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Abstract. This paper presents extremely fast differential addition (i.e.,
the addition of two points with the known difference) and doubling for-
mulas, as the core step in Montgomery scalar multiplication, for various
forms of elliptic curves over binary fields. The formulas are provided for
binary Edwards, binary Hessian and binary Huff elliptic curves with cost
of 5M+ 4S+ 1D when the given difference point is in affine form. Here,
M, S, D denote the costs of a field multiplication, a field squaring and a
field multiplication by a constant, respectively. This paper also presents,
new complete differential addition formulas for binary Edwards curves
with cost of 5M + 4S + 2D.
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1 Introduction

An elliptic curve E over a field F can be given by the Weiersrasß equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where coefficients a1, a2, a3, a4 and a6 are in F. There are many other ways
to represent elliptic curves such as Legendre equation, cubic equations, quartic
equations and intersection of two quadratic surfaces [18]. The use of elliptic
curves over finite fields based on their finite groups in cryptography (ECC)
was independently proposed in the mid 1980s by Koblitz [11] and Miler [14].
Since the introduction of elliptic curve cryptography many proposals have been
made to speed up the group arithmetic. Efficient arithmetic (addition, doubling,
tripling and scalar multiplication) on elliptic curves over finite fields is the core
requirement of elliptic curve cryptography. Several forms of elliptic curves over
finite fields with several coordinate systems have been studied to improve the
efficiency and the speed of the arithmetic on the group law.
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Elliptic curves over binary finite fields are interesting particularly for hard-
ware implementations. Every ordinary elliptic curve over the binary finite filed
F2m can be represented in the Weierstraß form

y2 + xy = x3 + ax2 + b,

where a, b ∈ F2m and b �= 0. There are alternative ways to represent binary
elliptic curves such as binary Hessian [1,5,6,17], binary Edwards [3], binary
Huff curves [9] and binary μ4-normal forms [12].

The scalar multiplication is the most important operation of elliptic curve
cryptography. That is to compute kP for a given point P on elliptic curve E
defined over a finite field Fq and a given integer k. The scalar multiplication can
be performed by a sequence of point additions and point doublings. Speed and
efficiency are the main factors to be considered in the correct implementing of
scalar multiplication. Moreover, the implementations should be performed in a
way to be resistant against passive and active side channel attacks. There are
several mathematical countermeasures proposed for preventing these attacks.
Simple side-channel attacks get information from a single scalar multiplication
when the power trace reveal distinctive key dependent patterns. The main idea
of the countermeasure against simple side-channel attacks is to make the com-
putation uniform. And the main solutions are making indistinguishable point
addition and point doubling, using double and add always method, using win-
dow method or applying the Montgomery technique.

The Montgomery method [15,16] is introduced for scalar multiplication of
points for a special type of curve in large characteristic. This method has been
extended to other form of elliptic curves and to binary elliptic curves [8]. The
Montgomery scalar multiplication is known also as Montgomery ladder. In the
Montgomery ladder, for each bit of the scalar both doubling and addition are
performed, so this prevents the computation secure against simple power analy-
sis. Also this method is not subject to fault attacks.

The countermeasures for some other passive or active attacks are to insert
suitable randomness to the key and also to the base point of the scalar multipli-
cation. Therefore, here the scalar key may be larger than the order of the base
point, which makes some exceptional cases like the point at infinity in the com-
putation of the Montgomery ladder. Thus, obtaining complete or almost complete
formulas for addition and doubling makes the ladder performs completely.

In this paper we present fast explicit formulas for differential additions and
doublings on well known binary elliptic curves such as binary Edwards, binary
Hessian and binary Huff curves.

2 Differential Addition

A Montgomery curve over a field F of characteristic different from 2 is given by
the equation

bY 2Z = X3 + aX2Z + XZ2,
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where a, b are elements of F with b(a2 − 4) �= 0. The Montgomery ladder for
scalar multiplication is performed by a sequence of simultaneous point addition
and doubling, which makes this method interesting against side-channel attacks.
In Montgomery curves, the basic computation in a each step is done without
the Y coordinate, i.e., the technique involves special formulas for addition and
doubling that relies on only the X and Z coordinates of a point in projective
form. Also, the Y coordinate of the output point can be derived from the X and
Z coordinates.

