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Abstract In this chapter, we explore the portfolio selection problem involving
uncertainty, in other words: risk. To deal with this uncertainty, we will utilize Value
at Risk (VaR) and Conditional Value at Risk (CVaR). Moreover, we present a Robust
Optimization method for specifying the parameter uncertainty while minimizing the
Conditional Value at Risk. We investigate optimization problems in order to mini-
mize CVaR. Our approach consists in the use of robust optimization techniques for
minimization of CVaR. We research Robust CVaR (RCVaR) optimization models
under ellipsoidal uncertainty. Finally, we conclude that one can control the para-
meteric uncertainty with some robust distribution assumptions and obtain certain
optimal solutions.

Keywords Coherency · Value at Risk · Conditional Value at Risk · Robust Condi-
tional Value at Risk · Optimization · Robust optimization

1 Introduction

Quantifying risk in a portfolio optimization problem is an issue that should be taken
seriously because it is the first step of portfolio risk management. Especially, the
high volatile nature of financial markets necessitates comprehensive risk analysis
and risk measurement which generate optimal solutions. Value at Risk, or simply
VaR, is a specified quantile based risk measure which has been increasingly used as
a risk management tool, especially, after the Risk Metrics document of Morgan [16].
VaR is so often used because it is easy to compute and understand, however, it has
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some undesirable properties which are widely criticized by researchers. For example,
Uryasev [24] discussed that VaR does not take into account the risk that exceeds VaR,
and for different confidence levels it can provide conflicting results.Artzner,Delbaen,
Eber andHeath [2] in 1998 stated some axiomswhich a riskmeasure should satisfy. A
risk measure that satisfies these axioms is called a coherent risk measure. After their
study in 1998, coherent risk measure concept has become a criterion to evaluate risk
measures. VaR is not a coherent riskmeasure since it fails to hold subadditivity axiom
of coherence. Further, Acerbi and Tasche [1] in 2001 noted that VaR contrasts with
portfolio diversification (diversification reduces risk) due to it is failure in holding
axiom and they then commented that VaR is not a risk measure, since a risk measure
cannot violate the subadditivity axiom. Since VaR is not coherent, risk professionals
have started to search for an alternative risk measure to VaR which is coherent [1].

As a measure of downside risk, Conditional Value at Risk, or simply CVaR,
came into existence and exhibited some attractive properties. CVaR is defined as
the expected loss under the condition that loss exceeds VaR. First of all, CVaR is
attractive since it is a coherent risk measure. Since CVaR is convex, it is relatively
easy to control and optimize. Rockafellar and Uryasev [25] in 2000 first defined
CVaR as a solution of an optimization problem and they have stated a minimization
formula. They showed with numerical experiments, that minimization of CVaR also
leads to near optimal solutions in VaR since VaR never exceeds CVaR. In their study
[25], they created a new technique, minimization formula, and using this technique
one can compute the VaR value and optimize CVaR at the same time. Rockafellar
and Uryasev [24] in 2002 noted that as a tool in optimization modeling, CVaR has
predominant properties in many respects. CVaR has a computational advantage over
VaR, such as CVaR can be employed for optimizing over very large numbers of
instruments and scenarios by simply using the minimization formula and applying
this formula to a linear programming technique [24]. Researchers are still continuing
to study on the mathematical and computational properties of CVaR [17, 18, 27].

