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Abstract Stochastic modeling of interest rates is expected to lead a better risk man-
agement in long-term investments due to the rapid changes and random fluctuations
in the economies. Considering the fact that deterministic interest rate approach does
not yield realistic future values, a country-specific stochastic model is aimed to fit
the interest rates based on the United States Treasury Inflation Protected Securi-
ties (TIPS) at 10-year constant maturity by using time series techniques. Under the
assumption that interest rate follows an ARMA(1, 1) model, the actuarial present
value and its variance for a ten-year term life insurance policy are derived. Addition-
ally, the stochastic mortality using Lee-Carter model for future mortality predictions
is implemented to the U.S. Mortality tables over a period of 81 years. Based on these
two stochastic patterns, the actuarial present value and the variance functions are
calculated numerically for the years 2014 and forecasted for 2030. The accuracy of
the proposed model is performed by assessing a comparative analysis with respect
to a prespecified deterministic interest rate and mortality table.
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1 Introduction

The long-term valuation of policyholders and insurers accumulation requires a pre-
cise financial planning in insurance sector. The actuarial analyses are commonly
based on the deterministic assumptions on interest and mortality rates. However,
these important factors in evaluating major indicators such as net single premium,
reserves, technical gains and annuities, play an important role in the actuarial val-
uation. A realistic approach is to include the impact of stochasticity in formulating
interest rate which enables the actuary to express the path to be followed for the
future time value of the money.

Many studies are available in the literature on stochastic interest andmortality rate
modeling. Many of those also employ time series models to understand the behavior
of the rates. Boyle [1] assumes that the force of interest is generated by a white noise
series and autoregressive models of order one are introduced to model interest rates.
Panjer and Bellhouse [2, 3] developed a general theory for both continuous and dis-
cretemodels by using AR(1) and AR(2) processes to computemoments of insurance
and annuity functions. Giacotto [4] analyzed present value functions with stochas-
tic interest rates when the spot rates are modeled discrete or continuous stochastic
processes. He modeled the interest rates when actuarial functions are considered by
using stationary and nonstationary ARIMA(p, 0, q) and ARIMA(p, 1, q) processes.
Dhaene [5] developed the study of Giacotto (1986); the force of interest is mod-
elled as an ARIMA(p, d, q) process. He used this model to compute the moments of
present value functions. Frees [6, 7] examined the net premiums in life contingencies
and extended the theory of life contingencies to a stochastic environment by using
MA(1) model. Parker [8] presented a model combining random interest rate and
random future lifetimes for portfolios of identical life insurances by using Ornstein-
Uhlenbeck process. Lai and Frees [9] studied the potential short-term consequences
of changes in the interest rate environment by using linear and nonlinear ARCH
process. Zacks [10] investigated the accumulated value of some annuities-certain
over a period of years with random interest rate. In Debicka’s [11] work, the cash
value of discrete-time payment streams in insurance contracts are calculated where
the interest rate and future-lifetime are random.

For the continuous modeling of interest rates Merton [12] (1973) used Ito process
for the first time. Later Vasicek [13] employed Ornstein-Uhlenbeck type of short
rate model with mean-reverting characteristics of the data. Cox, Ingersoll, and Ross
(CIR) [14] (1985) introduced their original model to eliminate the shortcoming of
previous models which was mainly based on the positive probability of negative
interest rates.

Also another approach for modeling interest rate movements are the use of
autoregressive conditional heteroskedasticity (ARCH) models, introduced by Engle
[15]. These models are developed into generalized autoregressive conditional het-
eroskedasticity (GARCH) by Bollerslev [16], and to exponential GARCH
(EGARCH) by Nelson [17]. The significant point for these models are that they
indicated volatility persistence in high degrees, which was the shortcoming in the
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CIR model. These approaches are the most commonly interest rate modeling which
takes into account the random volatility in the market.

