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Abstract Supersonic flight has been the subject of last half century. Both civil and
defence projects have been running to design an aircraft to fly faster than speed of
sound. Developing technology and increasing experience of design leads to faster,
fuel efficient, hence, ecological, long-ranged aircrafts. These vehicles make people
live easy by shortening travel time, performmissions with powerful defence aircrafts
and helping explore space. Aerodynamic design is the main argument of the high
speed aircrafts improvement. Having less supersonic drag force, which is greater
than the double of subsonic case for conventional aircraft, is the ultimate goal of the
aircraft designers at supersonic speed. In this chapter, an aerodynamic characteristics
of the entire configuration is optimized in order to reach this aim. Moreover, solver
algorithm is validated with computational fluid dynamics simulations for different
geometries at various speeds. The objective of this study is to develop a program
which optimizes wave drag coefficient of high speed aircrafts by numerical methods.

Keywords Supersonic flight · Wave drag · Optimization · Area rule

1 Wave Drag Definition

Designing an aircraft with the ability of flying faster than the speed of sound was the
purpose of most aircraft designers in the past decades in order to reduce travel time
and research space. Both aims require ultimate design configurations for definite
missions. Unlike the subsonic design, the supersonic region has struggles to deal
with in order to reach this aim. The major part of this problem is about the huge drag
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force occurring when compared to subsonic speed. Thus, aircraft designers aware of
these drawbackswere in a need ofmakingmodifications to their design. For example,
re-entry of an spacecraft which is directly related to drag force must be considered
as one of the critical issue of the overall design process.

Wave drag can be described as the major part of the force resisting aircraft motion
at supersonic speed. It depends on the velocity of the aircraft, wing area, air density
and drag coefficient which are related to complete configuration of the aircraft. The
main purpose in an aircraft design is generally to reduce drag to minimum level. On
the other hand, drag force is beneficial for some extreme cases, such as the utilization
of parachute for short distance landing. Drag is mainly classified as drag due to lift
and zero lift drag. The work represented in this chapter mainly concentrates on the
wave drag (zero lift). Temperature, pressure, aircraft velocity and the shape of the
configuration affects the magnitude of the wave drag. When supersonic free stream
reaches an obstacle, shock wave occurs which increases the density and pressure
of the flow. In other words, the free stream Mach number, which must be greater
than 1 for shock wave to occur, decreases below Mach 1 after the normal shock
formation [5]. The shock wave leads to increase in entropy and reduction in total
pressure. If the shock wave is inevitable, the efficiency of the shock formation can be
increased in order to reduce the total increase of entropy. A wing with sweep angle
and fuselage shaping can be used for this purpose. This study aims at minimizing
wave drag coefficient without changing the aerodynamic characteristics of the lifting
surfaces. Thus, the area distribution and the volume of the fuselage is modified to
reach the minimum value of the objective function.

As seen in Fig. 1 [14], the supersonic drag of an aircraft rises 3–4 times of the
subsonic case so that the drag optimization of the supersonic aircraft is the main
criterion of the aerodynamic design process. The aircraft shape might be optimized
despite the fact that the composition of it seems suitable for the residential of sub-

Fig. 1 Drag variation with
mach number [14]
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components. Nevertheless, the optimal shape of aircraft are not being implemented
to the base design due to the manufacturing and sub-component constraints which
give rise to additional drag. Small changes in supersonic drag could be critical. To
illustrate this, on the Concorde, [16] it can be stated that one count drag increase
(�Cd = 0.0001) requires two passengers, out of the 90–100 passenger capacity, be
taken off the North Atlantic run [16]. Additional drag components at supersonic
speed are wave drag due to lift and wave drag due to volume. Wave drag due to lift
vanishes as Mach number goes to one or aspect ratio goes to zero. Consequently,
wave drag due to volume is investigated in this research. The behavior of the volume
wave drag at various Mach numbers and different geometries are observed.

2 Far-Field Theory

Total momentum change in streamwise direction of control volume is equal to the
drag of the aircraft. Inlet region is the only undisturbed flow passing through the
aircraft geometry which becomes two dimensional because of the pressure effects.
Thus, the momentum change between inlet and outlet regions (streamwise momen-
tumchange) is the sumof all the drag contributors. In addition, subsonicflowbecomes
parallel at outlet if the control volume is large enough. On the other hand, mass flows
in and out from the side of the cylinder at supersonic speed due to shock and expan-
sion wave formations [15, 17] (Fig. 2).

