neurons depends on the size of data sets and the readout strategy. Intuitively,
for large database with a large number of classes and complex target patterns with
more spikes, more output neurons are required to perform the learning task. A two
layer spiking neural network with 1024 input neurons and a single output neuron is
used to illustrate the recognition capability of this model.

RF1 input latency code gamma alignment

250 300 350 400 450

time step

(a) (b)

(c)

Fig. 3.4 The latency-phase encoding. The original image (256 × 256 pixels) in (a) is partitioned
into 1024 RFs with the size of 8 × 8. The left pattern in (b) is the spike pattern of RF1 after latency
encoding and the right one is the pattern further processed by the alignment operation (spikes
are denoted by the dot markers). The compressed spike train of RF1 is given in (c). For better
visualization, only part of the encoded spatiotemporal pattern is illustrated
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Here, grayscale images with the size of 256 × 256 pixels are used as the external
stimulation. Each pixel value is regarded as the intensity of the visual stimulation
received by the photoreceptor cell in the retina. Thus there are 1024 RFs with the size
of 8 × 8 pixels as shown in Fig. 3.4a. After the alignment as shown in Fig. 3.4b, each
ganglion cell receives 64 spikes from 64 photoreceptor cells in its receptive field and
compresses them into one spike train as shown in Fig. 3.4c. Therefore, information
of the 256 × 256 pixel image is encoded into 1024 spike trains and each spike train
contains 64 spikes. As the encoding method converts the intensity values into firing
times of spikes, the visual information is preserved by the temporal configuration of
the spike trains.

3.3.2 Learning Performance

To recognize images, we predefine different target spike patterns for input patterns.
For simplicity, each target pattern is defined as a sequence of three spikes (each target
pattern is denoted by a different marker type, as shown in Fig. 3.5a). After sensory
encoding, three spatiotemporal patterns of length 640ms are repetitively presented
to the network in a random sequence. The number of epoch is increased when one
pattern has been presented to the network, while the number of iteration is increased
when all patterns have been presented to the network once. The responses of the
output neuron for different input patterns are shown in Fig. 3.5a. To quantitively
evaluate the learning performance, a correlation-based measure of spike timing [48]
is adopted to measure the distance between the output pattern and the target pattern.
The correlationC is close to unity when the output pattern matches the target pattern
and equals to zero when the two patterns are unrelated. The spike trains (So and
Sd ) are convolved with a low pass Gaussian filter of a given width σ = 2ms. If the
filtered spike trains are −→s1 and −→s2 , the correlation measure is

C =
−→s1 · −→s2
|−→s1 ||−→s2 | (3.8)

The typical results of the training are shown in Fig. 3.5. Within 20 presentations
of each input pattern, the output neuron is able to reproduce the target pattern as
shown in Fig. 3.5. At first, the output neuron fires at random times. After several
iterations, extra spikes firing at undesired times disappear, and the actual output
patterns approach to the corresponding target patterns. When successful learning
is achieved, the output neuron is able to reproduce different target patterns when
different input patterns are given. We repeated the training for dozens of times and
observed that the spiking neuron is able to learn the training pairs successfully.
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3.3.3 Generalization Capability

The integrated model recognizes each image as a certain spatiotemporal pattern, in
which the intensities of individual pixels are encoded into precisely timed spikes.
Therefore, the generalization of the system is expected to be related to the pixel-level
features of the input images. To study the generalization capability of the model,
we add different levels of Gaussian, speckle and salt-and-pepper noise to the input
images during the testing phase. The Gaussian noise is specified by its mean m and
variance v, the speckle noise is specified by its variance v, and the salt-and-pepper
noise is specified by the noise density d. For each kind of the noise with different
intensities, we test the trained network with one hundred noisy images. The test
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Fig. 3.5 Illustration of the learning process and performance. (a) Raster plot of the output spikes.
When presented with different input patterns, the output patterns converge to the corresponding
target patterns. Given different input patterns, spikes generated by the output neuron are denoted
by different marker types. (b) The correlations C between output spike trains and the target spike
trains against learning iterations. At first, the output neuron fires at random times. After several
iterations, the output patterns begin to approach to the target patterns and the learning is converged
within twenty iterations
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results are shown in Fig. 3.6b. By analyzing the learning process, we can see that
the pixel-feature dependent generalization is related to temporally local learning
algorithm. During the learning process, only the synaptic weights associated with
input spikes evoking the postsynaptic spikes within the learning window are updated.
The decaying learning window makes the optimization process to be focused on a
limited number of synapses, which affects the firing time of the nearest postsynaptic
neuron. At the same time, noise added to input images shifts part of the firing times
of the encoded spatiotemporal pattern. Therefore, the spiking neuron should be able
to reproduce target spikes with a small temporal error in response to the input images
with pixel noise, but fail to recognize images in the presence of other type of noises.
As expected, the test results in Fig. 3.6b show that the system is more resistant to
salt-and-pepper noise than speckle noise or Gaussian noise.