This study aims to evaluate and derive the actuarial present value and its variance
for a term life insurance under the assumption that interest rates follow ARMA(1, 1).
The motivation is to observe the influence of stochastic interest and mortaliy rates
on the net single premium and its variance. A developed market in life insurance is
taken into account to illustrate the impact and efficiency of the proposed approach.
To achieve the proposed approach, monthly United States TIPS at 10-year constant
maturity are taken into account and an appropriate model is fitted. The implementa-
tion of the model is done on a mortality table whose stochastic pattern is predicted
using Lee-Carter model. Sensitivity checks are done by comparing deterministic
interest and mortality rates with stochastic ones. All computations are performed
using Matlab R2013a, and Microsoft Excel 2010. The derivations of the actuarial
present value and the variancemodified based on [18] are presentedwith their proofs.

The organization of the chapter is as follows: The basic model proposed is pre-
sented in the next section. Market yields on United States TIPS at 10-year constant
maturity are analyzed andmodeled through ARMA(1, 1)model and actuarial present
values and the variances are derived. The U.S. mortality rates between years 1933
and 2013 are used to estimate the future mortality rates for a period of next 16
years. A comparison of deterministic and stochastic approach on the present values
is presented in the last section.

2 Stochastic Interest Rate Model

Treasury bills are the safest and highly demanded instruments in financial markets.
Most of the life insurance regulations on the valuation of life insurance reserves
require insurance companies to invest a portion of their accumulations on safe invest-
ments like treasury bills and government bonds. For this reason, to capture the behav-
iour of a risk free asset in a volatile market gains importance. As the first step in
actuarial valuation under stochastic interest rate, we start defining a time dependent
model using the U.S. TIPS at 10-year maturity. The data set is collected from the
web page of Federal Reserve [19]. The nominal interest rates can be converted to
their real equivalences as follows:

it =(1 + monthly interest rate)1/m − 1

i ′t = it − et
1 + et

. (1)

Here, it , et and i ′t denote the monthly interest rate, the inflation rate and the real
interest rate for the t th term, respectively. The monthly rates of a 12-year period
starting from January 2003 to December 2015 are inflation adjusted. Therefore, a
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Fig. 1 The real interest rates of the U.S. TIPS at 10-year maturity between 2003 and 2015 [19]

log-transformation of the real interest rates rates are employed to fit an appropriate
model.

The interest rates, yt , plotted with respect to time in Fig. 1, illustrate the sharp
decrease in years 2008 and 2013 and a declining trend over years. The preliminary
descriptive analysis and frequency plot of returns yield a monthly average value of
0.0053; amedian value of 0.0064; and amodevalue of 0.0024.The standard deviation
of the process is found to be 0.0040. The pattern of temporal dependence is analyzed
through autocorrelated (ACF) and partial autocorrelated (PACF) functions which
are presented in Fig. 2. It can be seen that the original series has a trend which require
testing the existence of the unit root. ADF test statistics of the first differenced data
(p value<0.01) assure the stationarity to proceed in model estimation.

The time series model, ARIMA(1, 1) [20] is defined as

yt = δ + ϕ(yt−1 − δ) + εt + βεt−1 (2)

where δ, ϕ and β denote the parameters corresponding to the drift, AR and MA
coefficients, respectively. The model estimation yields the values for the parame-
ters which are illustrated in Table1. The p-values of the test statistics show that the
coefficients are significant validating the model at the main step of the time series
modeling, except the constant term. Besides the statistical justification of the parame-
ters, the best fit in time series require the diagnostic tests on the residuals. The residual
analysis yields a mean value which is almost equal to zero, −5.6887 × 10−6, and a
standard deviation of 7.9154 × 10−4. As it can be seen in the Fig. 3, the ACF and
PACF graphs of residuals support that they are white noise and Q–Q plot justifies
that the normality in residuals is justified.

The stationarity in ARMA models presented in Eq. (2) leads us to represent the
linear model in terms of its residuals as given below:
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Fig. 2 ACF and PACF plots of the log-returns

Table 1 Parameter estimates
of the differenced data

Parameter Value Standard
error

t statistic

Constant 0.000129 0.0001470 0.87733

AR(1) 0.969197 0.0201669 48.0587

MA(1) 0.24011 0.0879572 2.72985

Variance 6.22103e-07 2.77698e-07 2.24022

yt = δ + εt + (ϕ1 + β1)

∞∑

j=1

ϕ
j−1
1 εt− j (3)