In general, the basic computation in a each step of the Montgomery ladder
is differential addition and doubling. That is for given points P1, P2 and P1 −P2

on elliptic curve E over Fq to compute P1 + P2 and 2P1. The idea is extended
by a suitable rational function on the elliptic curve. Suppose w is a rational
function defined over an elliptic curve E over a finite field Fq. The function w is
given by fraction of polynomials in the coordinate ring of E over Fq. Let w(P ) =
w(−P ) for any point P on E(Fq). Then the w-coordinate differential addition
and doubling means to compute w(2P1) and w(P1+P2) from given values w(P1),
w(P2) and w(P1−P2), where P1, P2 are points on E(Fq). For Montgomery curves
the function w is x, where w(P ) equals the x-coordinate of the point P . Since
field inversion is costly, practically computations are performed where points are
represented in projective coordinates. Therefore, when w is regular at the point
P then w(P ) is represented by (w(P ) : 1) in the projective line P(Fq). Otherwise,
it is represented by (1 : 0). The projective w-coordinate differential addition and
doubling (dADD) algorithm is given in Algorithm1. Notice, in Algorithm 1, the
given input values w(P1), w(P2) and w(P0) = w(P1 − P2) are represented by
Wi/Zi where i = 1, 2, 0 respectively. Then w(P1 + P2), i.e. the w-coordinate
differential addition, is given by fa

ga
with some homogenous polynomials fa and

ga in variables Wi, Zi, where i = 0, 1, 2. Also, w(2P1) is given by fd
gd

, where fd
and gd are homogenous polynomials with variables W1, Z1.

Algorithm 1. Projective w-coordinate dADD
Input : E/Fq, w : E(Fq) → P(Fq), � The elliptic curve E over Fq

(Wi : Zi) = w(Pi), i = 0, 1, 2. � w(P0) = w(P1 − P2)
Output : (Wi : Zi) = w(Pi), i = 3, 4. � w(P3) = w(P1 + P2), w(P4) = w(2P1)

1: function dADD((W0 : Z0), (W1 : Z1), (W2 : Z2))
2: W3 = fa(W0, Z0, W1, Z1, W2, Z2) � Differential addition computation
3: Z3 = ga(W0, Z0, W1, Z1, W2, Z2)
4: W4 = fd(W1, Z1) � Doubling computation
5: Z4 = gd(W1, Z1)
6: return ((W4 : Z4), (W3 : Z3)) � The differential addition and doubling
7: end function

The Montgomery scalar multiplication based on a projective w-coordinate
dADD is given in Algorithm2. Notice, the base point P can be considered such
that one of the coordinates of w(P ) equals 1, which makes less field operation
computation in each step of the ladder.
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Algorithm 2. The Montgomery scalar multiplication
Input : E/Fq, w : E(Fq) → P(Fq), � The elliptic curve E over Fq

Projective w-coordinate dADD funtion,
P ∈ E(Fq), k = (km−1, · · · , k1, k0) � k is a positive

integer, km−1 = 1
(W0 : Z0) := w(P ), (W1 : Z1) := w(P ), (W2 : Z2) := w(2P ).

Output : w(kP )

1: for i := m − 2 down to 0 do
2: if ki = 0 then
3: ((W1 : Z1), (W2 : Z2)) := dADD((W0 : Z0), (W1 : Z1), (W2 : Z2))
4: else
5: ((W2 : Z2), (W1 : Z1)) := dADD((W0 : Z0), (W2 : Z2), (W1 : Z1))
6: end if
7: end for
8: return (W1 : Z1), (W2 : Z2) � The differential addition and doubling

Note that if there are some exceptional points where the function dADD is
not computed correctly, then the Montgomery ladder does not work properly.
We say that the differential w-coordinate is complete if the Algorithm 1 works
for any input without any exception. We also say that the function dADD is
almost complete if the Algorithm 1 works for all inputs except for the case where
w(P0) equals w(O), where O is the neutral element of the group of points E(Fq).
Therefore, for the complete function dADD the Montgomery ladder is performed
without any problem for any input. Moreover, for the almost complete function
dADD the Montgomery ladder works for any base point P except for the points
where w(P ) equals w(O). Notice, the almost complete function is also suitable
for cryptographic application.