We also add the different type of noises to the input images during the training
phase. For each type of noise, 100 × 3 noisy images are used as the training set. After
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Fig. 3.6 The test results with different type of noises added to the input images. (a) Examples
of images with different type of noises, such as Gaussian, speckle and salt-and-pepper noise. The
correlationC between the output spike pattern and the target pattern is used to evaluate the precision
of the neural responses. (b) Reliable responses can be reproduced by the spiking neural networks
for noisy images (e.g., deterministic training). (c) The robustness to noise is improved when the
noise information is included during the training phase (e.g., noisy training)
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training, another 100 × 3 images with noise of the same type and intensity level are
used to examine the reliability of the neural responses after noisy training. As shown
in Fig. 3.6c, when the noise information is learned by the classifier during training
phase, the robustness of the system due to the effect of noise has been improved.
It can also be observed that the maximum level of salt-and-pepper noise that the
system can tolerate is much higher than that of the other two type of noises, which
is consistent with our analysis.

3.3.4 Parameters Evaluation

To examine the influence of parameter variations in the encoded patterns, 100 images
(256 × 256 pixel, 8-bit grayscale) from the Urban and Natural Scene Categories of
theLabelMedatabase are encodedwith various parameter configurations.The images
from LabelMe data set are used here to study the properties of the integrated model
due to their distributed intensity values and their closeness to real-world stimulation.
A few sample images from the data set are given in Fig. 3.7.

The size of receptive field, encoding cycles and phase shift constant are impor-
tant parameters for the encoding method. Since photoreceptor cells of the same RF
convey visual information to the corresponding retinal ganglion cell, the number of
photoreceptor cells in each RF affects the number of spikes in the compressed spike
train. If the length of encoding window is fixed, increasing the RF size would result
in a higher average firing rate of the compressed spike trains.

Fig. 3.7 Sample images of “buildings inside city” category from theLabelMedatabase. The original
256 × 256 color images are converted into 8-bit grayscale images
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Fig. 3.8 The encoding error with different encoding cycles and phase shift constants on natural
images from the LabelMe database. The average square error per pixel (vertical axis) is employed to
estimate the encoding accuracy of the test images. (a) The encoding error drops when the number of
oscillation cycles increases. With more subthreshold membrane oscillation cycles, more oscillation
peaks provide more sampling points to encode input intensities (the tail of the curve is enlarged in
the inset). (b) The phase shift constant Δφ slightly affects the encoding accuracy

Considering the accuracyof encodingprocess, no error is introducedby the latency
encoding scheme. The distortion of information is resulted from the alignment oper-
ation. As the alignment operation moves spikes to the peaks of the subthreshold
oscillations, the encoding accuracy is affected by the number of oscillation cycles
within the encoding period as shown in Fig. 3.8a. To estimate the accuracy of encod-
ing, we compare the reconstructed images with the original images using the average
square of error per pixel,

e =

n∑
i=1

(si − s ′
i )
2

n
(3.9)

where si and s ′
i are the intensities of the i th pixel in the original image and the

reconstructed image, respectively.
Since the intensity information is carried by the temporal spikes, the distribution of

the original images as well as the encoding parameters such as phase shift resolution
Δφ may affect the temporal distribution of the encoded spatiotemporal patterns. The
experiment results illustrate that the phase shift constant hardly affects the encoding
accuracy as shown in Fig. 3.8b. However, it will determine the spike distribution of
the compressed spike train as shown in Fig. 3.9. The encoded spikes concentrate in
the time domain with a small shift constant as shown in Fig. 3.9a and spread out with
a large shift constant as shown in Fig. 3.9b.