As it can be seen from Eq. (3), yt could easily be estimated in terms of its residual
terms (random error). Using this stationary linear model is convenient in the sense of
deriving distribution of the series with respect to themoment generating functions, as
the residuals follow normal distribution. Therefore, the moment generating function
will be the basic term to derive the actuarial present value and its variance.
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Fig. 3 Residual tests and normality check

3 Actuarial Present Value and Its Variance
Under ARMA (1,1)

Actuarial present value for awhole life insurancewhich pays a pre-determined benefit
at the end of the year of death is a function of the interest and the mortality rates.
Given Vt denotes the interest discount factor from the time of payment back to the
time of policy issued, the present value, Z , of the amount of the payment, bt , is

Z = btV
t+1, (4)

whose probability distribution can be expressed as

Pr(Z = btv
t+1) = t px qx+t . (5)

Here, for a person aged x and having maximum lifetime till age w, t px represents
the probability of living between ages x and x + t and qx+t shows the probability of
dying between ages x + t and x + t + 1.
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Let Ax denote the actuarial present value for a whole life insurance issued on
a person whose age is (x). For a life insurance policy, mortality cost for each year
is computed separately and its aggregate constitutes the net single premium. It is
expressed as

Ax =
w∑

0

V t+1 bt t px qx+t dt (6)

Another life insurance type, n-year Term Life, provides the benefit only if the
insured dies within the n-years of issue date. We denote the actuarial present value
for the n-year term insurance with a benefit bt , as Ax̄ :n

Ax̄ :n =
n∑

0

V t+1 bt t px qx+t dt. (7)

As the discount function, Vt , is a function of continuous interest rate, the expected
value, E[Vt ], and the variance, Var[Vt ] under the assumption of stochastic interest
rate and its impact on net premium has to be determined.

Proposition 1 Let yt follow ARMA(1, 1) at time t given in Eq. (3). The present
value of a single payment, Vn, for t = n is

Vn = exp

(
−nδ − (ϕ1 + β1)ε0

(
1 − ϕn

1

1 − ϕ1

)
− εn

)
×

exp

⎛

⎝−
n−1∑

j=1

ε j

[
1 + (ϕ1 + β1)

n− j−1∑

t=0

ϕt
1

]⎞

⎠ ×

exp

⎛

⎝−(ϕ1 + β1)

(
1 − ϕn

1

1 − ϕ1

) ∞∑

j=1

ϕ
j
1ε− j

⎞

⎠ . (8)

The parameters in Vn derived above are defined in Eq. (3).

Proof

Vn =
n∏

t=1

(1 + it )
−1 = exp

(
−

n∑

t=1

yt

)

Vn = exp

[
−

n∑

t=1

(
δ + εt + (ϕ1 + β1)

∞∑

j=1

ϕ
j−1
1 εt− j

)]

Vn = exp

[
−

n∑

t=1

δ −
n∑

t=1

εt − (ϕ1 + β1)

n∑

t=1

∞∑

j=1

ϕ
j−1
1 εt− j

]
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Vn = exp

[
− nδ − (ε1 + ... + εn)

− (ϕ1 + β1)

n∑

t=1

(εt−1 + ϕ1εt−2 + .. + ϕn
1εt−n + ...)

]

Vn = exp

[
− nδ − (ε1 + ... + εn)

− (ϕ1 + β1)
[
(ε0 + ... + εn−1) + ϕ1(ε−1 + ... + εn−2) + ...

] ]

Vn = exp

[
− nδ − ε0(ϕ1 + β1)(1 + ϕ1 + ϕ2

1 + ... + ϕn−1
1 ) − εn

− ε1(1 + (ϕ1 + β1)(1 + ϕ1 + ϕ2
1 + ... + ϕn−2

1 ))

− ... − ε−1(ϕ1 + β1)(ϕ1 + ϕ2
1 + ... + ϕn

1) − ...

]

Vn = exp

[
− nδ − ε0(ϕ1 + β1)

n−1∑

t=0

ϕt
1 − εn − ε1

(
1 + (ϕ1 + β1)

n−2∑

t=0

ϕt
1

)

− ... − ε−1(ϕ1 + β1)ϕ1

n−1∑

t=0

ϕt
1 − ...