However, the optimization processes have been recently illustrated as possibly
being weak, since they lead to solutions which heavily depend on parameter relax-
ation. This dependence makes the theoretical and numerical results highly unreliable
for practical purposes. An approach that can overcome this drawback is robust opti-
mization. Robust optimization is a type of mathematical optimization problem and
methodology which focuses on parameter uncertainty [3–5]. It assumes that parame-
ters are only known to belong to certain intervals with a certain confidence level, and
their value can cover certain variation ranges. By treating the uncertainty in para-
meters deterministically, one can have a more conservative portfolio selection. Pinar
and Tutuncu [21] used robust models for risky financial contracts and they stated
that the most robust profit opportunity can be solved as a convex quadratic program-
ming problem. Further, Pinar [20] applied a robust multi-period portfolio selection
problem based on minimizing one sided return from a target return level. The study
found relatively stable portfolios in face of market risk and showed that robust mod-
els diminish the variability of a portfolio value. Chen et al. [29] and Ghaoui et al.
[11] investigated robust portfolio selection using Worst Case Value at Risk. Chen
et al. [29] provided robust Worst-Case VaR optimization under an interval random
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uncertainty set. With some numerical experiments they presented that the behav-
iour of portfolios can be improved significantly by using the robust Worst-Case VaR.
Further, Ghaoui et al. [11] showed that optimizing theWorst-Case VaR can be solved
exactly by solving convex, finite dimensional problems. Quaranta and Zaffaroni [31]
in their study applied Robust Conditional Value at Risk methodology to deal with
uncertainty in the portfolio selection problem. In their study [31], they converted the
Rockafellar and Uryasev minimization model into a linear robust model. However,
their study resulted with very conservative results. Zhu et al. [35] applied Worst
Conditional Value at Risk Approach as an effective alternative to CVaR in complex
financial markets in case, where the exit time of investors is uncertain. This makes
the model interesting to risk and asset managers [35]. Zhifeng and Li in their study
[33] also used robust optimization techniques to minimize CVaR of a portfolio. In
their new optimization method, they captured asymmetries in the return distribu-
tions by using a robust optimization methodology. Zhu et al. [34] showed in their
research paper that min-max portfolio optimization with an ellipsoidal ucertanity set
is more attractable than other uncertianty set structures. They further used this min-
max portfolio optimization model in CVaR robust optimization. They have stated
that when the confidence level is high, CVaR robust optimization focuses on a small
set of extreme mean loss scenarios and the resulting portfolios are optimal against
the average of these extreme mean loss scenarios and tend to be more robust.

Some of the existing part of literature focuses on not only the robust formulation
of robust portfolio selection but also the size and the shape of the set of the uncertain
parameters in the robust portfolios. Here, the size of the set gives the probability that
the uncertain parameter takes on a value in the set, while the shape of the set shows the
robust optimization problem complexity [37]. Goldfarb and Iyengar [12] specified
a factor model for the shape and the set of uncertain parameters in robust selection
problems. By using this factor model framework, some new robust risk measures are
proposed. The reason for the choice of factor models in robust risk measures is that
the resulting problem can be formulated in a tractable way. Zhang and Chen [32]
showed a new risk measure for the optimal selection with specification of a factor
model. In their framework, the uncertainty in the market parameters is unknown and
bounded, and optimization problems are solved assuming worst case behavior of
these uncertainties. Gotoh, Shinozaki and Takeda [13] studied on the use of factor
models in coherent riskminimization. In their study, they applied a simplified version
to the factor model based on CVaR minimization, and showed that it improves the
performance, achieving better CVaR, turnover, standard deviation and Sharpe ratio
than the empirical CVaR minimization and market benchmarks.

Themain objective of this chapter is to quantify the risk in an optimization problem
from the view of a risk averse optimization. In Sect. 2, we shall shortly describe the
coherent risk measure concept and we will present and compare the properties of
VaR and CVaR both in practical and theoretical settings. With the motivation in the
study [11], we shall extend the Robust VaR results to Robust CVaR and we will
provide a robust optimization method for minimizing the CVaR of a portfolio. In
Sect. 3, we will state applications of robust optimization methodologies which are
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described in the study [4] for the minimization of the conditional value at risk of a
portfolio. Finally, in Sect. 4, we will conclude our results.

2 Methodology

The main objective of this study consists in modeling risk within an optimization
problem from the viewpoint of a risk averse investor. Before stating the optimization
problem, we will briefly review the coherent risk measure, VaR and CVaR concepts.

2.1 Coherent Risk Measures

In 1997, Artzner, Delbaen, Eber and Heath introduced the concept coherent risk
measures. In their paper, they defined a complete set of axioms that have to be
satisfied by a measure of risks in generalized sense [1].

Definition 1 (Coherent RiskMeasures)LetΩ be a fixed set of scenarios. L2 denotes
the set of all functions on Ω relative to the probability measure P . Then, a risk
measure ρ is a mapping from L2 to (−∞,∞], i.e., ρ : L2 → (−∞,∞]. A measure
of risk ρ is called coherent if it satisfies the following four axioms:

1. This axiom is called as the translation invariance axiom of a risk measure. For
all random losses X and constants α, ρ(X + α) = ρ(X) + α.

2. This axiom is called as the subadditivity axiom of a risk measure. For all random
losses (or costs) X and Y , ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

3. This axiom is called as the positive homogeneity axiom of a risk measure. For all
λ ≥ 0 and random losses X , ρ(λX) = λρ(X).