In this paper, we concentrate on differential addition on binary elliptic curves.
Let E be a binary elliptic curve over F2m in Weiersrasß form

y2 + xy = x3 + ax2 + b,

where a, b are in F2m . Lopez and Dahab [13] presented the projective formu-
las for the addition and doubling of points on E. And, they generalized the
Montgomery’s idea to binary curves. Algorithm3 provides the Lopez and Dahab
differential x-coordinate on elliptic curve E over F2m .

If we assume Z0 = 1, then the Lopez and Dahab formulas are computed
using 5M + 4S + 1D. Here, a multiplication in Fq costs one M and a squaring
costs one S. Also the cost of field multiplication by a parameter (as a constant)
is denoted by D.

We note, that the point at infinity on the binary elliptic curve E over F2m

is O = (0 : 1 : 0) and x(O) is represented by (1 : 0). One can easily check that
the projective x-coordinate formulas work for all inputs if Z0 �= 0, that is where
P0 �= O. In other words the formulas are almost complete and the Montgomery
ladder works for all inputs if the base point is not the point at infinity. So, the
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Algorithm 3. Lopez and Dahab projective x-coordinate dADD
Input : E/Fq : y2 + xy = x3 + ax2 + b � The elliptic curve E over F2m

(Xi : Zi) = x(Pi), i = 0, 1, 2. � x(P0) = x(P1 − P2)
Output : (Xi : Zi) = x(Pi), i = 3, 4. � x(P3) = x(P1 + P2), x(P4) = x(2P1)

1: function dADD((X0 : Z0), (X1 : Z1), (X2 : Z2))
2: X3 = X0 (X1Z2 + X2Z1)

2 + Z0 (X1Z1X2Z2)
3: Z3 = Z0 (X1Z2 + X2Z1)

2

4: X4 = (X4
1 + bZ4

1 )
5: Z4 = X2

1 Z2
1

6: return ((X4 : Z4), (X3 : Z3)) � The differential addition and doubling
7: end function

Montgomery ladder can be modified as Algorithm4. Here there is no need to
assume that the bit km−1 of the integer k is equal to ‘1’. Also, there is no need to
precompute 2P from the base point P . Moreover, the ladder works properly even
if the integer k is bigger than the order of the base point P . So, for Lopez and
Dahab formulas, one can use random scalar k as a countermeasure to protect
against differential power analysis attack.

Algorithm 4. The modified Montgomery scalar multiplication
Input : E/Fq : y2 + xy = x3 + ax2 + b � The elliptic curve E over Fq

P = (x : y : z) ∈ E(Fq) � P �= O = (0 : 1 : 0)
k = (km−1, · · · , k1, k0) � 0 ≤ k ∈ Z

(X0 : Z0) := (x : z), (X1 : Z1) := (1 : 0), (X2 : Z2) := (x : z).
Output : w(kP )

1: for i := m − 1 down to 0 do
2: if ki = 0 then
3: ((X1 : Z1), (X2 : Z2)) := dADD((X0 : Z0), (X1 : Z1), (X2 : Z2))
4: else
5: ((X2 : Z2), (X1 : Z1)) := dADD((X0 : Z0), (X2 : Z2), (X1 : Z1))
6: end if
7: end for
8: return (X1 : Z1), (X2 : Z2) � The differential addition and doubling

3 Binary Edwards Curves

In this section we review the Binary Edwards curve [3] and propose new differ-
ential addition and doubling formulas.

Let d1, d2 be elements of F2m such that d1 �= 0 and d2 �= d1(d1 + 1). The
binary Edwards curve with parameters d1 and d2 is given by the equation

EB,d1,d2 : d1(x + y) + d2(x + y)2 = xy(x + 1)(y + 1). (1)
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The curve is symmetric in x, y and the negation of (x, y) is (y, x). This curve
has two points (0, 0) and (1, 1) which are invariant under the negation law. The
point (0, 0) is the neutral element of the addition law and the point (1, 1) has
order 2. We denote the point (0, 0) by O.

The binary Edwards curve EB,d1,d2 is birationally equivalent to the ordinary
elliptic curve in Weierstraß form

v2 + uv = u3 + au2 + b,

where a, b are in F2m with b �= 0. The map (x, y) �−→ (u, v) defined by

u = ((d31 + d21 + d1d2)(x + y))/(xy + d1(x + y))

v = (d31 + d21 + d1d2)(d1 + 1 + x/(xy + d1(x + y))

is a birational equivalence form EB,d1,d2 to the elliptic curve

v2 + uv = u3 + (d21 + d2)u2 + d41(d
4
1 + d12 + d2).