Therefore, the choice of encoding cycles depends on the precision requirement
for a specific application. Since the phase shift resolution Δφ affects the distribution
of encoded spatiotemporal patterns, it should be tuned according to the learning
algorithm adopted in the posterior neural network.
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Fig. 3.9 The encoded patterns with a different phase shift constant. The phase shift constant is
the phase difference between nearby photoreceptor cells in the same receptive field and affects the
firing times within each receptive field. With a small phase shift constant, neurons within the same
receptive field tend to fire simultaneously as shown in (a). With a large phase shift constant, the
temporal distribution of spikes is scattered as shown in (b)

Since the postsynaptic depolarization is determined by the integration of presy-
naptic input spikes, temporal distribution of input spatiotemporal patterns and the
complexity of target patterns will affect the learning performance. On one hand,
because a target spike requires one or more preceding input spikes to excite the out-
put neuron to fire at the desired time, enough presynaptic input spikes are needed for
the generation of spikes. On the other hand, increasing the number of target spikes
will result in competition for limited available synapses between the target spikes
firing at different times and impose restriction on the behavior of the output neuron.
We tested the system on 100 images (128 × 128 8-bit grayscale images from Urban
and Natural Scene Categories of LabelMe database) to examine the influence of
target patterns on the learning performance. For each number of target spikes, the
network was trained with one randomly generated target pattern. It is observed that
the spiking neuron needs more iterations to achieve a successful learning for a more
complex target patterns as discussed in our analysis.

3.3.5 Capacity of the Integrated System

The spiking neural network with the same settings in previous experiments is used to
explore thememory capacity of the integrated system. From a computational point of
view, precisely timed spikes have a remarkable encoding capacity, i.e., the memory
capacity of the system is often limited by the learning scheme employed. Since most
of the information is reserved by the temporal code, the design of target patterns plays
a pivot role in exploiting the information carried by the encoded spatiotemporal
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Fig. 3.10 Memory (or
recognition) capacity of the
integrated model. The
average percentage of
successful recall of patterns
is plotted as a function of
training pairs. The successful
recall percentage drops
dramatically after the
number of training pairs is
larger than 11

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training pairs

P
er

ce
nt

ag
e 

of
 s

uc
ce

ss
fu

l r
ec

al
l

Capacity test of the spiking neural network

patterns. We train the network with different number of input patterns and define
the percentage of successful recall of trained pairs as an evaluation of the memory
capacity. A successful recall of one trained pattern is achieved when the distance
between the output pattern of the trained network and the target pattern is close
enough, i.e., C > 0.95 as the threshold. To simplify the problem for a classification
task, we randomly generated one target spike train containing ten spikes for all input
images every time and repeat the experiment for 20 times.

As shown in Fig. 3.10, for the 1024-1 spiking neural networkwith ten spikes in the
target patterns and the selected parameter settings, around 11 training pairs can be
successfully stored and recalled with a slight time shift. The percentage of successful
recall decreases quicklywhen the number of training pairs is increased. Apparently, it
can be inferred that decreasing the number of target spikes (complexity) or increasing
the free tunable parameters will lead to a larger amount of information capacity.
However, this would also allow less information of the spatiotemporal patterns to be
learned. Although it is not mathematically analyzed, the presented simulation results
for the specific case provide some insight into the information capacity of the system.

To summarize it from a system level, temporally distributed input spatiotemporal
patterns and simple target patterns are preferred for better generalization capabilities
and memory capacity of the integrated model. The scattered distribution of input
patterns enables the output neuron to generate spikes at arbitrary times. Although the
network can learn more about the original images with more complex target patterns,
the computational efforts will also be increased and the information capacity will
be limited. Therefore, the tradeoff between the learning level of input patterns and
the computational efforts as well as memory capacity should be considered for any
specific applications.
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3.4 Related Works

Spiking neural networks have been applied to solve different classification tasks
[31, 49–52]. Hopfield and Brody [30] proposed a computational model for pattern
recognition, in which analog signal is employed as neural representation of sensory
stimuli. The transient synchronization of decaying delay activity of a specific subset
of input neurons are used for recognition. Although it has been successfully applied
to speech recognition [31] and olfactory recognition [49], the unknownmechanismof
encoding input stimulation into decay firing activities makes the model questionable.
Bohte et al. [50] proposed a temporal version of error-backpropagation, SpikeProp.
The SpikeProp was demonstrated to be able to classify images with a three-layer
spiking neural network. However, the adaptive learning can only be applied to ana-
lytically tractable neuron models, and the weights with mixed signs are suspected to
cause failures of training [53]. Gütig and Sompolinsky [51] proposed a supervised
learning algorithm, temptron, to classify spatiotemporal patterns by generating at
least one spike or staying quiescent.