]

Vn = exp

[
− nδ − (ϕ1 + β1)ε0

(
1 − ϕn

1

1 − ϕ1

)
− εn−

n−1∑

j=1

ε j

[
1 + (ϕ1 + β1)

n− j−1∑

t=0

ϕt
1

]
− (ϕ1 + β1)

(
1 − ϕn

1

1 − ϕ1

) ∞∑

j=1

ϕ
j
1ε− j

]
.

Proposition 2 Given Vn defined in Eq. (8), the expected value becomes

E(Vn) = e−nδM(−1)
n−1∏

j=1

M

[
−

(
1 + (ϕ1 + β1)

n− j−1∏

t=0

ϕt
1

)]
, (9)

where M defines the moment generating function.

Proof

E(Vn) = E

[
exp

(
− nδ − (ϕ1 + β1)ε0

(
1 − ϕn

1

1 − ϕ1

)
− εn
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−
n−1∑

j=1

ε j

[
1 + (ϕ1 + β1)

n− j−1∑

t=0

ϕt
1

]

− (ϕ1 + β1)

(
1 − ϕn

1

1 − ϕ1

) ∞∑

j=1

ϕ
j
1ε− j

)]

E(Vn) = e−nδe
−

(
1−ϕn1
1−ϕ1

)
(ϕ1+β1)ε0 × M(−1)×

E

[
exp

(
−

n−1∑

j=1

ε j

[
1 + (ϕ1 + β1)

n− j−1∑

t=0

ϕt
1

])]
×

E

[
exp

(
−(ϕ1 + β1)

(
1 − ϕn

1

1 − ϕ1

) ∞∑

t=1

ϕt
1ε−t

) ]

E(Vn) = e−nδe
−(ϕ1+β1)

(
1−ϕn1
1−ϕ1

)
ε0 × M(−1)×

n−1∏

j=1

M

[
−

(
1 + (ϕ1 + β1)

n− j−1∑

t=0

ϕt
1

)]
×

∞∏

t=1

M

[
−(ϕ1 + β)

(
1 − ϕn

1

1 − ϕ1

)
ϕt
1

]
.

Here, εt ∼ N (0,σ2
ε ) and M(t) = exp(σ2

ε t
2/2). Considering ε0 = 0 and −1 <

ϕ1 < 1, the last term in proof is taken as equal to 1 [21]. Using this property,

∞∏

t=1

M

[
−(ϕ1 + β)

(
1 − ϕn

1

1 − ϕ1

)
ϕt
1

]
= 1 (10)

the expected value of the present value finally is derived as

E(Vn) = e−nδM(−1)
n−1∏

j=1

M

[
−

(
1 + (ϕ1 + β1)

n− j−1∏

t=0

ϕt
1

)]
. (11)

Proposition 3 Theactuarial present value of n-year term-life insurance, Ax̄ :n , under
ARMA(1,1) stochastic interest rate assumption is derived as
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Ax̄ :n = E[VK+1] = EV EK |V [VK+1]

Ax̄ :n = EV [
n∑

k=0

Vk+1.k px .qx+k]

Ax̄ :n = C1

n∑

k=0

e−(k+1)δ
k px .qx+k

(12)

where C1 = e
(ϕ1+β1)

(
1−ϕn1
1−ϕ1

)
ε0
M(−1)

∏n−1
j=1 M

[
−

(
1 + (ϕ1 + β1)

∑n− j−1
t=0 ϕt

1

)]
.

Taking ε0 = 0 and letting n = k + 1, C1 becomes

C1 = M(−1)
n−1∏

j=1

M

[
−

(
1 + (ϕ1 + β1)

n− j−1∑

t=0

ϕt
1

)]

C1 = M(−1)
k∏

j=1

M

[
−

(
1 + (ϕ1 + β1)

k− j∑

t=0

ϕt
1

)]
. (13)

Proposition 4 The variance of Ax̄ :n is derived as

Var(Ax̄ :n ) = C2

n∑

k=0

e−2(k+1)δ
k px .qx+k − (Ax̄ :n )2 (14)

Here, C2 = e
−2(ϕ1+β1)

(
1−ϕn1
1−ϕ1

)
ε0
M(−2)

∏n−1
j=1 M

[
−2

(
1 + (ϕ1 + β1)

∑n− j−1
t=0 ϕt

1

)]
.

