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Abstract. Many pairing-based protocols require the computation of the
product and/or of a quotient of n pairings where n > 1 is a natural inte-
ger. Zhang et al. [1] recently showed that the Kachisa-Schafer and Scott
family of elliptic curves with embedding degree 16 denoted KSS16 at the
192-bit security level is suitable for such protocols comparatively to the
Baretto-Lynn and Scott family of elliptic curves of embedding degree 12
(BLS12). In this work, we provide important corrections and improve-
ments to their work based on the computation of the optimal Ate pairing.
We focus on the computation of the final exponentiation which represent
an important part of the overall computation of this pairing. Our results
improve by 864 multiplications in Fp the computations of Zhang et al.
[1]. We prove that for computing the product or the quotient of 2 pair-
ings, BLS12 curves are the best solution. In other cases, especially when
n > 2 as mentioned in [1], KSS16 curves are recommended for computing
product of n pairings. Furthermore, we prove that the curve presented
by Zhang et al. [1] is not resistant against small subgroup attacks. We
provide an example of KSS16 curve protected against such attacks.

Keywords: BN curves · KSS16 curves · BLS curves · Optimal Ate
pairing · Product of n pairings · Subgroup attacks

1 Introduction

Pairing-based cryptography is another way of building cryptographic protocols.
Thanks to the various and steady improvements for the computation of pairings
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on elliptic curves together with their implementation, several protocols have been
published [2–6]. The BN [7] family of elliptic curves are the most suitable for
implementing pairing-based cryptography at the 128-bit security level. At the
high security level, the BLS12 [8] curves are recommended for computing the
optimal Ate pairing according to the results presented in [9,10].

Many pairing-based protocols require the computation of products or quo-
tients of pairings. Some of them require the computation of two pairings [11],
others require three pairings [12] and even more than three pairings as in [13,14].
The few works that studied an efficient computation of products of pairings are
those of Granger and Smart [1,15]. In particular, Zhang et al. [1] have recently
shown that the KSS16 [16] elliptic curves are more suitable when computing
products or quotients of optimal Ate pairings at the 192-bit security level. In
their work they gave explicit formulas and cost evaluation for the Miller loop
and developed interesting ways of computing the hard part of the final exponen-
tiation. Unfortunately their results contain several forgotten operations costing
1332 multiplications in the base field Fp. In this work we study the computation
of the optimal Ate pairing on KSS16 curves. We present also a new multiple
of the hard part of the final exponentiation of the optimal Ate pairing. This
new multiple enabled us to improve the cost of the computation of the hard
part of the final exponentiation with respect to the work of Zhang et al. [1]. We
also compare the efficiency of KSS16 curves when computing product of pairings
with respect to other common curves at the same security level. We also ana-
lyzed the resistance of the KSS16 curves to the small subgroup attack following
the approach described in [17]. More precisely, the contribution of this work is
as follows:

1. We first pointed out ignored operations in the computation of the optimal
Ate pairing (final exponentiation) on KSS16 curves by Zhang et al. [1] and
give detailed cost of operations with a magma code to verify the formulas
[18]. Despite the improvement we obtained for the computation of the final
exponentiation in this case and based on the fastest known result to date to
our knowledge, we show that BLS12 curves are suitable for the computation
of products of two pairings at the high security level and not KSS16 curves
as recommended in [1]. We also proved that for computing n pairings where
n > 2 then KSS16 curves are the best solution.

2. In [17], Barreto et al. recently studied the resistance of BN, BLS and KSS18
curves to small subgroup attacks. We extend the same analysis to KSS16
curves. In particular we show that the parameters used in [1] do not ensure
protection of these curves to such attacks and we provide an example of
KSS16 curve resistant to this attack.

The rest of this work is organized as follows: Sect. 2 recalls results from [1] on
optimal Ate pairing on KSS16 curves. We point out the forgotten operations
and bring corrections and improvements in the computation of the final expo-
nentiation. In Sect. 3, we present our new multiple of the hard part of the final
exponentiation d′. We prove that by using the new vector we saved 864M with
respect to the corrected work of Zhang et al. in the computation of the optimal
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Ate pairing over KSS16 curves. Section 4 defines products of pairings and their
efficient computation. Detailed costs of the calculation and comparison are then
done with commonly pairing-friendly curves at the high security level. The Sect. 5
concerns the resistance of the KSS16 curves against small subgroup attacks. We
show that the curve used in [1] is not protected against small subgroup attack
and provide an adequate example. We conclude our work in Sect. 6.

Notations: In this paper we denote by:

– Mk a multiplication in Fpk .
– Sk a squaring in Fpk .
– Fk a Frobenius map in Fpk .
– Ik an inversion in Fpk .
– Sc a cyclotomic squaring in Fp16 .
– Cc a cyclotomic cube in Fp16 .

A multiplication, a square and an inversion in Fp are denoted respectively by M,
S and I.