Affine Addition. The sum of two points (x1, y1) and (x2, y2) on EB,d1,d2 is the
point (x3, y3) defined as follows:

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)
d1 + (x1 + x2

1)(x2 + y2)
,

(2)

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1)(y2(x1 + x2 + 1) + x1x2)
d1 + (y1 + y2

1)(x2 + y2)
.

Affine Doubling. The doubling of point (x1, y1) is the point (x4, y4) defined
as follows:

x4 = 1 +
d1 + d2(x2

1 + y2
1) + y2

1 + y4
1

d1 + (x2
1 + y2

1) + d2/d1(x4
1 + y4

1)
, (3)

y4 = 1 +
d1 + d2(x2

1 + y2
1) + x2

1 + x4
1

d1 + (x2
1 + y2

1) + d2/d1(x4
1 + y4

1)
.

Differential Addition. Bernstein, Lange and Farashahi in [3] proposed the
differential addition and doubling formulas for binary Edwards curve. Assume
that P = (x1, y1), Q = (x2, y2) are points on EB,d1,d2 and Q−P = (x0, y0), Q+
P = (x3, y3) and 2P = (x4, y4). They considered w-function as w(xi, yi) = xi+yi
and obtained the following complete formulas for differential addition:

w4 =
w2

1 + w4
1

d1 + w2
1 + (d2/d1)w4

1

,

w3 + w0 =
d1w1w2(1 + w1)(1 + w2)

d21 + w1w2(d1(1 + w1 + w2) + d2(w1w2))
,

w3w0 =
d21(w

2
1 + w2

2)
d21 + w1w2(d1(1 + w1 + w2) + d2(w1w2))

.
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Assume that w0 is given as a field element, and w1, w2 are given as fractions
W1/Z1, W2/Z2 and w4, w3 are outputs as fractions W4/Z4 and W3/Z3. Then,
the mixed projective w-coordinate differential addition and doubling formulas
are given as follows.

A = W1(W1 + Z1), B = W2(W2 + Z2), C = Z1Z2, D=W1W2, E =AB,

F = E + (
√

d1C +
√

d2/d1 + 1D)2,

W4 = A2, Z4 = W4 + (( 4
√

d1Z1 + 4
√

d2/d1 + 1W1)2)2,
Z3 = F, W3 = E + w0F.

From above formulas, for the general case d1 �= d2, the cost of differential
addition is 6M+1S+2D and the cost of doubling is 1M+3S+2D. And the total
cost is 6M+4S+4D. If d1 = d2 the total cost is 5M+4S+2D. Recently Kim,
Lee and Negre [10] for the case d1 = d2, by using the co-Z trick improved the
differential addition formulas by 1D and obtained almost complete differential
addition formulas with cost of 5M + 4S + 1D.

New Differential Addition. In this section, we consider binary Edwards curves
in general form and present two new w-coordinates differential formulas where
one of this formulas is complete and the other is almost complete.

Let define the rational function w by w(x, y) = (x + y)/(d1(x + y + 1)).
The function is well computed for all affine points on a binary Edwards curve
except for the points (x, y) where x + y = 1. Since −(x, y) = (y, x), for all
points P on the curve, we have w(P ) = w(−P ). Also, we have w(O) = 0.
As before, for i = 0, 1, 2, 3, 4, let wi = w(Pi), where Pi ∈ EB,d1,d2(F2m) with
w(P0) = w(P1 − P2), w(P3) = w(P1 + P2) and w(P4) = w(2P1). From the
addition formula (2), with a straightforward calculation, we obtain the following
differential addition formulas.

w3 + w0 =
w1w2

d21(d
2
1 + d1 + d2)w2

1w
2
2 + 1

, (4)

w3w0 =
w2

1 + w2
2

d21(d
2
1 + d1 + d2)w2

1w
2
2 + 1

. (5)

Also, from the doubling formula (3) and some calculations we obtain

w4 =
w2

1

d21(d
2
1 + d1 + d2)w4

1 + 1
. (6)