Taking ε0 = 0 and n = k + 1, is simplified to

C2 = M(−2)
k∏

j=1

M

[
−2

(
1 + (ϕ1 + β1)

k− j∑

t=0

ϕt
1

)]
(15)

The propositions given above yields a formulation on the actuarial valuation of n-year
term insurance under stochastic interest rate.

4 The Impact of Stochastic Mortality on Ax̄:n

A life table shows fundamental parameters of a population for each age or age group,
such as; the number of survivors, the number of deaths, the probability that they die
or live to their next birthday and the life expectancy. It describes the mortality and
survival pattern of a population. Mortality data and life tables, originate from obser-
vations concerning a whole national population or a specific part of a population
(e.g. retired workers, disabled people, etc.) or an insurers portfolio, and so on. The
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past life table data does not assure its future outcome. Hence in order to price insur-
ance products properly, actuaries must use projections of future insured events. To
do this, actuaries developed mathematical models for estimating the mortality. The
assumptions on constructing life tables require the observation of a closed group
which needs many years to come up with an accurate estimate of the death rates.
For this reason, the yearly population census, death and birth rates are employed to
construct an efficient model. Additionally, the improvement in technology, medicine
result in increase in the expected lifetime. Therefore, the time change on the mortal-
ities show also a stochastic pattern. One of the models which takes into account the
time influence and allows a good prediction on the future mortalities is Lee-Carter
Model (LC) [22]. It expresses the mortality as a probability process and it is one of
the most commonly used one in the literature to forecast the future mortality. It is
essentially built for life expectancy forecasting, but can also be used for mortality
forecasting.

LC model defines the force of mortality, μx+t , at age x and at time t using
parameters αx , βx , and kt as

ln(mx,t ) = αx + βxκt + εx,t εx,t ∼ N (0,σ) (16)

wheremx,t represents the central death rate, αx is the average level of mortality at
each age, βx shows the sensitivity to κt at different ages, κt shows the general speed
of mortality improvement over time, and εx,t explains the error term and captures
the remaining variations under the conditions

∑
βx = 1

∑
κt = 0. (17)

The U.S.Mortality rates between years 1933 and 2014 retrieved from open source
internet website [23] are utilized for estimating the following 16-year mortalities
using the LC model. The time behavior of the parameter and mortality estimates
are presented in Fig. 4. The parameters on estimating the central death rates of US
total population for ages 0–110, over the chosen period are illustrated in top two
and bottom-right figures. Based on these estimates, the behavior of mortality rates
is shown in the lower-right graph. The parameter αx has an increasing rate by age,
whereas, βx and κt both decrease with respect to age. The time influence on the
change on mortality rates can be observed in Fig. 5. The difference between the
survival probability in 2014 and the forecast in 2030 present is observable, especially,
between ages 80–100.
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Table 2 Actuarial present value and its variance for deterministic (D) and stochastic (S) approaches