2 Pairings at High Security Level

The 192-bit security level is one of the highest security level recommended when
implementing cryptographic protocols based on pairings. Aranha et al. [9] rec-
ommended the implementation of optimal Ate pairing at this security level over
BLS12 curves. Their results on BLS12 curves have been improved by Ghammam
and Fouotsa in [10] and still confirm that BLS12 curves are a better solution for
implementation at the 192-bit security level. Recently, Zhang et al. [1] consid-
ered the computation of the optimal Ate pairing over KSS16 curves at the same
security level. They proved in particular that this family of curves is suitable for
computing products or quotients of pairings generally involved in many pairing-
based protocols. In this section we review their computation of the optimal Ate
pairing and in particular we bring corrections to shortcomings in their work and
give improvements in the computation of the hard part of the final exponenti-
ation. The previous data on costs of computing optimal Ate pairing from the
literature at the 192-security level are given in Table 1.

Table 1. Latest best costs of optimal Ate pairing at the 192-bit security level.

Elliptic curves Size of p
(bit)

Complexity of
Miller loop

Complexity of the
final exponentiation

BLS12 Curves [10] 640 10785M 8116M+6I

BLS24 Curves [10] 480 14574M 23864M+10I

BN Curves [9] 640 16553M 7218M+4I

KSS18 Curves [9] 480 13168M 23821M+8I
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Remark 1. Recently, Kim presented in [19] improvements in discrete logarithm
computation in finite fields of the form Fp12 . Then Jeong and Kim generalized
it in [20]. They proved the same result for any composite extension degree n
when the prime p is of a special form which is the case of BN, BLS and KSS
curves which we studied in this paper. Therefore, these curves no longer provide
a 192-bit security level. However, they still present a high security level since it
is more than the 128-bit security level.

2.1 The KSS16 Family of Elliptic Curves and Optimal Ate Pairing

Kachisa et al. proposed in [16] a family of pairing-friendly elliptic curves of
embedding degree k ∈ {16, 18, 32, 36, 40}. The main idea of their construction
of these families of curves is to use the minimal polynomial of the elements of
the cyclotomic field rather than the cyclotomic polynomial φk(x) to define the
cyclotomic field.

The family of curve with k = 16 which is called KSS16 curves is parameterised
as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t =1/35
(
2u5 + 41u + 35

)

r =u8 + 48u4 + 625

p =
1

980
(u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2+

2398u + 3125)

(1)

and the equation of the elliptic curve defined over Fp is of the form

y2 = x3 + ax

where t is the trace of the Frobenius endomorphism on E, p is the field size and
r presents the order the pairing-friendly subgroup. Let G1 = E(Fp)[r] be the
r-torsion subgroup of E(Fp) and G2 = E′(Fp4)[r]∩ Ker(πp − [p]) where E′ is
the quartic twist of E. The subgroup of F

�
p16 consisting of r-th roots of unity

is denoted by G3 = μr. Consider the function fu,Q with divisor Div(fu,Q) =
u(Q)− ([u]Q)− (u− 1)(O) and �R,S the straight line passing through the points
R and S of the elliptic curve.

Proposition 2. [1] The optimal Ate pairing on the KSS16 curves is the bilinear
and non degenerated map:

eopt : G1 × G2 → G3

(P,Q) �−→
(
(fu,Q(P )l[u]Q,[p]Q(P ))p3

lQ,Q(P )
) p16−1

r

The parameter u proposed by Zhang et al. [1] is

u = 249 + 226 + 215 − 27 − 1

which is a 49-bit integer of Hamming weight equal to 5 so that r has a prime
factor of 377 bits and p is a prime integer of 481 bits. The computation of pairing
involves two main steps: the Miller loop and the final exponentiation.
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2.2 The Miller Loop

In our case, to compute the optimal Ate pairing in Proposition 2, the Miller loop
consists of the computation of (fu,Q(P )·l[u]Q,[p]Q(P ))p3 ·lQ,Q(P ). Let u = un2n+
· · · + u12 + u0 with ui ∈ {−1, 0, 1}. The computation of the function fu,Q(P ) is
done thanks to the algorithm in Table 2 known as the Miller algorithm [21]. The
Miller loop consists of computing fu,Q(P ), l[u]Q,[p]Q(P ), lQ,Q(P ) and two sparse
multiplications in Fp16 to multiply terms together and one p3-Frobenius.

Table 2. Miller algorithm.