4. This axiom is called as the monotonicity axiom of a risk measure. If X ≤ Y for
each scenario, then, ρ(X) ≤ ρ(Y ).

Artzner, Delbaen, Eber andHeath’s CoherentMeasures of Risk study is important
since it defined properties of portfolio statistics in order to be an appropriate risk
measure for the first time. Thus, the risk management process has its own scientific
rules with this deductive framework [1]. Furthermore, the theory of coherent risk
measures relies on the idea that a sensible measure of risk is coherent with the
finance theory and portfolio theory [9]. The coherence axioms concretize the risk
measure properties in the statistics of portfolio theory [1]. One of the most important
consequences of coherency for portfolio optimization is that it preserves convexity.
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2.2 Value at Risk

For a fixed α-quantile, in other words: for a fixed confidence level α ∈ (0, 1), and a
random variable X , the Value at Risk (VaR) level at α is defined as:

VaRα(X) = −q+
α (X) = q−

1−α(−X) = inf{β | FX (β) ≥ α}. (1)

Let Ω be a fixed set of scenarios. Costs or losses of a financial position can be
considered as a mapping from X : Ω → R, where positive outcomes X (ω) of X
are disliked, while the negative outcomes are liked at the end of the trading period
if the scenario ω ∈ Ω is realized. Furthermore, we should note that X belongs to
a linear L2 space relative to probability space P on Ω , which means E[X2] < 0.
VaR as a risk measure assigns to each random cost X ∈ L2 a numerical quantity.
Here, we should state that z = f (x, y) represents the cost function. Moreover, x is
the decision vector, x = (x1, x2, ..., xq) ∈ R

q ∈ S where S = {x = (x1, x2, ..., xq) |
x j ≥ 0( j = 1, 2, ..., q), x1 + x2 + ... + xq = 1}, and y is a random variable on the
probability space (Ω, F, P) representing the uncertainties that can affect the cost.
The underlying probability distribution of y in Rq will be assumed to have a density
denoted by p(y). With a known probability distribution of y as a random variable,
z will also be a random variable as like X . The distribution of z depends on the
decision vector. Here, FX (β) is the cumulative distribution function for z. When the
confidence levelα is given, the probability of f (x, y) not exceeding a given threshold
β is shown by

FX (β) =
∫
f (x,y)≤β

p(y)dy. (2)

The statistic VaRα(X) = −q+
α (X) responds the minimum loss that can occur

in the set of all α-quantiles of X over a holding period of time. Thus, VaR equals
to the α-percentile of the loss distribution (α is the smallest value such that the
probability that losses exceed or equal to this value is greater or equal to α). VaR is
based on probabilities, so it cannot be established on certainty, but is rather a level of
confidence which is selected by the user in advance. As a risk measure VaR satisfies
translation invariance, positive homogeneity and monotonicity, however, it fails to
hold subadditivity property [2]. Thus, VaR is not a coherent risk measure. It is known
that portfolio diversification always leads to risk reduction. However, VaR contrasts
with portfolio diversification [1]. In the paper [1], it is strongly believed that VaR is
not a risk measure, since a risk measure can not violate the subadditivity axiom.

Moreover, VaR is not a convex riskmeasure. This is due to the fact that subadditiv-
ity and positive homogeneity together sufficiently show the convexity of a function,
and VaR fails to satisfy subadditivity property. In an optimization problem, VaRmay
come out with many local minima which is a result of VaR being is not convex [22].
It should be noted that in the particular process of risk minimization, only strictly
convex surfaces lead to local minima as unique globally optimal solutions [1]. Thus,
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in optimization problems, since VaR is non-convex, it has many extrema, and that
makes it difficult to control and optimize.

Value at Risk (VaR) is one of the most widely used tools for managing risk,
however, it has someundesirable propertieswhich arewidely criticizedby researches,
such as it is not a coherent measure of risk and it is difficult to optimize VaR when
it is calculated from scenarios [25]. In addition to these two undesirable properties,
VaR is a model-dependent measure of risk.