2014 2030

x AD
x̄ :10 Var D AS

x̄ :10 Var S x AD
x̄ :10 Var D AS

x̄ :10 Var S

0 0.0058 0.0051 0.0067 0.0066 0 0.0036 0.0032 0.0043 0.0043

1 0.0010 0.0007 0.0014 0.0014 1 0.0007 0.0005 0.0011 0.0011

2 0.0008 0.0006 0.0012 0.0012 2 0.0006 0.0004 0.0010 0.0010

3 0.0007 0.0005 0.0011 0.0011 3 0.0006 0.0004 0.0010 0.0010

4 0.0007 0.0004 0.0011 0.0011 4 0.0006 0.0004 0.0010 0.0010

5 0.0007 0.0005 0.0012 0.0012 5 0.0006 0.0004 0.0010 0.0010

6 0.0008 0.0005 0.0014 0.0014 6 0.0007 0.0004 0.0011 0.0011

7 0.0009 0.0006 0.0017 0.0017 7 0.0008 0.0005 0.0013 0.0013

8 0.0012 0.0007 0.0022 0.0022 8 0.0009 0.0005 0.0016 0.0016

9 0.0015 0.0008 0.0028 0.0028 9 0.0011 0.0006 0.0021 0.0021

10 0.0018 0.0010 0.0034 0.0034 10 0.0014 0.0008 0.0026 0.0026

11 0.0022 0.0012 0.0041 0.0041 11 0.0016 0.0009 0.0031 0.0031

12 0.0026 0.0015 0.0048 0.0048 12 0.0019 0.0011 0.0036 0.0036

13 0.0031 0.0018 0.0055 0.0055 13 0.0023 0.0013 0.0041 0.0041

14 0.0035 0.0021 0.0061 0.0060 14 0.0026 0.0016 0.0046 0.0046

15 0.0040 0.0025 0.0067 0.0066 15 0.0030 0.0019 0.0051 0.0051

16 0.0044 0.0028 0.0072 0.0071 16 0.0033 0.0021 0.0055 0.0055

17 0.0047 0.0031 0.0076 0.0075 17 0.0036 0.0024 0.0058 0.0057

18 0.0049 0.0032 0.0078 0.0077 18 0.0038 0.0025 0.0060 0.0059

19 0.0049 0.0033 0.0079 0.0078 19 0.0038 0.0025 0.0061 0.0060

20 0.0050 0.0034 0.0080 0.0079 20 0.0039 0.0026 0.0062 0.0061

21 0.0051 0.0034 0.0081 0.0080 21 0.0039 0.0026 0.0063 0.0062

22 0.0051 0.0034 0.0082 0.0081 22 0.0040 0.0026 0.0064 0.0063

23 0.0052 0.0034 0.0084 0.0083 23 0.0041 0.0027 0.0066 0.0065

24 0.0053 0.0035 0.0086 0.0085 24 0.0042 0.0027 0.0068 0.0067

25 0.0054 0.0035 0.0088 0.0087 25 0.0043 0.0028 0.0070 0.0069

26 0.0056 0.0036 0.0091 0.0090 26 0.0045 0.0029 0.0073 0.0072

27 0.0058 0.0037 0.0095 0.0094 27 0.0046 0.0030 0.0076 0.0075

28 0.0060 0.0039 0.0099 0.0098 28 0.0049 0.0032 0.0080 0.0079

29 0.0064 0.0041 0.0105 0.0104 29 0.0051 0.0033 0.0084 0.0083

30 0.0068 0.0043 0.0112 0.0111 30 0.0053 0.0034 0.0088 0.0087

31 0.0072 0.0046 0.0119 0.0118 31 0.0056 0.0036 0.0093 0.0092

32 0.0077 0.0049 0.0128 0.0126 32 0.0060 0.0038 0.0099 0.0098

33 0.0082 0.0051 0.0137 0.0135 33 0.0064 0.0040 0.0106 0.0105

34 0.0088 0.0055 0.0148 0.0146 34 0.0069 0.0043 0.0115 0.0114

35 0.0096 0.0060 0.0161 0.0158 35 0.0074 0.0047 0.0125 0.0124
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Table 2 (continued)