Miller algorithm: Input: u = (un, un−1, . . . , u0),P ,Q,

Output:(fu,Q(P ) · l[u]Q,[p]Q(P ))p
3 · lQ,Q(P )

1: Set f1 ← 1 and R ← Q
2: For i = n − 1 down to 0 do
3: f1 ← f2

1 · �R,R(P ), R ← 2R Doubling step
5: if ui = 1 then
6: f1 ← f1 · �R,Q(P ) R ← R + Q, end if Addition step
7: if ui = −1 then
8: f1 ← f1 · �R,−Q(P ) R ← R − Q, end if Addition step
9: end For
10: return f1 = fu,Q(P )

The computation of fu,Q(P ) costs 49 doubling steps with associated line eval-
uation, 4 addition steps with line evaluations, 48 squarings in Fp16 and 52 sparse
multiplications in Fp16 . We then need an extra 2p-Frobenius maps for comput-
ing [p]Q and [u]Q is obtained through the computation of fu,Q(P ). Thus we have
to perform 8 multiplications in Fp, a multiplication in Fp4 and one squaring in
Fp4 plus 2p-Frobenius to compute l[u]Q,[p]Q(P ). We need also 8 multiplications
in Fp, 4 multiplications in Fp4 , and one squaring in Fp4 to compute lQ,Q(P ) (see
[1] for formulas and complete details on the costs).

Therefore, the overall cost of the computation of the Miller loop, as mentioned
in [1], is 49 doubling steps with associated line evaluations, 4 addition steps with
line evaluations, 48 squarings in Fp16 , 54 sparse multiplications in Fp16 , 2p, p3

Frobenius maps in Fp16 , 16 multiplications in Fp, 5 multiplications in Fp4 and
one squaring in Fp4 . From Table 4 of [1], the Miller loop of the optimal Ate
pairing on KSS16 curve costs about 10208 multiplications in Fp.

2.3 The Final Exponentiation

The second step in computing the optimal Ate pairing is the final exponentiation
which consists of raising the result f1 of the Miller loop to the power p16−1

r .
Thanks to the cyclotomic polynomial, this expression is simplified and presented
as follows:

f
p16−1

r
1 = (fp8−1

1 )
p8+1

r .
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First we have to compute f = fp8−1
1 which is called the simple part of the final

exponentiation. This costs one p8–Frobenius, an inversion and a multiplication
in Fp16 . Raising f to the power p8+1

r is called the hard part of the final expo-
nentiation. In [1], Zhang et al. considered a multiple of the second part of the
final exponentiation. So instead of computing fd they computed f857500d where
d = p8+1

r . This choice enables them to only have integer coefficients in the rep-
resentation of d1 = 857500d in base p which is a simple way for computing this
hard part of the final exponentiation.

p8 + 1
r

=
φ(16)−1∑

i=0

cip
i = c0 + c1p + c2p

2 + · · · + c7p
7

Where:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −11u9 − 22u8 − 55u7 − 278u5 − 1172u4 − 1390u3 + 1372

c1 = 15u8 + 30u7 + 75u6 + 220u4 + 1280u3 + 1100u2

c2 = 25u7 + 50u6 + 125u5 + 950u3 + 3300u2 + 4750u

c3 = −125u6 − 250u5 − 625u4 − 3000u2 − 13000u − 15000

c4 = −2u9 − 4u8 − 10u7 + 29u5 − 54u4 + 154u3 + 4704

c5 = −20u8 − 40u7 − 100u6 − 585u4 − 2290u3 − 2925u2

c6 = 50u7 + 100u6 + 250u5 + 1025u3 + 4850u2 + 5125u

c7 = 875u2 + 1750u + 4375

(2)

Then Zhang et al. presented a very nice decomposition of ci where i ∈
{0, 1, 2, 3, 4, 5, 6, 7}. This representation enabled them to quickly compute the
hard part of the final exponentiation. Let

A = u3.B + 56 and B = (u + 1)2 + 4, then
⎧
⎪⎪⎨

⎪⎪⎩

c0 = −11(u4A + 27u3B + 28) + 19A; c4 = −(2u4A + 55u3B) + 84A
c1 = 5(3u3A + 44u2B) = 5c′

1; c5 = −5(4u3A + 117u2B) = −5c′
5

c2 = 25(u2A + 38uB) = 25c′
2; c6 = 25(2u2A + 41uB) = 25c′

6

c3 = −125(uA + 24B) = −125c′
3; c7 = 125.7B = 125c′

7

The problem with this representation is that when we recomputed these expres-
sions we discovered that there is a missing term in the expression of c0. In fact

{
c0 = −11u9 − 22u8 − 55u7 − 278u5 − 1172u4 − 1390u3 + 1372

= −11(u4A + 27u3B + 28) + 19A + 616
(3)

We verified also the algorithm presented in AppendixA of [1] where the term
f616 is missing in the computation of the final exponentiation. Fortunately, the
expression of c0 do not influence the rest of the expressions ci with 0 < i < 8.
Therefore, we have to add this term to the final result of the hard part of the
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final exponentiation of the optimal Ate pairing. Using the square-and-multiply
algorithm, the additional step f616 costs 8 squarings and 3 multiplications in
Fp16 but we will not add this cost because they are terms precomputed in the
algorithm of Zhang et al. We will add to their algorithm these operations after
the first term of the original algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A0 ← T38

A1 ← A0 · T3
A2 ← A1 · T2

A3 ← T12

A2 ← A3 · A2

(4)

By adding these operations we got in A2 the missing term f616. At the end of
the algorithm presented by Zhang et al. we have to add this term to the final
result costing an extra multiplication. So the additional cost is 4 multiplications
and 4 squarings in Fp16 .