Total change in momentum as a result of mass flow in and out is defined as wave
drag. Moreover, since the shock formation varies with the angle of attack, wave drag
can change with the angle of attack as well. Therefore, wave drag is formed with
wave drag due to volume and wave drag due to lift which produces the effects of
wave drag variation due to lift. The drag equation is given in Eq. (1) as

Fig. 2 Control volume representation [19]
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∫∫

S3=S1

(p − p∞) dS3 − ρ∞U2∞
∫∫

S3=S1

φx (1 + φx) dS3 − ρ∞U2∞
∫∫

S2

φxφr dS2 +
∑

Dmisc . (1)

Miscellaneous drag consists of excrescence and base drags. If the control volume
is located far enough, flow becomes two dimensional, the stream wise perturbation
velocity is zero. Thus the second integral in the general drag formula becomes zero as

ρ∞U2
∞

∫∫

S3=S1

φx (1 + φx) dS3 = 0 , (2)

and the gauge pressure is formulated as

p − p∞ = −1

2
ρ∞U2

∞ (φ2
x + φ2

z ) . (3)

Since the viscosity effects are neglected, the total inviscid drag equation can be
written as shown below:

D = −ρ∞U2
∞

∫∫

S2

φxφr dS2 + 1

2
ρ∞U2

∞

∫∫

S2

(φ2
y + φ2

z ) dS3 . (4)

Wave drag can be calculated directly from mass flow change at side surface of the
control volume. Perturbation velocities in the first integral give the velocity change
in side direction. As these are multiplied with the density and the square of free
stream velocity, the total wave drag could be obtained. The wave drag formula is
given in Eq. (5):

Dw = −ρ∞U2
∞

∫∫

S2

φxφr dS2 . (5)

Farfield linear theory has positive and negative characteristics. First, it is simply used
for calculations. In addition, singularities can be overcome without sophisticated
numerical methods; i.e., pressure calculations at leading edge. As shown in Eq. (4),
induced drag can be separated from wave drag by using far field linear theory which
provides pure wave drag calculation. Thus, it is useful for area rule optimization with
respect to wave drag. Since the volume of the aircraft is the only contributor to drag
formula, aircraft geometry can be directly related to the wave drag. Hence, aircraft
area distribution can be modified in order to minimize wave drag. On the contrary,
the theory does not reflect physics of the flow completely. Therefore, aircraft design
could be validated with other methods to ensure behavior of the flow over aircraft
surface [2].
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2.1 Formula Transformation

Conventional form of the wave drag is given as

Dw = − 1

2π

1∫

0

1∫

0

S′′(x)S′′(y) log|x − y| dxdy . (6)

Two problems arise in the calculation of the formula given above. Firstly, singularity
occurs where the longitudinal locations of the aircraft become identical. Secondly,
numerical precision strongly depends on the differentiation method used and the
degree of accuracy. Thus, a sensitivity analysis is effective for calculation of wave
drag force. Two conditions must be satisfied for themethod used to obtain wave drag:

1. The first derivative of the area distribution is continuous along longitudinal direc-
tion of aircraft.

2. The first derivatives of the area distribution at nose and rear regions are equal to
zero:

S′(0) = S′(L) = 0 , (7)

where L represents the length of aircraft. When the conditions explained above are
satisfied, the first derivative of the area distribution can be transformed to the Fourier
sine series as,

x = 1

2
(1 − cos θ) , (8)

where θ varies between 0 and π :

θ = cos−1(1 − 2x) . (9)

Subsequently, we refer to Eqs. (8) and (9) implicitly. Then the first derivative distri-
bution is given by

S′(x) =
∞∑
r=1

ar sin rθ , 0 ≤ x ≤ 1 , (10)

where the coefficient is written as

ar =
∞∑
r=1

2

π

π∫

0

S′(x)rθdθ . (11)

The area distribution of the aircraft is obtained by integrating the Eq. (10) as
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S(x) =
∞∑
r=1

ar

π∫

0

sin rθdx . (12)

Equation (9) is integrated and substituted into Eq. (11) by using the derivative of
Eq. (8):

dx = −1

2
sin θ dθ , (13)

hence,

S(x) = 1

2

∞∑
r=1

ar

π∫

0

sin rθ sin θdθ,

= a + 1

4
a1 (θ − 1

2
sin 2θ) + 1

4

∞∑
r=2

ar[ sin(r − 1)θ

r − 1
− sin(r + 1)θ

r + 1
],

= a + 1

4
a1 θ + 1

4

∞∑
r=1

(ar − ar − 1) sin rθ . (14)