2014 2030

x AD
x̄ :10 Var D AS

x̄ :10 Var S x AD
x̄ :10 Var D AS

x̄ :10 Var S

36 0.0104 0.0065 0.0175 0.0171 36 0.0080 0.0050 0.0136 0.0134

37 0.0112 0.0070 0.0189 0.0186 37 0.0088 0.0055 0.0149 0.0147

38 0.0122 0.0076 0.0206 0.0202 38 0.0096 0.0059 0.0163 0.0160

39 0.0133 0.0082 0.0225 0.0219 39 0.0104 0.0065 0.0177 0.0174

40 0.0145 0.0089 0.0244 0.0238 40 0.0115 0.0071 0.0194 0.0190

41 0.0158 0.0097 0.0267 0.0259 41 0.0126 0.0078 0.0213 0.0208

42 0.0172 0.0106 0.0290 0.0281 42 0.0137 0.0085 0.0232 0.0227

43 0.0187 0.0115 0.0316 0.0306 43 0.0150 0.0093 0.0254 0.0247

44 0.0204 0.0125 0.0344 0.0332 44 0.0164 0.0101 0.0276 0.0269

45 0.0222 0.0136 0.0374 0.0360 45 0.0178 0.0110 0.0301 0.0292

46 0.0242 0.0148 0.0408 0.0391 46 0.0194 0.0119 0.0328 0.0317

47 0.0264 0.0160 0.0445 0.0425 47 0.0212 0.0130 0.0358 0.0345

48 0.0287 0.0174 0.0484 0.0460 48 0.0231 0.0141 0.0390 0.0374

49 0.0313 0.0188 0.0528 0.0500 49 0.0252 0.0153 0.0426 0.0408

50 0.0341 0.0205 0.0574 0.0541 50 0.0275 0.0167 0.0465 0.0443

51 0.0371 0.0221 0.0625 0.0586 51 0.0301 0.0181 0.0508 0.0482

52 0.0404 0.0240 0.0680 0.0633 52 0.0328 0.0197 0.0553 0.0523

53 0.0440 0.0260 0.0742 0.0686 53 0.0358 0.0213 0.0605 0.0568

54 0.0479 0.0281 0.0807 0.0741 54 0.0391 0.0232 0.0659 0.0616

55 0.0522 0.0304 0.0876 0.0799 55 0.0427 0.0252 0.0718 0.0666

56 0.0566 0.0328 0.0950 0.0860 56 0.0464 0.0273 0.0781 0.0720

57 0.0614 0.0354 0.1029 0.0922 57 0.0504 0.0295 0.0847 0.0775

58 0.0665 0.0381 0.1112 0.0988 58 0.0548 0.0319 0.0917 0.0833

59 0.0719 0.0408 0.1201 0.1057 59 0.0593 0.0343 0.0993 0.0894

60 0.0779 0.0438 0.1298 0.1129 60 0.0644 0.0370 0.1076 0.0960

61 0.0842 0.0469 0.1403 0.1206 61 0.0698 0.0397 0.1166 0.1029

62 0.0910 0.0502 0.1514 0.1284 62 0.0755 0.0426 0.1259 0.1100

63 0.0982 0.0534 0.1635 0.1367 63 0.0816 0.0455 0.1362 0.1176

64 0.1060 0.0568 0.1765 0.1453 64 0.0883 0.0487 0.1473 0.1255

65 0.1145 0.0604 0.1904 0.1541 65 0.0954 0.0520 0.1590 0.1337

66 0.1236 0.0641 0.2055 0.1632 66 0.1032 0.0554 0.1719 0.1423

67 0.1336 0.0681 0.2219 0.1726 67 0.1117 0.0591 0.1859 0.1513

68 0.1445 0.0722 0.2395 0.1821 68 0.1209 0.0630 0.2011 0.1606

69 0.1560 0.0762 0.2582 0.1915 69 0.1308 0.0669 0.2173 0.1700

70 0.1686 0.0805 0.2786 0.2009 70 0.1416 0.0711 0.2350 0.1797
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Table 2 (continued)