Other shortcomings with their algorithm that computed the hard part of the
final exponentiation concern the computation of c′

5, c′
0 and c′

4. In fact, in the
expression of c′

0, the output of their algorithm is −11(u4A+55u3B +28)+35A
instead of the result −11(u4A + 55u3B + 28) + 19A. Also, the expression of c′

4

computed in their algorithm is −(2u4A + 55u3B) + 148A not as mentioned in
the development which is −(2u4A + 55u3B) + 84A.

The expression of c′
5 is deduced by multiplying the term stocked in the tem-

porary variable T11 by the term stocked in F14 and not by the one recorded in
F25. Also in the computation of c′

7 we must perform the operation F5.T4 instead
of F5.T6.

Therefore we must perform some modifications in the original algorithm to
have the coherent result at the end. We presented the corrected algorithm in
AppendixA, Table 9, and a magma code for the verification of formulas is avail-
able in [18]. The additional corrections cost 4 multiplications and 3 squarings in
Fp16 instead of 3 multiplications and 4 squarings which is the cost of the oper-
ations before our modifications. Furthermore Zhang et al. claimed that in the
final algorithm they used only 16 squarings, but it is not the case because by a
simple count we found that one is forced to perform 38 squarings in Fp16 .

As a consequence to compute the final exponentiation we have to perform 7
exponentiations by u, 2 exponentiations by (u+1), one inversion, 44 cyclotomic
squarings in Gφ2(p8), 38 multiplications in Fp16 , 2 cyclotomic cubings in Fp16 and
p, p2, p3, p4, p5, p6, p6, p7, p8-Frobenius maps.

In Table 3 we present the new cost of the final exponentiation of the optimal
Ate pairing after our correction of the result of the work in [1]. Hence, by adding
some modifications to the original result the overall cost of the optimal Ate
pairing on KSS16 curve is 33870M+I. So we have extra 1332 multiplications in
Fp than the cost presented in [1].
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Table 3. Complexity of the optimal Ate pairing.

The method Complexity of
Miller loop

Complexity of the
final exponentiation

Method of [1] 10208 M 22330M+I

Our correction 10208 M 23662M+I

3 A New Multiple of the Hard Part of the Final
Exponentiation

An efficient method to compute the hard part is described by Scott et al. [22].
They suggested to write d = φk(p)

r in base p as d = d0+d1p+ · · ·+dφ(k)−1p
φ(k)−1

and find a short vector addition chain to compute fd much more efficiently than
the naive method. In [23], based on the fact that a fixed power of a pairing is
still a pairing, Fuentes et al. [23] suggested to apply Scott et al.’s method with
a power of any multiple d′ of d with r not dividing d′. This could lead to a more
efficient exponentiation than a direct computation of fd. Their idea of finding
the polynomial d′(x) is to apply the LLL-algorithm to the matrix formed by Q-
linear combinations of the elements d(x), xd(x), . . . , xdegr−1d(x). In this paper
we tried to find a new multiple of d1 = 857500 · d (with r not dividing d). We
use a lattice-based method to find d′ such that fd′

can be computed in a more
efficient way than computing f857500·d.

Thanks to the LLL algorithm [24], the best vector that we found is given by:

d′(u) = m0 + m1p + m2p
2 + m3p

3 + m4p
4 + m5p

5 + m6p
6 + m7p

7 = s(u)d1

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(u) = u3/125

m0 = 2u8 + 4u7 + 10u6 + 55u4 + 222u3 + 275u2

m1 = −4u7 − 8u6 − 20u5 − 75u3 − 374u2 − 375u

m2 = −2u6 − 4u5 − 10u4 − 125u2 − 362u − 625

m3 = −u9 − 2u8 − 5u7 − 24u5 − 104u4 − 120u3 + 196

m4 = u8 + 2u7 + 5u6 + 10u4 + 76u3 + 50u2

m5 = 3u7 + 6u6 + 15u5 + 100u3 + 368u2 + 500u

m6 = −11u6 − 22u5 − 55u4 − 250u2 − 1116u − 1250

m7 = 7u5 + 14u4 + 35u3 + 392

(5)

Our aim in this section by presenting the new vector d′ is to reduce the com-
plexity of computing the hard part of the final exponentiation for the optimal
Ate pairing in KSS16 curves and then the complexity of computing the product
of n pairings. Let {

A = u3B + 56
B = (u + 1)2 + 4
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then we can write the expressions of mi where 0 < i < 8 more simply as follows:
⎧
⎪⎪⎨

⎪⎪⎩

m0 = 2u3A + 55u2B; m4 = u3A + 10u2B
m1 = −4u2A − 75uB; m5 = 3u2A + 100uB
m2 = −2uA − 125B; m6 = −11uA − 250B
m3 = −u4A − 24u3B + 196; m7 = 7A

These new expressions enabled us to be faster than Zhang et al. in the computa-
tion of the hard part of the final exponentiation. We detailed the computation of
the final exponentiation in the algorithm presented in AppendixA, Table 8, and
a magma code for the verification of formulas is available in [18]. The overall cost
of this algorithm is then 7 exponentiations by u, 2 exponentiations by (u+1), 34
cyclotomic squarings in Gφ2(p8), 32 multiplications in Fp16 , 3 cyclotomic cubings
in Fp16 and p, p2, p3, p4, p5, p6, p6, p7, p8-Frobenius maps.