2.3 Conditional Value at Risk

Value at Risk is the predicted worst case loss of at a specified 1-α confidence level of
a portfolio over a holding period of time. Differently from VaR, Conditional Value
at Risk (CVaR) gives the expected loss that can occur in 1-α confidence of a portfolio
over a holding period of time, if the portfolio distribution function is continuous.
Conditional Value at Risk (CVaR) measures how much we lose on the average given
we exceed our VaR. Thus, it is a measure to capture losses beyond VaR. Formally,
CVaR is defined as in the following manner [24]:

CVaRα(X) := φα(X) := mean of the α-tail distribution of X. (3)

Moreover, CVaR can be defined as the conditional expectation of the loss related
to X that loss equals or is greater than qα(X):

CVaRα(X) = φα(X) = E{X : X ≥ qα(X)}. (4)

Nowwe focus on a vector variable x of certain realizations of the random variable
X where x serves as decision variable, representing, e.g., a portfolio. Let qα(x) be
the VaRα of a loss function f (x, y). Then, CVaRα(x) is defined as:

CVaRα(x) = φα(x) = E{ f (x, y) : f (x, y) ≥ qα(x)}
= 1

1 − α

∫
f (x,y)≥qα(x)

f (x, y)p(y)dy. (5)

Here, the distribution function in Eq. (5) is defined as α-tail distribution z =
f (x, y) and it is truly another distribution. This new distribution function is non-
decreasing and right continuous, and it is obtained by rescaling the distribution
function of z = f (x, y) in the interval [α, 1] [24].

CVaR is a coherent risk measure in the basic sense since it satisfies the properties
of translation invariance, positive homogeneity and monotonicity and subadditivity
[22].

Rockafellar and Uryasev [25] showed that CVaR and VaR of a loss function z =
f (x, y) can be computed by solving a basic, one-dimensional, convex optimization
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problem under a specified confidence level α, respectively. In the study [25], the
main approach is to benefit from a special convex function Fα(x, β) to characterize
φα(x) and qα(x). Thus, the characterization function of φα(x) and qα(x) is defined
as follows [24]:

Fα(x, β) := β + (1 − α)−1
E{[ f (x, y) − β]+},

where [ f (x, y) − α]+ = [t]+(:= max{0, t}). (6)

Theorem 1 (Optimization of CVaR) [25] If we minimize Fα(x, β) over all (x, β) ∈
S × R, it gives us the equivalent result of minimizing the CVaR value φα(x) with
respect to x ∈ S which is:

minxφα(x) = minx,βFα(x, β). (7)

In our study, we will state the optimization problem which focuses on capturing
risk by CVaR. Then, optimization problem has the following form:

minimizexCVaRα(x)

subject to x ∈ S, (8)

where α represents the desired confidence level and S = {x = (x1, x2, ..., xq) |
x j ≥ 0( j = 1, 2, ..., q), x1 + x2 + ... + xq = 1}. Here, xi is the decision variable for
the portfolio weight for sub-portfolio of i . Now, with the help of Theorem 1, we can
convert the optimization problem in Eq. (8) to a linear programming problem as
follows:

minimizeβ,x β + (1 − α)−1
∫
y∈Rq

[ f (x, y) − β]+ p(y)dy

subject to x ∈ S. (9)

However, the joint probability distribution of returns p(y) is unknown which
makes the problem in Eq. (9) still hard to solve. Before, in our study [8], we did
not have any assumptions about the density p(y) for simplicity, and we generated
a sample from p(y) only using some algorithms. But, most frequently, the decision
making process is influenced by uncertain parameters, so we cannot ignore the pos-
sible implementation errors [31]. Now, to deal with data uncertainty, we shall utilize
the Robust CVaR (RCVaR) approach.

2.4 Robust Conditional Value at Risk

In order to minimize implementation errors, we utilize robust estimation methods
which are described in the paper Ben-Tal et al. [4]. With this method, we can control



140 Z. Cobandag Guloglu and G.W. Weber

the parameter uncertainty with some steady distribution assumptions. Using this
method, we can reduce modeling risk which arises due to parameter uncertainty.

InCVaRoptimization problems, uncertainty is related to the distribution of portfo-
lio return. Here, we will consider Robust CVaR in the situation, where the underlying
probability distribution of return data is partially known [37].

Therefore, we will assume that the density function of portfolio return is only
known to belong to a certain set P of distributions, i.e., p(·) ∈ P , which covers
all the possible distribution scenarios [36]. Our aim is to compute the CVaR value
assuming the worst case of underlying probability distribution based on a special
certain set P . Referring to the papers of Zhu and Fukushima [35], we define the
Robust CVaR (RCVaR) for fixed x ∈ S with respect to P as:

RCVaRα(x) := supp(·)∈P CVaRα(x). (10)

Now,we shall firstly assume that y follows a discrete distribution. This assumption
still contributes to the case of a continuous distribution in the CVaR formula. In fact,
by sampling the probability distribution of y and its density p(y), the integral of
continuous distribution can be approximated [36]. Moreover, we will investigate an
ellipsoidal uncertainty set which is a special case of P . We have chosen ellipsoidal
uncertainty set structure since it is not only easy to specify but also tractable for
practical usage [36].