By using Eq. (13), the second derivative of the area distribution is obtained and
inserted into Eq. (6) as

Dw = 1

2

π∫

0

∞∑
r=1

as sin sθdθ,

= 1

2

∞∑
r=1

∞∑
s=1

raras

π∫

0

sin rθ sin sθdθ,

= π

4

∞∑
s=1

ra2r . (15)

Gradient-based optimization method is used in order to obtain the area distribution
which has minimum wave drag force. Since the accuracy of the gradient calculation
strictly depends on the smoothness of the objective function and constraints.
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3 Mathematical Modelling

3.1 Cross-Sectional Area Calculation

Greens theorem is used for the calculation of cross-sectional area [10]. The incre-
mental area dA is defined as

dA = dxdy . (16)

It states that area A of a closed region D can be represented as

A =
∫∫

D

dA . (17)

Furthermore,M and L are functions having continuous partial derivatives defined by
the boundaries of D:

∂M

∂x
− ∂L

∂y
= 1 . (18)

The area of A is given as

A =
∮

C

(Ldx + Mdy) . (19)

The final form of the area formula can be written as

A = 1

2

∮

C

(−ydx + xdy) . (20)

Area computation for each cross-section is necessary as being inputs to the solver,
since the shape of the cross-sections are arbitrary with variable number of points.
Equation (19) is used to calculate this area. Figure3 indicates the arbitrary shaped
cross section:

S = 1

2

n−1∑
i=1

(yixi+1 − yi+1xi) . (21)

3.2 Fourier Transformation

The Fourier transformation methodology is defined as fitting the data set or any type
of the polynomial to sinusoidal function(s). General formulation for the polynomial
curve fitting is written as
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Fig. 3 Arbitrary shaped area

y = a0 + a1x + a1x
2 + · · · + amx

n . (22)

The residual is calculated as

Sr =
n∑

i=1

(yi − a0 − a1x − a1x
2 − · · · − amx

n)2 ; (23)

this fit of the curve accuracy has to be optimized. Thus, gradients of the residual is
zero when the curve fitting represents the data set successfully. The gradients are
given by

∂Sr
∂a0

= −2
n∑

i=1

(yi − a0 − a1x − a1x
2 − · · · − amx

n) , (24)

∂Sr
∂a1

= −2
n∑

i=1

xi(yi − a0 − a1x − a1x
2 − · · · − amx

n) , (25)

∂Sr
∂a2

= −2
n∑

i=1

x2i (yi − a0 − a1x − a1x
2 − · · · − amx

n) , (26)

...

∂Sr
∂an

= −2
n∑

i=1

xni (yi − a0 − a1x − a1x
2 − · · · − amx

n) . (27)

The coefficients are obtained by equating and solving the gradient equations as
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(n)a0 + (
∑

xi)a1 + (
∑

x2i )a2 + · · · + (
∑

xmn )am =
∑

yi , (28)

(
∑

xi)a0 + (
∑

x2i )a1 + (
∑

x3i )a2 + · · · + (
∑

xm+1
n )am =

∑
xiyi , (29)

(
∑

x2i )a0 + (
∑

x3i )a1 + (
∑

x4i )a2 + · · · + (
∑

xm+2
n )am =

∑
x2i yi , (30)

...

(
∑

xni )a0 + (
∑

xn+1
i )a1 + (

∑
xn+2
i )a2 + · · · + (

∑
xm+n
n )am =

∑
xmi yi .

(31)
The same approach can be used for the Fourier transformation. The polynomial
function can be changed into the sinusoidal variables in order to fit the Fourier trans-
formation to data set. Equation (30) represents first order Fourier model. Application
of the transformation is presented as follows:

y = a0 + a1 cos(ωt) + b1 sin(ωt) . (32)

The residual of the model is given as

Sr =
n∑

i=1

(yi − a0 + a1 cos(ωt) + b1 sin(ωt))
2 , (33)

the gradients of the residual Sr are represented by

∂Sr
∂a0

= −2
n∑

i=1

(yi − A0 + A1 cos(ωt) + B1 sin(ωt)) , (34)

∂Sr
∂a1

= −2
n∑

i=1

cos(ωt)(yi − A0 + A1 cos(ωt) + B1 sin(ωt)) , (35)