Table 4. Comparison between Zhang et al. and our new development.

Method Algorithm Complexity

Sc M16 F16 Cc

Zhang et al. 1 44 37 8 1

Our development 2 34 32 8 3

Our result of computing the hard par of the final exponentiation is compared
with the corrected result presented in Sect. 2.3 in Table 4. For a full comparison,
we consider the example presented in [1]. The extension tower is built as follows:
– Fp4 = Fp[v]/

(
v4 + 3)

)

– Fp8 = Fp4 [w]/
(
w2 − v

)

– Fp16 = Fp8 [z]/
(
z2 − w

)

The cost of operations for computing the optimal Ate pairing on KSS16 curve
are presented in Table 4 of [1].

Table 5. Comparison between the two vectors d and d′.

The result Complexity of
algorithm

Complexity of the hard part
the final exponentiation

Corrected result of [1] See cost in Table 8 23537M

Our new algorithm See cost in Table 9 22673M

In Table 5 we compared the complexity in Fp of our result using a new mul-
tiple of the hard part of the final exponentiation and the corrected one of Zhang
et al. In this table we remark that our computations are faster than those pre-
sented in [1] for computing the hard part of the final exponentiation. We saved
about 864 multiplications in Fp which is an interesting result if one is inter-
ested in hardware or software implementations of the optimal Ate pairing at the
192-security level.
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4 On Computing Products of n Pairings

In some protocols, for example in the BBG HIBE scheme [25], the BLS short
group signature scheme [5], ABE scheme due to Waters [14], the non interactive
proof systems proposed by Groth and Sahai [26] and others [11,13], it is necessary
to compute the product or the quotient of two or more pairings. Scott in [27] and
Granger et al. in [15] investigated the computation of the product of n pairings.

Let
e : G1 × G2 → G3

a bilinear non-degenerated map from two additive groups G1 and G2 to G3 a
multiplicative group. The evaluation of a product of n pairings is of the form

en =
n∏

i=1

e(Pi, Qi)

In this section we are interested by the computation of n pairings. We give a
comparison of this computation for different category of curves at the 192-bit
security level. For this security level it is recommended by Aranha et al. in [9]
to use the BLS12 curves to compute the optimal Ate pairing. In this section and
in the case where one computes the product of n optimal Ate pairings, we will
prove that this category of curves are not a solution for all n specially where
n > 2. We prove also that the KSS16 curves, proposed as the best solution for
computing the product of n pairings by Zhang et al. in [1] are not the best
for n = 2. We First recall in Table 6 the different formulas for the optimal Ate
pairing over common families of pairing-friendly curves such as KSS16, KSS18,
BN, BLS12 and BLS24 curves. For computing the optimal Ate pairing we have
two steps: The Miller loop and the final exponentiation. The computation of the
product of n pairings consists only of the computation of the product of n Miller
loops followed by the evaluation of the result of the final exponentiation. Recall
that in the Miller loop (see the algorithm in Table 2) we have to compute the
following step:

f ← f2l(Q) (6)

Table 6. Optimal Ate pairing on elliptic curves.

Curve Optimal Ate pairing: (P,Q) →

KSS16 [1]
(
(fu,Q(P )l[u]Q,[p]Q(P ))p

3
lQ,Q(P )

) p16−1
r

KSS18 [9]
(
fu,Q(P )fp

3,Ql[u]Q,[3p]Q(P )
) p18−1

r

BN [9]
(
(f6u+2,Q(P )l[6u+2]Q,[p]Q(P )l[6u+2]Q,[−p2]Q(P ))

) p12−1
r

BLS12 [9] (fu,Q(P ))
p12−1

r

BLS24 [9] (fu,Q(P ))
p24−1

r



46 L. Ghammam and E. Fouotsa

where l is the tangent to the curve at a point depending on Q and depending
on the loop iteration in Miller’s algorithm. To compute the product of Eq. (6),
each doubling function-evaluation step becomes

f ← f2
∏n

i=1 li(Qi) (7)

Therefore one needs only to calculate a single squaring in the extension field per
doubling rather than n squarings using the naive method of the computation of
the product of n pairings.

So to evaluate the cost of the computation of the product of n optimal Ate
pairings we have to compute at first:

– Cost1: Full squarings in the Miller loop (squarings in Eq. 7).
– Cost2: Other operations in the Miller loop (point operations and line evalu-

ation).
– Cost3: Final exponentiation.