We recall [3] that the binary Edwards curve EB,d1,d2 over F2m is complete if
Tr(d2) = 1. Here Tr is the trace function from F2m to F2. Moreover, if Tr(d1) = 0
then there is no point (x, y) on the curve with x + y + 1 = 0. Since, if there is
a point (x, y) with x + y + 1 = 0 on the curve EB,d1,d2 with Tr(d2) = 1 and
Tr(d1) = 0, then by the curve Eq. (1), we have x4 + x2 + d1 + d2 = 0. Then,

Tr(0) = Tr(x4 + x2 + d1 + d2)

= Tr(x4) + Tr(x2) + Tr(d1) + Tr(d2)

= Tr(x2) + Tr(x2) + 0 + 1 = 1,
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which is a contradiction. Therefore, the function w is well defined for all affine
points on the complete binary Edwards curve EB,d1,d2 with Tr(d1) = 0.

Notice, the set of affine F2m -rational points of the complete binary Edwards
curve EB,d1,d2 is an abelian group. And, with the condition Tr(d1) = 0, for any
point P = (x, y) on the curve, the value w(P ) is well computed and belongs to
F2m . By the Eqs. (4) and (6) we have

(w3 + w0)(d21(d
2
1 + d1 + d2)w2

1w
2
2 + 1) = w1w2 ,

w4(d21(d
2
1 + d1 + d2)w4

1 + 1) = w2
1.

So, we see that if Tr(d1) = 0 then the denominators of Eqs. (4) and (6)
never equal zero. In other words, above w-coordinates differential addition
and doubling formulas for complete binary Edwards curve are complete where
Tr(d1) = 0.

For further speedup, we can divide the Eq. (4) by Eq. (5) and obtain the
following faster formula.

1
w3

+
1
w0

=
w1w2

(w1 + w2)2
. (7)

Cost of Projective w-Coordinates. Using Eqs. (4) and (6), we obtained new
and complete differential addition formulas for general binary Edwards curves
with the total cost of 5M + 4S + 2D where the difference of input points is
affine. Then, by using the Eqs. (6) and (7) we obtain, new and fast, but almost
complete, differential addition formulas in mixed projective coordinates with
the total cost of 5M+ 4S+ 1D. Thus, the total cost of differential addition and
doubling in general binary Edwards curves is reduced from 6M + 4S + 4D to
5M + 4S + 1D.

As before assume that w0 is given as a field element, and w1, w2 are given
as fractions W1/Z1, W2/Z2 and w4, w3 are to be output as fraction W4/Z4 and
W3/Z3. From Eq. (6) the explicit doubling formula is given by

W4

Z4
=

W 2
1 Z2

1

(d41 + d31 + d21d2)W
4
1 + Z4

1

(8)

and from Eq. (4) the explicit addition formula is given by

W3

Z3
=

W0((d41 + d31 + d21d2) W 2
1 W 2

2 + Z2
1Z2

2 ) + Z0(W1W2Z1Z2)
Z0((d41 + d31 + d21d2) W 2

1 W 2
2 + Z2

1Z2
2 ))

. (9)

So, from the Eqs. (8) and (9), the cost of projective w-coordinates is 7M +
4S + 2D. If we set Z0 = 1, then the mixed projective w-coordinates differential
addition and doubling formulas have the total cost 5M + 4S + 2D as follows.

A = W1Z1, B = W1W2, C = Z1Z2,

W4 = A2, Z4 = ( 4

√
(d41 + d31 + d21d2)W1 + Z1)4, (10)

Z3 = (
√

(d41 + d31 + d21d2)B + C)2, W3 = BC + w0Z3.
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From Eq. (7), we also obtain the following explicit projective differential addi-
tion formulas.

Z3

W3
=

Z0(W1Z2 + W2Z1)2 + W0(W1Z2W2Z1)
W0(W1Z2 + W2Z1)2

. (11)

Thus, by Eqs. (8) and (11), the cost of projective w-coordinates is 7M+4S+
2D. If we set W0 = 1 and using the mixed projective coordinates we have the
following formulas for computing differential addition.

A = W1Z1, B = W1Z2, C = W2Z1,

W4 = A2, Z4 = ( 4

√
(d41 + d31 + d21d2)W1 + Z1)4, (12)

W3 = (B + C)2, Z3 = BC + z0W3.