∂Sr
∂a2

= −2
n∑

i=1

sin(ωt)(yi − A0 + A1 cos(ωt) + B1 sin(ωt)) . (36)

A necessary condition for success of convex curve fitting operation is that the gra-
dient equations are equal to zero. Then, the unknown coefficients are obtained from
solutions of set of equations. In this section, first derivative of the cross-sectional
area distribution is transformed into Fourier sine function. The reason of this process
is that the first derivative of cross-sectional area distribution must be continuous
according to the wave drag calculation methodology. Equation (35) represents the
open form of the sine function. In addition, smoothness is one of the most important
criteria for minimization procedure. Thus, representation of real cross-sectional area
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distribution must be accurate enough [2, 4, 12]. Furthermore, value of error function
shown in Eq. (31), does not reduce linearly. Therefore, to keep CPU at a certain level
and to obtain valid representation, fourth-order sine functions are chosen;

y = a0 + a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x)

+a3 cos(3x) + b3 sin(3x) + a4 cos(4x) + b4 sin(4x) . (37)

The function S′
r gives the difference between discrete response data and the approx-

imated function.

S′
r =

N∑
i=1

(yi − y)2 , (38)

we require:

∂S′
r

∂a0
,
∂S′

r

∂a1
,
∂S′

r

∂a2
,
∂S′

r

∂a3
,
∂S′

r

∂a4
,
∂S′

r

∂b1
,
∂S′

r

∂b2
,
∂S′

r

∂b3
,
∂S′

r

∂b4
= 0 . (39)

3.3 Point Update

Updating the points after optimization step is the final operation of the program.
Simple methodology is used for this work. Initial cross-sectional area magnitude at
ith location Siniti is calculated as explained in the previous section. Then, optimal
cross-sectional area magnitude Sopti is obtained after the optimization process. The
ratio Ri is defined by

Sopti = Siniti + ΔSi , (40)

Ri =
√
Sopti
Siniti

. (41)

With respect to initial X and Y locations, jth order of ith section; PXijinit and PYijinit are
updated as follows:

Pxijopt = Ri · Pxijinit , (42)

Pyijopt = Ri · Pyijinit . (43)

All cross-sections except for the control surfaces are updated as explained above.
The idea behind the use of ratio Ri is that the slope of the points belonging to the
same cross-section is kept constant. The slopes of Pijinit and Pijopt can be written as,

Cijinit = Pyijinit
Pxijinit

, Cijopt = Pyijopt
Pxijopt

(44)
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Fig. 4 Point update
representation

and

Cijopt = Cijinit = Pyijinit · Ri

Pxijinit · Ri
. (45)

To illustrate them, Fig. 4 represents themethodology behind the point update.Assum-
ing that the final cross-sectional area is less than the initial area, then, the slope of the
point can be kept constant, and updated with respect to ratio of optimal and initial
cross-sectional area. Thus, the shape of the geometry is protected, which means that
the initial conceptual design criteria is protected.

Furthermore, some additional stepsmust be investigated for non-symmetric cases.
The center of the cross section must be found. Theoretically, xc and yc are the central
locations of jth cross-section:

xcj = 1

n

n∑
i=1

xinit , (46)

ycj = 1

n

n∑
i=1

yinit , (47)

the slopes of each point in non-symmetric cross-section are

Cijinit = yinit − ycj
xinit − xcj

. (48)

Since the slope is kept constant, two unknowns and two equations arise:

Cijopt = yopt − ycj
xopt − xcj

, (49)

√
(xinit − xcj)2 + (yinit − ycj)2 · R =

√
(xopt − xcj)2 + (xopt − xcj)2 . (50)
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Coordinates of the optimal form of the cross-sectional area distribution can be
obtained by solving Eqs. (47) and (48). This approach provides an analysis of more
realistic configurations.