Then we have to sum Cost1, nCost2 and Cost3 to find the overall cost of the
product of n pairings.

Table 7. Costs comparison of product of n pairings at the 192-bit security levels.

Costs KSS16 Zhang KSS16 BLS12 [10] BN [9] KSS18 [9]

Full squarings
for DBL

2592M 2592M 5892M 8837M 4158M

Others in
Miller loop

7616M 7616M 10760M 16720M 9544M

Final
exponentiation

23662M+I 22888M +I 12574M+6I 11145M+6I 23821M+8I

Total cost for
n = 1

33870M+I 33096M+I 29226M+6I 36702M+6I 37523M+8I

Total cost for
n = 2

41486M+I 40712M+I 39986M+6I 53422M+6I 47067M+8I

Total cost for
n = 3

49102M+I 48328M+I 50746M+6I 64567M+6I 56611M+8I

Total cost for
n = 7

79656M+I 78792M+I 93786M+6I 109147M+6I 94784M +8I

In Table 7, we present the costs for computing the product of n pairings
considering common curves in Table 6. From Table 7, we can deduce that for
n = 2, meaning when we would like to compute the product of two parings, it
is better to use BLS12 curves. In the case of n > 2 as mentioned in [1] KSS16
curves can give the fastest computations of products or quotients of n pairings.

Security of Cryptographic protocols is important in practice. That’s why,
when we compute optimal Ate pairing on KSS16 curves we have to verify the
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security of the parameters of the elliptic curve. In the next section we will present
a detailed study of the security of the computation of the optimal Ate pairing
and more precisely the resistance against the subgroup attacks.

5 Subgroup Security for KSS16 Pairing-Friendly Curves

A detailed study on subgroup security for pairing-friendly curves was recently
studied by Baretto et al. [17]. They focus on common families of elliptic curves
having twists of order six such as BN, BL12, BLS24 and KSS18 curves. In par-
ticular they provided parameters that enable the aforementioned curves to be
resistant against subgroups attacks. In this section, we extend the same analysis
to the KSS family of elliptic curves having quartic twists and of embedding degree
16. We first recall the definition of subgroup secure curves concept from [17] The
subgroup security concept explicitly described on pairing-friendly curves by Bar-
reto et al. [17], is a property that strengthens the resistance of pairing-friendly
curves against subgroup attacks. Let E be an elliptic curve of embedding degree
k and parameterised by p(u), t(u), r(u) ∈ Q[u]. Let d be the degree of the twist

of the elliptic curve E and let E′(Fpk/d) its twists. Let h1(u) =
| E(Fp)(u) |

r(u)
,

h2(u) =
| E′(Fpk/d)(u) |

r(u)
and hT =

| Gφk
(p(u)) |

r(u)
be the indices of the three

groups on which a pairing is defined.

Definition 3. [17] The curve E is subgroup secure if all Q[u]-irreducible factors
of h1(u), h2(u), hT (u) that represent primes and that have degree at least the
degree of r(u), contain no prime factor smaller than r(u0) ∈ Z when evaluated
at u = u0.

In the case of KSS16, the indices are given in the following proposition:

Proposition 4. Let p(u), t(u), r(u) ∈ Q[u] be the parameters of the KSS16

pairing-friendly elliptic curve. The indice hT =
p(u)8 + 1

r(u)
is a polynomial in

u of degree 72. Also h1(u) = (125/2)(u2 + 2u + 5) and the order of the quar-
tic twist E′(Fp4) is | E′(Fp4) |= h2(u) · r(u) where h2(u) = (1/15059072)(u32 +

8u31 + 44u30 + 152u29 + 550u28 + 2136u27 + 8780u26 + 28936u25 + 83108u24 +

236072u23 + 754020u22 + 2287480u21 + 5986066u20 + 14139064u19 + 35932740u18 +

97017000u17 + 237924870u16 + 498534968u15 + 1023955620u14 + 2353482920u13 +

5383092978u12+10357467880u11+17391227652u10+31819075896u9+65442538660u8+

117077934360u7 + 162104974700u6 + 208762740168u5 + 338870825094u4 +

552745197960u3 + 632358687500u2 + 414961135000u + 126854087873).

Proof. The order of the group E(Fp4) is | E(Fp4) |= p4 + 1 − t4 where t4 =
t4 − 4pt2 + 2p2 (see [28, Theorem 4.12]). The order of the correct quartic twist
E′(Fp4) is given by | E′(Fp4) |= p4 + 1 + v4 where v2

4 = 4p4 − t24 (see [29,
Proposition 2]). A direct calculation gives the cofactor as h2(u) = p4+1+v4

r(u) .
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Remark 5. The value used in [1] for the computation of optimal pairing on
KSS16 curves is u0 = 249+226+215−27−1. With this value we see that h2(u0)
has the factorisation 2 ·1249 ·366593 ·c1515 where c1515 is still a composite integer
of 1515 bits. This means that the corresponding curve fails to satisfy the small
subgroup attack property. In the following section we search for a parameter u
to avoid subgroup attack on this curve.