Brader, Senn and Fusi [52] proposed an alternative approach, in which a spike-
driven model is able to perform binary image classification with spiking neurons
using rate codes. In this approach, grayscale value of each pixel of input images is
normalized to a binary value such that the largest element is unity. Then each element
was encoded by Poisson spike trains at different frequencies. After learning, images
from different classes can be distinguished by the firing rates of output neurons.
However, the spike-driven model only focuses on the learning part and pay little
attention to the sensory encoding. By transforming 8-bit grayscale images into binary
images, a large amount of the images have been discarded. Therefore, the actual
information carried by the input patterns are far less than that of the original images.
Moreover, the spike-driven learning relies on a stochastic process, which makes the
learning algorithm less efficient and computational demanding.

Due to the use of different encoding scheme and learning strategy, the proposed
integrated model has several advantages over existing approaches. First, we look
at the pattern recognition process at a system level. Rather than considering sen-
sory encoding and learning as isolated processes, we integrated biological plausible
encoding and learning processes using consistent neural codes. The latency-phase
encoding scheme retains almost all information of the input images with high pre-
cision and links up the sensory encoding with learning process. Second, in the inte-
grated spike-based model, we demonstrated that input patterns can be classified by
precisely timed spike trains rather than the mean firing rates or single spike code.
With the rich capacity of temporal codes, detailed information of the inputs can be
exploited by designing the target pattern and precisely timed spikes can be generated.
Furthermore, the supervised spike-timing based learning allows an efficient compu-
tation and fast convergence, such that the system can be applied to real-life tasks,
such as movement control [54] and neuroprostheses control [55].
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The input neurons are supposed to fire more than once in our model, which makes
better use of the synaptic weights and generalization performance. Although the
temporal codes provide a large amount of information, multi-spike signal results
in the competition among target spikes firing at different times for the available
resources. This leads to limited memory capacity and slow convergence as shown
in the simulation results. Therefore the removal of the conflicts among the target
spikes remains a challenging but interesting issue for the spike-timing based learning
algorithm. One approach is to employ multiple layer and recurrent neural structures,
such as liquid state machine [56], so as to increase the computational capability of
the system and to absorb the influence of multiple spikes.

There are a few limitations in our current model. The encoding scheme in the
model does not incorporate any information extraction to preprocess the input pat-
terns, which is viewed as a necessary procedure in traditional pattern recognition
models. By using filtering techniques as proposed in HMAX model [57] or local
edge detectors [58], it is believed that the performance and memory capacity in the
proposed model will be improved with an efficient neural code in a more concise
and abstract manner.

3.5 Conclusions

In this chapter, an integrated computational model with latency-phase encoding
method and supervised spiking-timing based learning algorithm has been proposed.
Stimuli were first encoded into spatiotemporal patterns with latency-phase scheme,
which builds up a bridge between real-world stimuli to neural signals in a biological
plausible way. Then the patterns were learned by spiking neurons using a spike-
timing based supervised method with millisecond time precision. As shown in the
simulation results, the spike-timing based neural networks with temporal codes are
capable of solving pattern recognition task by computing with action potentials.

Although the current model has limitations in the recognition capacity, our study
exploits the computational mechanisms employed by neural systems in two respects:
First, our model was built at a system level emphasizing both the sensory encoding
and learning process. It is an integrated system based on a unified temporal coding
schemeand consistentwith the knownneurobiologicalmechanisms. Second,wehave
demonstrated the classification capability of the system that computes precisely timed
spikes and realistic stimuli, analogously to cognitive computation in human brain.
The approaches based on cognitive computation will play a leading role in many
applications spanning across signal processing, autonomous systems and robotics
[59–61].
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