Let a random variable y have a sample space which is given by {y[1], ..., y[q]}
with discrete probability Pr{y[i]} = πi and

∑q
j=1 π j = 1, πi ≥ 0(i = 1, 2, ..., q).

Further, we denote probability π = (π1, π2, ..., πq)
T and define:

Hα(x, β, π) := β + 1

(1 − α)

q∑
k=1

∏
k

πk[ f (x, yk) − β]+. (11)

Referring to Rockafellar’s and Uryasev’s fundamental minimization formula
(2000), the minimization of CVaR value with respect to x and π is same as minimiz-
ing the function in Eq. (11) with respect to β ∈ R, as follows:

minx CVaRα(x, π) = minβ∈R Hα(x, β, π). (12)

Especially for any discrete distribution, we will present P as Pπ which is a subset
of Rq . Then, RCVaR is defined as:

RCVaRα(x) := supπ∈Pπ
CVaRα(x, π) (13)

or, equivalently,

RCVaRα(x) := supπ∈Pπ
minβ∈R Hα(x, β, π). (14)
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Now, we will start to discuss computational aspects of minimization of RCVaR.
We want to minimize RCVaRα(x) over x ∈ S. First of all, we will consider the
following optimization problem:

minimizeβ,x β + 1

(1 − α)

q∑
k=1

πk[ f (x, yk) − β]+

subject to x ∈ S. (15)

In the linear problem of Eq. (15) we pay attention to the fact that the term
[ f (x, yk) − β]+ in the objective function be simplified. This can be done by
using new variables instead of [ f (x, yk) − β]+. First, let k j := f (x, y j ) − β for
all j = 1, 2, ..., q. Then, let be given the variables u j = k+

j . Another way to state,
u j = k j if k j ≥ 0, and u j = 0 otherwise [6]. Thus, we should change the problem
of Eq. (15) according to these new variables and should add new constraints. Then,
the problem in Eq. (15) is equivalent to the following linear program [25]:

minimizeβ,x,u β + 1
(1−α)

q∑
k=1

πkuk

subject to
uk + xT yk + β ≥ 0, uk ≥ 0(k = 1, 2, ..., q), x ∈ S.

(16)

Further, one can always convert Eq. (16) into an equivalent problem in which all
the complex terms are put into constraints, namely [22]:

minimizeβ,x,u,t t
subject to

β + 1
(1−α)

(πk)
T uk ≤ t,

uk + xT yk + β ≥ 0, uk ≥ 0(k = 1, 2, ..., q), x ∈ S.

(17)

Theorem 2 [36] If Pπ ∈ R
q is a compact convex set, then for each x, we have [36]:

RCVaRα(x) := minβ∈Rmaxπ∈Pπ
Hα(x, β, π).

Theorem 2 indicates that the problem of minimizing RCVaRα(x) over x ∈ S is
equivalent to following minimization problem:

minimizeβ,x,u,t t
subject to

maxπ∈Pπ
β + 1

(1−α)
(πk)

T uk ≤ t,
uk + xT yk + β ≥ 0, uk ≥ 0(k = 1, 2, ..., q), x ∈ S.

(18)

However, the optimization problem in Eq. (18) is still not appropriate for applica-
tion since it includes a max operation. Now, we will specify the uncertainty set. Let
us assume that π belongs to an ellipsoid set PE

π , i.e.,
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PE
π := {π : π0 + Ad, 1TAd = 0, π0 + Ad ≥ 0,

√
dT d ≤ 1}, (19)

where π0 is a nominal distribution having the center of the ellipsoid, and A ∈ R
q×q

is the scaling matrix of the ellipsoid. By 1 we denote the vector (1, 1, ..., 1)T in Rq .
We have the conditions 1TAd = 0, π0 + Ad ≥ 0 in order to provide that π to be a
probability distribution [36]. Since

β + 1

(1 − α)
(π)T u = β + 1

(1 − α)
(π0)T u + 1

(1 − α)
uT (Ad), (20)

we have

maxπ∈PE
π

β + 1

(1 − α)
(π)T u = β + 1

(1 − α)
(π0)T u + γ (u)

(1 − α)
, (21)

where γ (u) is the optimal value for the following linear program:

maximized∈Rq uT (Ad)

subject to
1TAd = 0, π0 + Ad ≥ 0,

√
dT d ≤ 1.