For the 192-bit security level, the u0 which gives corresponding sizes of r and p
must be an integer of bit size at least 49. Also, the good u0 must be such that
p(u0), r(u0), h2(u0) and hT (u0) are simultaneously prime. Since u ≡ ±25 mod 70
(for p to represent integers) one can easily see that h2(u) ≡ 0 mod 2 and hT (u) ≡
0 mod 2. We will therefore search for u0 such that p(u0), r(u0), h2(u0)/2 and
hT (u0)/2 are simultaneously prime. One can have a chance to obtain such a
u0 if and only if those polynomials satisfy the Bunyakovsky’s property. A quick
verification enables to see that the prime number 17 divides these polynomials
when evaluated at n ∈ N. Therefore it is enough to search for prime numbers with
2 and/or 17 as factors. The Batemann-Horn conjecture then ensures that they
are approximately 24500 values of u0 ∈ [249, 253] with p(u0), r′(u0), h′

2(u0) and
h′

T (u0) simultaneously prime, where r(u) = 17n1 · r′(u), h2(u) = 2 · 17n2 · h′
2(u)

and hT = 2 · 17n3 · h′
T (u) for some positive or zero integers n1, n2 and n3.

A careful search enabled us, after several long tries starting with x0 of Hamming
weight 5, to obtain the following value

u0 = 250 + 247 − 238 + 232 + 225 − 215 − 25 − 1

which gives a prime p of 492 bits, r(u0) = r′(u0) prime of 386 bits, h2(u0) =
2 ·17 ·h′

2(u0) and hT = 2 ·17 ·h′
T (u0) where h′

2(u0) and h′
T (u0) are prime numbers

of 3544 bits and 1577 bits respectively. For the value of p obtained the extension
field Fp16 is built using the following tower of extensions:

– Fp2 = Fp[α]/(α2 − 11)
– Fp4 = Fp2 [β]/

(
β2 − α)

)

– Fp8 = Fp4 [γ]/
(
γ2 − β

)

– Fp16 = Fp8 [θ]/
(
θ2 − γ

)

An example of elliptic curve E over Fp that satisfies |E(Fp)| = p + 1 − t has the
equation E : y2 = x3 + 17x. The corresponding quartic twist E′ over Fp4 with
order |E′(Fp4)| = 2 · 17 · h′

2(u0) · r(u0) is the curve E′ : y2 = x3 + 17/βx.

6 Conclusion

In many pairing-based protocols the evaluation of the product or the quotient of
many pairings is required. In this paper we were interested in the computation
of the product of n optimal Ate pairings at the high security level.

This problem was first considered by Zhang et al. [1]. They suggested the
KSS16 curves as a best choice for computing n pairings. We checked their results
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on the computation of the hard part of the final exponentiation of the optimal
Ate pairing. We found that they missed 1332 multiplications in Fp in their com-
plexity calculation. We corrected their algorithm and we presented a new algo-
rithm for the computation of the final exponentiation based on a new multiple of
the hard part of the final exponentiation. With this new vector we saved about
864 multiplications in the basic field which is an important result if one thinks
about hardware or software implementations. We implemented our new algo-
rithms in Magma to verify their correctness [18]. We computed also the product
of n pairings. We proved that for n = 2 it is better to use BLS12 curves and for
n > 2 KSS16 curves are the best solution. Finally we proposed a new parame-
ter u for the KSS16 curves to ensure the resistance against the small subgroup
attacks.

A Algorithms

In these tables and to have the same expressions as Zhang et al. we denote by
f the result of Miller loop and by M the result of the first part of the final
exponentiation.

Table 8. Final exponentiation with a new exponent. See [18] for the magma code for
the verification.

Operations Terms computed Cost

E1 = fp8E2 = E1 · f−1 M = fp8−1

T0 = M2;T1 = T02 M2;M4 2S16

T2 = Mu+1;T3 = T2u+1 Mu+1;M (u+1)2 2Eu

T4 = T3 · T1 M (u+1)2+4 = MB 1M16

T5 = T4u;T6 = T45 MuB ;M5B 1Eu + 1M16 + 2S16

T7 = T18;T8 = T72 M32;M64 4S16

T9 = T7 · T1−1;T10 = T92 M28;M56 1M16 + 1S16

T11 = T5u;T12 = T11u Mu2B ;Mu3B 2Eu

T01 = T12 · T10 Mu3B+56 = MA 1M16

T14 = T01u;T13 = T14−2 MuA;M−2uA 1Eu + 1S16

T00 = T65;T15 = T005 M25B ;M125B 2M16 + 4S16

T0 = T13 · T15−1 M−2uA−125B = Mc2 1M16

T16 = T02;T17 = T134 M2c2 ;M−8uA 3S16

T18 = T17 · T14 M−7uA 1M16

T2 = T16 · T18 M2c2−7uA = Mc6 1M16

T19 = T14u;T20 = T19u Mu2A;Mu3A 2Eu

T21 = T20u;T22 = T192 Mu4
;M2u2A 1Eu + 1S16

T23 = T55;T24 = T235 M5uB ;M25uB 2M16 + 4S16
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Table 8. (continued)