From differential addition and doubling formulas (12), the costs of differential
addition and doubling are 4M + 1S, 1M + 3S + 1D respectively. And, the total
cost is 5M + 4S + 1D.

The binary Edwards curve EB,d1,d2 , has the neutral element O represented
by w-coordinate as (0 : 1). For the complete binary Edwards curve EB,d1,d2 with
Tr(d1) = 0, any point P on the curve can be represented by (w(P ) : 1). In other
words, for any w-coordinate representation of the point P by (W : Z) we have
Z �= 0. So, from the completeness of the affine w-coordinates differential addition
and doubling formulas for complete binary Edwards curve with Tr(d1) = 0,
we deduce that the projective w-coordinates differential addition and doubling
formulas (8) and (9) are also complete. The mixed projective formulas (10) have
the cost of 5M+4S+2D. Furthermore, the projective w-coordinates differential
addition and doubling formulas (8) and (11) are almost complete; the exceptional
cases are points P0 where w(P0) = w(O). The mixed projective formulas (12)
have the cost of 5M + 4S + 1D.

4 Binary Hessian Curve

A Hessian curve over a field F2m is given by the cubic equation

Hd : x3 + y3 + 1 + dxy = 0 ,

for some d ∈ F2m with d3 �= 27 [5]. The family is extended to the family of
generalized Hessian [5] or twisted Hessian curves [1]. A generalized Hessian curve
Hc,d over F2m is defined by the equation

Hc,d : x3 + y3 + c + dxy = 0,

where c, d are elements of F2m such that c �= 0 and d3 �= 27c. The projective
closure of the curve Hc,d is

Hc,d : X3 + Y 3 + cZ3 = dXY Z.
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It has the points (1 : ω : 0) with ω3 = 1 at infinity. The neutral element of
the group of F2m -rational points of Hc,d is the point at infinity (1 : 1 : 0) that is
denoted by O. And, the negation of point (X : Y : Z) is (Y : X : Z).

Affine Addition. The sum of two different points (x1, y1), (x2, y2) on Hc,d is
the point (x3, y3) given by

x3 =
y1

2x2 + y2
2x1

x2y2 + x1y1
and y3 =

x1
2y2 + x2

2y1
x2y2 + x1y1

.

Affine Doubling. The doubling of the point (x1, y1) on Hc,d is the point (x4, y4)
given by

x4 =
y1(c + x1

3)
x1

3 + y13
and y4 =

x1(c + y1
3)

x1
3 + y13

.

Differential Addition. Farashahi and Joye in [5] adapted differential addition
formulas for the binary curve Hc,d. They defined the rational function w(x, y) =
x3 + y3. As before, for i = 0, 1, 2, 3, 4, let wi = w(Pi), where Pi are points of
Hc,d(F2m) with w(P0) = w(P1 − P2), w(P3) = w(P1 + P2) and w(P4) = w(2P1).
From [5], we have

w4 =
w1

4 + c3(d3 + c)
d3w1

2
, (13)

w0 + w3 =
d3w1w2

(w1 + w2)2
and w0w3 =

w1
2w2

2 + c3(d3 + c)
(w1 + w2)2

. (14)

To have mixed projective formulas, wi are given by the fractions Wi/Zi for
i = 0, 1, 2, 3 where Z0 = 1. The following explicit formulas give the output w3

defined by W3/Z3:

A = W1Z2, B = W2Z1, C = AB, U = d3C, V = (A + B)2,
Z3 = V, W3 = U + w0V.

Moreover, we write w4 by the fraction W4/Z4. Then, the explicit doubling
formulas is

A = W1
2, B = Z1

2, C = A +
√

c3(d3 + c)B, D = d3B,
W4 = C2, Z4 = AD.

The cost of these mixed w-coordinates is 4M + 1S + 1D for addition and
1M + 3S + 2D for doubling and the total cost is 5M + 4S + 2D.

New Differential Addition. In this section we present two new differential
addition formulas for generalized Hessian curve over binary field F2m with total
cost of 5M + 4S + 1D for both doubling and addition.