(22)

Furthermore, the dual of Eq. (14) can be written as follows [36]:

minimize(ζ,w,v,z)∈R×Rq×Rq×R ζ + (π0)Tw
subject to

−v − ATw + AT 1z = AT u,

‖v‖2 ≤ ζ,w ≥ 0.

(23)

In this case, we can equivalently reformulate the optimization problem as follows:

minimizeβ,x,u,t t
subject to

β + 1
(1−α)

(π0)T u + 1
(1−α)

(ζ + (π0)Tw) ≤ t,
−v − ATw + AT 1z = AT u, ‖v‖2 ≤ ζ,w ≥ 0,

uk + xT yk + β ≥ 0, uk ≥ 0(k = 1, 2, ..., q), x ∈ S.

(24)

3 Results and Discussion

This chapter focuses on modeling the uncertainty in optimization problems.We have
stated three different risk measure called VaR, CVaR and RCVaR, respectively. In
optimization problems, VaR is undesirable since it contrasts with portfolio diver-
sification. Furthermore, VaR is difficult to optimize since it is not a convex risk
measure. An alternative to VaR is CVaR, which is very sound when we compare
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it with VaR. Conditional Value at Risk is a coherent measure of risk and it can be
easily optimized with a linear programming problem. In our earlier study [8], we
have seen that CVaR optimization leads up to optimal portfolio results which are
very sensitive to the inputs, where the inputs are estimated from the historical data.
As a result, the optimal portfolio weights for some assets prone to be imprecise.
In order to minimize implementation errors, we utilize robust estimation methods
which are described in the paper Ben-Tal et al. [4]. Furthermore, we present a robust
conditional value at risk optimization problem for discrete distribution cases of the
uncertainty where the uncertainty set is ellipsoidal. With this method, one can con-
trol the parameter uncertainty with some robust distribution assumptions and have
certain optimal solutions. Perhaps, the most important direction for future work is to
apply robust optimization of CVaR for nonlinear loss/cost functions f (x, y) and to
robustify the unknown parameters that affect the return vector y with a reasonable
specification of the uncertainty sets. In this respect, nonlinear cost functions can be
eventually treated like linear functions when assuming additive models [14].

As we have shown, CVaR optimization can be applied in many areas in finance
practically. For example, it can be used to calculate the risk of cost associatedwith the
consideration of uncertainties or it can be used to solve the problems associated with
a company such as reducing enterprise risks and to increase profit. The Optimization
of Conditional Value-at-Risk work of Rockafeller and Uryasev [25] demonstrates
hedging of a portfolio of options (target portfolio) through a portfolio of stocks,
indices, and options (hedging portfolio) by using CVaR. Shang and Uryasev [26]
used CVaR constraints in a cash flowmatching problem. A cash flowmatching prob-
lem optimizes a portfolio of given financial instruments (typically bonds) to match
existing liabilities and assets over several time periods in the form of portfolio pay-
ments. The model is constructed on minimizing of cost subject to a CVaR constraint
on matching liabilities/obligations over several time periods. In this chapter, we def-
initely demonstrate a robust methodology for minimization of CVaR so that many
other applications of RCVaR in financial optimization and risk management can be
applied. The difference between RCVaR and CVaR is that RCVaR finds a solution to
the parameter uncertainities in CVaR.We naturally come up with a solution like this:
CVaRs usage in practice is applicable for RCVaR. For Robust CVaR, one innovative
application area is studied by Chan et al. [7]. In their study, they employ their own
robust CVaR approach using radiation therapy treatment planning of breast cancer,
where the uncertainty is in the patients breathing motion and the states of the system
are the phases of the patients breathing cycle.

4 Conclusion

In this chapter, first we have stated coherent risk measures, VaR and CVaR concepts.
Then, we have posed the optimization problem which minimizes the CVaR. Further,
we have presented robust optimization method to deal with parameter uncertainties
and, finally, we discussed the results. As for the future studies, we can consider
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an empirical portfolio selection problem and apply robust optimization of CVaR for
cost functions andwith respect to robustify unknown parameters that affect the return
vector.
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