Operations Terms computed Cost

T25 = T243;T26 = T24 · T25 M75uB ;M100uB 1C16 + 1M16

T27 = T222 M4u2A 1S16

T37 = (T27 · T25)−1 M−4u2A−75uB = Mc1 1M16

T28 = T27 · T19−1 M3u2A 1M16

T3 = T28 · T26 M3u2A+100xB = Mc5 1M16

T29 = T115;T30 = T292 M5u2B ;M10u2B 1M16 + 3S16

T4 = T20 · T30 Mu3A+10u2B = Mc4 1M16

S0 = T202;S1 = T305 M2u3A;M50u2B 1M16 + 3S16

S2 = S1 · T29;S3 = S0 · S2 M55u2B ;M2u3A−55u2B = Mc0 2M16

T31 = T1224 M24u3B 1C16 + 3S16

T5 = T21−1 · T31−1 M−u4A−24u3B 1M16

T6 = T83 · T1 M196 1M16 + 1C16

T7 = T5 · T6 M−u4A−24u3B+196 = Mc3 1M16

T8 = T17 M7A = Mc7 2M16 + 2S16

T32 = T37p · T7p3 · T3p5 · T8p7 Mc1p+c3p
3+c5p

5+c7p
7

3M16 + 4(15M)

T33 = T0p2 · T2p6 Mc2p
2+c6p

6
1M16 + 2(12M)

T = S3 · T32 · T33 · T4p4 M
p8+1

r 3M16 + 1(8M)

Table 9. Corrected version of the final exponentiation in [1]. See [18] for the magma
code for the verification.

Operations Terms computed Cost

E1 = fp8E2 = E1 · f−1 M = fp8−1

T1 = E24;T2 = T18;T3 = T22 6S16

A0 = T38;A1 = A0 · T3 1M16 + 3S16

A2 = A1 · T2;A3 = T12 1M16 + 1S16

A2 = A3 · A2 1M16

F1 = T2 · T1−1;F2 = F12 1M16 + 1S16

F3 = E2u+1;F4 = F3u+1 2Eu+1

F5 = F4 · T1;T4 = F58 F5 = MB 1M16 + 3S16

F6 = F5u;F7 = F5−1 · T4 F7 = Mc
′
7 1Eu + 1M16

F8 = T43;T5 = F68 1C16 + 3S16

F9 = F6u;F10 = T5 · F6−1 1Eu + 1M16

F11 = F102;T6 = F98 4S16

F12 = F9u;F13 = T6 · F9−1 1Eu + 1M16

F14 = F132;F15 = F12 · F2 F15 = MA 1S16 + 1M16
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Table 9. (continued)

Operations Terms computed Cost

T7 = F152;T8 = T74 3S16

S1 = T82;S2 = T72 2S16

S3 = S2 · S1;S4 = S3 · F15−1 2M16

T9 = S14;S5 = S3 · T9 1M16 + 2S16

S6 = F142;F16 = F15u 1Eu + 1S16

F22 = F16 · F8 F22 = Mc′
3 1M16

F23 = F22u;F24 = F23 · F11 F24 = Mc′
2 1Eu + 1M16

T10 = F232;F25 = F23u 1Eu + 1S16

F26 = T10 · F10−1;T11 = F254 F26 = Mc′
6 1M16 + 2S16

F27 = F25u;F28 = T11 · F25−1 1Eu + 1M16

F29 = F13 · F14;F30 = T11 · F29 F30 = Mc′
5 2M16

F31 = F28 · S6−1;F32 = F122 1M16 + 1S16

F33 = F32 · F12;F34 = F27 · F33 2M16

F35 = F342;F36 = F35 · F12 1M16 + 1S16

F37 = F36−1 · S5;F38 = F34 · F1 F37 = Mc′
4 2M16

F39 = F382;F40 = F392 2S16

F41 = F402;F42 = F39 · F38 1M16 + 1S16

F43 = F41 · F42;F44 = F43−1 · S4 2M16

H1 = F7p7 ;H2 = F22p3 2(14M)

H3 = F24p2 ;H4 = F26p6 2(12M)

H5 = F30p5 ;H6 = F31p 2(14M)

H7 = F37p4 ;H8 = H1 · H2−1 1M16 + 1(8M)

H9 = H82;H10 = H92 2S16

H11 = H10 · H8;H12 = H11 · H3 2M16

H13 = H12 · H4;H14 = H132 1M16 + 1S16

H15 = H142;H16 = H15 · H13 1M16 + 1S16

H17 = H16 · H6;H18 = H17 · H5−1 2M16

H19 = H182;H20 = H192 2S16

H21 = H20 · H18;H22 = H21 · H7 2M16

H23 = H22 · F44 H23 = Md′
1M16
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