We modify the definition of the above rational function w, [5], and consider
w(x, y) = x3+y3

d3 . Using the differential addition formulas (14), by a straightfor-
ward calculations, we obtain the following formulas in affine coordinates.

w3 + w0 =
w1w2

w2
1 + w2

2

, (15)
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w3w0 =
w2

1w
2
2 + (c4 + c3d3)/(d12)

w2
1 + w2

2

. (16)

Also, from the doubling formula (13), the following doubling formula is
obtained.

w4 =
w4

1 + (c4 + c3d3)/(d12)
w2

1

. (17)

Cost of Projective w-Coordinates. To obtain the projective formulas, assume
that wi are given by the fractions Wi/Zi for i = 0, 1, 2, 3, 4. From Eq. (15) the
following explicit formulas give W3/Z3 by

W3

Z3
=

W0(W1Z2 + W2Z1)2 + Z0(W1Z2W2Z1)
Z0(W1Z2 + W2Z1)2

. (18)

Also, from Eq. (17), the doubling is given by

W4

Z4
=

W 4
1 + (c4 + c3d3)/(d12) Z4

1

W 2
1 Z2

1

. (19)

The cost of projective w-coordinates differential addition and doubling is
7M+4S+1D; see Eqs. (18) and (19). If we set Z0 = 1 then we have the following
mixed projective coordinates formulas with the total cost 5M + 4S + 1D.

A = W1Z1, B = W1Z2, C = W2Z1

W4 = (W1 + 4
√

(c4 + c3d3)/d12 Z1)4, Z4 = A2,

Z3 = (B + C)2, W3 = BC + w0Z3.

Here, the differential addition formulas use 4M + 1S and doubling formulas
use 1M+3S+1D and the total cost is 5M+4S+1D. So the computation of 1D
is saved. Notice, the projective w-coordinate differential addition and doubling
formulas (18) and (19) are almost complete; the exceptional points are 3 torsion
points P0 where w(P0) = w(O) = (1 : 0).

5 Binary Huff Curves

Huff model at first introduced by Huff [7] in 1948 to study a diophantine prob-
lem. Huff model are extended over fields of odd characteristic. Joye et al. [9],
extended the Huff model and also introduced the binary partner for Huff curve.
In 2011 Devigen and Joye [4] described the addition law for Binary Huff curve
and compute formulas for addition, doubling and differential addition which the
cost of their differential addition and doubling is 5M+5S+1D. Here, we improve
their results to the cost of 5M + 4S + 1D.

The binary Huff curve is given by the equation

HFa,b : ax(y2 + y + 1) = by(x2 + x + 1), (20)
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where a, b are in F2m such that a, b �= 0 and a �= b. This curve have three points
at infinity, namely (a : b : 0), (1 : 0 : 0) and (0 : 1 : 0). Binary Huff curve is
birationally equivalent to the Weierstrasß elliptic curve

v2 + uv = u3 + (a2 + b2)u2 + a2b2u

via the map (x, y) �−→ (u, v) defined by

u =
ab

xy
, v =

ab(axy + b)
x2y

with the inverse map

x =
b(u + a2)

v
, y =

a(u + b2)
v + (a + b)u

.

The neutral element of binary Huff curve is the point (0, 0). The negation of the
point (x, y) is (x̃, ỹ) where

x̃ =
y(b + axy)
a + bxy

, ỹ =
x(a + bxy)

b + axy
.

Affine Addition. The sum of two points (x1, y1) and (x2, y2) on HFa,b is the
point (x3, y3) defined as follows:

x3 =
(x1y1 + x2y2)(1 + y1y2)
(y1 + y2)(1 + x1x2y1y2)

, y3 =
(x1y1 + x2y2)(1 + x1x2)
(x1 + x2)(1 + x1x2y1y2)

. (21)

Affine Doubling. The doubling of point (x1, y1) is the point (x4, y4) defined
as follows:

x4 =
(a + b)x2

1(1 + y2
1)

b(1 + x2
1)(1 + x2

1y
2
1)

, y4 =
(a + b)y2

1(1 + x2
1)

a(1 + y2
1)(1 + x2

1y
2
1)

. (22)

As b �= 0 we can divide the Eq. (20) by b and for simplicity we can assume
b = 1. So, we consider the binary Huff curve with the equation

ax(y2 + y + 1) = y(x2 + x + 1)

where a �= 0, 1.