4 Theory of Lagrange Multipliers

The methodology of Lagrange multiplier is employed for the constrained optimiza-
tion. This part presents the method used for minimization of wave drag coefficient.
A general formulation can be represented as

min f (x) subject to

{
ci(x) = 0, i ∈ ε,

ci(x) ≥ 0, i ∈ I,

where the both objective function and constraints are smooth, real-valued functions.
i ∈ ε are the equality constraints, i ∈ I are the inequality constraints. There are more
than one local solutions for an objective function both for constrained and uncon-
strained cases. Smoothness of the objective functions and constraints is critical for
the global convergence. Furthermore, sharp changes of these functionsmightmislead
the search direction. To avoid that, the functions having sharp edges could charac-
terized which can be represented with collection of smooth functions. For a simple
example, Lagrangian function for one equality constraint is shown as

L(x, λ) = f (x) − λ1c1(x) , (51)

where f (x) is the objective and c1(x) is the equality constraint function.Theoptimality
condition is given as

∇xL(x∗, λ∗
1) = 0, and λ∗

1 ≥ 0 . (52)

Despite the fact that equation shown above is necessary for optimal solution, it is not
sufficient already. It is also required that the following complementarity condition
holds:

λ∗
1c1(x

∗) = 0. (53)

Let us emphasize that, in our project, the objective function will be strictly con-
vex, guaranteeing that our candidate solution will be a real solution. Generally, the
Lagrangian function for the constrained optimization problem is defined as,

L(x, λ) = f (x) −
n∑

i=1

λici(x) . (54)

The active set i ∈ A(x) ⊆ I at any feasible x is the union of the set with the indices
of the active inequality constraints (where ci(x) = 0 is fulfilled) [7]. Next, the linear
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independence constraint qualification (LICQ) holds since the set of active constraint
gradients is linearly independent. Finally, the open form of the first-order necessary
conditions is written as

∇xL(x∗, λ∗) = 0 , (55)

ci(x
∗) = 0 , for all i ∈ ε , (56)

ci(x
∗) ≥ 0 , for all i ∈ I , (57)

λ∗
i ≥ 0 , for all i ∈ I , (58)

λ∗
i ci(x

∗) = 0 , for all i ∈ ε ∪ I . (59)

The multi-constrained (equality) optimization method is subsequently employed for
this study. Theory of Lagrange multiplier for related subjects is explained in detail.
Considering the case of objective function f (x, y, z) to be minimized with respect to
constraints c1(x, y, z) and c2(x, y, z). The Lagrangian function is written as

L(x, y, z, λ1, λ2) = f (x, y, z) − λ1c1(x, y, z) − λ2c2(x, y, z) , (60)

the optimality condition is reached when,

∇f (x∗, y∗, z∗) = λ1∇c1(x
∗, y∗, z∗) + λ2∇c2(x

∗, y∗, z∗) . (61)

Open form of the equations are represented as,

0 = Lx(x
∗, y∗, z∗, λ1, λ2) = fx(x

∗, y∗, z∗) − λ1c1x (x
∗, y∗, z∗) − λ2c2x (x

∗, y∗, z∗) , (62)

0 = Ly(x
∗, y∗, z∗, λ1, λ2) = fy(x

∗, y∗, z∗) − λ1c1y (x
∗, y∗, z∗) − λ2c2y (x

∗, y∗, z∗) , (63)

0 = Lz(x
∗, y∗, z∗, λ1, λ2) = fz(x

∗, y∗, z∗) − λ1c1z(x
∗, y∗, z∗) − λ2c2z(x

∗, y∗, z∗) ,

(64)
0 = Lλ1(x

∗, y∗, z∗, λ1, λ2) = c1(x
∗, y∗, z∗) , (65)

0 = Lλ2(x
∗, y∗, z∗, λ1, λ2) = c2(x

∗, y∗, z∗) , (66)

where λ1 and λ2 are Lagrange multipliers, “∗” denotes the optimal condition.



122 C. Citak et al.

4.1 Optimization Procedure

Since the area distribution is defined two different sine function which are indepen-
dent, the wave drag formula is transformed into Eq. (65) (a0 represents the nose area
which is equal to zero):

D =
∞∑
n=1

(na2n + nb2n) . (67)

The coefficients an and bn above are the parameters in the Fourier transformation in
Eq. (35). The permanent constraint function [9] which defines the total volume of
the aircraft is defined as

V = 1

2

k−1∑
i=1

(yi+1 + yi) · (xi+1 + xi) , (68)

where y represents the Fourier transformation of area distribution. The volume func-
tion is created by using a simple trapezoid rule [15]. The second constraint function
is generated for keeping ith cross sectional area constant [19]. Equation (67) shows
the constraint function of area

Si = Sc . (69)

In open form of Eqs. (66) and (67) are written as

C1 = 1

8

n−1∑
i=1

(a1θ + a2 sin θ + 4(a3 − a1) sin 2θ + (a4 − a2) sin 3θ + b1θ + b2 cos θ

+4(b3 − b1) cos 2θ + (b4 − b2) cos 3θ) · (xi+1 − xi) − V = 0, (70)

C2 = (
a1θ + a2 sin θ+4(a3 − a1) sin 2θ + (a4 − a2) sin 3θ + b1θ + b2 cos θ

+ 4(b3 − b1) cos 2θ + (b4 − b2) cos 3θ
) − Sc = 0.