2014 2030

x AD
x̄ :10 Var D AS

x̄ :10 Var S x AD
x̄ :10 Var D AS

x̄ :10 Var S

71 0.1826 0.0846 0.3020 0.2107 71 0.1539 0.0752 0.2559 0.1903

72 0.1980 0.0888 0.3270 0.2200 72 0.1676 0.0796 0.2788 0.2010

73 0.2144 0.0926 0.3541 0.2286 73 0.1824 0.0838 0.3036 0.2113

74 0.2324 0.0963 0.3835 0.2363 74 0.1987 0.0880 0.3308 0.2213

75 0.2521 0.0998 0.4152 0.2427 75 0.2169 0.0922 0.3607 0.2305

76 0.2732 0.1027 0.4489 0.2472 76 0.2366 0.0961 0.3929 0.2384

77 0.2960 0.1050 0.4848 0.2496 77 0.2583 0.0996 0.4277 0.2446

78 0.3205 0.1067 0.5225 0.2493 78 0.2818 0.1027 0.4649 0.2486

79 0.3466 0.1076 0.5616 0.2460 79 0.3072 0.1051 0.5040 0.2498

80 0.3742 0.1076 0.6021 0.2394 80 0.3346 0.1068 0.5455 0.2478

81 0.4021 0.1058 0.6431 0.2293 81 0.3626 0.1066 0.5881 0.2421

82 0.4312 0.1030 0.6841 0.2159 82 0.3922 0.1053 0.6319 0.2324

83 0.4611 0.0986 0.7257 0.1989 83 0.4234 0.1021 0.6778 0.2182

84 0.4916 0.0927 0.7669 0.1785 84 0.4561 0.0972 0.7247 0.1993

85 0.5224 0.0856 0.8067 0.1557 85 0.4896 0.0905 0.7710 0.1763

86 0.5517 0.0784 0.8411 0.1335 86 0.5214 0.0836 0.8106 0.1533

87 0.5800 0.0706 0.8722 0.1113 87 0.5526 0.0759 0.8469 0.1295

88 0.6074 0.0628 0.8996 0.0902 88 0.5829 0.0678 0.8793 0.1060

89 0.6338 0.0551 0.9231 0.0708 89 0.6124 0.0597 0.9074 0.0838

90 0.6586 0.0479 0.9427 0.0539 90 0.6403 0.0518 0.9310 0.0641

91 0.6815 0.0413 0.9584 0.0398 91 0.6662 0.0446 0.9501 0.0473

92 0.7033 0.0355 0.9707 0.0284 92 0.6906 0.0382 0.9651 0.0336

93 0.7226 0.0306 0.9799 0.0196 93 0.7122 0.0328 0.9763 0.0231

94 0.7394 0.0263 0.9866 0.0132 94 0.7305 0.0280 0.9843 0.0154

95 0.7534 0.0226 0.9913 0.0086 95 0.7451 0.0238 0.9900 0.0099

96 0.7680 0.0195 0.9946 0.0054 96 0.7611 0.0204 0.9939 0.0061

97 0.7814 0.0169 0.9967 0.0033 97 0.7757 0.0176 0.9964 0.0037

98 0.7937 0.0147 0.9981 0.0020 98 0.7891 0.0152 0.9979 0.0022

99 0.8050 0.0129 0.9989 0.0012 99 0.8014 0.0133 0.9988 0.0013

100 0.8154 0.0113 0.9993 0.0008 100 0.8126 0.0116 0.9993 0.0008

5 Sensitivity Analyses and Concluding Comments

The sensitivity of the actuarial present value and its variance to deterministic and
stochastic approaches is performed according to two important variables which are
taken into account in this study. The first one considers a deterministic annual inter-
est rate of 9% (denoted D) and random interest rates following an ARMA(1, 1)
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(denoted S). The latter one compares the valuations with respect to the type of mor-
tality table. Total (male and female) mortality table for the year 2014 and forecasted
mortality table for 2030 using LC model are compared under stochastic and deter-
ministic interest rate cases. Equations (12) and (14) are employed to quantify AD

x̄ :10 ,
Var(AD

x̄ :10 ), A
S
x̄ :10 and Var(AS

x̄ :10 ) which denote the expected values and variances for
deterministic (D) and stochastic (S) cases, respectively. Table2 summarizes these
results with respect to the ages. Figures6 and 7 are presented to expose the impact of
stochastic approach on the valuation compared to the deterministic case. The vari-
ance of the actuarial present value is observed to be low for young and very old ages,
however, high between ages 50 and 90 in both cases.

Based on the proposed approach, we conclude that the stochastic modeling of
interest rates yields higher actuarial present values and variances for both deter-
ministic and stocastic mortality approaches. Even though the maximum volatility is
around 15% compared to the deterministic one, stochastic interest model results in
more conservative approach in handling the risk which will result in higher premium
rates. This may be a discouraging temptation in marketing life insurance products,
however, it reduces the adverse selection.

As the life insurance products are long-term investments for both insurer and
insured, the deterministic assumptionswill not be realistic, especially considering the
longevity risk and non-stationary financial markets. This study enables researchers
and insurance experts to quantify the risk to be taken if the actuarial valuation is done
under stochastic framework and to estimate the impact of volatility in the valuation
of life insurance products with respect to financial markets. As future work, the
reaction to the maket for an emerging market can be investigated and compared with
the developed country case.
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