Differential Addition. Devigen and Joye, [4], proposed the rational function
w(x, y) = xy for the binary Huff curves. They obtained the following affine
w-coordinates formulas

w4 =
(a2 + 1)/aw2

1

1 + w4
1

, w3 =
(w1 + w2)2

w0(1 + w1w2)2
.

The projective coordinates of the formulas are

W4 = (a2 + 1)/a(W1Z1)2, Z4 = (W1 + Z1)4,

W3 = w0(W1Z2 + W2Z1)2, Z3 = (W1W2 + Z1Z2)2.
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The cost of this w-coordinates in one step of the Montgomery ladder is 5M+
5S + 1D.

New Differential Addition. Here, we modify the rational function w(x, y) =
xy on binary Huff curve by scaling to w(x, y) = (a2+1)

a xy. This new rational
function reduces the cost of differential addition by 1S. As before, we use the
same notation for differential addition and doubling. From addition formulas
(21), we obtain the following formulas in affine coordinates.

w3 + w0 =
w1w2

(a/(a2 + 1))4w2
1w

2
2 + 1

, (23)

w3w0 =
w2

1 + w2
2

(a/(a2 + 1))4w2
1w

2
2 + 1

. (24)

The doubling formula (22) provides the following affine doubling formula.

w4 =
w2

1

(a/(a2 + 1))4w4
1 + 1

. (25)

Then, by Eqs. (23) and (24) we have

1
w3

+
1
w0

=
w1w2

(w1 + w2)2
. (26)

Cost of Projective w-Coordinates. Assume that wi are given by the fractions
Wi/Zi for i = 0, 1, 2, 3, 4. By Eq. (26) the following explicit formulas give the
output W3/Z3 by

Z3

W3
=

Z0(W1Z2 + W2Z1)2 + W0(W1Z2W2Z1)
W0(W1Z2 + W2Z1)2

. (27)

Also, from Eq. (25) the explicit doubling formulas is obtained.

W4

Z4
=

W 2
1 Z2

1

W 4
1 + (a/(a2 + 1))4 Z4

1

. (28)

So, the cost of projective w-coordinates differential addition and doubling is
7M+4S+1D; see Eqs. (27) and (28). Let assume W0 = 1. Then using the mixed
projective coordinates, we have the following formulas for differential addition:

A = W1Z1, B = W1Z2, C = W2Z1,

Z4 = (W1 + (a/(a2 + 1))Z1)4, W4 = A2,

W3 = (B + C)2, Z3 = BC + z0Z3.

Here, the addition formulas use 4M + 1S and doubling formulas use 1M +
3S + 1D. The total cost is 5M + 4S + 1D and one S is saved. Moreover the
projective w-coordinates differential addition and doubling formulas (27) and
(28) are almost complete.
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6 Comparison with Previous Works

In Table 1, we compare our new differential addition formulas with other models
of binary elliptic curves. The addition formulas for all binary elliptic are complete
or almost complete which makes the Montgomery ladder work perfectly in cryp-
tographic applications. The cost of almost complete formulas is 5M + 4S + 1D
that is the best known record. We believe this record may be obtained for any
form of binary elliptic curve by a suitable rational function. The proposed for-
mulas for general binary Edwards are improved in terms of efficiency and speed.
The complete formulas for binary Edwards curves are the only known complete
formulas for binary elliptic curves with the cost of 5M + 4S + 2D.

Table 1. Cost of differential addition and doubling for families of binary elliptic curves

Model Projective differential Mixed differential Completeness

Short Weierstraß [2] 7M + 4S + 1D 5M + 4S + 1D Almost

Binary Edwards

(general) [3] 8M + 4S + 4D 6M + 4S + 4D Yes

(d1 = d2) [3] 7M + 4S + 2D 5M + 4S + 2D Yes

(d1 = d2) [10] 7M + 4S + 2D 5M + 4S + 1D Almost

(general) this work 7M + 4S + 2D 5M + 4S + 2D Yes

(general) this work 7M + 4S + 1D 5M + 4S + 1D Almost

Binary Hessian [5] 7M + 4S + 2D 5M + 4S + 2D Almost

This work 7M + 4S + 1D 5M + 4S + 1D Almost

Binary Huff [4] 6M + 4S + 2D 5M + 5S + 1D Almost

This work 7M + 4S + 1D 5M + 4S + 1D Almost
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