(71)

Lagrangian conditions are given by

0 = L(a1, a2, a3, a4, b1, b2, b3, b4, λ1, λ2)a1 = fa1(a1, a2, a3, a4, b1, b2, b3, b4) −
λ1C1a1

(a1, a2, a3, a4, b1, b2, b3, b4) − λ2C2a1
(a1, a2, a3, a4, b1, b2, b3, b4), (72)

0 = L(a1, a2, a3, a4, b1, b2, b3, b4, λ1, λ2)a2 = fa2 (a1, a2, a3, a4, b1, b2, b3, b4) −
λ1C1a2

(a1, a2, a3, a4, b1, b2, b3, b4) − λ2C2a2
(a1, a2, a3, a4, b1, b2, b3, b4), (73)
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0 = L(a1, a2, a3, a4, b1, b2, b3, b4, λ1, λ2)a3 = fa3(a1, a2, a3, a4, b1, b2, b3, b4) −
λ1C1a3

(a1, a2, a3, a4, b1, b2, b3, b4) − λ2C2a3
(a1, a2, a3, a4, b1, b2, b3, b4), (74)

0 = L(a1, a2, a3, a4, b1, b2, b3, b4, λ1, λ2)a4 = fa4 (a1, a2, a3, a4, b1, b2, b3, b4) −
λ1C1a4

(a1, a2, a3, a4, b1, b2, b3, b4) − λ2C2a4
(a1, a2, a3, a4, b1, b2, b3, b4), (75)

0 = L(a1, a2, a3, a4, b1, b2, b3, b4, λ1, λ2)b1 = fb1(a1, a2, a3, a4, b1, b2, b3, b4) −
λ1C1b1

(a1, a2, a3, a4, b1, b2, b3, b4) − λ2C2b1
(a1, a2, a3, a4, b1, b2, b3, b4), (76)

0 = L(a1, a2, a3, a4, b1, b2, b3, b4, λ1, λ2)b2 = fb2(a1, a2, a3, a4, b1, b2, b3, b4)

−λ1C1b2
(a1, a2, a3, a4, b1, b2, b3, b4) − λ2C2b2

(a1, a2, a3, a4, b1, b2, b3, b4), (77)

0 = L(a1, a2, a3, a4, b1, b2, b3, b4, λ1, λ2)b3 = fb3(a1, a2, a3, a4, b1, b2, b3, b4)

−λ1C1b3
(a1, a2, a3, a4, b1, b2, b3, b4) − λ2C2b3

(a1, a2, a3, a4, b1, b2, b3, b4), (78)

0 = L(a1, a2, a3, a4, b1, b2, b3, b4, λ1, λ2)b4 = fb4(a1, a2, a3, a4, b1, b2, b3, b4)

−λ1C1b4
(a1, a2, a3, a4, b1, b2, b3, b4) − λ2C2b4

(a1, a2, a3, a4, b1, b2, b3, b4), (79)

0 = L(a1, a2, a3, a4, b1, b2, b3, b4, λ1, λ2)λ1 = C1 , (80)

0 = L(a1, a2, a3, a4, b1, b2, b3, b4, λ1, λ2)λ2 = C2 . (81)

In order to reach the optimality conditions, a search direction is utilized to update
iterative algorithm. The search direction is written as

∇f (a1, a2, a3, a4, b1, b2, b3, b4, λ1, λ2) = λ1C1(a1, a2, a3, a4, b1, b2, b3, b4)

+λ2C2(a1, a2, a3, a4, b1, b2, b3, b4) . (82)

A convergence criterion is satisfied as soon as ‖∇L‖2 ≤ ε at the regarded point, for
some given ε > 0.

5 Validation of the Solver with F-16 Aircraft Geometry

The solver used for the calculation of the wave drag force and coefficient is validated
with CFD results. The wave drag coefficient of the F-16 aircraft atMach 2 is obtained
for comparison with Rallabhandi’s result [13]. Figure5 represents the mesh of the
geometry.
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Fig. 5 F-16 mesh

Table 1 Comparison of the results

Mach number Rallabhandi’s result CDw Present study CDw

2.00 0.0357 0.0330

Fig. 6 Mach contours of F-16

Since the Sears-Haack slender body has continuous first derivative, the stability
of wave drag computation could be achieved by using sufficient number of cross-
sections. On the other hand, the geometry of F-16 aircraft has discontinuities which
directly affects the area distribution. Five different size of elements representing the
aircraft geometry are employed in order to obtain the mesh-independent solutions.
6.7 millions elements are created for the half aircraft in Fig. 5 [3].

The CFD analysis of F-16 is completed at Mach=2 for comparison of the results
which are shown in Table4. There, it can be seen that difference between wave drag
coefficients of Rallabhandi and of present study is 5.7% (Table1).

Figure6 represents the Mach contours of the F − 16.
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6 Results

The optimal forms of the configurations are represented in this section. Nonlift-
ing surfaces are modified during the optimization loop in order not to change the
aerodynamic characteristics of the aircraft configurations. In other words, fuselage
is reshaped to minimize wave drag coefficient. Mach cuts plays an important role
on calculating wave drag force for an arbitrary shaped aircraft. Equation (81) rep-
resents the Mach angle which is used for calculating intercepted area distribution
without using the Mach cone approach. In detail, the aerodynamic characteristics
of an aircraft must remain unchanged during optimization. Therefore, lifting and
control surfaces and related cross-sections are excluded for the optimization algo-
rithm. Furthermore, the total volume of the aircraft is calculated by summing all
parts despite exclusion of lifting and control surfaces. In other words, non-lifting
surfaces are modified with respect to the objective function. Second, the intercepted
cross-sectional area distribution for various Mach number is obtained by neglecting
the small changes due toMach cone method. It can be stated that non-lifting surfaces
of a high-speed aircraft must be as smooth as possible due to avoid the flow separa-
tion and shock formation. For this reason, nonlifting surfaces such as fuselage does
not have sharp changes which brings out the intercepted area distribution for various
Mach numbers could be obtained withMach angle methodology only [6, 8]:

μ = sin−1

(
1

Mach

)
. (83)

Despite the fact that theMach number seems influential the optimization process, the
optimal cross sectional area distribution is independent from theMach number.Mach
number only affects the intercepted area distribution only. Thus, Sears–Haack slender
body has theminimumwave drag coefficient for a given volume and length.However,
the intercepted area distribution and wave drag coefficient of it change with respect
to the Mach number. To have the minimum value of the wave drag force coefficient
for an aircraft, the change of first derivative of cross-sectional area distribution of the
entire aircraft has to be minimum for a given volume and length. The methodology
explained above is commonly used for high subsonic and supersonic aircraft design
development. (Feet and degree are used as length and angle units for all cases.)

6.1 Conceptual Aircraft Design

Lifting and control surfaces are not modified during optimization in order not to
alter aerodynamic characteristics of the aircraft. In addition, theoretical validation is
the most important argument. Despite the fact that optimal shape of the conceptual
aircraft design is not the best choice for manufacturability, theoretical aspect of the
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Table 2 Wing specifications
of the conceptual aircraft
design

Wing

Airfoil NACA 63A304

Chord 2-24

Span 18.55

Sweep 45

Dihedral 0

Table 3 Tail specifications of
the conceptual aircraft design

Tail

Area 103.2

Sweep 45

Dihedral 12.3

Airfoil 4% BICONVEX

Span 0

Table 4 Fuselage
specifications of the
conceptual aircraft design

Fuselage

Length 72.75

Volume 45

optimal form is satisfying. Specifications of the conceptual aircraft design are given
in Tables2, 3 and 4.

Figures7 and 8 represent the initial and the optimal configurations of conceptual
aircraft design. As seen in Fig. 8, wing and tail area distribution affect the fuselage
shape to obtain the optimal area distribution. Furthermore, theoretical aspects of the
optimization method provide the optimal conceptual aircraft configuration despite
the fact that applicability to actual design projects requires advanced designmethods.
To illustrate this, optimal form of the geometry can be utilized by using wing-body
concepts for high-speed UAVs.

Fuselage area distribution is modified as seen in Fig. 9. Total volume and length
of the aircraft are kept constant during optimization.

6.2 Supersonic Aircraft Geometry with GE F − 414

More practical point of view than the theoretical approach can be obtained by employ-
ing supersonic aircraft on use for drag minimization. Since the cross-sectional area
of air intakes are subtracted from entire area distribution with respect to linearized
theory, Figs. 10, 11 and 12 represent the comparison between the optimal and initial
form of the three dimensional supersonic aircraft configuration without air intakes.
Tables5, 6 and 7 represent the specifications of the supersonic aircraft.
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Fig. 7 Initial conceptual
aircraft geometry

Fig. 8 Optimal conceptual
aircraft geometry

The diameter and length of GE F − 414 are 3.96 ft and 15.18 ft [18]. According
to these dimensions, minimum cross-sectional area for the engine region is 15.4 ft2

(minimum cross-sectional area is calculated by multiplying the area of the engine
with 1.20). Thus, the locations representing engine location are fixed to this value.

Thewave drag coefficient of the supersonic aircraft is reduced from 0.185 to 0.171
with the constraints explained above. Total volume of the aircraft is not kept constant
in order to avoid unnecessary increase in nose and canopy region. In detail,magnitude
of areas related to engine section are fixed by employing simple calculation which is
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Fig. 9 Comparison of initial and optimal fuselage area distribution

Fig. 10 Initial (bottom) and final (top) configuration of supersonic aircraft-isometric
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Fig. 11 Initial (left) and final (right) configuration of supersonic aircraft-top

Fig. 12 Initial (bottom) and
final (top) configuration of
supersonic aircraft-side

Table 5 Wing specifications
of supersonic aircraft

Section1 Section2

Span 5.13 12.59

Tip chord 12.73 4.26

Root chord 20.43 12.73

Sweep 52 28

Dihedral 0 0

less than the initial magnitudes [14]. Theoretically, volume participants at the front
region of the aircraft increases to keep volume constant which results in impractical
decision. To provide this, constraints of engine section is used for optimization.
Finally, Fig. 13 represents the initial and the optimal fuselage area distribution of
the supersonic aircraft geometry with GE F − 414. The lower part of the fuselage
must have a place for landing gear and other components. Thus, an area reduction is
applied for the upper part of the fuselage as seen in Fig. 12.
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Table 6 Vertical tail
specifications of supersonic
aircraft

Section1 Section2

Span 1.77 7.36

Tip chord 8.05 2.30

Root chord 8.05 12.73

Sweep 0 50

Dihedral 0 60

Table 7 Horizontal tail
specifications of supersonic
aircraft

Section1 Section2

Span 2.84 7.53

Tip chord 6.99 2.37

Root chord 3.76 6.99

Sweep 29.52 29.52

Dihedral 0 60

Fig. 13 Comparison of initial and optimal fuselage area distribution (supersonic aircraft configu-
ration with GE F − 414)

7 Conclusion and Discussion

In this chapter, the numerical optimization of the wave drag is performed. At the
early stages of research, a literature survey is completed on methods about wave
drag calculation, and optimization. The significance of wave drag for high-speed
aircraft plays major role on supersonic flow regime. Despite the fact that many other
drag types play role on the calculation of the overall drag, wave drag coefficient
describes the performance of aircraft at high speeds. Secondly, the solver is verified
by using two different aircrafts the wave drag coefficients of which are obtained from
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literature. It is seen that the difference between the results of the actual study and the
literature results are in sufficiently close agreement so as to implement the optimiza-
tion algorithm. Results are obtained from computational fluid dynamics simulations
with a variety of supersonic flow speeds.F − 16 aircraft is analyzed and obtained that
error is smaller than 8%. Next, test cases are created with respect to the aerodynamic
parameters. The case matrix is generated to analyze the effect of each aerodynamic
parameter such as dihedral angle and area of the control surfaces. It is verified that
various types of aircrafts could be optimized by using the algorithm. Although the
optimal shape of each configuration has the smallest wave drag coefficient for the
given volume and length, the manufacturability of these aircraft remains vague. In
addition, geometry of the aircraft on use is optimized by employing the constraints
related to the engine size in order to show the algorithm can be used not only theo-
retical but also practical approaches. Finally, the program has the ability to optimize
the entire configuration. However, parts having no effect on the aerodynamic charac-
teristics are enforced to body shape change. A main reason behind this is preventing
from additional aerodynamic trade-off analysis while generating the final configu-
ration of the designed aircraft. In conclusion, aircrafts which are environmentally
friendly by saving fuel, and provides high-level security with better performance can
be obtained as a result of the study. As a future aim, additional objective functions
could be added to the program. Maximization of lift will be complementary for the
optimization problem of the complete aircraft post-design.
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